Science.gov

Sample records for charge-free etching process

  1. High-energy negative ion beam obtained from pulsed inductively coupled plasma for charge-free etching process

    NASA Astrophysics Data System (ADS)

    Vozniy, O. V.; Yeom, G. Y.

    2009-06-01

    Negative ions in conventional inductively coupled plasma are often more chemically active than positive ions (for example, in CF4 or SF6 plasmas), but inconveniently they are trapped inside the sheath and cannot be used for high-energy surface etching in sources with a grid-type acceleration system. In this work we describe a method of positive and negative ion extraction that allows the energy and flux of oppositely charged particles to be varied independently. Then by scattering the ions off from a metal surface, it is possible to form a high-energy beam of neutrals from the negative ions by using the low-energy positive component of the beam current for better charge compensation.

  2. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  3. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  4. Graphene nanoribbons: Relevance of etching process

    SciTech Connect

    Simonet, P. Bischoff, D.; Moser, A.; Ihn, T.; Ensslin, K.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused by more or larger localized states at the edges of the ashed device compared to the RIE defined device.

  5. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  6. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  7. Process capability of etched multilayer EUV mask

    NASA Astrophysics Data System (ADS)

    Takai, Kosuke; Iida nee Sakurai, Noriko; Kamo, Takashi; Morikawa, Yasutaka; Hayashi, Naoya

    2015-10-01

    With shrinking pattern size at 0.33NA EUV lithography systems, mask 3D effects are expected to become stronger, such as horizontal/vertical shadowing, best focus shifts through pitch and pattern shift through focus. Etched multilayer EUV mask structures have been proposed in order to reduce mask 3D effects. It is estimated that etched multilayer type mask is also effective in reducing mask 3D effects at 0.33NA with lithographic simulation, and it is experimentally demonstrated with NXE3300 EUV Lithography system. We obtained cross-sectional TEM image of etched multilayer EUV mask pattern. It is observed that patterned multilayer width differs from pattern physical width. This means that effective reflecting width of etched multilayer pattern is smaller than pattern width measured by CD-SEM. In this work, we evaluate mask durability against both chemical and physical cleaning process to check the feasibility of etched multilayer EUV mask patterning against mask cleaning for 0.33NA EUV extension. As a result, effective width can be controlled by suitable cleaning chemicals because sidewall film works as a passivation film. And line and space pattern collapse is not detected by DUV mask pattern inspection tool after mask physical cleaning that includes both megasonic and binary spray steps with sufficient particle removal efficiency.

  8. The research on conformal acid etching process of glass ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Kepeng; Guo, Peiji

    2014-08-01

    A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.

  9. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  10. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-04-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  11. Automated process control for plasma etching

    NASA Astrophysics Data System (ADS)

    McGeown, Margaret; Arshak, Khalil I.; Murphy, Eamonn

    1992-06-01

    This paper discusses the development and implementation of a rule-based system which assists in providing automated process control for plasma etching. The heart of the system is to establish a correspondence between a particular data pattern -- sensor or data signals -- and one or more modes of failure, i.e., a data-driven monitoring approach. The objective of this rule based system, PLETCHSY, is to create a program combining statistical process control (SPC) and fault diagnosis to help control a manufacturing process which varies over time. This can be achieved by building a process control system (PCS) with the following characteristics. A facility to monitor the performance of the process by obtaining and analyzing the data relating to the appropriate process variables. Process sensor/status signals are input into an SPC module. If trends are present, the SPC module outputs the last seven control points, a pattern which is represented by either regression or scoring. The pattern is passed to the rule-based module. When the rule-based system recognizes a pattern, it starts the diagnostic process using the pattern. If the process is considered to be going out of control, advice is provided about actions which should be taken to bring the process back into control.

  12. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    SciTech Connect

    Posseme, N. Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ions implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.

  13. Particle reduction and control in EUV etching process

    NASA Astrophysics Data System (ADS)

    Jun, JeaYoung; Ha, TaeJoong; Kim, SangPyo; Yim, DongGyu

    2014-10-01

    As the device design rule shrinks, photomask manufacturers need to have advanced defect controllability during the ARC (Anti-Reflection Coating) and ABS (Absorber) etch in an EUV (extreme ultraviolet) mask. Therefore we studied etching techniques of EUV absorber film to find out the evasion method of particle generation. Usually, Particles are generated by plasma ignition step in etching process. When we use the standard etching process, ARC and ABS films are etched step by step. To reduce the particle generation, the number of ignition steps need to decrease. In this paper, we present the experimental results of in-situ EUV dry etching process technique for ARC and ABS, which reduces the defect level significantly. Analysis tools used for this study are as follows; TEM (for cross-sectional inspection) , SEM (for in-line monitoring ) and OES (for checking optical emission spectrum)

  14. Development and characterization of multilevel metal interconnection etch process

    NASA Astrophysics Data System (ADS)

    Dang, Kim

    1997-08-01

    A more robust chlorine chemistry based reactive ion etch (RIE) process was developed, characterized and optimized to anisotropically etch the interconnecting metal layers for use in the fabrication of CMOS and BiCMOS IC devices, using the Lam 4600 single wafer etcher. The titanium nitride and titanium silicide buried layer, used in the metal 1 structure, present unique constraints on etch selectivity to the underlying film. The process must clear metal stringers with minimal lateral etching of the aluminum during the tiN/Ti etch and overetch steps. The new optimized process meets all requirements imposed by advanced technologies, such as vertical metal sidewalls, wide process latitude, tight CD control, minimal of TEOS oxide underlayer, less sensitivity to photoresist pattern, excellent reliability and reproducibility, and lower level of polymer (reaction by- product) build-up in reactor chamber which could lead to metal corrosion and cluster defects.

  15. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  16. Novel Surface Reaction Model in Dry-Etching Process Simulator

    NASA Astrophysics Data System (ADS)

    Misaka, Akio; Harafuji, Kenji; Kubota, Masafumi; Nomura, Noboru

    1992-12-01

    A new surface reaction model has been presented to simulate topological evolutions by taking into account the existence of adsorbed radicals on the substrate surface. The model treats the etching rate as a function of the coverage ratio by adsorbed radicals on the surface. Based on the model, a two-dimensional topography simulator has been developed. The simulator is applied to silicon-dioxide trench etchings made by hydrofluorocarbon gases. First, micro-loading effects in an important ion-assisted etching process are studied. It is confirmed that the micro-loading effect is due to the shortage of supplied active radicals inside the trench structure. Secondly, the competitive process between etching and deposition is examined. The side-wall protection phenomena resulting from the process are well simulated.

  17. Characterization and Control of Etch Processes Using Multiple Metrologies

    NASA Astrophysics Data System (ADS)

    Bushman, Scott; Celii, Francis; Martin, Scott; Tristan, Luis

    2005-09-01

    The integration of embedded ferroelectric random access memory (FRAM) into a standard CMOS flow requires significant control and characterization of the etch process. Current qualification and control of the etch process for the TiAlN hardmask and Ir/PZT/Ir capacitor film stack relies on several metrologies to evaluate performance (etch rate, critical dimension, sidewall angle, etc). Profilometry is currently used for monitoring hardmask etch rate, but is fraught with difficulties such as low throughput and low reproducibility. Here we compare options for determining hardmask etch rate, including Atomic Force Microscopy (AFM), profilometry, and scatterometry. Wafers with a range of film stacks were generated to test each measurement technique's robustness in etch rate determination. A robust, precise, short cycle time, fully automated process monitor of etch rate is required to make qualification of the etch process manufacturable. Scatterometry is a non-destructive optical metrology based on the analysis of light scattered from a periodic sample. It is a faster technique than either profilometry or AFM because of the optical nature of the measurement, and provides measurements of patterned grating structures. However, a detailed film model is required to estimate parameters of interest. The scatterometry model for this investigation includes four adjustable parameters: TiAlN material index of refraction, thickness, linewidth and sidewall angle. The results show good agreement between the scatterometry measurements and the AFM across the range of step-heights available on the wafers. In addition, the practical aspects of the method, such as the modeling time and estimation of material parameters required to generate the signature library as well as measurement speed are presented.

  18. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  19. Scatterometry measurements for process monitoring of polysilicon gate etch

    NASA Astrophysics Data System (ADS)

    Bushman, Scott; Farrer, Steve

    1997-08-01

    This paper presents results from a prototype scatterometer which show that distinctly different zeroth-order diffraction signatures are produced for wafers processed under different etch conditions. We present comparisons between the profiles estimated using the scatterometer signatures and those measured using atomic force microscopy, in-line scanning electron microscopy, and cross-sectional scanning electron microscopy. We found that all the metrology techniques investigated provided useful information about the profile characteristics, but only the atomic force microscope and the scatterometer are suitable as in-line measurements of critical dimension profiles -- and only scatterometry provides estimates of the underlying film structure. In this study, the wafers consisted of patterned photoresist over blanket layers of a deep-ultravoilet anti-reflection coating, polysilicon, and silicon dioxide. These wafers were intentionally varied at the lithography step and intentionally misprocessed at the gate etch step to produce a wide range of process variation. Scatterometry measurements were made on multiple dies per wafer and estimates of feature profile information such as film thickness and critical dimension were generated by comparing the experimental signature to a library of theoretical solutions. We found that the scatterometer was capable of showing signal differences for different wafer processing conditions, and can be used as an in-line measurement of profile characteristics suitable for closed- loop process control of lithographic and etch processes.

  20. Polymeric protective coatings for MEMS wet-etch processes

    NASA Astrophysics Data System (ADS)

    Ruben, Kimberly A.; Flaim, Tony D.; Li, Chenghong

    2004-01-01

    Microelectromechanical systems (MEMS) device manufacturers today are faced with the challenge of protecting electronic circuitry and other sensitive device structures during deep silicon wet-etch processes. Etch processes of this nature require prolonged exposure of the device to harsh corrosive mixtures of aqueous acids and bases at higher than ambient temperatures. A need exists for a spin-applied polymeric coating to prevent the exposure of such circuitry against the corrosive etchants. The challenge exists in developing protective coatings that will not decompose or dissolve in the etchants during the etch process. Such coatings require superior adhesion to the substrate without destroying the sensitive features below. Brewer Science, Inc., has developed a multilayer coating system for basic etchants which is compatible with a variety of semiconductor materials and offers protection against concentrated potassium hydroxide (KOH) etchants at prolonged exposure times of more than 8 hours. In addition, a second multilayer coating system is being developed for use with strong hydrofluoric and other various mixed acid etchants (MAEs) for exposures of 30 minutes or longer. These materials are specifically designed to protect circuitry subjected to concentrated MAEs during the wafer thinning processes used by MEMS device manufacturers.

  1. Polymer protective coating for wet deep silicon etching processes

    NASA Astrophysics Data System (ADS)

    Spencer, Mary; Ruben, Kim; Li, Chenghong; Williams, Paul; Flaim, Tony D.

    2003-01-01

    A need exists for spin-applied polymeric coatings to protect electronic circuitry and other sensitive structures on MEMS devices during deep silicon wet etching processes involving corrosive mixtures of aqueous acids and bases. The challenge exists in developing protective coatings that do not decompose or dissolve in the harsh etchants and, more importantly, that maintain good adhesion to the substrate during the sometimes long etching processes. We have developed a multilayer coating system that is stable and adheres well to silicon nitride and other semiconductor materials and affords chemical protection for at least eight hours in hot potassium hydroxide etchant. The same coating system is also compatible with concentrated hydrofluoric acid etchants, which can diffuse rapidly through many polymeric materials to attack the device substrate.

  2. Etching-limiting process and origin of loading effects in silicon etching with hydrogen chloride gas

    NASA Astrophysics Data System (ADS)

    Morioka, Naoya; Suda, Jun; Kimoto, Tsunenobu

    2014-01-01

    The etching-limiting step in slow Si etching with HCl/H2 at atmospheric pressure was investigated. The etching was performed at a low etching rate below 10 nm/min in the temperature range of 1000-1100 °C. In the case of bare Si etching, it was confirmed that the etching rate showed little temperature dependence and was proportional to the equilibrium pressure of the etching by-product SiCl2 calculated by thermochemical analysis. In addition, the etching rates of Si(100) and (110) faces were almost the same. These results indicate that SiCl2 diffusion in the gas phase is the rate-limiting step. In the etching of the Si surface with SiO2 mask patterns, a strong loading effect (mask/opening pattern dependence of the etching rate) was observed. The simulation of the diffusion of gas species immediately above the Si surface revealed that the loading effect was attributed to the pattern-dependent diffusion of SiCl2.

  3. Carrier-lifetime-controlled selective etching process for semiconductors using photochemical etching

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.

    1992-01-01

    The minority carrier lifetime is significantly much shorter in semiconductor materials with very high impurity concentrations than it is in semiconductor materials with lower impurity concentration levels. This phenomenon of reduced minority carrier lifetime in semiconductor materials having high impurity concentration is utilized to advantage for permitting highly selective semiconductor material etching to be achieved using a carrier-driven photochemical etching reaction. Various means may be employed for increasing the local impurity concentration level in specific near-surface regions of a semiconductor prior to subjecting the semiconductor material to a carrier-driven photochemical etching reaction. The regions having the localized increased impurity concentration form a self-aligned mask inhibiting photochemical etching at such localized regions while the adjacent regions not having increased impurity concentrations are selectively photochemically etched. Liquid- or gas-phase etching may be performed.

  4. Optical and electrical diagnostics of fluorocarbon plasma etching processes

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul

    1999-05-01

    This article reviews recent work concerning the role of CF and CF2 radicals in etching and polymerization processes occurring in capacitively coupled radio-frequency plasmas in fluorocarbon gases used for the selective etching of SiO2 layers in microelectronic device fabrication. Laser-induced fluorescence (LIF) was used to determine time-resolved axial concentration profiles of these species in continuous and pulse-modulated CF4 and C2F6 plasmas. Calibration techniques, including broad-band UV absorption spectroscopy, were developed to put the LIF measurements on an absolute scale. A novel technique was used to determine the ion flux to the reactor walls in these polymerizing environments. The mass distribution of the ions arriving at the reactor walls was determined using a quadrupole mass spectrometer. It was found that CFx radicals are produced predominantly by the reflection of neutralized and dissociated CFx+ ions at the powered electrode surface. When the fluorine atom concentration is high, the CFx radicals are destroyed effectively by recombination catalysed by the reactor walls. When the fluorine atom concentration is lowered, the CF2 concentration rises markedly, and it participates in gas-phase oligomerization processes, forming large CxFy molecules and, after ionization, large CxFy+ ions. These species appear to be the true polymer precursors. This mechanism explains the well known correlation between high CF2 concentrations, polymer deposition and SiO2 over Si etch selectivity.

  5. Pattern Freezing Process Free Litho-Litho-Etch Double Patterning

    NASA Astrophysics Data System (ADS)

    Ando, Tomoyuki; Takeshita, Masaru; Takasu, Ryoichi; Yoshii, Yoshihiro; Iwashita, Jun; Matsumaru, Shogo; Abe, Sho; Iwai, Takeshi

    2009-06-01

    Double patterning technology based on existing ArF immersion lithography is considered as the most viable option for complementary metal oxide semiconductor (CMOS) node of 32 nm and below. Most of double patterning approaches previously described requires intermediate processing step such as hard mask etching, spacer material deposition, and resist pattern freezing. The requirement of these additional steps is now leading way to requests for throughput reduction and low cost for production for double patterning technology applications. In this paper, litho-litho-etch (LLE) double patterning without any intermediate processing steps is investigated to achieve narrow pitch resist imaging. The LLE options examined in this work are combinations of positive tone-negative tone and positive tone-positive tone photoresist double patterning process. These are the alternative processes in pattern freezing process free LLE double patterning. The goals of this work are to determine witch of these approaches is the most viable for future application and to confirm the patterning potential for 32 nm and below half pitch resist imaging.

  6. Inductively coupled plasma etch of DUV MoSi photomasks: a designed study of etch chemistries and process results

    NASA Astrophysics Data System (ADS)

    Constantine, Chris; Johnson, David J.; Westerman, Russell J.; Hourd, Andrew C.

    1998-12-01

    The continuing requirements for high resolution, critical dimension control and linearity on photomasks necessitates highly anisotropic and uniform etching of the absorber material. Plasma etching has seen strong increases in popularity to improve the above mentioned requirements. Also recently popular is the inclusion of Embedded Phase Shift materials such as Molybdenum Silicide (MoSi); these materials allow for an engineered 180 degree shift in the phase of the exposure light at the wafer pane, affording enhanced contrast at the edges of a line or feature. This article studies the effect of ICP-based plasma conditions on the CD Uniformity, MoSi etch rate and post-etch Quartz roughness of 6 X 6 DUV MoSi Embedded Phase Shift mask structures through use of carefully Designed Experiments. This Design of Experiment (DOE) makes it possible to screen plasma chemistry, optimize resultant plasma parameters and present an overlayed Simultaneous Solution which is used as a centerpoint for Device Plate etch tuning. The high plasma density, independent ion energy control and low pressure operation of Inductively Coupled Plasmas make this technology well suited to minimizing undercut of the MoSi and affords a vehicle for the realization of a zero-basis etch process.

  7. Performance enhancement of IPMC by anisotropic plasma etching process

    NASA Astrophysics Data System (ADS)

    Lee, Seok Hwan; Kim, Chul-Jin; Hwang, Hyun-Woo; Kim, Sung-Joo; Yang, Hyun-Seok; Park, No-Cheol; Park, Young-Pil; Park, Kang-Ho; Lee, Hyung-Kun; Choi, Nak-Jin

    2009-03-01

    Ionic Polymer-Metal Composites (IPMCs) of EAP actuators is famous for its good property of response and durability. The performance of Ionic Polymer-Metal Composites (IPMCs) is an important issue which is affected by many factors. There are two factors for deciding the performance of IPMC. By treating anisotropic plasma etching process to 6 models of the IPMCs, enhanced experimental displacement and force results are obtained. Plasma patterning processes are executed by changing the groove and the land length of 6 patterns. The purpose of the present investigation is to find out the major factor which mainly affects the IPMC performance. Simulations using ANSYS have been executed to compare with the experimental results about the values and the tendency of data. Experimental and simulating data of the performances seem to have similar tendency. In the next part of the paper, we observed the other properties like capacitance, resistance and stiffness of 6 plasma patterned IPMCs. And we observed that the stiffness is the major factor which affects the performance of IPMCs. As we seen, our problem has been reduced to investigate about the property of stiffness. We suggest that the stiffness is largely changed mainly because of the different thickness of Platinum stacked of the groove and the land part which are produced by anisotropic plasma etching processes. And we understand that anisotropic plasma patterned IPMCs of better performance can be applied to various applications.

  8. Optimization of silver-assisted nano-pillar etching process in silicon

    NASA Astrophysics Data System (ADS)

    Azhari, Ayu Wazira; Sopian, Kamaruzzaman; Desa, Mohd Khairunaz Mat; Zaidi, Saleem H.

    2015-12-01

    In this study, a respond surface methodology (RSM) model is developed using three-level Box-Behnken experimental design (BBD) technique. This model is developed to investigate the influence of metal-assisted chemical etching (MACE) process variables on the nanopillars profiles created in single crystalline silicon (Si) substrate. Design-Expert® software (version 7.1) is employed in formulating the RSM model based on five critical process variables: (A) concentration of silver (Ag), (B) concentration of hydrofluoric acid (HF), (C) concentration of hydrogen peroxide (H2O2), (D) deposition time, and (E) etching time. This model is supported by data from 46 experimental configurations. Etched profiles as a function of lateral etching rate, vertical etching rate, height, size and separation between the Si trenches and etching uniformity are characterized using field emission scanning electron microscope (FE-SEM). A quadratic regression model is developed to correlate critical process variables and is validated using the analysis of variance (ANOVA) methodology. The model exhibits near-linear dependence of lateral and vertical etching rates on both the H2O2 concentration and etching time. The predicted model is in good agreement with the experimental data where R2 is equal to 0.80 and 0.67 for the etching rate and lateral etching respectively. The optimized result shows minimum lateral etching with the average pore size of about 69 nm while the maximum etching rate is estimated at around 360 nm/min. The model demonstrates that the etching process uniformity is not influenced by either the etchant concentration or the etching time. This lack of uniformity could be attributed to the surface condition of the wafer. Optimization of the process parameters show adequate accuracy of the model with acceptable percentage errors of 6%, 59%, 1.8%, 38% and 61% for determination of the height, separation, size, the pore size and the etching rate respectively.

  9. Porous siliconformation and etching process for use in silicon micromachining

    DOEpatents

    Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.

    1991-01-01

    A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.

  10. 450mm etch process development and process chamber evaluation using 193i DSA guided pattern

    NASA Astrophysics Data System (ADS)

    Collison, Wenli; Lin, Yii-Cheng; Dunn, Shannon; Takikawa, Hiroaki; Paris, James; Chen, Lucy; Detrick, Troy; Belen, Jun; Stojakovic, George; Goss, Michael; Fish, Norman; Park, Minjoon; Sun, Chih-Ming; Kelling, Mark; Lin, Pinyen

    2016-03-01

    In the Global 450mm Equipment Development Consortium (G450C), a 193i guided directed self-assembly (DSA) pattern has been used to create structures at the 14nm node and below. The first guided DSA patterned wafer was ready for etch process development within a month of the G450C's first 193i patterned wafer availability with one litho pass. Etch processes were scaled up from 300mm to 450mm for a 28nm pitch STI stack and a 40nm pitch M1 BEOL stack. The effects of various process parameters were investigated to fine tune each process. Overall process window has been checked and compared. Excellent process stability results were shown for current etch chambers.

  11. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  12. Advanced simulation technology for etching process design for CMOS device applications

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki; Fukasawa, Masanaga; Tatsumi, Tetsuya

    2016-07-01

    Plasma etching is a critical process for the realization of high performance in the next generation of CMOS devices. To predict and control fluctuations in the etching properties accurately during mass production, it is essential that etching process simulation technology considers fluctuations in the plasma chamber wall conditions, the effects of by-products on the critical dimensions, the Si recess dependence on the wafer open area ratio and local pattern structure, and the time-dependent plasma-induced damage distribution associated with the three-dimensional feature scale profile at the 100 nm level. This consideration can overcome the issues with conventional simulations performed under the assumed ideal conditions, which are not accurate enough for practical process design. In this article, these advanced process simulation technologies are reviewed, and, from the results of suitable process simulations, a new etching system that automatically controls the etching properties is proposed to enable stable CMOS device fabrication with high yields.

  13. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    SciTech Connect

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  14. Investigation of etching techniques for superconductive Nb/Al-Al2O3/Nb fabrication processes

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Lea, D. M.; Lloyd, F. L.

    1993-01-01

    Wet etching, CF4 and SF6 reactive ion etching (RIE), RIE/wet hybrid etching, Cl-based RIE, ion milling, and liftoff techniques have been investigated for use in superconductive Nb/Al-Al2O3/Nb fabrication processes. High-quality superconductor-insulator-superconductor (SIS) junctions have been fabricated using a variety of these etching methods; however, each technique offers distinct tradeoffs for a given process an wafer design. In particular, it was shown that SF6 provides an excellent RIE chemistry for low-voltage anisotropic etching of Nb with high selectivity to Al. The SF6 tool has greatly improved the trilevel resist junction insulation process. Excellent repeatability, selectivity with respect to quartz, and submicron resolution make Cl2 + BCl3 + CHCl3 RIE a very attractive process for trilayer patterning.

  15. Deep Etching Process Developed for the Fabrication of Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2000-01-01

    Silicon carbide (SiC), because of its superior electrical and mechanical properties at elevated temperatures, is a nearly ideal material for the microminiature sensors and actuators that are used in harsh environments where temperatures may reach 600 C or greater. Deep etching using plasma methods is one of the key processes used to fabricate silicon microsystems for more benign environments, but SiC has proven to be a more difficult material to etch, and etch depths in SiC have been limited to several micrometers. Recently, the Sensors and Electronics Technology Branch at the NASA Glenn Research Center at Lewis Field developed a plasma etching process that was shown to be capable of etching SiC to a depth of 60 mm. Deep etching of SiC is achieved by inductive coupling of radiofrequency electrical energy to a sulfur hexafluoride (SF6) plasma to direct a high flux of energetic ions and reactive fluorine atoms to the SiC surface. The plasma etch is performed at a low pressure, 5 mtorr, which together with a high gas throughput, provides for rapid removal of the gaseous etch products. The lateral topology of the SiC microstructure is defined by a thin film of etch-resistant material, such as indium-tin-oxide, which is patterned using conventional photolithographic processes. Ions from the plasma bombard the exposed SiC surfaces and supply the energy needed to initiate a reaction between SiC and atomic fluorine. In the absence of ion bombardment, no reaction occurs, so surfaces perpendicular to the wafer surface (the etch sidewalls) are etched slowly, yielding the desired vertical sidewalls.

  16. Process for Smoothing an Si Substrate after Etching of SiO2

    NASA Technical Reports Server (NTRS)

    Turner, Tasha; Wu, Chi

    2003-01-01

    A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas

  17. Study of the ICP etching process on InGaAs/InP array devices

    NASA Astrophysics Data System (ADS)

    Niu, Xiaochen; Deng, Jun; Shi, Yanli; Tian, Ying; Zou, Deshu

    2014-11-01

    It was very different between the etching rate of large patterns and narrow grooves on InGaAs/InP materials by inductively coupled plasma (ICP) technology. With the aim of high etching rate, good morphology, smooth interfaces and fewer defects, the etching mechanisms of ICP via changing gas flow rate, chamber pressure and RF power have been analyzed. Some recipes have been found to achieve a narrow stripe and deep groove with good uniformity, interface and morphology via high etching rate and good selectivity. The different phenomena during etching the large patterns and narrow grooves have been explained and the sets of parameters have been summarized that is adapted to the array device on InGaAs/InP materials during the ICP process.

  18. Etch Process Sensitivity To An Inductively Coupled Plasma Etcher Treated With Fluorine-Based Plasma

    NASA Astrophysics Data System (ADS)

    Xu, Songlin; Sun, Zhiwen; Qian, Xueyu; Yin, Gerald

    1997-10-01

    Significant etch rate drop after the treatment of an etch chamber with Fluorine-based plasma has been found for some silicon etch processes on an inductively coupled plasma reactor, which might cause problems in IC production line once the etch chamber runs alternative processes with F-based and F-free chemistry, or needs frequent cleaning with F-plasma. In this work, a systematic study of the root cause of process sensitivity to the etch chamber treated with F-plasma has been conducted. The experimental results show that pressure is a key factor to affect the etch rate drop. Processes at high pressure are more sensitive than those at low pressure because the quenching of neutral reactive species becomes more severe after the F-treatment. O2 addition also increases the etch rate sensitivity, basically due to higher O2(subscript: )concentration after F-treatment which enhances the oxidation of silicon. The EDX and XPS elemental analysis of the chamber interior wall reveals a significant composition change after the interaction with F-plasma, the altered surface might accelerate the recombination of free radical species.

  19. A Silicon-Based, Sequential Coat-and-Etch Process to Fabricate Nearly Perfect Substrate Surfaces

    SciTech Connect

    Mirkarimi, P B; Spiller, E; Baker, S L; Stearns, D G; Robinson, J C; Olynick, D L; Salmassi, F; Liddle, J A; Liang, T; Stivers, A R

    2005-07-05

    For many thin-film applications substrate imperfections such as particles, pits, scratches, and general roughness, can nucleate film defects which can severely detract from the coating's performance. Previously we developed a coat-and-etch process, termed the ion beam thin film planarization process, to planarize substrate particles up to {approx} 70 nm in diameter. The process relied on normal incidence etching; however, such a process induces defects nucleated by substrate pits to grow much larger. We have since developed a coat-and-etch process to planarize {approx}70 nm deep by 70 nm wide substrate pits; it relies on etching at an off-normal incidence angle, i.e., an angle of {approx} 70{sup o} from the substrate normal. However, a disadvantage of this pit smoothing process is that it induces defects nucleated by substrate particles to grow larger. Combining elements from both processes we have been able to develop a silicon-based, coat-and-etch process to successfully planarize {approx}70 nm substrate particles and pits simultaneously to at or below 1 nm in height; this value is important for applications such as extreme ultraviolet lithography (EUVL) masks. The coat-and-etch process has an added ability to significantly reduce high-spatial frequency roughness, rendering a nearly perfect substrate surface.

  20. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  1. New Deep Reactive Ion Etching Process Developed for the Microfabrication of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2005-01-01

    Silicon carbide (SiC) is a promising material for harsh environment sensors and electronics because it can enable such devices to withstand high temperatures and corrosive environments. Microfabrication techniques have been studied extensively in an effort to obtain the same flexibility of machining SiC that is possible for the fabrication of silicon devices. Bulk micromachining using deep reactive ion etching (DRIE) is attractive because it allows the fabrication of microstructures with high aspect ratios (etch depth divided by lateral feature size) in single-crystal or polycrystalline wafers. Previously, the Sensors and Electronics Branch of the NASA Glenn Research Center developed a DRIE process for SiC using the etchant gases sulfur hexafluoride (SF6) and argon (Ar). This process provides an adequate etch rate of 0.2 m/min and yields a smooth surface at the etch bottom. However, the etch sidewalls are rougher than desired, as shown in the preceding photomicrograph. Furthermore, the resulting structures have sides that slope inwards, rather than being precisely vertical. A new DRIE process for SiC was developed at Glenn that produces smooth, vertical sidewalls, while maintaining an adequately high etch rate.

  2. High-Reliability Copper Interconnects through Dry Etching Process

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasushi; Yamanobe, Tomomi; Ito, Toshio

    1995-02-01

    A modified high-temperature dry etching technique, which enables anisotropic patterning with a high etching selectivity and self-aligned passivation of a sidewall of an interconnect simultaneously, has been developed for fabrication of sub-quarter-micron Cu interconnects. Resistivities of the resulting Cu interconnects are in the range of 1.7 to 2.2 µΩ· cm for the linewidth of 0.2-3.0 µ m. As a result of electromigration (EM) tests, it has been observed that median time to failure (MTF) of the Cu interconnects depends on their linewidth. This behavior is considered to be caused by their grain structure, such as a bamboo-type structure for linewidths narrower than 0.3 µ m. In comparison with a MTF of a conventional Al-1%Si line, these Cu interconnects have at least 100 times longer lifetime. Activation energy for EM damage of the 0.7-µ m-wide line is 0.88 eV.

  3. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  4. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  5. Silicon homojunction solar cells via a hydrogen plasma etching process

    NASA Astrophysics Data System (ADS)

    Xiao, S. Q.; Xu, S.; Zhou, H. P.; Wei, D. Y.; Huang, S. Y.; Xu, L. X.; Sern, C. C.; Guo, Y. N.; Khan, S.; Xu, Y.

    2013-03-01

    We report on the one-step formation of an efficient Si homojunction solar cell produced by a simple exposure of p-type Si wafers to low-temperature inductively coupled hydrogen plasma. The formation of oxygen thermal donors during hydrogen plasma treatment is responsible for the conductivity type conversion and the final formation of Si homojunction. The hydrogen plasma etching with suppressed heavy ion bombardment results in a relatively flat surface, which is favourable for deposition of passivation layers such as silicon nitride. The integrated Si homojunction solar cell consisting of Al/p-c-Si/n-c-Si/SiN/Al-grid has demonstrated a maximum photovoltaic conversion efficiency of 13.6%.

  6. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    SciTech Connect

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surface quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.

  7. Plasma surface kinetics studies of silicon dioxide etch process in inductively coupled fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Yu, Dong-Hun; Cho, Deog-Gyun; Yook, Yeong-Geun; Chun, Poo-Reum; Lee, Se-Ah; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    With continuous decrease of nanoscale design rule, plasma etching processes to form high aspect ratio contact hole still remains a challenge to overcome their inherent drawbacks such as bowing and twisted feature. Due to their complexities there still exist big gaps between current research status and predictable modeling of this process. To address this issue, we proposed a surface kinetic model of silicon nitride etch process under inductively coupled fluorocarbon plasmas. For this work, the cut-off probe and quadrapole mass spectroscopy were used for measuring electrical plasma properties, the ion and neutral radical species. Furthermore, the systematic surface analysis was performed to investigate the thickness and chemical bonding of polymer passivation layer during the etch process. The proposed semi-global surface kinetic model can consider deposition of polymer passivation layer and silicon nitride etching self-consistently. The predicted modeling results showed good agreement with experimental data. We believe that our research will provide valuable information to avoid the empirical development of plasma etching process.

  8. Investigation of the neutral-solution etch process for refractive SOE antireflective surfaces

    SciTech Connect

    Maish, A.B.

    1991-01-01

    Antireflection of optically clear glass used in photovoltaic concentrator refractive secondary optical elements (SOE's) was investigated using the neutral-solution etch process developed by Schott Glass. Test coupons and SOE's made from barium zinc glass, which does not solarize under ultraviolet exposure, were successfully etched at the center point process variable conditions of 87{degrees}C and 24 hours. Reflectance of the plano-plano dropped from 7.7% to 0.8%, with a corresponding increase in transmission from 91.7% to 98.5%. The etching process uses non-hydrofluoric, relatively non-toxic chemicals in a low-cost process well suited for use by photovoltaic system manufacturers during production. 10 refs., 4 figs., 1 tab.

  9. Reaction ion etching process for improving laser damage resistance of fused silica optical surface.

    PubMed

    Sun, Laixi; Liu, Hongjie; Huang, Jin; Ye, Xin; Xia, Handing; Li, Qingzhi; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2016-01-11

    Laser induced damage of fused silica optics occurs primarily on optical surface or subsurface resulting from various defects produced during polishing/grinding process. Many new kinds of surface treatment processes are explored to remove or control the defects on fused silica surface. In this study, we report a new application of reaction ion etching (RIE)-based surface treatment process for manufacture of high quality fused silica optics. The influence of RIE processes on laser damage resistance as a function of etching depth and the evolution of typical defects which are associated with laser damage performance were investigated. The results show that the impurity element defects and subsurface damage on the samples surface were efficiently removed and prevented. Pure silica surface with relatively single-stable stoichiometry and low carbon atomic concentration was created during the etching. The laser damage resistance of the etched samples increased dramatically. The increase of roughness and ODC point defect with deeper etching are believed to be the main factors to limit further increase of the damage resistance of fused silica. The study is expected to contribute to the development of fused silica optics with high resistance to laser induced degradation in the future. PMID:26832251

  10. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  11. Finding practical phenomenological models that include both photoresist behavior and etch process effects

    NASA Astrophysics Data System (ADS)

    Jung, Sunwook; Do, Thuy; Sturtevant, John

    2015-03-01

    For more than five decades, the semiconductor industry has overcome technology challenges with innovative ideas that have continued to enable Moore's Law. It is clear that multi-patterning lithography is vital for 20nm half pitch using 193i. Multi-patterning exposure sequences and pattern multiplication processes can create complicated tolerance accounting due to the variability associated with the component processes. It is essential to ensure good predictive accuracy of compact etch models used in multipatterning simulation. New modelforms have been developed to account for etch bias behavior at 20 nm and below. The new modeling components show good results in terms of global fitness and some improved predication capability for specific features. We've also investigated a new methodology to make the etch model aware of 3D resist profiles.

  12. Modified photoresist etch mask process for InP channeled substrate lasers

    SciTech Connect

    Huo, D.T.C.; Yan, M.F.; Wynn, J.D.; Wilt, D.P.

    1989-03-01

    The authors develop a new photoresist etch mask process to etch (001) InP wafers to obtain (111) B-faceted v-grooves for channeled substrate laser applications. They investigate the use of HCl and HF solutions to remove native oxide layers prior to v-groove etching. They also study the relationship between the photoresist mask undercutting and the bath temperature used for native oxide removal. The degree of undercutting in photoresist mask can be reduced about two times by increasing the HF bath temperature from room temperature to 48/sup 0/C during the oxide removal process. They also identify two important factors that control the mask undercutting rates as (i) the thickness of native oxide on InP surface and (ii) the chemical reaction between InP and the oxide removal bath solution.

  13. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces

    SciTech Connect

    Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L

    2010-02-23

    The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical

  14. Fabrication of micro-structure on glass surface using micro-indentation and wet etching process

    NASA Astrophysics Data System (ADS)

    Saito, Yasuhiro; Okamoto, Shinya; Miki, Atsushi; Inomata, Hiroyuki; Hidaka, Takeshi; Kasai, Hiroaki

    2008-09-01

    In order to improve the new micro-fabrication technology using micro-indentation and wet etching, in which the etching rate drastically decrease at the indented area and consequently micro-structure can be formed on the glass surface, the effect of the applying load on the etching rate change was investigated. The extent of the etching rate change was found to be almost constant irrespective of the amount of the applying load. Therefore, the height of the structure could be controlled simply by the etching depth as far as the densified portion remains beneath the glass surface. And some example micro-patterns were fabricated in this process. Various kinds of indentation methods were employed, including scanning a pointed tool under a load and wet abrasive blast. The patterns can be freely drawn by the use of numerical control (NC) machine. Mold pattern can be also applied, which enables drawing many lines simultaneously. In every method, the heights of the patterns were confirmed to be very uniform. This new type of the micro-fabrication method was referred to as "SMIL (Stress Masked Image Lithography)".

  15. A Simple Single Step diffusion and Emitter Etching Process for High Efficiency Gallium Antimonide Thermophotovoltaic Devices

    SciTech Connect

    G. Rajagopalan; N.S. Reddy; E. Ehsani; I.B. Bhat; P.S. Dutta; R.J. Gutmann; G. Nichols; G.W. Charache; O. Sulima

    2003-08-29

    A single step diffusion followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency GaSb thermophotovoltaic cells. The junction depth was controlled through monitoring of light current-voltage (I-V) curves (photovoltaic response) during the post diffusion emitter etching process. The measured photoresponses (prior to device fabrication) have been correlated with the quantum efficiencies and the open circuit voltages in the fabricated devices. An optimum junction depth for obtaining highest quantum efficiency and open circuit voltage is presented based on diffusion lengths (or monitoring carrier lifetimes), carrier mobility and typical diffused impurity profile in GaSb.

  16. Optimization of an electron cyclotron resonance plasma etch process for n{sup +} polysilicon: HBr process chemistry

    SciTech Connect

    Tipton, G.D.; Blain, M.G.; Westerfield, P.L.; Trutna, L.S.; Maxwell, K.L.

    1993-08-01

    Designed experiments were employed to characterize a process for etching phosphorus doped polycrystalline silicon with HBr in a close-coupled ECR plasma reactor configured for 200 mm wafers. A fractional factorial screening experiment was employed to determine the principal input factors and the main etch effects. Linear models of the process responses indicate RF power, O{sub 2} flow rate, and the position of the resonance zone (with respect to the wafer) as the three strongest factors influencing process performance. Response surfaces generated using data from a follow-on response surface methodology (RSM) experiment predicted an optimum operating region characterized by relatively low RF power, a small O{sub 2} flow, and a resonance zone position close to the wafer. The optimized process demonstrated a polysilicon etch rate of 270 nm/min, an etch rate non-uniformity of 2.2% (1s), an etch selectivity to oxide greater than 100:1, and anisotropic profiles. Particle test results for the optimized process indicated that careful selection of the O{sub 2} fraction is required to avoid polymer deposition and particle formation.

  17. Quantum cascade laser based monitoring of CF2 radical concentration as a diagnostic tool of dielectric etching plasma processes

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Lang, N.; Zimmermann, S.; Schulz, S. E.; Buchholtz, W.; Röpcke, J.; van Helden, J. H.

    2015-01-01

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF2 radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF2 radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm-1. We measured Doppler-resolved ro-vibrational absorption lines and determined absolute densities using transitions in the ν3 fundamental band of CF2 with the aid of an improved simulation of the line strengths. We found that the CF2 radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.

  18. Process optimization for lattice-selective wet etching of crystalline silicon structures

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald G.; Guthrie, William F.; Allen, Richard A.; Orji, Ndubuisi G.; Cresswell, Michael W.; Murabito, Christine E.

    2016-01-01

    Lattice-selective etching of silicon is used in a number of applications, but it is particularly valuable in those for which the lattice-defined sidewall angle can be beneficial to the functional goals. A relatively small but important niche application is the fabrication of tip characterization standards for critical dimension atomic force microscopes (CD-AFMs). CD-AFMs are commonly used as reference tools for linewidth metrology in semiconductor manufacturing. Accurate linewidth metrology using CD-AFM, however, is critically dependent upon calibration of the tip width. Two national metrology institutes and at least two commercial vendors have explored the development of tip calibration standards using lattice-selective etching of crystalline silicon. The National Institute of Standards and Technology standard of this type is called the single crystal critical dimension reference material. These specimens, which are fabricated using a lattice-plane-selective etch on (110) silicon, exhibit near vertical sidewalls and high uniformity and can be used to calibrate CD-AFM tip width to a standard uncertainty of less than 1 nm. During the different generations of this project, we evaluated variations of the starting material and process conditions. Some of our starting materials required a large etch bias to achieve the desired linewidths. During the optimization experiment described in this paper, we found that for potassium hydroxide etching of the silicon features, it was possible to independently tune the target linewidth and minimize the linewidth nonuniformity. Consequently, this process is particularly well suited for small-batch fabrication of CD-AFM linewidth standards.

  19. Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Liu, Ying; Rao, Huanle; Fu, Shaojun

    2013-07-01

    Fabrication-induced metal contaminations and subsurface damage are generally identified as the laser damage initiators that are responsible for the laser induced damage in fused silica. In this paper, the removal of those two initiators are realized by two methods: wet chemical surface cleaning and optimized HF-based etch process. Two kinds of chemical leaching are used to removing the Ce and other metal impurities respectively. In order prevent the redeposition of the reactive byproducts during HF etch process, we optimized the traditional HF etch process in two ways: absence of NH4F in etch solution and presence of megasonic and ultrasonic agitation during and after etch respectively. And laser damage tests show that these two treatments greatly improve the laser damage resistance of fused silica.

  20. Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Sung, Y. C.; Huang, G. R.; Hsiao, E. J.; Lin, W. H.; Lin, S. L.

    2009-03-01

    Pyrex glass etching is an important technology for the microfluid application to lab-on-a-chip devices, but suffers from very low etching rate and mask-requiring process in conventional HF/BOE wet or plasma dry etching as well as thermal induced crack surface by CO2 laser processing. In this paper, we applied the liquid-assisted laser processing (LALP) method for linear through-wafer deep etching of Pyrex glass without mask materials to obtain a crackless surface at very fast etching rates up to 25 μm/s for a 20 mm long trench. The effect of laser scanning rate and water depth on the etching of the 500 μm thick Pyrex glass immersed in liquid water was investigated. The smooth surface without cracks can be achieved together with the much reduced height of bulge via an appropriate parameter control. A mechanism of thermal stress reduction in water and shear-force-enhanced debris removal is discussed. The quality improvement of glass etching using LALP is due to the cooling effect of the water to reduce the temperature gradient for a crackless surface and natural convection during etching to carry away the debris for diminishing bulge formation.

  1. Challenges in the Plasma Etch Process Development in the sub-20nm Technology Nodes

    NASA Astrophysics Data System (ADS)

    Kumar, Kaushik

    2013-09-01

    For multiple generations of semiconductor technologies, RF plasmas have provided a reliable platform for critical and non-critical patterning applications. The electron temperature of processes in a RF plasma is typically several electron volts. A substantial portion of the electron population is within the energy range accessible for different types of electron collision processes, such as electron collision dissociation and dissociative electron attachment. When these electron processes occur within a small distance above the wafer, the neutral species, radicals and excited molecules, generated from these processes take part in etching reactions impacting selectivity, ARDE and micro-loading. The introduction of finFET devices at 22 nm technology node at Intel marks the transition of planar devices to 3-dimensional devices, which add to the challenges to etch process in fabricating such devices. In the sub-32 nm technology node, Back-end-of-the-line made a change with the implementation of Trench First Metal Hard Mask (TFMHM) integration scheme, which has hence gained traction and become the preferred integration of low-k materials for BEOL. This integration scheme also enables Self-Aligned Via (SAV) patterning which prevents via CD growth and confines via by line trenches to better control via to line spacing. In addition to this, lack of scaling of 193 nm Lithography and non-availability of EUV based lithography beyond concept, has placed focus on novel multiple patterning schemes. This added complexity has resulted in multiple etch schemes to enable technology scaling below 80 nm Pitches, as shown by the memory manufacturers. Double-Patterning and Quad-Patterning have become increasingly used techniques to achieve 64 nm, 56 nm and 45 nm Pitch technologies in Back-end-of-the-line. Challenges associated in the plasma etching of these multiple integration schemes will be discussed in the presentation. In collaboration with A. Ranjan, TEL Technology Center, America

  2. Sampling plan optimization for detection of lithography and etch CD process excursions

    NASA Astrophysics Data System (ADS)

    Elliott, Richard C.; Nurani, Raman K.; Lee, Sung Jin; Ortiz, Luis G.; Preil, Moshe E.; Shanthikumar, J. G.; Riley, Trina; Goodwin, Greg A.

    2000-06-01

    Effective sample planning requires a careful combination of statistical analysis and lithography engineering. In this paper, we present a complete sample planning methodology including baseline process characterization, determination of the dominant excursion mechanisms, and selection of sampling plans and control procedures to effectively detect the yield- limiting excursions with a minimum of added cost. We discuss the results of our novel method in identifying critical dimension (CD) process excursions and present several examples of poly gate Photo and Etch CD excursion signatures. Using these results in a Sample Planning model, we determine the optimal sample plan and statistical process control (SPC) chart metrics and limits for detecting these excursions. The key observations are that there are many different yield- limiting excursion signatures in photo and etch, and that a given photo excursion signature turns into a different excursion signature at etch with different yield and performance impact. In particular, field-to-field variance excursions are shown to have a significant impact on yield. We show how current sampling plan and monitoring schemes miss these excursions and suggest an improved procedure for effective detection of CD process excursions.

  3. Microlens array production in a microtechnological dry etch and reflow process for display applications

    NASA Astrophysics Data System (ADS)

    Knieling, T.; Shafi, M.; Lang, W.; Benecke, W.

