Science.gov

Sample records for charge transfer characteristics

  1. Charge Transfer Characteristics and Initiation Mechanisms of Long Delayed Sprites

    NASA Astrophysics Data System (ADS)

    Li, J.; Cummer, S. A.; Lyons, W. A.; Nelson, T. E.

    2007-12-01

    Simultaneous measurements of high altitude optical emissions and the magnetic field produced by sprite-associated lightning discharges enable a close examination of the link between low altitude lightning process and high altitude sprite process. In this work, we report results of the coordinated analysis of high speed (1000--10000 frames per second) sprite video and wideband (0.1 Hz to 30 kHz) magnetic field measurements made simultaneously at the Yucca Ridge Field Station and Duke University during the June through August 2005 campaign period. During the observation period, the high speed camera detected 83 sprite events in 67 TLE sequences, which are caused by the same number of +CGs. 46% of these sprite events are delayed more than 10 ms after the lightning return stroke. With the estimated lightning source current moment waveform, we computed the continuing current amplitude and total charge transfer characteristics of the long delayed sprites (>10 ms delay). Our calculation shows the total charge moment change of the long delayed sprites can vary from several hundred C km to more than ten thousand C km. All the long delayed sprites are related with intense continuing current bigger than 2 kA. This continuing current provides about 50% to 90% of the total charge transfer. However, a bigger continuing current does not necessarily mean a shorter time delay. This indicates that other processes also involved in the sprite initiation for long delayed sprites. In our observations, the sferic burst, a high frequency noise caused by intra-cloud activity, is always accompanied by a slow intensification in the lightning source current before the time of sprite initiation. Thus we used the lightning source current as an input and employed a 2-D FDTD model to numerically simulate the electric field at different altitudes and compare it with the breakdown field. Including the effect of the electron mobility dependence on electric field, the simulation results showed that

  2. Characteristics of Intramolecular Charge Transfer by J-Aggregates in Merocyanine Dye LB Films.

    PubMed

    Yang, Chang Heon; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-06-01

    In this study, for the development of future molecular electronic devices, we have investigated the characteristics of the aggregates of Langmuir-Blodgett films. The characteristics of intramolecular charge transfer by J-aggregates in merocyanine dye LB films have been studied experimentally by using UV irradiation and heat treatment. In addition to intramolecular charge transfer, we also studied the conjugation and energy changes of the molecules. In case a dye is thinned by LB method, the alkyl chain is often displaced in order to form a mono-molecular film with ease. Since the molecular association form is often made by self-organization of molecules themselves, in case the dye and the alkyl chain are strongly bonded by the covalent bond, it may be said that the properties of the LB film to be built up are almost determined at the time of synthesis of film-forming molecules. Meanwhile, since, in case LB film is fabricated by the diffusion absorption method, the cohesive force between the water-soluble dye and the surface-active mono-molecular film is electrostatic, the dye molecule can move relatively freely on the air/water interface, which may be regarded as a two-dimensional crystal growth process. PMID:27427711

  3. Determination of characteristic constants for some basic processes in plasma—diffusion, Penning ionization, asymmetric charge transfer

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Vuchkov, N. K.; Ekov, R. P.; Sabotinov, N. V.

    2008-05-01

    The diffusion coefficients of ten chemical element atoms in the binary system with helium and neon are calculated on the basis of 12-6 Lennard-Jones and rigid sphere inter-atomic interaction approximations. Cross-sections and rate constants for thermal energy charge transfer and Penning collisions are calculated for all Tl+ and I+ excited states possibly populated via these reactions. For the case of the charge transfer process the theoretical results are compared with the experimentally obtained ones. Since the characteristic constants considered depend on the gas temperature, the gas temperature distribution is also calculated by solving the heat conduction equation for the gas discharges studied.

  4. Study of fluorescence characteristics of the charge-transfer reaction of quinolone agents with bromanil

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ying; Chen, Xiao-Fang; Xuan, Chun-Sheng

    2009-01-01

    A spectrofluorimetric method was discussed for the determination of three antibacterial quinolone derivatives, ofloxacin (OFL), norfloxacin (NOR) and ciprofloxacin (CIP) through charge-transfer complexation (CTC) with 2,3,5,6-tetrabromo-1,4-benzoquinone (bromanil, TBBQ). The method was based on the reaction of these drugs as n-electron donors with the π-acceptor TBBQ. TBBQ was found to react with these drugs to produce a kind of yellow complexes and the fluorescence intensities of the complexes were enhanced by 29-36 times more than those of the corresponding monomers. UV-vis, 1H NMR and XPS techniques were used to study the complexes formed. The various experimental parameters affecting the fluorescence intensity were studied and optimized. Under optimal reaction conditions, the rectilinear calibration graphs were obtained in the concentration range of 0.021-2.42 μg mL -1, 0.017-2.63 μg mL -1 and 0.019-2.14 μg mL -1 for OFL, NOR and CIP, respectively. The methods developed were applied successfully to the determination of the subject drugs in their pharmaceutical dosage forms with good precision and accuracy compared to official and reported methods as revealed by t- and F-tests.

  5. Charge transferred in brush discharges

    NASA Astrophysics Data System (ADS)

    Talarek, M.; Kacprzyk, R.

    2015-10-01

    Electrostatic discharges from surfaces of plastic materials can be a source of ignition, when appear in explosive atmospheres. Incendivity of electrostatic discharges can be estimated using the transferred charge test. In the case of brush discharges not all the energy stored at the tested sample is released and the effective surface charge density (or surface potential) crater is observed after the discharge. Simplified model, enabling calculation of a charge transferred during electrostatic brush discharge, was presented. Comparison of the results obtained from the simplified model and from direct measurements of transferred charge are presented in the paper.

  6. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  7. Contact charge-transfer lasers

    SciTech Connect

    Dharamsi, A.N.; Tulip, J.

    1981-07-01

    A mechanism for sustaining population inversions in contact charge-transfer complexes in which the ground electronic state is not bound is described. The mechanism relies on picosecond radiationless depletion of the lower laser state. This generates an inversion even when the ground-state potential curve, as plotted against the donor-acceptor distance, is not repulsive vertically below the excited state minimum. Contact charge-transfer lasers would offer high gain, high-energy density, and tunable sources of coherent radiation in the uv and visible. A method for pumping such a laser is examined and applied to the pyrrole-oxygen complex. A rate equation analysis is done and estimates for gain and energy density are presented.

  8. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited

    SciTech Connect

    Moore, Barry; Sun, Haitao; Govind, Niranjan; Kowalski, Karol; Autschbach, Jochen

    2015-07-14

    Criteria to assess charge-transfer (CT) and `CT-like' character of electronic excitations are examined. Time-dependent density functional theory (TDDFT) with non-hybrid, hybrid, and tuned long-range corrected (LC) functionals is compared with with coupled-cluster (CC) benchmarks. The test set includes an organic CT complex, two `push-pull' donor-acceptor chromophores, a cyanine dye, and several polycyclic aromatic hydrocarbons. Proper CT is easily identified. Excitations with significant density changes upon excitation within regions of close spatial proximity can also be diagnosed. For such excitations, the use of LC functionals in TDDFT sometimes leads to dramatic improvements of the singlet energies, similar to proper CT, which has led to the concept of `CT-like' excitations. However, `CT-like' excitations are not like charge transfer, and the improvements are not obtained for the right reasons. The triplet excitation energies are underestimated for all systems, often severely. For the `CT-like' candidates, when going from a non-hybrid to an LC functional the error in the singlet-triplet (S/T) separation changes from negative to positive, providing error compensation. For the cyanine, the S/T separation is too large with all functionals, leading to the best error compensation for non-hybrid functionals.

  9. Long-range charge transfer in biopolymers

    NASA Astrophysics Data System (ADS)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  10. Intrinsic magnetic characteristics-dependent charge transfer and visible photo-catalytic H2 evolution reaction (HER) properties of a Fe3O4@PPy@Pt catalyst.

    PubMed

    Zhang, Wenyan; Kong, Chao; Gao, Wei; Lu, Gongxuan

    2016-02-18

    A ternary nano-architectural photocatalyst has been designed to investigate whether the intrinsic magnetic property of photo-catalysts has an effect on the charge transfer and its photo-catalytic H2 evolution reaction (HER) properties under visible light irradiation. The electron transfer and visible-light-driven hydrogen evolution were remarkably enhanced by regulating the electromagnetic interaction between the magnetic catalysts and the photo-generated electrons. PMID:26792246

  11. Photoinduced intramolecular charge transfer and photophysical characteristics of (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM) in different media

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; El-Daly, Samy A.; Alamry, Khalid A.; Arshad, Muhammad Nadeem; Pannipara, Mehboobali

    2015-10-01

    A new fluorophore, (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM), was synthesized by knoevenagel condensation of 4-(dimethylamino) benzaldehyde and 2-methylbenzyl cyanide in ethanol using NaOH as base. The electronic absorption and emission characteristic of DPM was studied in different solvents. The X-ray crystallographic structure of DPM was also investigated. A crystalline solid of DPM gives a strong green emission at about 533 nm; these phenomena are important for the application of DPM dye in organic photo emitting diode. DPM exhibits a red shift in its emission spectrum as solvent polarity increases, indicating a large change in the dipole moment of dye molecule upon excitation due to intramolecular charge transfer in excited DPM*. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. The DPM dye displays solubilization in cationic (CTAB) micelle and could be used as a probe to determine the critical micelle concentration (CMC) of CTAB.

  12. Charge-transfer gap and superexchange interaction in insulating cuprates

    SciTech Connect

    Ohta, Y.; Tohyama, T.; Maekawa, S. )

    1991-03-04

    A cluster-model analysis is made on the material dependence of the optical charge-transfer gap and antiferromagnetic superexchange interaction of a variety of insulating cuprates. It is shown that the electronic structure of cuprates typically of the charge-transfer type is characterized by the unique energy-level separation that reflects the three dimensionality of the crystal via the long-range Madelung potential; such characteristics are absent in the Mott-Hubbard regime.

  13. Transfer Student Characteristics Matter

    ERIC Educational Resources Information Center

    McGuire, Sharon Paterson; Belcheir, Marcia

    2013-01-01

    The purpose of this study was to identify and define profiles of transfer students and assess if there are different levels of student success (as measured by first semester GPA, retention, and graduation) associated with of those profiles. Using cluster analysis, four transfer student types were identified and labeled as follows: Old Hand at…

  14. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  15. Ultrafast Measurement Confirms Charge Generation through Cold Charge Transfer States

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj; Younts, Robert; Yan, Liang; Danilov, Evgeny; Ade, Harald; You, Wei; Gundogdu, Kenan

    2015-03-01

    The role of excess energy in generation and extraction of charges through charge transfer (CT) states in polymer solar cells is a subject of debate. There are reports suggesting increase of charge generation yield with excess energy based on ultrafast experiments. On the other hand time delayed collection field measurements shows that excess photon energy has no effect in photovoltaic efficiency. Here we resolved this discrepancy by studying the dynamics of CT excitons and polarons in blends of medium gap copolymers. We found that low-lying charge transfer (CT) excitons can generate charges over a long time period (nanosecond) and contribute photocurrent on the bulk heterojunction devices. By performing resonant CT excitation as well as above gap excitation transient absorption measurements we investigated that the charges are generated more efficiently through low-lying CT states in efficient devices independent of excitation energy. This work is supported by Office of Naval Research Grant N000141310526 P00002.

  16. Opposites Attract: Organic Charge Transfer Salts

    ERIC Educational Resources Information Center

    van de Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S.

    2015-01-01

    A laboratory experiment is described that introduces second-year undergraduate organic chemistry students to organic electronic materials. The discovery of metallic conductivity in the charge transfer salt tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) is a landmark result in the history of organic electronics. The charge transfer…

  17. Room Temperature Multiferroicity of Charge Transfer Crystals.

    PubMed

    Qin, Wei; Chen, Xiaomin; Li, Huashan; Gong, Maogang; Yuan, Guoliang; Grossman, Jeffrey C; Wuttig, Manfred; Ren, Shenqiang

    2015-09-22

    Room temperature multiferroics has been a frontier research field by manipulating spin-driven ferroelectricity or charge-order-driven magnetism. Charge-transfer crystals based on electron donor and acceptor assembly, exhibiting simultaneous spin ordering, are drawing significant interests for the development of all-organic magnetoelectric multiferroics. Here, we report that a remarkable anisotropic magnetization and room temperature multiferroicity can be achieved through assembly of thiophene donor and fullerene acceptor. The crystal motif directs the dimensional and compositional control of charge-transfer networks that could switch magnetization under external stimuli, thereby opening up an attractive class of all-organic nanoferronics. PMID:26257033

  18. Characteristics of Extreme Auroral Charging Events

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily; Parker, Linda Neergaard

    2014-01-01

    Today’s presentation describes preliminary results from a study of extreme auroral charging in low Earth orbit. Goal of study is to document characteristics of auroral charging events of importance to spacecraft design, operations, and anomaly investigations.

  19. Ultrafast charge transfer and atomic orbital polarization

    SciTech Connect

    Deppe, M.; Foehlisch, A.; Hennies, F.; Nagasono, M.; Beye, M.; Sanchez-Portal, D.; Echenique, P. M.; Wurth, W.

    2007-11-07

    The role of orbital polarization for ultrafast charge transfer between an atomic adsorbate and a substrate is explored. Core hole clock spectroscopy with linearly polarized x-ray radiation allows to selectively excite adsorbate resonance states with defined spatial orientation relative to the substrate surface. For c(4x2)S/Ru(0001) the charge transfer times between the sulfur 2s{sup -1}3p*{sup +1} antibonding resonance and the ruthenium substrate have been studied, with the 2s electron excited into the 3p{sub perpendicular}* state along the surface normal and the 3p{sub parallel}* state in the surface plane. The charge transfer times are determined as 0.18{+-}0.07 and 0.84{+-}0.23 fs, respectively. This variation is the direct consequence of the different adsorbate-substrate orbital overlap.

  20. Charge-transfer magnetoelectrics of polymeric multiferroics.

    PubMed

    Qin, Wei; Jasion, Daniel; Chen, Xiaomin; Wuttig, Manfred; Ren, Shenqiang

    2014-04-22

    The renaissance of multiferroics has yielded a deeper understanding of magneto-electric coupling of inorganic single-phase multiferroics and composites. Here, we report charge-transfer polymeric multiferroics, which exhibit external field-controlled magnetic, ferroelectric, and microwave response, as well as magneto-dielectric coupling. The charge-transfer-controlled ferroic properties result from the magnetic field-tunable triplet exciton which has been validated by the dynamic polaron-bipolaron transition model. In addition, the temperature-dependent dielectric discontinuity and electric-field-dependent polarization confirms room temperature ferroelectricity of crystalline charge-transfer polymeric multiferroics due to the triplet exciton, which allows the tunability of polarization by the photoexcitation. PMID:24654686

  1. Clinical characteristics of CHARGE syndrome.

    PubMed

    Ahn, B S; Oh, S Y

    1998-12-01

    CHARGE syndrome, first described by Pagon, was named for its six major clinical features. They are: coloboma of the eye, heart defects, atresia of the choanae, retarded growth and development including CNS anomalies, genital hypoplasia and/or urinary tract anomalies, and ear anomalies and/or hearing loss. We experienced three cases of CHARGE syndrome who displayed ocular coloboma, heart defects, retarded growth and development, and external ear anomalies, and we also review the previously reported literature concerning CHARGE syndrome. PMID:10188375

  2. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  3. Biological charge transfer via flickering resonance.

    PubMed

    Zhang, Yuqi; Liu, Chaoren; Balaeff, Alexander; Skourtis, Spiros S; Beratan, David N

    2014-07-15

    Biological electron-transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multistep hopping. However, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecular structures and of the medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. The distance dependence of FR transport thus mimics the exponential decay that is usually associated with electron tunneling, although FR transport involves real carrier population on the bridge and is not a tunneling phenomenon. Likely candidates for FR transport are macromolecules with ET groups in van der Waals contact: DNA, bacterial nanowires, multiheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of ≲ 15 Å does not necessarily prove a tunneling mechanism. PMID:24965367

  4. Multiple-charge transfer and trapping in DNA dimers

    NASA Astrophysics Data System (ADS)

    Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Zwicknagl, Gertrud

    2010-11-01

    We investigate the charge transfer characteristics of one and two excess charges in a DNA base-pair dimer using a model Hamiltonian approach. The electron part comprises diagonal and off-diagonal Coulomb matrix elements such a correlated hopping and the bond-bond interaction, which were recently calculated by Starikov [E. B. Starikov, Philos. Mag. Lett. 83, 699 (2003)10.1080/0950083031000151374] for different DNA dimers. The electronic degrees of freedom are coupled to an ohmic or a superohmic bath serving as dissipative environment. We employ the numerical renormalization group method in the nuclear tunneling regime and compare the results to Marcus theory for the thermal activation regime. For realistic parameters, the rate that at least one charge is transferred from the donor to the acceptor in the subspace of two excess electrons significantly exceeds the rate in the single charge sector. Moreover, the dynamics is strongly influenced by the Coulomb matrix elements. We find sequential and pair transfer as well as a regime where both charges remain self-trapped. The transfer rate reaches its maximum when the difference of the on-site and intersite Coulomb matrix element is equal to the reorganization energy which is the case in a guanine/cytosine (GC)-dimer. Charge transfer is completely suppressed for two excess electrons in adenine/thymine (AT)-dimer in an ohmic bath and replaced by damped coherent electron-pair oscillations in a superohmic bath. A finite bond-bond interaction W alters the transfer rate: it increases as function of W when the effective Coulomb repulsion exceeds the reorganization energy (inverted regime) and decreases for smaller Coulomb repulsion.

