Science.gov

Sample records for charged polytropic compact

  1. Compact statis stars with polytropic equation of state in minimal dilatonic gravity

    E-print Network

    Plamen Fiziev; Kalin Marinov

    2015-01-22

    We present solution of the equations for relativistic static spherically symmetric stars (SSSS) in the model of minimal dilatonic gravity (MDG) using the polytropic equation of state. A polytropic equation of state, which has a good fitting with a more realistic one, is used. Results are obtained for all variables of a single neutron star in the model of MDG. The maximum mass about two solar masses is in accordance with the latest observations of pulsars. Several new effects are observed for the variables related with the dilaton $\\Phi$ and the cosmological constant $\\Lambda$. The mass-radius relation is also obtained. Special attention is paid to the behavior of the quantities which describe the effects analogous to those of dark energy and dark matter in MDG. The results of the present paper confirm the conclusion that the dilaton $\\Phi$ is able to play simultaneously the role of dark energy and dark matter.

  2. Electrically charged compact stars

    E-print Network

    Subharthi Ray; Manuel Malheiro; Jose' P. S. Lemos; Vilson T. Zanchin

    2006-04-17

    We review here the classical argument used to justify the electrical neutrality of stars and show that if the pressure and density of the matter and gravitational field inside the star are large, then a charge and a strong electric field can be present. For a neutron star with high pressure (~ 10^{33} to 10^{35} dynes /cm^2) and strong gravitational field (~ 10^{14} cm/s^2), these conditions are satisfied. The hydrostatic equation which arises from general relativity, is modified considerably to meet the requirements of the inclusion of the charge. In order to see any appreciable effect on the phenomenology of the neutron stars, the charge and the electrical fields have to be huge (~ 10^{21} Volts/cm). These stars are not however stable from the viewpoint that each charged particle is unbound to the uncharged particles, and thus the system collapses one step further to a charged black hole

  3. Spherically symmetric charged compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Chowdhury, Sourav Roy

    2015-08-01

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of . However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like , , , , and , and we have shown the feasibility of the models.

  4. Cracking of general relativistic anisotropic polytropes

    E-print Network

    Herrera, L; León, P

    2015-01-01

    We discuss the effect that small fluctuations of local anisotropy of pressure, and energy density, may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of state. Two different kind of polytropes are considered. For both, it is shown that departures from equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining the polytrope. Prospective applications of the obtained results, to some astrophysical scenarios, are pointed out.

  5. Cracking of general relativistic anisotropic polytropes

    E-print Network

    L. Herrera; E. Fuenmayor; P. León

    2015-09-23

    We discuss the effect that small fluctuations of local anisotropy of pressure, and energy density, may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of state. Two different kind of polytropes are considered. For both, it is shown that departures from equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining the polytrope. Prospective applications of the obtained results, to some astrophysical scenarios, are pointed out.

  6. Some static relativistic compact charged fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan; Fatema, Saba

    2014-03-01

    In this work a new family of relativistic models of electrically charged compact star has been obtained by solving Einstein-Maxwell field equations with preferred form of one of the metric potentials and a suitable form of electric charge distribution function. The resulting equation of state (EOS) has been calculated. The relativistic stellar structure for matter distribution obtained in this work may reasonably models an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). Based on the analytic model developed in the present work, the values of the relevant physical quantities have been calculated by assuming the estimated masses and radii of some well known strange star candidates like X-ray pulsar Her X-1, millisecond X-ray pulsar SAX J 1808.4-3658, and 4U 1820-30.

  7. Stability of polytropes

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    2008-05-01

    This paper is an investigation of the stability of some ideal stars. It is intended as a study in general relativity, with emphasis on the coupling to matter, aimed at a better understanding of strong gravitational fields and “black holes.” This contrasts with the usual attitude in astrophysics, where Einstein’s equations are invoked as a refinement of classical thermodynamics and Newtonian gravity. Our work is based on action principles for systems of metric and matter fields, well-defined relativistic field models that we hope may represent plausible types of matter. The thermodynamic content must be extracted from the theory itself. When the flow of matter is irrotational, and described by a scalar density, we are led to differential equations that differ little from those of Tolman, but they admit a conserved current, and stronger boundary conditions that affect the matching of the interior solution to an external metric and imply a relation of mass and radius. We propose a complete revision of the treatment of boundary conditions. An ideal star in our terminology has spherical symmetry and an isentropic equation of state, p=a??, a and ? piecewise constant. In our first work it was assumed that the density vanished beyond a finite distance from the origin and that the metric is to be matched at the boundary to an exterior Schwartzchild metric. But it is difficult to decide what the boundary conditions should be and we are consequently skeptical of the concept of a fixed boundary. We investigate the double polytrope, characterized by a polytropic index n?3, in the bulk of the star and a value larger than five in an outer atmosphere that extends to infinity. It has no fixed boundary but a region of critical density where the polytropic index changes from a value that is appropriate for the bulk of the star to a value that provides a crude model for the atmosphere. The boundary conditions are now natural and unambiguous. The existence of a relation between mass and radius is confirmed, as well as an upper limit on the mass. The principal conclusion is that all the static configurations are stable. There is a solution that fits the Sun. The masses of white dwarfs respect the Chandrasekhar limit. The application to neutron stars has surprising aspects.

  8. Polytropic process and tropical Cyclones

    E-print Network

    Romanelli, Alejandro; Rodríguez, Juan

    2013-01-01

    We show a parallelism between the expansion and compression of the atmosphere in the secondary cycle of a tropical cyclone with the fast expansion and compression of wet air in a bottle. We present a simple model in order to understand how the system (cyclone) draws energy from the air humidity. In particular we suggest that the upward (downward) expansion (compression) of the warm (cold) moist (dry) air follows a polytropic process, $PV^\\beta$= constant. We show both experimentally and analytically that $\\beta$ depends on the initial vapor pressure in the air. We propose that the adiabatic stages in the Carnot-cycle model for the tropical cyclone be replaced by two polytropic stages. These polytropic processes can explain how the wind wins energy and how the rain and the dry bands are produced inside the storm.

  9. Dynamic voids surrounded by shocked conventional polytropic gas envelopes

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Wang, Lile

    2012-03-01

    With proper physical mechanisms of energy and momentum input from around the centre of a self-gravitating polytropic gas sphere, a central spherical 'void' or 'cavity' or 'bubble' of very much less mass contents may emerge and then dynamically expand into a variety of surrounding more massive gas envelopes with or without shocks. We explore self-similar evolution of a self-gravitating polytropic hydrodynamic flow of spherical symmetry with such an expanding 'void' embedded around the centre. The void boundary supporting a massive envelope represents a pressure-balanced contact discontinuity where drastic changes in mass density and temperature occur. We obtain numerical void solutions that can cross the sonic critical surface either smoothly or by shocks. Using the conventional polytropic equation of state, we construct global void solutions with shocks travelling into various envelopes including static polytropic sphere, outflow, inflow, breeze and contraction types. In the context of supernovae, we discuss the possible scenario of separating a central collapsing compact object from an outgoing gas envelope with a powerful void in dynamic expansion. Initially, a central bubble is carved out by an extremely powerful neutrinosphere. After the escape of neutrinos during the decoupling, the strong electromagnetic radiation field and/or electron-positron pair plasma continue to drive the cavity expansion. In a self-similar dynamic evolution, the pressure across the contact discontinuity decreases with time to a negligible level for a sufficiently long lapse, and eventually the gas envelope continues to expand by inertia. We describe model cases of polytropic index ?= 4/3 -? with ? > 0 and discuss pertinent requirements to justify our proposed scenario.

  10. Charged multiplicity measurement for simulated pp events in the Compact Muon Solenoid (CMS) detector

    E-print Network

    Wilt, Brian A

    2007-01-01

    In this thesis, I studied the effectiveness of a method for measuring the charged multiplicity of proton-proton collisions in the Compact Muon Solenoid (CMS) experiment at LHC energies ... This technique involves counting ...

  11. Polytropic black hole as a heat engine

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2015-11-01

    Recently we have found an asymptotically AdS solution for Einstein's equations, those of thermodynamics match those of a special case of polytropic gas (Setare and Adami in Phys Rev D 91:084014, 2015). Here we show that a polytropic black hole can be considered as a heat engine and then we calculate work done by this system and its efficiency.

  12. A Compact Wireless Charging System for Electric Vehicles

    SciTech Connect

    Ning, Puqi; Miller, John M; Onar, Omer C; White, Cliff P

    2013-01-01

    In this paper, a compact high efficiency wireless power transfer system has been designed and developed. The detailed gate drive design, cooling system design, power stage development, and system assembling are presented. The successful tests verified the feasibility of wireless power transfer system to achieve over-all 90% efficiency.

  13. The characteristics of polytropic magnetic refrigeration cycles

    SciTech Connect

    Yan, Z.; Chen, J. , P.O. Box 8730, Beijing 100080 Department of Physics, Xiamen University, Xiamen, Fujian )

    1991-08-15

    The concepts of generalized polytropic processes and polytropic refrigeration cycles, which consist of two isothermal processes and two generalized polytropic processes of paramagnetic salt, are introduced. It is shown that such a class of general magnetic refrigeration cycles, which includes the Carnot, Stirling, and other useful magnetic refrigeration cycles, possesses the conditions of perfect regeneration and can have the same coefficient of performance as the Carnot cycle for the same temperature range. Thus, they have many applications in the research and manufacture of magnetic refrigerators.

  14. Compact electron beam ion trap for spectroscopy of moderate charge state ions.

    PubMed

    Nakamura, Nobuyuki; Kikuchi, Hiroyuki; Sakaue, Hiroyuki A; Watanabe, Tetsuya

    2008-06-01

    A compact electron beam ion trap (EBIT) has been constructed for spectroscopic studies of moderate charge state ions. The electron beam energy range of the present EBIT is 100-1000 eV, for which it is rather difficult to operate an ordinary EBIT which used to be designed for operation with higher electron energy (~10 keV or more). To cut down the running costs, a superconducting wire with a high critical temperature is used for the central magnet so that it can be operated without liquid helium. The performance of the compact EBIT has been investigated through visible spectroscopy of highly charged krypton and iron ions. PMID:18601394

  15. Compact electron beam ion trap for spectroscopy of moderate charge state ions

    SciTech Connect

    Nakamura, Nobuyuki; Kikuchi, Hiroyuki; Sakaue, Hiroyuki A.; Watanabe, Tetsuya

    2008-06-15

    A compact electron beam ion trap (EBIT) has been constructed for spectroscopic studies of moderate charge state ions. The electron beam energy range of the present EBIT is 100-1000 eV, for which it is rather difficult to operate an ordinary EBIT which used to be designed for operation with higher electron energy ({approx}10 keV or more). To cut down the running costs, a superconducting wire with a high critical temperature is used for the central magnet so that it can be operated without liquid helium. The performance of the compact EBIT has been investigated through visible spectroscopy of highly charged krypton and iron ions.

  16. Double-polytropic closure in the magnetosheath

    SciTech Connect

    Hau, L.N.; Sonnerup, B.U.O. ); Phan, T.D.; Paschmann, G. )

    1993-10-22

    The magnetosheath plasma is usually neither isotropic nor adiabatic. This paper contains an attempt to describe its thermodynamic properties in terms of two polytropic laws, p[perpendicular]/[rho]B[sup [gamma][sub [perpendicular

  17. Vibrational Stability of Differentially Rotating Polytropic Stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Lal, A. K.; Saini, Seema

    2015-03-01

    A method for computing the periods of radial and non-radial modes of oscillations to determine the vibrational stability of differentially rotating polytropic gaseous spheres is presented and incorporated with averaging techniques of Kippenhahn and Thomas. The concepts of Roche-equipotential have also been used for obtaining the distorted structure of different stellar models. Numerical results based on this study are presented to explain the effect of differential rotation on the oscillations and stability of polytropic stars.

  18. Non-linear effects on radiation propagation around a charged compact object

    NASA Astrophysics Data System (ADS)

    Cuzinatto, R. R.; de Melo, C. A. M.; de Vasconcelos, K. C.; Medeiros, L. G.; Pompeia, P. J.