    2012-03-01

    The fabrication of arrays consisting of densely ordered circular convex microlenses with diameters of 126 mum made of quartz glass in a photoresist reflow and dry etch structure transition process is demonstrated. The rectangular lens arrays with dimensions of 6 mm x 9 mm were designed for focussing collimated light on the pixel center regions of a translucent interference display, which also was produced in microtechnological process steps. The lenses focus light on pixel centers and thus serve for increasing display brightness and contrast since incoming collimated light is partially blocked by opaque metallic ring contacts at the display pixel edges. The focal lengths of the lenses lie between 0.46 mm and 2.53 mm and were adjusted by varying ratio of the selective dry etch rate of photoresist and quartz glass. Due to volume shrinking and edge line pinning of the photoresist structures the lenses curvatures emerge hyperbolic, leading to improved focussing performance.

  4. The magnetic properties and microstructure of Co-Pt thin films using wet etching process.

    PubMed

    Lee, Chang-Hyoung; Cho, Young-Lae; Lee, Won-Pyo; Suh, Su-Jeong

    2014-11-01

    Perpendicular magnetic recording (PMR) is a promising candidate for high density magnetic recording and has already been applied to hard disk drive (HDD) systems. However, media noise still limits the recording density. To reduce the media noise and achieve a high signal-to-noise ratio (SNR) in hard disk media, the grains of the magnetic layer must be magnetically isolated from each other. This study examined whether sputter-deposited Co-Pt thin films can have adjacent grains that are physically isolated. To accomplish this, the effects of the sputtering conditions and wet etching process on magnetic properties and the microstructure of the films were investigated. The film structure was Co-Pt (30 nm)/Ru (30 nm)/NiFe (10 nm)/Ta (5 nm). The composition of the Co-Pt thin films was Co-30.7 at.% Pt. The Co-Pt thin films were deposited in Ar gas at 5, 10, 12.5, and 15 mTorr. Wet etching process was performed using 7% nitric acid solution at room temperature. These films had high out-of-plane coercivity of up to 7032 Oe, which is twice that of the as-deposited film. These results suggest that wet etched Co-Pt thin films have weaker exchange coupling and enhanced out-of-plane coercivity, which would reduce the medium noise. PMID:25958585

  5. The effects of polymer side-chain structure on roughness formation of ArF photoresist in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Uesugi, Takuji; Okada, Takeru; Wada, Akira; Kato, Keisuke; Yasuda, Atsushi; Maeda, Shinichi; Samukawa, Seiji

    2012-02-01

    Low etching resistance and roughness formation of ArF photoresist during plasma etching are serious problems. We have previously found that decisive factors affecting the plasma resistance and roughness formation in an ArF photoresist are determined by ultraviolet/vacuum ultraviolet radiation and roughness formation is dominated by chemical reactions. In this paper, on the basis of our previous findings on the interaction between radiation species from plasma and ArF photoresist polymers, we investigated the polymer structural dependence for the degradation mechanism of ArF photoresist in the plasma etching processes. The etching resistance of ArF photoresist was improved by controlling the elemental ratio of oxygen atoms and ring structures in photoresist polymer. Furthermore, lactone C=O bond is found to be a key factor for roughness formation during the etching process. We have revealed the importance of the molecular structure of ArF photoresist for improving the surface roughness and etching resistance during the plasma etching process.

  6. Award-Winning Etching Process Cuts Solar Cell Costs (Fact Sheet)

    SciTech Connect

    Not Available

    2013-08-01

    NREL scientists have invented the 'black silicon' nanocatalytic wet-chemical etch, an inexpensive, one-step process that literally turns the solar cells black, allowing them to absorb more than 98% of incident sunlight. The process costs just a few cents per watt of solar-cell power-producing capacity. Increases in manufactured cell efficiencies of up to 0.8% are possible because of the reduced reflectance of black silicon. This would reduce silicon solar module costs by $5-$10 per module.

  7. Use of inorganic salts during the etching process in the fabrication of chemically modified capillaries for open tubular electrochromatography.

    PubMed

    Pesek, Joseph J; Matyska, Maria T; Velpula, Sunandini

    2005-05-01

    Capillaries for use in electrophoretic analyses are etched with ammonium bifluoride and in some cases a second inorganic salt is included in the process. The effects of the presence of these inorganic components in the surface matrix on the electromigration of heterocyclic aromatic amines and enkephalins are evaluated. Resolution, efficiency, and peak shape are used to compare the various columns. In one instance, the etched surface is then modified by the addition of an octadecyl moiety using a silanization/hydrosilation procedure. The surface properties of the various etched capillaries are also compared by electroosmotic flow measurements. PMID:15938182

  8. Nanotexturing process on microtextured surfaces of silicon solar cells by SF6/O2 reactive ion etching.

    PubMed

    Ji, Hyungyong; Choi, Jaeho; Lim, Gyoungho; Parida, Bhaskar; Kim, Keunjoo; Jo, Jung Hee; Kim, Hong Seub

    2013-12-01

    We investigated a nanotexturing process on the microtextured surface of single crystalline silicon solar cell by the reactive ion etching process in SF6/O2 mixed gas ambient. P-type Si wafer samples were prepared using a chemical wet etching process to address saw damage removal and achieve microtexturing. The microtextured wafers were further processed for nanotexturing by exposure to reactive ions within a circular tray of wafer carrier containing many small holes for uniform etching. As the dry etching times were increased to 2, 4 and finally to 8 min, surface structures were observed in a transition from nanoholes to nanorods, and a variation in wafer color from dark blue to black. The surface nanostructures showed a lowered photoreflectance and enhanced quantum efficiency within the visible light region with wavelengths of less than 679 nm. The nanohole structure etched for 2 min showed enhanced conversion efficiency when compared to the bare sample; however, the nanorod structure etched for 8 min exhibited the decreased efficiency with a reduced short circuit current, indicating that the surface nanostructural damage with the enlarged nanoperimetric surface area is sensitive to surface passivation from the surface recombination process. PMID:24266144

  9. Simplified Etching

    ERIC Educational Resources Information Center

    Saranovitz, Norman S.

    1969-01-01

    The process for making a celluoid etching (drypaint technique) is feasible for the high school art room because the use of acid is avoided. The procedure outlined includes; 1) preparation of the plate, 2) inking the plate, 3) printing the plate, 4) tools necessary for the preceding. (BF)

  10. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    NASA Astrophysics Data System (ADS)

    Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.

    2010-02-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  11. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  12. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  13. Ion-Assisted Plasma Etching

    NASA Astrophysics Data System (ADS)

    Wang, C. Daniel; Abraham-Shrauner, Barbara

    1996-11-01

    We analyze plasma etching of two-dimensional, long trenches where directed ions modeled by drifted Maxwellian distribution functions and isotropic neutral molecules contribute to the etch rate. Analytic expressions for the etch rates enable the user to plot the etch profiles by using standard computer packages for nonlinear first-order ordinary differential equations for the point and its slope. First, etch profiles are shown for ion-assisted etching where the thermal etching of the neutrals is enhanced by the ions. Second, we show etch profiles of a multiple layer device where one layer is n-type silicon (arsenic doped) that etches isotropically (G.S. Oehrlein, "Reactive Ion Etching," Handbook of Plasma Processing, Technology, Ed. S.M. Rossnagel, et al., Noyes Pub., NJ, 1990) The etch rates for the other layers are in the ion flux-limited regime. The lateral etching of the n-type silicon illustrates the necessity of sidewall passivation for this structure.

  14. High-etching selectivity of spin-on-carbon hard mask process for 22nm node and beyond

    NASA Astrophysics Data System (ADS)

    Iwao, Fumiko; Shimura, Satoru; Kyouda, Hideharu; Oyama, Kenichi; Yamauchi, Shohei; Hara, Arisa; Natori, Sakurako; Yaegashi, Hidetami

    2012-03-01

    As part of the trend toward finer semiconductor design rules, the resist film thickness is getting thinner, and the etching technology that uses resist masking is getting more difficult. To solve such a problem in recent years, the film structure used in the resist process also is changing from the single-layer process (BARC and resist stacked film) to the multi-layer process (Carbon hard-mask, middle layer and resist stacked film) The carbon hard-mask of multi-layer process can be divided into two kinds, which are the CVD-carbon (CVD-C) that uses the chemical vapor deposition method and Spin-on-carbon (SOC) that uses the spin-coating method. CVD-C is very attractive for ensuring the high etching selection ratio, but still has major challenges in particle reduction, lower planarization of substrate and high process cost. On the other hand, SOC is very attractive for low cost process, high level of planarization of substrate and no particles. Against this background, we verify the development of the SOC that had the high etch selection ratio by improving etching condition, material and SOC cure condition. Moreover, we can fabricate below 30nm SiO2 patterning and the possibility of development with extreme ultraviolet lithography (EUVL) was suggested. This paper reports on the results of a comprehensive process evaluation of a SOC based multi-layer technology using lithography clusters, etching tools.

  15. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  16. Pattern scaling with directed self assembly through lithography and etch process integration

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen; Somervell, Mark; Hooge, Josh; Muramatsu, Makoto; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Hiroyuki, Iwaki; Akai, Keiji; Hayakawa, Takashi

    2012-03-01

    Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards line edge roughness (LER) and pattern collapse improvement [1-4]. The current challenges for industry adoption are materials maturity, practical process integration, hardware capability, defect reduction and design integration. Tokyo Electron (TEL) has created close collaborations with customers, consortia and material suppliers to address these challenges with the long term goal of robust manufacturability. This paper provides a wide range of DSA demonstrations to accommodate different device applications. In collaboration with IMEC, directed line/space patterns at 12.5 and 14 nm HP are demonstrated with PS-b-PMMA (poly(styrene-b-methylmethacrylate)) using both chemo and grapho-epitaxy process flows. Pre-pattern exposure latitudes of >25% (max) have been demonstrated with 4X directed self-assembly on 300 mm wafers for both the lift off and etch guide chemo-epitaxy process flows. Within TEL's Technology Development Center (TDC), directed selfassembly processes have been applied to holes for both CD shrink and variation reduction. Using a PS-b-PMMA hole shrink process, negative tone developed pre-pattern holes are reduced to below 30 nm with critical dimension uniformity (CDU) of 0.9 nm (3s) and contact edge roughness (CER) of 0.8 nm. To generate higher resolution beyond a PS-b-PMMA system, a high chi material is used to demonstrate 9 nm HP line/ space post-etch patterns. In this paper, TEL presents process solutions for both line/space and hole DSA process integrations.

  17. Influence of Interface Structure on Chemical Etching Process for Air Gap of Microelectromechanical System Based on Surface Micromachining

    NASA Astrophysics Data System (ADS)

    Yoon, Young; Kim, Joon; Polla, Dennis.; Shin, Young

    1998-12-01

    This paper analyses the problems posed by the interface structure during chemical etching by Hydro-fluoric (HF) acid for creating air gaps in microelectromechnical system (MEMS) devices using PZT(53/47) films and surface micromachining techniques. In order to investigate the influence of interface structure on the HF chemical etching process, Pt/PZT/Pt/Ti/TiO2/polysilicon/Si3N4/PSG/Si (Samples A and C) and Pt/PZT/RuO2/Ru/Si3N4/PSG/Si (Sample B) structures were fabricated. These structures are selected for a microcantilever beam and/or an uncooled IR detectors fabricated with PZT piezoelectric/pyroelectric films based on the surface micromachining technique. Both need etching for the removal of phosphor silicate glass (PSG) to create an air gap. If the devices had a poor interface structure, they would fail during the HF chemical etching process because the poor interface structure would act as a kind of penetration path for etching acid leading to unwanted etching. Therefore, it is very important to investigate the interface structure to fabricate efficient MEMS devices. In this study two different solutions have been suggested to improve the interface structure. The first is post thermal annealing at 900°C for 30 min. after deposition of polycrystalline silicon for sample A. Secondly, a RuO2/Ru hybrid electrode was deposited on Si3N4 directly instead of on the Pt/Ti/TiO2/Polysilicon electrode, which has Pt/PZT/RuO2/Ru/Si3N4/PSG/Si as the device structure. These two solutions suggest that a dense interface structure increases enhances of success of the chemical etching process of MEMS devices fabricated using PZT films and surface micromachining techniques.

  18. Novel ArF photoresist polymer to suppress the roughness formation in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Kato, Keisuke; Yasuda, Atsushi; Maeda, Shin-ichi; Uesugi, Takuji; Okada, Takeru; Wada, Akira; Samukawa, Seiji

    2013-03-01

    The serious problem associated with 193-nm lithography using an ArF photoresist is roughness formation of photoresist polymer during plasma processes. We have previously investigated the mechanism of roughness formation caused by plasma. The main deciding factor for roughness formation is a chemical reaction between photoresist polymer and reactive species from plasma. The lactone group in photoresist polymer is highly chemically reactive, and shrinking the lactone structure enhances the roughness formation. In this paper, on the basis of the mechanism of roughness formation, we propose a novel ArF photoresist polymer. The roughness formation was much more suppressed in the novel photoresist polymer during plasma etching process than in the previous type. In the novel photoresist polymer, chemical reactions were spread evenly on the photoresist film surface by adding the polar structure. As a result, decreases in the lactone group were inhibited, leading to suppressing ArF photoresist roughness.

  19. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process.

    PubMed

    Bian, Hao; Yang, Qing; Chen, Feng; Liu, Hewei; Du, Guangqing; Deng, Zefang; Si, Jinhai; Yun, Feng; Hou, Xun

    2013-07-01

    Materials with curvilinear surface microstructures are highly desirable for micro-optical and biomedical devices. However, realization of such devices efficiently remains technically challenging. This paper demonstrates a facile and flexible method to fabricate curvilinear microstructures with controllable shapes and dimensions. The method composes of femtosecond laser exposures and chemical etching process with the hydrofluoric acid solutions. By fixed-point and step-in laser irradiations followed by the chemical treatments, concave microstructures with different profiles such as spherical, conical, bell-like and parabola were fabricated on silica glasses. The convex structures were replicated on polymers by the casting replication process. In this work, we used this technique to fabricate high-quality microlens arrays and high-aspect-ratio microwells which can be used in 3D cell culture. This approach offers several advantages such as high-efficient, scalable shape-controllable and easy manipulations. PMID:23623098

  20. Charge-free method of forming nanostructures on a substrate

    DOEpatents

    Hoffbauer; Mark , Akhadov; Elshan

    2010-07-20

    A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.

  1. Alkaline etch system qualification

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    Based on the data from this qualification activity, the Atotech etch system, even with minimum characterization, was capable of etching production printed circuit products as good as those from the Chemcut system. Further characterization of the Atotech system will improve its etching capability. In addition to the improved etch quality expected from further characterization, the Atotech etch system has additional features that help reduce waste and provide for better consistency in the etching process. The programmable logic controller and computer will allow operators to operate the system manually or from pre-established recipes. The evidence and capabilities of the Atotech system made it as good as or better than the Chemcut system for etching WR products. The Printed Wiring Board Engineering Department recommended that the Atotech system be released for production. In December 1995, the Atotech system was formerly qualified for production.

  2. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-05-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au8-Au11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Aun precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters.

  3. Environmentally benign etching process of amorphous silicon and tungsten using species evaporated from polytetrafluoroethylene and fluorinated ethylene propylene

    NASA Astrophysics Data System (ADS)

    Fujita, Kazushi; Hori, Masaru; Goto, Toshio; Ito, Masafumi

    2003-01-01

    Environmentally benign etching process of amorphous silicon (a-Si) and tungsten (W) by using a plasma process with an evaporation of solid materials system has been developed for replacing a conventional plasma process using green house gases, such as SF6 gas and perfluorocompound gases causing global warming. The evaporation system was designed to generate fluorocarbon species from solid materials by a CO2 laser irradiation. An electron cyclotron resonance (ECR) plasma using O2 accompanied with injection of species evaporated from solid materials has been applied to a-Si and W etching for cleaning process in chemical vapor deposition chamber. Fluorinated ethylene propylene (FEP) and polytetrafluoroethylene (PTFE) are selected as the solid material and the etching characteristics between FEP and PTFE have been compared. Furthermore, the etching of a-Si and W films has been performed in the divergent magnetic field ECR downstream plasma [electron density (ne); ~1010 cm-3, electron temperature (Te); 1.5-2.8 eV] and a planar ECR plasma [ne ~1010 cm-3, Te 3.4-4.4 eV] using O2 gas with FEP evaporation. As a result, high etching rates of a-Si and W films of above 100 nm/min were successfully obtained at a substrate temperature of 400 °C in the planar ECR plasma of higher electron temperature. CFx (x=1-3) radical densities and F atom density in plasmas were measured by an infrared diode laser absorption spectroscopy and an actinometric optical emission spectroscopy, respectively. On the basis of these measurements of species, the etching mechanisms of a-Si and W films are discussed.

  4. Materials for single-etch double patterning process: surface curing agent and thermal cure resist

    NASA Astrophysics Data System (ADS)

    Bae, Young C.; Liu, Yi; Cardolaccia, Thomas; McDermott, John C.; Trefonas, Peter; Spizuoco, Ken; Reilly, Michael; Pikon, Amandine; Joesten, Lori; Zhang, Gary G.; Barclay, George G.; Simon, Julia; Gaurigan, Stéphanie

    2009-03-01

    Two different pattern curing techniques were developed to stabilize first lithographic images for the single-etch double patterning process. The first method uses a surface curing agent (SCA) that is coated on top of the patterned surface to form a protective coating layer during the curing bake process. It was found that the surface curing process with SCA offers minimum CD changes before and after the double patterning process. Virtually no CD change was observed with the first lithographic images at various curing bake temperatures ranging from 120 ~160°C indicating the curing reaction is limited on the patterned surface. The second method uses a thermal cure resist (TCR) that is a special 193nm photoresist with a crosslinkable functional group to form an insoluble network upon heating at higher temperature. A single-step curing process of the first lithographic images was achieved using TCR by baking the patterned images at 180°C for 60sec. A cross-line contact hole double patterning method was used to evaluate these two different curing techniques and both SCA and TCR successfully demonstrated their capability to print 45nm contact holes with excellent CD uniformity in immersion lithography (1.35NA) with a 45nm half pitch mask. It was also confirmed that both SCA and TCR can be extended to the top-coat free immersion double patterning process using an embedded barrier layer technique.

  5. High speed optical metrology solution for after etch process monitoring and control

    NASA Astrophysics Data System (ADS)

    Charley, Anne-Laure; Leray, Philippe; Pypen, Wouter; Cheng, Shaunee; Verma, Alok; Mattheus, Christine; Wisse, Baukje; Cramer, Hugo; Niesing, Henk; Kruijswijk, Stefan

    2014-04-01

    Monitoring and control of the various processes in the semiconductor require precise metrology of relevant features. Optical Critical Dimension metrology (OCD) is a non-destructive solution, offering the capability to measure profiles of 2D and 3D features. OCD has an intrinsic averaging over a larger area, resulting in good precision and suppression of local variation. We have studied the feasibility of process monitoring and control in AEI (after etch inspection) applications, using the same angular resolved scatterometer as used for CD, overlay and focus metrology in ADI (after develop inspection) applications1. The sensor covers the full azimuthal-angle range and a large angle-of-incidence range in a single acquisition. The wavelength can be selected between 425nm and 700nm, to optimize for sensitivity for the parameters of interest and robustness against other process variation. In this paper we demonstrate the validity of the OCD data through the measurement and comparison with the reference metrology of multiple wafers at different steps of the imec N14 fabrication process in order to show that this high precision OCD tool can be used for process monitoring and control.

  6. Electromigration study of copper lines on steps prepared by a plasma-based etch process

    SciTech Connect

    Lin, Chi-Chou; Kuo Yue

    2012-03-15

    The electromigration phenomenon of the copper line etched with a plasma-based process over the SiN{sub x} step has been investigated. Two important factors, i.e., the dielectric topography and the stress temperature, were examined using the accelerated isothermal electromigration method. The activation energy of 0.73 eV to 0.89 eV indicates two possible mass transport pathways: interfacial and copper surface diffusions. The copper line on the SiN{sub x} step has a shorter lifetime and a smaller activation energy than the copper line on the flat surface has. For the former, voids were formed at the cusp region and perpendicular to the current flow direction. For the latter, voids were formed in series and parallel to the current flow direction. The ''neck'' structure at the cusp region, which is a result of the inappropriate etching condition, further decreased the lifetime and the activation energy. The lifetime of the ''neck-free'' copper line over the SiN{sub x} step was estimated to be 7.1 x 10{sup 9} s under the high-speed IC operation condition. The thermal stress mismatch between the copper layer and TiW barrier layer as well as the underneath dielectric layer facilitated the void formation. The step effect on the lifetime was reduced when the test temperature was high because of the change of the local stress. In summary, the topography and the test temperature are critical factors for the copper line's lifetime.

  7. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  8. A Dry-Etch Process for Low Temperature Superconducting Transition Edge Sensors for Far Infrared Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.

    2003-01-01

    The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.

  9. Award-Winning Etching Process Cuts Solar Cell Costs (Revised) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-05-01

    The NREL "black silicon" nanocatalytic wet-chemical etch is an inexpensive, one-step method to minimize reflections from crystalline silicon solar cells. The technology enables high-efficiency solar cells without the use of expensive antireflection coatings.

  10. Efficient process development for bulk silicon etching using cellular automata simulation techniques

    NASA Astrophysics Data System (ADS)

    Marchetti, James; He, Yie; Than, Olaf; Akkaraju, Sandeep

    1998-09-01

    This paper describes cellular automata simulation techniques used to predict the anisotropic etching of single-crystal silicon. In particular, this paper will focus on the application of wet etching of silicon wafers using typical anisotropic etchants such as KOH, TMAH, and EDP. Achieving a desired final 3D geometry of etch silicon wafers often is difficult without requiring a number of fabrication design iterations. The result is wasted time and resources. AnisE, a tool to simulate anisotropic etching of silicon wafers using cellular automata simulation, was developed in order to efficiently prototype and manufacture MEMS devices. AnisE has been shown to effectively decrease device development time and costs by up to 50% and 60%, respectively.

  11. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    SciTech Connect

    Hübner, M.; Lang, N.; Röpcke, J.; Helden, J. H. van; Zimmermann, S.; Schulz, S. E.; Buchholtz, W.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines and determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.

  12. Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges

    SciTech Connect

    WOODWORTH,JOSEPH R.; RILEY,MERLE E.; AMATUCCI,VINCENT A.; HAMILTON,THOMAS W.; ARAGON,BEN P.

    2000-05-01

    In this paper, the authors report the absolute intensities of ultraviolet light between 4.9 eV and 24 eV ( 250 nm to 50 mn ) striking a silicon wafer in a number of oxide-etch processing discharges. The emphasis is on photons with energies greater than 8.8 eV, which have enough energy to damage SiO{sub 2}. These discharges were in an inductively-driven Gaseous Electronics Conference reference cell which had been modified to more closely resemble commercial etching tools. Comparisons of measurements made through a side port in the cell and through a hole in the wafer indicate that the VUV light in these discharges is strongly trapped. For the pure halocarbon gases examined in these experiments (C{sub 2}F{sub 6}, CHF{sub 3}, C{sub 4}F{sub 8}), the fluxes of VUV photons to the wafer varied from 1 x 10{sup 15} to 3 x 10{sup 15} photons/cm{sup 2} sec or equivalently from 1.5 to 5 mW/cm{sup 2}. These measurements imply that 0.1% to 0.3% of the rf source power to these discharges ends up hitting the wafer as VUV photons for the typical 20 mT, 200 W rf discharges. For typical ashing discharges containing pure oxygen, the VUV intensities are slightly higher--about 8 mW/cm{sup 2} . As argon or hydrogen diluents are added to the fluorocarbon gases, the VUV intensities increase dramatically, with a 10/10/10 mixture of Ar/C{sub 2}F{sub 6}/H{sub 2} yielding VUV fluxes on the wafer 26 mW/cm{sup 2} and pure argon discharges yielding 52 mW/cm{sup 2} . Adding an rf bias to the wafer had only a small effect on the VUV observed through a side-port of the GEC cell.

  13. Charging-free electrochemical system for harvesting low-grade thermal energy

    PubMed Central

    Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi; Loomis, James; Li, Xiaobo; Kraemer, Daniel; Zheng, Guangyuan; Cui, Yi; Chen, Gang

    2014-01-01

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the temperature dependence of electrochemical cell voltage to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying temperature, an electrochemical cell is charged at a lower voltage than discharge, converting thermal energy to electricity. Most TREC systems still require external electricity for charging, which complicates system designs and limits their applications. Here, we demonstrate a charging-free TREC consisting of an inexpensive soluble Fe(CN)63−/4− redox pair and solid Prussian blue particles as active materials for the two electrodes. In this system, the spontaneous directions of the full-cell reaction are opposite at low and high temperatures. Therefore, the two electrochemical processes at both low and high temperatures in a cycle are discharge. Heat-to-electricity conversion efficiency of 2.0% can be reached for the TREC operating between 20 and 60 °C. This charging-free TREC system may have potential application for harvesting low-grade heat from the environment, especially in remote areas. PMID:25404325

  14. Dependence of electric potentials at trench surfaces on ion angular distribution in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Palov, A. P.; Mankelevich, Yu A.; Rakhimova, T. V.; Baklanov, M. R.

    2016-03-01

    Ion-stimulated etching of dielectrics in radio frequency plasma results in positive charging of a trench bottom because of the significant difference in the angular distribution functions of ions and electrons. They are anisotropic for ions and quasi-isotropic for electrons. The charging leads to a decrease in the energy of the ions bombarding the trench bottom and to undesirable sputtering of the walls near the trench bottom because of the curving of the ion trajectories. This process is normally investigated by Monte Carlo methods in the absence of experimental data. In this paper the analytical dependence of the ion flux bombarding the trench bottom on a trench aspect ratio and ion angular distribution function is obtained. Numerical calculations of the electric potential on the trench bottom for a set of trench aspect ratios and angles of the ion angular distribution function were performed based on a Monte Carlo method to demonstrate the ion flux and electric potential correlated well with each other. The proposed formula for an ion flux is suggested to be helpful for analyzing charging the trenches with different aspect ratios in plasma with an arbitrary angular ion distribution function.

  15. Controlled etching of hexagonal ZnO architectures in an alcohol thermal process

    SciTech Connect

    Wu, Junshu; Xue, Dongfeng

    2010-03-15

    An alcohol thermal technique was applied to the controlled growth of hexagonal ZnO architectures via selective chemical etching. ZnO microdisks were produced first under mild alcohol thermal conditions in presence of formamide. Due to a higher surface energy/atomic density of Zn{sup 2+} {l_brace}0 0 0 1{r_brace} than that of the other faces, hexagonal ZnO microring was obtained by selectively etching positive polar surface of disk-like precursor with a high density of planar defects at the center. The selective etching of ZnO is related to its crystallographic characteristics of surface polarity and chemical activities, which opens a new opportunity for the shape-controlled synthesis of wurtzite-structured materials.

  16. Chemical vapour etching-based porous silicon and grooving: Application in silicon solar cells processing

    NASA Astrophysics Data System (ADS)

    Ben Rabha, M.; Boujmil, M. F.; Saadoun, M.; Bessaïs, B.

    2005-06-01

    Sponge like porous silicon (PS) was formed by a simple and low cost chemical vapour etching (CVE) method and applied in polycrystalline silicon (mc-Si) solar cells processing. The CVE method consists of exposing Si wafers to HNO3/HF vapours. It was shown that 8 min of HNO3/HF CVE (volume ratio = 1/7) is sufficient to form optimized PS layers on the emitter of mc-Si cells. The CVE-based PS can simultaneously passivate the Si surface and serves as an effective antireflection coating (ARC). As a result, the reflectivity decreases by about 60% of its initial value and the internal quantum efficiency is improved, particularly in the short wavelength region. For acid vapours rich in HNO3 (HNO3/HF >1/4), the CVE method favours the formation of a (NH4)2SiF6 powder, which is highly soluble in water. These findings let us achieve anisotropic grooving that enables to groove mc-Si wafers locally and in depth using an adequate anti-acid mask. The CVE - based grooving technique was used to form buried metallic contacts on the rear and frontal surface of the Si wafer in order to improve the current collection in mc-Si solar cells. No alteration of the spectral response in the long wavelength range was observed in mc-Si cells with rear-buried contacts. Adjustments of theoretical spectral responses to experimental ones show an increase in the effective electron diffusion length (Ln), which was attributed to Al gettering (passivation) at grain boundaries and to the reduction of the effective thickness of the base of the cells.

  17. High-resolution tri-level process by downstream-microwave rf-biased etching

    NASA Astrophysics Data System (ADS)

    Rangelow, Ivo W.

    1991-03-01

    In this paper we discuss some properties of a novel dry etching system for high resolution transfer of e-beam generated pattern for a viable submicron lithography. In order to achieve pattern transfer by an e-beam lithography a tn-layer system has been used. The submicron pattern which has been generated in a 300 nm PBS-layer (imaging layer) was transfered into a 300 nm anorganic intermediate layer (Si3N4) by RIE with a CHF3-plasma. The underlayer of 1 micron polyimid was etched in a microwave downstream RF-biased etching system developed by Plasma Technology Ltd (UK). E-beam lithography generated structures of 75 nm size with very low image size bias were etched in Si3N4. After patterning in the polyimid layer structures with very high aspect ratio (10) could be achieved. It was observed that anisotropy is enhanced by crack-products that originate from the microwave downstream oxygen plasma and the CHF3+CH4 mixture in the space between the parallel-plate electrodes.

  18. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  19. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. PMID:26918838

  20. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  1. Absolute Intensities of the Vacuum Ultraviolet Spectra in a Metal-Etch Plasma Processing Discharge

    SciTech Connect

    Aragon, B.P.; Blain, M.G.; Hamilton, T.W.; Jarecki, R.L.; Woodworth, J.R.

    1998-12-09

    In this paper we report absolute intensities of vacuum ultraviolet and near ultraviolet emission lines (4.8 eV to 18 eV ) for aluminum etching discharges in an inductively coupled plasma reactor. We report line intensities as a function of wafer type, pressure, gas mixture and rf excitation level. IrI a standard aluminum etching mixture containing C12 and BC13 almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the WV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we see total photon fluxes to the wailer at energies above 8.8 eV on the order of 4 x 1014 photons/cm2sec with anon- reactive wafer and 0.7 x 10 `4 photons/cm2sec with a reactive wtier. The maj ority of the radiation observed was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in Si02, but may penetrate up to a micron into the Si02 before being absorbed. Relevance of these measurements to vacuum-W photon-induced darnage of Si02 during etching is discussed.

  2. Absolute intensities of the vacuum ultraviolet spectra in a metal-etch plasma processing discharge

    SciTech Connect

    Woodworth, J.R.; Blain, M.G.; Jarecki, R.L.; Hamilton, T.W.; Aragon, B.P.

    1999-11-01

    In this article we report absolute intensities of vacuum ultraviolet (VUV) and near ultraviolet emission lines (4.8{endash}18 eV) for discharges used to etch aluminum in a commercial inductively coupled plasma reactor. We report line intensities as functions of wafer type, pressure, gas mixture, and radio frequency excitation level. In a standard aluminum etching mixture containing Cl{sub 2} and BCl{sub 3} almost all the light emitted at energies exceeding 8.8 eV was due to neutral atomic chlorine. Optical trapping of the VUV radiation in the discharge complicates calculations of VUV fluxes to the wafer. However, we measured total photon fluxes to the wafer at energies above 8.8 eV on the order of 4{times}10{sup 14}&hthinsp;photons/cm{sup 2}&hthinsp;s with a nonreactive wafer and 0.7{times}10{sup 14}&hthinsp;photons/cm{sup 2}&hthinsp;s with a reactive wafer. The majority of the radiation was between 8.9 and 9.3 eV. At these energies, the photons have enough energy to create electron-hole pairs in SiO{sub 2} and may penetrate up to a micron into the SiO{sub 2} before being absorbed. Relevance of these measurements to VUV photon-induced damage of SiO{sub 2} during etching is discussed. {copyright} {ital 1999 American Vacuum Society.}

  3. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Hung; Leou, Keh-Chyang; Lin, Chaung; Lin, Tsan-Lang; Tseng, Chih-Wei; Tsai, Chuen-Horng

    2003-07-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control.

  4. Formation of textured sapphire substrates by self-arrangement process and wet etching for InGaAlN LEDs

    NASA Astrophysics Data System (ADS)

    Sakharov, A. V.; Lundin, W. V.; Zavarin, E. E.; Sinitsyn, M. A.; Nikolaev, A. E.; Lundina, E. Yu.; Tsatsulnikov, A. F.

    2008-11-01

    We report a method of profiled sapphire substrate preparation and growth of InGaAlN light-emitting diode (LED) structures over these substrates. Sapphire substrates with textured front surface were prepared by the simple method of nanoscale gold drops formation on sapphire surface followed by etching in hot H 3PO 4 acid. Comparison of blue LEDs grown on standard (flat) and profiled sapphire substrates in one epitaxial process shows significant increase in output power due to increased light extraction without deterioration of other LED characteristics.

  5. Agile dry etching of compound semiconductors for science-based manufacturing using in-situ process control

    SciTech Connect

    ASHBY,CAROL I.; VAWTER,GREGORY A.; BREILAND,WILLIAM G.; BRUSKAS,LARRY A.; WOODWORTH,JOSEPH R.; HEBNER,GREGORY A.

    2000-02-01

    In-situ optical diagnostics and ion beam diagnostics for plasma-etch and reactive-ion-beam etch (RIBE) tools have been developed and implemented on etch tools in the Compound Semiconductor Research Laboratory (CSRL). The optical diagnostics provide real-time end-point detection during plasma etching of complex thin-film layered structures that require precision etching to stop on a particular layer in the structure. The Monoetch real-time display and analysis program developed with this LDRD displays raw and filtered reflectance signals that enable an etch system operator to stop an etch at the desired depth within the desired layer. The ion beam diagnostics developed with this LDRD will permit routine analysis of critical ion-beam profile characteristics that determine etch uniformity and reproducibility on the RIBE tool.

  6. Movable-mask reactive ion etch process for thickness control in devices

    NASA Astrophysics Data System (ADS)

    Sandstrom, R. L.; Pezeshki, B.; Agahi, F.; Martel, R.; Crockett, J. G.

    1996-10-01

    By moving the substrate relative to a shadow mask in a reactive ion etching system, we are able to precisely tailor the thickness of critical layers. To minimize disturbing the plasma, all the mechanical components are kept below the anode. The system is highly reproducible, and can be programmed to yield arbitrary vertical profiles along one horizontal axis. Using silicon-on-insulator substrates, the resonance wavelength was modified as a function of position with better than 1 nm control in the vertical dimension. This technique should prove useful for optical devices where the thickness of the layers controls the device characteristics.

  7. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  8. Photomask etch system and process for 10nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Chandrachood, Madhavi; Grimbergen, Michael; Yu, Keven; Leung, Toi; Tran, Jeffrey; Chen, Jeff; Bivens, Darin; Yalamanchili, Rao; Wistrom, Richard; Faure, Tom; Bartlau, Peter; Crawford, Shaun; Sakamoto, Yoshifumi

    2015-10-01

    While the industry is making progress to offer EUV lithography schemes to attain ultimate critical dimensions down to 20 nm half pitch, an interim optical lithography solution to address an immediate need for resolution is offered by various integration schemes using advanced PSM (Phase Shift Mask) materials including thin e-beam resist and hard mask. Using the 193nm wavelength to produce 10nm or 7nm patterns requires a range of optimization techniques, including immersion and multiple patterning, which place a heavy demand on photomask technologies. Mask schemes with hard mask certainly help attain better selectivity and hence better resolution but pose integration challenges and defectivity issues. This paper presents a new photomask etch solution for attenuated phase shift masks that offers high selectivity (Cr:Resist > 1.5:1), tighter control on the CD uniformity with a 3sigma value approaching 1 nm and controllable CD bias (5-20 nm) with excellent CD linearity performance (<5 nm) down to the finer resolution. The new system has successfully demonstrated capability to meet the 10 nm node photomask CD requirements without the use of more complicated hard mask phase shift blanks. Significant improvement in post wet clean recovery performance was demonstrated by the use of advanced chamber materials. Examples of CD uniformity, linearity, and minimum feature size, and etch bias performance on 10 nm test site and production mask designs will be shown.

  9. High aspect ratio silicon etch: A review

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay; Pamarthy, Sharma

    2010-09-01

    High aspect ratio (HAR) silicon etch is reviewed, including commonly used terms, history, main applications, different technological methods, critical challenges, and main theories of the technologies. Chronologically, HAR silicon etch has been conducted using wet etch in solution, reactive ion etch (RIE) in low density plasma, single-step etch at cryogenic conditions in inductively coupled plasma (ICP) combined with RIE, time-multiplexed deep silicon etch in ICP-RIE configuration reactor, and single-step etch in high density plasma at room or near room temperature. Key specifications are HAR, high etch rate, good trench sidewall profile with smooth surface, low aspect ratio dependent etch, and low etch loading effects. Till now, time-multiplexed etch process is a popular industrial practice but the intrinsic scalloped profile of a time-multiplexed etch process, resulting from alternating between passivation and etch, poses a challenge. Previously, HAR silicon etch was an application associated primarily with microelectromechanical systems. In recent years, through-silicon-via (TSV) etch applications for three-dimensional integrated circuit stacking technology has spurred research and development of this enabling technology. This potential large scale application requires HAR etch with high and stable throughput, controllable profile and surface properties, and low costs.

  10. X-Ray Mask Fabrication Process Using Cr Mask and ITO Stopper in the Dry Etching of W Absorber

    NASA Astrophysics Data System (ADS)

    Fujino, Takeshi; Sasaki, Kei; Marumoto, Kenji; Yabe, Hideki; Yoshioka, Nobuyuki; Watakabe, Yaichiro

    1992-12-01

    An X-ray mask fabrication technology using a tungsten (W) absorber with a chromium (Cr) mask and indium titanium oxide (ITO) stopper was developed. When SF6 was used as the dry etching gas, substantial side etching occurred because the F radical reacts with W on the sidewall. In order to prevent side etching, a SF6 and CHF3 gas mixture was applied; however, the ratio of dry etching rate of W to that of resist is low. Furthermore, the underlying layer such as that of silicon dioxide (SiO2), which was used as the etching stopper, was easily damaged. Instead of a resist mask and SiO2 stopper, a Cr layer as the etching mask and ITO layer as the stopper layer were applied. By the use of these structures and etching procedures, high aspect ratio W patterns with vertical sidewalls have been successfully fabricated.

  11. Use of silane-based primer on silicon wafers to enhance adhesion of edge-protective coatings during wet etching: application of the TALON Wrap process

    NASA Astrophysics Data System (ADS)

    Dalvi-Malhotra, J.; Brand, G. J.; Zhong, X.-F.

    2007-02-01

    Hydrolyzed silane primer solutions were made of an organosilane in glycolether diluted with a large amount of water with or without an acid as a catalyst. The newly developed primer compositions exhibited an extended shelf life of 3 months or more. The compositions were specially designed to accommodate ProTEK TM. layer adhesion in the TALON Wrap. process. In this application, a spin-coatable polymeric material, ProTEK TM., is applied as the protective coating to coat the top, edge, and underside rim of the wafer in preparation for backside etching. By applying an underlayer of primer and an overlayer of ProTEK TM. coating to the top, edge and the bottom side rim of the wafer, an effective encapsulation of the wafer was achieved by using a custom-designed baffle. Each layer was applied by spin coating followed by baking at a wide temperature range. Thermal processing was followed by wet etching in KOH at an elevated temperature for . 10 hr. Post-etched wafers were rinsed with deionized (DI) water. Excellent edge profiles without "knife-edges" were obtained after etching the unprotected areas of the wafer. The process is fully automated because it is carried out in the TALON TM automated wafer-processing tool. Intact films with no lifting or peeling were obtained during or after the KOH etch process/DI rinse for silicon substrates.

  12. Gate-first GaN MOSFET based on dry-etching-assisted non-annealing ohmic process

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Jiang, Ying; Zhang, Jiaqi; Li, Liuan; Kawaharada, Kazuya; Wang, Dejun; Ao, Jin-Ping

    2015-04-01

    We report on a gate-first GaN metal-oxide-semiconductor field-effect transistor (MOSFET) based on a non-annealing ohmic process. The device was formed on an n+-GaN (30 nm, 1 × 1019 cm-3)/semi-insulating GaN wafer. The source and drain (Ti/Al/Ti/Au) were deposited after the contact region was treated using an inductively coupled plasma (ICP) dry etching system. Ohmic contact with a contact resistance of 0.48 Ω mm was realized at room temperature. A device fabricated by a gate-first process shows good pinch-off characteristics and a maximum field-effect mobility of 163.8 cm2 V-1 s-1.

  13. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T.; Duda, A.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-01-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  14. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  15. A Study on Selective Etching for Elevated PtSi Salicide Process and Work Function Modulation of PtSi Alloying with Hf

    NASA Astrophysics Data System (ADS)

    Ohmi, Shun-Ichiro; Gao, Jun

    The selective etching process for elevated self-aligned silicide (salicide) utilizing PtSi has been investigated. We have developed novel selective etching process utilizing a diluted aqua regia followed by a diluted HF light etching. It was found that the residual Pt-rich silicide layers on the sidewall have been successfully removed. We have also investigated a work function modulation of PtSi alloying with Hf. The barrier height for electron of PtSi has been reduced approximately 0.1 eV for PtxHf1-xSi formed by the silicidation of Pt(17 nm)/Hf(4 nm)/Si(100) stacked layer structures.

  16. Enhancement on photocatalytic activity of an amorphous titanium oxide film with nano-textured surface by selective-fluorination etching process

    SciTech Connect

    Shih, Pin-Chun; Huang, Cheng-Hao; Chen, Tai-Hong; Lai, Li-Wen; Lu, Yi-Shan; Liu, Day-Shan

    2014-04-01

    Highlights: • The amorphous TiO{sub x} film surface was modified via selective fluorination etching process. • The resulting nano-textured surface markedly enriched the specific surface area and surface acidity. • The photocatalytic activity was comparable to an annealed TiO{sub x} film with anatase structure. - Abstract: A selective-fluorination etching process achieved by an UV light pre-irradiation and the subsequently fluorination etching was developed to enhance the photocatalytic activity of a low-temperature deposited amorphous titanium oxide (a-TiO{sub x}) film. Textured surface on the a-TiO{sub x} films formed by this process were investigated using atomic force microscope and field emission scanning electron microscope. Evidence of the fluorine ions introduced into the a-TiO{sub x} films was examined using Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy. The etching thickness of the a-TiO{sub x} film was found to be deeply relevant to the film pre-irradiated by the UV light. An a-TiO{sub x} film with nano-textured surface, which was favorable to enlarge the specific surface area, thus was obtainable from the notable etching selectivity of the film pre-irradiated by UV light through a nano-sized mask. In addition, the surface acidity of the a-TiO{sub x} film was enhanced by the formation of the Ti-F chemical bonds originating from the fluorination etching process, which also was functional to facilitate the production of surface OH free radicals. Accordingly, the resulting fluorinated a-TiO{sub x} film with nano-textured surface performed a quality photocatalytic activity comparable to that of the high-temperature achieved TiO{sub x} film with anatase structures.

  17. Individualized Learning Package about Etching.

    ERIC Educational Resources Information Center

    Sauer, Michael J.

    An individualized learning package provides step-by-step instruction in the fundamentals of the etching process. Thirteen specific behavioral objectives are listed. A pretest, consisting of matching 15 etching terms with their definitions, is provided along with an answer key. The remainder of the learning package teaches the 13 steps of the…

  18. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  19. Characterization of the effect of etch process operating environment on the perfluoroelastomer chamber seal systems

    NASA Astrophysics Data System (ADS)

    Liu, Chinchao; Reichl, Gary

    2015-03-01

    Based on semiconductor process conditions such as power, gas, temperature and pressure, proper elastomer seal material selection is vital to maximizing the performance and productivity of wafer process production systems. Numerous metrology and test methods are used to measure the combined performance of elastomer seals. It is extremely important to take into consideration several performance parameters because minute shifts or modifications to process conditions can have detrimental effects on the production process. Weight loss, FTIR, SEM, Laser Confocal Microscope, and ICP/MS are some of the test methods used by Greene, Tweed to predict, with high confidence, the performance of elastomer seals for specific process conditions. This methodology is used to support the semiconductor research and process development community.

  20. Etching process mills PH 14-8 Mo alloy steel to precise tolerances

    NASA Technical Reports Server (NTRS)

    Chipman, B. L.; Mulland, P. W.

    1966-01-01

    Chemical milling process, which combines an aqua regia etchant with a sulfonate wetting agent, produces finishes on PH 14-8 molybdenum alloy steel to precise tolerances. This process permits precision removal of excess metal from the steel in annealed and/or aged conditions.

  1. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  2. Influence of etching processes on electronic transport in mesoscopic InAs/GaSb quantum well devices

    SciTech Connect

    Pal, Atindra Nath; Müller, Susanne; Ihn, Thomas; Ensslin, Klaus; Tschirky, Thomas; Charpentier, Christophe; Wegscheider, Werner

    2015-07-15

    We report the electronic characterization of mesoscopic Hall bar devices fabricated from coupled InAs/GaSb quantum wells sandwiched between AlSb barriers, an emerging candidate for two-dimensional topological insulators. The electronic width of the etched structures was determined from the low field magneto-resistance peak, a characteristic signature of partially diffusive boundary scattering in the ballistic limit. In case of dry-etching the electronic width was found to decrease with electron density. In contrast, for wet etched devices it stayed constant with density. Moreover, the boundary scattering was found to be more specular for wet-etched devices, which may be relevant for studying topological edge states.

  3. Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells

    SciTech Connect

    King, D.L.; Buck, M.E.