  5. Characteristics of Extreme Auroral Charging Events

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergard

    2014-01-01

    The highest level spacecraft charging observed in low Earth orbit (LEO) occurs when spacecraft are exposed to energetic auroral electrons. Since auroral charging has been identified as a mechanism responsible for on-orbit anomalies and even possible satellite failures it is important to consider extreme auroral charging events as design and test environments for spacecraft to be used in high inclination LEO orbits. This paper will report on studies of extreme auroral charging events using data from the SSJ/4 and SSJ/5 precipitating electron and ion sensors on the Defense Meteorology Satellite Program (DMSP) satellites. Early studies of DMSP charging to negative potentials =100 V focused on statistics of the electron environment responsible for charging. Later statistical studies of auroral charging have generally focused on solar cycle dependence of charging behavior and magnitude of the maximum potential and duration of the charging events. We extend these studies to focus on more detailed investigations of extreme charging event characteristics that are required to evaluate potential threats to spacecraft systems. A collection of example auroral charging events is assembled from the DMSP data set using the criteria that "extreme auroral charging" is defined as periods with spacecraft negative potentials =400 V. Specific characteristics to be treated include (but are not limited to) maximum and mean potentials, time history of spacecraft potentials through the events, total charging duration and the time potentials exceed voltage thresholds, frame charging/discharging rates, and information on geographic and geomagnetic latitudes at which the events are observed. Finally, we will comment on the implications of these studies for potential auroral charging risks to the International Space Station.

  6. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  7. Are Very Small Emission Quantum Yields Characteristic of Pure Metal-to-Ligand Charge-Transfer Excited States of Ruthenium(II)-(Acceptor Ligand) Chromophores?

    PubMed

    Tsai, Chia Nung; Mazumder, Shivnath; Zhang, Xiu Zhu; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F

    2016-08-01

    Metal to ligand charge-transfer (MLCT) excited state emission quantum yields, ϕem, are reported in 77 K glasses for a series of pentaammine and tetraammine ruthenium(II) complexes with monodentate aromatic acceptor ligands (Ru-MDA) such as pyridine and pyrazine. These quantum yields are only about 0.2-1% of those found for their Ru-bpy (bpy = 2,2'-bipyridine) analogs in similar excited state energy ranges (hνem). The excited state energy dependencies of the emission intensity are characterized by mean radiative decay rate constants, kRAD, resolved from ϕem/τobs = kRAD (τobs = the observed emission decay lifetime; τobs(-1) = kRAD + kNRD; kNRD = nonradiative decay rate constant). Except for the Ru-pz chromophores in alcohol glasses, the values of kNRD for the Ru-MDA chromophores are slightly smaller, and their dependences on excited state energies are very similar to those of related Ru-bpy chromophores. In principle, one expects kRAD to be proportional to the product of (hνem)(3) and the square of the transition dipole moment (Me,g).(2) However, from experimental studies of Ru-bpy chromophores, an additional hνem dependence has been found that originates in an intensity stealing from a higher energy excited state with a much larger value of Me,g. This additional hνem dependence is not present in the kRAD energy dependence for Ru-MDA chromophores in the same energy regime. Intensity stealing in the phosphorescence of these complexes is necessary since the triplet-to-singlet transition is only allowed through spin-orbit coupling and since the density functional theory modeling implicates configurational mixing between states in the triplet spin manifold; this is treated by setting Me,g equal to the product of a mixing coefficient and the difference between the molecular dipole moments of the states involved, which implicates an experimental first order dependence of kRAD on hνem. The failure to observe intensity stealing for the Ru-MDA complexes suggests

  8. Pattern classification using charge transfer devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.

  9. Coronene-based charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Yoshida, Yukihiro; Isomura, Kazuhide; Kumagai, Yoshihide; Maesato, Mitsuhiko; Kishida, Hideo; Mizuno, Motohiro; Saito, Gunzi

    2016-08-01

    Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn–Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented.

  10. Coronene-based charge-transfer complexes.

    PubMed

    Yoshida, Yukihiro; Isomura, Kazuhide; Kumagai, Yoshihide; Maesato, Mitsuhiko; Kishida, Hideo; Mizuno, Motohiro; Saito, Gunzi

    2016-08-01

    Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn-Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented. PMID:27294380

  11. Charge transfer magnetoexciton formation at vertically coupled quantum dots.

    PubMed

    Gutiérrez, Willian; Marin, Jairo H; Mikhailov, Ilia D

    2012-01-01

    A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots' dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

  12. Charge transfer magnetoexciton formation at vertically coupled quantum dots

    PubMed Central

    2012-01-01

    A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots’ dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

  13. Nucleic Acid Charge Transfer: Black, White and Gray

    PubMed Central

    Venkatramani, Ravindra; Keinan, Shahar; Balaeff, Alexander; Beratan, David N.

    2011-01-01

    Theoretical studies of charge transport in deoxyribonucleic acid (DNA) and peptide nucleic acid (PNA) indicate that structure and dynamics modulate the charge transfer rates, and that different members of a structural ensemble support different charge transport mechanisms. Here, we review the influences of nucleobase geometry, electronic structure, solvent environment, and thermal conformational fluctuations on the charge transfer mechanism. We describe an emerging framework for understanding the diversity of charge transport mechanisms seen in nucleic acids. PMID:21528017

  14. Charge transfer reaction laser with preionization means

    NASA Technical Reports Server (NTRS)

    Lauderslager, J. B.; Pacala, T. J. (Inventor)

    1978-01-01

    A helium-nitrogen laser is described in which energy in the visible range is emitted as a result of charge transfer reaction between helium ions and nitrogen molecules. The helium and nitrogen are present in a gas mixture at several atmospheres pressure, with a nitrogen partial pressure on the order of a pair of main discharge electrodes, the gas mixture is preionized to prevent arcing when the discharge pulse is applied. The preionization is achieved by the application of a high voltage across a pair of secondary electrodes which are spaced apart in a direction perpendicular to the spacing direction of the main discharge electrodes and the longitudinal axis of the space in which the gas mixture is contained. Feedback, by means of a pair of appropriately spaced mirrors, is provided, to produce coherent energy pulses at a selected wavelength.

  15. Charge transfer-mediated singlet fission.

    PubMed

    Monahan, N; Zhu, X-Y

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers. PMID:25648486

  16. Charge Transfer-Mediated Singlet Fission

    NASA Astrophysics Data System (ADS)

    Monahan, N.; Zhu, X.-Y.

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers.

  17. Charge Transfer Calculations and Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Wang, J. G.; Stancil, P. C.; Rakovic, M.; Schultz, D. R.; Zygelman, B.

    2002-01-01

    A variety of theoretical approaches, having different but overlapping energy ranges of applicability, are applied to investigate charge transfer processes for collisions of atomic ions with atoms and molecules. The methods include quantal molecular-orbital close-coupling, classical trajectory Monte Carlo, and continuum distorted wave methods. Recent collision systems studied include S(+4) + H, S(+4) + He, N(+7) + He, H2O, CO, and CO2, O(+q)(q = 1 - 8) + H, H2, and S(+q)(q = 1 - 16) + H2. The database effort is concentrating on astrophysically important reactions of atomic ions X(+q)(X=H-Zn, q=1-4, and selected higher charges) with H, He, various metal atoms, H2, and other selected molecular targets. Existing data, much of it produced by us, has been compiled and critically evaluated. Data for many reactions missing in the literature are estimated using the multichannel Landau-Zener approximation. Fits to cross sections and rate coefficients using standard functions are provided as well as tabulations of the raw data. The database is available on the World Wide Web at cfadc.phy.ornl.gov/astro/ps/data.

  18. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge.

    PubMed

    Sun, Yajuan; Huang, Xu; Soh, Siowling

    2016-08-16

    Charged liquid droplets are typically generated by a high-voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged-thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply. PMID:27417888

  19. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    SciTech Connect

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  20. Charge-transfer excitons in DNA.

    PubMed

    Conwell, E M; McLaughlin, P M; Bloch, S M

    2008-02-21

    There have been a number of theoretical treatments of excitons in DNA, most neglecting both the intrachain and interchain wavefunction overlaps of the electron and hole, treating them as Frenkel excitons. Recently, the importance of the intrachain and interchain coupling has been highlighted. Experiments have shown that in (dA)n oligomers and in duplex (dA)n.(dT)n, to be abbreviated (A/T), where A is adenine and T is thymine, the exciton wavefunction is delocalized over several bases. In duplexes it is possible to have charge-transfer (CT) excitons. Theoretical calculations have suggested that CT excitons in DNA may have lower energy than single chain excitons. In all the calculations of excitons in DNA, the polarization of the surrounding water has been neglected. Calculations have shown, however, that polarization of the water by an excess electron or a hole in DNA lowers its energy by approximately 1/2 eV, causing it to become a polaron. It is therefore to be expected that polarization charge induced in the surrounding water has a significant effect on the properties of the exciton. In what follows, we present calculations of some properties CT excitons would have in an A/T duplex taking into account the wavefunction overlaps, the effect of the surrounding water, which results in the electron and hole becoming polarons, and the ions in the water. As expected, the CT exciton has lowest energy when the electron and hole polarons are directly opposite each other. By appropriate choice of the dielectric constant, we can obtain a CT exciton delocalized over the number of sites found in photoinduced absorption experiments. The absorption threshold that we then calculate for CT exciton creation in A/T is in reasonable agreement with the lowest singlet absorption deduced from available data. PMID:18232682

  1. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  2. Delayed thermal fluorescence in some charge-transfer crystals

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1984-03-01

    Time-resolved spectra of long-lived emission of tetrachlorophthalic-hexamethylbenzene charge-transfer crystal were measured at different temperatures. The results give a clear evidence for the existence of E-type delayed fluorescence that results from thermal activation of trapped charge-transfer triplet excitone.

  3. Tunable charge transfer properties in metal-phthalocyanine heterojunctions

    NASA Astrophysics Data System (ADS)

    Siles, P. F.; Hahn, T.; Salvan, G.; Knupfer, M.; Zhu, F.; Zahn, D. R. T.; Schmidt, O. G.

    2016-04-01

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of

  4. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin. PMID:27049842

  5. Transfer function characteristics of super resolving systems

    NASA Technical Reports Server (NTRS)

    Milster, Tom D.; Curtis, Craig H.

    1992-01-01

    Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed.

  6. Quantifying the intrinsic surface charge density and charge-transfer resistance of the graphene-solution interface through bias-free low-level charge measurement

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei; Johnson, A. T. Charlie

    2016-07-01

    Liquid-based bio-applications of graphene require a quantitative understanding of the graphene-liquid interface, with the surface charge density of adsorbed ions, the interfacial charge transfer resistance, and the interfacial charge noise being of particular importance. We quantified these properties through measurements of the zero-bias Faradaic charge-transfer between graphene electrodes and aqueous solutions of varying ionic strength using a reproducible, low-noise, minimally perturbative charge measurement technique. The measurements indicated that the adsorbed ions had a negative surface charge density of approximately -32.8 mC m-2 and that the specific charge transfer resistance was 6.5 ± 0.3 MΩ cm2. The normalized current noise power spectral density for all ionic concentrations tested collapsed onto a 1/fα characteristic with α = 1.1 ± 0.2. All the results are in excellent agreement with predictions of the theory for the graphene-solution interface. This minimally perturbative method for monitoring charge-transfer at the sub-pC scale exhibits low noise and ultra-low power consumption (˜fW), making it suitable for use in low-level bioelectronics in liquid environments.

  7. Reverse Transfer Students: Characteristics, Motivations, and Implications

    ERIC Educational Resources Information Center

    Lowrey, Kathryn Elizabeth

    2010-01-01

    The reverse transfer literature contains studies investigating the demographic characteristics of postsecondary students that attended a community college after attending a four-year institution, and their proportion in the community college student population. A few researchers have investigated reverse transfer student motives for enrolling in…

  8. Charge Transfer and Catalysis at the Metal Support Interface

    SciTech Connect

    Baker, Lawrence Robert

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  9. The mechanisms of delayed fluorescence in charge-transfer crystal of tetracyanobenzene-hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1989-08-01

    Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.

  10. Charge transfer processes: the role of optimized molecular orbitals.

    PubMed

    Meyer, Benjamin; Domingo, Alex; Krah, Tim; Robert, Vincent

    2014-08-01

    The influence of the molecular orbitals on charge transfer (CT) reactions is analyzed through wave function-based calculations. Characteristic CT processes in the organic radical 2,5-di-tert-butyl-6-oxophenalenoxyl linked with tetrathiafulvalene and the inorganic crystalline material LaMnO3 show that changes in the inner shells must be explicitly taken into account. Such electronic reorganization can lead to a reduction of the CT vertical transition energy up to 66%. A state-specific approach accessible through an adapted CASSCF (complete active space self-consistent field) methodology is capable of reaching good agreement with the experimental spectroscopy of CT processes. A partitioning of the relaxation energy in terms of valence- and inner-shells is offered and sheds light on their relative importance. This work paves the way to the intimate description of redox reactions using quantum chemistry methods. PMID:24781811

  11. Charge transfer and emergent phenomena of oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui

    Charge transfer is a common phenomenon at oxide interfaces. We use first-principles calculations to show that via heterostructuring of transition metal oxides, the electronegativity difference between two dissimilar transition metal ions can lead to high level of charge transfer and induce substantial redistribution of electrons and ions. Notable examples include i) enhancing correlation effects and inducing a metal-insulator transition; ii) tailoring magnetic structures and inducing interfacial ferromagnetism; iii) engineering orbital splitting and inducing a non-cuprate single-orbital Fermi surface. Utilizing charge transfer to induce emergent electronic/magnetic/orbital properties at oxide interfaces is a robust approach. Combining charge transfer with quantum confinement and expitaxial strain provides an appealing prospect of engineering electronic structure of artificial oxide heterostructures. This research was supported by National Science Foundation under Grant No. DMR-1120296.

  12. Charge transfer induced activity of graphene for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Shen, Anli; Xia, Weijun; Zhang, Lipeng; Dou, Shuo; Xia, Zhenhai; Wang, Shuangyin

    2016-05-01

    Tetracyanoethylene (TCNE), with its strong electron-accepting ability, was used to dope graphene as a metal-free electrocatalyst for the oxygen reduction reaction (ORR). The charge transfer process was observed from graphene to TCNE by x-ray photoelectron spectroscopy and Raman characterizations. Our density functional theory calculations found that the charge transfer behavior led to an enhancement of the electrocatalytic activity for the ORR.

  13. Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution

    SciTech Connect

    Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles; Organero, Juan Angel; Tormo, Laura

    2005-03-17

    We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.

  14. Screen charge transfer by grounded tip on ferroelectric surfaces.

    SciTech Connect

    Kim, Y.; Kim, J.; Buhlmann, S.; Hong, S.; Kim, Y. K.; Kim, S.-H.; No, K.; Materials Science Division; Korea Advanced Inst. of Science and Technology; Samsung Advanced Inst. of Technology; Inostek Inc.

    2008-03-01

    We have investigated polarization reversal and charge transfer effects by a grounded tip on 50 nm thick ferroelectric thin films using piezoelectric force microscopy and Kelvin force microscopy. We observed the polarization reversal in the center of written domains, and also identified another mechanism, which is the transfer of screen charges toward the grounded tip. In order to overcome these phenomena, we successfully applied a modified read/write scheme featuring a bias voltage.

  15. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  16. Charge transfer during individual collisions in ice growing by riming

    NASA Technical Reports Server (NTRS)

    Avila, Eldo E.; Caranti, Giorgio M.

    1991-01-01

    The charging of a target by riming in the wind was studied in the temperature range of (-10, -18 C). For each temperature, charge transfers of both signs are observed and, according to the environmental conditions, one of them prevails. The charge is more positive as the liquid water concentration is increased at any particular temperature. It is found that even at the low impact velocities used (5 m/s) there is abundant evidence of fragmentation following the collision.

  17. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    SciTech Connect

    Edward C. Lim

    2008-09-09

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  18. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  19. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots.

    PubMed

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-27

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research. PMID:27215815

  20. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-01

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.

  1. Coherent ultrafast charge transfer in an organic photovoltaic blend.

    PubMed

    Falke, Sarah Maria; Rozzi, Carlo Andrea; Brida, Daniele; Maiuri, Margherita; Amato, Michele; Sommer, Ephraim; De Sio, Antonietta; Rubio, Angel; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2014-05-30

    Blends of conjugated polymers and fullerene derivatives are prototype systems for organic photovoltaic devices. The primary charge-generation mechanism involves a light-induced ultrafast electron transfer from the light-absorbing and electron-donating polymer to the fullerene electron acceptor. Here, we elucidate the initial quantum dynamics of this process. Experimentally, we observed coherent vibrational motion of the fullerene moiety after impulsive optical excitation of the polymer donor. Comparison with first-principle theoretical simulations evidences coherent electron transfer between donor and acceptor and oscillations of the transferred charge with a 25-femtosecond period matching that of the observed vibrational modes. Our results show that coherent vibronic coupling between electronic and nuclear degrees of freedom is of key importance in triggering charge delocalization and transfer in a noncovalently bound reference system. PMID:24876491

  2. Heat transfer characteristics for disk fans

    NASA Astrophysics Data System (ADS)

    Prikhodko, Yu. M.; Chekhov, V. P.; Fomichev, V. P.