    2015-10-01

    The propagation of non-linear electromagnetic waves is carefully analyzed on a curved spacetime created by static spherically symmetric mass and charge distribution. We compute how non-linear electrodynamics affects the geodesic deviation and the redshift of photons propagating near this massive charged object. In the first order approximation, the effects of electromagnetic self-interaction can be distinguished from the usual Reissner-Nordström terms. In the particular case of Euler-Heisenberg effective Lagrangian, we find that these self-interaction effects might be important near extremal compact charged objects.

  19. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  20. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively. PMID:26429466

  1. Space Charge Limits in the Dae$\\delta$alus DIC Compact Cyclotron

    E-print Network

    Baartman, Rick

    2016-01-01

    The Dae$\\delta$alus DIC compact cyclotron is proposed to achieve an extracted current of 5 mA of singly-charged hydrogen molecules, even though unlike other compact cyclotrons, the extraction is not by stripping. The authors of the proposal consistently use perveance as a scaling argument that such high current is possible. The argument is shown to be incorrect and a realistic limit is calculated. This limit is likely about 0.2 mA and certainly no higher than 0.5 mA.

  2. Quasinormal modes of the polytropic hydrodynamic vortex

    NASA Astrophysics Data System (ADS)

    Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.

    2015-07-01

    Analogue systems are a powerful instrument to investigate and understand in a controlled setting many general-relativistic effects. Here, we focus on superradiant-triggered instabilities and quasinormal modes. We consider a compressible hydrodynamic vortex characterized by a polytropic equation of state, the polytropic hydrodynamic vortex, a purely circulating system with an ergoregion but no event horizon. We compute the quasinormal modes of this system numerically with different methods, finding excellent agreement between them. When the fluid velocity is larger than the speed of sound, an ergoregion appears in the effective spacetime, triggering an "ergoregion instability." We study the details of the instability for the polytropic vortex, and in particular find analytic expressions for the marginally stable configuration.

  3. Thermodynamic behavior and stability of Polytropic gas

    E-print Network

    H. Moradpour; A. Abri; H. Ebadi

    2015-07-10

    We focus on the thermodynamic behavior of Polytropic gas as a candidate for dark energy. We use the general arguments of thermodynamics to investigate its properties and behavior. We find that a Polytropic gas may exhibit the dark energy like behavior in the large volume and low temperature limits. It also may be used to simulate a fluid with zero pressure at the small volume and high temperature limits. Briefly, our study shows that this gas may be used to describe the universe expansion history from the matter dominated era to the current accelerating era. By applying some initial condition to the system, we can establish a relation between the Polytropic gas parameters and initial conditions. Relationships with related works has also been addressed.

  4. Thermodynamic behavior and stability of Polytropic gas

    E-print Network

    Moradpour, H; Ebadi, H

    2015-01-01

    We focus on the thermodynamic behavior of Polytropic gas as a candidate for dark energy. We use the general arguments of thermodynamics to investigate its properties and behavior. We find that a Polytropic gas may exhibit the dark energy like behavior in the large volume and low temperature limits. It also may be used to simulate a fluid with zero pressure at the small volume and high temperature limits. Briefly, our study shows that this gas may be used to describe the universe expansion history from the matter dominated era to the current accelerating era. By applying some initial condition to the system, we can establish a relation between the Polytropic gas parameters and initial conditions. Relationships with related works has also been addressed.

  5. Equilibrium sequences of irrotational binary polytropic stars : The case of double polytropic stars

    E-print Network

    Keisuke Taniguchi; Takashi Nakamura

    2000-04-03

    Solutions to equilibrium sequences of irrotational binary polytropic stars in Newtonian gravity are expanded in a power of $\\epsilon=a_0/R$, where R and $a_0$ are the orbital separation of the binary system and the radius of each star for $R=\\infty$. For each order of $\\epsilon$, we should solve ordinary differential equations for arbitrary polytropic indices n. We show solutions for polytropic indices n= 0.5, 1, 1.5 and 2 up to $\\epsilon^6$ orders. Our semi-analytic solutions can be used to check the validity of numerical solutions.

  6. Optimal Charge of a Photocathode Gun for a Compact X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Yeon; Chae, Moon Sik; Ko, In Soo

    2010-02-01

    For a photocathode gun, the optimal charge per gun pulse is derived to give the theoretically allowed smallest saturation length of the X-ray free-electron laser based on the self amplified spontaneous emission scheme. The derivation is approximate, but the result is practically independent of specific machine design. The objective is to contribute to the study of a compact X-ray free-electron laser.

  7. Magnetic flux concentrations in a polytropic atmosphere

    NASA Astrophysics Data System (ADS)

    Losada, I. R.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2014-04-01

    Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has been done for isothermal layers, in which the density scale height is constant throughout. Aims: We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface. Methods: To allow for a continuous transition from isothermal to polytropic layers, we employ a generalization of the exponential function known as the q-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such that the scale height is always the same at some reference height. We used both mean-field simulations (MFS) and direct numerical simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both horizontal and vertical applied magnetic fields were considered. Results: Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover, the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with horizontal magnetic fields to reach premature nonlinear saturation by what is called the "potato-sack" effect. The horizontal cross-section of such structures found in DNS is approximately circular, which is reproduced with MFS of NEMPI using a vertical magnetic field. Conclusions: Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux concentrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.

  8. Effects of space charge in a compact superconducting energy recovery linac with a low energy

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Kim, Eun-San; Miyajima, Tsukasa

    2012-08-01

    The Energy Recovery Linac (ERL) is one of the candidates for the next generation light sources, which is based on the 1.3 GHz superconducting radio frequency (SRF) linear accelerator. The ERL can produce high brilliance synchrotron radiation and a short pulse beam. We investigated the beam dynamics in the compact-Energy Recovery Linac (c-ERL) with a beam energy of 35 MeV, which is a prototype of the 5 GeV ERL at KEK. One of the main goals of our studies on the c-ERL is the emittance compensation in the merger section to achieve an emittance smaller than 1.0 mm mrad. In the case of the early commissioning phase, the injector system produces electron bunches of 5 MeV with a repetition rate of 1.3 GHz. The compensation of the emittance growth due to the space charge effect was investigated in order to achieve a small emittance at the exit of the merger. We discuss the results of a method to compensate the emittance growth which is based on beam envelope matching between the betatron function and the linear dispersion induced by the space charge force. We investigated the space charge effect when the beam energy in the superconducting RF section was changed. The effect of space charge in the arc section was also investigated. It is shown that the space charge effect in the c-ERL is an important source of distortion of the optics function. In this paper, we show the results on the analysis of the effect of space charge in the compact-ERL at KEK which has a low-energy beam.

  9. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 ?F and 15 kV/356 ?F capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 ?F capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  10. Double-polytropic closure in the magentosheath

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Phan, T.-D.; Sonnerup, B. U. O.; Paschmann, G.

    1993-01-01

    The magnetosheath plasma is usually neither isotropic nor adiabatic. This paper contains an attempt to decribe its thermodynamic properties in terms of two polytropic laws, p(sub perpendicular)/rho B(exp gamma(sub perpendicular)-1) = C(sub perpendicular) and p(sub parallel)B(exp gamma(sub parallel)-1)/rho(exp gamma(sub parallel)) = C(sub parallel), such that for gamma(sub perpendicular) = 2, gamma(sub parallel) = 3 the usual Chew-Goldberger-Low double-adiabatic expressions are recovered and for gamma(sub perpendicular) = 1, gamma(sub parallel) = 1 double-isothermal conditions are obtained. Using data from the AMPTE/IRM spacecraft, we show that the subsolar magnetosheath plasma may be better described by the double-polytropic laws than by the mirror instability threshold, in particular in the low beta region near the magnetopause. The inferred polytropic exponents vary from event to event but are typically in the ranges of gamma(sub perpendicular) = 0.94 +/- 0.10 and gamma(sub parallel) = 1.14 +/- 0.13 for the 29 cases we have examined.

  11. Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge

    E-print Network

    A. A. Abdujabbarov; B. J. Ahmedov; V. G. Kagramanova

    2008-03-11

    The exact solution for the electromagnetic field occuring when the Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr-Taub-NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.

  12. A new class of solutions of compact stars with charged distributions on pseudo-spheroidal spacetime

    E-print Network

    V. O. Thomas; D. M. Pandya

    2015-11-04

    In this paper a new class of exact solutions of Einstein's field equations for compact stars with charged distributions is obtained on the basis of pseudo-spheroidal spacetime characterized by the metric potential $g_{rr}=\\frac{1+K\\frac{r^{2}}{R^{2}}}{1+\\frac{r^{2}}{R^{2}}}$, where $K$ and $R$ are geometric parameters of the spacetime. The expressions for radial pressure ($ p_r $) and electric field intensity ($ E $) are chosen in such a way that the model falls in the category of physically acceptable one. The bounds of geometric parameter $K$ and the physical parameters $ p_0 $ and $\\alpha$ are obtained by imposing the physical requirements and regularity conditions. The present model is in good agreement with the observational data of various compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, SMC X-4, Cen X-3 given by Gangopadhyay {\\em{et al.}} [Gangopadhyay T., Ray S., Li X-D., Dey J. and Dey M., {\\it Mon. Not. R. Astron. Soc.} {\\bf431} (2013) 3216]. When $ \\alpha = 0, $ the model reduces to the uncharged anisotropic distribution given by Thomas and Pandya [Thomas V. O. and Pandya D. M.,~arXiv:1506.08698v1 [gr-qc](26 Jun 2015)].

  13. A new class of solutions of compact stars with charged distributions on pseudo-spheroidal spacetime

    E-print Network

    Thomas, V O

    2015-01-01

    In this paper a new class of exact solutions of Einstein's field equations for compact stars with charged distributions is obtained on the basis of pseudo-spheroidal spacetime characterized by the metric potential $g_{rr}=\\frac{1+K\\frac{r^{2}}{R^{2}}}{1+\\frac{r^{2}}{R^{2}}}$, where $K$ and $R$ are geometric parameters of the spacetime. The expressions for radial pressure ($ p_r $) and electric field intensity ($ E $) are chosen in such a way that the model falls in the category of physically acceptable one. The bounds of geometric parameter $K$ and the physical parameters $ p_0 $ and $\\alpha$ are obtained by imposing the physical requirements and regularity conditions. The present model is in good agreement with the observational data of various compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, SMC X-4, Cen X-3 given by Gangopadhyay {\\em{et al.}} [Gangopadhyay T., Ray S., Li X-D., Dey J. and Dey M., {\\it Mon. Not. R. Astron. Soc.} {\\bf431} (2013) 3216]. When $ \\alpha = 0, $ the model reduces...

  14. A new class of solutions of compact stars with charged distributions on pseudo-spheroidal spacetime

    NASA Astrophysics Data System (ADS)

    Thomas, V. O.; Pandya, D. M.

    2015-12-01

    In this paper a new class of exact solutions of Einstein's field equations for compact stars with charged distributions is obtained on the basis of pseudo-spheroidal spacetime characterized by the metric potential g_{rr}=1+K{r2/R2}/{1+r2/R2}, where K and R are geometric parameters of the spacetime. The expressions for radial pressure (pr) and electric field intensity (E) are chosen in such a way that the model falls in the category of physically acceptable one. The bounds of geometric parameter K and the physical parameters p0 and ? are obtained by imposing the physical requirements and regularity conditions. The present model is in good agreement with the observational data of various compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, SMC X-4, Cen X-3 given by Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013). When ? = 0, the model reduces to the uncharged anisotropic distribution given by Thomas and Pandya (arXiv:1506.08698v1 [gr-qc], 2015).