    1991-01-01

    A multifactor experimental investigation of silicon surface texturing was conducted in Sandia's Photovoltaic Device Fabrication Laboratory using aqueous potassium-hydroxide (KOH) solutions with isopropyl alcohol (IPA) added as a complexing agent. Czochralski, magnetic-Czochralski, and float-zone silicon wafers of different resistivities with both polished and lapped surfaces were included in the experiment. Process variables considered were solution temperature, time in solution, degree of mechanical mixing, KOH concentration, and IPA concentration. Using hemispherical reflectance as the primary gauge of success, process variables were identified that resulted in an effective surface texture with reflectance less than 12% prior to anti-reflection coating. Of particular interest was a low temperature (70 {degrees}C) process with less than 2% concentration of both KOH and IPA and wide process variable tolerances. 6 refs., 6 figs., 1 tab.

  4. Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2005-03-01

    This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.

  5. Etching Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1983-01-01

    20-page report reviews methods available for etching specific layers on wafers and discusses automation techniques and features on one particular automated system. Compares two major etching methods, chemical (wet) and plasma (dry), and discusses areas in need of development. Methods covered include "dip-and-dunk" manual method of chemical etching, automated chemical etching, and plasma etching.

  6. Reactive Ion Etching of Polymers in Oxygen Based Plasmas: a Study of Etch Mechanisms.

    NASA Astrophysics Data System (ADS)

    Graham, Sandra Wolterman

    The reactive ion etching of polymers has been studied in oxygen-based plasmas in an effort to understand the contributions of various mechanisms to the etching of these materials. Of the four active etch mechanisms; surface damage promoted etching, chemical sputtering, chemically enhanced physical sputtering, and direct reactive ion etching; the emphasis of this work has been on determining the relative contribution of direct reactive ion etching to the overall etching process. The etching of photoresist, polyimide, and amorphous carbon in O_2-CF_4 plasmas was studied in an asymmetrical reactive ion etcher at pressures ranging from 5 to 100 mtorr. Etch yield, ion flux, and oxygen atom concentration data were collected. The fit of this data to a linear model proposed by Joubert et al. (J. Appl. Phys., 65, 1989, 5096) was compared to the fit of the data to a nonlinear model proposed by the author. The linear model accounts for contribution due to three of the four etch mechanisms, but does not include contributions due to direct reactive ion etching. The nonlinear model accounts for contributions due to all four etch mechanisms. Experimental results indicate that the nonlinear model provides a better fit to the data than does the linear model. The relative contribution of direct reactive ion etching to the etching of photoresist ranges from 27% to 81% as the pressure decreases from 100 to 5 mtorr. Similar results are obtained for polyimide and amorphous carbon.

  7. Large-scale micro- and nanopatterns of Cu(In,Ga)Se2 thin film solar cells by mold-assisted chemical-etching process.

    PubMed

    Wang, Yi-Chung; Cheng, Hsiang-Ying; Yen, Yu-Ting; Wu, Tsung-Ta; Hsu, Cheng-Hung; Tsai, Hung-Wei; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2015-04-28

    A reactive mold-assisted chemical etching (MACE) process through an easy-to-make agarose stamp soaked in bromine methanol etchant to rapidly imprint larger area micro- and nanoarrays on CIGS substrates was demonstrated. Interestingly, by using the agarose stamp during the MACE process with and without additive containing oil and triton, CIGS microdome and microhole arrays can be formed on the CIGS substrate. Detailed formation mechanisms of microstructures and the chemical composition variation after the etching process were investigated. In addition, various microand nanostructures were also demonstrated by this universal approach. The microstructure arrays integrated into standard CIGS solar cells with thinner thickness can still achieve an efficiency of 11.22%, yielding an enhanced efficiency of ∼18% compared with that of their planar counterpart due to an excellent absorption behavior confirmed by the simulation results, which opens up a promising way for the realization of high-efficiency micro- or nanostructured thin-film solar cells. Finally, the complete dissolution of agarose stamp into hot water demonstrates an environmentally friendly method by the mold-assisted chemical etching process through an easy-to-make agarose stamp. PMID:25769317

  8. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  9. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  10. Photosensitive etch protection coating for silicon wet-etch applications

    NASA Astrophysics Data System (ADS)

    Dalvi-Malhotra, J.; Zhong, X. F.; Planje, C.

    2008-02-01

    A spin-on polymeric material has been developed to replace the silicon nitride mask used in the MEMS industry for silicon wet-etch processing. Built-in photosensitivity eliminates the need for additional photoresists in the system. The process consists of applying an organosilane-based primer layer onto a silicon wafer, followed by spin coating the photosensitive layer. After a soft bake, the coating is imaged by exposing it to ultraviolet light. After a post-exposure bake, the coating is developed by a solvent. After a final bake, the prepared wafer is then etched in a hot concentrated alkaline solution to complete the pattern transfer. The polymer-coated area remains protected with insignificant and controllable undercut after extended hours of wet etching. Etch protection performance was characterized as a ratio of undercut (u) to etch depth (h). The polymeric mask allows silicon substrates to be etched anisotropically in the same way as silicon nitride masks although more undercut occurs when KOH or NaOH are used as etchants. With use of tetramethylammonium hydroxide (TMAH) as an etchant, a consistent 1-2% undercut ratio (u/h×100%) was obtained. The effects of various parameters such as use of different etchants and the effects of etchant concentration and delayed processing on undercut ratio are investigated.

  11. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  12. Plasma etching of chromium films in the fabrication of photomasks

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas P.; Buck, Peter D.

    1995-12-01

    To meet the advanced CD uniformity and resolution requirements of state-of-the-art maskmaking, dry chrome etch processing may be required. Dry etching is a more anisotropic process, significantly reducing etch undercut. The absence of undercutting allows the lithographer to image the resist at the iso-focal point, eliminating the need to underexpose to maintain CDs. Also, dry etch parameters can be precisely controlled via a microprocessor- controlled etch system with a highly accurate parameter-metering system that ensures greater process control. Using design-of-experiment methodologies, a chrome plasma etch process (using OCG-895i) was developed. This work proves the feasibility of plasma etching chromium patterns on photomasks. The results show an etch that has excellent uniformity, is anisotropic, and has excellent edge quality. Also, resist selectivity is high for the etching of thin chrome films. SEM results show a significant reduction in the bias needed to achieve nominal CDs. As with many dry etch processes, loading and microloading effects (i.e., localized pattern density effect on etch rates) are a concern. Initial investigations of loading and microloading effects were conducted. Results suggest that due to the high anisotropy of the etch, microloading is not an issue. However, plate loading (or the amount of chrome removed) increases etch times and can result in radial etch patterns. Loading effects must be minimized or eliminated to optimize etch uniformity.

  13. The tailored inner space of TiO2 electrodes via a 30 second wet etching process: high efficiency solid-state perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Kwon, Jeong; Kim, Sung June; Park, Jong Hyoek

    2015-06-01

    We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures.We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01714a

  14. Etching anisotropy mechanisms lead to morphology-controlled silicon nanoporous structures by metal assisted chemical etching.

    PubMed

    Jiang, Bing; Li, Meicheng; Liang, Yu; Bai, Yang; Song, Dandan; Li, Yingfeng; Luo, Jian

    2016-02-01

    The etching anisotropy induced by the morphology and rotation of silver particles controls the morphology of silicon nanoporous structures, through various underlying complex etching mechanisms. The level of etching anisotropy can be modulated by controlling the morphology of the silver catalyst to obtain silicon nanoporous structures with straight pores, cone-shaped pores and pyramid-shaped pores. In addition, the structures with helical pores are obtained by taking advantage of the special anisotropic etching, which is induced by the rotation and revolution of silver particles during the etching process. An investigation of the etching anisotropy during metal assisted chemical etching will promote a deep understanding of the chemical etching mechanism of silicon, and provide a feasible approach to fabricate Si nanoporous structures with special morphologies. PMID:26785718

  15. UV laser activated digital etching of GaAs

    SciTech Connect

    Meguro, T.; Aoyagi, Y.

    1996-12-31

    The self-limited etching characteristics of digital etching employing an UV laser/Cl{sub 2}/GaAs system are presented. The self-limiting nature is the key mechanism and plays an important role in digital etching for obtaining etch rates independent of etching parameters. Surface processes based on photodissociation of physisorbed chlorine on GaAs with diffusion of negatively charged Cl into GaAs are also discussed.

  16. A Multi-Scale Study on Silicon-Oxide Etching Processes in C4F8/Ar Plasmas

    NASA Astrophysics Data System (ADS)

    Sui, Jiaxing; Zhang, Saiqian; Liu, Zeng; Yan, Jun; Dai, Zhongling

    2016-06-01

    A multi-scale numerical method coupled with the reactor, sheath and trench model is constructed to simulate dry etching of SiO2 in inductively coupled C4F8 plasmas. Firstly, ion and neutral particle densities in the reactor are decided using the CFD-ACE+ commercial software. Then, the ion energy and angular distributions (IEDs and IADs) are obtained in the sheath model with the sheath boundary conditions provided with CFD-ACE+. Finally, the trench profile evolution is simulated in the trench model. What we principally focus on is the effects of the discharge parameters on the etching results. It is found that the discharge parameters, including discharge pressure, radio-frequency (rf) power, gas mixture ratios, bias voltage and frequency, have synergistic effects on IEDs and IADs on the etched material surface, thus further affecting the trench profiles evolution. supported by National Natural Science Foundation of China (No. 11375040) and the Important National Science & Technology Specific Project of China (No. 2011ZX02403-002)

  17. In-Plasma Photo-Assisted Etching

    NASA Astrophysics Data System (ADS)

    Economou, Demetre

    2015-09-01

    A methodology to precisely control the ion energy distribution (IED) on a substrate allowed the study of silicon etching as a function of ion energy at near-threshold energies. Surprisingly, a substantial etching rate was observed, independent of ion energy, when the ion energy was below the ion-assisted etching threshold (~ 16 eV for etching silicon with chlorine plasma). Careful experiments led to the conclusion that this ``sub-threshold'' etching was due to photons, predominately at wavelengths <1700 Å. Among the plasmas investigated, photo-assisted etching (PAE) was lowest in Br2/Ar gas mixtures and highest in HBr/Cl2/Ar. Above threshold etching rates scaled with the square root of ion energy. PAE rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) and Ar emission intensity (7504 Å). Scanning electron and atomic force microscopy (SEM and AFM) revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. In-plasma PAE may be be a complicating factor for processes that require low ion energies, such as atomic layer etching. On the other hand PAE could produce sub-10 nm high aspect ratio (6:1) features by highly selective plasma etching to transfer nascent nanopatterns in silicon. Work supported by DOE Plasma Science Center and NSF.

  18. Method of etching zirconium diboride

    SciTech Connect

    Heath, L.S.; Kwiatkowski, B.

    1988-03-31

    The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalty thereon. This invention relates in general to a method of etching, zirconium diboride(ZrB/sub 2/) and, in particular, to a method of dry etching a thin film of ZrB/sub 2/ that has been deposited onto a substrate and patterned using photolithography. U.S. patent application S.N. 156, 124, filed 16 February, 1988, of Linda S. Heath for Method of Etching Titanium Diboride and assigned to a common assignee and with which this application is copending describes and claims a method of etching titanium diboride with a dry etch. Zirconium diboride, like titanium diboride, TiB/sub 2/, has become of interest in laboratory research because of its resistance to change or degradation at high temperatures. By adjusting the process parameters, one is able to attain etch rates of 67 to 140 A/min for ZrB/sub 2/. This is useful for patterning ZrB/sub 2/ as a diffusion barrier or a Schottky contact to semiconductors. The ZrB/sub 2/ film may be on a GaAs substrate.

  19. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  20. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  1. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity.

    PubMed

    Zeniou, A; Ellinas, K; Olziersky, A; Gogolides, E

    2014-01-24

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min(-1) using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing. PMID:24346308

  2. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity

    NASA Astrophysics Data System (ADS)

    Zeniou, A.; Ellinas, K.; Olziersky, A.; Gogolides, E.

    2014-01-01

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min-1 using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing.

  3. Gas Cluster Ion Beam Etching under Acetic Acid Vapor for Etch-Resistant Material

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Hinoura, Ryo; Toyoda, Noriaki; Hara, Ken-ichi; Yamada, Isao

    2013-05-01

    Gas cluster ion beam (GCIB) etching of etch-resistant materials under acetic acid vapor was studied for development of new manufacturing process of future nonvolatile memory. Etching depths of various etch-resistant materials (Pt, Ru, Ta, CoFe) with acetic acid vapor during O2-GCIB irradiations were 1.8-10.7 times higher than those without acetic acid. Also, etching depths of Ru, Ta, CoFe by Ar-GCIB with acetic acid vapor were 2.2-16.1 times higher than those without acetic acid. Even after etching of Pt, smoothing of Pt was realized using O2-GCIB under acetic acid. From XPS and angular distribution of sputtered Pt, it was shown that PtOx layer was formed on Pt after O2-GCIB irradiation. PtOx reacted with acetic acid by GCIB bombardments; as a result, increase of etching depth was observed.

  4. Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Heard, P. J.; Marshall, J. M.; Thomas, P. A.; Yu, S.

    2008-02-01

    The etching characteristics of congruent LiNbO3 single crystals including doped LiNbO3 and proton-changed LiNbO3 have been studied in reactive ion etching (RIE) and inductively coupled plasma (ICP) etching tools, using different recipes of gas mixtures. The effects of parameters including working pressure, RIE power, and ICP power are investigated and analyzed by measurement of etching depth, selectivity, uniformity, etched surface state, and sidewall profile by means of focused ion beam etching, energy-dispersive x-ray analysis, secondary ion mass spectroscopy, scanning electron microscopy, and surface profilometry. The effects of a sample carrier wafer coating have also been investigated. Optimized processes with high etching rates, good mask selectivity, and a near-vertical profile have been achieved. Ridge waveguides on proton-exchanged LiNbO3 have been fabricated and optically measured.

  5. Recovery of Multilayer-Coated Zerodur and ULE Optics for Extreme-Ultraviolet Lithography by Recoating, Reactive-Ion Etching, and Wet-Chemical Processes.

    PubMed

    Mirkarimi, P B; Baker, S L; Montcalm, C; Folta, J A

    2001-01-01

    Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO(3) also showed promise. PMID:18356974

  6. An experimental study on fabricating an inverted mesa-type quartz crystal resonator using a cheap wet etching process.

    PubMed

    Liang, Jinxing; Huang, Jia; Zhang, Tian; Zhang, Jing; Li, Xuefeng; Ueda, Toshitsugu

    2013-01-01

    In this study, a miniaturized high fundamental frequency quartz crystal microbalance (QCM) is fabricated for sensor applications using a wet etching technique. The vibration area is reduced in the fabrication of the high frequency QCM with an inverted mesa structure. To reduce the complexity of the side wall profile that results from anisotropic quartz etching, a rectangular vibration area is used instead of the conventional circular structure. QCMs with high Q values exceeding 25,000 at 47 MHz, 27,000 at 60 MHz, 24,000 at 73 MHz and 25,000 at 84 MHz are fabricated on 4 × 4 mm2 chips with small vibration areas of 1.2 × 1.4 mm2. A PMMA-based flow cell is designed and manufactured to characterize the behavior of the fabricated QCM chip in a liquid. Q values as high as 1,006 at 47 MHz, 904 at 62 MHz, 867 at 71 MHz and 747 at 84 MHz are obtained when one side of the chip is exposed to pure water. These results show that fabricated QCM chips can be used for bio- and chemical sensor applications in liquids. PMID:24025559

  7. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process.

    PubMed

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-21

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm(3) g(-1). The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis. PMID:26394819

  8. An Experimental Study on Fabricating an Inverted Mesa-Type Quartz Crystal Resonator Using a Cheap Wet Etching Process

    PubMed Central

    Liang, Jinxing; Huang, Jia; Zhang, Tian; Zhang, Jing; Li, Xuefeng; Ueda, Toshitsugu

    2013-01-01

    In this study, a miniaturized high fundamental frequency quartz crystal microbalance (QCM) is fabricated for sensor applications using a wet etching technique. The vibration area is reduced in the fabrication of the high frequency QCM with an inverted mesa structure. To reduce the complexity of the side wall profile that results from anisotropic quartz etching, a rectangular vibration area is used instead of the conventional circular structure. QCMs with high Q values exceeding 25,000 at 47 MHz, 27,000 at 60 MHz, 24,000 at 73 MHz and 25,000 at 84 MHz are fabricated on 4 × 4 mm2 chips with small vibration areas of 1.2 × 1.4 mm2. A PMMA-based flow cell is designed and manufactured to characterize the behavior of the fabricated QCM chip in a liquid. Q values as high as 1,006 at 47 MHz, 904 at 62 MHz, 867 at 71 MHz and 747 at 84 MHz are obtained when one side of the chip is exposed to pure water. These results show that fabricated QCM chips can be used for bio- and chemical sensor applications in liquids. PMID:24025559

  9. Rapid, Non-Mechanical, Damage Free Figuring Of Optical Surfaces Using Plasma Assisted Chemical Etching (PACE): Part Ii Theory & Process Control

    NASA Astrophysics Data System (ADS)

    Zarowin, C. B.; Bollinger, L. D.

    1989-01-01

    We describe an application of Plasma Assisted Chemical Etching (PACE) to rapid and controllable figuring and smoothing of optical surfaces without mechanical contact. This removes the usual constraints on the design of optical elements imposed by mechanical pro-cesses, such as substrate deformation, edge distortion and subsurface damage or contamination. This process employs a process originally developed to pattern microelectronic circuits by ion enhanced chemical etching of a solid (Si02, Si, Al, Au, etc.) through a relatively nonerodeable photolithographically patterned mask1,-2. The PACE process shapes the optical surface by removing material in a small area under a confined reactive gas plasma (a "puck") moved over this surface. Rates of removal of such processes in microelectronic applications are as high as 10 pm per minute and are very accurately controllable and repeatable. The removal "footprint" of PACE may be varied during the process and it inherently smooths or polishes while exposing a virgin surface free of process generated contamination and subsurface damage. It can operate in two modes: (1) in "contact" with the plasma, where the chemical reaction is driven by the kinetic energy given up at the reacting surface by short lived species such as ions; and (2) downstream of the plasma, by the stored energy freed at the surface by longer lived species such as excited metastable neutrals. Since control of this process is so important to this application, we sketch the generic physics and chemi hi stry1,2 of the PACE figuring and smoothing process, identifying the quantitative relations between the plasma and chemical parameters that control it:rf power density reactive gas pressure reactive gas flow the reactor surface temperatures and the pertinent transport chemistry.

  10. Etching Behavior of Aluminum Alloy Extrusions

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  11. Fabrication of high-k/metal-gate MoS2 field-effect transistor by device isolation process utilizing Ar-plasma etching

    NASA Astrophysics Data System (ADS)

    Ninomiya, Naruki; Mori, Takahiro; Uchida, Noriyuki; Watanabe, Eiichiro; Tsuya, Daiju; Moriyama, Satoshi; Tanaka, Masatoshi; Ando, Atsushi

    2015-04-01

    We investigated a device isolation process for MoS2-based devices and fabricated high-k/metal-gate MoS2 MOSFETs. An Ar-ion etching process was utilized for the device isolation process. It circumvents damage in the device channel, as confirmed by Raman spectroscopy. A top-gate MoS2 MOSFET was fabricated with a HfO2 thin film 16 nm thick as the gate insulator. Utilizing capacitance-voltage (C-V) measurements, the capacitance equivalent thickness (CET) was estimated to be 5.36 nm, which indicates that a gate stack with the sufficiently thin insulator was successfully realized. The device exhibited a mobility of 25.3 cm2/(V·s), a subthreshold swing (SS) of 86.0 mV/decade, and an ON/OFF ratio of 107. This satisfactory device performance demonstrates the feasibility of the proposed device isolation process.

  12. Improvement of process uniformity in recessed gate AlGaN/GaN HFET by selective etching of in-situ SixNy on AlGaN

    NASA Astrophysics Data System (ADS)

    Ko, Hwa-Young; Park, Jinhong; Lee, Hojung; Jo, Youngje; Song, Misun; Jang, T.

    2014-01-01

    The effects of in-situ SixNy etching were investigated by comparing the uniformity of threshold voltage on recessed gate AlGaN/GaN heterostructure field effect transistor (HFET) devices with in-situ grown SixNy passivation. By varying O2 ratio in total gas flow, etch rate and selectivity of SixNy and AlGaN were changed significantly. The etch rate of AlGaN was reduced by adding O2 in gas mixture, which caused the formation of AlOx and GaOx on the surface during etching process. The etch rate of in-situ SixNy was decreased with increasing O2 ratio. By this relationship, the highest selectivity was obtained with 30% O2 ratio in total gas flow and selectivity was increased from 5 : 1 to 100 : 1. Using this optimized etching condition, the standard deviation of threshold voltage on AlGaN/GaN recess gate HFET was improved from 0.60 to 0.18 on 6-in. processed wafer.

  13. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    NASA Astrophysics Data System (ADS)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The

  14. Copper-assisted, anti-reflection etching of silicon surfaces

    DOEpatents

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  15. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    PubMed

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability. PMID:24969359

  16. Enhancement of RIE: etched Diffractive Optical Elements surfaces by using Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Bischoff, Ch.; Rädel, U.; Grau, M.; Wallrabe, U.; Völklein, F.

    2015-09-01

    Shaping of laser light intensities by using Diffractive Optical Elements allows the adaption of the incident light to its application. Fused silica is used where for example UV-light or high temperatures are mandatory. For high diffraction efficiency the quality of the etched surface areas is important. The investigation of different process parameters for Ion Beam and Reactive Ion Etching reveals that only Ion Beam Etching provides surfaces with optical quality. Measurements of the influence of the surface quality on the diffraction efficiencies prove that the surfaces generated by Reactive Ion Etching are not suitable. Due to the high selectivity of the process Reactive Ion Etching is nevertheless a reasonable choice for the fabrication of Diffractive Optical Elements. To improve the quality of the etched surfaces a post processing with Ion Beam Etching is developed. Simulations in MATLAB display that the angle dependent removal of the surface during the Ion Beam Etching causes a smoothing of the surface roughness. The positive influence of a post processing on the diffraction efficiency is outlined by measurements. The ion beam post processing leads to an increase of the etching depth. For the fabrication of high efficient Diffractive Optical Elements this has to be taken into account. The relation is investigated and transferred to the fabrication of four-level gratings. Diffraction efficiencies up to 78 % instead of the ideal 81 % underline the practicability of the developed post processing.

  17. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-01

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis.The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume

  18. Multilayer Badges Indicate Depths Of Ion Sputter Etches

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.; Garvin, H. L.

    1994-01-01

    Multilayer badges devised to provide rapid, in-place indications of ion sputter etch rates. Badges conceived for use in estimating ion erosion of molybdenum electrodes used in inert-gas ion thrustors. Concept adapted to measure ion erosion in industrial sputter etching processes used for manufacturing of magnetic, electronic, and optical devices. Badge etched when bombarded by energetic ions. Badge layers exposed using mask. Contrast between layers facilitates counting of layers to determine etch depth.

  19. Silicon Nanowire Array Solar Cell Prepared by Metal-Induced Electroless Etching with a Novel Processing Technology

    NASA Astrophysics Data System (ADS)

    Han-Don Um,; Jin-Young Jung,; Hong-Seok Seo,; Kwang-Tae Park,; Sang-Won Jee,; S. A. Moiz,; Jung-Ho Lee,

    2010-04-01

    We inexpensively fabricated vertically aligned Si nanowire solar cells using metal-induced electroless etching and a novel doping technique. Co-doping of boron and phosphorus was achieved using a spin-on-doping method for the simultaneous formation of a front-side emitter and a back surface field in a one-step thermal cycle. Nickel electroless deposition was also performed in order to form a continuous metal grid electrode on top of an array of vertically aligned Si nanowires. A highly dense array of Si nanowires with low reflectivity was obtained using Ag nanoparticles of optimal size (60-90 nm). We also obtained an open circuit voltage of 544 mV, a short circuit current of 14.68 mA/cm2, and a cell conversion efficiency of 5.25% at 1.5AM illumination. The improved photovoltaic performance was believed to be the result of the excellent optical absorption of the Si nanowires and the improved electrical properties of the electroless deposited electrode.

  20. Dry Etching of Organic Low Dielectric Constant Film without Etch Stop Layer

    NASA Astrophysics Data System (ADS)

    Mizumura, Michinobu; Fukuyama, Ryouji; Oomoto, Yutaka

    2002-04-01

    We investigated the trade-off between the increase of etch rate and the control of subtrenching in H2/N2 etching of a SiLK film (SiLK is a trademark of The Dow Chemical Company) without an etch stop layer for a Cu/low-k dual damascene structure. Based on our results, it is clear that the re-incident distribution of the reaction product influenced the mechanism of subtrenching strongly. As H etchant had the ability to remove the reaction product efficiently, we have successfully obtained good etching performance (an average etch rate of 128 nm/min, no subtrenching, and an etch rate uniformity of 8.9% within a 200 mm wafer) using an H2 high-flow-rate process in order to increase the amount of H etchant.

  1. Steric stabilization of "charge-free" cellulose nanowhiskers by grafting of poly(ethylene glycol).

    PubMed

    Araki, Jun; Mishima, Shiho

    2015-01-01

    A sterically stabilized aqueous suspension of "charge-free" cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol) (mPEG). The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica gel particles carrying 2,2,6,6-tetramethyl-1-pyperidinyloxyl (TEMPO) moieties and subsequent esterification between terminal carboxyls in mPEG and surface hydroxyl groups of cellulose nanowhiskers, mediated by 1,1'-carbonyldiimidazole (CDI) in dimethyl sulfoxide or dimethylacetamide. Some of the prepared PEG-grafted samples showed remarkable flow birefringence and enhanced stability after 24 h, even in 0.1 M NaCl, suggesting successful steric stabilization by efficient mPEG grafting. Actual PEG grafting via ester linkages was confirmed by attenuated total reflectance-Fourier transform infrared spectrometry. In a typical example, the amount of grafted mPEG was estimated as ca. 0.3 g/g cellulose by two measurements, i.e., weight increase after grafting and weight loss after alkali cleavage of ester linkages. Transmission electron microscopy indicated unchanged nanowhisker morphology after mPEG grafting. PMID:25547722

  2. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin; Sun, Jianbo

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  3. Research on wet etching at MEMS torsion mirror optical switch

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Jifeng; Luo, Yuan

    2002-10-01

    Etching is a very important technique at MEMS micromachining. There are two kinds of etching processing, the one is wet etching and the other is dry etching. In this paper, wet selective etching with KOH and tetramethyl ammonium hydroxide (TMAH) etchants is researched in order to make a torsion mirror optical switch. The experiments results show that TMAH with superphosphate is more suitable at MEMS torsion mirror optical switch micromachining than KOH, and it also has good compatibility with IC processing. Also our experiments results show some different with other reported research data. More work will be done to improve the yield rate of MEMS optical switch.

  4. Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Han; Sun, Chih-Ming; Liu, Yu-Chia; Wang, Chuanwei; Fang, Weileun

    2009-10-01

    This study presents a process design methodology to improve the performance of a CMOS-MEMS gap-closing capacitive sensor. In addition to the standard CMOS process, the metal wet-etching approach is employed as the post-CMOS process to realize the present design. The dielectric layers of the CMOS process are exploited to form the main micro mechanical structures of the sensor. The metal layers of the CMOS process are used as the sensing electrodes and sacrificial layers. The advantages of the sensor design are as follows: (1) the parasitic capacitance is significantly reduced by the dielectric structure, (2) in-plane and out-of-plane sensing gaps can be reduced to increase the sensitivity, and (3) plate-type instead of comb-type out-of-plane sensing electrodes are available to increase the sensing electrode area. To demonstrate the feasibility of the present design, a three-axis capacitive CMOS-MEMS accelerometers chip is implemented and characterized. Measurements show that the sensitivities of accelerometers reach 11.5 mV G-1 (in the X-, Y-axes) and 7.8 mV G-1 (in the Z-axis), respectively, which are nearly one order larger than existing designs. Moreover, the detection of 10 mG excitation using the three-axis accelerometer is demonstrated for both in-plane and out-of-plane directions.

  5. Enhanced ferro-actuator with a porosity-controlled membrane using the sol-gel process and the HF etching method

    NASA Astrophysics Data System (ADS)

    Kim, KiSu; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    In this paper, we propose a ferro-actuator using a porous polyvinylidene difluoride (PVDF) membrane. In detail, we fabricated the silica-embedded PVDF membrane using a sol-gel process with PVDF solution and tetraethyl orthosilicate (TEOS) solution, where the size of the silica was determined by the ratio of the PVDF and TEOS solutions. Using hydrofluoric acid (HF) etching, the silica were removed from the silica-embedded PVDF membrane, and porous PVDF membranes with different porosities were obtained. Finally, through absorption of a ferrofluid on the porous PVDF membrane, the proposed ferro-actuator using porous PVDF membranes with different porosities was fabricated. We executed the characterization and actuation test as follows. First, the silica size of the silica-embedded PVDF membrane and the pore size of the porous PVDF membrane were analyzed using scanning electron microscopy (SEM) imaging. Second, energy-dispersive x-ray spectroscopy analysis showed that the silica had clearly been removed from the silica-embedded PVDF membrane by HF etching. Third, through x-ray photoelectron spectroscopy and vibrating sample magnetometer (VSM) of the ferro-actuators, we found that more ferrofluids were absorbed by the porous PVDF membrane when the pore of the membrane was smaller and uniformly distributed. Finally, we executed tip displacement and a blocking force test of the proposed ferro-actuator using the porous PVDF membrane. Similar to the VSM result, the ferro-actuator that used a porous PVDF membrane with smaller pores exhibited better actuation performance. The ferro-actuator that used a porous PVDF membrane displayed a tip displacement that was about 7.2-fold better and a blocking force that was about 6.5-fold better than the ferro-actuator that used a pure PVDF membrane. Thus, we controlled the pore size of the porous PVDF membrane and enhanced the actuation performance of the ferro-actuator using a porous PVDF membrane.

  6. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  7. Plasma damage mechanisms for low-k porous SiOCH films due to radiation, radicals, and ions in the plasma etching process

    SciTech Connect

    Uchida, Saburo; Takashima, Seigo; Hori, Masaru; Fukasawa, Masanaga; Ohshima, Keiji; Nagahata, Kazunori; Tatsumi, Tetsuya

    2008-04-01

    Low dielectric constant (low-k) films have been widely used as insulating materials in ultra-large-scale integrated circuits. Low-k films receive heavy damage during the plasma processes of etching or ashing, resulting in an increase in their dielectric constant. In order to realize damage-free plasma processes for low-k films, it is essential to determine the influence of radiation, radicals, and ions emitted in the plasma process on the characteristics of low-k films. We have developed a technique to evaluate the influence of radiation, radicals, ions, and their synergies on films in real plasma processes and have named it pallet for plasma evaluation (PAPE). Using the PAPE, plasma-induced damage on porous SiOCH films were investigated in dual-frequency capacitively coupled H{sub 2}/N{sub 2} plasmas. The damage was characterized by ellipsometry, Fourier-transform infrared spectroscopy, and thermal desorption spectroscopy. On the basis of the results, the damage mechanisms associated with vacuum ultraviolet (VUV) and UV radiation, radicals, and ions were clarified. The damage was caused not only by ions and radicals but also by VUV and UV radiation emitted by the plasmas. Moreover, it was found that the synergy between the radiation and the radicals enhanced the damage.

  8. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3

  9. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  10. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  11. Plasma and ion etching for failure analysis. Part 1: Review of current theory and techniques

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Mapper, D.; Farren, J.; Stephen, J. H.

    1985-07-01

    The state-of-the-art for the etching of semiconductor device materials, as applied to failure analysis, is reviewed. The basic mechanisms and techniques of dry etching were studied. Process parameters, such as rf power, gas mixture, pressure, and temperature and their effect on the etch process are reported. The Giga-Etch 100 E method of dry etching is recommended. Equipment available on the market is listed.

  12. Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors.

    PubMed

    Sánchez-Moral, S; Soler, V; Cañaveras, J C; Sanz-Rubio, E; Van Grieken, R; Gysels, K

    1999-12-15

    In order to study the wall corrosion processes induced by visitors in the Altamira Cave (northern Spain), a multidisciplinary study was conducted in the cave. For a period of 1 year, a microclimate monitoring system, measuring the temperature, relative humidity, CO2 and 222Rn concentrations was operated. Host rock samples were collected as well as indoor and outdoor atmospheric particulate matter. These data are used for a quantitative assessment of the wall corrosion processes. The presence of visitors was found to enhance the corrosion processes up to 78 times in comparison with the natural processes. Outdoor air pollution did not have a significant affect. PMID:10635591

  13. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  14. Excimer Laser Etching

    SciTech Connect

    Boatner, Lynn A; Longmire, Hu Foster; Rouleau, Christopher M; Gray, Allison S

    2008-04-01

    Excimer laser radiation at a wavelength of = 248 nm represents a new etching method for the preparation of metallographic specimens. The method is shown to be particularly effective for enhancing the contrast between different phases in a multiphase metallographic specimen.

  15. Application of an RF Biased Langmuir Probe to Etch Reactor Chamber Matching, Fault Detection and Process Control

    NASA Astrophysics Data System (ADS)

    Keil, Douglas; Booth, Jean-Paul; Benjamin, Neil; Thorgrimsson, Chris; Brooks, Mitchell; Nagai, Mikio; Albarede, Luc; Kim, Jung

    2008-10-01

    Semiconductor device manufacturing typically occurs in an environment of both increasing equipment costs and per unit sale price shrinkage. Profitability in such a conflicted economic environment depends critically on yield, throughput and cost-of-ownership. This has resulted in increasing interest in improved fault detection, process diagnosis, and advanced process control. Achieving advances in these areas requires an integrated understanding of the basic physical principles driving the processes of interest and the realities of commercial manufacturing. Following this trend, this work examines the usefulness of an RF-biased planar Langmuir probe^1. This method delivers precise real-time (10 Hz) measurements of ion flux and tail weighted electron temperature. However, it is also mechanically non-intrusive, reliable and insensitive to contamination and deposition on the probe. Since the measured parameters are closely related to physical processes occurring at the wafer-plasma interface, significant improvements in process control, chamber matching and fault detection are achieved. Examples illustrating the improvements possible will be given. ^1J.P. Booth, N. St. J. Braithwaite, A. Goodyear and P. Barroy, Rev.Sci.Inst., Vol.71, No.7, July 2000, pgs. 2722-2727.

  16. Sloped niobium etching using CF sub 4 and O sub 2

    SciTech Connect

    Sasserath, J.N.; Vivalda, J. )

    1990-11-01

    A sloped etching process for Nb is developed for pilot line operations. Reactive ion etching and plasma processes are compared for a CF{sub 4}/O{sub 2} parallel plate etch system. The higher pressure etches were found to have better characteristics for the numerous combinations of independent variables examined. Process settings tested include rf power, chamber pressure, and etchant flow rates. Higher Nb etch rates, photoresist:niobium etch rate selectivity of 1:1, and adequate selectivity over SiO{sub 2} were obtained with the plasma etches. For both types of processes, control of plasma loading affects were determined to be crucial to accomplish successful patterning. Finally, mathematical models of the etch process were derived from the data and used to determine basic etch mechanisms occurring within the reactor.

  17. Etching characteristics of LiNbO{sub 3} in reactive ion etching and inductively coupled plasma

    SciTech Connect

    Ren, Z.; Yu, S.; Heard, P. J.; Marshall, J. M.; Thomas, P. A.

    2008-02-01

    The etching characteristics of congruent LiNbO{sub 3} single crystals including doped LiNbO{sub 3} and proton-changed LiNbO{sub 3} have been studied in reactive ion etching (RIE) and inductively coupled plasma (ICP) etching tools, using different recipes of gas mixtures. The effects of parameters including working pressure, RIE power, and ICP power are investigated and analyzed by measurement of etching depth, selectivity, uniformity, etched surface state, and sidewall profile by means of focused ion beam etching, energy-dispersive x-ray analysis, secondary ion mass spectroscopy, scanning electron microscopy, and surface profilometry. The effects of a sample carrier wafer coating have also been investigated. Optimized processes with high etching rates, good mask selectivity, and a near-vertical profile have been achieved. Ridge waveguides on proton-exchanged LiNbO{sub 3} have been fabricated and optically measured.

  18. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  19. Metal assisted anodic etching of silicon

    NASA Astrophysics Data System (ADS)

    Lai, Chang Quan; Zheng, Wen; Choi, W. K.; Thompson, Carl V.

    2015-06-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P+-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N+-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si.Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed

  20. Characterization of deep wet etching of glass

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Chen, Bangtao; Tay, Francis E. H.; Xu, Guolin; Miao, Jianmin

    2006-01-01

    This paper presents a characterization of wet etching of glass in HF-based solutions with a focus on etching rate, masking layers and quality of the generated surface. The first important factor that affects the deep wet etching process is the glass composition. The presence of oxides such as CaO, MgO or Al IIO 3 that give insoluble products after reaction with HF can generate rough surface and modify the etching rate. A second factor that influences especially the etch rate is the annealing process (560°C / 6 hours in N II environment). For annealed glass samples an increase of the etch rate with 50-60% was achieved. Another important factor is the concentration of the HF solution. For deep wet etching of Pyrex glass in hydrofluoric acid solution, different masking layers such as Cr/Au, PECVD amorphous silicon, LPCVD polysilicon and silicon carbide are analyzed. Detailed studies show that the stress in the masking layer is a critical factor for deep wet etching of glass. A low value of compressive stress is recommended. High value of tensile stress in the masking layer (200-300 MPa) can be an important factor in the generation of the pinholes. Another factor is the surface hydrophilicity. A hydrophobic surface of the masking layer will prevent the etching solution from flowing through the deposition defects (micro/nano channels or cracks) and the generation of pinholes is reduced. The stress gradient in the masking layer can also be an important factor in generation of the notching defects on the edges. Using these considerations a special multilayer masks Cr/Au/Photoresist (AZ7220) and amorphous silicon/silicon carbide/Photoresist were fabricated for deep wet etching of a 500 μm and 1mm-thick respectively Pyrex glass wafers. In both cases the etching was performed through wafer. From our knowledge these are the best results reported in the literature. The quality of the generated surface is another important factor in the fabrication process. We notice that the

  1. Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes.

    PubMed

    Chang, Yi-An; Chen, Fang-Ming; Tsai, Yu-Lin; Chang, Ching-Wen; Chen, Kuo-Ju; Li, Shan-Rong; Lu, Tien-Chang; Kuo, Hao-Chung; Kuo, Yen-Kuang; Yu, Peichen; Lin, Chien-Chung; Tu, Li-Wei

    2014-08-25

    In this study, the design and fabrication schemes of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes are presented. Compared to typical front-side illuminated solar cells, the improvements of open-circuit voltage (V(oc)) from 1.88 to 1.94 V and short-circuit current density (J(sc)) from 0.84 to 1.02 mA/cm(2) are observed. Most significantly, the back-side illuminated InGaN/GaN solar cells exhibit an extremely high fill factor up to 85.5%, leading to a conversion efficiency of 1.69% from 0.66% of typical front-side illuminated solar cells under air mass 1.5 global illuminations. Moreover, the effects of bottom Bragg mirrors on the photovoltaic characteristics of back-side illuminated solar cells are studied by an advanced simulation program. The results show that the J(sc) could further be improved with a factor of 10% from the original back-side illuminated solar cell by the structure optimization of bottom Bragg mirrors. PMID:25322188

  2. Effect of crystal orientation on anisotropic etching and MOCVD growth of grooves on GaAs

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.

    1989-01-01

    Grooves can be formed on GaAs by wet-chemical anisotropic etching of surfaces masked by photoresist stripes. The effect of crystal orientation on the shape of the grooves etched and on subsequent epitaxial growth by MOCVD is presented. The polar lattice increases the complexity of the etching and growth processes. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher order planes.

  3. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si. PMID:26059556

  4. Spectroscopic Ellipsometry based Scatterometry enabling 193nm Litho and Etch process control for the 110nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Hingst, Thomas; Marschner, Thomas; Moert, Manfred; Homilius, Jan; Guevremont, Marco; Hopkins, John; Elazami, Assim

    2003-05-01

    In the production of sub 140nm electronic devices, CD metrology is becoming more critical due to the increased demands placed on process control. CD metrology using CD-SEM is approaching its limits especially with respect to precision, resolution and depth of field. Potentially, scatterometry can measure structures down to 50nm with the appropriate precision. Additionally, as scatterometry is a model based technique it allows a full reconstruction of the line profile and the film stack. In this work we use SE based scatterometry in the control of a 110nm DRAM WSix Gate process at the Litho and the Mask Open step. We demonstrate the use of a single trapezoid as a basic shape model in FEM and field mapping applications as well as in a high volume production test. The scatterometry results are compared to CD-SEM data. We show that for the GC Litho application, n&k variations in some of the stack materials do not affect the scatterometry CD measurement significantly.

  5. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  6. Experiment and Results on Plasma Etching of SRF cavities

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Peshl, J.; Vuskovic, Leposova; Popovic, Svetozar; Valente, Anne-Marie; Phillips, H. Lawrence

    2015-09-01

    The inner surfaces of SRF cavities are currently chemically treated (etched or electropolished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed.

  7. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  8. Extreme ultraviolet lithography mask etch study and overview

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay; Chandrachood, Madhavi; Sabharwal, Amitabh

    2013-04-01

    An overview of extreme ultraviolet lithography (EUVL) mask etch is presented and a EUVL mask etch study was carried out. Today, EUVL implementation has three critical challenges that hinder its adoption: extreme ultraviolet (EUV) source power, resist resolution-line width roughness-sensitivity, and a qualified EUVL mask. The EUVL mask defect challenges result from defects generated during blank preparation, absorber and multilayer deposition processes, as well as patterning, etching and wet clean processes. Stringent control on several performance criteria including critical dimension (CD) uniformity, etch bias, micro-loading, profile control, defect control, and high etch selectivity requirement to capping layer is required during the resist pattern duplication on the underlying absorber layer. EUVL mask absorbers comprise of mainly tantalum-based materials rather than chrome- or MoSi-based materials used in standard optical masks. Compared to the conventional chrome-based absorbers and phase shift materials, tantalum-based absorbers need high ion energy to obtain moderate etch rates. However, high ion energy may lower resist selectivity, and could introduce defects. Current EUVL mask consists of an anti-reflective layer on top of the bulk absorber. Recent studies indicate that a native oxide layer would suffice as an anti-reflective coating layer during the electron beam inspection. The absorber thickness and the material properties are optimized based on optical density targets for the mask as well as electromagnetic field effects and optics requirements of the patterning tools. EUVL mask etch processes are modified according to the structure of the absorber, its material, and thickness. However, etch product volatility is the fundamental requirement. Overlapping lithographic exposure near chip border may require etching through the multilayer, resulting in challenges in profile control and etch selectivity. Optical proximity correction is applied to further

  9. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    In free piston Stirling engine research the integrity of both amplitude and phase of the dynamic pressure measurements is critical to the characterization of cycle dynamics and thermodynamics. It is therefore necessary to appreciate all possible sources of signal distortion when designing pressure measurement systems for this type of research. The signal distortion inherent to pressure transmission lines is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving helium-charged free piston Stirling engines. The scope and limitations of the dynamic response analysis are considered.

  10. Masking Technique for Ion-Beam Sputter Etching

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1986-01-01

    Improved process for fabrication of integrated circuits developed. Technique utilizes simultaneous ion-beam sputter etching and carbon sputter deposition in conjunction with carbon sputter mask or organic mask decomposed to produce carbon-rich sputter-mask surface. Sputter etching process replenishes sputter mask with carbon to prevent premature mask loss.

  11. LDRD final report : on the development of hybrid level-set/particle methods for modeling surface evolution during feature-scale etching and deposition processes.

    SciTech Connect

    McBride, Cory L.; Schmidt, Rodney Cannon; Musson, Lawrence Cale

    2005-01-01

    Two methods for creating a hybrid level-set (LS)/particle method for modeling surface evolution during feature-scale etching and deposition processes are developed and tested. The first method supplements the LS method by introducing Lagrangian marker points in regions of high curvature. Once both the particle set and the LS function are advanced in time, minimization of certain objective functions adjusts the LS function so that its zero contour is in closer alignment with the particle locations. It was found that the objective-minimization problem was unexpectedly difficult to solve, and even when a solution could be found, the acquisition of it proved more costly than simply expanding the basis set of the LS function. The second method explored is a novel explicit marker-particle method that we have named the grid point particle (GPP) approach. Although not a LS method, the GPP approach has strong procedural similarities to certain aspects of the LS approach. A key aspect of the method is a surface rediscretization procedure--applied at each time step and based on a global background mesh--that maintains a representation of the surface while naturally adding and subtracting surface discretization points as the surface evolves in time. This method was coded in 2-D, and tested on a variety of surface evolution problems by using it in the ChISELS computer code. Results shown for 2-D problems illustrate the effectiveness of the method and highlight some notable advantages in accuracy over the LS method. Generalizing the method to 3D is discussed but not implemented.

  12. Dynamic observation of electrochemical etching in silicon

    SciTech Connect

    Ross, F.M.; Searson, P.C.

    1995-03-01

    The authors have designed and constructed a TEM specimen holder in order to observe the process of pore formation in silicon. The holder incorporates electrical feedthroughs and a sealed reservoir for the electrolyte and accepts lithographically patterned silicon specimens. The authors describe the system and present preliminary, ex situ observations of the etching process.

  13. TRAVIT: software tool to simulate dry etch in maskmaking

    NASA Astrophysics Data System (ADS)

    Babin, S.; Bay, K.; Okulovsky, S.

    2005-06-01

    A software tool, TRAVIT, has been developed to simulate dry etch in maskmaking. The software predicts the etch profile, etched critical dimensions (CDs), and CD-variation for any pattern of interest. The software also takes into account microloading effect that is pattern dependent and contributes to CD variation. Once CD variation is known, it can then be applied to correct the CD-error. Examples of simulations including variable ICP power, physical and chemical etch components, and optimization of a bias and CD variation are presented. Incorporating simulation into the maskmaking process can save cost and shorten the time to production.

  14. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  15. Multiple-mask chemical etching

    NASA Technical Reports Server (NTRS)

    Cannon, D. L.