    2014-08-01

    Multiple-disk fans belong to the class of friction machines; they can be designed in two variants: centrifugal disk fans and diametrical disk fans. Flow patterns in these two types of machines are different, and they possess different heat transfer characteristics. The paper presents results of experimental study for a centrifugal disk fan under atmospheric pressure with air taken as working gas. The radial temperature distribution for a disk was obtained at different rotation speed of the rotor and different heating of the disks. Heat transfer characteristics of a centrifugal disk fan and a diametrical disk fan were compared. The research results demonstrate a higher heat transfer efficiency for centrifugal design versus diametrical disk design.

  3. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  4. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE. PMID:27538341

  5. Charge transfer in helium-rich supernova plasma

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.

    1994-01-01

    Charge transfer rate coefficients are estimated using Landau-Zener and modified Demkov approximations. The coefficients, augmented by those available from the literature, are used in statistical equilibrium equations describing the state of helium-rich supernova plasma. Such a plasma may describe both Type Ib and Type Ic supernova ejecta. The hypothesis that extensive mixing of metals with helium in Type Ic supernovae may provide a catalyst for rapid charge transfer that weakens the helium line emission by altering the excitation balance is tested. It is shown that charge transfer as a mechanism for suppressing helium line emission is ineffective unless the metal abundance is comparable to or larger than the helium abundance. This result supports an earlier conclusion that Type Ic supernovae must be helium poor relative to Type Ib events.

  6. Direct experimental characterization of photoemission charge-transfer satellites

    NASA Astrophysics Data System (ADS)

    Weiland, Conan; Rumaiz, Abdul; Woicik, Joseph

    Energy-loss satellites in photoelectron spectroscopy often arise due to different charge-transfer states in condensed matter systems. The specific characterization of these satellites, however, has been controversial, and different theoretical approaches may lead to contradictory characterizations. Here we demonstrate the ability of high energy resonant photoelectron spectroscopy to provide direct experimental evidence of the nature of charge transfer satellites. Analysis of the Ti 1 s core line in SrTiO3 reveals two satellites, located approximately 5 eV and 13 eV lower kinetic energy than the main line. High energy resonant photoelectron spectroscopy reveals that these two peaks originate from ligand 2 p t2 g to metal 3 d t2 g and ligand 2 p eg to metal 3 d eg charge-transfer excitations.

  7. Charge transfer properties of pentacene adsorbed on silver: DFT study

    SciTech Connect

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  8. Dynamic salt effect on intramolecular charge-transfer reactions

    SciTech Connect

    Zhu Jianjun; Ma Rong; Lu Yan; Stell, George

    2005-12-08

    The dynamic salt effect in charge-transfer reactions is investigated theoretically in this paper. Free-energy surfaces are derived based on a nonequilibrium free-energy functional. Reaction coordinates are clearly defined. The solution of the reaction-diffusion equation leads to a rate constant depending on the time correlation function of the reaction coordinates. The time correlation function of the ion-atmosphere coordinate is derived from the solution of the Debye-Falkenhagen equation. It is shown that the dynamic salt effect plays an important role in controlling the rate of charge-transfer reactions in the narrow-window limit but is balanced by the energetics and the dynamics of the polar-solvent coordinate. The simplest version of the theory is compared with an experiment, and the agreement is fairly good. The theory can also be extended to charge-transfer in the class of electrolytes that has come to be called 'ionic fluids'.

  9. Ga Nanoparticle/Graphene Platforms: Plasmonic and Charge Transfer Interactions

    NASA Astrophysics Data System (ADS)

    Yi, Congwen; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Brown, April S.

    2013-03-01

    Metal nanoparticle (NP) - graphene multifunctional platforms are of great interest for numerous applications, such as sensing and catalysis, and for fundamental studies on charge transfer and light-matter interactions. To understand platform-photon interactions, it is important to articulate the coupling of photon-based excitations, such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. Herein, we use liquid metal Ga nanoparticles, which can be deposited at 300K on graphene, to explore the surface-enhanced Raman spectroscopy modulation induced by the NPs,. The localized charge transfer between Ga NPs and graphene are investigated, and enhancement of the graphene Raman modes is correlated with metal coverage the transfer of electrons from Ga to graphene creating local regions of enhanced electron concentration which modify the electron-phonon interaction in graphene.

  10. Orientation-dependent dissociative charge transfer

    SciTech Connect

    Wu, W.; Prior, M.H.; Braeuning, H.

    1998-01-01

    Recoil-ion momentum spectroscopy and molecular fragment imaging techniques are combined to study dissociative electron capture from He by HeH{sup +} at 0.20-a.u. collision velocity. Groups of final HeH states which dissociate to ground or excited H and He atoms are separated. For each group, the experiment provides two-dimensional H fragment distributions with respect to the collision plane and for fixed transverse momentum transfer. These patterns show that the capture probability is highest for HeH{sup +} ions with their axis oriented normal to the scattering plane for two of the three groups populated. {copyright} {ital 1998} {ital The American Physical Society}

  11. Heat transfer characteristics of an emergent strand

    NASA Technical Reports Server (NTRS)

    Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.

    1974-01-01

    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.

  12. Dielectric spectroscopy on organic charge-transfer salts.

    PubMed

    Lunkenheimer, P; Loidl, A

    2015-09-23

    This topical review provides an overview of the dielectric properties of a variety of organic charge-transfer salts, based on both, data reported in literature and our own experimental results. Moreover, we discuss in detail the different processes that can contribute to the dielectric response of these materials. We concentrate on the family of the 1D (TMTTF)2 X systems and the 2D BEDT-TTF-based charge-transfer salts, which in recent years have attracted considerable interest due to their often intriguing dielectric properties. We will mainly focus on the occurrence of electronic ferroelectricity in these systems, which also includes examples of multiferroicity. PMID:26325011

  13. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions. PMID:23931364

  14. Bioexcimers as Precursors of Charge Transfer and Reactivity in Photobiology

    NASA Astrophysics Data System (ADS)

    Serrano-Andrés, Luis; Merchán, Manuela; Roca-Sanjuán, Daniel; Olaso-González, Gloria; Rubio, Mercedes

    2007-11-01

    Accurate CASPT2//CASSCF calculations show that π-stacked interactions in different biochromophores such as DNA nucleobases or porphyrin-quinone pairs yield excimer-like situations which behave as precursors of processes like charge transfer or photoreactivity. Examples are the transfer of charge between a reduced pheophytin and an accepting quinone molecule, process that trigger the sequence of electron transfer phenomena in photosynthetic photosystem II, the electron transfer between adjacent DNA nucleobases in a strand of oligonucleotides, and the photodimerization taking place in cytosine pairs leading to cyclobutanecytosine mutants. These processes take place through nonadiabatic photochemical mechanisms whose evolution is determined by the presence and accessibility of conical intersections and other surface crossings between different electronic states.

  15. Bioexcimers as Precursors of Charge Transfer and Reactivity in Photobiology

    SciTech Connect

    Serrano-Andres, Luis; Merchan, Manuela; Roca-Sanjuan, Daniel; Olaso-Gonzalez, Gloria; Rubio, Mercedes

    2007-11-29

    Accurate CASPT2//CASSCF calculations show that {pi}-stacked interactions in different biochromophores such as DNA nucleobases or porphyrin-quinone pairs yield excimer-like situations which behave as precursors of processes like charge transfer or photoreactivity. Examples are the transfer of charge between a reduced pheophytin and an accepting quinone molecule, process that trigger the sequence of electron transfer phenomena in photosynthetic photosystem II, the electron transfer between adjacent DNA nucleobases in a strand of oligonucleotides, and the photodimerization taking place in cytosine pairs leading to cyclobutanecytosine mutants. These processes take place through nonadiabatic photochemical mechanisms whose evolution is determined by the presence and accessibility of conical intersections and other surface crossings between different electronic states.

  16. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  17. Primary cells utilize halogen-organic charge transfer complex

    NASA Technical Reports Server (NTRS)

    Gutmann, F.; Hermann, A. M.; Rembaum, A.

    1966-01-01

    Electrochemical cells with solid state components employ charge transfer complexes or donor-acceptor complexes in which the donor component is an organic compound and the acceptor component is a halogen. A minor proportion of graphite added to these composition helps reduce the resistivity.

  18. Multifunctional Charge-Transfer Single Crystals through Supramolecular Assembly.

    PubMed

    Xu, Beibei; Luo, Zhipu; Wilson, Andrew J; Chen, Ke; Gao, Wenxiu; Yuan, Guoliang; Chopra, Harsh Deep; Chen, Xing; Willets, Katherine A; Dauter, Zbigniew; Ren, Shenqiang

    2016-07-01

    Centimeter-sized segregated stacking TTF-C60 single crystals are crystallized by a mass-transport approach combined with solvent-vapor evaporation for the first time. The intermolecular charge-transfer interaction in the long-range ordered superstructure enables the crystals to demonstrate external stimuli-controlled multifunctionalities and angle/electrical-potential-dependent luminescence. PMID:27146726

  19. Layered charge transfer complex cathodes or solid electrolyte cells

    SciTech Connect

    Louzos, D.V.

    1981-05-12

    Layered charge transfer complex cathodes for use in solid electrolyte cells are described wherein one layer of the cathode contains an electronic conductor which is isolated from the cell's solid electrolyte by a second layer of the cathode that does not contain an electronic conductor.

  20. Charge-transfer complexation between naphthalene diimides and aromatic solvents.

    PubMed

    Kulkarni, Chidambar; Periyasamy, Ganga; Balasubramanian, S; George, Subi J

    2014-07-28

    Naphthalene diimides (NDIs) form emissive ground-state charge-transfer (CT) complexes with various electron rich aromatic solvents like benzene, o-xylene and mesitylene. TD-DFT calculation of the complexes suggests CT interaction and accounts for the observed ground-state changes. PMID:24931833

  1. CORRELATING ELECTRONIC AND VIBRATIONAL MOTIONS IN CHARGE TRANSFER SYSTEMS

    SciTech Connect

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  2. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  3. A tetrastable naphthalenediimide: anion induced charge transfer, single and double electron transfer for combinational logic gates.

    PubMed

    Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2013-09-11

    Herein we demonstrate the formation of the first tetrastable naphthalenediimide (NDI, 1a) molecule having multiple distinctly readable outputs. Differential response of 1a to fluoride anions induces intramolecular charge transfer (ICT), single/double electron transfer (SET/DET) leading to a set of combinational logic gates for the first time with a NDI moiety. PMID:23752683

  4. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  5. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  6. A Gating Charge Transfer Center in Voltage Sensors

    SciTech Connect

    Tao, X.; Lee, A; Limapichat, W; Dougherty, D; MacKinnon, R

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic 'cap' and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

  7. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  8. A Gating Charge Transfer Center in Voltage Sensors

    PubMed Central

    Tao, Xiao; Lee, Alice; Limapichat, Walrati; Dougherty, Dennis A.; MacKinnon, Roderick

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switch-like response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings and X-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic ‘cap’ and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations the voltage sensor can be stabilized in different conformations, thus enabling a dissection of voltage sensor movements and their relationship to ion channel opening. PMID:20360102

  9. Photoinduced charge and energy transfer in molecular wires.

    PubMed

    Gilbert, Mélina; Albinsson, Bo

    2015-02-21

    Exploring charge and energy transport in donor-bridge-acceptor systems is an important research field which is essential for the fundamental knowledge necessary to develop future applications. These studies help creating valuable knowledge to respond to today's challenges to develop functionalized molecular systems for artificial photosynthesis, photovoltaics or molecular scale electronics. This tutorial review focuses on photo-induced charge/energy transfer in covalently linked donor-bridge-acceptor (D-B-A) systems. Of utmost importance in such systems is to understand how to control signal transmission, i.e. how fast electrons or excitation energy could be transferred between the donor and acceptor and the role played by the bridge (the "molecular wire"). After a brief description of the electron and energy transfer theory, we aim to give a simple yet accurate picture of the complex role played by the bridge to sustain donor-acceptor electronic communication. Special emphasis is put on understanding bridge energetics and conformational dynamics effects on the distance dependence of the donor-acceptor electronic coupling and transfer rates. Several examples of donor-bridge-acceptor systems from the literature are described as a support to the discussion. Finally, porphyrin-based molecular wires are introduced, and the relationship between their electronic structure and photophysical properties is outlined. In strongly conjugated porphyrin systems, limitations of the existing electron transfer theory to interpret the distance dependence of the transfer rates are also discussed. PMID:25212903

  10. Charge transfer through a cytochrome multiheme chain: theory and simulation.

    PubMed

    Burggraf, Fabian; Koslowski, Thorsten

    2014-01-01

    We study sequential charge transfer within a chain of four heme cofactors located in the c-type cytochrome subunit of the photoreaction center of Rhodopseudomonas viridis from a theoretical perspective. Molecular dynamics simulations of the thermodynamic integration type are used to compute two key energies of Marcus' theory of charge transfer, the driving force ∆G and the reorganization energy λ. Due to the small exposure of the cofactors to the solvent and to charged amino acids, the outer sphere contribution to the reorganization energy almost vanishes. Interheme effective electronic couplings are estimated using ab initio wave functions and a well-parameterized semiempirical scheme for long-range interactions. From the resulting charge transfer rates, we conclude that at most the two heme molecules closest to the membrane participate in a fast recharging of the photoreaction center, whereas the remaining hemes are likely to have a different function, such as intermediate electron storage. Finally, we suggest means to verify or falsify this hypothesis. PMID:24055674

  11. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  12. Charge-transfer crystallites as molecular electrical dopants.

    PubMed

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi-Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites-rather than individual acceptor molecules-should be regarded as the dopants in such systems. PMID:26440403

  13. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  14. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  15. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  16. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  17. Charge transfer and interface properties in inorganic superstructures and composites

    NASA Astrophysics Data System (ADS)

    Flyagina, I. S.; Petrov, A. A.; Pervov, V. S.

    2016-06-01

    The processes of charge transfer and electronic reconstruction at interfaces of inorganic superstructures and composites have not yet been adequately investigated. This review integrates and analyzes the results of theoretical and experimental studies of structural and electronic effects at interfaces of metal oxide or chalcogenide superstructures and composites. Charge transfer and, hence, change in interface properties compared to the properties of substructures are shown to be determined by the preparation method of composites and chemical nature of the superstructures, incommensurability of structural parameters and valence states of the constituent metals. The changes are maximal for nanoheterostructures, and the degree of change is related to electronic conductivity of substructures. The macroscopic properties of the composite materials depend on the amount of interfaces in their bulk. The bibliography includes 66 references.

  18. Charge transfer transitions within the octahedral uranate group

    NASA Astrophysics Data System (ADS)

    Bleijenberg, K. C.

    1980-07-01

    In this paper the excitation spectra of the luminescence of the octahedral uranate group (UO6-6) are presented for various uranium-doped compounds. The excitation bands have been assigned using the results of theoretical and experimental investigations into the spectroscopic properties of uranium hexafluoride which is isoelectronic with the octahedral uranate group. Charge transfer transitions from orbitals having mainly oxygen 2p character to orbitals having mainly uranium 5f charcter have been observed in the region 2.24-˜4 eV. Charge transfer transitions to orbitals having mainly uranium 6d character have been observed at 4.4 eV and at 5.4 eV.

  19. Negative ion-uranium hexafluoride charge transfer reactions

    NASA Astrophysics Data System (ADS)

    Streit, Gerald E.; Newton, T. W.

    1980-10-01

    The flowing afterglow technique has been used to study the process of charge transfer from selected negative ions (F-, Cl-, Br-, I-, SF6-) to UF6. The sole ionic product in all cases was observed to be UF6-. Data analysis was complicated by an unexpected coupling of chemical and diffusive ion loss processes when UF6- product ions were present. The rate coefficients for the charge transfer processes are (k in 10-9 cm3 molecule-1 s-1) F-, 1.3; Cl-, 1.1; Br-, 0.93; I-, 0.77; and SF6-, 0.69. The rate constants agree quite well with the classical Langevin predictions.

  20. Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials.

    PubMed

    Xu, Beibei; Ren, Shenqiang

    2016-09-01

    The ultimate or end point of functional materials development is the realization of strong coupling between all energy regimes (optical, electronic, magnetic, and elastic), enabling the same material to be utilized for multifunctionalities. However, the integration of multifunctionalities in soft materials with the existence of various coupling is still in its early stage. Here, the coupling between ferroelectricity and charge transfer by combining bis(ethylenedithio)tetrathiafulvalene-C60 charge-transfer crystals with ferroelectric polyvinylidene fluoride polymer matrix is reported, which enables external stimuli-controlled polarization, optoelectronic and magnetic field sensing properties. Such flexible composite films also display a superior strain-dependent capacitance and resistance change with a giant piezoresistance coefficient of 7.89 × 10(-6) Pa(-1) . This mutual coupled material with the realization of enhanced couplings across these energy domains opens up the potential for multisensing applications. PMID:27378088

  1. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  2. Charge-transfer-state photoluminescence in asymmetric coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Norris, T. B.; Vodjdani, N.; Vinter, B.; Weisbuch, C.; Mourou, G. A.

    1989-07-01

    We have performed continuous and time-resolved photoluminescence experiments on novel double-quantum-well structures in Schottky diodes. We have directly observed the buildup of a charge-transfer (CT) state in which the electrons and holes are in separate wells because of the fact that they tunnel in opposite directions. We have studied the effect of an electric field on the CT state formation, and have observed a strong, linear Stark shift of the CT luminescence.