  15. General polytropic Larson-Penston-type collapses

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-12-01

    We investigate self-similar hydrodynamics of a general polytropic (GP) gas with spherical symmetry under self-gravity and extend the conventional polytropic (CP) relation n = 2 - ? for the self-similar index n and the polytropic index ? to a general relation n = 2(q + ? - 2)/(3q - 2), where q is a real parameter by specific entropy conservation along streamlines. We derive GP Larson-Penston (LP)-type solutions for q > 2/3 and ? > 4/3; Larson-Penston-Hunter (LPH)-type solutions are also constructed in a GP gas by a time-reversal operation on a GP-LP-type solution and by connecting to a GP free-fall-type solution across t = 0. These GP-LPH solutions describe dynamic processes that a GP gas globule, static and dense initially, undergoes a runaway collapse under self-gravity, forms a central mass singularity, and keeps accreting during a free-fall stage. We apply such GP-LPH-type solutions with variable envelope mass infall rates (EMIRs) for the dynamic evolution of globules and dense cores in star-forming molecular clouds. In particular, a GP-LPH-type solution can sustain an EMIR as low as 10-8 ˜ 10-6 M? yr-1 or even lower - much lower than that of Shu's isothermal model for a cloud core in Class 0 and Class I phases. Such GP-LPH-type solutions with EMIRs as low as 10-9 ˜ 10-8 M? yr-1 offer a sensible viable mechanism of forming brown dwarfs during the accretion stage in a collapsed GP globules with 1.495 ? ? ? 1.50 and 0.99 ? n ? 1.0. The GP-LPH solutions with 0.94 < n < 0.99 and 1.47 < ? < 1.495 can even give extremely low EMIRs of 10-12 ˜ 10-9 M? yr-1 to form gaseous planet-type objects in mini gas globules.

  16. A variable polytrope index applied to planet and material models

    NASA Astrophysics Data System (ADS)

    Weppner, S. P.; McKelvey, J. P.; Thielen, K. D.; Zielinski, A. K.

    2015-09-01

    We introduce a new approach to a century-old assumption which enhances not only planetary interior calculations but also high-pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method, we create a high-quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 1018 Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our Solar system. We argue that the bulk modulus and its derivatives have been underutilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe that this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

  17. A variable polytrope index applied to planet and material models

    NASA Astrophysics Data System (ADS)

    Thielen, Kevin; Weppner, Stephen; Zielinski, Alexander

    2016-01-01

    We introduce a new approach to a century-old assumption which enhances not only planetary interior calculations but also high-pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method, we create a high-quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 1018 Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our Solar system. We argue that the bulk modulus and its derivatives have been underutilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe that this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

  18. Charged particle driver for ICF using an accelerated, focused compact torus

    SciTech Connect

    Meeker, D.J.; Hammer, J.H.; Hartman, C.W.

    1986-06-01

    We report the status of evaluating an accelerated and focused compact torus as a driver for ICF. We are studying the acceleration and focusing aspects experimentally in the RACE facility, a recently completed ring generator coupled to a 260 kJ acceleration bank. Compact torus and ICF target interaction is being investigated with PIC codes and LASNEX, a 2D magneto-hydrodynamics code. Final conditions required of the CT are discussed as well as coupling issues such as superthermal electron production. We conclude with an economic evaluation of a few 100 MW reactor driven by a compact torus. 9 refs., 5 figs., 1 tab.

  19. Integrable geodesic flows and super polytropic gas equations

    NASA Astrophysics Data System (ADS)

    Guha, Partha

    2003-06-01

    The polytropic gas equations are shown to be the geodesic flows with respect to an L2 metric on the semidirect product space Diff( S1)? C?( S1), where Diff( S1) is the group of orientation preserving diffeomorphisms of the circle. We also show that the N=1 supersymmetric polytropic gas equation constitute an integrable geodesic flow on the extended Neveu-Schwarz space. Recently other kinds of supersymmetrizations have been studied vigorously in connection with superstring theory and are called supersymmetric-B (SUSY-B) extension. In this paper we also show that the SUSY-B extension of the polytropic gas equation form a geodesic flow on the extension of the Neveu-Schwarz space.

  20. A Perturbed Tri-Polytropic Model of the Sun

    E-print Network

    G. A. Pinzon; B. Calvo-Mozo

    2001-07-23

    Based on the Solar Standard Model SSM of Bahcall and Pinsonneault (SSM-BP2000) we developed a solar model in hydrostatic equilibrium using three polytropes, each one associated to the nuclear, the radiative and the convective regions of the solar interior. Then, we apply small periodic and adiabatic perturbations on this tri-polytropic model in order to obtain proper frequencies and proper functions which are in the p-modes range of low order 0

  1. White Dwarf Stars as a Polytropic Gas Spheres

    E-print Network

    Nouh, M I; Elkhateeb, M M; Korany, B

    2014-01-01

    Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic effect is small in white dwarf stars.

  2. Interacting polytropic gas model of phantom dark energy in non-flat universe

    E-print Network

    K. Karami; S. Ghaffari; J. Fehri

    2009-11-25

    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for even polytropic index by choosing $K>Ba^{\\frac{3}{n}}$, one can obtain $\\omega^{\\rm eff}_{\\Lambda}universe dominated by phantom dark energy.

  3. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    SciTech Connect

    Vorobjev, G.; Sokolov, A.; Herfurth, F.; Kester, O.; Quint, W.; Stoehlker, Th.; Thorn, A.; Zschornack, G.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} have been measured.

  4. EXISTENCE RESULTS FOR VISCOUS POLYTROPIC FLUIDS WITH VACUUM

    E-print Network

    Ikegami, Takashi

    EXISTENCE RESULTS FOR VISCOUS POLYTROPIC FLUIDS WITH VACUUM YONGGEUN CHO AND HYUNSEOK KIM Abstract results hold for both bounded and unbounded domains. 1. Introduction By ideal vacuums in a compressible. In the absence of vacuum, lots of results have been obtained for viscous heat- conducting compressible fluids

  5. An ultra compact 10 GHz electron-cyclotron-resonance ion source (ECRIS) for the production of multiply charged ions

    SciTech Connect

    Schlapp, M.; Trassl, R.; Hathiramani, P.; Salzborn, E.; McCullough, R.W.; Greenwood, J.B.

    1996-12-31

    There is a growing interest in the use of beams of multiply charged ions produced in special environments like high voltage platforms, Dynamitrons, Van-de-Graaff accelerators or on-line production systems for radioactive beam facilities. A compact 10 GHz ECR ion source (200 mm long, 170 mm diameter) has been developed and tested. The complete magnetic structure made from permanent magnet material is comprised of four ring magnets producing an asymmetric axial magnetic field with a mirror ratio of 2.5 and a 24 piece hexapole magnet with a maximum radial field of 0.94 T inside the plasma chamber of 25 mm inner diameter. The coupling of the microwave to the plasma using a resonant transition line from rectangular to circular waveguide shows efficient ECR plasma heating at microwave power levels around 10 watts. Charge state distributions for various elements with intensities up to 320 e{mu}A and their dependence on operation parameters will be presented as well as VUV spectra in the wavelength region down to 15 nm.

  6. The Study of Two-dimensional Polytropic Stars

    E-print Network

    Sanchari De; Somenath Chakrabarty

    2015-10-09

    In this article we have studied the structure of hypothetical two-dimensional polytropic stars. Considering some academic interest, we have developed a formalism to investigate some of the gross properties of such stellar objects. However, we strongly believe that the formalism developed here may be prescribed as class problem for post-graduate level students in physics or a post-graduate dissertation project work in physics.

  7. Is scalar-tensor gravity consistent with polytropic stellar models?

    E-print Network

    Kaisa Henttunen; Iiro Vilja

    2015-03-01

    We study the scalar field potential $V(\\phi)$ in the scalar-tensor gravity with self-consistent polytropic stellar configurations. Without choosing a particular potential, we numerically derive the potential inside various stellar objects. We restrict the potential to conform to general relativity or to $f(R)$ gravity inside and require the solution to arrive at SdS vacuum at the surface. The studied objects are required to obtain observationally valid masses and radii corresponding to solar type stars, white dwarfs and neutron stars. We find that the resulting scalar-tensor potential $V(\\phi)$ for the numerically derived polytrope that conforms to general relativity, in each object class, is highly dependent on the matter configuration as well as on the vacuum requirement at the boundary. As a result, every stellar configuration arrives at a potential $V(\\phi)$ that is not consistent with the other stellar class potentials. Therefore, a general potential that conforms to all these polytropic stellar classes could not be found.

  8. Sinuous oscillations and steady warps of polytropic disks

    SciTech Connect

    Balmforth, N.J.; Spiegel, E.A.

    1995-05-01

    In an asymptotic development of the equations governing the equilibria and linear stability of rapidly rotating polytropes we employed the slender aspect of these objects to reduce the three-dimensional partial differential equations to a somewhat simpler, ordinary integro-differential form. The earlier calculations dealt with isolated objects that were in centrifugal balance, that is the centrifugal acceleration of the configuration was balanced largely by self gravity with small contributions from the pressure gradient. Another interesting situation is that in which the polytrope rotates subject to externally imposed gravitational fields. In astrophysics, this is common in the theory of galactic dynamics because disks are unlikely to be isolated objects. The dark halos associated with disks also provide one possible explanation of the apparent warping of many galaxies. If the axis of the highly flattened disk is not aligned with that of the much less flattened halo, then the resultant torque of the halo gravity on the disk might provide a nonaxisymmetric distortion or disk warp. Motivated by these possibilities we shall here build models of polytropic disks of small but finite thickness which are subjected to prescribed, external gravitational fields. First we estimate how a symmetrical potential distorts the structure of the disk, then we examine its sinuous oscillations to confirm that they freely decay, hence suggesting that a warp must be externally forced. Finally, we consider steady warps of the disk plane when the axis of the disk does not coincide with that of the halo.

  9. Analytical representations for simple and composite polytropes and their moments of inertia

    NASA Astrophysics Data System (ADS)

    Criss, Robert E.; Hofmeister, Anne M.

    2015-04-01

    Polytropes are widely applied in astrophysics. To facilitate their use, we derive analytical formulae for the moment of inertia as a function of polytropic index. We also provide 1- and 3-parameter equations that replicate the density variations in polytropic bodies to varying degrees of accuracy, determined by numerical calculations and analytical results for polytropic indices between 0 and 5. As an example, we construct a composite polytrope, suitable for gas giants, exoplanets, or tiny sub-solar dwarfs, wherein an inner sphere is modeled by constant density, which represents the density jump associated with production of a relatively incompressible solid, and an outer envelope is modeled as having a polytropic index near 2.5, which corresponds to a diatomic gas. Envelope sizes are constrained by the moment of inertia.

  10. A low-energy charged particle distribution imager with a compact sensor for space applications

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Burchill, J. K.; Berg, K.; Cameron, T.; Enno, G. A.; Marcellus, C. G.; King, E. P.; Wevers, I.; King, R. A.

    2003-01-01

    Low-energy plasmas having temperatures of order 1 eV or less are found commonly in the ionospheres and space environments of Earth and other planets. Measuring the density, temperature, drift velocities, phase-space anisotropies, and other properties of these plasmas presents numerous challenges. Examples are distortions of particle trajectories due to spacecraft wakes, spacecraft charging, and particle gyromotion in magnetized plasmas. Furthermore, these plasmas are known to organize into structures as small as tens of meters across, traversed by spacecraft in tens of milliseconds or less. The Suprathermal Plasma Imager (SPI) was developed to address these challenges. The SPI is optimized for measurements of particles with ~1 eV energies, and of the suprathermal extension of those populations up to several hundred eV. The SPI is sensitive to particle flux intensities of order 6×105 cm-2 s-1 sr-1 eV-1 and greater. It produces 3024-pixel images corresponding to two-dimensional (angle/energy) cuts through plasma velocity distribution functions, with an image frame rate of up to 100 s-1. The SPI has a cylindrical sensor head measuring 37.5 mm in diameter and 14 cm long, with a mass of 350 g. The relatively small size and mass of the sensor allow it to be deployed easily on a boom, outside of the spacecraft's electrical sheath and in a region where wake perturbations are reduced. The SPI sensor head contains no electronic circuitry, but instead creates a visible image of the particle distribution with a system of dc-biased grids, microchannel plates, and a phosphor screen. The phosphor image is transferred via an imaging fiber-optic cable to an instrument box in the main spacecraft body, where it is sampled with a charge-coupled device and support electronics. Inside the sensor, angle/energy images of incident particle distributions are formed by a pair of concentric hemispherical grids. The incident energies Ei accessible to the analyzer lie in the range 0<=Ei<=Emax where Emax~q?V/3, ?V being the potential difference between the hemispheres. For an ideal analyzer, energy resolution ?E/E is <=22% over most of the imaged energy range, degrading at energies below Emax/10. Angular resolution varies from 2° to 8° full width at half maximum between Emax and Emax/10. Energy and angular resolutions are degraded in the presence of a potential difference between the sensor and surrounding plasma. A 37.5-mm-diam version of the analyzer with a 0.86-mm-wide aperture has an ideal energy-dependent geometry factor of ~5×10-4 eV sr cm2 for a square detector pixel of width 0.28 mm. Laboratory testing shows degraded energy resolution compared to ideal values, due in part to particle scattering within the analyzer. The SPI was tested successfully in flight on the GEODESIC auroral sounding rocket on 26 February 2000.