    1969-01-01

    Multiple masking techniques use lateral etching to reduce the total area of the high etch-rate oxide exposed to the chemical etchant. One method uses a short-term etch to remove the top layer from the silicon oxide surface, another acts before the top layer is grown.

  16. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery.

    PubMed

    Liu, Yufei; Eng, Pay F; Guy, Owen J; Roberts, Kerry; Ashraf, Huma; Knight, Nick

    2013-06-01

    Using an SPTS Technologies Ltd. Pegasus deep reactive-ion etching (DRIE) system, an advanced two-step etching process has been developed for hollow microneedles in applications of transdermal blood sampling and drug delivery. Because of the different etching requirements of both narrow deep hollow and large open cavity, hollow etch and cavity etch steps have been achieved separately. This novel two-step etching process is assisted with a bi-layer etching mask. Results show that the etch rate of silicon during this hollow etch step was about 7.5 microm/min and the etch rate of silicon during this cavity etch step was about 8-10 microm/min, using the coil plasma etching power between 2.0 and 2.8 kW. Especially for the microneedle bores etch, the deeper it etched, the slower the etch rate was. The microneedle bores have successfully been obtained 75-150 microm in inner diametre and 700-1000 microm long with high aspect ratio DRIE, meanwhile, the vertical sidewall structures have been achieved with the high etch load exposed area over 70% for the cavity etch step. PMID:24046906

  17. Dry-wet digital etching of Ge1-xSnx

    NASA Astrophysics Data System (ADS)

    Shang, Colleen K.; Wang, Vivian; Chen, Robert; Gupta, Suyog; Huang, Yi-Chiau; Pao, James J.; Huo, Yijie; Sanchez, Errol; Kim, Yihwan; Kamins, Theodore I.; Harris, James S.

    2016-02-01

    The development of a precise micromachining process for Ge1-xSnx has the potential to enable both the fabrication and optimization of Ge1-xSnx-based devices in photonics and microelectromechanical systems. We demonstrate a digital etching scheme for Ge0.922Sn0.078 based on a two-stage, highly selective CF4 plasma dry etch and HCl wet etch. Using X-Ray Reflectivity, we show consistent etch control as low as 1.5 nm per cycle, which is defined as one dry etch step followed by one wet etch step. The etch rate increases to 3.2 nm per cycle for a longer dry etch time due to physical sputtering contributions, accompanied by an increase in RMS surface roughness. By operating within a regime with minimal sputtering, we demonstrate that good digital etch depth control and surface quality can be achieved using this technique.

  18. Nanoscale dry etching of germanium by using inductively coupled CF4 plasma

    NASA Astrophysics Data System (ADS)

    Shim, Kyu-Hwan; Yang, Ha Yong; Kil, Yeon-Ho; Yang, Hyeon Deok; Yang, Jong-Han; Hong, Woong-Ki; Kang, Sukill; Jeong, Tae Soo; Kim, Taek Sung

    2012-08-01

    The nanoscale dry etching of germanium was investigated by using inductively coupled CF4 plasma and electron-beam lithography. The optimal dose of PMMA as E-beam lithography resist was ˜200 mC/cm2. When ICP Power was 200W, CF4 gas flow rate was 40 sccm, and process pressure was 20 mTorr, it had a smooth surface and good etch rate. The etching selectivity of Ge wafer to PMMA resist was as low as ˜1.5. Various sub-100 nm dry-etching patterns have been obtained. SEM pictures showed good profile qualities with a smooth etching sidewall and ultrasmall etching features.

  19. Isotropic plasma etching of Ge Si and SiNx films

    DOE PAGESBeta

    Henry, Michael David; Douglas, Erica Ann

    2016-05-01

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching.

  20. Modeling of the angular dependence of plasma etching

    SciTech Connect

    Guo Wei; Sawin, Herbert H.

    2009-11-15

    An understanding of the angular dependence of etching yield is essential to investigate the origins of sidewall roughness during plasma etching. In this article the angular dependence of polysilicon etching in Cl{sub 2} plasma was modeled as a combination of individual angular-dependent etching yields for ion-initiated processes including physical sputtering, ion-induced etching, vacancy generation, and removal. The modeled etching yield exhibited a maximum at {approx}60 degree sign off-normal ion angle at low flux ratio, indicative of physical sputtering. It transformed to the angular dependence of ion-induced etching with the increase in the neutral-to-ion flux ratio. Good agreement between the modeling and the experiments was achieved for various flux ratios and ion energies. The variation of etching yield in response to the ion angle was incorporated in the three-dimensional profile simulation and qualitative agreement was obtained. The surface composition was calculated and compared to x-ray photoelectron spectroscopy (XPS) analysis. The modeling indicated a Cl areal density of 3x10{sup 15} atoms/cm{sup 2} on the surface that is close to the value determined by the XPS analysis. The response of Cl fraction to ion energy and flux ratio was modeled and correlated with the etching yields. The complete mixing-layer kinetics model with the angular dependence effect will be used for quantitative surface roughening analysis using a profile simulator in future work.

  1. Pulsed plasma etching for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Economou, Demetre J.

    2014-07-01

    Power-modulated (pulsed) plasmas have demonstrated several advantages compared to continuous wave (CW) plasmas. Specifically, pulsed plasmas can result in a higher etching rate, better uniformity, and less structural, electrical or radiation (e.g. vacuum ultraviolet) damage. Pulsed plasmas can also ameliorate unwanted artefacts in etched micro-features such as notching, bowing, micro-trenching and aspect ratio dependent etching. As such, pulsed plasmas may be indispensable in etching of the next generation of micro-devices with a characteristic feature size in the sub-10 nm regime. This work provides an overview of principles and applications of pulsed plasmas in both electropositive (e.g. argon) and electronegative (e.g. chlorine) gases. The effect of pulsing the plasma source power (source pulsing), the electrode bias power (bias pulsing), or both source and bias power (synchronous pulsing), on the time evolution of species densities, electron energy distribution function and ion energy and angular distributions on the substrate is discussed. The resulting pulsed plasma process output (etching rate, uniformity, damage, etc) is compared, whenever possible, to that of CW plasma, under otherwise the same or similar conditions.

  2. In-situ diagnostics and characterization of etch by-product deposition on chamber walls during halogen etching of silicon

    NASA Astrophysics Data System (ADS)

    Rastgar, Neema; Sriraman, Saravanapriyan; Marsh, Ricky; Paterson, Alex

    2014-10-01

    Plasma etching is a critical technology for nanoelectronics fabrication, but the use of a vacuum chamber limits the number of in-situ, real-time diagnostics measurements that can be performed during an etch process. Byproduct deposition on chamber walls during etching can affect the run-to-run performance of an etch process if there is build-up or change of wall characteristics with time. Knowledge of chamber wall evolution and the composition of wall-deposited films are critical to understanding the performance of plasma etch processes, and an in-situ diagnostics measurement is useful for monitoring the chamber walls in real time. We report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to perform in-situ diagnostics of a vacuum chamber's walls during plasma etching. Using ATR-FTIR, we are able to monitor the relative thickness and makeup of chamber wall deposits in real time. We then use this information to develop a chamber wall cleaning process in order to maintain reproducible etching conditions from wafer to wafer. In particular, we report mid-IR (4000-650 cm-1) absorption spectra of chamber wall-deposited silicon byproducts formed during halogen etching of silicon wafers.

  3. Litho-freeze-litho-etch (LFLE) enabling dual wafer flow coat/develop process and freeze CD tuning bake for >200wph immersion ArF photolithography double patterning

    NASA Astrophysics Data System (ADS)

    Pieczulewski, Charles N.; Rosslee, Craig A.

    2009-12-01

    The SOKUDO DUO track system incorporates a dual-path wafer flow to reduce the burden on the wafer handling unit and enables high-throughput coat/develop/bake processing in-line with semiconductor photolithography exposure (scanner) equipment. Various photolithography-based double patterning process flows were modeled on the SOKUDO DUO system and it was confirmed to be able to process both Litho-Process-Litho-Etch (LPLE)*2 and negative-tone develop process wafers at greater than 200 wafer-per-hour (wph) capability for each litho-pass through the in-line exposure tool. In addition, it is demonstrated that Biased Hot Plates (BHP) with "cdTune" software improves litho pattern #1 and litho pattern #2 within wafer CD uniformity. Based primarily on JSR Micro materials for Litho-Freeze- Litho-Etch (LFLE) the coat, develop and bake process CD uniformity improvement results are demonstrated on the SOKUDO RF3S immersion track in-line with ASML XT:1900Gi system at IMEC, Belgium.

  4. Etched profile control in anisotropic etching of silicon by TMAH+Triton

    NASA Astrophysics Data System (ADS)

    Pal, Prem; Gosálvez, M. A.; Sato, K.

    2012-06-01

    The adverse effect of mechanical agitation (magnetic bead stirring) as well as galvanic interaction between the evolving facets of the etch front on the amount of undercutting during anisotropic etching of Si{1 0 0} wafers in surfactant-added tetramethylammonium hydroxide (TMAH) is studied by etching different mask patterns in magnetically stirred and nonstirred solutions. Triton X-100, with formula C14H22O(C2H4O)n, where n = 9-10, is used as the surfactant. The stirring results conclude that the adsorption of the surfactant on the etched silicon surfaces is predominantly physical in nature rather than chemical (physisorption versus chemisorption). The proposed model to account for the galvanic interaction between the evolving facets indicates that the underlying chemical etching process can be significantly surpassed by the onset of an electrochemical etching contribution when the relative area of the exposed {1 0 0} surface becomes relatively small in comparison to that of the developed {1 1 1} sidewalls. This study is useful for engineering applications where surfactant-added TMAH is used for the fabrication of silicon MEMS structures that should contain negligible undercutting.

  5. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  6. Software to simulate dry etch in photomask fabrication

    NASA Astrophysics Data System (ADS)

    Babin, Sergey; Bay, Konstantin; Okulovsky, Sergey

    2004-12-01

    Dry etch in maskmaking is one of the major contributors to variation of critical dimensions (CD) which is caused primarily by the microloading and macroloading effects. CD variation during etch depends on the type of pattern involved. It would be highly desirable to run a pattern through the software to predict CD variation due to dry etch and decide if the variation is within the prescribed tolerance or if the pattern needs additional correction, and to what degree. In this paper, a dry etch simulation tool TRAVIT is introduced that is capable of simulating etch profile, CD, and CD errors. Using a set of desired process conditions, the software runs the simulation for the pattern of interest that helps to optimize sidewall, bias, and CD variation. Incorporating simulation into the maskmaking process can save cost and shorten the time to production.

  7. Optical diagnostic instrument for monitoring etch uniformity during plasma etching of polysilicon in a chlorine-helium plasma

    SciTech Connect

    Hareland, W.A.; Buss, R.J.

    1993-06-01

    Nonuniform etching is a serious problem in plasma processing of semiconductor materials and has important consequences in the quality and yield of microelectronic components. In many plasmas, etching occurs at a faster rate near the periphery of the wafer, resulting in nonuniform removal of specific materials over the wafer surface. This research was to investigate in situ optical diagnostic techniques for monitoring etch uniformity during plasma processing of microelectronic components. We measured 2-D images of atomic chlorine at 726 nm in a chlorine-helium plasma during plasma etching of polysilicon in a parallel-plate plasma etching reactor. The 3-D distribution of atomic chlorine was determined by Abel inversion of the plasma image. The experimental results showed that the chlorine atomic emission intensity is at a maximum near the outer radius of the plasma and decreases toward the center. Likewise, the actual etch rate, as determined by profilometry on the processed wafer, was approximately 20% greater near the edge of the wafer than at its center. There was a direct correlation between the atomic chlorine emission intensity and the etch rate of polysilicon over the wafer surface. Based on these analyses, 3-D imaging would be a useful diagnostic technique for in situ monitoring of etch uniformity on wafers.

  8. Reactive ion etching of lead zirconate titanate (PZT) thin film capacitors

    SciTech Connect

    Vijay, D.P.; Desu, S.B.; Pan, W. . Dept. of Materials Science and Engineering)

    1993-09-01

    One of the key processing concerns in the integration of PbZr[sub x]Ti[sub 1[minus]x]O[sub 3](PZT) thin film capacitors into the existing VLSI for ferroelectric or dynamic random access memory applications is the patterning of these films and the electrodes. In this work, the authors have identified a suitable etch gas (CCl[sub 2]F[sub 2]) for dry etching of PZT thin films on RuO[sub 2] electrodes. The etch rate and anisotropy have been studied as a function of etching conditions. The trends in the effect on the etch rate of the gas pressure, RF power and O[sub 2] additions to the etch gas have been determined and an etching mechanism has been proposed. It was found that ion bombardment effects are primarily responsible for the etching of both PZT and RuO[sub 2] thin films. Etch rates of the order of 20--30 nm/min were obtained for PZT thin films under low gas pressure and high RF power conditions. The etch residues and the relative etch rates of the components of the PZT solid solution were determined using XPS. The results show that the etching of PbO is the limiting factor in the etch process.

  9. Porous silicon formation during Au-catalyzed etching

    SciTech Connect

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav; Stutzmann, Martin

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition from the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.

  10. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  11. Chemical etching and organometallic chemical vapor deposition on varied geometries of GaAs

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.

    1989-01-01

    Results of micron-spaced geometries produced by wet chemical etching and subsequent OMCVD growth on various GaAs surfaces are presented. The polar lattice increases the complexity of the process. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher-order planes produced by the hex groove etching.

  12. Anisotropic Ta{sub 2}O{sub 5} waveguide etching using inductively coupled plasma etching

    SciTech Connect

    Muttalib, Muhammad Firdaus A. Chen, Ruiqi Y.; Pearce, Stuart J.; Charlton, Martin D. B.

    2014-07-01

    Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta{sub 2}O{sub 5}) waveguides. A mixture of C{sub 4}F{sub 8} and O{sub 2} gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut.

  13. Disilane-based cyclic deposition/etch of Si, Si:P and Si1-yCy:P layers: I. The elementary process steps

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Deguet, C.

    2013-02-01

    We have benchmarked the 550 °C, 20 Torr growth of Si:P and Si1-yCy:P using SiH4 and Si2H6. P segregation has prevented us from reaching P+ ion concentrations in Si higher than a few 1019 cm-3 using SiH4; the resulting surface ‘poisoning’ led to a severe growth rate reduction. Meanwhile, [P+] increased linearly with the phosphine flow when using Si2H6 as the Si precursor; values as high as 1.7 × 1020 cm-3 were obtained. The Si:P growth rate using Si2H6 was initially stable then increased as the PH3 flow increased. Mono-methylsilane flows 6.5-10 times higher were needed with Si2H6 than with SiH4 to reach the same substitutional C concentrations in intrinsic Si1-yCy layers ([C]subst. up to 1.9%). Growth rates were approximately six times higher with Si2H6 than with SiH4, however. 30 nm thick Si1-yCy layers became rough as [C]subst. exceeded 1.6% (formation of increasing numbers of islands). We have also studied the structural and electrical properties of ‘low’ and ‘high’ C content Si1-yCy:P layers (˜ 1.5 and 1.8%, respectively) grown with Si2H6. Adding significant amounts of PH3 led to a reduction of the tensile strain in the films. This was due to the incorporation of P atoms (at the expense of C atoms) in the substitutional sites of the Si matrix. Si1-yCy:P layers otherwise became rough as the PH3 flow increased. Resistivities lower than 1 mΩ cm were nevertheless associated with those Si1-yCy:P layers, with P atomic concentrations at most 3.9 × 1020 cm-3. Finally, we have quantified the beneficial impact of adding GeH4 to HCl for the low-temperature etching of Si. Etch rates 12-36 times higher with HCl + GeH4 than with pure HCl were achieved at 20 Torr. Workable etch rates close to 1 nm min-1 were obtained at 600 °C (versus 750 °C for pure HCl), enabling low-temperature cyclic deposition/etch strategies for the selective epitaxial growth of Si, Si:P and Si1-yCy:P layers on patterned wafers.

  14. Selective Etching of Semiconductor Glassivation

    NASA Technical Reports Server (NTRS)

    Casper, N.

    1982-01-01

    Selective etching technique removes portions of glassivation on a semi-conductor die for failure analysis or repairs. A periodontal needle attached to a plastic syringe is moved by a microprobe. Syringe is filled with a glass etch. A drop of hexane and vacuum pump oil is placed on microcircuit die and hexane is allowed to evaporate leaving a thin film of oil. Microprobe brings needle into contact with area of die to be etched.

  15. Effects of mask imperfections on InP etching profiles

    SciTech Connect

    Huo, D.T.C.; Yan, M.F.; Wynn, J.D.; Wilt, D.P. )

    1990-01-01

    The authors have demonstrated that the quality of etch masks has a significant effect on the InP etching profiles. In particular, the authors have shown that mask imperfections can cause defective etching profiles, such as vertical sidewalls and extra mask undercutting in InP. The authors also discovered that the geometry of these defective profiles is determined by the orientation of the substrate relative to the direction of the mask imperfections. Along a {l angle}110{r angle} line mask defect, the downward etching process changes the {l angle}110{r angle} v-grooves to vertical sidewalls without extra undercutting. For v-grooves aligned along the {l angle}110{r angle} direction, defects on the mask give a significant extra undercutting without changing the etching profile.

  16. Consideration of VT5 etch-based OPC modeling

    NASA Astrophysics Data System (ADS)

    Lim, ChinTeong; Temchenko, Vlad; Kaiser, Dieter; Meusel, Ingo; Schmidt, Sebastian; Schneider, Jens; Niehoff, Martin

    2008-03-01

    Including etch-based empirical data during OPC model calibration is a desired yet controversial decision for OPC modeling, especially for process with a large litho to etch biasing. While many OPC software tools are capable of providing this functionality nowadays; yet few were implemented in manufacturing due to various risks considerations such as compromises in resist and optical effects prediction, etch model accuracy or even runtime concern. Conventional method of applying rule-based alongside resist model is popular but requires a lot of lengthy code generation to provide a leaner OPC input. This work discusses risk factors and their considerations, together with introduction of techniques used within Mentor Calibre VT5 etch-based modeling at sub 90nm technology node. Various strategies are discussed with the aim of better handling of large etch bias offset without adding complexity into final OPC package. Finally, results were presented to assess the advantages and limitations of the final method chosen.

  17. Reactive ion etching of quartz and Pyrex for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Zeze, D. A.; Forrest, R. D.; Carey, J. D.; Cox, D. C.; Robertson, I. D.; Weiss, B. L.; Silva, S. R. P.

    2002-10-01

    The reactive ion etching of quartz and Pyrex substrates was carried out using CF4/Ar and CF4/O2 gas mixtures in a combined radio frequency (rf)/microwave (μw) plasma. It was observed that the etch rate and the surface morphology of the etched regions depended on the gas mixture (CF4/Ar or CF4/O2), the relative concentration of CF4 in the gas mixture, the rf power (and the associated self-induced bias) and microwave power. An etch rate of 95 nm/min for quartz was achieved. For samples covered with a thin metal layer, ex situ high resolution scanning electron microscopy and atomic force microscopy imaging indicated that, during etching, surface roughness is produced on the surface beneath the thin metallic mask. Near vertical sidewalls with a taper angle greater than 80° and smooth etched surfaces at the nanometric scale were fabricated by carefully controlling the etching parameters and the masking technique. A simulation of the electrostatic field distribution was carried out to understand the etching process using these masks for the fabrication of high definition features.

  18. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  19. Electron Cyclotron Resonance Based Chemically Assisted Plasma Etching Of Silicon in CF4/Ar Plasma

    SciTech Connect

    Bhardwaj, R.K.; Angra, S.K.; Bajpai, R.P.; Lal, Madan; Bharadwaj, Lalit M.

    2005-09-09

    Etching of silicon in Chemical Assisted Plasma Etching mode with CF4 gas being sprayed on the surface of wafer in process chamber and Ar fed to ECR cavity in Electron Cyclotron Resonance (ECR) source was carried out. The plasma source was 2.45 GHz microwave source superimposed with mirror type magnetic field configuration to have resonance. Effect of CF4/Ar ratio and substrate bias on etching rate of silicon and anisotropy of etched profile has been investigated. The variation of etch rate and anisotropy has been correlated to the availability of fluorine atoms and other radicals available for etching. Optimum parameters required for etching of silicon in chemical assisted plasma etching with self-assembled ECR plasma source has been established.

  20. Electron Cyclotron Resonance Based Chemically Assisted Plasma Etching Of Silicon in CF4/Ar Plasma

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R. K.; Angra, S. K.; Bajpai, R. P.; Lal, Madan; Bharadwaj, Lalit M.

    2005-09-01

    Etching of silicon in Chemical Assisted Plasma Etching mode with CF4 gas being sprayed on the surface of wafer in process chamber and Ar fed to ECR cavity in Electron Cyclotron Resonance (ECR) source was carried out. The plasma source was 2.45 GHz microwave source superimposed with mirror type magnetic field configuration to have resonance. Effect of CF4/Ar ratio and substrate bias on etching rate of silicon and anisotropy of etched profile has been investigated. The variation of etch rate and anisotropy has been correlated to the availability of fluorine atoms and other radicals available for etching. Optimum parameters required for etching of silicon in chemical assisted plasma etching with self-assembled ECR plasma source has been established.

  1. Energy dispersive X-ray spectroscopy analysis of Si sidewall surface etched by deep-reactive ion etching

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro; Nishioka, Kunio; Sato, Mina

    2016-06-01

    We investigated the composition of a passivation film on a sidewall etched by deep-reactive ion etching (RIE) using SF6/O2 and C4F8 plasma, by energy-dispersive X-ray (EDX) spectroscopy. It was found that the compositions of carbon and fluorine in the passivation film on the etched sidewall depend on the width and depth of the etched trench. It is important to understand both the plasma behavior and the passivation film composition to carry out fabrication by deep-RIE. We consider that these results of the EDX analysis of an etched sidewall will be useful for understanding plasma behavior in order to optimize the process conditions of deep-RIE.

  2. Structural and magnetic etch damage in CoFeB

    SciTech Connect

    Krayer, L.; Lau, J. W.; Kirby, B. J.

    2014-05-07

    A detailed understanding of the interfacial properties of thin films used in magnetic media is critical for the aggressive component scaling required for continued improvement in storage density. In particular, it is important to understand how common etching and milling processes affect the interfacial magnetism. We have used polarized neutron reflectometry and transmission electron microscopy to characterize the structural and magnetic properties of an ion beam etched interface of a CoFeB film. We found that the etching process results in a sharp magnetic interface buried under a nanometer scale layer of non-magnetic, compositionally distinct material.

  3. Spectrometric analysis of process etching solutions of the photovoltaic industry--determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms.

    PubMed

    Bücker, Stefan; Acker, Jörg

    2012-05-30

    The surface of raw multicrystalline silicon wafers is treated with HF-HNO(3) mixtures in order to remove the saw damage and to obtain a well-like structured surface of low reflectivity, the so-called texture. The industrial production of solar cells requires a consistent level of texturization for tens of thousands of wafers. Therefore, knowing the actual composition of the etch bath is a key element in process control in order to maintain a certain etch rate through replenishment of the consumed acids. The present paper describes a novel approach to quantify nitric acid (HNO(3)), hydrofluoric acid (HF), and hexafluosilicic acid (H(2)SiF(6)) using a high-resolution continuum source graphite furnace absorption spectrometer. The concentrations of Si (via Si atom absorption at the wavelength 251.611 nm, m(0),(Si)=130 pg), of nitrate (via molecular absorption of NO at the wavelength 214.803 nm, [Formula: see text] ), and of total fluoride (via molecular absorption of AlF at the wavelength 227.46 nm, m(0,F)=13 pg) were measured against aqueous standard solutions. The concentrations of H(2)SiF(6) and HNO(3) are directly obtained from the measurements. The HF concentration is calculated from the difference between the total fluoride content, and the amount of fluoride bound as H(2)SiF(6). H(2)SiF(6) and HNO(3) can be determined with a relative uncertainty of less than 5% and recoveries of 97-103% and 96-105%, respectively. With regards to HF, acceptable results in terms of recovery and uncertainty are obtained for HF concentrations that are typical for the photovoltaic industry. The presented procedure has the unique advantage that the concentration of both, acids and metal impurities in etch solutions, can be routinely determined by a single analytical instrument. PMID:22608457

  4. Removal of field and embedded metal by spin spray etching

    DOEpatents

    Contolini, Robert J.; Mayer, Steven T.; Tarte, Lisa A.

    1996-01-01

    A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment.

  5. Removal of field and embedded metal by spin spray etching

    DOEpatents

    Contolini, R.J.; Mayer, S.T.; Tarte, L.A.

    1996-01-23

    A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment. 6 figs.

  6. Etch Profile Simulation Using Level Set Methods

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.

  7. Study of 193-nm resist degradation under various etch chemistries

    NASA Astrophysics Data System (ADS)

    Bazin, Arnaud; May, Michael; Pargon, Erwine; Mortini, Benedicte; Joubert, Olivier

    2007-03-01

    The effectivity of 193nm photoresists as dry etch masks is becoming more and more critical as the size of integrated devices shrinks. 193nm resists are known to be much less resistant to dry etching than 248nm resists based on a poly(hydroxystyrene) polymer backbone. The decrease in the resist film budget implies a better etch resistance to use single layer 193nm photoresists for the 65nm node and beyond. In spite of significant improvements made in the past decade regarding the etch resistance of photoresists, much of the fundamental chemistry and physics that could explain the behaviour of these materials has to be better understood. Such knowledge is necessary in order to propose materials and etch processes for the next technology nodes (45nm and below). In this paper, we report our studies on the etch behaviour of different 193nm resist materials as a function of etch chemistry. In a first step, we focus our attention on the interactions between photoresists and the reactive species of a plasma during a dry etch step. Etch experiments were carried out in a DPS (Decoupled Plasma Source) high density chamber. The gas chemistry in particular was changed to check the role of the plasma reactive species on the resist. O II, Cl II, CF 4, HBr and Ar gas were used. Etch rates and chemical modifications of different materials were quantified by ellipsometry, Fourier Transformed Infrared Spectroscopy (FTIR), and X-Ray Photoelectrons Spectroscopy (XPS). We evaluated different materials including 248nm model polymer backbones (pure PHS or functionalized PHS), and 193nm model polymers (PMMA and acrylate polymers) or resist formulations. Besides the influence of resist chemistry, the impact of plasma parameters was addressed.

  8. Ultrasonic metal etching for metallographic analysis

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1971-01-01

    Ultrasonic etching delineates microstructural features not discernible in specimens prepared for metallographic analysis by standard chemical etching procedures. Cavitation bubbles in ultrasonically excited water produce preferential damage /etching/ of metallurgical phases or grain boundaries, depending on hardness of metal specimens.

  9. Study of ICP-RIE etching on CdZnTe substrate

    NASA Astrophysics Data System (ADS)

    Xu, Pengxiao; Qiao, Hui; Wang, Ren; Lan, Tianyi; Liu, Shijia; Wang, Nili; Zhou, Qin; Xu, Bin; Liu, Xiujuan; Lu, Yidan; Wang, Li-wei; Chang, Chao; Zhang, Kefeng; Li, Xiangyang

    2014-11-01

    CdZnTe is the most suitable epitaxial substrate material of HgCdTe infrared detectors, because its lattice constant is able to achieve full match with HgCdTe's lattice constant. It is always needed to etch CdZnTe substrate during the process of device separation or when we want to fabricate micro optical device on CdZnTe substrate. This paper adopts the more advanced method, Inductive Coupled Plasma-Reactive Ion Etching(ICP-RIE). The etching conditions of ICP-RIE on CdZnTe substrate are explored and researched. First of all, a set of comparative experiments is designed. All of CdZnTe samples with the same component are polished by chemical mechanical polishing before etching. Then all samples are etched by different types of etching gases(CH4/H2/N2/Ar) and different ratios of gases as we designed. The etching time is all set to 30 minutes. After that, the surface roughness, etching rate, etching damage and the profile of etched mesas are tested and characterized by optical microscope, step profiler and confocal laser scanning microscope (CLSM), respectively. It is found that, Ar gas plays the role of physical etching, but the etching rate will decline when the concentration of Ar gas is too high. The results also show that, the introduction of N2 causes more etching damage. Finally, combination of CH4/H2/Ar is used to etch CdZnTe substrate. The ratio of these gases is 2sccm/2sccm/10sccm. The testing results of optimized etching show that, the maximum etching rate reaches up to 20μm/h and the etched CdZnTe surface is smooth with very low etching damage. At last, aimed at the shortcoming of photoresist's degeneration after long-time etching, the ICP etching process of CdZnTe deep mesa is studied. Double-layer or triple-layer photoresist are spin-coated on CdZnTe substrate during the process of lithography. Then ICP etching is carried out with the optimized condition. It is seen that there is no more phenomena of degeneration.

  10. Laser etching of polymer masked leadframes

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.

    1997-02-01

    A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.

  11. High-Density Plasma Etching of Group-III Nitride Films for Device Application

    SciTech Connect

    Baca, A.G.; Crawford, M.H.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-02-17

    As III-V nitride device structures become more complicated and design rules shrink, well-controlled etch processes are necessary. Due to limited wet chemical etch results for the group-III nitrides, a significant amount of effort has been devoted to the development of dry etch processing. Dry etch development was initially focused on mesa structures where high etch rates, anisotropic profiles, smooth sidewalls, and equi-rate etching of dissimilar materials were required. For example, commercially available LEDs and laser facets for GaN-based laser diodes have been patterned using reactive ion etching (RIE). With the recent interest in high power, high temperature electronic devices, etch characteristics may also require smooth surface morphology, low plasma-induced damage, and selective etching of one layer over another. The principal criteria for any plasma etch process is its utility in the fabrication of a device. In this study, we will report plasma etch results for the group-III nitrides and their application to device structures.

  12. Development of chemically assisted etching method for GaAs-based optoelectronic devices

    SciTech Connect

    Gaillard, M.; Rhallabi, A.; Elmonser, L.; Talneau, A.; Pommereau, F.; Pagnod-Rossiaux, Ph.; Bouadma, N.

    2005-03-01

    Chemically assisted ion beam etching of GaAs-based materials using Cl{sub 2} reactive gas was has been experimentally and theoretically examined. The primary effort was the design of an etching system for high reproducibility and improved throughput. Characteristics of the etching process, i.e., etch rate, etch profiles, and surface morphology as a function of etching parameters, i.e., substrate temperature, Cl{sub 2} flow rate, ion current density, and energy are reported. In addition, we have analyzed the etched surfaces qualitatively by Auger electron spectroscopy, and quantitatively by atomic force microscopy. The developed process yielded stoichiometric and smooth GaAs surfaces. Moreover, in order to understand the mechanism of the Cl{sub 2} etching reaction with GaAs, a simulation of the etch profile evolution with time as function of etching parameters was carried out. Simulations were compared with experimentally derived data and were found to be in good agreement. Finally, the developed process was successfully applied to the fabrication of ridge waveguides GaAs/GaAlAs lasers with cw optical characteristics similar to wet chemical etched lasers.

  13. Laser etching of metals in neutral salt solutions

    NASA Astrophysics Data System (ADS)

    Datta, M.; Romankiw, L. T.; Vigliotti, D. R.; von Gutfeld, R. J.

    1987-12-01

    We report new findings that relate to rapid maskless laser etching of steel and stainless steel in neutral solutions of sodium chloride, sodium nitrate, and potassium sulfate. Etch rates have been determined as a function of laser power, laser on-time, and solution concentration. The morphology of laser-etched holes obtained in these solutions was compared with holes obtained in pure water. Results indicate that some controlled melting occurs under certain laser conditions in addition to the metal dissolution process induced by the locally intense heat of the laser beam.

  14. Optical properties of micromachined polysilicon reflective surfaces with etching holes

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.

    1998-08-01

    MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.

  15. Reactive Plasma Etching of SiC in a Tetrafluoroethane / Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Galloway, Heather C.; Radican, Kevin P.; Donnelly, David; Koeck, Deborah C.

    2003-03-01

    The etch rate as a function of oxygen concentration was investigated in the RF magnetron plasma etching of SiC with tetrafluoroethane gas. The etch rate and surface roughness was measured with atomic force microscopy, while evidence of polymer deposition was analyzed with FTIR. Etch rates of > 10 nm/sec can be achieved with high selectivity with respect to an aluminum mask, near infinite selectivity with respect to silicon. This has also been found to be compatible with some low-k dielectric films. Tetrafluoroethane is of interest due to its high fluorine content. It is also a nontoxic, ozone friendly gas with a short atmospheric lifetime. The role of oxygen in the etching process will be discussed and this etching process will be compared to other SiC etches that have been previously reported

  16. Fabrication of resonator-quantum well infrared photodetector focal plane array by inductively coupled plasma etching

    NASA Astrophysics Data System (ADS)

    Sun, Jason; Choi, Kwong-Kit

    2016-02-01

    Inductively coupled plasma (ICP) etching has distinct advantages over reactive ion etching in that the etching rates are considerably higher, the uniformity is much better, and the sidewalls of the etched material are highly anisotropic due to the higher plasma density and lower operating pressure. Therefore, ICP etching is a promising process for pattern transfer required during microelectronic and optoelectronic fabrication. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To fabricate R-QWIP focal plane arrays (FPAs), two optimized ICP etching processes are developed. Using these etching techniques, we have fabricated R-QWIP FPAs of several different formats and pixel sizes with the required dimensions and completely removed the substrates of the FPAs. Their QE spectra were tested to be 30 to 40%. The operability and spectral nonuniformity of the FPA is ˜99.5 and 3%, respectively.

  17. Reactive etching by ClF3–Ar neutral cluster beam with scanning

    NASA Astrophysics Data System (ADS)

    Seki, Toshio; Yoshino, Yu; Senoo, Takehiko; Koike, Kunihiko; Aoki, Takaaki; Matsuo, Jiro

    2016-06-01

    A reactive gas cluster injection system with a scanning function was developed in order to increase the processing area. High-precision anisotropic etching with an aspect ratio of 7 was achieved for ClF3 cluster etching without scanning. However, with scanning, the aspect ratio for etching decreased to 1.5 because the side walls were etched by the gas retained in the trench. By reducing the source gas pressure, increasing the target distance, and mixing He in the source gas, anisotropic etching with an aspect ratio of about 6.3 was achieved with this apparatus.

  18. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  19. LOW TEMPERATURE PLASMA ETCHING OF COPPER FOR MINIMIZING SIZE EFFECTS IN SUB-100 NM FEATURES

    SciTech Connect

    Kulkarni, Nagraj S; Tamirisa, Prabhakar; Levitin, Galit; Kasica, Richard J; Hess, Dennis W

    2006-01-01

    A low temperature plasma etching process for patterning copper interconnects is proposed as a solution to the size effect issue in the resistivity of copper. Key features of this etching process based on a previous thermochemical analysis of the Cu-Cl-H system are discussed. Potential benefits of a subtractive etching scheme based on this process in comparison with the damascene scheme for copper-based interconnect processing in sub-100 nm features are presented in the context of the ITRS roadmap. Preliminary experimental work on plasma etching of Cu thin films using the proposed process is discussed.

  20. Photonic devices based on preferential etching.

    PubMed

    Bellini, Bob; Larchanché, Jean-François; Vilcot, Jean-Pierre; Decoster, Didier; Beccherelli, Romeo; d'Alessandro, Antonio

    2005-11-20

    We introduce a design concept of optical waveguides characterized by a practical and reproducible process based on preferential etching of crystalline silicon substrates. Low-loss waveguides, spot-size converters, and power dividers have been obtained with polymers. We have also aligned liquid crystals in the waveguides and demonstrated guided propagation. Therefore this technology is a suitable platform for soft-matter photonics and heterogeneous integration. PMID:16318190

  1. Inductively coupled plasma etching of BZN thin films in SF6/Ar plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Li, Ping; Zhang, Guojun; Li, Wei; Dai, Liping; Jiang, Jing

    2013-03-01

    Etching mechanisms and characteristics of bismuth zinc niobate (BZN) thin films were investigated in inductively coupled SF6/Ar plasmas. The influences of various etching parameters including the gas flow ratio, process pressure, and ICP power on the etching results were analyzed. It is found that the chemical etching with F radicals was more effective than the physical sputtering etching with Ar ions for the inductively coupled plasma etching of BZN thin films. The mechanism of ion assisted chemical etching of BZN thin films in SF6/Ar plasmas was proposed. A maximum etch rate of approximately 43.15 nm/min for the BZN thin film was obtained at the optimum etching conditions: 3/2 for the SF6/Ar gas flow ratio, 10 mTorr for the process pressure, and 600 W for the ICP power. The surface morphology of the etched BZN thin film was observed, where was smooth and clean and no post-etch residues were remained.

  2. Novel spin-on organic hardmask with high plasma etch resistance

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Il; Lee, Jin-Kuk; Kim, Min-Soo; Yoon, Kyong-Ho; Cheon, Hwan-Sung; Tokareva, Nataliya; Song, Jee-Yun; Kim, Jong-Seob; Chang, Tu-Won

    2008-03-01

    In recent years for memory devices under 70nm using ArF lithography, spin-on organic hardmask has become an attractive alternative process to amorphous carbon layer hardmark (ACL) in mass production due to ACL hardmask's limited capacity, high cost-of-ownership, and low process efficiency in spite of its excellent etch performance. However, insufficient plasma etch resistance of spin-on hardmask makes the etch process an issue resulting in inadequate vertical profiles, large CD bias, and narrow etch process window compared to ACL hardmask. In order to be able to apply these spin on hardmasks to varies layers including critical layers, the aforementioned problems need to be resolved and verified using several evaluation methods including etch pattern evaluation. In this paper, we report the synthesis of novel organic spin-on hardmasks (C-SOH) that incorporate various fused aromatic moieties into polymer chain and the evaluation of etch performance using dry etch tools. Organic spin-on hardmasks with 79-90 wt% carbon contents were synthesized in-house. Oxygen and fluorine based plasma etch processes were used to evaluate the etch resistance of the C-SOH. The results show our 3rd generation C-SOH has etch profiles comparable to that of ACL in a 1:1 dense pattern.

  3. ChISELS 1.0: theory and user manual :a theoretical modeler of deposition and etch processes in microsystems fabrication.

    SciTech Connect

    Plimpton, Steven James; Schmidt, Rodney Cannon; Ho, Pauline; Musson, Lawrence Cale

    2006-09-01

    Chemically Induced Surface Evolution with Level-Sets--ChISELS--is a parallel code for modeling 2D and 3D material depositions and etches at feature scales on patterned wafers at low pressures. Designed for efficient use on a variety of computer architectures ranging from single-processor workstations to advanced massively parallel computers running MPI, ChISELS is a platform on which to build and improve upon previous feature-scale modeling tools while taking advantage of the most recent advances in load balancing and scalable solution algorithms. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach [1]. The computational meshes used are quad-trees (2D) and oct-trees (3D), constructed such that grid refinement is localized to regions near the surface interfaces. As the interface evolves, the mesh is dynamically reconstructed as needed for the grid to remain fine only around the interface. For parallel computation, a domain decomposition scheme with dynamic load balancing is used to distribute the computational work across processors. A ballistic transport model is employed to solve for the fluxes incident on each of the surface elements. Surface chemistry is computed by either coupling to the CHEMKIN software [2] or by providing user defined subroutines. This report describes the theoretical underpinnings, methods, and practical use instruction of the ChISELS 1.0 computer code.

  4. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    SciTech Connect

    Wang, Yufeng; Zeng, Yongbin Qu, Ningsong; Zhu, Di

    2015-07-15

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained.

  5. CDU improvement technology of etching pattern using photo lithography

    NASA Astrophysics Data System (ADS)

    Tadokoro, Masahide; Shinozuka, Shinichi; Jyousaka, Megumi; Ogata, Kunie; Morimoto, Tamotsu; Konishi, Yoshitaka

    2008-03-01

    Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving Resist Pattern CDU is to control post-exposure bake (PEB) temperature. When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. Resist Pattern CDU improvement contributes to Etching Pattern CDU improvement to a certain degree. To further improve Etching Pattern CDU, etcher-specific CD variation needs to be controlled. In this evaluation, 1. We verified whether etcher-specific CD variation can be controlled and consequently Etching Pattern CDU can be further improved by controlling resist patterns through PEB control. 2. Verifying whether Etching Pattern CDU improvement through has any effect on the reduction in wiring resistance variation. The evaluation procedure is as follows.1. Wafers with base film of Doped Poly-Si (D-Poly) were prepared. 2. Resist patterns were created on them. 3. To determine etcher-specific characteristics, the first etching was performed, and after cleaning off the resist and BARC, CD of etched D-Poly was measured. 4. Using the obtained within-wafer CD distribution of the etching patterns, within-wafer temperature distribution in the PEB process was modified. 5. Resist patterns were created again, followed by the second etching and cleaning, which was followed by CD measurement. We used Optical CD Measurement (OCD) for measurement of resist patterns and etching patterns as OCD is minimally affected by Line Edge Roughness (LER). As a result, 1. We confirmed the effect of Resist Pattern CD control through PEB control on the reduction in etcher-specific CD variation and the improvement in Etching Pattern CDU. 2. The improvement in Etching

  6. Sputter etching of hemispherical bearings

    NASA Technical Reports Server (NTRS)

    Schiesser, R. J.

    1972-01-01

    Technique was developed for fabricating three dimensional pumping grooves on gas bearings by sputter etching. Method eliminates problems such as groove nonuniformity, profile, and finish, which are associated with normal grooving methods.

  7. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  8. Etching of photoresist with an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    West, Andrew; van der Schans, Marc; Xu, Cigang; Gans, Timo; Cooke, Mike; Wagenaars, Erik

    2014-10-01

    Low-pressure oxygen plasmas are commonly used in semiconductor industry for removing photoresist from the surface of processed wafers; a process known as plasma ashing or plasma stripping. The possible use of atmospheric-pressure plasmas instead of low-pressure ones for plasma ashing is attractive from the point of view of reduction in equipment costs and processing time. We present investigations of photoresist etching with an atmospheric-pressure plasma jet (APPJ) in helium gas with oxygen admixtures driven by radio-frequency power. In these experiments, the neutral, radical rich effluent of the APPJ is used for etching, avoiding direct contact between the active plasma and the sensitive wafer, while maintaining a high etch rate. Photoresist etch rates and etch quality are measured for a range of plasma operating parameters such as power input, driving frequency, flow rate and wafer temperature. Etch rates of up to 10 micron/min were achieved with modest input power (45 W) and gas flow rate (10 slm). Fourier Transform Infrared (FTIR) spectroscopy showed that the quality of the photoresist removal was comparable to traditional plasma ashing techniques. This work was supported by the UK Engineering and Physical Sciences Research Council Grant EP/K018388/1.

  9. Controlled in situ etch-back

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Seabaugh, A. C. (Inventor)

    1981-01-01

    A controlled in situ etch-back technique is disclosed in which an etch melt and a growth melt are first saturated by a source-seed crystal and thereafter etch-back of a substrate takes place by the slightly undersaturated etch melt, followed by LPE growth of a layer by the growth melt, which is slightly supersaturated.

  10. Distributed etched diffraction grating demultiplexer

    NASA Astrophysics Data System (ADS)

    Jafari, Amir

    This doctoral thesis studies the concept of a distributed etched diffraction grating (DEDG) and presents a methodology to engineer the spectral response of the device. The design which incorporates a distributed Bragg reflector (DBR) at the facets of a conventional etched diffraction grating demultiplexer promises for a superior performance in multiple aspects. Where in a conventional etched diffraction grating, smooth vertical deep etched walls are required in order to realize a low insertion loss device; in the DEDG such requirement is significantly mitigated. Deep etched walls are replaced with shallowly etched diffraction grating facets followed by a DBR structure and as a result devices with significantly lower insertion loss are achievable. The feasibility of the application of DEDG as a wavelength demultiplexer was demonstrated through fabrication and characterization of a prototype device. The proof of concept device was fabricated using the state of the art deep UV optical lithography and reactive ion etching in a nano-photonic silicon-on-insulator (SOI) material platform. The fabricated device was then characterized in the lab. Furthermore, incorporation of the DBR structure at the facets of the conventional etched diffraction grating decouples the reflection and diffraction functionalities, rendering the DEDG suitable for spectral response engineering. According to the application, the output spectral response of the device can be tailored through careful design and optimization of the incorporated DBR. In this thesis, through numerical simulations we have shown that functionalities such as polarization independent performance and at top insertion loss envelop are viable. A methodology to engineer the spectral response of the DEDG is discussed in details.

  11. Etching Of Semiconductor Wafer Edges

    DOEpatents

    Kardauskas, Michael J.; Piwczyk, Bernhard P.

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  12. Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching.

    PubMed

    Jin, Chenning; Yu, Bingjun; Xiao, Chen; Chen, Lei; Qian, Linmao

    2016-12-01

    Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is found that the height of the hillock produced by selective etching increases with the etching temperature before the collapse of the hillock. The temperature-dependent selective etching rate can be fitted well by the Arrhenius equation. The etching at higher temperature can cause rougher silicon surface with a little lower elastic modulus and hardness. The contact angle of the etched silicon surface decreases with the etching temperature. It is also noted that no obvious contamination can be detected on silicon surface after etching at different temperatures. As a result, the optimized condition for the selective etching was addressed. The present study provides a new insight into the control and application of friction-induced selective nanofabrication. PMID:27119157

  13. Effect of chemical etching and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide resulting from manufacturing process.

    PubMed

    Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S

    2003-07-15

    The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion. PMID:12808592

  14. Analysis of machining characteristics in electrochemical etching using laser masking

    NASA Astrophysics Data System (ADS)

    Shin, Hong Shik; Chung, Do Kwan; Park, Min Soo; Chu, Chong Nam

    2011-12-01

    Electrochemical etching using laser masking (EELM), which is a combination of laser beam irradiation for masking and electrochemical etching, allows the micro fabrication of stainless steel without photolithography technology. The EELM process can produce various micro patterns and multilayered structures. In this study, the machining characteristics of EELM were investigated. Changes in characteristics of recast layer formation and the protective effect of the recast layer according to the laser masking conditions and electrochemical etching conditions were investigated by field emission scanning electron microscopy (FE-SEM), focused ion beam (FIB) and X-ray photoelectron spectroscopy (XPS). The oxidized recast layer with a thickness of 500 nm was verified to yield a superior protective effect during electrochemical etching and good form accuracy. Finally, micro patterns and structures were fabricated by EELM.