  3. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  4. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  5. Charge transfer and atomic-level pressure in metallic glasses

    SciTech Connect

    Ding, Jun; Cheng, Yongqiang

    2014-02-03

    This paper presents a systematic study on the charge transfer and ionicity in various metallic-glass forming systems, as well as its relationship with other atomic-level structure indicators, using the Bader analysis method and molecular dynamics simulation. It is shown that in a binary or multicomponent system, the chemical effects (when more than one elements present) appear to play a more important role in setting the absolute level of the atomic-level pressure, compared to the topological fluctuation.

  6. Interfacial Charge Transfer States in Condensed Phase Systems.

    PubMed

    Vandewal, Koen

    2016-05-27

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified. PMID:26980308

  7. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  8. Interfacial Charge Transfer States in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  9. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  10. Charge Transfer Models of Zinc and Magnesium in Water.

    PubMed

    Soniat, Marielle; Hartman, Lisa; Rick, Steven W

    2015-04-14

    Quantum mechanical studies point to the importance of polarization and charge transfer (CT) in zinc binding. A new CT force field is used to study these effects in ion-water dimers and in aqueous solution. Quantum mechanics calculations are carried out to determine amounts of CT. Models for zinc and magnesium are parametrized to reproduce solvation structure, hydration free energy, and CT properties. The new models are subjected to energy decomposition, in which the effects of polarization and CT are investigated. The importance of these multibody interactions in the liquid is also considered. We find that, for divalent cations, polarization and charge transfer both strongly affect binding to water. Though polarization increases the internal (self) energy of water and ions, this is more than compensated for by a stronger ion-water interaction energy. The direction of the charge transfer from the water to the cation weakens the ion-water interaction; this increase in energy is counteracted by a decrease in the system energy due to electron delocalization. PMID:26574375

  11. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-01

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO2 has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO2 systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO2.

  12. Quantum information transfer between topological and conventional charge qubits

    NASA Astrophysics Data System (ADS)

    Jun, Li; Yan, Zou

    2016-02-01

    We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot (QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire (MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements. Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions (MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001 (2008)] in our considered system. Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer. Project supported by the National Natural Science Foundation of China (Grant No. 11304031).

  13. Morphology Effects on Space Charge Characteristics of Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Zhou; Yuanxiang; Wang; Yunshan; Zahn, Markus; Wang; Ninghua; Sun; Qinghua; Liang; Xidong; Guan; Zhichen

    2011-01-01

    Low density polyethylene (LDPE) film samples with different morphology were prepared by three kinds of annealing methods which were different in cooling rates in this study. A pulsed electro-acoustic (PEA) space charge measurement system was improved to solve the surface discharge problems for small samples applied with a high voltage. Negative direct current (DC) fields from 50 to above 220 kV/mm were applied to the samples. The influences of morphologies on space charge and space charge packet characteristics were measured by the improved high voltage withstand (HVW) PEA system. Mobility and trap depth of released charges were calculated by space charge decay. It was found that there is a different probability of space charge packet initiation under applied field from -60 to -100 kV/mm. Average velocity and mobility of the space charge packets were calculated by space charge packet dynamics. It was found that the lower cooling rate samples have higher crystallinity, more homo-charge accumulation, lower mobility and deeper trap depth. The mechanism of morphological effects on space charge phenomena have been presumed to give a plausible explanation for their inherent relationships. The morphology in the metal-dielectric interface and in the bulk is convincingly suggested to be responsible for the injection and propagation processes of space charge. A model of positive space charge initiation in LDPE samples was also suggested and analyzed. The mechanism of morphological effects and the charge injection model are well fit with the injection and propagation processes of space charge. The different effects of morphology in the metal-dielectric interface and in the bulk of polymers are stressed.

  14. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.

    PubMed

    Cole, Jesse J; Barry, Chad R; Knuesel, Robert J; Wang, Xinyu; Jacobs, Heiko O

    2011-06-01

    Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations. Instead of a single point contact, our process studies nanocontact electrification that occurs between multiple nanocontacts of different sizes and shapes that can be formed using flexible materials, in particular, surface-functionalized poly(dimethylsiloxane) (PDMS) stamps and other common dielectrics (PMMA, SU-8, PS, PAA, and SiO(2)). Upon the formation of conformal contacts and forced delamination, contacted regions become charged, which is directly observed using Kelvin probe force microscopy revealing images of charge with sub-100-nm lateral resolution. The experiments reveal chemically driven interfacial proton exchange as the dominant charging mechanism for the materials that have been investigated so far. The recorded levels of uncompensated charges approach the theoretical limit that is set by the dielectric breakdown strength of the air gap that forms as the surfaces are delaminated. The macroscopic presence of the charges is recorded using force-distance curve measurements involving a balance and a micromanipulator to control the distance between the delaminated objects. Coulomb attraction between the delaminated surfaces reaches 150 N/m(2). At such a magnitude, the force finds many applications. We demonstrate the utility of printed charges in the fields of (i) nanoxerography and (ii) nanotransfer printing whereby the smallest objects are ∼10 nm in diameter and the largest objects are in the millimeter to centimeter range. The printed charges are also shown to affect the electronic

  15. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-01

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  16. Coupled electron-nuclear dynamics: charge migration and charge transfer initiated near a conical intersection.

    PubMed

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J; Robb, Michael A

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N(+)-Phenyl, N-Phenyl(+)). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  17. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    SciTech Connect

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled

  18. Charge transfer efficiency in proton damaged CCD`s

    SciTech Connect

    Hardy, T. |; Murowinski, R.; Deen, M.J.

    1998-04-01

    The authors have performed detailed measurements of the charge transfer efficiency (CTE) in a thinned, backside-illuminated imaging charge-coupled device (CCD). The device had been damaged in three separate sections by proton radiation typical of that which a CCD would receive in space-borne experiments, nuclear imaging, or particle detection. They examined CTE as a function of signal level, temperature, and radiation dose. The dominant factor affecting the CTE in radiation-damaged CCD`s is seen to be trapping by bulk states. They present a simple physical model for trapping as a function of transfer rate, trap concentration, and temperature. They have made calculations using this model and arrived at predictions which closely match the measured results. The CTE was also observed to have a nonlinear dependence on signal level. Using two-dimensional device simulations to examine the distribution of the charge packets in the CCD channel over a range of signal levels, they were able to explain the observed variation.

  19. Highly Twisted Triarylamines for Photoinduced Intramoleculer ChargeTransfer

    SciTech Connect

    Chudomel, J. M.; Yang, B. Q.; Barnes, M. D.; Achermann, M.; Mague, J. T.; Lahti, P. M.

    2011-08-04

    9-(N,N-Dianisylamino)anthracene (9DAAA), 9-(N,N-dianisylamino)dinaphth([1,2-a:2'-1'-j]-anthracene (9DAAH), and 9,10-bis(N,N-dianisylamino)anthracene (910BAA) were synthesized as highly twisted triarylamines with potential for photoexcited internal charge transfer. Crystallography of 9DAAA shows its dianisylamino group to be twisted nearly perpendicular to its anthracene unit, similar to a report for 910BAA. The solution fluorescence spectra show strong bathochromic shifts for each of the three molecular systems with strongly decreased quantum efficiency in higher polarity solvents. Solution-phase (ensemble) time-resolved photoluminescence measurements show up to 4-fold decreases in fluorescence lifetime in acetonitrile compared to hexane. The combined results are consistent with photoinduced, transient intramolecular charge-transfer from the bis-anisylamine unit to the polycyclic aromatic unit. Computational modeling is in accord with intramolecular transfer of electron density from the bis-anisylamino unit to the anthracene, based on in comparisons of HOMO and LUMO.

  20. Research progress on space charge characteristics in polymeric insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Christen, Thomas; Meng, Xing; Chen, Jiansheng; Rocks, Jens

    2016-03-01

    Due to their excellent electrical insulation properties and processability, polymer materials are used in many electrical products. It is widely believed that space charge plays an important role for the electric field distribution, conduction, ageing, and electric breakdown of polymeric insulation. This paper reviews measurements and characteristics of space charge behavior which mainly determined by the pulsed electro-acoustic (PEA) measurement technique. Particular interests are the effects of the applied voltage, the electrodes, temperature, humidity, microstructure, additives, and filler materials on accumulation, distribution, transport, and the decay of space charge in polymeric materials. This review paper is to provide an overview on various space charge effects under different conditions, and also to summarize the information for polymeric materials with suppressed space charge and improved electrical behavior.

  1. Charge transfer in proton-hydrogen collisions under Debye plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  2. Charge transfer in proton-hydrogen collisions under Debye plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-01

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20-1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  3. Charge transfer reaction of multi-charged oxygen ions with O2

    NASA Astrophysics Data System (ADS)

    Holzscheiter, H. M.; Church, D. A.

    1981-10-01

    The reaction rates for charge transfer from O2 to doubly and triply charged oxygen atoms are measured in a demonstration of the measurement capabilities of a system at ultrahigh vacuum with low-energy magnetically confined ions. Ions were produced by electron impact ionization of gas within a Penning-type ion trap, with selective removal of unwanted ionization states by radio-frequency resonant excitation. Ion number mass-to-charge ratio spectra obtained at partial pressures of O2 from 9.9 x 10 to the -9th to 1.5 x 10 to the -7th torr yield rate constants of 1.0 x 10 to the -9th cu cm/sec and 2.5 x 10 to the -9th cu cm/sec for the O(2+) and O(3+) reactions, respectively. Measurements made at a 30% increase of the effective axial well depth of the trap demonstrate that the rate constant is essentially energy independent in the energy range studies, implying that the O(2+) cross section for charge transfer has an inverse velocity dependence of the Langevin type, despite a reaction rate lower than the Langevin valve.

  4. Polarization and charge transfer in the hydration of chloride ions

    SciTech Connect

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-07

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  5. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  6. Heat transfer characteristics of tube bundles during boiling in vacuum

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. N.; Zakharov, G. A.

    1992-06-01

    Heat transfer during boiling in vacuum was compared experimentally for single tubes, rows of tube, and tube bundles to analyze characteristic properties of vaporization under such conditions. Relations for calculating heat transfer coefficients are proposed.

  7. Photoinduced charge-transfer materials for nonlinear optical applications

    DOEpatents

    McBranch, Duncan W.

    2006-10-24

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  8. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates

    SciTech Connect

    John F. Endicott

    2009-10-20

    This project involved the experimental probing of the electronic excited states generated by photoinduced (center-to-center) electron and energy transfer processes in several classes of transition metal donor/acceptor (D/A) complexes. Some of the general properties inferred from these studies should be useful in the design of new systems for energy conversion applications. Pursuit of the project goals has involved the determination of electron transfer efficiencies and the detailed study of variations in the electronic spectra of D/A complexes. This has resulted in the study of some very fundamental issues of photoinduced charge transfer and the identification of some of the constraints on its efficiency. The experimental studies of the competition between the degradative non-radiative unimolecular relaxation of transition metal excited states and their transfer of charge from these excited states to external acceptors have involved a range of techniques such as transient decay kinetics, photoacoustic calorimetry and transient or stationary state spectroscopy. The substrates synthesized for these studies were selected to provide model systems, or series of model systems to probe the validity of models of electronic excited states and their reactivity. The work during the last few years has focused largely, but not exclusively, on the use of emission spectral band shapes to probe the properties of charge transfer (CT) excited states. Bandshape variations are one of the very few approaches for systematically probing electronic excited states and good band shape resolution is necessary in order to gain information about the structural variations that correlate with excited state reactivity. Differences in molecular structure correlate with differences in chemical reactivity, and the variations in emission bandshapes are well known to relate to variations in the molecular structural differences between the excited and ground electronic states. However, it is has been

  9. Charge transfer complex in diketopyrrolopyrrole polymers and fullerene blends: Implication for organic solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2012-02-01

    Copolymers based on diketopyrrolopyrrole (DPP) have recently gained potential in organic photovoltaics. When blended with another acceptor such as PCBM, intermolecular charge transfer occurs which may result in the formation of charge transfer (CT) states. We present here the spectral photocurrent characteristics of two donor-acceptor DPP based copolymers, PDPP-BBT and TDPP-BBT, blended with PCBM to identify the CT states. The spectral photocurrent measured using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) methods are compared with P3HT:PCBM, where the CT state is well known. PDPP-BBT:PCBM shows a stable CT state while TDPP-BBT does not. Our analysis shows that the larger singlet state energy difference between TDPP-BBT and PCBM along with the lower optical gap of TDPP-BBT obliterates the formation of a midgap CT state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  10. Thiolate versus Selenolate: Structure, Stability, and Charge Transfer Properties.

    PubMed

    Ossowski, Jakub; Wächter, Tobias; Silies, Laura; Kind, Martin; Noworolska, Agnieszka; Blobner, Florian; Gnatek, Dominika; Rysz, Jakub; Bolte, Michael; Feulner, Peter; Terfort, Andreas; Cyganik, Piotr; Zharnikov, Michael

    2015-04-28

    Selenolate is considered as an alternative to thiolate to serve as a headgroup mediating the formation of self-assembled monolayers (SAMs) on coinage metal substrates. There are, however, ongoing vivid discussions regarding the advantages and disadvantages of these anchor groups, regarding, in particular, the energetics of the headgroup-substrate interface and their efficiency in terms of charge transport/transfer. Here we introduce a well-defined model system of 6-cyanonaphthalene-2-thiolate and -selenolate SAMs on Au(111) to resolve these controversies. The exact structural arrangements in both types of SAMs are somewhat different, suggesting a better SAM-building ability in the case of selenolates. At the same time, both types of SAMs have similar packing densities and molecular orientations. This permitted reliable competitive exchange and ion-beam-induced desorption experiments which provided unequivocal evidence for a stronger bonding of selenolates to the substrate as compared to the thiolates. Regardless of this difference, the dynamic charge transfer properties of the thiolate- and selenolate-based adsorbates were found to be nearly identical, as determined by the core-hole-clock approach, which is explained by a redistribution of electron density along the molecular framework, compensating the difference in the substrate-headgroup bond strength. PMID:25857927

  11. Charge transfer interactions in oligomer coated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-05-01

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  12. Dynamical Theory of Charge Transfer Between Complex Atoms and Surfaces

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Basudev; Marston, Brad

    2000-03-01

    An existing dynamical quantum many-body theory of charge transfer(A. V. Onufriev and J. B. Marston, Phys. Rev. B 53), 13340 (1996); J. Merino and J. B. Marston, Phys. Rev. B 58, 6982 (1998). describes atoms with simple s-orbitals, such as alkalis and alkaline-earths, interacting with metal surfaces. The many-body equations of motion (EOM) are developed systematically as an expansion in the number of surface particle-hole excitations. Here we generalize this theory to describe atoms with richer orbital structures, such as atomic oxygen. In the simplest version of the model, only the single-particle p_z-orbitals of the atom, the ones oriented perpendicular to the surface, participate directly in resonant charge transfer as they have the largest overlap with the metallic wavefunctions. However, as the several-electron Russell-Saunders eigenstates, labeled by total angular momenta quantum numbers J, L, and S, are built out of products of single-particle orbitals, non-trivial matrix elements must be incorporated into the many-body EOM's. Comparison to recent experimental results(A. C. Lavery, C. E. Sosolik, and B. H. Cooper, Nucl. Instrum. Meth. B 157), 42 (1999); A. C. Lavery et al. to appear in Phys. Rev. B. on the scattering of low-energy oxygen ions off Cu(001) surfaces is made.

  13. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines. PMID:3383341

  14. Photophysics of charge transfer in a polyfluorene/violanthrone blend

    NASA Astrophysics Data System (ADS)

    Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.; Nelson, J.; Bradley, D. D. C.

    2005-01-01

    We present a study of the photophysical and photovoltaic properties of blends of violanthrone in poly[9, 9-bis (2-ethylhexyl)-fluorene-2, 7-diyl ] (PF2/6) . Photoluminescence quenching and photocurrent measurements show moderate efficiencies for charge generation, characteristic of such polymer/dye blends. Pump-probe measurements on blend films suggest that while ˜47% of the total exciton population dissociates within 4ps of photoexcitation, only ˜32% subsequently results in the formation of dye anions. We attribute the discrepancy to the likely formation of complex species with long lifetimes, such as stabilized interface charge pairs or exciplexes. This conclusion is supported by the appearance of a long lifetime component of 2.4ns in the dynamics of the photoinduced absorption signal associated to polarons in photoinduced absorption bands centered at 560nm .

  15. Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices.

    PubMed

    Allen, Christopher S; Liu, Guoquan; Chen, Yabin; Robertson, Alex W; He, Kuang; Porfyrakis, Kyriakos; Zhang, Jin; Briggs, G Andrew D; Warner, Jamie H

    2014-01-01

    In this article we probe the nature of electronic interactions between the components of hybrid C60-carbon nanotube structures. Utilizing an aromatic mediator we selectively attach C60 molecules to carbon nanotube field-effect transistor devices. Structural characterization via atomic force and transmission electron microscopy confirm the selectivity of this attachment. Charge transfer from the carbon nanotube to the C60 molecules is evidenced by a blue shift of the Raman G(+) peak position and increased threshold voltage of the transistor transfer characteristics. We estimate this charge transfer to increase the device density of holes per unit length by up to 0.85 nm(-1) and demonstrate further optically enhanced charge transfer which increases the hole density by an additional 0.16 nm(-1). PMID:24241690

  16. Charge transfer and negative curvature energy in magnesium boride nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Ismail-Beigi, Sohrab

    2016-07-01

    Using first-principles calculations based on density functional theory, we study the energetics and charge transfer effects in MgBx nanotubes and two-dimensional (2D) sheets. The behavior of adsorbed Mg on 2D boron sheets is found to depend on the amount of electron transfer between the two subsystems. The amount is determined by both the density of adsorbed Mg as well as the atomic-scale structure of the boron subsystem. The degree of transfer can lead to repulsive or attractive Mg-Mg interactions. In both cases, model MgBx nanotubes built from 2D MgBx sheets can display negative curvature energy: a relatively unusual situation in nanosystems where the energy cost to curve the parent 2D sheet into a small-diameter nanotube is negative. Namely, the small-diameter nanotube is energetically preferred over the corresponding flat sheet. We also discuss how these findings may manifest themselves in experimentally synthesized MgBx nanotubes.