  11. 1784 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-31, NO. 12, DECEMBER 1984 A Linear and Compact Charge-Coupled Charge

    E-print Network

    Fossum, Eric R.

    is expected in smaller geometry devices. 1. INTRODUCTION CHARGE-COUPLED devices (CCD's) have been used Charge-Coupled Charge Packet Differencer/Replicator ERIC R. FOSSUM, MEMBER. IEEE, AND RICHARD CLARK BARKER, FELLOW, IEEE Abstract-A new charge-coupled circuit for creating a charge packet equal

  12. Compact multichannel neutral particle analyzer for measurement of energetic charge-exchanged neutrals in Alcator C-Mod

    SciTech Connect

    Tang, V.; Liptac, J.; Parker, R. R.; Bonoli, P. T.; Fiore, C. L.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Wukitch, S. J.; Frenje, J. A.; Leiter, R.; Mcduffee, S.; Petrasso, R. D.

    2006-08-15

    A four-channel compact neutral particle analyzer (CNPA) based on operating small Si diode detectors in pulse-height analysis (PHA) mode is used to measure energetic hydrogen minority ions with energies between {approx}50 and 350 keV stemming from ion-cyclotron range-of-frequency heated D(H) Alcator C-Mod plasmas with both active and passive charge exchange (CX). First core minority ion distribution results from Alcator C-Mod discharges and a detailed description of the diagnostic are presented. The diagnostic employs integrated electronics and fast digitization of the shaping amplifier voltage. The digitized data are stored for postshot PHA, which removes the constraints of real-time PHA and allows for improved performance via elimination of base line shift effects and potentially relieving pileup through Gaussian fitting routines. The CNPA is insensitive to the large gamma and neutron background in Alcator C-Mod discharges but is susceptible to the plasma's soft x-ray flux. The soft x-ray flux limits the CNPA energy resolution to {approx}15-20 keV. A simple model is used to interpret the active CNPA data which permits rapid estimates of the core hydrogen minority temperatures and anisotropy with a time resolution of {approx}100 ms. Hydrogenlike boron is identified as an important electron donor for the CX signal.

  13. Relativistic polytropic spheres embedded in a chameleon scalar field

    E-print Network

    Vladimir Folomeev; Douglas Singleton

    2012-04-02

    In this paper we investigate gravitationally bound, spherically symmetric equilibrium configurations consisting of ordinary (polytropic) matter nonminimally coupled to an external chameleon scalar field. We show that this system has static, regular, asymptotically flat general relativistic solutions. The properties of these spherical configurations, such as total mass, distribution of matter, and size, depend strongly on the surrounding scalar field. The mass is found in terms of the parameter $\\sigma$, which is proportional to the central mass density of the ordinary matter. We perform a stability analysis of these spherical solutions and find an upper bound for $\\sigma$ where dynamical instability occurs.

  14. Self-similar dynamics of polytropic gaseous spheres

    SciTech Connect

    Suto, Y.; Silk, J.

    1988-03-01

    The fundamental equations governing the self-similar dynamics of polytropic gaseous spheres are derived, and the asymptotic solutions are given. The solutions divide into cases with and without critical points in closed analogy with the solar wind solutions of Holzer and Axford (1970). Properties for solutions with critical points are discussed, and their behavior around the critical point is derived explicitly for n = 1. Numerical examples of self-similar solutions for n = 1 and n = 2 - gamma are presented, and the properties of the solutions are discussed. 11 references.

  15. Some non linear interactions in polytropic gas cosmology: Phase space analysis

    E-print Network

    Martiros Khurshudyan

    2015-10-16

    There are various cosmological models with polytropic equation of state associated to dark energy. Polytropic EoS has important applications in astrophysics, therefore a study of it on cosmological framework continues to be interesting. From the other hand, there are various forms of interactions phenomenologically involved into the darkness of the universe able to solve important cosmological problems. This is a motivation for us to perform a phase space analysis of various cosmological scenarios where non linear interacting polytropic gas models are involved. Dark matter is taken to be a pressureless fluid.

  16. Some non-linear interactions in polytropic gas cosmology: phase space analysis

    NASA Astrophysics Data System (ADS)

    Khurshudyan, Martiros

    2015-11-01

    There are various cosmological models with polytropic equation of state associated to dark energy. Polytropic EoS has important applications in astrophysics, therefore a study of it on cosmological framework continues to be interesting. From the other hand, there are various forms of interactions phenomenologically involved into the darkness of the universe able to solve important cosmological problems. This is a motivation for us to perform a phase space analysis of various cosmological scenarios where non-linear interacting polytropic gas models are involved. Dark matter is taken to be a pressureless fluid.

  17. Void Dynamics with Shocks in Various Envelopes Dynamic Voids Surrounded by Shocked Conventional Polytropic Gas Envelopes

    E-print Network

    Lou, Yu-Qing

    2011-01-01

    With proper physical mechanisms of energy and momentum input from around the centre of a self-gravitating polytropic gas sphere, a central spherical "void" or "cavity" or "bubble" of very much less mass contents may emerge and then dynamically expand into a variety of surrounding more massive gas envelopes with or without shocks. We explore self-similar evolution of a self-gravitating polytropic hydrodynamic flow of spherical symmetry with such an expanding "void" embedded around the center. The void boundary supporting a massive envelope represents a pressure-balanced contact discontinuity where drastic changes in mass density and temperature occur. We obtain numerical void solutions that can cross the sonic critical surface either smoothly or by shocks. Using the conventional polytropic equation of state, we construct global void solutions with shocks travelling into various envelopes including static polytropic sphere, outflow, inflow, breeze and contraction types. In the context of supernovae, we discuss ...

  18. Optimization of muon timing and searches for heavy long-lived charged particles with the Compact Muon Solenoid detector at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Farrell, Christopher Patrick

    Proton-proton collisions at the Large Hadron Collider at sqrt(s) = 7 and 8 TeV are studied using the Compact Muon Solenoid (CMS) detector. The measurement and improvements to the arrival time of particles to the muon system of CMS are detailed. The timing is used to associate the particle with the correct proton-proton crossing and to classify the particle. Additionally, four analyses are presented that use timing and ionization energy loss to search for the production of long-lived charged particles predicted in many theories of new physics. The searches are sensitive to a variety of signatures, including the possibility that the particles will only be detectable during part of their passage through the CMS detector. Limits are placed on the production of long-lived gluinos, stops, staus, and multiply-charged particles. The limits are the most stringent in the world to date.

  19. Compact Analytic Expression for the Electric Field of a 2DElliptical Charge Distribution Inside a Perfectly Conducting CircularCylinder

    SciTech Connect

    Furman, M.A.

    2007-05-29

    By combining the method of images with calculus of complex variables, we provide a simple expression for the electric field of a two-dimensional (2D) static elliptical charge distribution inside a perfectly conducting cylinder. The charge distribution need not be concentric with the cylinder.

  20. General polytropic dynamic cylinder under self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing

    2015-12-01

    We explore self-similar hydrodynamics of general polytropic (GP) and isothermal cylinders of infinite length with axial uniformity and axisymmetry under self-gravity. Specific entropy conservation along streamlines serves as the dynamic equation of state. Together with possible axial flows, we construct classes of analytic and semi-analytic non-linear dynamic solutions for either cylindrical expansion or contraction radially by solving cylindrical Lane-Emden equations. By extensive numerical explorations and fitting trials in reference to asymptotes derived for large index n, we infer several convenient empirical formulae for characteristic solution properties of cylindrical Lane-Emden equations in terms of n values. A new type of asymptotic solutions for small x is also derived in the Appendix. These analyses offer hints for self-similar dynamic evolution of molecular filaments for forming protostars, brown dwarfs and gaseous planets and of large-scale gaseous arms or starburst rings in (barred) spiral galaxies for forming young massive stars. Such dynamic solutions are necessary starting background for further three-dimensional (in)stability analysis of various modes. They may be used to initialize numerical simulations and serve as important benchmarks for testing numerical codes. Such GP formalism can be further generalized to include magnetic field for a GP magnetohydrodynamic analysis.

  1. Critical rotation of general-relativistic polytropic models revisited

    NASA Astrophysics Data System (ADS)

    Geroyannis, V.; Karageorgopoulos, V.

    2013-09-01

    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  2. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Peng, H.; Zschornack, G.; Sykora, S.

    2009-06-01

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented.

  3. Compact accelerator

    DOEpatents

    Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  4. Design of a compact, low-energy-charged-particle-spectrometer for stellar nucleosynthesis experiments at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Armstrong, E.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Rinderknecht, H.; Rosenberg, M.; Seguin, F. H.; Sio, H.; Zylstra, A.; Petrasso, R. D.

    2014-10-01

    A compact ``Orange'' Spectrometer is being designed for measurements of alpha and proton spectra in the range of ~ 1-5 MeV, produced in low-yield 3He3He experiments at the OMEGA laser and at the National Ignition Facility (NIF). Particle ray-tracing through magnetic fields, modeled by COMSOL, were conducted with the code Python. The goal is to identify an optimal setup for a spectrometer to measure alpha particles at relatively low energies and at low yield. Ability to study the alpha particles in addition to the protons is essential for understanding the nuclear physics governing the final-state interactions between pairs of particles in the three-body final state. This work was supported in part by the U.S. DOE and NLUF.

  5. Performance of a compact position-sensitive photon counting detector with image charge coupling to an air-side anode

    NASA Astrophysics Data System (ADS)

    Jagutzki, O.; Czasch, A.; Schössler, S.

    2013-05-01

    We discuss a novel micro-channel plate (MCP) photomultiplier with resistive screen (RS-PMT) as a detection device for space- and time-correlated single photon counting, illustrated by several applications. The photomultiplier tube resembles a standard image intensifier device. However, the rear phosphor screen is replaced by a ceramic "window" with resistive coating. The MCP output is transferred through the ceramic plate to the read-out electrode (on the air side) via capacity-coupling of the image charge. This design allows for an easy reconfiguration of the read-out electrode (e.g. pixel, charge-sharing, cross-strip, delay-line) without breaking the vacuum for optimizing the detector performance towards a certain task. It also eases the design and manufacturing process of such a multi-purpose photomultiplier tube. Temporal and spatial resolutions well below 100 ps and 100 microns, respectively, have been reported at event rates as high as 1 MHz, for up to 40 mm effective detection diameter. In this paper we will discuss several applications like wide-field fluorescence microscopy and dual ?/fast-neutron radiography for air cargo screening and conclude with an outlook on large-area detectors for thermal neutrons based on MCPs.

  6. set of polytropes to resemble the stellar evolution structure. Convection is

    E-print Network

    Herwig, Falk

    set of polytropes to resemble the stellar evolution structure. Convection is driven by a constant-D run. The computational domain includes 11.4 pressure scale heights. He-shell flash convection is dominated by large convective cells that are centered in the lower half of the convection zone (Fig. 1

  7. Models of universe with a polytropic equation of state: I. The early universe

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2014-02-01

    We construct models of universe with a generalized equation of state having a linear component and a polytropic component. Concerning the linear equation of state , we assume . This equation of state describes radiation ( or pressureless matter (. Concerning the polytropic equation of state , we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0 . In that case, the polytropic component dominates the linear component in the early universe where the density is high. For , n = 1 and , where g/m3 is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0 , its size is less than the Planck length m. In this model, the universe undergoes an inflationary expansion with the Planck density g/m3 (vacuum energy) that brings it from the Planck size m at t = 0 to a size m at s (corresponding to about 23.3 Planck times s). For , n = 1 and , we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a 1 . Actually, this universe becomes physical at a time s from which the velocity of sound is less than the speed of light. When , the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant ? plays the role of finite-size effects (the standard Big Bang theory is recovered for ? = 0.