  15. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  16. Development of cylindrical reactive ion etching technology for fabricating tubular microstructures

    NASA Astrophysics Data System (ADS)

    Matsui, Tomoki; Takeuchi, Yugo; Shirao, Akitoshi; Nakashima, Yuta; Sato, Katsuya; Minami, Kazuyuki

    2014-05-01

    This paper describes the development of a novel technology that can form a dense and complex pattern on a polymer tube without thermal damage. We have developed an etching mask and equipment capable of processing the tubular material. We named this technology cylindrical RIE (reactive ion etching). In order to evaluate the fundamental processing characteristics of this technology, etching rate, side etching ratio and etching uniformities along the tube axis and circumferential directions are evaluated. As a result, a vertical wall caused by anisotropic etching could be observed, and the average etching rate was 1.0 µm min-1 and the average side etching ratio was 0.027. The maximum differences between etching rate along the axis and circumferential directions were 0.25 and 0.12 µm min-1, respectively. The cross-section of the etched through-groove (slit) processed in a PP (polypropylene) tube having wall thickness of 200 µm was evaluated. By the bowing phenomenon, pattern width decreased most at the middle of the thickness of the tube wall, and average width errors at the middle of the thickness was 22.4 µm. To demonstrate the usefulness of the cylindrical RIE, a stent made of PP tube was fabricated. It was possible to fabricate a stent with an outer diameter of 4.4 mm, length of 19 mm, main strut width of 300 µm, and connecting strut width of 80 µm.

  17. Etching of silicon surfaces using atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Paetzelt, H.; Böhm, G.; Arnold, Th

    2015-04-01

    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min-1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.

  18. Optimization of (100)-Si TMAH etching for uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Shuai, Y.; Wu, C. G.; Zhang, W. L.; Li, Y. R.; Liu, X. Z.; Zhu, J.

    2009-07-01

    The influences of concentration of the Tetra-methyl ammonium hydroxide (TMAH) solution together with oxidizer additions were studied in order to optimize the anisotropic silicon etching in the development of a fabrication process for Ba0.65Sr0.35TiO3 (BST) pyroelectric thin film infrared detectors. The detector active element was consisted of capacitance NiCr/BST/Pt and the thin silicon suspending membrane. The later one was formed by bulk anisotropically etching of the (100)-Si wafer. Both solution concentration and oxidizing agent were tuned in order to obtain an optimum etching process. Some improvements such as higher etch rate and lower surface roughness have been obtained by the addition of ammonium peroxide sulfate ((NH4)S2O8) as oxidizing agent under different conditions. The examination of etching speed and surface topography were performed by step surface profiler and scanned electronic microscopy. Furthermore, a simple approach was developed to fabric BST pyroelectric thin film detector based on the optimized TMAH etching parameters. A BST thin film capacitance was formed on a thin silicon membrane, where high sensitivity D* of 9.4×107cm•Hz1/2/W was measured.

  19. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  20. Advantages of p++ polysilicon etch stop layer versus p++ silicon

    NASA Astrophysics Data System (ADS)

    Charavel, Remy; Laconte, Jean; Raskin, Jean Pierre

    2003-04-01

    Boron highly doped silicon is now widely used as etch stop layer in MicroElectroMechanical Systems (MEMS) devices fabrication. The present paper shows the advantages of replacing the p++ Si etch stop layer by a p++ polysilicon layer. The etch rate of Tetramethylammoniunhydroxide (TMAH) is measured for LPCVD polysilicon and silicon doped with Boron at concentrations from 8.1018 up to 4.1020 atoms/cm3 which is the Boron solubility limit into Si. TMAH etch being often used during back-end process, selectivity to aluminium is usually needed. The etch selectivity of various TMAH solutions for p++ Si, p++ Poly and aluminium have been measured, from 25 % to 5 % TMAH pure and mixed with silicon powder and ammonium persulfate. Contrarily to silicon, polysilicon is etched isotropically in TMAH solution which constitutes a great advantage when cavities with vertical walls have to be opened. Although the polysilicon etch rate is higher than the silicon one, the selectivity (doped/undoped) is the same for the both materials, allowing identical uses. Another great advantage of polysilicon is that it can be deposited at any process step and does not require clever epitaxy steps or wafer bonding as for silicon. The surface roughness of the etched Poly region is considerably decreased with TMAH mixed with silicon powder and ammonium persulfate mixture compared to pure 25 % TMAH solution. The definition of buried masks in polysilicon layer through Boron implant is the main foreseen application. The p++ Poly buried mask brings solutions for the fabrication of self-aligned double gate MOS, microfluidic or optical networks in MEMS field.

  1. Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro; Ishiwari, Fumitaka; Shoji, Yoshiaki; Kajitani, Takashi; Uehara, Takuya; Nakagawa, Masaru; Fukushima, Takanori

    2016-06-01

    We report the etching properties of tripodal paraffinic triptycene (TripC12) used as a thermal nanoimprint lithography (TNIL) resist mask in Cl2 plasma etching. Using thermally nanoimprinted TripC12 films, we achieved microfabrication of a GaAs substrate by Cl2-based inductively coupled plasma (ICP) etching. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy confirmed that the chemical structure of TripC12 remains intact after the ICP etching process using Cl2. We believe that TNIL using TripC12 films is useful for fabricating optical/electrical devices and micro-electro-mechanical systems (MEMSs).

  2. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  3. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    NASA Astrophysics Data System (ADS)

    Choi, D. Y.; Lee, J. H.; Kim, D. S.; Jung, S. T.

    2004-06-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit.

  4. Parallel preparation of plan-view transmission electron microscopy specimens by vapor-phase etching with integrated etch stops.

    PubMed

    English, Timothy S; Provine, J; Marshall, Ann F; Koh, Ai Leen; Kenny, Thomas W

    2016-07-01

    Specimen preparation remains a practical challenge in transmission electron microscopy and frequently limits the quality of structural and chemical characterization data obtained. Prevailing methods for thinning of specimens to electron transparency are serial in nature, time consuming, and prone to producing artifacts and specimen failure. This work presents an alternative method for the preparation of plan-view specimens using isotropic vapor-phase etching with integrated etch stops. An ultrathin amorphous etch-stop layer simultaneously serves as an electron transparent support membrane whose thickness is defined by a controlled growth process such as atomic layer deposition with sub-nanometer precision. This approach eliminates the need for mechanical polishing or ion milling to achieve electron transparency, and reduces the occurrence of preparation induced artifacts. Furthermore, multiple specimens from a plurality of samples can be thinned in parallel due to high selectivity of the vapor-phase etching process. These features enable dramatic reductions in preparation time and cost without sacrificing specimen quality and provide advantages over wet etching techniques. Finally, we demonstrate a platform for high-throughput transmission electron microscopy of plan-view specimens by combining the parallel preparation capabilities of vapor-phase etching with wafer-scale micro- and nanofabrication. PMID:27160487

  5. Innovative, Inexpensive Etching Technique Developed for Polymer Electro- Optical Structures

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    1999-01-01

    Electro-optic, polymer-based integrated optic devices for high-speed communication and computing applications offer potentially significant advantages over conventional inorganic electro-optic crystals. One key area of integrated optical technology--primary processing and fabrication--may particularly benefit from the use of polymer materials. However, as efforts concentrate on the miniaturization of electro-integrated circuit pattern geometries, the ability to etch fine features and smoothly sloped sidewalls is essential to make polymers useful for electro-integrated circuit applications. There are many existing processes available to etch polymer materials, but they all yield nearly vertical sidewalls. Vertical sidewalls are too difficult to reliably cover with a metal layer, and incomplete metalization degrades microwave performance, particularly at high frequency. However, obtaining a very sloped sidewall greatly improves the deposition of metal on the sidewall, leading to low-loss characteristics, which are essential to integrating these devices in highspeed electro-optic modulators. The NASA Lewis Research Center has developed in-house an inexpensive etching technique that uses a photolithography method followed by a simple, wet chemical etching process to etch through polymer layers. In addition to being simpler and inexpensive, this process can be used to fabricate smoothly sloped sidewalls by using a commercial none rodible mask: Spin-On-Glass. A commercial transparent material, Spin-On-Glass, uses processes and equipment similar to that for photoresist techniques.

  6. Controlled Layer-by-Layer Etching of MoS₂.

    PubMed

    Lin, TaiZhe; Kang, BaoTao; Jeon, MinHwan; Huffman, Craig; Jeon, JeaHoo; Lee, SungJoo; Han, Wei; Lee, JinYong; Lee, SeHan; Yeom, GeunYoung; Kim, KyongNam

    2015-07-29

    Two-dimensional (2D) metal dichalcogenides like molybdenum disulfide (MoS2) may provide a pathway to high-mobility channel materials that are needed for beyond-complementary metal-oxide-semiconductor (CMOS) devices. Controlling the thickness of these materials at the atomic level will be a key factor in the future development of MoS2 devices. In this study, we propose a layer-by-layer removal of MoS2 using the atomic layer etching (ALET) that is composed of the cyclic processing of chlorine (Cl)-radical adsorption and argon (Ar)(+) ion-beam desorption. MoS2 etching was not observed with only the Cl-radical adsorption or low-energy (<20 eV) Ar(+) ion-beam desorption steps; however, the use of sequential etching that is composed of the Cl-radical adsorption step and a subsequent Ar(+) ion-beam desorption step resulted in the complete etching of one monolayer of MoS2. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) indicated the removal of one monolayer of MoS2 with each ALET cycle; therefore, the number of MoS2 layers could be precisely controlled by using this cyclical etch method. In addition, no noticeable damage or etch residue was observed on the exposed MoS2. PMID:26091282

  7. Integration of Nanotubes, Etch Tracks, and Nanoribbons in Crystallographic Alignment

    NASA Astrophysics Data System (ADS)

    Boland, Mathias J.; Hunley, D. Patrick; Sundrarajan, Abhishek; Nasseri, Mohsen; Strachan, Douglas R.

    2015-03-01

    Three nanomaterial components, carbon nanotubes (CNTs), few-layer graphene (FLG), and etch tracks exposing insulating SiO2 regions, are integrated to form crystallographically-aligned nanoscale systems. These integrated systems consist of CNTs grown across nanogap etch tracks and nanoribbons formed within the FLG films as a result of chemical vapor deposition (CVD) processing. Each nanoscale component is aligned along the underlying graphene lattice, resulting in their orientations being locked into precise values, with CNTs maintaining alignment even after crossing etch tracks. The growth of aligned CNTs across nanogap etch tracks and nanoribbons suggests that integrated formations can be achieved by growing CNTs directly over nanogap etch tracks and nanoribbons. This is supported by calculations of the vibrational energy of CNTs indicating that they should be capable of maintaining atomic registry with an underlying graphene lattice as they grow across a typical etch track, in agreement with our experimental results. Thus, this work is relevant to the integration of semiconducting, conducting, and insulating nano-materials all together into precise nano-electronic systems.

  8. Method of plasma etching Ga-based compound semiconductors

    SciTech Connect

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  9. High-speed anisotropic etching of quartz using SF 6/C 4F 8/Ar/O II based chemistry in inductively coupled plasma reactive ion etching system

    NASA Astrophysics Data System (ADS)

    Goyal, Abhijat; Hood, Vincent; Tadigadapa, Srinivas

    2006-01-01

    Etching of quartz and glass for microsystems applications requires optimization of the etch process for high etch rates, high aspect ratios and low rms surface roughness of the etched features. Typically, minimum surface roughness of the etched feature accompanied with maximum etch rate and anisotropy are desired. In this article, we investigate the effect of different gas chemistries on the etch rate and rms surface roughness of the Pyrex(R) 7740 in an inductively coupled plasma reactive ion etching (ICP-RIE) system. The gases considered were SF6 and c-C4F8, with additives gases comprising of O2, Ar, and CH4. A standard factorial design of experiment (DOE) methodology was used for finding the effect of variation of process parameters on the etch rate and rms surface roughness. By use of 2000 W of ICP power, 475 W of substrate power, SF6 flow rate of 5 sccm, Ar flow rate of 50 sccm, substrate holder temperature of 20°C, and distance of substrate holder from ICP source to be 120 mm, we were able to obtain an etch rate of 0.536 μm/min and a rms surface roughness of ~1.97 nm. For an etch process optimized for high etch rate and minimum surface roughness using C4F8/SF6/O2/Ar gases, an etch rate of 0.55 μm/min and a rms surface roughness of ~25 nm was obtained for SF6 flow rate of 5 sccm, C4F8 flow rate of 5 sccm, O2 flow rate of 50 sccm, Ar flow rate of 50 sccm. Keeping all other process parameters the same, increasing the SF6 flow rate to 50 sccm resulted in an etch rate of 0.7 μm/min at an rms surface roughness of ~800 nm whereas increasing the C4F8 flow rate to 50 sccm resulted in an etch rate of 0.67 μm/min at an rms surface roughness of ~450 nm . Addition of CH4 did not contribute significantly to the etch rate while at the same time causing significant increase in the rms surface roughness. Regression or least square fit was used define an arbitrary etch rate number (Wetch) and rms surface roughness number (Wrms). These numbers were calculated by least

  10. Study of Nano-Contact Etching Characteristics Using C6F6 Gas.

    NASA Astrophysics Data System (ADS)

    Sun, Jong-Woo; Park, Sung-Chan; Shin, Chul Ho; Kang, Chang Jin; Cho, Han Ku; Moon, Joo Tae

    2006-10-01

    As device feature size shrinks to sub-0.1 µm, oxide contact etching has become difficult to satisfy the process requirements. Especially, the aspect ratio of device has become higher and the mask thickness thinner. In this paper, we chose C6F6 as one of the promising candidates of next generation HARC etching gas, and have studied plasma and etching characteristics. Compared to other common etching gas (such as C4F6, C4F8), C6F6 could make more polymer and it could resolve the selectivity and profile problem. To identify the difference between C6F6 and other gases, plasma and etching characteristics were compared by QMS, OES, XPS, and etching tests. C6F6 showed 1.7 times higher polymer deposition rate than C4F8, and lower C/F ratio in polymer than other gases. This C/F ratio in polymer affected selectivity and profile during etching. C6F6 cracked into relatively larger molecules than other gases and this fragment patterns also affect polymer condition and etching characteristics. From the experiments, we used C6F6 to etch sub-0.1 µm HARC etching and compared other gases.

  11. Effect of reactive gas (oxygen/chlorine/fluorine) etching on the magnetic flux of a high moment write pole material

    SciTech Connect

    Zhang Jinqiu; Liu Feng; Chen Lifan; Miloslavsky, Lena

    2010-05-15

    Effect of reactive gas (oxygen/chlorine/fluorine) etching on NiFe magnetic properties was investigated. Experimental data showed 40% magnetic property degradation for F-containing gas etching, 10% degradation for O-containing gas etching, and 5% degradation for Cl-containing gas etching processes. X-ray diffraction analysis indicated that the crystallographic orientation remained the same upon the reactive gas etching, which is due to the low ion energy in plasma etching process as opposed to ion milling process with high input energy. It is proposed that the reported magnetic property degradation was mainly caused by the nonmagnetic dead layer formation, rather than the changes in the crystallographic orientation. The dead layer was determined by the NiFe thickness dependence of remnant magnetic flux variations between pre-etched and postetched samples. The dead layer remained nearly constant for O-containing gas etching process with increasing plasma processing time. The nonmagnetic dead layer of {approx}40-50 A formed in O-containing etching gas was observed in transmission electron microscopy cross-sectional image and was in very good agreement with the calculated value based on magnetic flux measurements. Combined magnetic and physical characterizations suggest that the dead layer thickness saturates at the initial stage of the plasma etching and magnetic property remained unchanged with increasing etching duration upon formation of the dead layer.

  12. Revelation of nuclear tracks and dislocations: A Monte Carlo simulation of mineral etching

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Jonckheere, Raymond; Ratschbacher, Lothar

    2008-07-01

    A simple atomistic Monte Carlo simulation suggests that there are up to four stages in the evolution of an etch pit in the (0 0 1)-surface of an idealised regular lattice. During the first stage, the etch pit is an inverted pyramid; its horizontal and vertical dimensions increase at a constant rate; the apparent horizontal ( vh) and vertical ( vd) growth rates are faster than during all subsequent stages but nevertheless less than the step retreat rate ( vs) on account of surface etching ( vv). The pyramid apex is truncated in the second stage; it is thereafter bounded by an expanding bottom plane and shrinking lateral walls; this is accompanied by a gradual decrease of vh; vd drops to a negative value indicating a slow decrease of the etch-pit depth; the bottom plane acquires a concave-up curvature; the outward curvature of the walls, initiated during the first stage, increases. During the third stage the etch pit consists of a single concave-up bottom plane; vh and vd decrease at declining rates; consecutive etch-pit profiles are scalable in the horizontal direction. The hypothetical fourth stage is inferred but not documented by the simulations; it sets in when vh is reduced to zero; unless this corresponds to an as yet unidentified steady-state condition, the etch pit from here on forth shrinks until it eventually disappears altogether. The sole cause for this succession is the process of stochastic rounding of confined steps and faces. The triangular footprint of recoil-track, fission-track, ion-track and dislocation etch pits in trioctahedral mica and its compliance with the monoclinic symmetries implies that the relevant periodic bond chains are O-Mg/Fe-O chains in the octahedral layer. The size distribution of etched recoil tracks is due to (1) depth variations resulting from the size distribution of the latent tracks, (2) the random truncation of the surface tracks, (3) the variable rate of etch-pit enlargement and (4) the fact that new tracks are exposed

  13. Fabrication of vertical mirrors using plasma etch and KOH:IPA polishing

    NASA Astrophysics Data System (ADS)

    Agarwal, R.; Samson, S.; Bhansali, S.

    2007-01-01

    A new approach to etch structures with vertical sidewalls in Si is presented in this paper. This process reduces the loading effect in deep reactive ion etching (DRIE) and maintains a uniform etch profile and etch rate throughout the wafer. Shallow areas were patterned under the regions to be removed. The wafer was then bonded to a pyrex wafer which acts as a handle wafer and as a package lid for packaging MEMS devices. Uniform width narrow channels encompassing these shallow patterns were then subjected to long through wafer DRIE. These narrow channels maintain uniform etch rates while patterning structures with various fill factors on the same wafer. Various structures were etched with vertical side walls across the 550 µm thick Si wafer. Average side wall angles of 89.8° were obtained with just 0.3° variation across the 4'' Si wafer. The process showed resistance to slight variations in DRIE parameters with a negligible effect on the sidewall profile. Additionally, the verticality of the structures was improved to 90.08° by performing KOH:IPA wet etching on the plasma etched surfaces. Once characterized, the same processes can be used for various shape/size structures. These etched vertical mirrors were used to assemble a corner cube retroreflector.

  14. Photoinduced laser etching of a diamond surface

    SciTech Connect

    Kononenko, V V; Komlenok, M S; Pimenov, S M; Konov, V I

    2007-11-30

    Nongraphitising ablation of the surface of a natural diamond single crystal irradiated by nanosecond UV laser pulses is studied experimentally. For laser fluences below the diamond graphitisation threshold, extremely low diamond etching rates (less than 1nm/1000 pulses) are obtained and the term nanoablation is used just for this process. The dependence of the nanoablation rate on the laser fluence is studied for samples irradiated both in air and in oxygen-free atmosphere. The effect of external heating on the nanoablation rate is analysed and a photochemical mechanism is proposed for describing it. (interaction of laser radiation with matter. laser plasma)

  15. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  16. A highly selective, chlorofluorocarbon-free GaAs on AlGaAs etch

    SciTech Connect

    Smith, L.E. . Solid State Technology Center)

    1993-07-01

    A highly selective reactive ion etching process using SiCl[sub 4], CF[sub 4], O[sub 2], and He is reported. The selectivity of the etch, which is adjustable, ranges from 308:1 to 428:1 for GaAs to Al[sub 0.11]Ga[sub 0.89]As. This variability in selectivity is achieved by adjusting the helium flow rate. One very attractive feature of this etch is that it uses no chlorofluorocarbons and therefore complies with future bans on these substances imposed at both federal and corporate levels. The etch is demonstrated on a GaAs field effect transistor structure with an underlying Al[sub 0.11]Ga[sub 0.89]As stop-etch layer. The etch can be used for both anisotropic and isotropic applications.

  17. Deep GaN etching by inductively coupled plasma and induced surface defects

    SciTech Connect

    Ladroue, J.; Meritan, A.; Boufnichel, M.; Lefaucheux, P.; Ranson, P.; Dussart, R.

    2010-09-15

    GaN etching was studied in Cl{sub 2}/Ar plasmas as a function of process parameters. In addition, for a better understanding of the etching mechanisms, Langmuir probe measurements and optical emission spectroscopy were carried out. Etch rate was found to depend strongly on bias power. After optimization, an etch rate greater than 1000 nm/min was achieved. A second part of this work is dedicated to the etched surface defects. An original method to estimate GaN dislocation density and to localize nanopipes in the material is presented. Columnar defects could also appear with impurities in the etching reactor. The authors also present a possible formation mechanism of those columnar defects.

  18. Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication.

    PubMed

    Akinoglu, Eser M; Morfa, Anthony J; Giersig, Michael

    2014-10-21

    Anisotropic deformation of polystyrene particles in an oxygenated (O2/Ar) plasma is observed for radio frequency (rf) plasma and inductively coupled plasma (ICP). A facile model based on a ratio of completely isotropic and completely anisotropic etching is presented to describe the anisotropy of the etching process and is implemented to determine the height of the spheroid-shaped polystyrene particles. In our systems, we find the plasma etching to be 54% isotropic in the rf plasma and 79% isotropic in the ICP. With this model, the maximum material deposition thickness for nanofabrication with plasma-etched nanosphere lithography or colloid lithography can be predicted. Moreover, the etching of polystyrene particles in an oxygenated plasma is investigated versus the etching time, gas flow, gas composition, temperature, substrate material, and particle size. The results of this study allow precise shape tuning during the fabrication of nanostructured surfaces with size-dependent properties for bionic, medical, and photonic applications. PMID:24580644

  19. Method for forming refractory resistors with etch stop for superconductor integrated circuits

    SciTech Connect

    Przybysz, J.X.

    1991-12-03

    This paper describes a method for preparing molybdenum resistors in a superconductor integrated circuit. It comprises: depositing superconductor film on a support; patterning the superconductor film to provide a patterned superconductor and exposed support; applying an titanium film on the superconductor film and the exposed support; applying a molybdenum film on the titanium film to provide an titanium-molybdenum, etch-stop interface; applying a patterned resist film on the molybdenum film to provide exposed molybdenum film and unexposed molybdenum film; etching the exposed molybdenum film to define the molybdenum resistor and expose a portion of the titanium-molybdenum, etch-stop interface; and oxidizing the exposed titanium-molybdenum, etch-stop interface, whereby the titanium-molybdenum, etch-stop interface protects the patterned superconductor film and the support and increases processing margins for the etch time.

  20. ION BEAM ETCHING EFFECTS IN BIOLOGICAL MICROANALYSIS

    EPA Science Inventory

    Oxygen ion beam sputter etching used in SIMS has been shown to produce morphologic effects which have similarities and differences in comparison to rf plasma etching of biological specimens. Sputter yield variations resulting from structural microheterogeneity are illustrated (e....

  1. A Review of the Characterization Techniques for the Analysis of Etch Processed Surfaces of HgCdTe and Related Compounds

    NASA Astrophysics Data System (ADS)

    Stoltz, A. J.; Benson, J. D.; Jaime-Vasquez, M.; Smith, P. J.; Almeida, L. A.; Jacobs, R.; Markunas, J.; Brogden, K.; Brown, A.; Lennon, C.; Maloney, P.; Supola, N.

    2014-09-01

    HgCdTe is the material system of choice for many infrared sensing applications. Growth of this material can often be challenging. However, processing of this material system can be equally as challenging. Incorrect processing can cause shunting, surface inversion, or high surface recombination velocities that can be detrimental. In order to produce an effective device in HgCdTe, one needs to understand what happens to the HgCdTe surface. Factors like the chemical termination of the HgCdTe surface, surface roughness, and surface reconstruction after a process is performed can dramatically affect the performance of devices made with HgCdTe. We will review different surface characterization techniques and how these techniques can be used conventionally and unconventionally, and how different processes can affect the surfaces of HgCdTe and related compounds.

  2. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  3. Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique

    NASA Astrophysics Data System (ADS)

    Choi, H. W.; Jeon, C. W.; Dawson, M. D.

    2004-08-01

    A novel method of etching which allows the direct interconnection of multiple GaN-based devices is introduced. The mesa structures of devices are etched using an isotropic recipe which produces tapered sidewalls. The extent of inclination can be readily controlled through various etching parameters, which include the ICP power, plate power and pressure, thus modifying the vertical and lateral etch components. This approach has been successfully adopted in the fabrication of interconnect and matrix-addressable micro-LEDs, which offer superior optical and electrical performance and a high degree of uniformity compared to similar devices fabricated using conventional processes.

  4. Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching

    PubMed Central

    2011-01-01

    In this article, a simple and cost-effective method to create patterned nanoindentations on Al surface via mold-assisted chemical etching process is demonstrated. This report shows the reaction-diffusion method which formed nanoscale shallow etch pits by the absorption/liberation behaviors of chemical etchant in poly(dimethylsiloxane) stamp. During subsequent anodization, it was possible to obtain the ordered nanopore arrays with 277 nm pitch that were guided by the prepatterned etch pits. The prepatterned etch pits obtained can guide the growth of AAO nanopores during anodization and facilitate the preparation of ordered nanopore arrays. PMID:21711706

  5. Deep SiO2 etching with Al and AlN masks for MEMS devices

    NASA Astrophysics Data System (ADS)

    Bliznetsov, Vladimir; Mao Lin, Hua; Zhang, Yue Jia; Johnson, David

    2015-08-01

    Silicon oxide-based materials such as quartz and silica are widely used in microelectromechanical systems (MEMS). One way to enhance the capability of their deep plasma etching is to increase selectivity by the use of hard masks. Although this approach was studied previously, information on the use of hard masks for the etching of silicon-oxide based materials on 200 mm substrates is scarce. We present the results of etching process development for amorphous silicon oxide using Al and AlN masks with a view of the application of the results for the etching of silica and quartz. Three gas chemistries (C4F8/O2, CF4 and SF6) and their mixtures were compared in an industrial reactive ion etch (RIE) chamber with two plasma sources. It was established that pure SF6 is the best etchant and AlN is a better mask than Al for providing higher selectivity and a sidewall angle close to vertical. A range of etching parameters for micromasking-free etching was established and etched structures of up to a 4 : 1 aspect ratio were created in 21 μm-thick oxide using the process with an etch rate of 0.32-0.36 μm min-1 and a selectivity to AlN mask of (38-49) : 1.

  6. Study of surfactant-added TMAH for applications in DRIE and wet etching-based micromachining

    NASA Astrophysics Data System (ADS)

    Tang, B.; Shikida, M.; Sato, K.; Pal, P.; Amakawa, H.; Hida, H.; Fukuzawa, K.

    2010-06-01

    In this paper, etching anisotropy is evaluated for a number of different crystallographic orientations of silicon in a 0.1 vol% Triton-X-100 added 25 wt% tetramethylammonium hydroxide (TMAH) solution using a silicon hemisphere. The research is primarily aimed at developing advanced applications of wet etching in microelectromechanical systems (MEMS). The etching process is carried out at different temperatures in the range of 61-81 °C. The etching results of silicon hemisphere and different shapes of three-dimensional structures in {1 0 0}- and {1 1 0}-Si surfaces are analyzed. Significantly important anisotropy, different from a traditional etchant (e.g. pure KOH and TMAH), is investigated to extend the applications of the wet etching process in silicon bulk micromachining. The similar etching behavior of exact and vicinal {1 1 0} and {1 1 1} planes in TMAH + Triton is utilized selectively to remove the scalloping from deep reactive-ion etching (DRIE) etched profiles. The direct application of the present research is demonstrated by fabricating a cylindrical lens with highly smooth etched surface finish. The smoothness of a micro-lens at different locations is measured qualitatively by a scanning electron microscope and quantitatively by an atomic force microscope. The present paper provides a simple and effective fabrication method of the silicon micro-lens for optical MEMS applications.

  7. Photo-assisted etching of silicon in chlorine- and bromine-containing plasmas

    SciTech Connect

    Zhu, Weiye; Sridhar, Shyam; Liu, Lei; Hernandez, Eduardo; Donnelly, Vincent M. Economou, Demetre J.

    2014-05-28

    Cl{sub 2}, Br{sub 2}, HBr, Br{sub 2}/Cl{sub 2}, and HBr/Cl{sub 2} feed gases diluted in Ar (50%–50% by volume) were used to study etching of p-type Si(100) in a rf inductively coupled, Faraday-shielded plasma, with a focus on the photo-assisted etching component. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br{sub 2}/Ar and HBr/Cl{sub 2}/Ar plasmas having the lowest and highest sub-threshold etching rates, respectively. Sub-threshold etching rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) and Ar emission intensity (7504 Å). Etching rates measured under MgF{sub 2}, quartz, and opaque windows showed that sub-threshold etching is due to photon-stimulated processes on the surface, with vacuum ultraviolet photons being much more effective than longer wavelengths. Scanning electron and atomic force microscopy revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. Photo-assisted etching in Cl{sub 2}/Ar plasmas resulted in the formation of 4-sided pyramidal features with bases that formed an angle of 45° with respect to 〈110〉 cleavage planes, suggesting that photo-assisted etching can be sensitive to crystal orientation.

  8. Nanostructured porous silicon by laser assisted electrochemical etching

    NASA Astrophysics Data System (ADS)

    Li, J.; Lu, C.; Hu, X. K.; Yang, Xiujuan; Loboda, A. V.; Lipson, R. H.

    2009-08-01

    Nanostructured porous silicon (pSi) was fabricated by combining electrochemical etching with 355 nm laser processing. pSi prepared in this way proves to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS). Surfaces prepared by electrochemical etching and laser irradiation exhibit strong quantum confinement as evidenced by the observation of a red shift in the Si Raman band at ~520-500 cm-1. The height of the nanostructured columns produced by electrochemical etching and laser processing is on the order of microns compared with tens of nanometers obtained without laser irradiation. The threshold for laser desorption and ionization of 12 mJ/cm2 using the pSi substrates prepared in this work is lower than that obtained for conventional matrix assisted laser desorption ionization (MALDI)-MS using a standard matrix compound such as [alpha]-cyano-4-hydroxycinnamic acid (CHCA; 30 mJ/cm2). Furthermore, the substrates prepared by etching and laser irradiation appear to resist laser damage better than those prepared by etching alone. These results enhance the capability of pSi for the detection of small molecular weight analytes by DIOS-MS.

  9. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  10. Nanoscrews: Asymmetrical Etching of Silver Nanowires.

    PubMed

    Tan, Rachel Lee Siew; Chong, Wen Han; Feng, Yuhua; Song, Xiaohui; Tham, Chu Long; Wei, Jun; Lin, Ming; Chen, Hongyu

    2016-08-31

    World's smallest screws with helical threads are synthesized via mild etching of Ag nanowires. With detailed characterization, we show that this nanostructure arises not from the transformation of the initial lattice, but the result of a unique etching mode. Three-dimensional printed models are used to illustrate the evolution of etch pits, from which a possible mechanism is postulated. PMID:27513181

  11. Apparatus for edge etching of semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Casajus, A.

    1986-01-01

    A device for use in the production of semiconductors, characterized by etching in a rapidly rotating etching bath is described. The fast rotation causes the surface of the etching bath to assume the form of a paraboloid of revolution, so that the semiconductor wafer adjusted at a given height above the resting bath surface is only attacked by etchant at the edges.

  12. Diffused transmission of laser beam and image processing tools for alpha-particle track-etch dosimetry in PM-355 SSNTDs

    NASA Astrophysics Data System (ADS)

    Salman, Thaer M.; AL-Ahmad, Alaa Y.; Badran, Hussain A.; Emshary, Chassib A.

    2015-08-01

    The present study introduces an optical as well as image processing method that is effective in the study of PM-355 solid state nuclear track detector (SSNTDs) irradiated with α-particles at different times. Laser light with Gaussian extent and 635 nm wavelength is used to accomplish this goal. An imaging processing technique is utilized for the study of the nature and characteristics of a transmitted laser beam through PM-355 SSNTDs. Semi-empirical formulas are obtained which can be used as guide lines to calculate unknown dose. The present method is effective and simple and demands no sophisticated tool methods.

  13. On the structure of etched ion tracks in polymers

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacik, J.; Apel, P. Y.

    2016-04-01

    A simple model describing the radial structure of latent tracks produced by energetic ions in polymers is presented and used for examination of the process of preferential track etching and determination of the shape of the etched pores. The model is based on the assumption that the local composition of the latent track results from chemical reactions of transient degradation products created by ion passage, but it does not take into account details of the whole process. In accordance with the established idea the model calculations lead to the latent track structure with an easily etchable core surrounded by a relatively thin layer of cross-linked structures and a far reaching halo with a progressively decreasing concentration of the degradation products. The etching of the latent track with such a structure leads to funnel-type pores which have been observed in recent conductometric experiments.

  14. Fabrication of sub-15 nm aluminum wires by controlled etching

    NASA Astrophysics Data System (ADS)

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; McQueen, T. M.; Marković, N.

    2014-04-01

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

  15. Electron Cyclotron Resonance-Reactive Ion Etching of III-V Semiconductors by Cyclic Injection of CH4/H2/Ar and O2 with Constant Ar Flow

    NASA Astrophysics Data System (ADS)

    Haneji, Nobuo; Segami, Goh; Ide, Tomoyoshi; Suzuki, Tatsuya; Arakawa, Taro; Tada, Kunio; Shimogaki, Yukihiro; Nakano, Yoshiaki

    2003-06-01

    Electron cyclotron resonance-reactive ion etching (ECR-RIE) is very useful for fabricating semiconductor photonic devices and integrated circuits (PICs). The mixture gas of CH4/H2 is used for etching III-V semiconductors, but the carbon polymer film deposited on the surface during the etching process presents some problems. Thus, the polymer film must be ashed off using an O2 plasma. We introduced the cyclic injection of CH4/H2/Ar and O2 to ECR-RIE, and demonstrated that it was very useful for etching of InP. However, compound semiconductors containing Al (e.g., AlGaAs and InAlAs) react with oxygen and an alumina layer is formed, which cannot be etched by CH4/H2 etching. Therefore, we used a new cyclic etching process with constant Ar flow in the chamber to remove this alumina layer by Ar ion etching, and obtained good results for etching rate and surface morphology for the compound semiconductors containing Al. We also proposed a suitable combination of three cyclic etching procedures (continuous etching, cyclic etching without constant Ar flow and cyclic etching with constant Ar flow) for etching the multilayer heterostructure of III-V semiconductors including InP and/or compound semiconductors containing Al.

  16. Enhancement of Efficiency of a Solar Cell Fabricated on Black Si Made by Inductively Coupled Plasma-Reactive Ion Etching Process: A Case Study of a n-CdS/p-Si Heterojunction Cell.

    PubMed

    Katiyar, Ajit K; Mukherjee, S; Zeeshan, M; Ray, Samit K; Raychaudhuri, A K

    2015-10-28

    We show that a significant enhancement of solar cell efficiency can be achieved in cells fabricated on black Si made using inductively coupled plasma-reactive ion etching (ICP-RIE). The ICP-RIE-fabricated black Si results in an array of vertically oriented defect-free Si nanocones (average height ∼150 nm; apex diameter ∼25 nm) exhibiting an average reflectance ≤2% over most of the relevant solar spectral range. The enabling role of the ultralow reflectance of the nanostructured black Si has been demonstrated using a heterojunction solar cell fabricated by depositing a n-type CdS film on p-Si nanocones followed by a transparent conducting coating of Al-doped ZnO (AZO). The fabricated n-CdS/p-Si heterojunction exhibits promising power conversion efficiency close to 3%, up from a mere efficient 0.15% for a similar cell fabricated on a planar Si. The effect of the fabrication process for the black Si on solar cell performance has been investigated through the measurements of carrier lifetime and surface recombination velocity. The accompanying model and simulation analysis shows that the conical structure leads to the effective dielectric constant varying smoothly from the value of the air at the top to the value of Si at the base over the length of the nanocone, leading to a substantial reduction of its reflectance. PMID:26451949

  17. Effect of Cl{sub 2}/Ar gas mixing ratio on (Pb,Sr)TiO{sub 3} thin film etching behavior in inductively coupled plasma

    SciTech Connect

    Kim, Gwan-Ha; Kim, Chang-Il

    2006-07-15

    The development of anisotropic etching process for (Pb,Sr)TiO{sub 3} (PST) thin films is an important task to provide a small feature size and an accurate pattern transfer. Etching characteristics of PST thin films were investigated using inductively coupled plasma etching system as functions of Cl{sub 2}/Ar gas mixing ratio. The PST etch rate increased with the increase of chlorine radical and ion energy intensity. It was found that the increasing of Ar content in gas mixture lead to sufficient increasing of etch rate. The maximum etch rate of PST film is 56.2 nm/min at Cl{sub 2}/(Cl{sub 2}+Ar) of 0.2. It was proposed that the sputter etching is a dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products.

  18. A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wild, Larry

    2003-01-01

    Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article

  19. Correlation of plasma characteristics to etch rate and via sidewall angle in a deep reactive ion etch system using Langmuir probe and optical emission spectroscopy

    SciTech Connect

    Koirala, S. P.; Awaah, I.; Burkett, S. L.; Gordon, M. H.

    2011-01-15

    A Langmuir probe and optical emission spectroscopy were used in a deep reactive ion etch system to correlate plasma parameters (atomic fluorine and argon emission, electron density, ion density, and electron average energy) with the etch rate and via sidewall angle. All data were obtained for coil powers ranging from 200 to 800 W, platen powers ranging from 7 to 16 W, and pressure ranging from 3.8 to 62 mTorr with constant SF{sub 6} and Ar flow rates of 112 and 18 SCCM (SCCM denotes cubic centimeter per minute at STP), respectively. Results indicate that there is a correlation with etch rate for all plasma parameters except for argon emission. For argon emission, the etch rate exhibits a double-valued relation where the etch rate can either increase or decrease with increasing argon emission intensity due to changes in pressure which affect the energy coupling efficiency. As expected, the etch rate increases for measured increases in fluorine emission, electron density, and ion density. The etch rate, however, decreases with increasing average electron energy due to collision processes. In contrast, no correlation is observed between any of the measured plasma parameters with sidewall angle. The last result is consistent with the idea that sidewall angle is primarily controlled by the passivation cycle as opposed to the etching cycle, where all the authors' data were obtained.

  20. A statistical approach to optimization of alumina etching in a high density plasma

    SciTech Connect

    Li Xiao; Gupta, Subhadra; Highsmith, Alton; Paranjpe, Ajit; Rook, Katrina

    2008-08-01

    Inductively coupled plasma (ICP) reactive ion etching of Al{sub 2}O{sub 3} with fluorine-based gas chemistry in a high density plasma reactor was carried out in an initial investigation aimed at data storage applications. A statistical design of experiments was implemented to optimize etch performance with respect to process variables such as ICP power, platen power, direct current (dc) bias, and pressure. Both soft photoresist masks and hard metal masks were investigated in terms of etch selectivity and surface properties. The reverse power dependence of dc bias on the ratio of ICP to platen power was elucidated. Etch mechanisms in terms of physical and ion enhanced chemical etchings were discussed. The F-based chemistry greatly enhances the etch rate of alumina compared to purely physical processes such as ion milling. Etch rates as high as 150 nm/min were achieved using this process. A practical process window was developed for high etch rates, with reasonable selectivity to hard masks, with the desired profile, and with low substrate bias for minimal damage.

  1. Wafer edge protection kit for MEMS and TSV Si-etching

    NASA Astrophysics Data System (ADS)

    Wieland, Robert; Nguyen, K.; Seidelmann, U.; Scholz, M.; Schrag, G.

    2015-05-01

    A new process kit for a SPTS Pegasus DRIE Si-Etch tool has been developed and tested for several different process regimes, e.g. bulk-Si cavity etching and TSV (through-Silicon-Via) etching with high aspect ratios <10:1, using the socalled Bosch process. Additionally, Si-etch back (recess etching) with a single step process has been tested as well. The especially developed "edge protection kit", consisting of Al2O3 material and optionally of PEEK material, covers the edge of a wafer, preventing it from being etched or even being etched away. However, placing such a part on top of the cathode, results in changes of the electric field distribution and the gas flow behavior compared to the standard process kit supplied by SPTS. The consequences may be altered Si-etch rates combined with changes of the tilt and side wall taper of the etched structures, mainly near the outside regions of the wafer. To this end, extensive investigations on the mask and bulk-Si etch rates, the tilt and taper angle of various MEMS test structures and their respective uniformity over the wafer surface have been performed. Additionally, simulations applying Comsol Multiphysics have been carried out to visualize the potential impact of the new process kit on the electrical field distribution. A simplex-optimization was carried out, varying the platen power and source power, in order to improve the tilt and to maintain the proper taper angle. One major advantage of the new process kit design compared to the original one is the reduction of movable parts to a minimum.

  2. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  3. Dry etch development of W/WSi short Gate MESFETs

    SciTech Connect

    Shul, R.J.; Sherwin, M.E.; Baca, A.G.; Zolper, J.C.; Rieger, D.J.

    1996-01-01

    The use of refractory metal thin films in the fabrication of high-speed, high-density GaAs field effect transistors (FETs) are prominent with applications as interconnects, via plugs, and ohmic and Schottky contacts. Tungsten and tungsten silicide can be used in a self-aligned gate process as the ion implantation mask during the formation of source and drain regions for metal-semiconductor FETs (MESFETs). The gate etch must be highly anisotropic to accurately define the implant region. Reactive ion etch (RIE) techniques have been used to etch W and WSi films in fluorine-based discharges. The etch mechanism tends to be very chemical and often results in severe undercutting of the feature due to the lateral attack of the refractory metal. The undercut is often so severe that critical dimensions are not maintained and gate profiles do not properly align to the implant region resulting in poor device characteristics. As device design rules shrink, the etch requirements and patterning techniques become even more critical.

  4. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  5. Real-time Control and Modeling of Plasma Etching

    NASA Astrophysics Data System (ADS)

    Sarfaty, M.; Baum, C.; Harper, M.; Hershkowitz, N.; Shohet, J. L.

    1997-10-01

    The relatively high process rates in high density plasma tools as well as the shrinking thickness of the films, require fast estimate of the process state in order to implement real-time advanced process control. The fast etch rate estimate, within one second, in a single spot size of 1-2 mm and the time averaged rates across the wafer are obtained by a combined use of an in-situ two-color laser interferometer and a full wafer image interferometer, respectively. The gas phase state is monitored by optical emission spectroscopy and a residual gas analyzer. The magnetically confined ICP tool state, including gas flow, pressure, and RF power to the antenna and the electrostatic chuck, is computer controlled and monitored. The absolute thickness of the film is determined during the process, thus providing an end-point prediction. The advantages of two-color laser interferometry for real-time process monitoring, development and control will be described. Langmuir kinetics modeling of the measured etch rates of polysilicon and SiO2 films in Cl2 and CF4 discharges using tool state parameters will be described. The etch rate model enabled us to develop a model-based real-time control algorithm. The achieved real-time control of plasma etch rates of un-patterned SiO2 and polysilicon films will be described. This work is funded by NSF grant No. EEC-8721545.

  6. Normally-off AlGaN/GaN high-electron-mobility transistor using digital etching technique

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ryota; Kanazawa, Toru; Yagyu, Eiji; Miyamoto, Yasuyuki

    2015-06-01

    A normally-off AlGaN/GaN high-electron-mobility transistor (HEMT) with a recessed-gate structure fabricated by novel digital etching is reported. Digital etching consists of multiple cycles of oxidation and wet etching of the oxide, and has the merits of easy control of the recess depth and reduction of surface damage in comparison with conventional dry etching. However, in conventional digital etching, the oxidation process involves the possibility of undercutting. In the digital etching, a reactive ion etcher was used and recess etching without any undercut was confirmed. Normally-off operation and the improvement of transconductance were confirmed in an AlGaN/GaN HEMT fabricated by this technique.

  7. Modeling of feature profile evolution for ion etching

    SciTech Connect

    Li, Kun-Dar

    2013-01-07

    A kinetic model is presented to investigate the profile evolution during ion etching. The effects of ion sputtering, redeposition, and diffusion processes are all taken into consideration in the formation mechanism of surface profile. The dominant factors accounting for the surface smoothening and roughening during ion etching are well explained in this study. Under high ion flux or ion energy, the sputtering effect plays a controlling role in roughening the surface profile with a high etching rate. While decreasing ion flux or ion energy, the surface profile is smoothened by the diffusion mechanism with a long time ion irradiation. For a low temperature, the characteristic length of nanostructures decreases with a sputtered feature profile due to the low mobility. Our simulation results are consistent well with many experimental observations. This theoretical model provides an efficient numerical approach to fully understand the mechanism for the formation of surface profile allowing for designing of appropriate experiments to form specific nanostructures through ion-beam technology.

  8. Method of plasma etching GA-based compound semiconductors

    SciTech Connect

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  9. Study of etching rate uniformity in SRF cavities

    SciTech Connect

    Janardan Upadhyay, Svetozar Popovic, Leposova Vuskovic, H. Phillips, Anne-Marie Valente

    2012-07-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The crucial aspect of the technology development is dependence of the etching rate and surface roughness on the frequency of the power supply, pressure, power level, driven electrode shape and chlorine concentration in the gas mixture during plasma processing. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders are used as diagnostic ports for the measurement of the plasma parameters and as holders for the samples to be etched. The plasma properties are highly correlated with the shape of the driven electrode and chlorine concentration in the Argon/Chlorine gas mixtures.

  10. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  11. Profile etching for prefiguring X-ray mirrors.