  17. Electrical conduction in organic charge transfer complexes under pressure: A theoretical view

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2016-05-01

    We propose a theoretical view of temperature dependent electrical conductivity in organic charge transfer complexes and radical ion salts. Understanding of the basic conduction mechanism under high pressure in these systems is our aim. The mechanism is discussed mainly on the basis of molecular orbital overlap theory, role of charge transfer forces and charge density waves etc.

  18. Charge-transfer nature in luminescence of YNbO4:Bi blue phosphor

    NASA Astrophysics Data System (ADS)

    Shin, Sang Hoon; Jeon, Duk Young; Suh, Kyung Soo

    2001-12-01

    Bismuth doped yttrium niobate (YNbO4:Bi) is a potential blue phosphor for field emission displays application. It is observed after introducing Bi ions that cathodoluminescence efficiency of YNbO4:Bi becomes lower than that of YNbO4. From the calculations of critical distance (RC) of energy transfer and Huang-Rhys parameter (SHR) of YNbO4:Bi, it is found that the energy transfer by a dipolar-type interaction is unlikely compared with that of a short-range interaction possible in the luminescence of YNbO4:Bi. Thus, it is believed that the luminescence property of YNbO4:Bi is mainly affected by the host lattice YNbO4 having self-luminescent NbO43- complex. By time-resolved spectroscopy, it is found that luminescence characteristics of activator Bi3+ in YNbO4:Bi shows a charge-transfer behavior.

  19. Heat Transfer Characteristics in Crank-Shape Thermosyphons

    NASA Astrophysics Data System (ADS)

    Imura, Hedeaki; Koito, Yasushi

    A two-phase closed thermosyphon is applied to gas-to-gas heat exchangers, the cooling of heat generation devices, the melting of snow, the prevention from icing of water on roads and so on. Generally, straight tubes are used as the thermosyphon. However, because of the limited space for the straight thermosyphon to be installed, it is considered that a bent thermosyphon is enforced to employ. In response to this, fundamental experiments are conducted on the heat transfer characteristics in a two-phase crank shape closed thermosyphon, in which an evaporator and a condenser are vertically positioned, and a connecting adiabatic section is horizontal. Ethylene glycol aqueous solutions which have lower freezing points and hydrofluoroether 7100 and 7200 which do not contain chloride are used as the working fluids Heat transfer coefficients and critical heat fluxes in the thermosyphon are measured by changing the amount of charged working fluid (0.30,0.40,0.50 and 0.60 of the evaporator volume),the temperature of the adiabatic section (40,50,60,70 and 80°C) and heat flux (from 4.0 kW /m2 to critical). The experimental results are shown and compared with those taken using water as the working fluid.

  20. Plotter design simplifies determination of image sensor transfer characteristic

    NASA Technical Reports Server (NTRS)

    Baker, L. R.

    1967-01-01

    Transfer characteristic of vidicons and other image sensors are measured by light from a calibrated electroluminescent panel as a function of the current output of the image sensor. The plot of current output versus the calibrated light output is the transfer characteristic.

  1. Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands.

    PubMed

    Chatterjee, Tanmay; Mandal, Mrinal; Das, Ananya; Bhattacharyya, Kalishankar; Datta, Ayan; Mandal, Prasun K

    2016-04-14

    Dual fluorescence of GFP chromophore analogues has been observed for the first time. OHIM (o-hydroxy imidazolidinone) shows only a charge transfer (CT) band, CHBDI (p-cyclicamino o-hydroxy benzimidazolidinone) shows a comparable intensity CT and PT (proton transfer) band, and MHBDI (p-methoxy o-hydroxy benzimidazolidinone) shows a higher intensity PT band. It could be shown that the differential optical behavior is not due to conformational variation in the solid or solution phase. Rather, control of the excited state electronic energy level and excited state acidity constant by functional group modification could be shown to be responsible for the differential optical behavior. Chemical modification-induced electronic control over the relative intensity of the charge transfer and proton transfer bands could thus be evidenced. Support from single-crystal X-ray structure, NMR, femtosecond to nanosecond fluorescence decay analysis, and TDDFT-based calculation provided important information and thus helped us understand the photophysics better. PMID:26998908

  2. Magnetic ordering in fullerene charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Sato, Tohru; Yamabe, Tokio; Tanaka, Kazuyoshi

    1997-07-01

    We have determined the ground states of the charge-transfer (CT) complexes in which the energy levels of the highest occupied molecular orbital (HOMO) of donors and the lowest unoccupied MO (LUMO) of acceptors are closely located, and examined some fullerene complexes consisting of C60, C70, tetrakis(dimethylamino)ethylene (TDAE), and 1,1',3,3'-tetramethyl-Δ2,2'-bi(imidazolidine) (TMBI). The observed magnetic properties of TDAE-C60, TMBI-C60, and TDAE-C70 can be accounted for by employing realistic parameters. The effective Hamiltonian including up to the fourth-order perturbation has also been derived in the fourfold degenerate model space. The effective Hamiltonian can plausibly reproduce the magnetic phase diagram obtained by the variational treatment of TDAE-C60. It has been shown that the third and the fourth processes contribute to the stabilization of the antiferromagnetic state.

  3. HST WFC3/UVIS: charge transfer efficiency monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Sosey, Megan L.; Anderson, Jay; Gosmeyer, Catherine; Bourque, Matthew; Bajaj, Varun; Khandrika, Harish G.; Martlin, Catherine; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2016-01-01

    The harsh low-earth orbit environment is known to damage CCD devices and the HST WFC3/UVIS camera is no exception. One consequence of the radiation damage is charge-transfer efficiency (CTE) loss over time. We summarize the level of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. Among them is the pixel-based CTE correction, which has been incorporated into the HST automatic data processing pipeline. The pipeline now provides both standard and CTE-corrected data products; observers with older data can re-retrieve their images via the the Mikulski Archive for Space Telescopes (MAST) to obtain the new products.

  4. Charge Transfer in C6+ Collisions with H and He

    NASA Astrophysics Data System (ADS)

    Lee, T. G.; Pindzola, M. S.

    2015-05-01

    Charge transfer cross sections are calculated for C6+ + H and C6+ + He collisions using a time-dependent close-coupling method in Cartesian coordinates. Capture cross sections into the 1 s , 2 l(l = 0 - 1) , 3 l(l = 0 - 2) , and 4 l(l = 0 - 3) subshells of C5+ are found for projectile energies ranging from 5.0 keV/amu to 15.0 keV/amu. Comparisons are made with previous calculations and recent experiments. The atomic collision data will be used to better understand the interaction of solar wind ions with interplanetary atoms. Work supported in part by grants from NSF, NASA, and DOE.

  5. Experimental study of low-energy charge transfer in nitrogen

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1979-01-01

    Total charge transfer cross sections were obtained for the N2(+)-N2 system with relative translational ion energies between 9 and 441 eV. Data were obtained to examine the dependence of total cross section on ion energy. The effect of ion excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over an electron energy range between 14.5 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at pressure values from 9.9 to 0.000199 torr. Cross section values obtained were compared with experimental and theoretical results of other investigations.

  6. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    PubMed

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  7. Photoinduced Charge Transfer from Titania to Surface Doping Site

    PubMed Central

    Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.

    2013-01-01

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  8. The effects of charge transfer inefficiency (CTI) on galaxy shape measurements

    SciTech Connect

    Rhodes, Jason; Leauthaud, Alexie; Stoughton, Chris; Massey, Richard; Dawson, Kyle; Kolbe, William; Roe, Natalie; /LBL, Berkeley

    2010-02-01

    We examine the effects of charge transfer inefficiency (CTI) during CCD readout on the demanding galaxy shape measurements required by studies of weak gravitational lensing. We simulate a CCD readout with CTI such as that caused by charged particle radiation damage in space-based detectors. We verify our simulations on real data from fully depleted p-channel CCDs that have been deliberately irradiated in a laboratory. We show that only charge traps with time constants of the same order as the time between row transfers during readout affect galaxy shape measurements. We simulate deep astronomical images and the process of CCD readout, characterizing the effects of CTI on various galaxy populations. Our code and methods are general and can be applied to any CCDs, once the density and characteristic release times of their charge trap species are known. We baseline our study around p-channel CCDs that have been shown to have charge transfer efficiency up to an order of magnitude better than several models of n-channel CCDs designed for space applications. We predict that for galaxies furthest from the readout registers, bias in the measurement of galaxy shapes, {Delta}e, will increase at a rate of (2.65 {+-} 0.02) x 10{sup -4} yr{sup -1} at L2 for accumulated radiation exposure averaged over the solar cycle. If uncorrected, this will consume the entire shape measurement error budget of a dark energy mission surveying the entire extragalactic sky within about 4 yr of accumulated radiation damage. However, software mitigation techniques demonstrated elsewhere can reduce this by a factor of {approx}10, bringing the effect well below mission requirements. This conclusion is valid only for the p-channel CCDs we have modeled; CCDs with higher CTI will fare worse and may not meet the requirements of future dark energy missions. We also discuss additional ways in which hardware could be designed to further minimize the impact of CTI.

  9. Metal-Organic Coordination Number Determined Charge Transfer Magnitude

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I.; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2014-03-01

    By the appropriate choice of head groups and molecular ligands, various metal-organic coordination geometries can be engineered. Such metal-organic structures provide different chemical environments for molecules and give us templates to study the charge redistribution within the metal-organic interface. We created various metal-organic bonding environment by growing self-assembly nanostructures of Fe-PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) chains and networks on a Au(111) surface. Bonding environment dependent frontier molecular orbital energies are acquired by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. H.-H. Yang, Y.-H. Chu, C.-I Lu, T.-H. Yang, K.-J. Yang, C.-C. Kaun, G. Hoffmann, and M.-T. Lin, ACS Nano 7, 2814 (2013).

  10. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-01

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs. PMID:21711624

  11. Correlation between charge transfer exciton recombination and photocurrent in polymer/fullerene solar cells

    SciTech Connect

    Hallermann, Markus; Da Como, Enrico; Feldmann, Jochen; Izquierdo, Marta; Filippone, Salvatore; Martin, Nazario; Juechter, Sabrina; Hauff, Elizabeth von

    2010-07-12

    We correlate carrier recombination via charge transfer excitons (CTEs) with the short circuit current, J{sub sc}, in polymer/fullerene solar cells. Near infrared photoluminescence spectroscopy of CTE in three blends differing for the fullerene acceptor, gives unique insights into solar cell characteristics. The energetic position of the CTE is directly correlated with the open-circuit voltage, V{sub oc}, and more important J{sub sc} decreases with increasing CTE emission intensity. CTE emission intensity is discussed from the perspective of blend morphology. The work points out the fundamental role of CTE recombination and how optical spectroscopy can be used to derive information on solar cell performances.

  12. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  13. Charge transfer inefficiency in the pre- and post-irradiated Swept Charge Device CCD236

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Gow, J. P. D.; Pool, P.; Holland, A. D.

    2015-03-01

    This paper describes the mapping of spectral response of an e2v technologies Swept Charge Device (SCD) CCD236 pre and post irradiation with a 10 MeV equivalent proton fluence of 5.0 × 108 protons cm-2. The CCD236 is a large area (4.4 cm2) X-ray detector which will be used in India's Chandrayaan-2 Large Soft X-ray Spectrometer (CLASS) and China's Hard X-ray Modulation Telescope (HXMT). To enable the suppression of surface dark current, clocking is performed continuously resulting in a linear readout. As such the flat field illumination used to measure any change in spectral response over a conventional Charge-Coupled Devices (CCDs) is not possible. An alternative masking technique has been used to expose pinpoint regions of the device to Mn-Kα and Mn-Kβ X-rays, enabling a local map of spectral response to be built up over the device. This novel approach allows for an estimation of the Charge Transfer Inefficiency (CTI) of the device to be made by allowing the creation of a CTI scatter plot similar to that typically observed in conventional CCDs.

  14. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  15. Surface charge and wetting characteristics of layered silicate minerals.

    PubMed

    Yin, Xihui; Gupta, Vishal; Du, Hao; Wang, Xuming; Miller, Jan D

    2012-11-01

    The surface characteristics, including surface charge and wettability, of layered silicates are reviewed based on experimental results and molecular dynamics simulation (MDS) results. The surface charge features of important layered silicates including mica, talc, and kaolinite are described from atomic force microscopy (AFM) measurements, electrophoresis measurements, and/or results from potentiometric titration. In addition, the wetting characteristics of the silica tetrahedral surface which is common to all layered silicates are examined with different experimental techniques and results are discussed. The wettability of trilayer silicates and bilayer silicates is discussed, particularly the wettability of the silica tetrahedral face and alumina octahedral face of kaolinite based on MDS results as well as recent AFM results. PMID:22809732

  16. DNA in a Dissipative Environment: A Charge Transfer Approach

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Fathizadeh, Samira; Akhshani, Afshin

    2015-08-01

    Conductivity properties of DNA molecule is investigated in a simple, chemically specific approach, that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In the SSH model, the non-diagonal matrix element dependent on intersite displacements is considered and there is a coupling between the charge and lattice deformation along DNA helix. In order to study the evolution of the electrical current flowing through DNA in the presence of external electrical field, the electrical current is directly extracted from the dynamical equations. Ranges of electrical field and hopping constant value are estimated using MLE approach. The model is studied by means of I-V characteristic diagrams and the environmental effects is conducted through a phonon bath using different lengths of DNA. The NDR and quasi-Ohmic regions are observed.

  17. Characteristics of high efficiency current charging system for HTS magnet with solar energy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Wook; Yoon, Yong-Soo; Chung, Yoon-Do; Jo, Hyun-Chul; Kim, Ho-Min; Oh, Sung-Kwun; Kim, Hyun-Ki; Oh, Jae-Gi; Ko, Tae-Kuk

    In terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program.

  18. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  19. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    SciTech Connect

    Haverkate, Lucas A.; Mulder, Fokko M.; Zbiri, Mohamed Johnson, Mark R.; Carter, Elizabeth; Kotlewski, Arek; Picken, S.

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup −2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  20. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  1. Probing the Nature of Charge Transfer at Nano-Bio Interfaces: Peptides on Metal Oxide Nanoparticles.

    PubMed

    Tarakeshwar, Pilarisetty; Palma, Julio L; Holland, Gregory P; Fromme, Petra; Yarger, Jeffery L; Mujica, Vladimiro

    2014-10-16

    Characterizing the nano-bio interface has been a long-standing endeavor in the quest for novel biosensors, biophotovoltaics, and biocompatible electronic devices. In this context, the present computational work on the interaction of two peptides, A6K (Ac-AAAAAAK-NH2) and A7 (Ac-AAAAAAA-NH2) with semiconducting TiO2 nanoparticles is an effort to understand the peptide-metal oxide nanointerface. These investigations were spurred by recent experimental observations that nanostructured semiconducting metal oxides templated with A6K peptides not only stabilize large proteins like photosystem-I (PS-I) but also exhibit enhanced charge-transfer characteristics. Our results indicate that α-helical structures of A6K are not only energetically more stabilized on TiO2 nanoparticles, but the resulting hybrids also exhibit enhanced electron transfer characteristics. This enhancement can be attributed to substantial changes in the electronic characteristics at the peptide-TiO2 interface. Apart from understanding the mechanism of electron transfer (ET) in peptide-stabilized PS-I on metal oxide nanoparticles, the current work also has implications in the development of novel solar cells and photocatalysts. PMID:26278609

  2. Solvation-Driven Charge Transfer and Localization in Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole–dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent–solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and

  3. Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices

    NASA Astrophysics Data System (ADS)

    Allen, Christopher S.; Liu, Guoquan; Chen, Yabin; Robertson, Alex W.; He, Kuang; Porfyrakis, Kyriakos; Zhang, Jin; Briggs, G. Andrew D.; Warner, Jamie H.