  8. Compact baby skyrmions

    E-print Network

    C. Adam; P. Klimas; J. Sanchez-Guillen; A. Wereszczynski

    2009-10-15

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the non-topological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with non-trivial topological charge. All these solutions may form stable multi-soliton configurations provided they are sufficiently separated.

  9. Compact baby Skyrmions

    SciTech Connect

    Adam, C.; Klimas, P.; Sanchez-Guillen, J.; Wereszczynski, A.

    2009-11-15

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.

  10. The density structure and star formation rate of non-isothermal polytropic turbulence

    E-print Network

    Federrath, Christoph

    2014-01-01

    The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and initial mass function (IMF) of stars. Turbulence also plays an important role during structure formation in the early Universe. Despite its ubiquity and importance, we have yet to understand the statistics of turbulence. ISM turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths, and is driven by various stellar feedback and galactic processes. Although some of these parameters were explored, the bulk of previous work assumed that the gas is isothermal. However, cold molecular clouds form out of the warm atomic medium, with the gas passing through various chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal hydrodynamic turbulence with a polytropic equation of state (EOS), P~rho^Gamma. We use grid resolutions of 2048^3 cells and compare polytropic exponents Gamm...

  11. Thermodynamic descriptions of Polytropic gas and its viscous type as the dark energy candidates

    E-print Network

    Moradpour, H

    2015-01-01

    In this paper, at first, we focus on a FRW universe in which the dark energy candidate satisfies the Polytropic equation of state and study thermodynamics of dark energy. Bearing the thermal fluctuation theorem in mind, we establish a relation between the thermal fluctuation of system and mutual interaction between the dark energy and dark matter. Generalization to a viscous Polytropic gas is also investigated. We point to a condition for decaying dark energy candidate into the dark matter needed for alleviating coincidence problem. The effects of dark energy candidates and their interactions with other parts of cosmos on the horizon entropy as well as the second law of thermodynamics are also addressed. Our study signals us to two correction terms besides the Bekenstein entropy which carry the information of the dark energy candidate, its interaction with other parts of cosmos and its viscosity.

  12. Thermodynamic descriptions of Polytropic gas and its viscous type as the dark energy candidates

    E-print Network

    H. Moradpour; M. T. Mohammadi Sabet

    2015-11-18

    In this paper, at first, we focus on a FRW universe in which the dark energy candidate satisfies the Polytropic equation of state and study thermodynamics of dark energy. Bearing the thermal fluctuation theorem in mind, we establish a relation between the thermal fluctuation of system and mutual interaction between the dark energy and dark matter. Generalization to a viscous Polytropic gas is also investigated. We point to a condition for decaying dark energy candidate into the dark matter needed for alleviating coincidence problem. The effects of dark energy candidates and their interactions with other parts of cosmos on the horizon entropy as well as the second law of thermodynamics are also addressed. Our study signals us to two correction terms besides the Bekenstein entropy which carry the information of the dark energy candidate, its interaction with other parts of cosmos and its viscosity.

  13. Effective geometry of the n=1 uniformly rotating self-gravitating polytrope

    SciTech Connect

    Bini, D.; Cherubini, C.; Filippi, S.; Geralico, A.

    2010-08-15

    The ''effective geometry'' formalism is used to study the perturbations of a perfect barotropic Newtonian self-gravitating rotating and compressible fluid coupled with gravitational backreaction. The case of a uniformly rotating polytrope with index n=1 is investigated, due to its analytical tractability. Special attention is devoted to the geometrical properties of the underlying background acoustic metric, focusing, in particular, on null geodesics as well as on the analog light cone structure.

  14. ROSSBY WAVE INSTABILITY IN LOCALLY ISOTHERMAL AND POLYTROPIC DISKS: THREE-DIMENSIONAL LINEAR CALCULATIONS

    SciTech Connect

    Lin, Min-Kai

    2012-07-20

    Numerical calculations of the linear Rossby wave instability (RWI) in global three-dimensional (3D) disks are presented. The linearized fluid equations are solved for vertically stratified, radially structured disks with either a locally isothermal or polytropic equation of state, by decomposing the vertical dependence of the perturbed hydrodynamic quantities into Hermite and Gegenbauer polynomials, respectively. It is confirmed that the RWI operates in 3D. For perturbations with vertical dependence assumed above, there is little difference in growth rates between 3D and two-dimensional (2D) calculations. Comparison between 2D and 3D solutions of this type suggests the RWI is predominantly a 2D instability and that 3D effects, such as vertical motion, can be interpreted as a perturbative consequence of the dominant 2D flow. The vertical flow around corotation, where vortex formation is expected, is examined. In locally isothermal disks, the expected vortex center remains in approximate vertical hydrostatic equilibrium. For polytropic disks, the vortex center has positive vertical velocity, whose magnitude increases with decreasing polytropic index n.

  15. An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data

    NASA Technical Reports Server (NTRS)

    Totten, T. L.; Freeman, J. W.; Arya, S.

    1995-01-01

    Observations of solar wind proton temperatures indicate that the solar wind is heated as it moves outward toward the orbit of Earth. This heating, which may be the results of electron heat conduction and perhaps MHD waves, has proven difficult to quantify and hence is often neglected in MHD models of the solar wind. An alternate approach to finding explicit heating terms for the MHD energy equation is to use a polytropic approximation. This paper discusses the properties of the polytropic approximation and its application to the solar wind plasma. By using data from the Helios 1 spacecraft, an empirical value for the polytropic index of the free-streaming solar wind is determined. Various corrections to the data are made to account for velocity, nonuniformity in radial sampling, and stream interaction regions. The polytropic index, as derived from proton data, is found to indepedent of speed state, within statistical error, and has an average value of 1.46. If magnetic pressure is included, the polytropic index has an average value of 1.58.

  16. VISCOUS ACCRETION OF A POLYTROPIC SELF-GRAVITATING DISK IN THE PRESENCE OF WIND

    SciTech Connect

    Abbassi, Shahram; Nourbakhsh, Erfan; Shadmehri, Mohsen E-mail: e.nourbakhsh@mail.sbu.ac.ir

    2013-03-10

    Self-similar and semi-analytical solutions are found for the height-averaged equations governing the dynamical behavior of a polytropic, self-gravitating disk under the effects of winds around the nascent object. In order to describe the time evolution of the system, we adopt a radius-dependent mass loss rate, then highlight its importance on both the traditional {alpha} and innovative {beta} models of viscosity prescription. In agreement with some other studies, our solutions represent that the Toomre parameter is less than one in most regions on the {beta}-disk, which indicates that in such disks gravitational instabilities can occur at various distances from the central accretor. So, the {beta}-disk model might provide a good explanation of how the planetary systems form. The purpose of the present work is twofold: examining the structure of a disk with wind in comparison to a no-wind solution and seeing whether the adopted viscosity prescription significantly affects the dynamical behavior of the disk-wind system. We also considered the temperature distribution in our disk by a polytropic condition. The solutions imply that, under our boundary conditions, the radial velocity is larger for {alpha}-disks and increases as wind becomes stronger in both viscosity models. Also, we noticed that the disk thickness increases by amplifying the wind or adopting larger values for the polytropic exponent {gamma}. It also may globally decrease if one prescribes a {beta}-model for the viscosity. Moreover, in both viscosity models, the surface density and mass accretion rate diminish as the wind gets stronger or {gamma} increases.

  17. Analytic solutions for single and multiple cylinders of gravitating polytropes in magnetostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    Exact analytic solutions for the static equilibrium of a gravitating plasma polytrope in the presence of magnetic fields are presented. The means of generating various equilibrium configurations to illustrate directly the complex physical relationships between pressure, magnetic fields, and gravity in self-gravitating systems is demonstrated. One of the solutions is used to model interstellar clouds suspended by magnetic fields against the galactic gravity such as may be formed by the Parker (1966) instability. It is concluded that the pinching effect of closed loops of magnetic fields in the clouds may be a dominant agent in further collapsing the clouds following their formation.

  18. RANKL-RANK signaling regulates expression of Xenotropic Polytropic Virus Receptor (XPR1) in osteoclasts

    PubMed Central

    Sharma, Parul; Patntirapong, Somying; Hann, Steven; Hauschka, Peter V.

    2010-01-01

    Formation of multinucleated bone-resorbing osteoclasts results from activation of the Receptor activated NF-?B ligand (RANKL)-receptor activated NF-?B (RANK) signaling pathway in primary bone marrow macrophages and a macrophage cell line (RAW 264.7). Osteoclasts, through bone remodeling, are key participants in the homeostatic regulation of calcium and phosphate levels within the body. Microarray analysis using Gene Expression Dynamic Inspector (GEDI) clustering software indicated that osteoclast differentiation is correlated with an increase in Xenotropic and Polytropic Virus Receptor 1 (XPR1) mRNA transcripts. XPR1 is a receptor of the xenotropic and polytropic murine leukemia virus and homolog of yeast Syg1 and plant Pi transporter PHO1. Quantitative PCR was used to validate the up-regulation of XPR1 message following RANKL stimulation in both primary bone marrow cells and a macrophage cell line. Immunostaining for the XPR1 protein showed that there is translocation of XPR1 to the membranes of the sealing zone in mature osteoclasts. This study is the first to demonstrate that the expression of retro-viral receptor, XPR1, is regulated by RANKL-RANK signaling. PMID:20633538

  19. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W. (Tijeras, NM); Vernon, George E. (Rio Rancho, NM); Hoke, Darren A. (Albuquerque, NM); De Marquis, Virginia K. (Tijeras, NM); Harris, Steven M. (Albuquerque, NM)

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  20. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  1. Self-gravitating rotating anisotropic pressure plasma in presence of Hall current and electrical resistivity using generalized polytrope laws

    SciTech Connect

    Prajapati, R. P.; Chhajlani, R. K.; Soni, G. D.

    2008-06-15

    The effects of uniform rotation, finite electrical resistivity, electron inertia, and Hall current on the self-gravitational instability of anisotropic pressure plasma with generalized polytrope laws have been studied. A general dispersion relation is obtained with the help of the relevant linearized perturbed magnetohydrodynamic (MHD) equations incorporating the relevant contributions of various effects of the problem using the method of normal mode analysis. The general dispersion relation is further reduced for the special cases of rotation; i.e., parallel and perpendicular to the direction of the magnetic field. The longitudinal and transverse modes of propagation are discussed separately for investigation of condition of instability. The effects of rotation, Hall current, finite electron inertia, and polytropic indices are discussed on the gravitational, ''firehose,'' and ''mirror'' instabilities. The numerical calculations have been performed to obtain the dependence of the growth rate of the gravitational unstable mode on the various physical parameters involved. The finite electrical resistivity, rotation, and Hall current have a stabilizing influence on the growth rate of the unstable mode of wave propagation. The finite electrical resistivity removes the effect of magnetic field and polytropic index from the condition of instability in the transverse mode of propagation for both the cases of rotation. It is also found that the Jeans criterion of gravitational instability depends upon rotation, electron inertia, and polytropic indices. In the case of transverse mode of propagation with the axis of rotation parallel to the magnetic field, it is observed that the region of instability and the value of the critical Jeans wavenumber are larger for the Chew-Goldberger-Low set of equations in comparison with the MHD set of equations. The stability of the system is discussed by applying Routh-Hurwitz criterion. The inclusion of rotation or Hall current or both together depresses the growth rate of mirror instability. We also note that the condition of mirror instability depends upon polytropic indices.

  2. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Water Supply Policy § 420.23 Exempt uses under the Compact...provision of section 3.7 of the Compact shall be deemed to authorize the Commission to impose...

  3. Compact Storage

    USGS Multimedia Gallery

    After a detailed inventory is completed and published on the web, processed materials are stored in compact shelving in the Field Records Collection. Collections are organized by scientist and project....

  4. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David (Yorktown, VA)

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  5. An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Scudder, J. D.

    1979-01-01

    Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed.

  6. Investigation of the Polytropic Relationship Between Density and Temperature Within Interplanetary Coronal Mass Ejections Using Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Gosling, J. T.; Pizzo, V. J.