    PubMed

    Liu, Chian; Qian, Jun; Assoufid, Lahsen

    2015-03-01

    A method to pre-shape mirror substrates through etching with a broad-beam ion source and a contoured mask is presented. A 100 mm-long elliptical cylinder substrate was obtained from a super-polished flat Si substrate with a 48 nm root-mean-square (r.m.s.) figure error and a 1.5 Å r.m.s. roughness after one profile-etching process at a beam voltage of 600 V without iteration. A follow-up profile coating can be used to achieve a final mirror. Profile etching and profile coating combined provide an economic way to make X-ray optics, such as nested Kirkpatrick-Baez mirrors. PMID:25723948

  12. Plasmoids for etching and deposition

    NASA Astrophysics Data System (ADS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-11-01

    In this manuscript we show fascinating properties of plasmoids, which are known to be self-sustained plasma entities, and can exist without being in contact with any power supply. Plasmoids are produced in a filamentary discharge in a Ar/CH4 mixture with a high production rate of about 105 s-1. It is observed that plasmoids etch the solid amorphous hydrocarbon film with high efficiency. Energy density of the plasmoid, which is estimated on the basis of glowing area of plasmoids in the photographic image and sublimation enthalpy of the etched hydrocarbon film, amounts to about 90 J m-3. This value is much lower than the energy density of observed ball lightning (natural plasmoid). A very surprising property is an attraction between plasmoids, and the formation of plasmoid-groups. Because of this attractive force, carbon material, which is collected in plasmoids by etching of the hydrocarbon film or by propagation through a methane/argon gas mixture, is compressed into crystals.

  13. Development of a bond contribution model for structure: property correlations in dry etch studies

    NASA Astrophysics Data System (ADS)

    Yu, Tianyue; Ching, Philip; Ober, Christopher K.; Deshpande, Shreeram V.; Puligadda, Rama

    2001-08-01

    Plasma (dry) etching is a key step in semiconductor device manufacturing processes whereby the resist pattern is transferred to a substrate. As the resist thickness is reduced to meet stringent transparency requirements in photolithography, the usage of fast etching material as BARC is considered to be increasingly critical in minimizing resist thickness loss in pattern transfer steps. Several models emphasizing correlation between polymeric structure and etch resistance based on empirical parameters have been developed but are hard to generalize. We have examined the reactive ion etch (RIE) properties of a variety of polymer groups including natural polymers, poly(styrenic)s, poly(acrylate)s, poly(olefin)s, poly(ester)s and several polymers grafted with UV light absorbing chromophores. With the assumption that in the etching processes the reactive species from plasma attack the polymeric materials at a molecular level instead of an atomic level, we have developed a model based on the contribution of chemical bonds in the polymer structure to predict etch rates. The present study shows that this model revealed marked correlations across polymer families for three different etch processes. This model has also proved to be an effective tool in predicting the etch behavior of polymers for use in BARCs.

  14. Optical emission spectroscopy analysis for Ge2Sb2Te5 etching endpoint detection in HBr/He plasma

    NASA Astrophysics Data System (ADS)

    Li, Juntao; Liu, Bo; Song, Zhitang; Feng, Gaoming; Wu, Guanping; He, Aodong; Yang, Zuoya; Zhu, Nanfei; Xu, Jia; Ren, Jiadong; Feng, Songlin

    In the fabrication of phase change memory devices, HBr/He gas is employed in patterning Ge2Sb2Te5 (GST) because it is damage free to GST sidewall. Accurate and reproducible endpoint detection methods are necessary in this etching process. In-situ optical emission spectroscopy (OES) is collected and analyzed to control the GST etching process due to its non-invasiveness. By analyzing the light emitted from plasma, we report an effective etch endpoint detection method for GST etching process is developed and the results are also confirmed using scanning electron micrographs.

  15. Etchant wettability in bulk micromachining of Si by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Soo; Lee, Yeong Bahl; Khang, Dahl-Young

    2016-05-01

    Wet bulk micromachining of Si by metal-assisted chemical etching (MaCE) has successfully been demonstrated. Based on the mechanism of defective etching results from Ag and Au metal catalyst experiments, the wettability of etchant solution, in addition to metal type, has been found to have profound effect on the etching process. Addition of low surface tension co-solvent, ethanol in this work, into conventional etchant formulation has enabled complete wetting of etchant on surface, which prevents hydrogen bubble attachment on sample surface during the etching. The complete elimination of bubble attachment guarantees very uniform etch rate on all over the sample surface, and thus prevents premature fragmentation/rupture of catalyst metal layer. Under the optimized etching conditions, the MaCE could be done for up to 12 h without any noticeable film rupture and thus etching defects. Thanks to very smooth surface of the etched patterns, conformal contact and direct bonding of elastomer on such surface has been easily accomplished. The method demonstrated here can pave the way for application of simple, low-cost MaCE process in the bulk micromachining of Si for various applications.

  16. Etching of organosilicate glass low-k dielectric films in halogen plasmas

    NASA Astrophysics Data System (ADS)

    Vitale, Steven A.; Sawin, Herbert H.

    2002-05-01

    The chemistry and kinetics of alternative etching chemistries for low-k dielectric materials are explored to improve the anisotropy of the etching process and to reduce the problems associated with postetch clean-up. Etching rates, selectivities, and etching yields of Black Diamond and Coral organosilicate glasses (OSGs) have been measured. Black Diamond and Coral are etched rapidly in F2, Cl2, and HBr high density plasmas, and Cl2+HBr plasmas have been identified as a viable process chemistry with several advantages over traditional fluorocarbon plasmas. The OSG films are not spontaneously etched by F2, Cl2, HBr molecules, Cl, or Br atoms, however, F atoms etch the OSGs spontaneously. F, Cl, and H atoms extract a substantial amount of carbon from the films, but Cl and H do not attack the OSG oxide matrix. The Coral films are more strongly depleted of carbon after halogen plasma etching than the Black Diamond. In addition, oxygen atoms extract nearly all of the carbon and nitrogen from the OSGs, leaving a stoichiometric SiO2 layer.

  17. Patterning of wave guides in LiNbO3 using ion beam etching and reactive ion beam etching

    NASA Astrophysics Data System (ADS)

    Hines, D. S.; Williams, K. E.

    2002-05-01

    A number of current and future optoelectronic components require the creation of waveguides in LiNbO3. In order to accomplish this, trenches between one and ten microns deep must be patterned into the LiNbO3 substrate. We have demonstrated the formation of near-vertical, smooth-walled trenches up to ten microns deep using Ar ion beam etching (IBE) and Ar/CHF3 reactive ion beam etching (RIBE) processes. Both Ar IBE and Ar/CHF3 RIBE processes can achieve etching rates of up to 100 nm/minute. Our patented RIBE process [K. E. Williams, et al. U.S. Patent No. 6,238,582 (29 May 2001)] has the additional advantage of providing up to a 5:1 selectivity for etching the LiNbO3 over a photoresist mask. The collimated beam available with IBE and RIBE allows control over feature profiles and redeposition removal. Using a combination of RIBE and a multiangle process, the sidewall angle and smoothness of the mask have been transferred into LiNbO3 substrates to depths between one and ten microns. This depth range can be expanded in either direction if an appropriate mask can be fabricated.

  18. The contribution of H ion etching under different substrate bias to the orientation degree of diamond films

    SciTech Connect

    Zhang, W.J.; Jiang, X.

    1998-12-31

    An etching process of hydrogen ions was performed during the initial growth stage of diamond films. The H{sup +} ion etching was performed by applying a negative substrate bias during a microwave plasma chemical vapor deposition process, using only hydrogen as a reactant gas. The contribution of H{sup +} etching under different substrate bias and for different etching time to the orientation degree of diamond films was investigated by scanning electron microscopy and atomic force microscopy. It was found that an additional H{sup +} etching process had influence on the orientation degree of deposited (001)-oriented diamond films. To achieve a significant improvement of crystal orientation, the bias voltage and etching time should be adjusted concerning the situation of diamond films.

  19. Cryo-Etched Black Silicon for Use as Optical Black

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.

    2011-01-01

    Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.

  20. Etch rate Modeling and Real-time Control

    NASA Astrophysics Data System (ADS)

    Hershkowitz, N.; Sarfaty, M.; Baum, C.; Harper, M.; Shohet, J. L.

    1997-11-01

    The relatively high process rates in high density plasma tools as well as the shrinking thickness of the films, require fast estimate of the process state in order to implement real-time advanced process control. The fast etch rate estimate, within one second, in a spot size of 1-2 mm and the time averaged rates across the wafer are obtained by a combined use of an in-situ two-color laser interferometer and a full wafer image interferometer, respectively. The gas phase state is monitored by optical emission spectroscopy and a residual gas analyzer. The magnetically confined ICP tool state, including gas flow, pressure, and RF power to the antenna and the electrostatic chuck, is computer controlled and monitored. The absolute thickness of the film is determined during the process, thus providing an end-point prediction. Splitting the two-color laser beam to two spots on the wafer that are coated with different films provides real-time etch selectivity. The advantages of two-color laser interferometry for real-time process monitoring, development and control will be described. Langmuir kinetics modeling of the measured etch rates of polysilicon and SiO2 films in Cl2 and CF4 discharges using tool state parameters will be described. The etch rate model enabled us to develop a model-based real-time control algorithm. The achieved real-time control of plasma etch rates of un-patterned SiO2 and polysilicon films will be described. This work is funded by NSF grant No. EEC-8721545.

  1. Laser-induced etching of titanium by Br2 and CCl3Br at 248 nm

    NASA Astrophysics Data System (ADS)

    Tyndall, George W.; Moylan, Christopher R.

    1990-06-01

    A quartz crystal microbalance (QCM) has been used to study the KrF* excimer laser-induced etching of titanium by bromine-containing compounds. The experiment consists of focusing the pulsed UV laser beam at normal incidence onto the surface of a quartz crystal coated with 1 μm of polycrystalline titanium. The removal of titanium from the surface is monitored in real time by measuring the change in the frequency of the quartz crystal. The dependence of the etch rate on etchant pressure and laser fluence was measured and found to be consistent with a two-step etching mechanism. The initial step in the etching of titanium is reaction between the etchant and the surface to form the etch product between laser pulses. The etch product is subsequently removed from the surface during the laser pulse via a laser-induced thermal desorption process. The maximum etch rate obtained in this work was 6.2 Å-pulse-1, indicating that between two and three atomic layers of Ti can be removed per laser pulse. The energy required for desorption of the etch product is calculated to be 172 kJ-mole-1, which is consistent with the sublimation enthalpy of TiBr2 (168 kJ-mole-1). The proposed product in the etching of titanium by Br2 and CCl3Br is thus TiBr2. In the etching of Ti by Br2, formation of TiBr2 proceeds predominantly through the dissociative chemisorption of Br2. In the case of etching with CCl3Br, TiBr2 is formed via chemisorption of Br atoms produced in the gas-phase photodissociation of CCl3Br.

  2. ALTERNATIVE TO CHROME ETCHING PROCESSES FOR METALS

    EPA Science Inventory

    Several industries, including the National Center for Manufacturing Science have initiated programs for chrome abatement. The programs, however, generally focus on chrome reduction by use of existing technologies and do not address the elimination of chrome in pretreatment proces...

  3. Etching method for photoresists or polymers

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)

    1991-01-01

    A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.

  4. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  5. Effects of plasma etching on orientation ratio for longitudinal recording media

    NASA Astrophysics Data System (ADS)

    Huang, L.; Wang, J. P.

    2002-05-01

    Studies on the effects of rf plasma etching treatment on textured NiP/Al substrate on the properties of CoCrTaPt/CrMo longitudinal recording media were carried out. The dependence of coercivity (Hc), coercivity orientation ratio (OR), and disk surface roughness (Ra) on etching parameters, i.e., etching time, pressure, and power, were presented. It was found that by optimizing the etching process parameters, an increase of Hc and OR and a decrease of Ra could be achieved. It was observed that good preferred orientation is necessary for obtaining high OR. The increase of OR could be attributed to the cleaning effect or surface modification by the rf plasma etching treatment on the textured substrate.

  6. One-step substrate nanofabrication and patterning of nanoparticles by lithographically controlled etching

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Limones Herrero, D.; Valle, F.; Greco, P.; Ingo, G. M.; Kaciulis, S.; Biscarini, F.; Cavallini, M.

    2011-09-01

    We propose an integrated top-down and bottom-up approach to single-step nanofabrication of complex nanostructures made of different materials. The process, termed lithographically controlled etching (LCE), starts with a drop of an etching solution cast on the surface to be patterned. By placing a polymeric mold on the substrate, the stamp protrusions come into contact with the surface, thus protecting it, whereas the surface beneath the mold recesses is exposed to a thin layer of etching solution, allowing the surface to be etched. By dispersing nanoparticles into the etching solution, these can be deposited and self-organize in the recesses on the substrate as these are excavated. We demonstrate here the fabrication of complex structures and nanowires 30 nm wide. Moreover, by exploiting capillary forces, it is possible to deposit nanoparticles at precise positions with respect to optically addressable microstructures, thus realizing a multiscale functional pattern.

  7. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  8. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  9. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    SciTech Connect

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnel requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.

  10. Photonic jet to improve the lateral resolution of laser etching

    NASA Astrophysics Data System (ADS)

    Abdurrochman, Andri; Lecler, Sylvain; Fontaine, Joël.; Mermet, Frédéric; Meyrueis, Patrick; Tumbelaka, Bernard Y.; Montgomery, Paul

    2014-05-01

    The techniques applying laser beams or optical systems are limited by the diffraction limit of the optical heads used. We demonstrate theoretically and experimentally that the use of the photonic jet allows an improvement in the optical resolution to achieve smaller etching without reducing the wavelength of the source. The potential of the photonic jet using a nanosecond pulsed near-infrared laser for micro-fabrication is also demonstrated. These lasers are the most common type of laser used in industrial processes because of their price and the fact that well-packaged sources are available. Their typical spatial resolution in laser etching is limited by the spot size of their focus point at around 25-70 μm. This is the reason why a photonic jet, a high spatial concentration onto a half-wavelength spot of a beam that emerges in the vicinity of a dielectric microsphere, is of great interest. In our experiments, micro-scale glass (ns = 1.5) and BaTiO3 spheres (ns = 1.9) have been used to achieve photonic jets. The etching process has been tested on two substrates: silicon wafers, which have a significant absorption at 1064 nm, and glass plates, which have a lower absorption at this wavelength. The smallest marking achieved on silicon has an average diameter of 1.3 μm and despite the low absorption, micrometric etchings have also been achieved on glass using larger microspheres.

  11. Crystallographic anisotropy of growth and etch rates of CVD diamond

    SciTech Connect

    Wolfer, M; Biener, J; El-dasher, B S; Biener, M M; Hamza, A V; Kriele, A; Wild, C

    2008-08-05

    The investigation of orientation dependent crystal growth and etch processes can provide deep insights into the underlying mechanisms and thus helps to validate theoretical models. Here, we report on homoepitaxial diamond growth and oxygen etch experiments on polished, polycrystalline CVD diamond wafers by use of electron backscatter diffraction (EBSD) and white-light interferometry (WLI). Atomic force microscopy (AFM) was applied to provide additional atomic scale surface morphology information. The main advantage of using polycrystalline diamond substrates with almost random grain orientation is that it allows determining the orientation dependent growth (etch) rate for different orientations within one experiment. Specifically, we studied the effect of methane concentration on the diamond growth rate, using a microwave plasma CVD process. At 1 % methane concentration a maximum of the growth rate near <100> and a minimum near <111> is detected. Increasing the methane concentration up to 5 % shifts the maximum towards <110> while the minimum stays at <111>. Etch rate measurements in a microwave powered oxygen plasma reveal a pronounced maximum at <111>. We also made a first attempt to interpret our experimental data in terms of local micro-faceting of high-indexed planes.

  12. Catalytic etching of monolayer graphene at low temperature via carbon oxidation.

    PubMed

    Jin, Jun Eon; Lee, Jae-Hyun; Choi, Jun Hee; Jang, Ho-Kyun; Na, Junhong; Whang, Dongmok; Kim, Do-Hyun; Kim, Gyu Tae

    2016-01-01

    In this work, an easy method to etch monolayer graphene is shown by catalytic oxidation in the presence of ZnO nanoparticles (NPs). The catalytic etching of monolayer graphene, which was transferred to the channel of field-effect transistors (FETs), was performed at low temperature by heating the FETs several times under an inert gas atmosphere (ZnO + C → Zn + CO or CO2). As the etching process proceeded, diverse etched structures in the shape of nano-channels and pits were observed under microscopic observation. To confirm the evolution of etching, current-voltage characteristics of monolayer graphene were measured after every step of etching by catalytic oxidation. As a result, the conductance of monolayer graphene decreased with the development of etched structures. This decrease in conductance was analyzed by percolation theory in a honeycomb structure. Finally, well-patterned graphene was obtained by oxidizing graphene under air in the presence of NPs, where Al was deposited on graphene as a mask for designed patterns. This method can substitute graphene etching via carbon hydrogenation using H2 at high temperature. PMID:26225821

  13. Secret of formulating a selective etching or cleaning solution for boron nitride (BN) thin film

    NASA Astrophysics Data System (ADS)

    Hui, Wing C.

    2004-04-01

    Boron nitride thin film has a very unique characteristic of extremely high chemical inertness. Thus, it is a better hard mask than silicon nitride for aggressive etching solutions, such as the isotropic HF/HNO3/CH3COOH (or HNA) etchant for silicon. However, because of its high chemical inertness, it is also difficult to remove it. Plasma etching with Freon gases can etch the boron nitride film, but it is unselective to silicon, silicon dioxide or silicon nitride. Cleaning up the boron nitride film with plasma etching will usually leave a damaged or foggy surface. A special wet chemical solution has been developed for etching or cleaning boron nitride film selectively. It can etch boron nitride, but not the coatings or substrates of silicon, silicon nitride and silicon dioxide. It is a very strong oxidizing agent consisting of concentrated sulfuric acid (H2SO4) and hydrogen peroxide (H2O2), but different from the common Piranha Etch. It may be even more interesting to understand the logic or secret behind of how to formulate a new selective etching solution. Various chemical and chemical engineering aspects were considered carefully in our development process. These included creating the right electrochemical potential for the etchant, ensuring large differences in chemical kinetics to make the reactions selective, providing proper mass transfer for removing the by products, etc.

  14. XeF2 vapor phase silicon etch used in the fabrication of movable SOI structures.

    SciTech Connect

    Wiwi, M.; Sanchez, Carlos Anthony; Plut, Thomas Alvin; Salazar, M.; Stevens, Jeffrey; Bauer, Todd M.; Ford, C.; Shul, Randy John; Grossetete, Grant David

    2010-10-01

    Vapor phase XeF{sub 2} has been used in the fabrication of various types of devices including MEMS, resonators, RF switches, and micro-fluidics, and for wafer level packaging. In this presentation we demonstrate the use of XeF{sub 2} Si etch in conjunction with deep reactive ion etch (DRIE) to release single crystal Si structures on Silicon On Insulator (SOI) wafers. XeF{sub 2} vapor phase etching is conducive to the release of movable SOI structures due to the isotropy of the etch, the high etch selectivity to silicon dioxide (SiO{sub 2}) and fluorocarbon (FC) polymer etch masks, and the ability to undercut large structures at high rates. Also, since XeF{sub 2} etching is a vapor phase process, stiction problems often associated with wet chemical release processes are avoided. Monolithic single crystal Si features were fabricated by etching continuous trenches in the device layer of an SOI wafer using a DRIE process optimized to stop on the buried SiO{sub 2}. The buried SiO{sub 2} was then etched to handle Si using an anisotropic plasma etch process. The sidewalls of the device Si features were then protected with a conformal passivation layer of either FC polymer or SiO{sub 2}. FC polymer was deposited from C4F8 gas precursor in an inductively coupled plasma reactor, and SiO{sub 2} was deposited by plasma enhanced chemical vapor deposition (PECVD). A relatively high ion energy, directional reactive ion etch (RIE) plasma was used to remove the passivation film on surfaces normal to the direction of the ions while leaving the sidewall passivation intact. After the bottom of the trench was cleared to the underlying Si handle wafer, XeF{sub 2} was used to isotropically etch the handle Si, thus undercutting and releasing the features patterned in the device Si layer. The released device Si structures were not etched by the XeF{sub 2} due to protection from the top SiO{sub 2} mask, sidewall passivation, and the buried SiO{sub 2} layer. Optimization of the XeF{sub 2

  15. Selective suppression of carrier-driven photochemical etching: Raman spectroscopy as a diagnostic tool

    SciTech Connect

    Ashby, C.I.H.; Myers, D.R.; Vawter, G.A.; Biefeld, R.M.; Klem, J.F.

    1990-01-01

    Carrier-driven photochemical etching of semiconductors can be selectively suppressed by altering the near-surface region to enhance carrier recombination, thereby reducing the supply of carriers that drive the surface etching reaction. Two methods for enhancing recombination and decreasing the etch rate at a given phonon flux include ion implantation and localized Zn diffusion. Raman spectroscopy can be employed to determine whether sufficient alterations of electronic properties has occurred to suppress etching. Carrier-driven photochemical reactions, which require direct participation of free carriers for the chemical reaction to proceed, can be selectively suppressed by increasing the minority carrier recombination rate, thereby reducing the supply of carriers that drive the surface etching reaction. Two methods for enhancing recombination and decreasing the etching quantum yield, which is the number of atoms removed per incident photon, include ion implantation and localized Zn diffusion. For ion implantation, recombination- promoting defect concentrations depend on ion species, fluence, and annealing both during and after the implantation process. Other recombination processes related to carrier scattering from ionized impurities from in-diffusion of dopants or following implant activation can control etching. Raman spectroscopy can be employed to detect changes in electronic properties that correlate with etching suppression. Changes that occur in the LO-phonon lineshape, such as those associated with phonon confinement and ionized impurity scattering, can be diagnostic of the carrier-driven etching behavior following a specific treatment. We have demonstrated two applications of Raman spectroscopy as a diagnostic for suppression of the carrier-driven photochemical etching of GaAs. 12 refs., 3 figs.

  16. Etch challenges for DSA implementation in CMOS via patterning

    NASA Astrophysics Data System (ADS)

    Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.

    2014-03-01

    This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.

  17. Consideration of correlativity between litho and etching shape

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2012-03-01

    We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.

  18. Angular etching yields of polysilicon and dielectric materials in Cl{sub 2}/Ar and fluorocarbon plasmas

    SciTech Connect

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-15

    The angular etching yields of polysilicon in Cl{sub 2}/Ar plasmas, and dielectric materials (thermal silicon dioxide and low-k dielectric coral) in fluorocarbon plasmas, have been characterized in an inductively coupled plasma beam apparatus. The effects of ion energy, feed gas composition, and plasma source pressure are studied. The experimental results showed that these etching parameters had a significant impact on the resulting angular etching yield curve. In particular, the angular etching yield curve was more sputteringlike at low plasma source pressure and/or low effective gas percentage (Cl{sub 2} and C{sub 4}F{sub 8}), with a peak around 60 deg. -70 deg. off-normal ion incident angle. In contrast, ion-enhanced-etching-like angular curves, which dropped gradually with off-normal angle, were formed at high plasma source pressure and/or high effective gas percentage. Further analysis indicated that the effective neutral-to-ion flux ratio reaching the surface was the primary factor influencing the angular etching yield curve. More specifically, the angular etching yield curve had physical sputtering characteristics at low neutral-to-ion flux ratios; while etching process was really dominated by ion-enhanced etching at high ratios and the angular curve was ion-enhanced-etching-like. The polymer deposition effects are also discussed in this article.

  19. Charging effect simulation model used in simulations of plasma etching of silicon

    SciTech Connect

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike

    2012-10-15

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  20. Etch-stop behavior of buried layers formed by substoichiometric nitrogen ion implantation into silicon

    SciTech Connect

    Perez-Rodriguez, A.; Romano-Rodriguez, A.; Morante, J.R.; Acero, M.C. Esteve, J.; Montserrat, J.; El-Hassani, A.

    1996-03-01

    In this work the etch-stop behavior of buried layers formed by substoichiometric nitrogen ion implantation into silicon is studied as a function of the processing parameters, the implantation dose and temperature, and the presence of capping layers during implantation. Etching characteristics have been probed using tetramethylammonium hydroxide or KOH solutions for different times up to 6 h. Results show that, after annealing, the minimum dose required for the formation of an efficient etch-stop layer is about 4 {times} 10{sup 17} cm{sup {minus}2}, for an implantation energy of 75 keV. This is defined as a layer with an efficient etch selectivity in relation to Si of s {ge} 100. For larger implantation doses efficient etch selectivities larger than 100 are obtained. However, for these doses a considerable density of pits is observed in the etch-stop layer. These are related to the presence of nitrogen poor Si regions in the buried layer after annealing, due to a partial separation of silicon and silicon nitride phases during the annealing process. The influence of this separation of phases as well as nitrogen gettering in the buried layer on the etch-stop behavior is discussed as a function of the processing parameters.

  1. Charging effect simulation model used in simulations of plasma etching of silicon

    NASA Astrophysics Data System (ADS)

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Cooke, Mike; Rangelow, Ivo W.

    2012-10-01

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)—a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured—as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  2. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    EPA Science Inventory

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  3. Plasma-etched nanostructures for optical applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  4. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  5. Low damage etching method of low-k material with a neutral beam for interlayer dielectric of semiconductor device

    SciTech Connect

    Kang, Seung Hyun; Kim, Jong Kyu; Lee, Sung Ho; Kim, Jin Woo; Yeom, Geun Young

    2015-03-15

    To reduce the cross-talk between nanoscale devices, low-k materials such as methyl silsesquioxane (MSQ), which is damaged easily during plasma etching, are introduced as an intermetallic dielectric material in addition to the use of copper as the conducting material for the reduction of parasitic resistance and capacitance. In this study, beam techniques such as neutral/ion beams were used in the etching of MSQ and the effect of these beam techniques on the reduction of the degradation of the MSQ were investigated. When MSQ was etched using the same CF{sub 4} etch gas at the similar etch rate as that used for conventional MSQ etching using inductively coupled plasmas (ICPs), the neutral/ion beam etching showed lower F contents and lower penetration depth of F, indicating decreased degradation by fluorination of MSQ during etching using the beam techniques. Especially, the neutral beam etching technique showed the lowest F contamination and the lower penetration depth of F among the etch methods. When the dielectric constant was measured after the etching of the same depth, the MSQ etched with the neutral beam showed the lowest change of the dielectric constant, while that etched using the ICP showed the highest change of dielectric constant. The lower degradation, that is, the lower chemical modification of MSQ material with the beam technique is believed to be related to the decreased concentration of radical species in the processing chamber reacting with the MSQ surface, while the lowest degradation using the neutral beam is believed to be due to the lower reaction rate of the reactive neutral compared to reactive ions.

  6. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  7. Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching

    SciTech Connect

    Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.

    2009-09-15

    The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

  8. Characteristics of Indium-Tin Oxide Thin Film Etched by Reactive Ion Etching

    NASA Astrophysics Data System (ADS)

    Yokoyama, Meiso; Li, Jiin; Su, Shui; Su, Yan

    1994-12-01

    Indium-tin oxide (ITO) films coated on glass have been etched by reactive ion etching (RIE) with a gas mixture of Ar and Cl2. The etching rates of ITO films depend strongly on power density, gas pressure, the composition of reactive gases, and the total flow rate of etchants. According to the results from the study, we can postulate that the ITO films' etching follows the ion-assisted chemical etching. A high etching rate above 100 Å/min can be achieved, and an etching mechanism will be proposed. The selectivity of ITO films to glass reaches 35 with a 30 line/mm pattern. After exposure of ITO films to an Ar/Cl2 mixed gas plasma discharge, their sheet resistance does not markedly change. The residue of Cl atoms exists only in the region near the surface. By means of parameter control, we can obtain good pattern images of ITO films measured by scanning electron microscopy (SEM).

  9. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    SciTech Connect

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  10. Layer-by-layer nanometer scale etching of two-dimensional substrates using the scanning tunneling microscope

    SciTech Connect

    Parkinson, B. )

    1990-10-10

    The scanning tunneling microscope can be used to sequentially etch single molecular layers from the surface of two-dimensional materials (i.e., SnSe{sub 2}, TiSe{sub 2}, and NbSe{sub 2}). Etching occurs by the nucleation and growth of holes in the region of the sample rastered by the tip under normal conditions of tunneling bias and current. In the case of etching NbSe{sub 2}, triangular etch pits are formed in the initial etching stages. The mechanism for the etching process is unknown at this point although four reasonable mechanisms are proposed. Several submicron complex structures have been prepared as well as a structure as small as 25 x 25 x 1.2 nm.

  11. Etch-a-Sketch Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    2009-10-01

    The popular children's toy Etch-a-Sketch has motivated the invention of a new material capable of writing and erasing wires so small they approach the spacing between atoms. The interface between two normally insulating materials, strontium titanate and lanthanum aluminate, can be switched between the insulating and conducting state with the use of the sharp metallic probe of an atomic-force microscope. By ``sketching'' this probe in various patterns, one can create electronic materials with remarkably diverse properties. This material system shows promise both for ultra-high density storage and as possible replacements for silicon-based logic (CMOS). This work is supported by the National Science Foundation, Defense Advanced Research Projects Agency, Army Research Office and Air Force Office of Scientific Research.

  12. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    SciTech Connect

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 micrometer inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon ‘halo’ deposition due to secondary electrons (SE) from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  13. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    DOE PAGESBeta

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 micrometer inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits ofmore » focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon ‘halo’ deposition due to secondary electrons (SE) from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.« less

  14. High Speed Si Etching with ClF{sub 3} Cluster Injection

    SciTech Connect

    Seki, T.; Yoshino, Y.; Senoo, T.; Koike, K.; Ninomiya, S.; Matsuo, J.; Aoki, T.

    2011-01-07

    The reactive gas cluster injection process is an etching method that uses a neutral cluster beam without plasma. ClF{sub 3}-Ar neutral cluster was generated and the Si etching characteristics with this beam were investigated. ClF{sub 3} is very high reactive gas. Adiabatic expansion of a high-pressure gas through a conical nozzle is utilized for the formation of cluster beams. The source gas was a mixture of ClF{sub 3}(6%) with Ar (94%). The etching rate increased with source gas pressure nonlinearly, and the etching rate achieved more than 30 {mu}m/min at 0.85 MPa. Although the irradiation energy was very low (<1 eV/atom or molecule), the chemical etching was enhanced with cluster impacts and the cluster bombarded area on the surface was etched selectively. These results indicated that high speed anisotropic etching with low damage can be realized with the ClF{sub 3} cluster injection process.

  15. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    SciTech Connect

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  16. Insights into Plasma Etch Profile Evolution with 3D Profile Simulation

    NASA Astrophysics Data System (ADS)

    Sriraman, Saravanapriyan; Paterson, Alex; Zhang, Yiting; Kushner, Mark

    2014-10-01

    Plasma etching is critical for pattern transfer in microelectronics fabrication. For planar devices, efforts in 2D etch profile simulations were sufficient to understand critical etch process mechanisms. In contrast, to understand the complex mechanisms in etching 3D structures of current technology nodes such as FinFETs, 2D profile simulators are inadequate. In this paper, we report on development of a 3D profile simulation platform, the Monte Carlo Feature Profile Model (MCFPM-3D). The MCFPM-3D builds upon the 2D MCFPM platform that includes aspects such as mixing, implantation, and photon assisted processes and addresses reaction mechanisms in surface etching, sputtering, and deposition to predict profile evolution. Model inputs include fluxes of species from plasma derived from the Hybrid Plasma Equipment Model (HPEM). Test cases of Si/SiO2 etching in Ar/Cl2 and Ar/CF4/O2 plasmas for representative 2D/3D feature topographies are considered and phenomena such as selectivity and aspect ratio dependent etching will be discussed.

  17. o Dry etching characteristics of amorphous As2S3 film in CHF3 plasma

    NASA Astrophysics Data System (ADS)

    Choi, Duk-Yong; Madden, Steve; Rode, Andrei; Wang, Rongping; Luther-Davies, Barry

    2008-12-01

    The authors describe the dry etching characteristics of amorphous As2S3 films in CHF3 plasma and the development of an optimized fabrication process for compact waveguides. The observed etching behavior is due to the relative densities of fluorine atoms, polymer precursors, and ions in the plasma which are controlled by the process parameters. In particular, the flow rate of the CHF3 gas has a significant influence on the etched profile and surface roughness as well as the etch rate of the As2S3. The profile evolves from isotropic to vertical with the flow rate due to passivation by increasing polymer deposition on the sidewalls. Such passivation also helps achieve smooth sidewalls because it inhibits differential etching between the phases in the inherently phase-separated As2S3 film, which otherwise results in a grainy and rough etched surface. At the highest flow rate, however, excessive polymer deposition occurs and this results in positive-sloped sidewall and grassy etched surface due to micromasking.

  18. Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications

    NASA Astrophysics Data System (ADS)

    Nagarah, John M.; Wagenaar, Daniel A.

    2012-03-01

    Microfluidic and optical sensing platforms are commonly fabricated in glass and fused silica (quartz) because of their optical transparency and chemical inertness. Hydrofluoric acid (HF) solutions are the etching media of choice for deep etching into silicon dioxide substrates, but processing schemes become complicated and expensive for etching times greater than 1 h due to the aggressiveness of HF migration through most masking materials. We present here etching into fused silica more than 600 µm deep while keeping the substrate free of pits and maintaining a polished etched surface suitable for biological imaging. We utilize an HF-resistant photosensitive resist (HFPR) which is not attacked in 49% HF solution. Etching characteristics are compared for substrates masked with the HFPR alone and the HFPR patterned on top of Cr/Au and polysilicon masks. We used this etching process to fabricate suspended fused silica membranes, 8-16 µm thick, and show that imaging through the membranes does not negatively affect image quality of fluorescence microscopy of biological tissue. Finally, we realize small through-pore arrays in the suspended membranes. Such devices will have applications in planar electrophysiology platforms, especially where optical imaging is required.

  19. Nanohole formation on AlGaAs surfaces by local droplet etching with gallium

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Stemmann, A.; Hansen, W.

    2009-03-01

    We demonstrate the self-assembled generation of nanoholes on AlGaAs surfaces by local droplet etching (LDE). For the etching process, Ga is deposited on the surface, where liquid droplets are formed in a Volmer-Weber-like growth mode. The etching takes place locally at the interface between droplets and substrate and removes a significant amount of substrate material. The structural properties of the LDE nanoholes are studied with atomic force microscopy as function of etching temperature and Ga coverage. A bimodal depth distribution with flat and deep holes is observed. The formation of flat holes can be almost suppressed by optimized etching parameters. The depth of deep holes was adjusted by the process parameters up to a maximum depth of 15 nm. The density of deep holes is in the range 5×10 -7-1×10 -8 cm -2 and depends only slightly on the etching parameters. However, the density can be significantly increased by repeated etching.

  20. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    SciTech Connect

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro; Hamaguchi, Satoshi

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +} or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.

  1. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    NASA Astrophysics Data System (ADS)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon "halo" deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  2. Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE)

    NASA Astrophysics Data System (ADS)

    Saxena, Shailendra K.; Yogi, Priyanka; Yadav, Pooja; Mishra, Suryakant; Pandey, Haardik; Rai, Hari Mohan; Kumar, Vivek; Sagdeo, Pankaj R.; Kumar, Rajesh

    2016-06-01

    Porosification of silicon (Si) by metal induced etching (MIE) process has been studied here to understand the etching mechanism. The etching mechanism has been discussed on the basis of electron transfer from Si to metal ion (Ag+) and metal to H2O2. Role of silver nanoparticles (AgNPs) in the etching process has been investigated by studying the effect of AgNPs coverage on surface porosity. A quantitative analysis of SEM images, done using Image J, shows a direct correlation between AgNPs coverage and surface porosity after the porosification. Density of Si nanowires (NWs) also varies as a function of AgNPs fractional coverage which reasserts the fact that AgNPs governs the porosification process during MIE. The Raman and PL spectrum show the presence of Si NSs in the samples.

  3. Dry etching of CdTe/GaAs epilayers using CH{sub 4}H{sub 2} gas mixtures

    SciTech Connect

    Neswal, M.; Gresslehner, K.H.; Lischka, K.

    1993-05-01

    A CH{sub 4}/H{sub 2} gas mixture has been used for the dry etching of (100) and (111) oriented CdTe epilayers in a barrel reactor. The effects of various process parameters on etch rate and surface morphology were studied with special attention paid to the gas composition and the total chamber pressure as well as the crystallographic orientation of the sample. Clear evidence is found for both isotropic and preferential etching along crystalolographic planes depending on the set of etch parameters used. 14 refs., 7 figs.

  4. Improved device reliability in organic light emitting devices by controlling the etching of indium zinc oxide anode

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Jie; Lou, Yan-Hui; Wang, Zhao-Kui; Liao, Liang-Sheng

    2014-11-01

    A controllable etching process for indium zinc oxide (IZO) films was developed by using a weak etchant of oxalic acid with a slow etching ratio. With controllable etching time and temperature, a patterned IZO electrode with smoothed surface morphology and slope edge was achieved. For the practical application in organic light emitting devices (OLEDs), a suppression of the leak current in the current—voltage characteristics of OLEDs was observed. It resulted in a 1.6 times longer half lifetime in the IZO-based OLEDs compared to that using an indium tin oxide (ITO) anode etched by a conventional strong etchant of aqua regia.

  5. Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, Yurong; Yang, Haigang; Cao, Weiwei; Wang, Guangna; Ma, Heng; Chang, Fanggao

    2014-09-01

    A simple, low-cost, post-black etching process atop the random pyramidal emitter has been proposed and investigated. The multi-scale texture is achieved by combining nanoporous layer formed by the post-black etching with micron-scale pyramid texture. Compared to the pre-black etched Si solar cells, our experiments clearly show the advantage of post-black etched texturing: it enables high blue response and improved conversion efficiency. As a result, the enhancement of 7.1 mA/cm2 on the short-circuit current density and improvement of 31 % in the conversion efficiency have been reached.

  6. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    NASA Astrophysics Data System (ADS)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  7. Preparation of etched tantalum semimicro capacitor stimulation electrodes.

    PubMed

    Robblee, L S; Kelliher, E M; Langmuir, M E; Vartanian, H; McHardy, J

    1983-03-01

    The ideal electrode for stimulation of the nervous system is one that will inject charge by purely capacitive processes. One approach is to exploit the type of metal-oxide combination used in electrolytic capacitors, e.g., Ta/Ta2O5. For this purpose, fine tantalum wire (0.25 mm diam) was etched electrolytically at constant current in a methanol solution of NH4Br containing 1.5 wt % H2O. Electrolytic etching produced a conical tip with a length of ca. 0.5 mm and shaft diameters ranging from 0.10 to 0.16 mm. The etched electrodes were anodized to 10 V (vs. SCE) in 0.1 vol % H3PO4. The capacitance values normalized to geometric area of etched electrodes ranged from 0.13 to 0.33 micro F mm-2. Comparison of these values to the capacitance of "smooth" tantalum anodized to 10 V (0.011 micro F mm-2) indicated that the degree of surface enhancement, or etch ratio, was 12-30. The surface roughness was confirmed by scanning electron microscopy studies which revealed an intricate array of irregularly shaped surface projections about 1-2 micrometers wide. The etched electrodes were capable of delivering 0.06-0.1 micro C of charge with 0.1 ms pulses at a pulse repetition rate of 400 Hz when operated at 50% of the anodization voltage. This quantity of charge corresponded to volumetric charge densities of 20-30 micro C mm-3 and area charge densities of 0.55-0.88 micro C mm-2. Charge storage was proportionately higher at higher fractional values of the formation voltage. Leakage currents at 5 V were ca. 2 nA. Neither long-term passive storage (1500 h) nor extended pulsing time (18 h) had a deleterious effect on electrode performance. The trend in electrical stimulation work is toward smaller electrodes. The procedures developed in this study should be particularly well-suited to the fabrication of even smaller electrodes because of the favorable electrical and geometric characteristics of the etched surface. PMID:6841372

  8. Halogens on Semiconductor Surfaces: Adsorption, Oxidation, and Etching.

    NASA Astrophysics Data System (ADS)

    Stepniak, Frank

    This dissertation presents studies of Si, GaAs, and InP surfaces following exposure to the halogens Cl _2 and Br_2. Synchrotron radiation photoemission is used to investigate the oxidation states of Si near the Si/SiO_2 interface as a function of Cl_2 exposure. Oxidation of highly ordered surfaces shows no dependence of the oxidation state concentration on Cl_2 inclusion in the gas mixture. For less-than-ideal Si surfaces, oxidation with O_2 -only results in a broader transition region, and presumably, inferior electrical properties. The addition of Cl_2 in the oxidizing gas reduced the concentration of intermediate oxides by a factor of two for these disordered starting Si surfaces. A new feature is also measured from Cl-Si bonds that we associate with passivation of Si defects at the oxide interface. The adsorption and reactivity of Br_2 and Cl_2 on GaAs(110) and InP(110) was studied in the temperature range of 25 K < T < 625 K with photoemission spectroscopy and scanning tunneling microscopy. Initial halogen adsorption was dissociative at all temperatures and we find that a simple model where the halogen atoms bond to a single Ga or As surface site can not account for the complex surface chemistry and morphology. Thermally-activated etching was observed after warming a surface with chemisorbed Br or Cl. Etching resulted from the formation and eventual temperature dependent desorption of the trihalides of Ga and As. For halogen exposures where T < 650 K, monohalide-like surface bonding persist during the etching process and the etched surface is rough. For T > 700 K, the surface is essentially free of halogen and etching occurs in a nearly layer-by-layer fashion.

  9. Nanograss and nanostructure formation on silicon using a modified deep reactive ion etching

    SciTech Connect

    Mehran, M.; Mohajerzadeh, S.; Sanaee, Z.; Abdi, Y.

    2010-05-17

    Silicon nanograss and nanostructures are realized using a modified deep reactive ion etching technique on both plane and vertical surfaces of a silicon substrate. The etching process is based on a sequential passivation and etching cycle, and it can be adjusted to achieve grassless high aspect ratio features as well as grass-full surfaces. The incorporation of nanostructures onto vertically placed parallel fingers of an interdigital capacitive accelerometer increases the total capacitance from 0.45 to 30 pF. Vertical structures with features below 100 nm have been realized.

  10. In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles.

    PubMed

    Wei, Jiake; Xu, Zhi; Wang, Hao; Tian, Xuezeng; Yang, Shize; Wang, Lifen; Wang, Wenlong; Bai, Xuedong

    2014-11-21

    Few-layer graphene was successfully tailored with smooth edges along crystallographic directions by Joule heating-driven tungsten nanoparticles inside a transmission electron microscope. The dynamic process was monitored in real time at the atomic resolution level. These high-resolution in-situ observations show that the neighboring graphene layers joined together to form closed edges, which is in contrast to the supposed open edges formed with hydrogen passivation. The tungsten nanoparticles transformed to W₂C in the intermediate stage of etching and to WC after etching, suggesting that carbon dissolution helped the continuous action of the metal nanoparticles in the catalytic anisotropic etching reaction. PMID:25361213

  11. Direct observation of silicon surface etching by water with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Pietsch, G. J.; Köhler, U.; Henzler, M.

    1992-09-01

    One of the key processes in wet chemical preparation of silicon surfaces for device fabrication is a final rinsing step with water after oxide removal and hydrogen-termination with hydrofluoric acid. On rinsing at elevated temperature (boiling water) the slow statistical oxidation of the surface known from conventional treatment with water at room temperature is replaced by a rapid anisotropic etching attack. On Si(111) scanning tunneling microscopy shows characteristic triangular etch defects and flat (111) terraces separated by monatomic steps along <0 overline11>. The resulting surface is chemically homogeneous without any oxide. Structure and removal mechanism are compared to NH 4F-etched samples.

  12. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  13. The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica

    SciTech Connect

    Wong, L; Suratwala, T; Feit, M D; Miller, P E; Steele, R A

    2008-04-03

    function of etch time. The initial removal rate for the ground surface was typically 3.5 x the bulk etch rate. The evolving morphology of ground surfaces during etching was simulated using an isotropic finite difference model. This model illustrates the importance that the initial distributions of fracture sizes and spatial locations have on the evolution of roughness and the rate at which material is removed during the etching process. The etching of ground surfaces can be used during optical fabrication to convert subsurface damage into surface roughness thereby reducing the time required to produce polished surfaces that are free of subsurface damage.

  14. Method of electrochemical etching of tungsten tips with controllable profiles

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Tse; Hwang, Ing-Shouh; Chang, Mu-Tung; Lin, Chung-Yueh; Hsu, Wei-Hao; Hou, Jin-Long

    2012-08-01

    We demonstrate a new and simple process to fabricate tungsten tips with good control of the tip profile. In this process, we use a commercial function generator without any electronic cutoff circuit or complex mechanical setup. The tip length can be varied from 160 μm to 10 mm, corresponding to an aspect ratio of 1.6-100. The radius of curvature of the tip apex can be controlled to a size <10 nm. Surface roughness and the taper angle can be controlled independently. Through control of the etching parameters, the tip length, the radius of curvature, surface roughness, and the taper angle can be controlled to suit different requirements of various applications. The possible etching mechanisms are also discussed.

  15. Black Silicon Formation in Cryogenic Reactive Ion Etching

    NASA Astrophysics Data System (ADS)

    Abi Saab, David; Basset, Philippe; Pierotti, Matthew J.; Trawick, Matthew L.; Angelescu, Dan E.

    2015-03-01

    We present both experimental data and computational modeling that explain some aspects of the formation of black silicon during cryogenic reactive ion etching (RIE) processes. We generate a phase diagram that predicts combinations of RIE parameters that lead to different black silicon geometries. We also show that the combination of needle- and hole-like features of various heights and depths in black silicon creates a uniquely smooth transition in refractive index that is responsible for the material's low optical reflectivity. These details are captured by our model and confirmed by focused ion beam (FIB) nanotomography and scanning electron microscopy of black silicon surfaces during various stages of development. The model also correctly describes dynamical characteristics such as the dependence of aspect ratio on process time, and the prediction of new etching fronts appearing at topographical saddle points.