    2013-12-01

    In this article we probe the nature of electronic interactions between the components of hybrid C60-carbon nanotube structures. Utilizing an aromatic mediator we selectively attach C60 molecules to carbon nanotube field-effect transistor devices. Structural characterization via atomic force and transmission electron microscopy confirm the selectivity of this attachment. Charge transfer from the carbon nanotube to the C60 molecules is evidenced by a blue shift of the Raman G+ peak position and increased threshold voltage of the transistor transfer characteristics. We estimate this charge transfer to increase the device density of holes per unit length by up to 0.85 nm-1 and demonstrate further optically enhanced charge transfer which increases the hole density by an additional 0.16 nm-1.In this article we probe the nature of electronic interactions between the components of hybrid C60-carbon nanotube structures. Utilizing an aromatic mediator we selectively attach C60 molecules to carbon nanotube field-effect transistor devices. Structural characterization via atomic force and transmission electron microscopy confirm the selectivity of this attachment. Charge transfer from the carbon nanotube to the C60 molecules is evidenced by a blue shift of the Raman G+ peak position and increased threshold voltage of the transistor transfer characteristics. We estimate this charge transfer to increase the device density of holes per unit length by up to 0.85 nm-1 and demonstrate further optically enhanced charge transfer which increases the hole density by an additional 0.16 nm-1. Electronic supplementary information (ESI) available: AFM line scans of the substrate before and after functionalization; scheme for measuring amorphous carbon coverage from TEM images; diameter comparisons of ac-TEM image and simulation of C60 molecule; Raman spectra D peak comparison; optical response of transfer properties of pristine devices; comparison between swept and pulsed Vg measurements

  4. Quantum dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Martinazzo, Rocco; Ruckenbauer, Matthias; Burghardt, Irene

    2012-12-01

    Following up on our recent study of ultrafast charge separation at oligothiophene-fullerene interfaces [H. Tamura, I. Burghardt, and M. Tsukada, J. Phys. Chem. C 115, 10205 (2011), 10.1021/jp203174e], we present here a detailed quantum dynamical perspective on the charge transfer process. To this end, electron-phonon coupling is included non-perturbatively, by an explicit quantum dynamical treatment using the multi-configuration time-dependent Hartree (MCTDH) method. Based upon a distribution of electron-phonon couplings determined from electronic structure studies, a spectral density is constructed and employed to parametrize a linear vibronic coupling Hamiltonian. The diabatic coupling is found to depend noticeably on the inter-fragment distance, whose effect on the dynamics is here investigated. MCTDH calculations of the nonadiabatic transfer dynamics are carried out for the two most relevant electronic states and 60 phonon modes. The electron transfer process is found to be ultrafast and mediated by electronic coherence, resulting in characteristic oscillatory features during a period of about 100 fs.

  5. Nematic and spin-charge orders driven by hole-doping a charge-transfer insulator

    NASA Astrophysics Data System (ADS)

    Fischer, Mark H.; Wu, Si; Lawler, Michael; Paramekanti, Arun; Kim, Eun-Ah

    2014-09-01

    Recent experimental discoveries have brought a diverse set of broken symmetry states to the center stage of research on cuprate superconductors. Here, we focus on a thematic understanding of the diverse phenomenology by exploring a strong-coupling mechanism of symmetry breaking driven by frustration of antiferromagnetic (AFM) order. We achieve this through a variational study of a three-band model of the CuO2 plane with Kondo type exchange couplings between doped oxygen holes and classical copper spins. Two main findings from this strong-coupling multi-band perspective are (1) that the symmetry hierarchy of spin stripe, charge stripe, intra-unit-cell nematic order and isotropic phases are all accessible microscopically within the model, (2) many symmetry-breaking patterns compete with energy differences within a few meV per Cu atom to produce a rich phase diagram. These results indicate that the diverse phenomenology of broken-symmetry states in hole-doped AFM charge-transfer insulators may indeed arise from hole-doped frustration of antiferromagnetism.

  6. Ultrafast charge transfer processes in ordered molecular systems

    NASA Astrophysics Data System (ADS)

    Olson, Eric James Crane

    1998-11-01

    optical microscopy (NSOM) are used in conjunction with bulk absorption and fluorescence measurements to correlate the morphological and photophysical properties of titanyl phthalocyanine/perylene phenethylimide (TiOPc/PPEI) bilayer systems. Steady-state fluorescence intensity and fluorescence lifetime measurements are used as a measure of interfacial charge-transfer quenching efficiencies.

  7. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems. PMID:26540455

  8. Quantum ferroelectricity in charge-transfer complex crystals.

    PubMed

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  9. Quantum ferroelectricity in charge-transfer complex crystals

    PubMed Central

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4–n bromine substituents (QBr4–nIn, n=0–4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF–QBr2I2 exhibits a ferroelectric neutral–ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral–ionic transition compounds, such as well-known ferroelectric complex of TTF–QCl4 and quantum antiferroelectric of dimethyl–TTF–QBr4. By contrast, TTF–QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  10. Charge transfer vibronic transitions in uranyl tetrachloride compounds;

    SciTech Connect

    Liu, G. K.; Deifel, N. P.; Cahill, C. L.

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO{sub 2}){sup 2+} in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3{sigma} ground state into the f{sub {delta}{phi}}, orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  11. Charge transfer vibronic transitions in uranyl tetrachloride compounds

    SciTech Connect

    Liu, Guokui; Deifel, Nicholas P.; Cahill, Christopher L.; Zhurov, Vladimir V.; Pinkerton, A. Alan

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO₂)2+ in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the fδ,Φ orbitals of uranyl. The Huang–Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck–Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  12. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Lu, Gaopeng; Cummer, Steven A.; Li, Jingbo; Han, Feng; Blakeslee, Richard J.; Christian, Hugh J.

    2009-08-01

    Lightning observations in the very high frequency band and measurements of ultra low frequency magnetic fields are analyzed to investigate the charge transfer and in-cloud structure of eight positive cloud-to-ground (+CG) strokes in a mesoscale convective system. Although no high altitude images were recorded, these strokes contained large charge moment changes (1500-3200 C·km) capable of producing nighttime sprites. Even though the convective region of the storm was where the flashes originated and where the CG strokes could occur, the charge transferred to ground was mainly from the stratiform region. The post-stroke long continuing currents were connected to highly branched negative leader extension into the stratiform region. While the storm dissipated, the altitude of negative leader propagation in the stratiform area dropped gradually from 8 to 5 km, indicating that in some and perhaps all of these strokes, it was the upper positive charge in the stratiform region that was transferred.

  13. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGESBeta

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  14. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    SciTech Connect

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Chen; Damien, West; Meunier, Vincent; Zhang, Prof. Shengbai

    2016-01-01

    The success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherent charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application

  15. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.

    PubMed

    Boerigter, Calvin; Aslam, Umar; Linic, Suljo

    2016-06-28

    Plasmonic metal nanoparticles can efficiently convert the energy of visible photons into the energy of hot charge carriers within the nanoparticles. These energetic charge carriers can transfer to molecules or semiconductors, chemically attached to the nanoparticles, where they can induce photochemical transformations. Classical models of photoinduced charge excitation and transfer in metals suggest that the majority of the energetic charge carriers rapidly decay within the metal nanostructure before they are transferred into the neighboring molecule or semiconductor, and therefore, the efficiency of charge transfer is low. Herein, we present experimental evidence that calls into question this conventional picture. We demonstrate a system where the presence of a molecule, adsorbed on the surface of a plasmonic nanoparticle, significantly changes the flow of charge within the excited plasmonic system. The nanoparticle-adsorbate system experiences high rates of direct, resonant flow of charge from the nanoparticle to the molecule, bypassing the conventional charge excitation and thermalization process taking place in the nanoparticle. This picture of charge transfer suggests that the yield of extracted hot electrons (or holes) from plasmonic nanoparticles can be significantly higher than the yields expected based on conventional models. We discuss a conceptual physical framework that allows us to explain our experimental observations. This analysis points us in a direction toward molecular control of the charge transfer process using interface and local field engineering strategies. PMID:27268233

  16. Wire transfer of charge packets using a CCD-BBD structure for charge-domain signal processing

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.

    1991-02-01

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32-, and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process is used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 is obtained for surface n-channel devices with clock cycle times in the range from 40 ns to 0.3 ms. Transfer efficiency as high as 0.9999 is obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  17. How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction

    NASA Astrophysics Data System (ADS)

    Israel, Holger; Massey, Richard; Prod'homme, Thibaut; Cropper, Mark; Cordes, Oliver; Gow, Jason; Kohley, Ralf; Marggraf, Ole; Niemi, Sami; Rhodes, Jason; Short, Alex; Verhoeve, Peter

    2015-10-01

    Radiation damage to space-based charge-coupled device detectors creates defects which result in an increasing charge transfer inefficiency (CTI) that causes spurious image trailing. Most of the trailing can be corrected during post-processing, by modelling the charge trapping and moving electrons back to where they belong. However, such correction is not perfect - and damage is continuing to accumulate in orbit. To aid future development, we quantify the limitations of current approaches, and determine where imperfect knowledge of model parameters most degrades measurements of photometry and morphology. As a concrete application, we simulate 1.5 × 109 `worst-case' galaxy and 1.5 × 108 star images to test the performance of the Euclid visual instrument detectors. There are two separable challenges. If the model used to correct CTI is perfectly the same as that used to add CTI, 99.68 per cent of spurious ellipticity is corrected in our setup. This is because readout noise is not subject to CTI, but gets overcorrected during correction. Secondly, if we assume the first issue to be solved, knowledge of the charge trap density within Δρ/ρ = (0.0272 ± 0.0005) per cent and the characteristic release time of the dominant species to be known within Δτ/τ = (0.0400 ± 0.0004) per cent will be required. This work presents the next level of definition of in-orbit CTI calibration procedures for Euclid.

  18. Oxygen Transfer Characteristics of Miniaturized Bioreactor Systems

    PubMed Central

    Kirk, Timothy V; Szita, Nicolas

    2013-01-01

    Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h-1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h-1 kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real-time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc. PMID:23280578

  19. The effects of charge transfer on the properties of liquid water

    SciTech Connect

    Lee, Alexis J.; Rick, Steven W.

    2011-05-14

    A method for treating charge transfer interactions in classical potential models is developed and applied to water. In this method, a discrete amount of charge is transferred for each hydrogen bond formed. It is designed to be simple to implement, to be applicable to a variety of potential models, and to satisfy various physical requirements. The method does not transfer charge at large intramolecular distances, it does not result in a conductive liquid, and it can be easily parameterized to give the correct amount of charge transfer. Two charge transfer models are developed for a polarizable and a non-polarizable potential. The models reproduce many of the properties of liquid water, including the structure, the diffusion constant, and thermodynamic properties over a range of temperatures.

  20. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  1. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.

    PubMed

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  2. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-05-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.

  3. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    NASA Astrophysics Data System (ADS)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  4. Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu

    A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.

  5. Charge Transfer Process During Collision of Riming Graupel Pellet with Small Ice Crystals within a Thundercloud

    NASA Technical Reports Server (NTRS)

    Datta, Saswati; De, Utpal K.; Goswami, K.; Jones, Linwood

    1999-01-01

    A charge transfer process during the collision of a riming graupel pellet and an ice-crystal at low temperature is proposed. During riming, the surface structure of graupel deviates from perfect crystalline structure. A concept of quasi-solid layer (QSL) formation on the surface is introduced. This QSL contains defects formed during riming. In absence of impurities, positively charged X-defect abundance is considered in the outer layer. These defects are assumed to be the charge carriers during the charge transfer process. Some part of the QSL is stripped off by the colliding ice crystals, which thereby gain some positive charge, leaving the graupel pellet negatively charged. With the proposed model, fC to pC of charge transfer is observed per collision. A transition temperature between -10 C to -15 C is also noted beyond which the QSL concept does not hold. This transition temperature is dependent on the bulk liquid water content of the cloud.

  6. Characteristics of Transient Boiling Heat Transfer

    SciTech Connect

    Liu, Wei; Monde, Masanori; Mitsutake, Y.

    2002-07-01

    In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

  7. 46 CFR 35.35-35 - Duties of person in charge of transfer-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Duties of person in charge of transfer-TB/ALL. 35.35-35 Section 35.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Cargo Handling § 35.35-35 Duties of person in charge of transfer—TB/ALL. The person in charge of the transfer of liquid cargo in bulk, fuel oil in bulk,...

  8. Investigation of blast wave characteristics for layered thermobaric charges

    NASA Astrophysics Data System (ADS)

    Trzciński, W. A.; Barcz, K.

    2012-03-01

    The explosion of an annular charge composed of a hexogen core and a layer consisting of a mixture of ammonium nitrate and aluminum particles was studied. X-ray photography was used to trace the curvature of the shock wave in the external layer. The pressure blast characteristics and the light output of the explosion cloud were investigated using bunkers of different sizes and varying levels of the opening (the ratio of the hole surface to the total bunker surface). Overpressure peaks, the impulses of incident waves, and the impulses determined for the specified time duration were analyzed.

  9. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D

  10. Three-centered model of ultrafast photoinduced charge transfer: Continuum dielectric approach

    SciTech Connect

    Khohlova, Svetlana S.; Mikhailova, Valentina A.; Ivanov, Anatoly I.

    2006-03-21

    A theoretical description of photoinduced charge transfer involves explicit treating both the optical formation of the nuclear wave packet on the excited free energy surface and its ensuing dynamics. The reaction pathway constitutes two-stage charge transfer between three centers. Manifestations of fractional charge transfer at first stage are explored. An expression for time dependent rate constant of photoinduced charge transfer is found in the framework of the linear dielectric continuum model of the medium. The model involves both the intramolecular vibrational reorganization and the Coulombic interaction of the transferred charge with the medium polarization fluctuations and allows to express the rate in terms of intramolecular reorganization parameters and complex dielectric permittivity. The influence of the vibrational coherent motion in the locally excited state on the charge transfer dynamics has been explored. The dependence of the ultrafast photoinduced charge transfer dynamics on the excitation pulse carrier frequency (spectral effect) has been investigated. The spectral effect has been shown to depend on quantity of the fractional charge.

  11. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  12. Charge transfer in DNA: The role of thermal fluctuations and of symmetry

    NASA Astrophysics Data System (ADS)

    D'Orsogna, Maria-Rita Rosaria

    The DNA double helix is a linear one-dimensional molecule, and charge transfer occurs along the base-pairs stacked along its longitudinal axis. DNA, however, is highly subject to disruptions and modifications in its configurational stacking due, for instance, to thermal fluctuations. These departures from a rigid, crystal-like structure must be taken in account for a correct description of the charge transfer process, so that the usual solid-state tight-binding pictures of charge transfer along organic one-dimensional crystals, such as the Bechgaard salts, cannot be used. We propose a model Hamiltonian for charge transfer between the DNA base-pairs with temperature driven fluctuations in the base-pair positions acting as the rate limiting factor. The underlying idea is that charge tunneling between base-pairs that fluctuate significantly from their nominal configuration can occur only when an optimal base-pair relative configuration is reached. We focus on this aspect of the process by modeling two adjacent base pairs in terms of a classical damped oscillator subject to thermal fluctuations and charge transfer to the acceptor. The Fokker-Planck equation for the system yields an unusual two-stage process, with distinct initial and late-time charge transfer rates. This result is in agreement with experimental findings and is not contemplated by other charge transfer paradigms. Another known consequence of charge transfer between DNA base-pairs is the geometrical modification of the base-pairs after the addition or removal of the migrating charge. This structural deformation breaks the mirror symmetry of the original DNA base-pair, leading to two alternate, symmetry related, 'left' and 'right' ionic configurations. We study charge transfer between donor-acceptor molecules subject to a mirror symmetry constraint in the presence of a dissipative environment. The symmetry requirement leads to the breakdown of the standard single reaction-coordinate paradigm of charge

  13. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  14. Probing the charge-transfer dynamics in DNA at the single-molecule level.

    PubMed

    Kawai, Kiyohiko; Matsutani, Eri; Maruyama, Atsushi; Majima, Tetsuro

    2011-10-01

    Photoinduced charge-transfer fluorescence quenching of a fluorescent dye produces the nonemissive charge-separated state, and subsequent charge recombination makes the reaction reversible. While the information available from the photoinduced charge-transfer process provides the basis for monitoring the microenvironment around the fluorescent dyes and such monitoring is particularly important in live-cell imaging and DNA diagnosis, the information obtainable from the charge recombination process is usually overlooked. When looking at fluorescence emitted from each single fluorescent dye, photoinduced charge-transfer, charge-migration, and charge recombination cause a "blinking" of the fluorescence, in which the charge-recombination rate or the lifetime of the charge-separated state (τ) is supposed to be reflected in the duration of the off time during the single-molecule-level fluorescence measurement. Herein, based on our recently developed method for the direct observation of charge migration in DNA, we utilized DNA as a platform for spectroscopic investigations of charge-recombination dynamics for several fluorescent dyes: TAMRA, ATTO 655, and Alexa 532, which are used in single-molecule fluorescence measurements. Charge recombination dynamics were observed by transient absorption measurements, demonstrating that these fluorescent dyes can be used to monitor the charge-separation and charge-recombination events. Fluorescence correlation spectroscopy (FCS) of ATTO 655 modified DNA allowed the successful measurement of the charge-recombination dynamics in DNA at the single-molecule level. Utilizing the injected charge just like a pulse of sound, such as a "ping" in active sonar systems, information about the DNA sequence surrounding the fluorescent dye was read out by measuring the time it takes for the charge to return. PMID:21875061

  15. Spectral properties of molecular charge-transfer probe QMOM

    NASA Astrophysics Data System (ADS)

    Tomin, V. I.; Jaworski, R.; Yushchenko, D. A.

    2010-09-01

    The spectral characteristics of solutions of a dye with dual fluorescence, 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone, in acetonitrile are studied upon selective excitation. This dye is a structural analogue of 3-hydroxyflavone and also exhibits excited-state proton transfer, which, as well as in the case of 3-hydroxyflavone, has a kinetic nature. The fluorescence spectra are studied upon excitation by photons of various energies, and the excitation spectra are recorded at wavelengths of different fluorescence bands. It is found that the intensity ratio of the emission of the normal and tautomeric forms (at wavelength of 415 and 518 nm, respectively) is almost the same (0.23-0.25) for excitation in the regions of the main and the second absorption bands. At the same time, in the case of excitation between these bands, this ratio decreases to 0.19. The second interesting feature is the existence of a third latent emission band peaked at about 480 nm, which is reliably detected upon excitation at wavelengths in the region of 400-450 nm. This study shows that this emission belongs to the anionic form of the dye. This form is also responsible for a decrease in the intensity ratio of the emission of the two main forms in the case of excitation between the first and second absorption bands.