    2001-01-01

    Single-point spacecraft measurements within coronal mass ejections (CMEs) often exhibit a negative correlation between electron density and temperature. At least two opposing interpretations have been suggested for this relationship. If, on one hand, these single spacecraft observations provide direct measures of the polytropic properties of the plasma, then they imply that the polytropic index for the electrons gamma(sub e) is often < 1. Moreover, since the electrons carry the bulk of the pressure (via their significantly higher temperature), this further implies that the dynamics of CME evolution are dominated by an effective polytropic index gamma(sub e)ff < 1. On the other hand, gamma < 1 implies that as the ejecta propagate away from the Sun and expand, they also heat up; a result clearly at odds with in situ observations. In contrast to these CME intervals, many studies have shown that the quiescent solar wind exhibits a positive correlation between electron density and temperature, suggesting that gamma(sub e) > 1. In this study we simulate the evolution of a variety of CME-like disturbances in the solar wind using a one-dimensional, single-fluid model, to address the interpretation of the relationship between electron density and temperature within CMEs at fixed locations in space. Although we strictly impose a polytropic relationship (with gamma = constant) throughout our simulations, we demonstrate that a variety of correlations can exist between density and temperature at fixed points. Furthermore, we demonstrate that the presence of only local uncorrelated random fluctuations in density and temperature can produce a negative correlation. Consequently, we conclude that these single-point observations of negative correlations between electron density and temperature cannot be used to infer the value of gamma(sub e). Instead, we suggest that entropy variations, together with the plasma's tendency to achieve pressure balance with its surroundings, are responsible for the observed profiles.

  7. QUIPS: Time-dependent properties of quasi-invariant self-gravitating polytropes

    SciTech Connect

    Munier, A.; Feix, M.R.

    1983-04-01

    Quasi-invariance, a method based on group tranformations, is used to obtain time-dependent solutions for the expansion and/or contraction of a self-gravitating sphere of perfect gas with polytopic index n. Quasi-invariance transforms the equations of hydrodynamics into ''dual equations'' exhibiting extra terms such as a friction, a mass source or sink term, and a centripetal/centrifugal force. The search for stationary solutions in this ''dual space'' leads to a new class of time-dependent solutions, the QUIP (for Quasi-invariant polytrope), which generalizes Emden's static model and introduces a characteristic frequency a related to Jean's frequency. The second order differential equation describing the solution is integrated numerically. A critical point is seen always to exist for nnot =3. Solutions corresponding in the ''dual space'' to a time-dependent generalization of Eddington's standard model (n = 3) are discussed. These solutions conserve both the total mass and the energy. A transition between closed and open structures is seen to take place at a particular frequency a/sub c/. For n = 3, no critical point arises in the ''dual space'' due to the self-similar motion of the fluid. A new time-dependent mass-radius relation and a generalized Betti-Ritter relation are obtained. Conclusions about the existence of a minimum Q-factor are presented.

  8. Compact HPD

    SciTech Connect

    Suyama, M.; Kawai, Y.; Kimura, S.

    1996-12-31

    In order to be utilized in such application fields as high energy physics or medical imaging, where a huge number of photodetectors are assembled in designated small area, the world`s smallest HPD, the compact BFD, has been developed. The overall diameter and the length of the tube are 16mm and 15mm, respectively. The effective photocathode area is 8mm in diameter. At applied voltage of -8kV to the photocathode, the electron multiplication gain of a PD incorporated HPD (PD-BPD) is 1,600, and that of an APD (APD-BPD) is 65,000. In the pulse height distribution measurement, photoelectron peaks up to 6 photoelectrons are clearly distinguishable with the APD-BPD. Experiments established that there was no degradation of gain in magnetic fields up to 1.5T, an important performance characteristic of the compact BPD for application in high energy physics.

  9. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo E-mail: wkim@astro.snu.ac.kr E-mail: sshong@astro.snu.ac.kr

    2012-12-20

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c{sub eff} of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c{sub eff} and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  10. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  11. Self-similar evolution of interplanetary magnetic clouds and Ulysses measurements of the polytropic index inside the cloud

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Berdichevsky, D.

    1997-01-01

    A self similar model for the expanding flux rope is developed for a magnetohydrodynamic model of interplanetary magnetic clouds. It is suggested that the dependence of the maximum magnetic field on the distance from the sun and the polytropic index gamma has the form B = r exp (-1/gamma), and that the ratio of the electron temperature to the proton temperature increases with distance from the sun. It is deduced that ion acoustic waves should be observed in the cloud. Both predictions were confirmed by Ulysses observations of a 1993 magnetic cloud. Measurements of gamma inside the cloud demonstrate sensitivity to the internal topology of the magnetic field in the cloud.

  12. The evolution of highly compact binary stellar systems

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Joss, P. C.; Webbink, R. F.

    1982-01-01

    A new theoretical treatment of the evolution of highly compact binary systems is presented. The evolution is calculated until almost the entire mass of the secondary has been transferred to the primary or lost from the system. It is assumed that gravitational radiation from the system is the cause of mass transfer. It is found that the structure of the mass-losing star can be approximated by an n = 3/2 polytrope, and as a result a relatively large number of different cases can be explored and some general conclusions drawn. An explanation is found for the existence of a cutoff in the orbital period distribution among the cataclysmic variables and light is shed upon the possible generic relationships among cataclysmic variables, the low-mass X-ray binaries, and the spectrally soft transient X-ray sources.

  13. Interacting Holographic Dark Energy, Future Singularity and Polytropic Gas Model of Dark Energy in Closed FRW Universe

    NASA Astrophysics Data System (ADS)

    Sarkar, Sanjay

    2015-06-01

    The present work deals with the accretion of two interacting fluids: dark matter and a hypothetical fluid as the holographic dark energy components onto wormhole in a non-flat FRW universe. First of all, following Cruz et al. (Phys. Lett. B 669, 271 2008), we obtained an exact solution of the Einstein's field equations. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. After that we have studied the evolution of the mass of wormhole embedded in this FRW universe in order to reproduce a stable universe protected against future-time singularity. We found that the accretion of these dark components leads to a gradual increase of wormhole mass. It is also observed that contrary to the case as shown by Cruz et al. (Phys. Lett. B 669, 271 2008), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip. We have established a correspondence between the holographic dark energy with the polytropic gas dark energy model and obtained the potential as well as dynamics of the scalar field which describes the polytropic cosmology.

  14. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  15. Extensions of the Charged Riemannian Penrose Inequality

    E-print Network

    Marcus Khuri; Gilbert Weinstein; Sumio Yamada

    2015-02-17

    In this paper we investigate the extension of the charged Riemannian Penrose inequality to the case where charges are present outside the horizon. We prove a positive result when the charge densities are compactly supported, and present a counterexample when the charges extend to infinity. We also discuss additional extensions to other matter models.

  16. Extensions of the charged Riemannian Penrose inequality

    NASA Astrophysics Data System (ADS)

    Khuri, Marcus; Weinstein, Gilbert; Yamada, Sumio

    2015-02-01

    In this paper we investigate the extension of the charged Riemannian Penrose inequality to the case where charges are present outside the horizon. We prove a positive result when the charge densities are compactly supported, and present a counterexample when the charges extend to infinity. We also discuss additional extensions to other matter models.

  17. A THREE-DIMENSIONAL NUMERICAL SOLUTION FOR THE SHAPE OF A ROTATIONALLY DISTORTED POLYTROPE OF INDEX UNITY

    SciTech Connect

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John E-mail: K.Zhang@exeter.ac.uk

    2013-02-15

    We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star ({alpha} Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybrid inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J {sub 2} of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For {alpha} Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening.

  18. Compact Lattice QED and the Coulomb Potential

    E-print Network

    Y. N. Srivstava; A. Widom; M. H. Friedman; O. Panella

    1992-09-01

    The potential energy of a static charge distribution on a lattice is rigorously computed in the standard compact quantum electrodynamic model. The method used follows closely that of Weyl for ordinary quantum electrodynamics in continuous space-time. The potential energy of the static charge distribution is independent of temperature and can be calculated from the lattice version of Poisson's equation. It is the usual Coulomb potential.

  19. An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU - Voyager 2 and Mariner 10

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Scudder, J. D.

    1980-01-01

    In this paper empirical evidence is presented that between 0.4 and 5 AU the thermal portion (but not all) of the solar wind electron population obeys a polytrope relation. It is also shown that this functional relationship is a member of a broader class of possible laws required of a steady state, fully ionized plasma whose proper frame electric field is dominated by the polarization electric field. The empirically determined, thermodynamically interesting value of the polytrope index (1.175) is virtually that predicted (1.16) by the theoretical considerations of Scudder and Olbert (1979). Strong, direct, empirical evidence for the nearly isothermal behavior of solar wind electrons as has been indirectly argued in the literature for some time is provided.

  20. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  1. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  2. A Three-dimensional Non-spherical Calculation Of The Rotationally Distorted Shape And Internal Structure Of A Model Of Jupiter With A Polytropic Index Of Unity

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.

    2012-10-01

    An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390

  3. The formation of a standing shock in a polytropic solar wind model within 1-10 Rs

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1985-01-01

    It is shown how a one-fluid polytropic solar wind model exhibits properties similar to an isothermal wind when localized momentum and/or rapid area divergence produce multiple critical points in the flow. In particular, it is shown that when the sonic transition in the flow occurs closer to the coronal base, multiple steady solutions can exist. These multiple steady solutions consist of a contiuous solution passing through the innermost critical point and other steady solutions involving a steady shock transition. By following the temporal evolution of the solar wind from a steady state with one critical point to a steady state with three critical points, it is shown that a standing shock solution is more likely to develop than a continuous solution when momentum deposition occurs close to the coronal base and the equation of motion admits multiple steady solutions. This result is particularly relevant to the solar wind when momentum deposition occurs as a result of a rapidly diverging coronal hole geometry.

  4. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  5. High-frequency behavior of w-mode pulsations of compact stars

    E-print Network

    Y. J. Zhang; J. Wu; P. T. Leung

    2011-01-01

    We study the asymptotic behavior of the quasi-normal modes (QNMs) of w-mode pulsations of compact stars in the high-frequency regime. We observe that both the axial and polar w-mode QNMs attain similar asymptotic behaviors in spite of the fact that they are described by two totally different differential equation systems. We obtain robust asymptotic formulae relating w-mode QNMs of different polarities and different angular momenta. To explore the physical reason underlying such similarity, we first derive a high-frequency approximation for the polar w-mode oscillations to unify the descriptions for both cases. Then, we develop WKB-type analyses for them and quantitatively explain the observed asymptotic behaviors for polytropic stars and quark stars. We also point out that such asymptotic behaviors for realistic stars are strongly dependent on the equation of state near the stellar surface.

  6. SOIL COMPACTION MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During temporary droughts that often limit agricultural production, soil compaction can hinder plant roots from reaching depths of soil where moisture is available. Many fields exhibit various degrees of soil compaction, resulting from variable soil types and past tillage and traffic practices. Va...

  7. ACOUSTIC COMPACTION LAYER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

  8. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented. PMID:25771881

  9. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  10. Compaction of poultry litter.

    PubMed

    Bernhart, M; Fasina, O O; Fulton, J; Wood, C W

    2010-01-01

    Poultry litter, a combination of accumulated chicken manure, feathers and bedding materials, is a potential feedstock for bioenergy and other value-added applications. The use of this waste product has been historically limited to within few miles of the place of generation because of its inherent low density. Compaction is one possible way to enhance the storage and transportation of the litter. This study therefore investigates the effect of moisture content (19.8-70.7%, d.b.) and pressure (0.8-8.4 MPa) on the compaction characteristics of poultry litter. Results obtained showed that the initial density of densified poultry litter, energy required for compaction and the strength of the densified material after 2 months of storage were significantly (P<0.05) affected by moisture content and pressure applied during compaction. The density of the compacted material was only affected by pressure applied during compaction after 2 months of storage. The specific energy required to produce the densified material varied from 0.25 to 2.00 kJ/kg and was significantly less than the energy required to produce pellets from biological materials. The results obtained from the study can be used for the economical design of on-farm compaction equipment for poultry litter. PMID:19733062

  11. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  12. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M? pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M? .

  13. Compact optical crossbar switch

    NASA Astrophysics Data System (ADS)

    Reinhorn, S.; Amitai, Y.; Friesem, A. A.; Lohmann, A. W.; Gorodeisky, S.