  16. Nanoparticle-based etching of silicon surfaces

    SciTech Connect

    Branz, Howard; Duda, Anna; Ginley, David S.; Yost, Vernon; Meier, Daniel; Ward, James S.

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  17. Galvanic etch stop for Si in KOH

    NASA Astrophysics Data System (ADS)

    Connolly, E. J.; French, P. J.; Xia, X. H.; Kelly, J. J.

    2004-08-01

    Etch stops and etch-stopping techniques are essential 'tools' for 2D and 3D MEMS devices. Until now, use of a galvanic etch stop (ES) for micromachining in alkaline solutions was usually prohibited due to the large Au:Si area needed and/or high oxygen content required to achieve the ES. We report a new galvanic ES which requires a Au:exposed silicon area ratio of only ~1. Thus for the first time a practical galvanic ES for KOH has been achieved. The ES works by adding small amounts of sodium hypochlorite, NaOCl, to KOH solutions. Essentially the NaOCl increases the oxygen content in the KOH etchant. The dependancy of the galvanic ES on KOH concentration and temperature is investigated. Also, we report on the effects of the added NaOCl on etch rates. SEM images are used to examine the galvanically etch-stopped membranes and their surface morphology. For 33% KOH solutions the galvanic etch stop worked well, producing membranes with uniform thickness ~6 µm (i.e. slightly greater than the deposited epilayer). For 20% KOH solutions, the galvanic etch stop still worked, but the resulting membranes were a little thicker (~10 µm).

  18. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-01

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c

  19. Experimental analysis of the surface roughness evolution of etched glass for micro/nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Ren, J.; Ganapathysubramanian, B.; Sundararajan, S.

    2011-02-01

    Roughness of channel surfaces, both deterministic and random, is known to affect the fluid flow behavior in micro/nanoscale fluidic devices. This has relevance particularly for applications involving non-Newtonian fluids, such as in biomedical lab-on-chip devices. While several studies have investigated effects of relative large, deterministic surface structures on fluid flow, the effect of random roughness on microfluidic flow remains relatively unexplored. In this study, the effects of processing conditions for wet etching of glass including etching time and etching orientation on centre-line average (Ra) and the autocorrelation length (ACL) were investigated. Statistical distribution of the roughness was also studied. Results indicated that ACL can be tailored in the range of 1-4 µm by changing etching time in horizontal etching while Ra was found to increase weakly with etching time in all three etching orientations. Analysis of the experimental data using the Kolmogorov-Smirnov goodness-of-fit hypothesis test shows that the glass surface roughness does not follow a Gaussian distribution, as is typically assumed in the literature. Instead, the T location-scale distribution fits the roughness data with 1.11% error. These results provide promising insights into tailoring surface roughness for improving microfluidic devices.

  20. Chemical etching behaviors of semipolar (11̄22) and nonpolar (11̄20) gallium nitride films.

    PubMed

    Jung, Younghun; Baik, Kwang Hyeon; Mastro, Michael A; Hite, Jennifer K; Eddy, Charles R; Kim, Jihyun

    2014-08-14

    Wet chemical etching using hot KOH and H3PO4 solutions was performed on semipolar (11̄22) and nonpolar (11̄20) GaN films grown on sapphire substrates. An alternating KOH/H3PO4/KOH etch process was developed to control the orientation of the facets on the thin-film surface. The initial etch step in KOH produced c- and m-plane facets on the surface of both semipolar (11̄22) and nonpolar (11̄20) GaN thin-films. A second etch step in H3PO4 solution additionally exposed a (̄1̄12̄2) plane, which is chemically stable in H3PO4 solution. By repeating the chemical etch with KOH solution, the m-plane facets as seen in the original KOH etch step were recovered. The etching methods developed in our work can be used to control the surface morphologies of nonpolar and semipolar GaN-based optoelectronic devices such as light-emitting diodes and solar cells. PMID:24971494

  1. A deep etching mechanism for trench-bridging silicon nanowires.

    PubMed

    Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem

    2016-03-01

    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping. PMID:26854570

  2. A deep etching mechanism for trench-bridging silicon nanowires

    NASA Astrophysics Data System (ADS)

    Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.

    2016-03-01

    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.

  3. {ital In} {ital situ} wafer temperature monitoring of silicon etching using diffuse reflectance spectroscopy

    SciTech Connect

    Booth, J.L.; Beard, B.T.; Stevens, J.E.; Blain, M.G.; Meisenheimer, T.L.

    1996-07-01

    Real time, {ital in} {ital situ} temperature measurements during chemical downstream etching of silicon wafers have been performed using a diffuse reflectance spectroscopy based sensor [Weilmeier {ital et} {ital al}., Can. J. Phys. {bold 69}, 422 (1991)]. The spectrometer has a spatial resolution of 1 cm{sup 2}, updates the temperature every 2 s, and has a temperature resolution of better than 1{degree}C. The thermal time constant the wafers and the thermally regulated electrostatic chuck (10{degree}C{lt}{ital T}{lt}90{degree}C) varied between 7 and 30 s depending on clamping and backside gas pressure. The exothermic etch process is accompanied by increases in the silicon wafer temperature consistent with the thermal conductivity conditions and with the etch chemistry. The temperature uniformity across the wafers was better than 2{degree}C during the entire etch process. {copyright} {ital 1996 American Vacuum Society}

  4. Investigation of the breakthrough point of ion track etching by capacitometry

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fink, D.; Dhamodaran, S.

    2007-01-01

    Nanoscale size definition and flexible device structures are presently among the most ambitious development goals in the semiconductor field. One approach to attain these goals is based on the use of hybrid structures, combining the flexible etched ion track templates as substrates with the device functions of filled inorganic semiconductor. It is a critical issue to determine precisely the moment of breakthrough in order to use the etched ion track templates to fabricate vertical nano electronic device. This study tries to shed some light upon these processes by means of a novel approach, the so-called capacitometry measurement for investigating the breakthrough moment and etching processes. It is shown that the capacitometry is a simple but quite reliable technique to determine precisely the moment of track etching breakthrough.

  5. Dry etching method for compound semiconductors

    DOEpatents

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  6. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  7. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  8. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  9. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  10. Etching Semiconductors With Beams Of Reactive Atoms

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Giapis, Konstantinos P.; Moore, Teresa A.

    1995-01-01

    Method of etching semiconductors with energetic beams of electrically neutral, but chemically reactive, species undergoing development. Enables etching of straight walls into semiconductor substrates at edges of masks without damage to underlying semiconductor material. In addition to elimination of charge damage, technique reduces substrate bombardment damage because translational energy of neutral species in range 2-12 eV, below damage threshold of many semiconductor materials. Furthermore, low-energy neutrals cause no mask erosion allowing for etching features with very high aspect ratios.

  11. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers.

    PubMed

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-01-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts. PMID:26634813

  12. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    NASA Astrophysics Data System (ADS)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  13. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    PubMed Central

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-01-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts. PMID:26634813

  14. Overview of atomic layer etching in the semiconductor industry

    SciTech Connect

    Kanarik, Keren J. Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A.

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

  15. In vitro evaluation of microleakage under orthodontic brackets using two different laser etching, self etching and acid etching methods.

    PubMed

    Hamamci, Nihal; Akkurt, Atilim; Başaran, Güvenç

    2010-11-01

    This study evaluated the microleakage of brackets bonded by four different enamel etching techniques. Forty freshly extracted human premolars were divided randomly into four equal groups and received the following treatment: group 1, acid etching; group 2, self-etching primer (SEP); group 3, erbium:yttrium-aluminum-garnet (Er:YAG) laser etching; and group 4, erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser etching. After photopolymerization, the teeth were kept in distilled water for 1 month and then subjected to 500 thermal cycles. Then, the specimens were sealed with nail varnish, stained with 0.5% basic fuchsin for 24 h, sectioned, and examined under a stereomicroscope. In addition, they were scored for marginal microleakage at the adhesive-enamel and bracket-adhesive interfaces from the incisal and gingival margins. Statistical analyses consisted of the Kruskal-Wallis test and the Mann-Whitney U test with Bonferroni correction. Microleakage occurred between the adhesive-enamel and bracket-adhesive interfaces in all groups. For the adhesive-enamel surface, a significant difference was observed between group 1 and groups 2 (P = 0.011), 3 (P = 0.002), and 4 (P = 0.000) on the gingival side. Overall, significant differences were observed between group 1 and groups 3 (P = 0.003) and 4 (P = 0.000). In dental bonding procedures, acid etching was found to result in the least microleakage. Since etching with a laser decreases the risk of caries and is time-saving, it may serve as an alternative to acid etching. PMID:19562404

  16. Characterization of ultraviolet excited Br*-radical etching of InGaAs/InAlAs material system

    NASA Astrophysics Data System (ADS)

    Habibi, Soheil; Tanaka, Jun; Hattori, Hideki; Totsuka, Masahiro; Matsumoto, Satoru

    1996-04-01

    Dry selective photochemical etching of InGaAs/InAlAs material system, in HBr gas excited by a 172 nm excimer lamp, has been characterized. The etching is thought to be due to the formation of reactive Br*-radicals which are photocreated in the gas phase and then diffused into the solid semiconductor to create volatile products. The etching is temperature sensitive with best etching results at 50-110° C. Atomic force microscope and scanning electron microscope pictures reveal that the surface morphology at this temperature range is smooth and fine. Auger electron spectroscopy and x-ray photoelectron spectroscopy measurements show that at low temperatures the etch products are primarily salts of bromide and are in the liquid phase and thus remain at the surface and a desorption process stops further etching. At slightly elevated temperature range, the creation of oxides and deposition of bromine compounds reduces the etch rate and causes the surface quality to deteriorate. Etching at higher pressure range increases the etch rate of InGaAs but results in surface quality deterioration.

  17. Etching of deep grooves for the precise positioning of cleaves in semiconductor lasers

    SciTech Connect

    Bowers, J.E.; Hemenway, B.R.; Wilt, D.P.

    1985-03-01

    Photoelectrochemical etching of InP is used to etch deep (80 ..mu..m), narrow (20 ..mu..m) grooves. The grooves are used to precisely position cleaves in semiconductor lasers and to demonstrate the first wafer processing of long/short cleaved-coupled-cavity (C/sup 3/) lasers. Large numbers of low threshold C/sup 3/ lasers wth very similar cavity lengths were obtained.

  18. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    NASA Astrophysics Data System (ADS)

    Tamulevičius, Tomas; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-01

    We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF4/O2 plasma chemical etching and Ar+ sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar+ in C2H2 gas atmosphere. Films with different silver content (0.6-12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet-visible light (UV-VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF4/O2 mixture plasma for 2-6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C2H2/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF4/O2 mixture plasma chemical etching, direct Ar+ sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF4/O2 gas mixture with photoresist mask revealed micrometer range lines of silver nanoparticles, while Ar+ sputtering and combined processing employing aluminum mask resulted in nanocomposite material (DLC:Ag) micropatterns.

  19. In-situ detection method for wafer movement and micro-arc discharge around a wafer in plasma etching process using electrostatic chuck wafer stage with built-in acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Kasashima, Yuji; Tabaru, Tatsuo; Yasaka, Mitsuo; Kobayashi, Yoshikazu; Akiyama, Morito; Nabeoka, Natsuko; Motomura, Taisei; Sakamoto, Shingo; Uesugi, Fumihiko

    2014-01-01

    We report an electrostatic chuck (ESC) wafer stage with a built-in acoustic emission (AE) sensor for detecting anomalies occurring around a wafer during plasma etching. The built-in AE sensor detects acoustic waves caused by wafer movement and micro-arc discharge with high sensitivity, and identifies these anomalies based on the frequency characteristics of the waves. The results demonstrate the effectiveness of using an ESC wafer stage with a built-in AE sensor for in-situ anomaly detection, which can improve the production yield and overall equipment efficiency in large scale integrated circuit (LSI) manufacturing.

  20. Synergistic etch rates during low-energetic plasma etching of hydrogenated amorphous carbon

    SciTech Connect

    Hansen, T. A. R.; Weber, J. W.; Colsters, P. G. J.; Mestrom, D. M. H. G.; Sanden, M. C. M. van de; Engeln, R.

    2012-07-01

    The etch mechanisms of hydrogenated amorphous carbon thin films in low-energetic (<2 eV) high flux plasmas are investigated with spectroscopic ellipsometry. The results indicate a synergistic effect for the etch rate between argon ions and atomic hydrogen, even at these extremely low kinetic energies. Ion-assisted chemical sputtering is the primary etch mechanism in both Ar/H{sub 2} and pure H{sub 2} plasmas, although a contribution of swift chemical sputtering to the total etch rate is not excluded. Furthermore, ions determine to a large extent the surface morphology during plasma etching. A high influx of ions enhances the etch rate and limits the surface roughness, whereas a low ion flux promotes graphitization and leads to a large surface roughness (up to 60 nm).

  1. Inspired superhydrophobic surfaces by a double-metal-assisted chemical etching route

    SciTech Connect

    Chen, Yu; Guo, Zhiguang; Xu, Jiansheng; Shi, Lei; Li, Jing; Zhang, Yabin

    2012-07-15

    Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170°, and the sliding angle of about 0°. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ► A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ► The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ► The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied for many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.

  2. Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Honyoung; Jang, Haegyu; Lee, Hak-Seung; Chae, Heeyeop

    2015-09-01

    Plasma etching process is the core process in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist, dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0% oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD. Plasma Etch, EPD, K-means Cluster Analysis.

  3. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis

    NASA Astrophysics Data System (ADS)

    Qiu, Rongfu; Lu, Hai; Chen, Dunjun; Zhang, Rong; Zheng, Youdou

    2011-01-01

    Inductively coupled plasma (ICP) etching of GaN with an etching depth up to 4 μm is systemically studied by varying ICP power, RF power and chamber pressure, respectively, which results in etch rates ranging from ∼370 nm/min to 900 nm/min. The surface morphology and damages of the etched surface are characterized by optical microscope, scanning electron microscope, atomic force microscopy, cathodoluminescence mapping and photoluminescence (PL) spectroscopy. Sub-micrometer-scale hexagonal pits and pillars originating from part of the structural defects within the original GaN layer are observed on the etched surface. The density of these surface features varies with etching conditions. Considerable reduction of PL band-edge emission from the etched GaN surface indicates that high-density non-radiative recombination centers are created by ICP etching. The density of these non-radiative recombination centers is found largely dependent on the degree of physical bombardments, which is a strong function of the RF power applied. Finally, a low-surface-damage etch recipe with high ICP power, low RF power, high chamber pressure is suggested.

  4. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  5. PFabrication of gold tips by chemical etching in aqua regia

    NASA Astrophysics Data System (ADS)

    Bonaccorso, F.; Calogero, G.; Di Marco, G.; Maragò, O. M.; Gucciardi, P. G.; Giorgianni, U.; Channon, K.; Sabatino, G.

    2007-10-01

    We present a method to produce sharp gold tips for applications in apertureless near-field optical microscopy and spectroscopy. Thin gold wires are tapered by chemical etching in aqua regia, covered by an isooctane protective layer. Tips with apical radii of curvature of <50 nm are obtained with a 40% yield. The tip performances have been checked by shear-force imaging of amyloid fibrils samples and compared to optical fiber probes. The analysis of the tip morphology, carried out by scanning electron microscopy, shows the existence of two different etching processes occurring in bulk and at the liquid-liquid interface. A simple analytical model is presented to describe the dynamics of the tip formation at the liquid-liquid meniscus interface that fits remarkably well the experimental results in terms of tip shape and length.

  6. Plasma etching: Yesterday, today, and tomorrow

    SciTech Connect

    Donnelly, Vincent M.; Kornblit, Avinoam

    2013-09-15

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices.

  7. Comparative study of GaN mesa etch characteristics in Cl{sub 2} based inductively coupled plasma with Ar and BCl{sub 3} as additive gases

    SciTech Connect

    Rawal, Dipendra Singh Arora, Henika; Sehgal, Bhupender Kumar; Muralidharan, Rangarajan

    2014-05-15

    GaN thin film etching is investigated and compared for mesa formation in inductively coupled plasma (ICP) of Cl{sub 2} with Ar and BCl{sub 3} gas additives using photoresist mask. Etch characteristics are studied as a function of ICP process parameters, viz., ICP power, radio frequency (RF) power, and chamber pressure at fixed total flow rate. The etch rate at each ICP/RF power is 0.1–0.2 μm/min higher for Cl{sub 2}/Ar mixture mainly due to higher Cl dissociation efficiency of Ar additive that readily provides Cl ion/radical for reaction in comparison to Cl{sub 2}/BCl{sub 3} mixture. Cl{sub 2}/Ar mixture also leads to better photoresist mask selectivity. The etch-induced roughness is investigated using atomic force microscopy. Cl{sub 2}/Ar etching has resulted in lower root-mean-square roughness of GaN etched surface in comparison to Cl{sub 2}/BCl{sub 3} etching due to increased Ar ion energy and flux with ICP/RF power that enhances the sputter removal of etch product. The GaN surface damage after etching is also evaluated using room temperature photoluminescence and found to be increasing with ICP/RF power for both the etch chemistries with higher degree of damage in Cl{sub 2}/BCl{sub 3} etching under same condition.

  8. Investigation of Nitride Morphology After Self-Aligned Contact Etch

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.

  9. Estimation of Ion/Radical Flux from Mask Selectivity and Etching Rate Calibrated by Topography Simulation

    NASA Astrophysics Data System (ADS)

    Ohmine, Toshimitsu; Deshpande, Vaibhav; Takada, Hideki; Ikeda, Tomoharu; Saito, Hirokazu; Kawai, Fumiaki; Hamada, Kimimori

    2011-08-01

    A simple method for the estimation of ion/radical fluxes in an ion-assisted etching process was developed for SF6/O2/Si etching utilizing the difference in etching mechanism between SiO2 mask and the silicon substrate. It was derived that F coverage of a silicon surface is approximately a linear function of the selectivity of the two materials, from which the incident ion flux and F flux are calculated. The selectivity-to-coverage proportional constant was determined using a topography simulator so that the general trend of etching profiles matched those of the experiment. The obtained fluxes showed reasonable qualitative trends in terms of reactor operational conditions and reactor parameters. The feature profiles simulated by the topography simulator using these flux values were in good agreement with those of scanning electron microscopy (SEM) experimental data over a wide range of operating conditions and machine configurations.

  10. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    NASA Astrophysics Data System (ADS)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-03-01

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  11. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-08-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  12. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  13. Strongly reduced Si surface recombination by charge injection during etching in diluted HF/HNO3.

    PubMed

    Greil, Stefanie M; Schöpke, Andreas; Rappich, Jörg

    2012-08-27

    Herein, we investigate the behaviour of the surface recombination of light-induced charge carriers during the etching of Si in alkaline (KOH) and acidic etching solutions of HF/HNO(3)/CH(3)COOH (HNA) or HF/HNO(3)/H(3)PO(4) (HNP) at different concentration ratios of HF and HNO(3) by means of photoluminescence (PL) measurements. The surface recombination velocity is strongly reduced during the first stages of etching in HF/HNO(3)-containing solutions pointing to a interface well passivated by the etching process, where a positive surface charge is induced by hole injection from NO-related surface species into the Si near-surface region (back surface field effect). This injected charge leads to a change in band bending by about 150 mV that repulses the light-induced charge carriers from the surface and therefore enhances the photoluminescence intensity, since non-radiative surface recombination is reduced. PMID:22761060

  14. Method for providing an arbitrary three-dimensional microstructure in silicon using an anisotropic deep etch

    DOEpatents

    Morales, Alfredo M.; Gonzales, Marcela

    2004-06-15

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  15. Effect of argon ion etching on the magnetic properties of FeCoB films

    NASA Astrophysics Data System (ADS)

    Zhu, Junwei; Zhou, Kan; Yang, Yi; Tang, Dongming; Zhang, Baoshan; Lu, Mu; Lu, Huaixian

    2015-01-01

    In this paper, a new method to modify Ta underlayers by an argon ion etching technology is introduced. Surface roughness of Ta underlayers, as well as soft magnetic properties of post-deposited FeCoB films can be improved by applying a proper ion etching process. The reduction of magnetic coercivity of FeCoB films deposited on the modified Ta underlayers is attributed to the improvement of interfacial roughness, which can reduce magnetic ripples in magnetic films. The microwave damping linewidth of magnetic films is also found to be related to the interfacial roughness. Ta underlayers modified by the ion etching can reduce the influence of two-magnon scattering effect, and thus tune microwave properties of magnetic films. All the results prove that argon ion etching is an effective way to tailor magnetic properties of magnetic films.

  16. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    SciTech Connect

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-03-16

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  17. Effect of Cl{sub 2}- and HBr-based inductively coupled plasma etching on InP surface composition analyzed using in situ x-ray photoelectron spectroscopy

    SciTech Connect

    Bouchoule, S.; Vallier, L.; Patriarche, G.; Chevolleau, T.; Cardinaud, C.

    2012-05-15

    A Cl{sub 2}-HBr-O{sub 2}/Ar inductively coupled plasma (ICP) etching process has been adapted for the processing of InP-based heterostructures in a 300-mm diameter CMOS etching tool. Smooth and anisotropic InP etching is obtained at moderate etch rate ({approx}600 nm/min). Ex situ x-ray energy dispersive analysis of the etched sidewalls shows that the etching anisotropy is obtained through a SiO{sub x} passivation mechanism. The stoichiometry of the etched surface is analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. It is observed that Cl{sub 2}-based ICP etching results in a significantly P-rich surface. The phosphorous layer identified on the top surface is estimated to be {approx}1-1.3-nm thick. On the other hand InP etching in HBr/Ar plasma results in a more stoichiometric surface. In contrast to the etched sidewalls, the etched surface is free from oxides with negligible traces of silicon. Exposure to ambient air of the samples submitted to Cl{sub 2}-based chemistry results in the complete oxidation of the P-rich top layer. It is concluded that a post-etch treatment or a pure HBr plasma step may be necessary after Cl{sub 2}-based ICP etching for the recovery of the InP material.

  18. Etching of nanostructures on soda-lime glass.

    PubMed

    Wang, Elmer; Zhao, Yang

    2014-07-01

    Nanostructures were created on the surface of optical glass using nanosphere lithography. The substrates were etched with vapor-phase hydrofluoric (HF) acid. The etching rate was studied and compared with existing results of wet and dry HF etching. An empirical etching rate formula is found for etching depth up to 300 nm. The subsequent artificial material layer demonstrated enhanced transmittance in optical wavelengths. PMID:24978727

  19. A New Dry Etching Method with the High Etching Rate for Patterning Cross-Linked SU-8 Thick Films

    NASA Astrophysics Data System (ADS)

    Han, Jingning; Yin, Zhifu; Zou, Helin; Wang, Wenqiang; Feng, Jianbo

    2016-05-01

    Photo sensitive polymer SU-8, owing to its excellent mechanical properties and dielectric properties on polymerization, is widely used in MEMS device fabrications. However, the removing, stripping or re-patterning of the cross-linked SU-8 is a difficult issue. In this paper, CF4/O2 gas mixture provided by a plasma asher equipment was used for the patterning of cross-linked SU-8 material. The RF power, the temperature of the substrate holder, chamber pressure and gas concentration were optimized for the cross-linked SU-8 etching process. When the CF4/O2 mixture contains about 5%CF4 by volume, the etching rate can be reached at 5.2 μm/min.

  20. Dry etching techniques for active devices based on hexagonal boron nitride epilayers

    SciTech Connect

    Grenadier, Samuel; Li, Jing; Lin, Jingyu; Jiang, Hongxing

    2013-11-15

    Hexagonal boron nitride (hBN) has emerged as a fundamentally and technologically important material system owing to its unique physical properties including layered structure, wide energy bandgap, large optical absorption, and neutron capture cross section. As for any materials under development, it is necessary to establish device processing techniques to realize active devices based on hBN. The authors report on the advancements in dry etching techniques for active devices based on hBN epilayers via inductively coupled plasma (ICP). The effect of ICP radio frequency (RF) power on the etch rate and vertical side wall profile was studied. The etching depth and angle with respect to the surface were measured using atomic force microscopy showing that an etching rate ∼1.25 μm/min and etching angles >80° were obtained. Profilometer data and scanning electron microscope images confirmed these results. This work demonstrates that SF{sub 6} is very suitable for etching hBN epilayers in RF plasma environments and can serve as a guide for future hBN device processing.

  1. A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jian, Y. C.; Jiang, J. H.

    2008-02-01

    This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H 2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10 -3 Ω cm to 3.0 × 10 -3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.

  2. Selective reactive ion etching of TiW

    SciTech Connect

    Schaible, P.M.; Schwartz, G.C.

    1985-03-01

    TiW is used as a barrier to interdiffusion between aluminum or aluminum copper thin films (used as interconnections in integrated circuits) and silicon or PtSi contacts, thereby preventing junction short circuits. One method of defining VLSI interconnection patterns is by a lift-off technique. A stencil is defined, and after evaporation, the unwanted metal is removed with the stencil, leaving the interconnection metallization. However, TiW is most practically deposited by sputtering, which is not compatible with this method. If TiW were sputtered through a lift-off mask, the pattern would have sloped walls, and coverage of the walls of the lift-off stencil is a potential problem. A more practical process for the formation of patterns in TiW is subtractive etching, following lift-off formation of the aluminum or aluminum copper on top of a blanket layer of TiW. To insure the absence of undercutting, reactive ion etching (RIE) is used to etch the TiW.

  3. Photonic jet subwavelength etching using a shaped optical fiber tip.

    PubMed

    Zelgowski, Julien; Abdurrochman, Andri; Mermet, Frederic; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2016-05-01

    We demonstrate that photonic jets (PJs) can be obtained in the vicinity of a shaped optical fiber and that they can be used to achieve subwavelength etchings. Only 10% of the power of a 30 W, 100 ns, near-infrared (1064 nm) Nd:YAG laser, commonly used for industrial laser processing, has been required. Etchings on a silicon wafer with a lateral feature size close to half-laser wavelength have been achieved using a shaped-tip optical fiber. This breakthrough has been carried out in ambient air by using a multimode 100/140 μm silica fiber with a shaped tip that generates a concentrated beam at their vicinity, a phenomenon referred to as a PJ, obtained for the first time without using microspheres. PJ achieved with a fiber tip, easier to manipulate, opens far-reaching benefits for all PJ applications. The roles of parameters such as laser fluence, tip shape, and mode excitation are discussed. A good correlation has been observed between the computed PJ intensity distribution and the etched marks' sizes. PMID:27128077

  4. Marginal Sealing Durability of Two Contemporary Self-Etch Adhesives

    PubMed Central

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging. PMID:22611501

  5. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  6. Polymer etching in the oxygen afterglow - Increased etch rates with increased reactor loading

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Wydeven, T.

    1989-01-01

    Reactor loading has an effect on the etch rate (rate of decrease of film thickness) of films of polyvinylfluoride (Tedlar) and polyethylene exposed in the afterglow of an RF discharge in oxygen. The etch rate is found to increase with the total surface area of the polymer exposed in the reactor. The etch rates of polypyromellitimide (Kapton H) and polystyrene under these conditions are very low. However, the etch rate of these polymers is greatly enhanced by adding either Tedlar or polyethylene to the reactor. A kinetic model is proposed based on the premise that the oxygen atoms produced by the RF discharge react with Tedlar or polyethylene to produce a much more reactive species, which dominates the etching of the polymers studied.

  7. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-01

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl2 plasmas, as a function of rf bias power or ion incident energy Ei, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on Ei: one is the roughening mode at low Ei < 200-300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing Ei, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher Ei, where the rms surface roughness decreases substantially with Ei down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on Ei were also observed in the etch rate versus √{Ei } curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing Ei were found to correspond to changes in the predominant ion flux from feed gas ions Clx+ to ionized etch products SiClx+ caused by the increased etch rates at increased Ei, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  8. Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration

    PubMed Central

    2012-01-01

    In the current study, monocrystalline silicon nanowire arrays (SiNWs) were prepared through a metal-assisted chemical etching method of silicon wafers in an etching solution composed of HF and H2O2. Photoelectric properties of the monocrystalline SiNWs are improved greatly with the formation of the nanostructure on the silicon wafers. By controlling the hydrogen peroxide concentration in the etching solution, SiNWs with different morphologies and surface characteristics are obtained. A reasonable mechanism of the etching process was proposed. Photocatalytic experiment shows that SiNWs prepared by 20% H2O2 etching solution exhibit the best activity in the decomposition of the target organic pollutant, Rhodamine B (RhB), under Xe arc lamp irradiation for its appropriate Si nanowire density with the effect of Si content and contact area of photocatalyst and RhB optimized. PMID:23217211

  9. Anisotropic etching of monocrystalline silicon under subcritical conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pereyra, Nestor Gabriel

    Sub- and supercritical fluids remain an underexploited resource for materials processing. Around its critical point a common compound such as water behaves like a different substance exhibiting changes in its properties that modify its behavior as a solvent and unlock reaction paths not viable in other conditions. In the subcritical region water's properties can be directed by controlling temperature and pressure. Water and silicon are two of the most abundant, versatile, environmentally non-harmful, and simplest substances on Earth. They are among the most researched and best-known substances. Both are ubiquitous and essential for present-day world. Silicon is fundamental in semiconductor fabrication, microelectromechanical systems, and photovoltaic cells. Wet etching of silicon is a fabrication strategy shared by these three applications. Processing of silicon requires large amounts of water, often involving dangerous and environmentally hazardous chemicals. Yet, minimal knowledge is available on the ways high temperature water interacts with crystalline silicon. The purpose of this project is to identify and implement a method for the modification of monocrystalline silicon surfaces with three important characteristics: 1) requires minimal amounts of added chemicals, 2) controllability of morphological features formed, 3) reduced processing time. This will be accomplished by subjecting crystalline silicon to diluted alkaline solutions working in the subcritical region of water. This approach allows for variations on surface morphologies and etching rates by adapting the reactions conditions, with focus on composition and temperature of the solutions used. The work reported discusses the techniques used for producing surfaces with a variety of morphologies that ultimately allowed to create patterns and textures on silicon wafers, using highly diluted alkaline solutions that can be used for photovoltaic applications. These morphologies were created with a

  10. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  11. Patterning enhancement techniques by reactive ion etch

    NASA Astrophysics Data System (ADS)

    Honda, Masanobu; Yatsuda, Koichi

    2012-03-01

    The root causes of issues in state-of-the-arts resist mask are low plasma tolerance in etch and resolution limit in lithography. This paper introduces patterning enhancement techniques (PETs) by reactive ion etch (RIE) that solve the above root causes. Plasma tolerance of resist is determined by the chemical structure of resin. We investigated a hybrid direct current (DC) / radio frequency (RF) RIE to enhance the plasma tolerance with several gas chemistries. The DC/RF hybrid RIE is a capacitive coupled plasma etcher with a superimposed DC voltage, which generates a ballistic electron beam. We clarified the mechanism of resist modification, which resulted in higher plasma tolerance[1]. By applying an appropriate gas to DC superimposed (DCS) plasma, etch resistance and line width roughness (LWR) of resist were improved. On the other hand, RIE can patch resist mask. RIE does not only etch but also deposits polymer onto the sidewall with sedimentary type gases. In order to put the deposition technique by RIE in practical use, it is very important to select an appropriate gas chemistry, which can shrink CD and etch BARC. By applying this new technique, we successfully fabricated a 35-nm hole pattern with a minimum CD variation.

  12. Low radio frequency biased electron cyclotron resonance plasma etching

    NASA Astrophysics Data System (ADS)

    Samukawa, Seiji; Toyosato, Tomohiko; Wani, Etsuo

    1991-03-01

    A radio frequency (rf) biased electron cyclotron resonance (ECR) plasma etching technology has been developed to realize an efficient ion acceleration in high density and uniform ECR plasma for accurate Al-Si-Cu alloy film etching. In this technology, the substrate is located at the ECR position (875 G position) and the etching is carried out with a 400 kHz rf bias power. This Al-Si-Cu etching technology achieves a high etching rate (more than 5000 A/min), excellent etching uniformity (within ±5%), highly anisotropic etching, and Cu residue-free etching in only Cl2 gas plasma. These etching characteristics are accomplished by the combination of the dense and uniform ECR plasma generation at the ECR position with the efficient accelerated ion flux at the ECR position by using 400 kHz rf bias.

  13. Back-etch method for plan view transmission electron microscopy sample preparation of optically opaque films.

    PubMed

    Yao, Bo; Coffey, Kevin R

    2008-04-01

    Back-etch methods have been widely used to prepare plan view transmission electron microscopy (TEM) samples of thin films on membranes by removal of the Si substrate below the membrane by backside etching. The conventional means to determine when to stop the etch process is to observe the color of the light transmitted through the sample, which is sensitive to the remaining Si thickness. However, most metallic films thicker than 75 nm are opaque, and there is no detectable color change prior to film perforation. In this paper, a back-etch method based on the observation of an abrupt change of optical reflection contrast is introduced as a means to determine the etch endpoint to prepare TEM samples for these films. As the acid etchant removes the Si substrate material a rough interface is generated. This interface becomes a relatively smooth and featureless region when the etchant reaches the membrane (film/SiO2). This featureless region is caused by the mirror reflection of the film plane (film/SiO2 interface) through the optically transparent SiO2 layer. The lower etch rate of SiO2 (compared with Si) gives the operator enough time to stop the etching without perforating the film. A clear view of the morphology and control of Si roughness during etching are critical to this method, which are discussed in detail. The procedures of mounting wax removal and sample rinsing are also described in detail, as during these steps damage to the membrane may easily occur without appropriate consideration. As examples, the preparation of 100-nm-thick Fe-based amorphous alloy thin film and 160-nm-thick Cu-thin film samples for TEM imaging is described. PMID:18227137

  14. Dry etching of beta-SiC in CF4 and CF4 + O2 mixtures

    NASA Technical Reports Server (NTRS)

    Palmour, J. W.; Davis, R. F.; Wallett, T. M.; Bhasin, K. B.

    1986-01-01

    Dry etching of cubic (100) beta-SiC single-crystal thin films produced via chemical-vapor deposition (CVD) has been performed in CF4 and CF4 + O2 mixtures, in both the reactive-ion-etching (RIE) and plasma-etching modes. The latter process yielded measurable etch rates, but produced a dark surface layer which appears, from the results of secondary-ion mass spectrometry, to be residual SiC. The RIE samples had no residual layer, but Auger electron spectroscopy did reveal a C-rich surface. The optimal RIE conditions were obtained with 10 sccm of pure CF4 at 40 mtorr and a power density of 0.548 W/sq cm, giving an etch rate of 23.3 nm/min. Neither the increase of temperature between 293 and 573 K, nor the incremental addition of O2 to CF4 to 50 percent, produced any strong effect on the etch rates of SiC during RIE. Pictorial evidence of fine line structures produced by RIE of beta-SiC films are also presented.

  15. Clinical Evaluation of Etched Enamel Discoloration following Immediate and Delayed Exposure to Colored Agents

    PubMed Central

    Basafa, Mohammad; Jahanbin, Arezoo; Borouzi Niat, Alireza; Basafa, Soroush; Banihashemi, Elham

    2014-01-01

    Introduction. The aim was to evaluate etched enamel discoloration following immediate and delayed exposure to colored agents. Method & Material. 64 premolars were divided into four groups. Buccal surface of the teeth was divided into two halves and baseline color values were measured. One half was covered and the other half was etched and dried. In first and second groups, the patients did not eat any colored agents for the next 24 hours. Both halves were colorimetered after 48 hours and 1 month, respectively. In third and fourth groups, the process was similar, but the patients drank cola and avoid eating any other colored agents and the teeth were colorimetered after 48 hours and 1 month, respectively. Color change values (ΔE) of each half were calculated according to CIE lab system. Sign test was used to compare values of etched and unetched halves. P < 0.08 was set as significant. Results. A significant difference was observed in groups III and IV regarding comparison of ΔE of the etched and control enamel (P = 0.077). Conclusion. Exposure of etched enamel to colored agents in the first 24 hours after etching can affect its color which remains at least for one month. PMID:27379257

  16. ECR etching of group-III nitride binary and ternary films

    SciTech Connect

    Shul, R.J.; Howard, A.J.; Pearton, S.J.

    1995-10-01

    Due to their wide band gaps and high dielectric constants, the group III-nitrides have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs) and for their potential use in laser structures and high temperature electronics. Processing of these materials, in particular wet and dry etching, has proven to be extremely difficult due to their inert chemical nature. We report electron cyclotron resonance (ECR) etch rates for GaN, InN, AlN, In{sub (x)}Ga{sub (1-x)}Ni and In{sub (x)}Al{sub (1-x)}N as a function of temperature, rf-power, pressure, and microwave power. Etch conditions are characterized for rate, profile, and sidewall and surface morphology. Atomic force microscopy (AFM) is used to quantify RMS roughness of the etched surfaces. We observe consistent trends for the InAlN films where the etch rates increase with increasing concentration of In. The trends are far less consistent for the InGaN with a general decrease in etch rate as the In concentration is increased.

  17. Effect of TCP Pulsing in Photon Induced Sub-threshold Etching of Si

    NASA Astrophysics Data System (ADS)

    Shoeb, Juline; Sriraman, Saravanapriyan; Kamp, Tom; Paterson, Alex

    2013-09-01

    With decrease in device sizes, plasma damage minimization of Si becomes very important. During over-etch processes a passivation layer protects Si from ions. Even below etching threshold energy, UV photons can cleave Si-Si bonds that acts as a precursor for Si etching. In HBr/He/O2 plasmas, 58.4nm photons from He(21p) and 130nm photons from O(3s) can result in sub-threshold etching of Si by Si-Si bond cleaving followed by Si etching as volatile SiBr4.Literature reports reduction in UV damage with ICP power pulsing. During pulse-off period, electron temperature drops thereby reducing meta-stable densities responsible for photon emission. Reducing radical and ion density and photon fluxes, pulsed plasmas possibly can reduce sub-threshold Si etching. In this talk, a comparison of sub-threshold damage of Si between continuous and pulsed HBr/He/O2 plasmas using modeling and experiments will be presented. J. Shoeb, S. Sriraman, T. Kamp, and A. Paterson, 65th GEC, Austin TX, (2012).

  18. Recovery of indium from etching wastewater using supercritical carbon dioxide extraction.

    PubMed

    Liu, Hui-Ming; Wu, Chia-Chan; Lin, Yun-Hua; Chiang, Chien-Kai

    2009-12-30

    This study presents supercritical carbon dioxide (scCO(2)) extraction as an inherently safer and cleaner method for the recovery of indium (In) from the real etching wastewater obtained from indium tin oxide (ITO) etching process. Efficient chelation-supercritical fluids extraction (SFE) from etching wastewater was obtained at 80 degrees C, a pressure of 20.7MPa, and with 15 min static extractions followed by 15 min dynamic extraction. The extractions were performed using unmodified scCO(2) in the presence of the fluorinated beta-diketone chelating agent, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione (HFOD). Percentages of indium recovery from etching wastewater were between 90.8% and 100.3% (n=6) with relative standard deviations of <10%. The accuracy of the procedure was confirmed by determining indium levels in a single element standard solution. The developed method was applied to the analysis of real etching wastewater samples as well as to a commercially available ITO etching reagent (ITO-06SD) with satisfactory results. PMID:19699579

  19. Improving Resonance Characteristics of Gas Sensors by Chemical Etching of Quartz Plates

    NASA Astrophysics Data System (ADS)

    Raicheva, Z.; Georgieva, V.; Grechnikov, A.; Gadjanova, V.; Angelov, Ts; Vergov, L.; Lazarov, Y.

    2012-12-01

    The paper presents the results of the influence of the etching process of AT-cut quartz plates on the resonance parameters and the QCM sensors. Quartz wafers (100 μm thick, with a diameter of 8 mm), divided into five groups, have been etched in [NH4]2 F2: H2O = 1:1 solution at temperatures in the range from 70°C to 90°C. The influence of etching temperature on the surface morphology of quartz wafers has been estimated by Atomic Force Microscopy (AFM). A correlation between the etching temperature and the dynamic characteristics is obtained. The optimal etching conditions for removing the surface damages caused by the mechanical treatment of the quartz wafers and for obtaining a clean surface were determined. The typical parameters of fabricated resonators on the quartz plates etched in the temperature range from 70°C to 90°C are as follows: Frequency, Fs 16 MHz ± 100 kHz Motional resistance, Rs less 10 Ω Motional inductance, Lq higher than 3 mH Motional capacitance, Cq less 30 fF Static capacitance, Co around 5 pF Quality factor, Q from 46 000 to 70 000 Sorption properties of QCM - MoO3 are evaluated at NH3 concentrations in the interval from 100 ppm to 500 ppm.

  20. Restoration of obliterated engraved marks on steel surfaces by chemical etching reagent.

    PubMed

    Song, Qingfang

    2015-05-01

    Chemical etching technique is widely used for restoration of obliterated engraved marks on steel surface in the field of public security. The consumed thickness of steel surface during restoration process is considered as a major criterion for evaluating the efficiency of the chemical etching reagent. The thinner the consumed thickness, the higher the restoration efficiency. According to chemical principles, maintaining the continuous oxidative capabilities of etching reagents and increasing the kinetic rate difference of the reaction between the engraved and non-engraved area with the chemical etching reagent can effectively reduce the consumed steel thickness. The study employed steel surface from the engine case of motorcycle and the car frame of automobile. The chemical etching reagents are composed of nitric acid as the oxidizer, hydrofluoric acid as the coordination agent and mixed with glacial acetic acid or acetone as the solvents. Based on the performance evaluation of three different etching reagents, the one composed of HNO3, HF and acetone gave the best result. PMID:25771134

  1. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    SciTech Connect

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  2. Anisotropic etching on Si{1 1 0}: experiment and simulation for the formation of microstructures with convex corners

    NASA Astrophysics Data System (ADS)

    Pal, Prem; Gosalvez, Miguel A.; Sato, Kazuo; Hida, H.; Xing, Yan

    2014-12-01

    We combine experiment, theory and simulation to design and fabricate 3D structures with protected edges and corners on Si{1 1 0} using anisotropic wet chemical etching in 25 wt% tetramethylammonium hydroxide (TMAH) at 71 °C. In order to protect the convex corners formed by <1 1 2 > and <1 1 0 > directions, two methods are considered, namely, corner compensation and two-step etching. The mask design methodology for corner compensation is explained for various microstructures whose edges are aligned along different directions. The detailed geometry of each compensation pattern is shown to depend on the desired etch depth. The two-step wet etching process is explored in order to realize improved sharp convex corners. Using the same etchant concentration and temperature, the second etching is carried out after mask inversion from silicon nitride (Si3N4) to silicon dioxide (SiO2), obtained by local oxidation of silicon (LOCOS) followed by nitride etching. Based on the use of the continuous cellular automaton (CCA), the simulation results for both corner undercutting and two-step etching show that the CCA is suitable for the analysis and prediction of anisotropic etching on Si{1 1 0} wafers.

  3. SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF4)

    NASA Astrophysics Data System (ADS)

    Rana, Tawhid; Chandrashekhar, M. V. S.; Daniels, Kevin; Sudarshan, Tangali

    2016-04-01

    Tetrafluorosilane (SiF4 or TFS), a novel precursor gas, has been demonstrated to perform three primary operations of silicon carbide-related processing: SiC etching, SiC epitaxial growth and graphene epitaxial growth. TFS etches SiC substrate vigorously in a H2 ambient by efficient Si removal from the surface, where SiC etch rate is a function of TFS gas concentration. In this SiC etching process, Si is removed by TFS and C is removed by H2. When propane is added to a H2 and TFS gas mixture, etching is halted and high-quality SiC epitaxy takes place in a Si droplet-free condition. TFS's ability to remove Si can also be exploited to grow epitaxial graphene in a controllable manner in an inert (Ar) ambient. Here, TFS enhances graphene growth by selective etching of Si from the SiC surface.

  4. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    SciTech Connect

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhanced Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.

  5. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGESBeta

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  6. Pulsed laser-assisted focused electron-beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport.

    PubMed

    Noh, J H; Fowlkes, J D; Timilsina, R; Stanford, M G; Lewis, B B; Rack, P D

    2015-02-25

    In order to enhance the etch rate of electron-beam-induced etching, we introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. The evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. The increased etch rate is attributed to photothermally enhanced Ti-F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone. PMID:25629708

  7. Oxide Etch Behavior in an Inductively Coupled C4F8 Discharge Characterized by Diode Laser Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Anderson, Harold; Barela, Marcus; Courtin, Geoff; Waters, Karla

    2001-10-01

    This study reports on oxide and photoresist etch characteristics in an inductively coupled GEC Reference Cell as a function of reactor source power, bias power and pressure using C4F8. Diode laser absorption spectroscopy (DLAS) has shown that C4F8 is largely dissociated to form C2F4, CF2 and CF in the discharge. Over an oxide surface, CF2 and CF are consumed in the oxide etch process, but only when the bias power is sufficient to keep the oxide surface clean through energetic ion bombardment. For C4F8, this transition occurs at 60 eV (75 W bias power) in the GEC Cell. At higher bias powers (125 W) where oxide etching is fast ( 600 nm/min.), CF2 appears to be the key radical for the etch process since 50 percent (2.7-3.0 mTorr in a 15 mTorr C4F8 discharge) is consumed. These values were obtained by comparing the CF2 concentrations over non-reactive wafer surfaces versus blanket oxide wafer surfaces undergoing etching. CF is shown to display a similar trend, but its concentration is an order of magnitude less than CF2, and consequently cannot account on a mass basis for the amount of reactants necessary to balance the amount of etch products. Over a PR surface, neither CF2 nor CF concentrations vary as a function of PR etch rate. Consequently, they do not appear to be involved in the PR etch mechanism. However, PR etching is also critically dependent on bias power. PR films etch presumably due to energetic ion bombardment that degrades the PR film, making it liable to attack by fluorine.

  8. ICP Etching of SiC

    SciTech Connect

    Grow, J.M.; Lambers, E.S.; Ostling, M.; Pearton, S.J.; Ren, F.; Shul, R.J.; Wang, J.J.; Zetterling, C.-M.