  16. Ligand dissociation mediated charge transfer observed at colloidal W18O49 nanoparticle interfaces.

    PubMed

    Grauer, David C; Alivisatos, A Paul

    2014-03-11

    Understanding charge transfer dynamics through the ligand shell of colloidal nanoparticles has been an important pursuit in solar energy conversion. While charge transport through ligand shells of nanoparticle films has been studied intensely in static dry and electrochemical systems, its influence on charge transfer kinetics in dispersed colloidal systems has received relatively less attention. This work reports the oxidation of amine passivated tungsten oxide nanoparticles by an organically soluble tris-(1,10-phenanthroline) iron(III) derivative. By following the rate of this oxidation optically via the production of the ferroin derivative under various reaction conditions and particle derivatizations, we are able to show that the fluxional ligand shells on dispersed, colloidal nanoparticles provide a separate and more facile pathway for charge transfer, in which the rate-limiting step for charge transfer is the ligand dissociation. Since such ligand shells are frequently required for nanoparticle stability, this observation has significant implications for colloidal nanoparticle photocatalysis. PMID:24564847

  17. M-component mode of charge transfer to ground in lightning discharges

    NASA Astrophysics Data System (ADS)

    Rakov, Vladimir A.; Crawford, David E.; Rambo, Keith J.; Schnetzer, George H.; Uman, Martin A.; Thottappillil, Rajeev

    2001-10-01

    The M-component mode of charge transfer to ground is examined using (1) multiple-station measurements of electric and magnetic fields at distances ranging from 5 to ˜ 500 m from triggered-lightning channels and (2) measured currents at the channel base. Data have been obtained in 1997, 1999, and 2000 at the International Center for Lightning Research and Testing at Camp Blanding, Florida, for (1) "classical" M-components that occur during the continuing currents following return strokes and (2) impulsive processes that occur during the initial stage of rocket-triggered lightning and are similar to the "classical" M components. All lightning events considered here effectively transported negative charge to ground. For one triggered-lightning event the electric field 45 km from the lightning channel was measured together with the current and close fields. The shapes and magnitudes of the measured close electric and magnetic fields are generally consistent with the guided-wave mechanism of the lightning M component. Specifically, the M-component electric field peak exhibits logarithmic distance dependence, ln(kr-1), which is indicative of a line charge density that is zero at ground and increases with height. Such a distribution of charge is distinctly different from the more or less uniform charge density that is characteristic of the dart leaders in triggered lightning, as inferred from close electric field measurements. The M-component magnetic field peak decreases as the inverse distance (i.e., r-1), which is generally consistent with a uniform current within the lowest kilometer or so of channel. The M-component electric field at 45 km appeared as a bipolar, microsecond-scale pulse that started prior to the onset of the M-component current at the channel base. M-component-type processes can produce acoustic signals with peak pressure values of the same order of magnitude as those from the leader/return stroke sequences in triggered lightning.

  18. Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.

    2012-07-01

    A transition-density-fragment interaction (TDFI) combined with a transfer integral (TI) method is proposed. The TDFI method was previously developed for describing electronic Coulomb interaction, which was applied to excitation-energy transfer (EET) [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)] and exciton-coupled circular dichroism spectra [K. J. Fujimoto, J. Chem. Phys. 133, 124101 (2010)]. In the present study, the TDFI method is extended to the exchange interaction, and hence it is combined with the TI method for applying to the EET via charge-transfer (CT) states. In this scheme, the overlap correction is also taken into account. To check the TDFI-TI accuracy, several test calculations are performed to an ethylene dimer. As a result, the TDFI-TI method gives a much improved description of the electronic coupling, compared with the previous TDFI method. Based on the successful description of the electronic coupling, the decomposition analysis is also performed with the TDFI-TI method. The present analysis clearly shows a large contribution from the Coulomb interaction in most of the cases, and a significant influence of the CT states at the small separation. In addition, the exchange interaction is found to be small in this system. The present approach is useful for analyzing and understanding the mechanism of EET.

  19. Charge-transfer complex versus σ-complex formed between TiO2 and bis(dicyanomethylene) electron acceptors.

    PubMed

    Fujisawa, Jun-ichi; Nagata, Morio; Hanaya, Minoru

    2015-11-01

    A novel group of organic-inorganic hybrid materials is created by the combination of titanium dioxide (TiO2) nanoparticles with bis(dicyanomethylene) (TCNX) electron acceptors. The TiO2-TCNX complex is produced by the nucleophilic addition reaction between a hydroxy group on the TiO2 surface and TCNX, with the formation of a σ-bond between them. The nucleophilic addition reaction generates a negatively-charged diamagnetic TCNX adsorbate that serves as an electron donor. The σ-bonded complex characteristically shows visible-light absorption due to interfacial charge-transfer (ICT) transitions. In this paper, we report on another kind of complex formation between TiO2 and TCNX. We have systematically studied the structures and visible-light absorption properties of the TiO2-TCNX complexes, with changing the electron affinity of TCNX. We found that TCNX acceptors with lower electron affinities form charge-transfer complexes with TiO2 without the σ-bond formation. The charge-transfer complexes show strong visible-light absorption due to interfacial electronic transitions with little charge-transfer nature, which are different from the ICT transitions in the σ-bond complexes. The charge-transfer complexes induce efficient light-to-current conversions due to the interfacial electronic transitions, revealing the high potential for applications to light-energy conversions. Furthermore, we demonstrate that the formation of the two kinds of complexes is selectively controlled by the electron affinity of TCNX. PMID:26418266

  20. Modeling the electrical conduction in DNA nanowires: Charge transfer and lattice fluctuation theories

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.

    2015-02-01

    An analytical approach is proposed for the investigation of the conductivity properties of DNA. The charge mobility of DNA is studied based on an extended Peyrard-Bishop-Holstein model when the charge carrier is also subjected to an external electrical field. We have obtained the values of some of the system parameters, such as the electron-lattice coupling constant, by using the mean Lyapunov exponent method. On the other hand, the electrical current operator is calculated directly from the lattice operators. Also, we have studied Landauer resistance behavior with respect to the external field, which could serve as the interface between chaos theory tools and electronic concepts. We have examined the effect of two types of electrical fields (dc and ac) and variation of the field frequency on the current flowing through DNA. A study of the current-voltage (I -V ) characteristic diagram reveals regions with a (quasi-)Ohmic property and other regions with negative differential resistance (NDR). NDR is a phenomenon that has been observed experimentally in DNA at room temperature. We have tried to study the affected agents in charge transfer phenomena in DNA to better design nanostructures.

  1. Modeling the electrical conduction in DNA nanowires: charge transfer and lattice fluctuation theories.

    PubMed

    Behnia, S; Fathizadeh, S

    2015-02-01

    An analytical approach is proposed for the investigation of the conductivity properties of DNA. The charge mobility of DNA is studied based on an extended Peyrard-Bishop-Holstein model when the charge carrier is also subjected to an external electrical field. We have obtained the values of some of the system parameters, such as the electron-lattice coupling constant, by using the mean Lyapunov exponent method. On the other hand, the electrical current operator is calculated directly from the lattice operators. Also, we have studied Landauer resistance behavior with respect to the external field, which could serve as the interface between chaos theory tools and electronic concepts. We have examined the effect of two types of electrical fields (dc and ac) and variation of the field frequency on the current flowing through DNA. A study of the current-voltage (I-V) characteristic diagram reveals regions with a (quasi-)Ohmic property and other regions with negative differential resistance (NDR). NDR is a phenomenon that has been observed experimentally in DNA at room temperature. We have tried to study the affected agents in charge transfer phenomena in DNA to better design nanostructures. PMID:25768543

  2. Exceptional photosensitivity of a polyoxometalate-based charge-transfer hybrid material.

    PubMed

    Liao, Jian-Zhen; Wu, Chen; Wu, Xiao-Yuan; Deng, Shui-Quan; Lu, Can-Zhong

    2016-05-31

    An unusual room-temperature light sensitivity was realized in a polyoxometalate-based hybrid material due to cooperative multicomponent molecular charge-transfer interactions taking place in this material, mainly among POMs, NDIs, and other molecules. The functional π-acidic NDI linkers and POM clusters in the discussed hybrid material were individually designed as photosensors and electron reservoirs. To propose a photo-induced charge-transfer mechanism, EPR, XPS, UV-Vis and computational studies were carried out, and indicated the presence of active charge-transfer interactions among several of the components. PMID:27192943

  3. Charge-transfer-induced evaporation in collisions of Li2+31 clusters with Cs atoms

    NASA Astrophysics Data System (ADS)

    Bréchignac, C.; Cahuzac, Ph.; Concina, B.; Leygnier, J.; Ruiz, L. F.; Zarour, B.; Hervieux, P. A.; Hanssen, J.; Politis, M. F.; Martín, F.

    2003-12-01

    We present a combined theoretical and experimental study of dissociative charge transfer in collisions of slow Li2+31 clusters with Cs atoms. We provide a direct quantitative comparison between theory and experiment and show that good agreement is only found when the experimental time-of-flight and initial cluster temperature are taken into account in the theoretical modeling. This model explains evaporation as resulting from a collisional energy deposit due to cluster electronic excitation during charge transfer. We discuss in detail the basic mechanisms that are responsible for the charge-transfer reaction and different approximations to evaluate the energy deposit.

  4. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  5. Flow and heat transfer characteristics of orthogonally rotating channel

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroshi; Ishigaki, Hiroshi

    1991-12-01

    Numerical analysis was conducted to predict the centripetal buoyant effect on flow and heat transfer characteristics in a channel rotating about a perpendicular axis. The conditions were assumed to be laminar, fully developed, and uniform heat flux. Calculation were conducted both for radially outward flow from the rotating axis and radially inward flow. The calculated results indicated that for radially outward flow buoyancy decreases the suction side friction and heat transfer while increasing pressure side friction and heat transfer. This trends were reversed for radially inward flow.

  6. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  7. Charge storage phenomena and I-V characteristics observed in ultrathin polyimide Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Fukuda, Atsushi

    1992-04-01

    Au/PI/Al junctions were fabricated and the charge storage phenomena in polyimide (PI) layers were examined. The current-voltage (I-V) characteristics of the junctions were examined in connection with charge storage phenomena. It was found that numerous excess charges were injected into PI multilayers from electrodes by the application of biasing voltages. Therefore, the space charge field formed in as-deposited PI layers was distorted by the excess charges injected. It was also found that asymmetric I-V characteristics observed for Au/PI/Al junctions depended on the biasing voltages, because the space charge field formed in PI layers influenced the I-V characteristics.

  8. Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield.

    PubMed

    Castro, Fernando A; Benmansour, Hadjar; Moser, Jacques-E; Graeff, Carlos F O; Nüesch, Frank; Hany, Roland

    2009-10-21

    Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of approximately 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of approximately 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport. PMID:20449035

  9. Charging characteristics of materials: Comparison of experimental results with simple analytical models

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Stevens, N. J.; Oglebay, J. C.

    1977-01-01

    An understanding of the behavior of materials, of dielectrics in particular, under charged particle bombardment is essential to the prediction and prevention of the adverse effects of spacecraft charging. A one-dimensional model for charging of samples in a test facility was used in conjunction with experimental data taken to develop "material charging characteristics" for silvered Teflon. These characteristics were then used in a one-dimensional model for charging in space to examine expected response. Relative charging rates as well as relative charging levels for silvered Teflon and metal are discussed.

  10. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  11. Charge transfer complex states in diketopyrrolopyrrole polymers and fullerene blends: Implications for organic solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Moghe, D.; Yu, P.; Kanimozhi, C.; Patil, S.; Guha, S.

    2011-12-01

    The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT:PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT:PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT:PCBM.

  12. When hole extraction determines charge transfer across metal-organic-metal structure

    NASA Astrophysics Data System (ADS)

    Govor, L. V.; Reiter, G.; Parisi, J.

    2016-03-01

    We examined the charge transfer in metal-organic-metal structure, where the contact resistance of the extracting interface is larger than the resistance of the organic crystalline material and the resistance of the injecting interface. If direct tunneling (low voltage) and Fowler-Nordheim tunnelling (high voltage) across both interfaces take place, part of the injected holes remains located in the organic crystal because of the blocking action of the extracting interface, but not because of traps within the organic crystalline material (which was negligible). If Fowler-Nordheim tunneling across the injecting interface and direct tunneling across the extracting interface take place for high voltages, the latter leads to the deviation of the total current-voltage characteristic from the power law I∼ Vγ with γ>2 to Ohm's law with γ≃1.0 .

  13. Optical charge transfer for the dope in GaAs

    SciTech Connect

    Vakulenko, O.V.; Skirda, A.S.; Skryshevskii, V.A.

    1984-05-01

    It is concluded that the chromium dope is amphoteric in behavior on the basis of the spectra, kinetics, and lux-ampere characteristics of the absorption and photoconductivity induced by 1.15-um IR laser radiation in high-resistance specimens of GaAs. It is assumed that the additional IR illumination produces optical charge transfer in the chromium in accordance with Cr/sup 3 +/3d/sup 3/ + h..nu.. ..-->.. Cr/sup 2 +/3d/sup 4/ + Cr/sup 4 +/3d/sup 2/. The photoneutralization of the Cr/sup 4 +/3d/sup 2/ centers is responsible for additional optical-absorption and photoconductivity bands appearing in the long-wave region. The kinetic equations for these centers are solved, which describes the experimental results satisfactorily. It is suggested that chromium may compensate not only shallow donors in GaAs but also shallow acceptors.

  14. Improved Endurance and Resistive Switching Stability in Ceria Thin Films Due to Charge Transfer Ability of Al Dopant.

    PubMed

    Ismail, M; Ahmed, E; Rana, A M; Hussain, F; Talib, I; Nadeem, M Y; Panda, D; Shah, N A

    2016-03-01

    An improvement in resistive switching (RS) characteristics of CeO2-based devices has been reported by charge transfer through Al metal as a dopant. Moreover, density functional theory (DFT) calculations have been performed to investigate the role of Al-layer sandwiched between CeO2 layers by the Vienna ab initio simulation package (VASP). Total density of states (TDOS) and partial electron density of states (PDOS) have been calculated and analyzed with respect to resistive switching. It is established that the oxygen vacancy based conductive filaments are formed and ruptured in the upper region of CeO2 layer, because of the fact that maximum transport of charge takes place in this region by Al and Ti (top electrode), while the lower region revealed less capability to generate conductive filaments because minimum charge transfer takes place in this region by Al and/or Pt (bottom electrode). The effect of Al and Al2O3 on both the electronic charge transfer from valence to conduction bands and the formation stability of oxygen vacancies in conductive filament have been discussed in detail. Experimental results demonstrated that the Ti/CeO2:Al/Pt sandwich structure exhibits significantly better switching characteristics including lower forming voltage, improved and stable SET/RESET voltages, enhanced endurance of more than 10(4) repetitive switching cycles and large memory window (ROFF/RON > 10(2)) as compared to undoped Ti/CeOx/Pt device. This improvement in memory switching behavior has been attributed to a significant decrease in the formation energy of oxygen vacancies and to the enhanced oxygen vacancies generation within the CeO2 layers owing to charge transferring and oxygen gettering ability of Al-dopant. PMID:26881895

  15. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  16. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  17. Integer versus Fractional Charge Transfer at Metal(/Insulator)/Organic Interfaces: Cu(/NaCl)/TCNE

    PubMed Central

    2015-01-01

    Semilocal and hybrid density functional theory was used to study the charge transfer and the energy-level alignment at a representative interface between an extended metal substrate and an organic adsorbate layer. Upon suppressing electronic coupling between the adsorbate and the substrate by inserting thin, insulating layers of NaCl, the hybrid functional localizes charge. The laterally inhomogeneous charge distribution resulting from this spontaneous breaking of translational symmetry is reflected in observables such as the molecular geometry, the valence and core density of states, and the evolution of the work function with molecular coverage, which we discuss for different growth modes. We found that the amount of charge transfer is determined, to a significant extent, by the ratio of the lateral spacing of the molecules and their distance to the metal. Therefore, charge transfer does not only depend on the electronic structure of the individual components but, just as importantly, on the interface geometry. PMID:25905769

  18. Resonant charge transfer of hydrogen Rydberg atoms incident at a metallic sphere

    NASA Astrophysics Data System (ADS)

    Gibbard, J. A.; Softley, T. P.

    2016-06-01

    A wavepacket propagation study is reported for the charge transfer of low principal quantum number (n = 2) hydrogen Rydberg atoms incident at an isolated metallic sphere. Such a sphere acts as a model for a nanoparticle. The three-dimensional confinement of the sphere yields discrete surface-localized ‘well-image’ states, the energies of which vary with sphere radius. When the Rydberg atom energy is degenerate with one of the quantized nanoparticle states, charge transfer is enhanced, whereas for off-resonant cases little to no charge transfer is observed. Greater variation in charge-transfer probability is seen between the resonant and off-resonant examples in this system than for any other Rydberg-surface system theoretically investigated thus far. The results presented here indicate that it may be possible to use Rydberg-surface ionization as a probe of the surface electronic structure of a nanoparticle, and nanostructures in general.