    1997-02-01

    A novel compact holographic crossbar architecture based on planar optics is presented. It consists of a pair of identical planar holographic elements, a two-dimensional array ( N N ) transmission mask, a one-dimensional array ( N ) of input light sources, and a one-dimensional array ( N ) of detectors. Each planar element contains two cylindrical holographic lenses, both of which are recorded on a single glass substrate. The design of the overall compact configuration is presented along with experimental results.

  14. Non-conformally flat initial data for binary compact objects

    E-print Network

    Koji Uryu; Francois Limousin; John L. Friedman; Eric Gourgoulhon; Masaru Shibata

    2009-10-08

    A new method is described for constructing initial data for a binary neutron-star (BNS) system in quasi-equilibrium circular orbit. Two formulations for non-conformally flat data, waveless (WL) and near-zone helically symmetric (NHS), are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the spatially non-conformally flat potentials, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational BNS with matter approximated by parametrized equations of state that use a few segments of polytropic equations of state. The binding energy and total angular momentum of solution sequences computed within the conformally flat -- Isenberg-Wilson-Mathews (IWM) -- formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the closest orbits, for the more compact stars, whereas sequences resulting from the WL/NHS formulations deviate from the 3PN curve even more for the sequences with larger compactness. We think it likely that this correction reflects an overestimation in the IWM formulation as well as in the 3PN formula, by $\\sim 1$ cycle in the gravitational wave phase during the last several orbits. The work suggests that imposing spatial conformal flatness results in an underestimate of the quadrupole deformation of the components of binary neutron-star systems in the last few orbits prior to merger.

  15. Grain charging in protoplanetary discs

    E-print Network

    Ilgner, Martin

    2011-01-01

    Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as MHD (magnetohydrodynamic) turbulence and grain growth which are coupled in a two-way process. We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension D_f = 2. Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the ...

  16. Paramagnetism in color superconductivity and compact stars

    E-print Network

    Efrain J. Ferrer; Vivian de la Incera

    2007-02-01

    It is quite plausible that color superconductivity occurs in the inner regions of neutron stars. At the same time, it is known that strong magnetic fields exist in the interior of these compact objects. In this paper we discuss some important effects that can occur in the color superconducting core of compact stars due to the presence of the stars' magnetic field. In particular, we consider the modification of the gluon dynamics for a color superconductor with three massless quark flavors in the presence of an external magnetic field. We show that the long-range component of the external magnetic field that penetrates the color-flavor locked phase produces an instability for field values larger than the charged gluons' Meissner mass. As a consequence, the ground state is restructured forming a vortex state characterized by the condensation of charged gluons and the creation of magnetic flux tubes. In the vortex state the magnetic field outside the flux tubes is equal to the applied one, while inside the tubes its strength increases by an amount that depends on the amplitude of the gluon condensate. This paramagnetic behavior of the color superconductor can be relevant for the physics of compact stars.

  17. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  18. Dark Compact Planets

    E-print Network

    Laura Tolos; Juergen Schaffner-Bielich

    2015-07-29

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron star matter and white dwarf material. We consider non-self annihilating dark matter with an equation-of-state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from few Km to few hundred Km for weakly interacting dark matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be formed primordially and accrete white dwarf material subsequently. They could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 ${\\rm M}_{\\odot}$ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, $10^{-6}{\\rm M}_\\odot$.

  19. Dark Compact Planets

    E-print Network

    Tolos, Laura

    2015-01-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron star matter and white dwarf material. We consider non-self annihilating dark matter with an equation-of-state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from few Km to few hundred Km for weakly interacting dark matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be formed primordially and accrete white dwarf material subsequently. They could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 ${\\rm M}_{\\odot}$ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, $10^{-6}{\\rm M}_\\odot$.

  20. Compaction of frictional octahedra

    NASA Astrophysics Data System (ADS)

    Thyagu, N. Nirmal; Neudecker, Max; Herminghaus, Stephan; Schroeter, Matthias

    2013-03-01

    We perform experiments with frictional polypropylene octahedra to study the packing properties. Starting with the loose packing, compaction of octahedra is done by two types of forcing - a) tapping and b) shearing. The compaction gives rise to crystallization of octahedra due to heterogenous nucleation from the walls. We obtain the X-ray tomograms of the packing configurations as a function of packing fraction. From the contact geometries we obtain results for the packings such as - pair correlation function, distance to isostaticity, and spatial & angular correlation functions. We contrast these results with a similar study on the simplest platonic solid, the tetrahedron[1] and the sphere.

  1. Soil compaction verification

    SciTech Connect

    Todres, H.A.

    1986-01-01

    While conducting their maintenance activities, utilities must break and restore pavement. During pavement restoration it is vitally important to ensure adequate compaction of the soil. To ensure that specified standards are met, tests have evolved that are well-suited to highway construction, but poorly suited to utility operations. A novel approach that attempts to address this problem is being tested. In the course of an intensive experimental effort it was found that relatively simple, inexpensive devices could be used to verify compaction in a wide variety of soils. Further confirmatory work has been scheduled.

  2. Reply to "Comment on the Paper ''On the Determination of Electron Polytrope Indices Within Coronal Mass Ejections in the Solar Wind'"'. Appendix 5

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Riley, P.; Skoug, R. M.

    2001-01-01

    We strongly disagree with the essence of the Osherovich (hereafter Osherovich) comment on one of our papers. The following paragraphs provide the basis of our disagreement and elaborate on why we believe that none of the concluding statements in his Comment are true. Our most important point is that one can apply the model developed by Osherovich and colleagues to real data obtained at a single point in space to determine the polytropic index within magnetic clouds if and only if the highly idealized assumptions of that model conform to physical reality. There is good reason to believe that those assumptions do not provide an accurate physical description of real magnetic clouds in the spherically expanding solar wind.

  3. Compacting XML Data: Zhang, Dyreson, Dang Compacting XML Data

    E-print Network

    Dyreson, Curtis

    Compacting XML Data: Zhang, Dyreson, Dang Compacting XML Data Shuohao Zhang, Curtis Dyreson and Zhe XML Data: Zhang, Dyreson, Dang Book Data Doubleday The Da Vinci Code: Zhang, Dyreson, Dang Same Data, Different Structure Doubleday The Da

  4. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  5. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  6. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  7. Industrial Optimization Compact Course

    E-print Network

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role in designing and conducting industrial processes. The potential gains range from saving valuable resources over makers from industry and academia to initiate new projects and to foster new structured collaborations

  8. Fracture of explosively compacted aluminum particles in a cylinder

    NASA Astrophysics Data System (ADS)

    Frost, David; Loiseau, Jason; Goroshin, Sam; Zhang, Fan; Milne, Alec; Longbottom, Aaron

    2015-06-01

    The explosive compaction, fracture and dispersal of aluminum particles contained within a cylinder have been investigated experimentally and computationally. The aluminum particles were weakly confined in a cardboard tube and surrounded a central cylindrical burster charge. The compaction and fracture of the particles are visualized with flash radiography and the subsequent fragment dispersal with high-speed photography. The aluminum fragments produced are much larger than the original aluminum particles and similar in shape to those generated from the explosive fracture of a solid aluminum cylinder, suggesting that the shock transmitted into the aluminum compacts the powder to near solid density. The casing of the burster explosive (plastic-, copper-, and un-cased charges were used) had little influence on the fragment size. The effect of an air gap between the burster and the aluminum particles was also investigated. The particle motion inferred from the radiographs is compared with the predictions of a multimaterial hydrocode.

  9. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  10. CHARGE IMBALANCE

    SciTech Connect

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  11. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  12. Compact Optical Correlators

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.

    1989-02-01

    In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.

  13. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  14. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  15. Internal Charging

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  16. Charge-pump voltage converter

    DOEpatents

    Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  17. Compact heat exchangers

    SciTech Connect

    1999-11-01

    This report aims to increase the market penetration of compact heat exchangers (CHEs) in industry by detailing current experience of their use. CHEs are characterized by having a comparatively large amount of surface area in a given volume, compared to traditional heat exchangers, in particular the shell-and-tube type. The most basic CHEs have volumes of less than 50% of that of a comparable shell-and-tube heat exchanger, for a given duty. Some new designs can, under appropriate process conditions, have only 5% of the volume of traditional equivalents. An essential component of many of these compact concepts is heat (and mass) transfer enhancement. This report also details some of the main enhancement methods which are used in the implementation of compact systems. CHEs are of interest for a number of reasons. As well as being, in general, highly efficient, allowing greater amounts of energy to be recovered between process streams, they are more versatile in terms of the number of process streams that can be handled. Some CHEs can handle only two streams. Others can handle four or more with ease. That, coupled with the availability of units to cater for most operating temperatures and pressures, makes them of interest to operators of complex thermal processing plants. Of even greater long-term importance to the process industries is the ability to use CHE manufacturing technology to integrate effective heat transfer with other unit operations, such as reactors, in one unit. This radical approach to process plant design has fostered many exciting concepts for combined unit operations, some of which are discussed in this report. Topics covered are: types of CHE; (2) the role of heat transfer enhancement; (3) benefits and perceived limitations of CHEs; (4) costs; (5) fouling; (6) specification, installation and operating procedures; (7) the new opportunities; and (8) conclusions.

  18. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  19. Compact neutrino source

    NASA Astrophysics Data System (ADS)

    LoSecco, John

    2015-08-01

    Some evidence for sterile neutrinos has been found in short baseline observations where the measured neutrino flux did not agree with expectations. Systematic uncertainties from the expected values have limited the sensitivity of this approach. Observation at multiple distances can remove the normalization uncertainty by isolating the distance dependence. This does not work for high-? m2 sterile neutrinos since they are fully mixed at most observation distances and only shift the normalization of the flux. A compact intense source of neutrinos based on a subcritical fission reactor would permit observation of oscillations on submeter distance scales and clearly distinguish between a systematic normalization and the L /E dependence expected from oscillations.

  20. Forming Compact Massive Galaxies

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Nelson, Erica June; Franx, Marijn; Oesch, Pascal; Momcheva, Ivelina; Brammer, Gabriel; Förster Schreiber, Natascha M.; Skelton, Rosalind E.; Whitaker, Katherine E.; van der Wel, Arjen; Bezanson, Rachel; Fumagalli, Mattia; Illingworth, Garth D.; Kriek, Mariska; Leja, Joel; Wuyts, Stijn

    2015-11-01

    In this paper we study a key phase in the formation of massive galaxies: the transition of star-forming galaxies into massive (Mstars ? 1011M?), compact (re ? 1 kpc) quiescent galaxies, which takes place from z ? 3 to z ? 1.5. We use HST grism redshifts and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. We first confirm that a population of massive, compact, star-forming galaxies exists at z ? 2, using K-band spectroscopy of 25 of these objects at 2.0 < z < 2.5. They have a median [N ii]/H? ratio of 0.6, are highly obscured with SFR(tot)/SFR(H?) ?10, and have a large range of observed line widths. We infer from the kinematics and spatial distribution of H? that the galaxies have rotating disks of ionized gas that are a factor of ?2 more extended than the stellar distribution. By combining measurements of individual galaxies, we find that the kinematics are consistent with a nearly Keplerian fall-off from Vrot ? 500 km s?1 at 1 kpc to Vrot ? 250 km s?1 at 7 kpc, and that the total mass out to this radius is dominated by the dense stellar component. Next, we study the size and mass evolution of the progenitors of compact massive galaxies. Even though individual galaxies may have had complex histories with periods of compaction and mergers, we show that the population of progenitors likely followed a simple inside-out growth track in the size–mass plane of {{? }}{log}{r}{{e}}? 0.3{{? }}{log}{M}{{stars}}. This mode of growth gradually increases the stellar mass within a fixed physical radius, and galaxies quench when they reach a stellar density or velocity dispersion threshold. As shown in other studies, the mode of growth changes after quenching, as dry mergers take the galaxies on a relatively steep track in the size–mass plane.

  1. Hadrons in compact stars

    E-print Network

    Debades Bandyopadhyay

    2005-12-28

    We discuss $\\beta$-equilibrated and charge neutral matter involving hyperons and $\\bar K$ condensates within relativistic models. It is observed that populations of baryons are strongly affected by the presence of antikaon condensates. Also, the equation of state including $\\bar K$ condensates becomes softer resulting in a smaller maximum mass neutron star.

  2. Charge Independence and Charge Symmetry

    E-print Network

    Gerald A. Miller; Willem T. H. van Oers

    1994-09-14

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.