    1999-02-04

    A number of different plasma chemistries, including NF{sub 3}/O{sub 2}, SF{sub 6}/O{sub 2}, SF{sub 6}/Ar, ICl, IBr, Cl{sub 2}/Ar, BCl{sub 3}/Ar and CH{sub 4}/H{sub 2}/Ar, have been investigated for dry etching of 6H and 3C-SiC in a Inductively Coupled Plasma tool. Rates above 2,000 {angstrom} cm{sup {minus}1} are found with fluorine-based chemistries at high ion currents. Surprisingly, Cl{sub 2}-based etching does not provide high rates, even though the potential etch products (SiCi{sub 4} and CCl{sub 4}) are volatile. Photoresist masks have poor selectivity over SiC in F{sub 2}-based plasmas under normal conditions, and ITO or Ni are preferred.

  9. Solderability enhancement of copper through chemical etching

    SciTech Connect

    Stevenson, J.O.; Guilinger, T.R.; Hosking, F.M.; Yost, F.G.; Sorensen, N.R.

    1995-05-01

    Sandia National Laboratories has established a Cooperative Research and Development Agreement with consortium members of the National Center for Manufacturing Sciences (NCMS) to develop fundamental generic technology in the area of printed wiring board materials and surface finishes. Improved solderability of copper substrates is an important component of the Sandia-NCMS program. The authors are investigating the effects of surface roughness on the wettability and solderability behavior of several different types of copper board finishes. In this paper, the authors present roughness and solderability characterizations for a variety of chemically-etched copper substrates. Initial testing on six chemical etches demonstrate that surface roughness can be greatly enhanced through chemical etching. Noticeable improvements in solder wettability were observed to accompany increases in roughness. A number of different algorithms and measures of roughness were used to gain insight into surface morphologies that lead to improved solderability.

  10. Deep wet etching of borosilicate glass and fused silica with dehydrated AZ4330 and a Cr/Au mask

    NASA Astrophysics Data System (ADS)

    Jin, Joo-Young; Yoo, Sunghyun; Bae, Jae-Sung; Kim, Yong-Kweon

    2014-01-01

    This research highlights a superior glass-wet-etch technique which enables a glass wafer to be etched for more than 20 h in 49 wt% hydrofluoric acid (HF) only with Cr/Au film and a common positive photoresist, AZ4330. We demonstrated that pits on the wet-etched glass wafer were generated not only due to HF diffusion through the Cr/Au film but also due to pinholes on the Cr/Au films created by the diffusion of the Cr/Au etchant through a photoresist etching-mask during the Cr/Au wet etching process. These two types of diffusion, HF diffusion and Cr/Au etchant diffusion, were eliminated by the thermal curing of a photoresist (PR), AZ4330, before the Cr/Au wet etching process. The curing process allowed the PR to dehydrate, increased the hydrophobicity, and prevented the diffusion of the hydrophilic HF and Cr/Au etchant. Optimization of the curing process was performed, showing that curing at 130 °C for 20 min was the proper condition. With the optimized process, a 525 µm thick borosilicate glass wafer was penetrated with 49%wt HF. A fused silica wafer 525 µm thick was also wet-etched and penetrated with 49 wt% HF at 10 h. Moreover, no pits were found in wet etching of the fused silica for 20 h in 49 wt% HF. These findings demonstrate that the proposed technique allows the wet etching of a glass wafer for more than 20 h in 49%wt HF, the best result thus far. We fabricated a glass substrate with a 217.0 µm deep cavity and a penetrating through-via using the proposed technique, proving the feasibility of the product as an optical component with a surface roughness of 45.5 Å in the cavity.

  11. The development of a method of producing etch resistant wax patterns on solar cells

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    A potentially attractive technique for wax masking of solar cells prior to etching processes was studied. This technique made use of a reuseable wax composition which was applied to the solar cell in patterned form by means of a letterpress printing method. After standard wet etching was performed, wax removal by means of hot water was investigated. Application of the letterpress wax printing process to silicon was met with a number of difficulties. The most serious shortcoming of the process was its inability to produce consistently well-defined printed patterns on the hard silicon cell surface.

  12. Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF{sub 6} based plasmas

    SciTech Connect

    Perros, Alexander; Bosund, Markus; Sajavaara, Timo; Laitinen, Mikko; Sainiemi, Lauri; Huhtio, Teppo; Lipsanen, Harri

    2012-01-15

    The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 deg. C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF{sub 6} and O{sub 2} under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film's removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film removal because the film was inert to the SF{sub x}{sup +} and O{sup +} chemistries. The etch experiments showed the film to be a resilient masking material. This makes it an attractive candidate for use as an etch mask in demanding SF{sub 6} based plasma etch applications, such as through-wafer etching, or when oxide films are not suitable.

  13. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    NASA Astrophysics Data System (ADS)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (<1° departure) and smooth (2.0 nm root mean square line-edge roughness (LER)) etch by chemically assisted Ar ion beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ∼60 nm min‑1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  14. Plasma etching of HfO{sub 2} at elevated temperatures in chlorine-based chemistry

    SciTech Connect

    Helot, M.; Chevolleau, T.; Vallier, L.; Joubert, O.; Blanquet, E.; Pisch, A.; Mangiagalli, P.; Lill, T.

    2006-01-15

    Plasma etching of HfO{sub 2} at an elevated temperature is investigated in chlorine-based plasmas. Thermodynamic studies are performed in order to determine the most appropriate plasma chemistry. The theoretical calculations show that chlorocarbon gas chemistries (such as CCl{sub 4} or Cl{sub 2}-CO) can result in the chemical etching of HfO{sub 2} in the 425-625 K temperature range by forming volatile effluents such as HfCl{sub 4} and CO{sub 2}. The etching of HfO{sub 2} is first studied on blanket wafers in a high density Cl{sub 2}-CO plasma under low ion energy bombardment conditions (no bias power). Etch rates are presented and discussed with respect to the plasma parameters. The evolution of the etch rate as function of temperature follows an Arrhenius law indicating that the etching comes from chemical reactions. The etch rate of HfO{sub 2} is about 110 A /min at a temperature of 525 K with a selectivity towards SiO{sub 2} of 15. x-ray photoelectron spectroscopy analyses (XPS) reveal that neither carbon nor chlorine is detected on the HfO{sub 2} surface, whereas a chlorine-rich carbon layer is formed on top of the SiO{sub 2} surface leading to the selectivity between HfO{sub 2} and SiO{sub 2}. A drift of the HfO{sub 2} etch process is observed according to the chamber walls conditioning due to chlorine-rich carbon coatings formed on the chamber walls in a Cl{sub 2}-CO plasma. To get a very reproducible HfO{sub 2} etch process, the best conditioning strategy consists in cleaning the chamber walls with an O{sub 2} plasma between each wafer. The etching of HfO{sub 2} is also performed on patterned wafers using a conventional polysilicon gate. The first result show a slight HfO{sub 2} foot at the bottom of the gate and the presence of hafnium oxide-based residues in the active areas.

  15. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion

    PubMed Central

    Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.

    2016-01-01

    Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398

  16. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion.

    PubMed

    Hersbach, Thomas J P; Yanson, Alexei I; Koper, Marc T M

    2016-01-01

    Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of -1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398

  17. Inductively coupled plasma-reactive ion etching of InSb using CH{sub 4}/H{sub 2}/Ar plasma

    SciTech Connect

    Zhang Guodong; Sun Weiguo; Xu Shuli; Zhao Hongyan; Su Hongyi; Wang Haizhen

    2009-07-15

    InSb is an important material for optoelectronic devices. Most InSb devices are currently wet etched, and the etching geometries are limited due to the isotropic nature of wet etching. Inductively coupled plasma (ICP)-reactive ion etching (RIE) is a more desirable alternative because it offers a means of producing small anisotropic structures especially needed in large format infrared focal plane arrays. This work describes the novel use of ICP-RIE for fabricating InSb mesas with CH{sub 4}/H{sub 2}/Ar plasma and presents the influences of the process parameters on the etch rate and surface morphology. The parameters investigated include bias radio frequency power (50-250 W), %CH{sub 4} in H{sub 2} (10-50), argon (Ar) partial pressure (0-0.3 Pa with total pressure of 1.0 Pa), and total pressure (0.35-4 Pa). With the process parameters optimized in this investigated ranges, good etching results have been achieved with etch rates up to 80 nm/min, and etch features with sidewall angles of about 80 degree sign , the etched surface is as smooth as before the RIE process.

  18. Time-resolved transmission study of fused silica during laser-induced backside dry etching

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Zalatnai, Z.; Papdi, B.; Csákó, T.; Bor, Zs.; Hopp, B.

    2009-03-01

    Laser-induced backside dry etching (LIBDE) is a promising technique for micro- and nanomachining of transparent materials. Although several experiments have already proved the suitability and effectiveness of the technique, there are several open questions concerning the etching mechanism and the concomitant processes. In this paper time-resolved light transmission investigations of etching process of fused silica are presented. 125 nm thick silver coating was irradiated through the carrying 1 mm thick fused silica plate by single pulses of a nanosecond KrF excimer laser. The applied fluences were 0.38, 0.71 and 1 J/cm 2. During the etching process the irradiated spots were illuminated by an electronically delayed nitrogen laser pumped dye laser. The delay between the pump and probe pulses was varied in the range of 0 ns and 20 μs. It was found that the transmitted probe beam intensity strongly depends on the applied delays and fluences. Scanning electron microscopy and energy dispersive X-ray spectrometry of the etched surface showed the existence of silver droplets and fragments on the illuminated surfaces and silver atoms built into the treated surface layer influencing the transmission behavior of the studied samples.

  19. Controlling line-edge roughness and reactive ion etch lag in sub-150 nm features in borophosphosilicate glass

    SciTech Connect

    Bhatnagar, Parijat; Panda, Siddhartha; Edleman, Nikki L.; Allen, Scott D.; Wise, Richard; Mahorowala, Arpan

    2007-04-01

    We have developed a reactive ion etch (RIE) process in borophosphosilicate glass (BPSG) for 150 nm line-and-space features, where line-edge roughness (LER) complemented with RIE lag becomes a major issue. Effect of flow rates and carbon-to-fluorine atomic ratio of fluorohydrocarbon gases was utilized to achieve acceptable process window allowing lower radio frequency powers therefore obtaining acceptable LER and RIE lag in the high-resolution features etched into BPSG.

  20. Selective emitter using a screen printed etch barrier in crystalline silicon solar cell

    PubMed Central

    2012-01-01

    The low level doping of a selective emitter by etch back is an easy and low cost process to obtain a better blue response from a solar cell. This work suggests that the contact resistance of the selective emitter can be controlled by wet etching with the commercial acid barrier paste that is commonly applied in screen printing. Wet etching conditions such as acid barrier curing time, etchant concentration, and etching time have been optimized for the process, which is controllable as well as fast. The acid barrier formed by screen printing was etched with HF and HNO3 (1:200) solution for 15 s, resulting in high sheet contact resistance of 90 Ω/sq. Doping concentrations of the electrode contact portion were 2 × 1021 cm−3 in the low sheet resistance (Rs) region and 7 × 1019 cm−3 in the high Rs region. Solar cells of 12.5 × 12.5 cm2 in dimensions with a wet etch back selective emitter Jsc of 37 mAcm−2, open circuit voltage (Voc) of 638.3 mV and efficiency of 18.13% were fabricated. The result showed an improvement of about 13 mV on Voc compared to those of the reference solar cell fabricated with the reactive-ion etching back selective emitter and with Jsc of 36.90 mAcm−2, Voc of 625.7 mV, and efficiency of 17.60%. PMID:22823978

  1. Effect of liquid environment on laser-induced backside wet etching of fused silica

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Jang, Deoksuk; Ahn, Daehwan; Kim, Dongsik

    2010-02-01

    In laser-induced backside wet etching (LIBWE), the liquid absorbent indirectly heats the transparent material, causing explosive phase change and cavitation. Accordingly, the hydrodynamics of the absorbing liquid, including the size of the liquid chamber, is strongly related to the ablation process. Because the hydrodynamics is dependent on the elastic deformation of the sample, the sample thickness also affects the performance of LIBWE. In this work, experimental analyses were performed to elucidate the hydrodynamics in LIBWE and the effect on the etch rate by varying the liquid chamber size and sample thickness. A KrF excimer laser was used to ablate fused silica samples in toluene and the etch rate was quantified using a scanning profilometer. Laser flash shadowgraphy and photodeflection probing techniques were employed for in situ measurement of the laser-induced hydrodynamics and displacement of the sample, respectively, with a time resolution of approximately nanoseconds. To directly observe the effect of increased liquid pressure on LIBWE, the liquid pressure on the etching spot was locally increased by an external shock wave and the etch results are examined. This study confirms that the photomechanical effects from the laser-induced bubble plays a key role in the LIBWE process, revealing a linear relationship between the etch rate the applied recoil momentum. However, the dependence of the etch rate on the chamber size and sample thickness could not be explained by the change in recoil momentum, i.e., by the bubble pressure. Instead, transient deformation of the sample by the pressure impact was estimated to be mainly responsible for the dependence.

  2. Inductively Coupled Plasma Reactive Ion Etching of AlGaAsSb and InGaAsSb for Quaternary Antimonide MIM Thermophotovoltaics

    SciTech Connect

    Palmisiano, M. N.; Peake, G. M.; Shul, R. J.; Ashby, C. I.; Cederberg, J. G.; Hafich, M. J.; Biefeld, R. M.

    2002-10-01

    In this letter we report on the inductively coupled plasma reactive ion etching (ICP-RIE) of InGaAsSb and AlGaAsSb for the fabrication of quaternary monolithic interconnected module (MIM) thermophotovoltaic (TPV) devices. A rapid dry etch process is described that produces smooth surfaces using BCl[sub]3 for AlGaAsSb and InGaAsSb capped with GaSb. Uncapped InGaAsSb was etched by adding an H[sub]2 plasma preclean to reduce surface oxides. InGaAsSb etch rate was studied as a function of accelerating voltage, RF power, temperature and pressure. The etch conditions found for InGaAsSb were used for AlGaAsSb etching to determine the effectiveness for isolation of the MIM cells.

  3. Influence of different pre-etching times on fatigue strength of self-etch adhesives to dentin.

    PubMed

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Suzuki, Takayuki; Scheidel, Donal D; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-04-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence on dentin bonding of phosphoric acid pre-etching times before the application of self-etch adhesives. Two single-step self-etch universal adhesives [Prime & Bond Elect (EL) and Scotchbond Universal (SU)], a conventional single-step self-etch adhesive [G-aenial Bond (GB)], and a two-step self-etch adhesive [OptiBond XTR (OX)] were used. The SBS and SFS values were obtained with phosphoric acid pre-etching times of 3, 10, or 15 s before application of the adhesives, and for a control without pre-etching. For groups with 3 s of pre-etching, SU and EL showed higher SBS values than control groups. No significant difference was observed for GB among the 3 s, 10 s, and control groups, but the 15 s pre-etching group showed significantly lower SBS and SFS values than the control group. No significant difference was found for OX among the pre-etching groups. Reducing phosphoric acid pre-etching time can minimize the adverse effect on dentin bonding durability for the conventional self-etch adhesives. Furthermore, a short phosphoric acid pre-etching time enhances the dentin bonding performance of universal adhesives. PMID:26918658

  4. Dry etching characteristics of amorphous As{sub 2}S{sub 3} film in CHF{sub 3} plasma

    SciTech Connect

    Choi, Duk-Yong; Madden, Steve; Rode, Andrei; Wang, Rongping; Luther-Davies, Barry

    2008-12-01

    The authors describe the dry etching characteristics of amorphous As{sub 2}S{sub 3} films in CHF{sub 3} plasma and the development of an optimized fabrication process for compact waveguides. The observed etching behavior is due to the relative densities of fluorine atoms, polymer precursors, and ions in the plasma which are controlled by the process parameters. In particular, the flow rate of the CHF{sub 3} gas has a significant influence on the etched profile and surface roughness as well as the etch rate of the As{sub 2}S{sub 3}. The profile evolves from isotropic to vertical with the flow rate due to passivation by increasing polymer deposition on the sidewalls. Such passivation also helps achieve smooth sidewalls because it inhibits differential etching between the phases in the inherently phase-separated As{sub 2}S{sub 3} film, which otherwise results in a grainy and rough etched surface. At the highest flow rate, however, excessive polymer deposition occurs and this results in positive-sloped sidewall and grassy etched surface due to micromasking.

  5. Dry etching of III-V nitrides

    SciTech Connect

    Pearton, S.J.; Shul, R.J.; McLane, G.F.; Constantine, C.

    1995-12-01

    The chemical inertness and high bond strengths of the III-V nitrides lead to slower plasma etching rates than for more conventional III-V semiconductors under the same conditions. High ion density conditions (>3{times}l0{sup 9}cm{sup {minus}3}) such as those obtained in ECR or magnetron reactors produce etch rates up to an order of magnitude higher than for RIE, where the ion densities are in the 10{sup 9}cm{sup {minus}3} range. We have developed smooth anisotropic dry etches for GaN, InN, AlN and their alloys based on Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar, Cl{sub 2}/H{sub 2}, Cl{sub 2}/SF{sub 6}, HBr/H{sub 2} and HI/H{sub 2} plasma chemistries achieving etch rates up to {approximately}4,000{angstrom}/min at moderate dc bias voltages ({le}-150V). Ion-induced damage in the nitrides appears to be less apparent than in other III-V`s. One of the key remaining issues is the achievement of high selectivities for removal of one layer from another.

  6. Fabrication of a vertical sidewall using double-sided anisotropic etching of <1 0 0> oriented silicon

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Seok; Kim, Jung-Mu; Bang, Yong-Seung; Song, Eun-Seok; Ji, Chang-Hyeon; Kim, Yong-Kweon

    2012-09-01

    A double-sided wet etch process has been proposed to fabricate vertical structures in <1 0 0> oriented silicon substrate. Both sides of a {1 0 0} silicon wafer have been patterned identically along the <1 1 0> direction, and etched using potassium hydroxide (KOH) solution. By precisly controlling the etch time, using etch-timer structure and additive control, structures with smooth and vertical {1 1 0} sidewalls have been fabricated at the edges of a rectangular opening without undercut. Rectangular through-holes, bridges and cantilevers have been constructed using the proposed process. The measured average surface roughness of the vertical sidewall was 481 nm, which has been further reduced to 217 nm and 218 nm by postetching using a KOH-IPA and TMAH-Triton mixture, respectively. Slanted {4 1 1} planes exposed at the concave corners during the vertical etch process have been successfully removed or diminished by the postetching process. A bridge structure with a high aspect ratio of 39:1 has been fabricated, and cantilevers without undercutting were successfully constructed by applying the compensation technique. The proposed process can potentially be utilized in place of the deep reactive ion etching process for the fabrication of structures having vertical through-holes, such as through-silicon vias, high aspect ratio springs and filters for microfluidic applications.

  7. Fabrication of particular structures of hexagonal boron nitride and boron-carbon-nitrogen layers by anisotropic etching

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Sharma, Subash; Shinde, Sachin M.; Sharma, Kamal P.; Thangaraja, Amutha; Kalita, Golap; Tanemura, Masaki

    2016-05-01

    Anisotropic etching of hexagonal boron nitride (h-BN) and boron-carbon-nitrogen (BCN) basal plane can be an exciting platform to develop well-defined structures with interesting properties. Here, we developed an etching process of atomically thin h-BN and BCN layers to fabricate nanoribbons (NRs) and other distinct structures by annealing in H2 and Ar gas mixture. BCN and h-BN films are grown on Cu foil by chemical vapor deposition (CVD) using solid camphor and ammonia borane as carbon, nitrogen and boron source, respectively. Formation of micron size well-defined etched holes and NRs are obtained in both h-BN and BCN layers by the post growth annealing process. The etching process of h-BN and BCN basal plane to fabricate NRs and other structures with pronounced edges can open up new possibilities in 2D hybrid materials.

  8. Anodic etching of p-type cubic silicon carbide

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  9. High index contrast polysiloxane waveguides fabricated by dry etching

    SciTech Connect

    Madden, S. J.; Zhang, M. Y.; Choi, D.-Y.; Luther-Davies, B.; Charters, R.

    2009-05-15

    The authors demonstrate the production of low loss enhanced index contrast waveguides by reactive ion etching of IPG trade mark sign polysiloxane thin films. The use of a silica mask and CHF{sub 3}/O{sub 2} etch gas led to large etch selectivity between the silica and IPG trade mark sign of >20 and etch rates of >100 nm/min. This work indicates that compact optical circuits could be successfully fabricated for telecommunication applications using polysiloxane films.

  10. Optimization of Track Etched Makrofol Etching Conditions for Short-term Exposure Duration

    NASA Astrophysics Data System (ADS)

    Moreno, V.; Font, Ll.

    Exposure time of nuclear track detectors at humid environments is normally limited to a few weeks because filter used to avoid humidity is not completely waterproof and, after several months, some parts of detector start to degrade. In other really extreme measurement conditions, like high aerosol content, high or low temperatures, etc., the exposure time also requires a reduction. Then detector detection limit becomes a problem, unless radon concentrations were high. In those cases where radon levels are not high enough a better detection efficiency is required. In our laboratory we use passive detectors based on the track etched Makrofol DE foil covered with aluminized Mylar and they are analyzed by means of an electrochemical etching. Our standard etching conditions allow analyzing detectors generally exposed for periods between three and six months. We have optimized our etching conditions to reduce the exposure time down to a month for common radon concentration values.

  11. Electrochemical etching of p-n-GaN/AlGaN photoelectrodes

    NASA Astrophysics Data System (ADS)

    Usikov, A. S.; Helava, H.; Nikiforov, A.; Puzyk, M. V.; Papchenko, B. P.; Kovaleva, Yu. V.; Makarov, Yu. N.

    2016-05-01

    Specific features of etching of GaN/AlGaN p-n structures in a KOH-based electrolyte have been studied. It was found that the corrosion process first passes across p layers through vertical channels associated with threading structural defects. Then, the corrosion process occurs in the lateral direction along n layers of the structure, with local hollows and voids thereby formed. The lateral etching is due to the presence of positive piezoelectric charges at boundaries of n-AlGaN and n-GaN layers and positively charged ionized donors in the space-charge region of the p-n junction.

  12. Antireflective grassy surface on glass substrates with self-masked dry etching

    PubMed Central

    2013-01-01

    Although recently developed bio-inspired nanostructures exhibit superior optic performance, their practical applications are limited due to cost issues. We present highly transparent glasses with grassy surface fabricated with self-masked dry etch process. Simultaneously generated nanoclusters during reactive ion etch process with simple gas mixture (i.e., CF4/O2) enables lithography-free, one-step nanostructure fabrication. The resulting grassy surfaces, composed of tapered subwavelength structures, exhibit antireflective (AR) properties in 300 to 1,800-nm wavelength ranges as well as improved hydrophilicity for antifogging. Rigorous coupled-wave analysis calculation provides design guidelines for AR surface on glass substrates. PMID:24289255

  13. Antireflective grassy surface on glass substrates with self-masked dry etching

    NASA Astrophysics Data System (ADS)

    Song, Young Min; Park, Gyeong Cheol; Kang, Eun Kyu; Yeo, Chan Il; Lee, Yong Tak

    2013-12-01

    Although recently developed bio-inspired nanostructures exhibit superior optic performance, their practical applications are limited due to cost issues. We present highly transparent glasses with grassy surface fabricated with self-masked dry etch process. Simultaneously generated nanoclusters during reactive ion etch process with simple gas mixture (i.e., CF4/O2) enables lithography-free, one-step nanostructure fabrication. The resulting grassy surfaces, composed of tapered subwavelength structures, exhibit antireflective (AR) properties in 300 to 1,800-nm wavelength ranges as well as improved hydrophilicity for antifogging. Rigorous coupled-wave analysis calculation provides design guidelines for AR surface on glass substrates.

  14. Note: Mechanical etching of atomic force microscope tip and microsphere attachment for thermal radiation scattering enhancement

    NASA Astrophysics Data System (ADS)

    Brissinger, D.; Parent, G.; Lacroix, D.

    2013-12-01

    This Note describes a mechanical etching technique which can be used to prepare silicon tips used in atomic force microscopy apparatus. For such devices, dedicated tips with specific shapes are now commonly used to probe surfaces. Yet, the control of the tip morphology where characteristic scales are lower than 1 μm remains a real challenge. Here, we detail a controlled etching process of AFM probes apex allowing micrometer-sized sphere attachment. The technique used and influent parameters are discussed and SEM images of the achieved tips are given. Deceptive problems and drawbacks that might occur during the process are also covered.

  15. Effect of Phosphoric Acid Pre-etching on Fatigue Limits of Self-etching Adhesives.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue limit (SFL) testing to determine the effect of phosphoric acid pre-etching of enamel and dentin prior to application of self-etch adhesives for bonding resin composite to these substrates. Three self-etch adhesives--1) G- ænial Bond (GC Corporation, Tokyo, Japan); 2) OptiBond XTR (Kerr Corp, Orange, CA, USA); and 3) Scotchbond Universal (3M ESPE Dental Products, St Paul, MN, USA)--were used to bond Z100 Restorative resin composite to enamel and dentin surfaces. A stainless-steel metal ring with an inner diameter of 2.4 mm was used to bond the resin composite to flat-ground (4000 grit) tooth surfaces for determination of both SBS and SFL. Fifteen specimens each were used to determine initial SBS to human enamel/dentin, with and without pre-etching with a 35% phosphoric acid (Ultra-Etch, Ultradent Products Inc, South Jordan, UT, USA) for 15 seconds prior to the application of the adhesives. A staircase method of fatigue testing (25 specimens for each test) was then used to determine the SFL of resin composite bonded to enamel/dentin using a frequency of 10 Hz for 50,000 cycles or until failure occurred. A two-way analysis of variance and Tukey post hoc test were used for analysis of SBS data, and a modified t-test with Bonferroni correction was used for the SFL data. Scanning electron microscopy was used to examine the area of the bonded restorative/tooth interface. For all three adhesive systems, phosphoric acid pre-etching of enamel demonstrated significantly higher (p<0.05) SBS and SFL with pre-etching than it did without pre-etching. The SBS and SFL of dentin bonds decreased with phosphoric acid pre-etching. The SBS and SFL of bonds using phosphoric acid prior to application of self-etching adhesives clearly demonstrated different tendencies between enamel and dentin. The effect of using phosphoric acid, prior to the application of the self-etching adhesives, on SBS and SFL was

  16. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 × 1017 cm-3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  17. Plasma Etching of n-Type 4H-SiC for Photoconductive Semiconductor Switch Applications

    NASA Astrophysics Data System (ADS)

    Ekinci, Huseyin; Kuryatkov, Vladimir V.; Mauch, Daniel L.; Dickens, James C.; Nikishin, Sergey A.

    2015-05-01

    Photoconductive semiconductor switches (PCSS) fabricated on high-purity semi-insulating 4H-SiC substrates (000) are capable of switching high currents in compact packages with long device lifetimes. A heavily doped n-type SiC epitaxial layer of appropriate thickness is required to form low-resistance ohmic contacts with these devices. In addition, to enhance the performance of the PCSSs, the SiC surface between the ohmic contacts must be extremely smooth. We report a chlorine-based, inductively coupled plasma reactive ion-etching process yielding n-type SiC epitaxial layers with the required smoothness. The rate of etching and post-etching surface morphology were dependent on plasma conditions. We found that the surface smoothness of epitaxial layers can be improved by including BCl3 in the argon-chlorine mixture. The optimum etching process yielded very smooth surfaces (˜0.3 nm RMS) at a relatively high rate of etching of ˜220 nm/min. This new fabrication approach significantly reduced the on-state resistance of the PCSS device and improved its durability of operation.

  18. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  19. General fabrication of ordered nanocone arrays by one-step selective plasma etching

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Tian, Zhaoshuo; Li, Yunlong; Tian, Shibing; Li, Yunming; Ren, Shoutian; Gu, Changzhi; Li, Junjie

    2014-03-01

    One-step selective direct current (DC) plasma etching technology is employed to fabricate large-area well-aligned nanocone arrays on various functional materials including semiconductor, insulator and metal. The cones have nanoscale apexes (˜2 nm) with high aspect ratios, which were achieved by a selective plasma etching process using only CH4 and H2 in a bias-assisted hot filament chemical vapor deposition (HFCVD) system without any masked process. The CH_{3}^{+} ions play a major role to etch the roughened surface into a conical structure under the auxiliary of H+ ions. Randomly formed nano-carbon may act as an original mask on the smooth surface to initiate the following selective ions sputtering. Physical impinging of energetic ions onto the concave regions is predominant in comparison with the etching of convex parts on the surface, which is identified as the key mechanism for the formation of conical nanostructures. This one-step maskless plasma etching technology enables the universal formation of uniform nanocone structures on versatile substrates for many promising applications.

  20. In situ etch treatments of silicon carbide epitaxial layer for morphological quality improvement of the surfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, S.; Perrone, D.; Scaltrito, L.; Ferrero, S.; Pirri, C. F.; Mauceri, M.; Leone, S.; Pistone, G.; Abbondanza, G.; Crippa, D.

    2006-07-01

    Different homo epitaxial 4H-SiC commercial wafers were undergone hydrogen etching process that was developed in the reaction chamber of a Hot Wall Chemical Vapor Deposition (HWCVD) reactor. We have studied the effects of physical desorption to point out the morphology and the structural changes of epitaxial surfaces.An optical microscopy inspection was made to trace out a map of defect areas before and after etching treatments. We have analysed the morphological evolution of the surface in every etching process step by means of marked area on the defect map. We also achieved some other important information, concerning structural and morphological changing, by performing Atomic Force Microscopy and Micro Raman spectroscopy analysis on the same defect marked area.The etched epilayers showed a significant reduction of defects density and a good surface morphology. On investigated samples we fabricated Schottky diodes, their electrical behaviour compared to the devices fabricated on not etched epitaxial layer highlights the surface quality improvement and the increasing of SBD working yield.

  1. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  2. New phase formation in titanium aluminide during chemical etching

    SciTech Connect

    Takasaki, Akito; Ojima, Kozo; Taneda, Youji . Dept. of Mathematics and Physics)

    1994-05-01

    A chemical etching technique is widely used for metallographic observation. Because this technique is based on a local corrosion phenomenon on a sample, the etching mechanism, particularly for two-phase alloys, can be understood by electrochemical consideration. This paper describes formation of a new phase in a Ti-45Al (at.%) titanium aluminide during chemical etching, and the experimental results are discussed electrochemically.

  3. Peculiarities of latent track etching in SiO2/Si structures irradiated with Ar, Kr and Xe ions

    NASA Astrophysics Data System (ADS)

    Al'zhanova, A.; Dauletbekova, A.; Komarov, F.; Vlasukova, L.; Yuvchenko, V.; Akilbekov, A.; Zdorovets, M.

    2016-05-01

    The process of latent track etching in SiO2/Si structures irradiated with 40Ar (38 MeV), 84Kr (59 MeV) and 132Xe (133 and 200 MeV) ions has been investigated. The experimental results of SiO2 etching in a hydrofluoric acid solution have been compared with the results of computer simulation based on the thermal spike model. It has been confirmed that the formation of a molten region along the swift ion trajectory with minimum radius of 3 nm can serve as a theoretical criterion for the reproducible latent track etching tracks in SiO2.

  4. Gold-thickness-dependent Schottky barrier height for charge transfer in metal-assisted chemical etching of silicon

    PubMed Central

    2013-01-01

    Large-area, vertically aligned silicon nanowires with a uniform diameter along the height direction were fabricated by combining in situ-formed anodic aluminum oxide template and metal-assisted chemical etching. The etching rate of the Si catalyzed using a thick Au mesh is much faster than that catalyzed using a thin one, which is suggested to be induced by the charge transport process. The thick Au mesh in contact with the Si produces a low Au/Si Schottky barrier height, facilitating the injection of electronic holes from the Au to the Si, thus resulting in a high etching rate. PMID:23618313

  5. Study on the mechanism of platinum-assisted hydrofluoric acid etching of SiC using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Bui, P. V.; Isohashi, A.; Kizaki, H.; Sano, Y.; Yamauchi, K.; Morikawa, Y.; Inagaki, K.

    2015-11-01

    Hydrofluoric acid (HF) etching of the SiC surface assisted by Pt as a catalyst is investigated using density functional theory. Etching is initiated by the dissociative adsorption of HF on step-edge Si, forming a five-fold coordinated Si moiety as a metastable state. This is followed by breaking of the Si-C back-bond by a H-transfer process. The gross activation barrier strongly correlates with the stability of the metastable state and is reduced by the formation of Pt-O chemical bonds, leading to an enhancement of the etching reaction.

  6. Etching studies on lutetium yttrium orthosilicate LuxY2-xSiO5:Ce (LYSO) scintillator crystals

    NASA Astrophysics Data System (ADS)

    Péter, Á.; Berze, N.; Lengyel, K.; Lörincz, E.

    2010-11-01

    Surface dissolution has been investigated on {100}, {010}, {001}, {110} and {101} oriented Lu1.6Y0.4SiO5:Ce crystal samples by using orthophosphoric acid up to 180°C. Depending on the etching temperature and surface orientation smooth or bunched surfaces were produced. In order to study the effect of the etching process on the scintillation properties temperature dependent optical absorption measurements were carried out up to 236°C. It was found that depending on the post-growth history of the sample, etching may influence the scintillation mechanism by modifying the concentration of shallow traps.

  7. Photoelectrochemical etching of silicon carbide (SiC) and its characterization

    NASA Technical Reports Server (NTRS)

    Collins, D. M.; Harris, G. L.; Wongchotigul, K.

    1995-01-01

    Silicon carbide (SiC) is an attractive semiconductor material for high speed, high density, and high temperature device applications due to its wide bandgap (2.2-3.2 eV), high thermal conductivity, and high breakdown electric field (4 x 10(exp 6) V/cm). An instrumental process in the fabrication of semiconductor devices is the ability to etch in a highly controlled and selective manner for direct patterning techniques. A novel technique in etching using electrochemistry is described. This procedure involves the ultraviolet (UV) lamp-assisted photoelectrochemical etching of n-type 3C- and 6H-SiC to enhance the processing capability of device structures in SiC. While under UV illumination, the samples are anodically biased in an HF based aqueous solution since SiC has photoconductive properties. In order for this method to be effective, the UV light must be able to enhance the production of holes in the SiC during the etching process thus providing larger currents with light from the photocurrents generated than those currents with no light. Otherwise dark methods would be used as in the case of p-type 3C-SiC. Experiments have shown that the I/V characteristics of the SiC-electrolyte interface reveal a minimum etch voltage of 3 V and 4 V for n- and p-type 3C-SiC, respectively. Hence it is possible for etch-stops to occur. Etch rates calculated have been as high as 0.67 micrometer/min for p-type, 1.4 micrometer/min for n-type, and 1.1 micrometer/min for pn layer. On n-type 3C- SiC, an oxide formation is present where after etching a yellowish layer corresponds to a low Si/C ratio and a white layer corresponds to a high Si/C ratio. P-type 3C-SiC shows a grayish layer. Additionally, n-type 6H-SiC shows a brown layer with a minimum etch voltage of 3 V.

  8. Fabrication of sub-15 nm aluminum wires by controlled etching

    SciTech Connect

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; Marković, N.; McQueen, T. M.

    2014-04-28

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

  9. High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.

    1997-01-01

    A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.

  10. Vertical etching with isolated catalysts in metal-assisted chemical etching of silicon.

    PubMed

    Lianto, Prayudi; Yu, Sihang; Wu, Jiaxin; Thompson, C V; Choi, W K

    2012-12-01

    Metal assisted chemical etching with interconnected catalyst structures has been used to create a wide array of organized nanostructures. However, when patterned catalysts are not interconnected, but are isolated instead, vertical etching to form controlled features is difficult. A systematic study of the mechanism and catalyst stability of metal assisted chemical etching (MACE) of Si in HF and H(2)O(2) using Au catalysts has been carried out. The effects of the etchants on the stability of Au catalysts were examined in detail. The role of excess electronic holes as a result of MACE was investigated via pit formation as a function of catalyst proximity and H(2)O(2) concentration. We show that a suppression of excess holes can be achieved by either adding NaCl to or increasing the HF concentration of the etching solution. We demonstrate that an electric field can direct most of the excess holes to the back of the Si wafer and thus reduce pit formation at the surface of Si between the Au catalysts. The effect of hydrogen bubbles, generated as a consequence of MACE, on the stability of Au catalysts has also been investigated. We define a regime of etch chemistry and catalyst spacing for which catalyst stability and vertical etching can be achieved. PMID:23099475

  11. Fabrication of microstructure array directly on β-phase poly(vinylidene fluoride) thin film by O2 reactive ion etching

    NASA Astrophysics Data System (ADS)

    Miki, Hirofumi; Matsui, G.; Kanda, M.; Tsuchitani, S.

    2015-03-01

    The ability to pattern a thin film of poly(vinylidene fluoride) (PVDF), a piezoelectric, pyroelectric and ferroelectric polymer, has potential applications in the fields of microelectromechanical systems (MEMS), nonlinear optics and nonvolatile ferroelectric random access memory technology. Low pressure O2 reactive ion etching (RIE) was employed to realize fine pitch microstructures on a β-phase PVDF (β-PVDF) film for the first time; a line and space (70/130 μm) microstructure array with a height of over 30 μm was fabricated. Different to the traditional method of PDMS molding, the proposed technology did not result in significant loss of piezoelectricity. Furthermore, unlike the x-ray photo-etching method, there was no etching saturation limit with the proposed method. Here, we introduce the fabrication process technology in detail and report on the etching properties of the β-PVDF film under different process conditions. The effect of process variables, such as supplied gas flow, applied RF power and etch time, on the PVDF etching characteristics were investigated in detail. The RF power and etch time showed a more predominant influence on PVDF etching progress than the gas flow. The etched depth was linearly increased with the etch time and the amount of RF power. Etching rates over 10 μm h-1 were achieved and increased linearly with the applied RF power. By means of a responding photomask design and control of process conditions, much finer and higher microstructure arrays are also possible.

  12. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    distance. In this dissertation it is presented the first nitride blue edge emitting LD with a photoelectrochemical etched current aperture (CA-LD) into the device active region. Photoelectrochemical etching (PECE) has emerged as a powerful wet etching technique for III-nitride compounds. Beyond the advantages of wet etching technique, PECE offers bandgap selectivity, which is particularly desirable because it allows more freedom in designing new and advanced devices with higher performances. In the first part of this thesis a review of PECE is presented, and it is shown how it can be used to achieve a selective and controllable deep undercut of the active region of LEDs and LDs, in particular the selective PECE of MQW active region of (10-10) m-plane and (20-2-1) plane structures is reported. In the second part of this thesis, the fabrication flow process of the CA-LD is described. The performance of these devices is compared with that of shallow etched ridge LDs with a nominally identical epitaxial structure and active region width and it is experimentally shown that the CA-LD design has superior performance. CW operation of a (20-2-1) CA-LD with a 1.5 microm wide active region is demonstrated. Finally, in the third and last part of this thesis, the CA-LD performance is discussed in more details, in particular, an analysis of optical scattering losses caused by the rough edges of the remnant PEC etched active region is presented.

  13. XPS study on the selective wet etching mechanism of GeSbTe phase change thin films with tetramethylammonium hydroxide

    NASA Astrophysics Data System (ADS)

    Deng, Changmeng; Geng, Yongyou; Wu, Yiqun

    Phase change lithography has pretty potential applications for high density optical data storage mastering and micro/nano structure patterning because it is not restricted by optical diffraction limitation and at relatively low cost. GeSbTe, as an initially investigated material for phase change lithography, its mechanism of selective etching in inorganic or organic alkaline aqueous solutions, such as NaOH and tetramethylammonium hydroxide (TMAH), is still unknown. In this paper, XPS measurement is used to study the selective wet etching mechanism of GeSbTe phase change thin films with TMAH solution, and the results show that oxidization played an important role in the etching process. Ge, Sb and Te are oxidized into GeO2, Sb2O5 and TeO2, respectively, and then as the corresponding salts dissolved into the etchant solution. Ge-X (X is Ge, Sb or Te) bonds are first broken in the etching, then Sb-X bonds, and finally Te-Te bonds. To confirm the effect of oxidization in the etching, H2O2 as an oxidant is added into the TMAH solution, and the etching rates are increased greatly for both amorphous and crystalline states. The selective etching mechanism of Ge2Sb2Te5 phase change films is discussed by the difference of bonds breakage between the amorphous and crystalline states.

  14. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  15. Mechanism of Si and metal etching based on sticking reaction model

    NASA Astrophysics Data System (ADS)

    Izawa, Masaru

    2011-10-01

    Plasma etching technique has been wildly used in the fabrication of LSI device. With shrinking the device size, it is required to reduce CD shift and under-cutting as well as to improve uniformity in etching process. In development of etching apparatus and process, it has been necessary to understand the mechanism of the cause of CD shift. The CD shift and etching rate is determined by the reaction of incident species (ions, radicals), and surface materials. However, their mechanisms of the surface reactions are not explained quantitatively, although a portion of them was understood clearly. We proposed the mechanism taking a sticking reaction model on a wafer surface because the reaction is one of the key factors to determine the etching rate and CD shift. Because the surface reaction depends on the surface condition and temperature, the sticking coefficient S is formulated approximately as a function of them, S = = α[1-{1-(1- θ) [1-(1-Pr)n/L]}L], where α is the trapping coefficients, n and L is the vibration times and migration times until desorbing from the trapping state (physical adsorption), Pr is the chemical reaction probability from the state, and θ is the ratio of inactive site (coverage). n, L, Pr are functions of the surface temperature and potential energy barrier. In addition this equation can be expanded to chemical reactions. CD shift δCD is also formulated by assuming the taper angle determined by the balance of deposition and ion etching, δCD = 2h cot cos-1(Rd/YΓion) , where h is the film thickness, Rd is the deposition rate, YΓion is the sputtering rate of deposited film. By using these two equations, we have studied the mechanism of CD shift in Al etching and undercutting in Si etching. It was confirmed that temperature dependence of them are explained. In addition, by comparing the CD shift equation with another one based on the statistical analysis, it was found that RIE-lag was a factor of CD shift in gate etching.

  16. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  17. Removal and deposition efficiencies of the long-lived 222Rn daughters during etching of germanium surfaces

    NASA Astrophysics Data System (ADS)

    Zuzel, G.; Wójcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2012-06-01

    Removal and deposition efficiencies of the long-lived 222Rn daughters during etching from and onto surfaces of standard and high purity germanium were investigated. The standard etching procedure of Canberra-France used during production of high purity n-type germanium diodes was applied to germanium discs, which have been exposed earlier to a strong radon source for deposition of its progenies. An uncontaminated sample was etched in a solution containing 210Pb, 210Bi and 210Po. All isotopes were measured before and after etching with appropriate detectors. In contrast to copper and stainless steel, they were removed from germanium very efficiently. However, the reverse process was also observed. Considerable amounts of radioactive lead, bismuth and polonium isotopes present initially in the artificially polluted etchant were transferred to the clean high purity surface during processing of the sample.

  18. Measurements of silicon dry-etching rates and profiles in MEMS foundries and their application to MEMS design software

    NASA Astrophysics Data System (ADS)

    Takano, T.; Ikehara, T.; Maeda, R.

    2007-12-01

    Deep reactive ion etching (DRIE) is an important tool in MEMS fabrication to achieve three-dimensional structures. However, the etching profiles are not yet perfect. We had etching test samples fabricated in three MEMS foundries and measured the etching rates, sidewall angles, mask selectivity, and sidewall roughness against the line and space of 2 to 5000 μm. We also performed similar DRIE processes using our system and compared our samples and the samples from the foundries. The measurement results revealed the typical fabrication results in the MEMS foundries and their differences. The data were included in the database of MemsONE, a newly developed MEMS design software, and can be used for the process emulations.

  19. Wavelength Dependence of UV Effect on Etch Rate and Noise in CR-39

    NASA Astrophysics Data System (ADS)

    Wiesner, Micah; Traynor, Nathan; McLean, James; Padalino, Stephen; Sangster, Craig; McCluskey, Michelle

    2014-10-01

    The use of CR-39 plastic as a SSNTD is an effective technique for recovering data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched at elevated temperatures with NaOH, producing signal pits at the nuclear track sites that are measurable by an optical microscope. CR-39 pieces also exhibit etch-induced noise, either surface roughness or pit-like features not caused by nuclear particles, which negatively affects the ability of observers to distinguish actual pits. When CR-39 is exposed to high intensity UV light after nuclear irradiation and before etching, an increase in etch rates and pit diameters is observed. UV exposure can also increase noise, which in the extreme can distort the shapes of particle pits. Analyzing the effects of different wavelengths in the UV spectrum we have determined that light of the wavelength 255 nm increases etch rates and pit diameters while causing less background noise than longer UV wavelengths. Preliminary research indicates that heating CR-39 to elevated temperatures (~80 °C) during UV exposure also improves the signal-to-noise ratio for this process. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  20. Enhancement of Particle Track Etch Rate in CR-39 by UV Exposure

    NASA Astrophysics Data System (ADS)

    Wiesner, Micah; Ume, Rubab; McLean, James; Sangster, Craig; Regan, Sean

    2015-11-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is effective for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched at elevated temperatures with NaOH, producing signal pits at the nuclear track sites that are measurable by an optical microscope. CR-39 pieces sometimes also exhibit etch-induced noise, either surface features not caused by nuclear particles. When CR-39 is exposed to high intensity UV light after nuclear irradiation with 5.4 MeV alpha particles and before etching, an increase in etch rates and pit diameters is observed, though UV exposure can also increase noise. We have determined that light from a low pressure mercury vapor lamp (predominantly wavelength 253.7 nm) increases etch rates and pit diameters while causing minimal background noise. Heating CR-39 to elevated temperatures (~80 °C) during UV exposure also improves the signal-to-noise ratio for this process. Surprisingly, initial data from CR-39 irradiated with 3.4 MeV protons and exposed to UV show reduced pit diameters. This material is based in part upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.