  19. The role of charge-transfer states in energy transfer and dissipation within natural and artificial bacteriochlorophyll-proteins

    PubMed Central

    Wahadoszamen, Md.; Margalit, Iris; Ara, Anjue Mane; van Grondelle, Rienk; Noy, Dror

    2014-01-01

    Understanding how specific protein environments affect the mechanisms of non-radiative energy dissipation within densely assembled chlorophylls in photosynthetic protein complexes is of great interest to the construction of bioinspired solar energy conversion devices. Mixing of charge-transfer and excitonic states in excitonically interacting chlorophylls was implicated in shortening excited states lifetimes but its relevance to active control of energy dissipation in natural systems is under considerable debate. Here we show that the degree of fluorescence quenching in two similar pairs of excitonically interacting bacteriochlorophyll derivatives is directly associated with increasing charge transfer character in the excited state, and that the protein environment may control non-radiative dissipation by affecting the mixing of charge transfer and excitonic states. The capability of local protein environments to determine the fate of excited states, and thereby to confer different functionalities to excitonically coupled dimers substantiates the dimer as the basic functional element of photosynthetic enzymes. PMID:25342121

  20. Laser-plasma ion beams-experiments towards charge transfer x-ray laser

    SciTech Connect

    Crespo Lopez-Urrutia, J.R.; Fill, E.E. ); Bruch, R. ); Schneider, D. )

    1993-06-05

    Laser plasmas produced at intensities of up to 10[sup 14] W/cm[sup 2] expand towards a secondary target a few millimeters away. The intense x-ray emission during the interaction plasma-target was recorded spectrally, spatially and time-resolved. A number of processes, like recombination and charge transfer may account for this strong radiation. The implications of these experiments to the design of a charge transfer x-ray laser are discussed.

  1. Picosecond spectroscopy of charge-transfer processes. Photochemistry of anthracene-tetranitromethane EDA complexes

    NASA Astrophysics Data System (ADS)

    Masnovi, J. M.; Huffman, J. C.; Kochi, J. K.; Hilinski, E. F.; Rentzepis, P. M.

    1984-04-01

    The temporal sequence of events that follow 532 nm excitation of electron donor-acceptor, EDA, complexes of several substituted anthracenes with tetranitromethane is monitored by means of picosecond spectroscopy. Excitation of the charge-transfer band of these EDA complexes produces high yields of 1 : 1 adducts. Absorption spectra and kinetics of the transient species involved in these photochemical reactions provide the basis for elucidation of the reaction mechanism following charge-transfer excitation to the ion pairs.

  2. Quantum Plasmonics: Optical Monitoring of DNA-Mediated Charge Transfer in Plasmon Rulers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2016-03-01

    Plasmon coupling between DNA-tethered gold nanoparticles is investigated by correlated single-particle spectroscopy and transmission electron microscopy for interparticle separations between 0.5 and 41 nm. Spectral characterization reveals a weakening of the plasmon coupling due to DNA-mediated charge transfer for separations up to 2.8 nm. Electromagnetic simulations indicate a coherent charge transfer across the DNA. PMID:26789736

  3. Charge transfer along DNA molecule within Peyrard-Bishop-Holstein model

    NASA Astrophysics Data System (ADS)

    Edirisinghe, Neranjan; Apalkov, Vadym

    2010-03-01

    Charge transport through DNA molecule is important in many areas ranging from DNA damage repair to molecular nanowires. It is now widely accepted that a phonon mediated hopping of a charge carrier plays a major role in charge transport through DNA. In the present study we investigate system dynamics within Peyrard-Bishop-Holstein model for the charge transfer between donor and acceptor sites. We found that an escape time of a charge, trapped at the donor state of the DNA strand, is very sensitive to the initial value of H-bond stretching. This suggests importance of ensemble averaging. Moreover sharp phase transitions were observed for escape time in parameter space of transfer integrals and phonon-charge coupling constant.

  4. Why are the Interaction Energies of Charge-Transfer Complexes Challenging for DFT?

    PubMed

    Steinmann, Stephan N; Piemontesi, Cyril; Delachat, Aurore; Corminboeuf, Clemence

    2012-05-01

    The description of ground state charge-transfer complexes is highly challenging. Illustrative examples include large overestimations of charge-transfer by local and semilocal density functional approximations as well as inaccurate binding energies. It is demonstrated here that standard density functionals fail to accurately describe interaction energies of charge-transfer complexes not only because of the missing long-range exchange as generally assumed but also as a result of the neglect of weak interactions. Thus, accounting for the missing van der Waals interactions is of key importance. These assertions, based on the evaluation of the extent of stabilization due to dispersion using both DFT coupled with our recent density-dependent dispersion correction (dDsC) and high-level ab initio computations, reflect the imperfect error-cancellation between the overestimation of charge-transfer and the missing long-range interactions. An in-depth energy decomposition analysis of an illustrative series of four small ambidentate molecules (HCN, HNC, HF, and ClF) bound together with NF3 provides the main conclusions, which are validated on a prototypical organic charge-transfer complex (i.e., tetrathiafulvalene-tetracyanoquinodimethane, TTF-TCNQ). We establish that the interaction energies for charge-transfer complexes can only be properly described when using well-balanced functionals such as PBE0-dDsC, M06-2X, and LC-BOP-LRD. PMID:26593656

  5. Charge transfer and association of protons colliding with potassium from very low to intermediate energies

    SciTech Connect

    Liu, C. H.; Qu, Y. Z.; Wang, J. G.; Li, Y.; Buenker, R. J.

    2010-01-15

    The nonradiative charge-transfer process for H{sup +}+K(4s) collision is investigated using the quantum-mechanical molecular-orbital close-coupling method for collision energies from 1 eV to 10 keV. The radiative-decay and radiative charge transfer cross sections are calculated using the optical potential approach and the fully quantal method, respectively, for the energy range of 10{sup -5}-10 eV. The radiative-association cross sections are obtained by subtracting the radiative charge-transfer part from total radiative-decay cross sections. The relevant molecular data are calculated from the multireference single- and double-excitation configuration interaction approach. The nonradiative charge transfer is the dominant mechanism at energies above 2 eV, whereas the radiative charge transfer becomes primary in the low-energy region of E<1.5 eV. The present radiative-decay cross sections disagree with the calculations of Watanabe et al. [Phys. Rev. A 66, 044701 (2002)]. The total charge-transfer rate coefficient is obtained in the temperature range of 1-20000 K.

  6. Estimitation of Charge-Transfer Resistivity of Pt Cathode on YSZ Electrolyte Using Patterned Electrodes

    SciTech Connect

    Radhakrishnan, Rajesh; Virkar, Anil V.; Singhal, Subhash C.

    2005-04-01

    YSZ Electrolyte discs with patterned LSM electrodes having different three phase boundary (TPB) lengths but the same electrode-electrolyte interface area, were prepared using photomicrolithography. Impedance spectra for half-cells were obtained under oxygen partial pressures, ranging from 10-3 to 1 atm and temperatures from 650 to 800oC. Area specific charge transfer resistance was found to vary inversely. While the charge transfer resistance is inversely proportional to consistent with the charge transfer reaction occurring mainly at the TPB, at 800oC some transport through LSM also appears to occur. The estimated value of charge transfer resistivity corresponding to the charge transfer reaction occurring at TPB, in air at 800oC is in good agreement with that estimated from actual fuel cell tests using quantitative stereological analysis of LSM-YSZ composite electrodes and were found to decrease with increasing and with increasing temperature. The activation energy for the overall charge transfer reaction was estimated to be ~1.5 eV.

  7. Potential curves for Na2/+/ and resonance charge transfer cross sections.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.; Allison, A. C.; Dalgarno, A.

    1971-01-01

    A mode potential method, applied earlier to the positively charged diatomic lithium molecule Li2(+), is used to calculate the six lowest potential energy curves of Na2(+). Charge transfer cross sections are calculated for Li(+) on Li and for Na(+) on Na and found to be in reasonable agreement with experiment.

  8. Time delay and integration detectors using charge transfer devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; White, M. H.; Turly, A. P.

    1981-01-01

    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates.

  9. Conformationally Gated Charge Transfer in DNA Three-Way Junctions.

    PubMed

    Zhang, Yuqi; Young, Ryan M; Thazhathveetil, Arun K; Singh, Arunoday P N; Liu, Chaoren; Berlin, Yuri A; Grozema, Ferdinand C; Lewis, Frederick D; Ratner, Mark A; Renaud, Nicolas; Siriwong, Khatcharin; Voityuk, Alexander A; Wasielewski, Michael R; Beratan, David N

    2015-07-01

    Molecular structures that direct charge transport in two or three dimensions possess some of the essential functionality of electrical switches and gates. We use theory, modeling, and simulation to explore the conformational dynamics of DNA three-way junctions (TWJs) that may control the flow of charge through these structures. Molecular dynamics simulations and quantum calculations indicate that DNA TWJs undergo dynamic interconversion among "well stacked" conformations on the time scale of nanoseconds, a feature that makes the junctions very different from linear DNA duplexes. The studies further indicate that this conformational gating would control charge flow through these TWJs, distinguishing them from conventional (larger size scale) gated devices. Simulations also find that structures with polyethylene glycol linking groups ("extenders") lock conformations that favor CT for 25 ns or more. The simulations explain the kinetics observed experimentally in TWJs and rationalize their transport properties compared with double-stranded DNA. PMID:26266714

  10. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

    PubMed Central

    Chawla, Parul; Singh, Son

    2014-01-01

    Summary In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern–Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor–acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications. PMID:25161859

  11. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals.

    PubMed

    Chawla, Parul; Singh, Son; Sharma, Shailesh Narain

    2014-01-01

    In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications. PMID:25161859

  12. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory

    PubMed Central

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.

    2011-01-01

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159

  13. Discharge and charge characteristics of amorphous FeOOH including aniline (a{sub an}-FeOOH). Influence of preparation conditions on discharge and charge characteristics

    SciTech Connect

    Sakaebe, Hikari; Higuchi, Shunichi; Kanamura, Kiyoshi; Fujimoto, Hiroyuki; Takehara, Zenichiro

    1995-02-01

    The effect of the preparation conditions for amorphous FEOOH including aniline (a{sub an}-FeOOH) on its discharge and charge characteristics as a cathode material for a rechargeable lithium battery was investigated to improve the discharge and charge characteristics. The a{sub an}-FeOOH was prepared in solutions containing different Concentrations of aniline, or in solutions with different pH. From the discharge and charge characteristics of these products, it can be seen that the discharge capacity depends on the pH of the reaction solution rather than the concentration of aniline.

  14. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  15. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  16. Characteristics and Development of Children with CHARGE Association/Syndrome

    ERIC Educational Resources Information Center

    Salem-Hartshorne, Nancy; Jacob, Susan

    2004-01-01

    CHARGE association/syndrome refers to a group of congenital anomalies occurring together more often than chance. Parents of children with CHARGE were surveyed and asked to indicate whether their child had various features commonly found among individuals with CHARGE (e.g., vision or hearing impairment) and to complete an adaptive behavior scale…

  17. Characteristics And Development Of Children With CHARGE Association-Syndrome

    ERIC Educational Resources Information Center

    Salem-Hartshorne, Nancy; Jacob, Susan

    2004-01-01

    CHARGE association-syndrome refers to a group of congenital anomalies occurring together more often than chance. Parents of children with CHARGE were surveyed and asked to indicate whether their child had various features commonly found among individuals with CHARGE (e.g., vision or hearing impairment) and to complete an adaptive behavior scale…

  18. Comparison of majority carrier charge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions

    SciTech Connect

    Price, Michelle J.; Foley, Justin M.; May, Robert A.; Maldonado, Stephen

    2010-08-23

    Two sets of silicon (Si) heterojunctions with either Au or PEDOT:PSS contacts have been prepared to compare interfacial majority carrier charge transfer processes at Si/metal and Si/polymer heterojunctions. Current-voltage (J-V) responses at a range of temperatures, wavelength-dependent internal quantum yields, and steady-state J-V responses under illumination for these devices are reported. The cumulative data suggest that the velocity of majority carrier charge transfer, v{sub n}, is several orders of magnitude smaller at n-Si/PEDOT:PSS contacts than at n-Si/Au junctions, resulting in superior photoresponse characteristics for these inorganic/organic heterojunctions.

  19. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  20. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene.

    PubMed

    Alexander-Webber, J A; Huang, J; Maude, D K; Janssen, T J B M; Tzalenchuk, A; Antonov, V; Yager, T; Lara-Avila, S; Kubatkin, S; Yakimova, R; Nicholas, R J

    2016-01-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology. PMID:27456765

  1. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, J. A.; Huang, J.; Maude, D. K.; Janssen, T. J. B. M.; Tzalenchuk, A.; Antonov, V.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Nicholas, R. J.

    2016-07-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  2. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    NASA Astrophysics Data System (ADS)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  3. Wire transfer of charge packets for on-chip CCD signal processing

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32- and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process was used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 was obtained for surface n-channel devices with clock cycle times in the range from 40 nsec to 0.3 msec. Transfer efficiency as high as 0.9999 was obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  4. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  5. Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy

    PubMed Central

    2015-01-01

    The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is reported to have a relatively long-lived ligand-to-metal charge-transfer (LMCT) state, an essential characteristic for efficient electron transfer in photocatalysis. Following photoexcitation, vibrational transitions in the FRIKES spectra, assignable to phthalocyanine ring modes, evolve on the femtosecond to picosecond time scales. Correlation of ring core size with the frequency of the ν10 (asymmetric C–N stretching) mode confirms the identity of the LMCT state, which has a ∼500 ps lifetime, as well as that of a precursor d-d excited state. An even earlier (∼0.2 ps) transient is observed and tentatively assigned to a higher-lying Jahn–Teller-active LMCT state. This study illustrates the power of FRIKES spectroscopy in elucidating ultrafast molecular dynamics. PMID:24841906

  6. Kinetic-energy transfer in highly-charged-ion collisions with carbon

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Arista, N. R.

    2015-11-01

    We present an accurate theoretical model for the charge dependence of kinetic energy transferred in collisions between slow highly charged ions (HCIs) and the atoms in a carbon solid. The model is in excellent agreement with experimental kinetic-energy-loss data for carbon nanomembrane and thin carbon foil targets. This study fills a notable gap in the literature of charged-particle energy loss in the regime of low incident velocity (vp≲2.188 ×106 m/s) where charge states greatly exceed the equilibrium values.

  7. Orbital dependent ultrafast charge transfer dynamics of ferrocenyl-functionalized SAMs on gold studied by core-hole clock spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Yang, Ming; Yuan, Li; Nerngchamnong, Nisachol; Feng, Yuan-Ping; Wee, Andrew T. S.; Qi, Dong-Chen; Nijhuis, Christian A.

    2016-03-01

    Understanding the charge transport properties in general of different molecular components in a self-assembled monolayer (SAM) is of importance for the rational design of SAM molecular structures for molecular electronics. In this study, we study an important aspect of the charge transport properties, i.e. the charge transfer (CT) dynamics between the active molecular component (in this case, the ferrocenyl moieties of a ferrocenyl-n-alkanethiol SAM) and the electrode using synchrotron-based core-hole clock (CHC) spectroscopy. The characteristic CT times are found to depend strongly on the character of the ferrocenyl-derived molecular orbitals (MOs) which mediate the CT process. Furthermore, by systemically shifting the position of the ferrocenyl moiety in the SAM, it is found that the CT characteristics of the ferrocenyl MOs display distinct dependence on its distance to the electrode. These results demonstrate experimentally that the efficiency and rate of charge transport through the molecular backbone can be modulated by resonant injection of charge carriers into specific MOs.

  8. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    PubMed

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  9. Flow characteristics and heat transfer in wavy walled channels

    NASA Astrophysics Data System (ADS)

    Mills, Zachary; Shah, Tapan; Monts, Vontravis; Warey, Alok; Balestrino, Sandro; Alexeev, Alexander

    2013-11-01

    Using lattice Boltzmann simulations, we investigated the effects of wavy channel geometry on the flow and heat transfer within a parallel plate heat exchanger. We observed three distinct flow regimes that include steady flow with and without recirculation and unsteady time-periodic flow. We determined the critical Reynolds numbers at which the flow transitions between different flow regimes. To validate our computational results, we compared the simulated flow structures with the structures observed in a flowing soap film. Furthermore, we examine the effects of the wavy channel geometry on the heat transfer. We find that the unsteady flow regime drastically enhances the rate of heat transfer and show that heat exchangers with wavy walls outperform currently used heat exchangers with similar volume and power characteristics. Results from our study point to a simple and efficient method for increasing performance in compact heat exchangers.

  10. Charge characteristics of Ni/Fe traction cells

    SciTech Connect

    DeLuca, W.; Biwer, R.; Tummillo, A.; Yao, N.

    1983-01-01

    In a series of tests performed on 6-V Ni/Fe modules, a range of recharge levels and charge rates were examined for three charge methods. The results show that higher discharge capacities are achieved at higher recharge Ah levels, but at lower Ah and Wh cycling efficiencies. However, when the modules are continuously cycled at any recharge level, repeatable module performance is obtained. Consequently, the optimum combination of module discharge capacity and cycle efficiency can be obtained for any given application by proper selection of the recharge level. It was also observed that at a fixed recharge level, module charge acceptance is virtually independent of the charge method. The tested modules also exhibited a self-discharge loss in capacity that was directly related to the length of the open-circuit stand time after charging and module state-of-charge. This paper describes the test procedures used, presents the test data, and discusses the results obtained. 6 figures.