  3. Compact plasma accelerator device

    NASA Astrophysics Data System (ADS)

    Foster, John E.

    2002-05-01

    A compact plasma accelerator concept based on plasma production at a magnetic cusp was designed and fabricated. Plume and discharge characteristics of the device were documented using a Faraday probe and a retarding potential analyzer. The discharge current variations with increasing discharge voltage were nonlinear with the discharge current increasing rapidly with voltage. The device demonstrated the capability of generating ion beamlets (˜80 eV) with downstream peak current densities comparable to that of higher power ion thruster devices (7 mA/cm2). In general, the device appeared to operate best at very low flow rates. High propellant utilization fractions (ionization fractions) were measured below 1 SCCM of Xe flow (88% at 0.48 SCCM). Floating potential measurements made downstream of the device were used to estimate the downstream electric field. These measurements, which were used to qualitatively assess beam neutralization, indicated beam neutralization does occur downstream of the device. Based on the measurements, the compact plasma accelerator concept could potentially be used as a low energy ion source for propulsion applications or for low energy plasma/materials processing applications.

  4. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 ?m, <75 ?m, and < 45 ?m; two different sizes of a hydride-dehydride [HDH] <75 ?m and < 45 ?m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  5. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven (Albuquerque, NM); Burg, Michael S. (Albuquerque, NM); Jensen, Brian D. (Albuquerque, NM); Miller, Samuel L. (Albuquerque, NM); Barnes, Stephen M. (Albuquerque, NM)

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  6. Compact, Pneumatically Actuated Filter Shuttle

    NASA Technical Reports Server (NTRS)

    Leighy, Bradley D.

    2003-01-01

    A compact, pneumatically actuated filter shuttle has been invented to enable alternating imaging of a wind-tunnel model in two different spectral bands characteristic of the pressure and temperature responses of a pressure and temperature-sensitive paint. This filter shuttle could also be used in other settings in which there are requirements for alternating imaging in two spectral bands. Pneumatic actuation was chosen because of a need to exert control remotely (that is, from outside the wind tunnel) and because the power leads that would be needed for electrical actuation would pose an unacceptable hazard in the wind tunnel. The entire shuttle mechanism and its housing can be built relatively inexpensively [<$500 (prices as of year 2000)] from off-the-shelf parts. The shuttle mechanism (see Figure 1) is contained in a housing that has dimensions of 4 by 6 by 2 in. (about 10 by 15 by 5 cm). Two 2-in. (=5-cm)-diameter standard scientific-grade band-pass filters are mounted on sliding panels in a dual-track frame. The mechanism is positioned and oriented so the panels slide sideways with respect to the optical axis of a charge-coupled-device camera used for viewing the wind-tunnel model. The mechanism includes a pneumatic actuator connected to a linkage. The linkage converts the actuator stroke to a scissor-like motion that places one filter in front of the camera and the other filter out of the way. Optoelectronic sensors detect tabs on the sliding panels for verification of the proper positioning of the filters.

  7. [CHARGE association].

    PubMed

    Costeira, M J; Ruivo, I; Miguel, C; Ferreira, P; Almeida, A; Azevedo, I; Silva, G; Aguiar, A

    1998-11-01

    Posterior choanal atresia is a congenital malformation which can occur isolated or in combination to additional malformations. In CHARGE association the other anomalies are: coloboma, heart disease, retarded development/growth or central nervous system abnormalities, genital hypoplasia or hypogonadism and ear abnormalities or deafness. The authors present three cases of CHARGE association and they also review the clinical findings required for the diagnosis. PMID:10021803

  8. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  9. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Compact vacuum insulation

    DOEpatents

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  11. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  12. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  13. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (inventors)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  14. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  15. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  16. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  17. Development of a repetitive compact torus injector

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  18. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ...the Compact Council for the National Crime Prevention and Privacy Compact AGENCY...to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act...

  19. Charge without charge in quarks

    E-print Network

    Harry Schiff

    2013-08-06

    With appropriate gauge transformations, field can replace electric charge in quarks. Classical quarks, in a necessary non-gauge invariant formulation, are used for illustration, bringing to the fore the limitations of the usual electric charge densities for single particles in Coulomb equations. The results are encouraging; the solutions for the Coulomb potentials apply individually to each quark in a shell structure. A remarkably simple relation emerges between the Coulomb and weak potentials.

  20. A Compact Solid State Detector for Small Angle Particle Tracking

    E-print Network

    S. Altieri; O. Barnaba; A. Braghieri; M. Cambiaghi; A. Lanza; T. Locatelli; A. Panzeri; P. Pedroni; T. Pinelli; P. Jennewein; M. Lang; I. Preobrazhensky; J. R. M. Annand; F. Sadiq

    1999-11-09

    MIDAS (MIcrostrip Detector Array System) is a compact silicon tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron, MAMI. MIDAS provides a trigger for charged hadrons, p/pi identification and particle tracking in the region 7 deg < theta < 16 deg. In this paper we present the main characteristics of MIDAS and its measured performances.

  1. Compaction of DNA with Lipid Modified Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Savarala, Sushma; Wunder, Stephanie L.; Ilies, Marc

    2012-02-01

    There is an increasing interest in modified inorganic nanoparticles, polymers or hybrid polymer-inorganic nanoparticles for use in DNA transfection, rather than viral vectors or liposomes. Adsorption of the DNA to the nanoparticles prevents enzymatic degradation of the DNA, although the reason for this protection is not completely understood. In order to compact the negatively charged DNA, a positively charged surface is required, and for transfection applications, the nanosystems must remain stable in suspension. It is also useful to minimize the amount of cytotoxic cationic lipid needed for DNA compaction in delivery applications. Here we investigate the colloidal stability of supported lipid bilayers (SLBs) composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0 PC) and 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP, 14:0 TAP), and their ability to compact plasmid DNA. Ionic strengths and DMPC/DMTAP ratios that resulted in SLB formation, no excess small unilamellar vesicles (SUVs) in the suspensions, and colloidal stability, were determined. DNA/SLB/lipid ratios that resulted in compaction were then investigated.

  2. SPARC EBIT — a charge breeder for the HITRAP project

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Herfurth, F.; Kester, O.; Stoehlker, Th; Thorn, A.; Vorobjev, G.; Zschornack, G.

    2010-11-01

    Charge breeding of externally injected, singly-charged ions in an electron beam ion source/trap (EBIS/T) extends the range of elements from which highly-charged ions can be produced with these machines, which is important for numerous atomic and nuclear physics experiments. Existing EBIS/T charge breeders feature electron guns producing intense beams and superconducting magnets generating strong fields to achieve high efficiencies and high ion charge states. We show an alternative possibility to inject, capture, charge-breed and extract ions using a compact room-temperature EBIT based on permanent magnet technology. Singly-charged potassium and rubidium ions injected over the barrier were charge bred and extracted as bare and neon-like ions, respectively. Simulations of injection and capture of singly-charged ions in this EBIT show the challenges and help understanding the results.

  3. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect

    Sun, Y.; ,

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  4. Collective Deceleration: Toward a Compact Beam Dump

    SciTech Connect

    Wu, H.-C.; Tajima, T.; Habs, D.; Chao, A.W.; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  5. Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics.

    PubMed

    Nash, Jessica A; Singh, Abhishek; Li, Nan K; Yingling, Yaroslava G

    2015-12-22

    The development of nucleic acid (NA) based nanotechnology applications rely on the efficient packaging of DNA and RNA. However, the atomic details of NA-nanoparticle binding remains to be comprehensively characterized. Here, we examined how nanoparticle and solvent properties affect NA compaction. Our large-scale, all-atom simulations of ligand-functionalized gold nanoparticle (NP) binding to double stranded NAs as a function of NP charge and solution salt concentration reveal different responses of RNA and DNA to cationic NPs. We demonstrate that the ability of a nanoparticle to bend DNA is directly correlated with the NPs charge and ligand corona shape, where more than 50% charge neutralization and spherical shape of the NP ligand corona ensured the DNA compaction. However, NP with 100% charge neutralization is needed to bend DNA almost as efficiently as the histone octamer. For RNA in 0.1 M NaCl, even the most highly charged nanoparticles are not capable of causing bending due to charged ligand end groups binding internally to the major groove of RNA. We show that RNA compaction can only be achieved through a combination of highly charged nanoparticles with low salt concentration. Upon interactions with highly charged NPs, DNA bends through periodic variation in groove widths and depths, whereas RNA bends through expansion of the major groove. PMID:26522008

  6. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  7. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  8. Compact vacuum insulation

    DOEpatents

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  9. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  10. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  11. New considerations for compact cyclotrons

    E-print Network

    Marshall, Eric S. (Eric Scott)

    2012-01-01

    A compact cyclotron built with superconducting magnets could be a transformative solution to many scientific problems facing the defense, medical, and energy industries today. This thesis discusses three potential applications ...

  12. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  13. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  14. Laboratory compaction of cohesionless sands 

    E-print Network

    Delphia, John Girard

    1998-01-01

    A total of 62 cohesiveness sands were tested to rographics. investigate the importance of the water content, grain size distribution, grading of the soil, particle shape, grain crushing during testing and laboratory compaction test method...

  15. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  16. Compact Groups in the SDSS

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Ragone, C.; Muriel, H.; Zandivarez, A.

    2006-06-01

    We identify compact groups in the Sloan Digital Sky Survey (SDSS) using an algorithm similar to that developed by Lee et al. (2003, astro-ph 0312553). Given that some authors claim compact groups to be chance alignments of galaxies or diffuse galaxy groups cores (Zandivarez et al. 2003, MNRAS, 340, 1400), our intention is to make a statistical study of the amount of compact groups that are real entities. To do so, we construct mock catalogues of the SDSS from cosmological numerical N-body simulations and identify compact groups with the previous algorithm. Next we compare them with groups identified with a tree-dimensional algorithm similar to the friend of-friends algorithm developed by Huchra & Geller (1982, ApJ, 257, 423).

  17. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault situations such as the loss of power or brownouts. Protection is also provided by a powermonitoring circuit.

  18. Photon and neutrino redshift in the field of braneworld compact stars

    SciTech Connect

    Hladík, Jan; Stuchlík, Zden?k E-mail: zdenek.stuchlik@fpf.slu.cz

    2011-07-01

    We study gravitational redshift of photons and neutrinos radiated by the braneworld neutron or quark stars that are considered in the framework of the simple model of the internal spacetime with uniform distribution of energy density, and the external spacetime described by the Reissner-Nordström geometry characterized by the braneworld ''tidal'' charge b. For negative tidal charges, the external spacetime is of the black-hole type, while for positive tidal charges, the external spacetime can be of both black-hole and naked-singularity type. We consider also extremely compact stars allowing existence of trapped null geodesics in their interior. We assume radiation of photons from the surface at radius R, neutrinos from the whole compact star interior, and their motion along radial null geodesics of the spacetime. In dependency on the compact stars parameters b and R, the photon surface redshift is related to the range of the neutrino internal redshift and the signatures of the tidal charge and possible existence of extremely compact stars are discussed. When both surface (photon) and internal (neutrino) redshift are given by observations, both compact star parameters R and b can be determined in the framework of our simple model.

  19. Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms

    NASA Astrophysics Data System (ADS)

    Rindler, Filip

    2015-01-01

    This work introduces microlocal compactness forms (MCFs) as a new tool to study oscillations and concentrations in L p -bounded sequences of functions. Decisively, MCFs retain information about the location, value distribution, and direction of oscillations and concentrations, thus extending at the same time the theories of (generalized) Young measures and H-measures. In L p -spaces oscillations and concentrations precisely discriminate between weak and strong compactness, and thus MCFs allow one to quantify the difference in compactness. The definition of MCFs involves a Fourier variable, whereby differential constraints on the functions in the sequence can also be investigated easily—a distinct advantage over Young measure theory. Furthermore, pointwise restrictions are reflected in the MCF as well, paving the way for applications to Tartar's framework of compensated compactness; consequently, we establish a new weak-to-strong compactness theorem in a "geometric" way. After developing several aspects of the abstract theory, we consider three applications; for lamination microstructures, the hierarchy of oscillations is reflected in the MCF. The directional information retained in an MCF is harnessed in the relaxation theory for anisotropic integral functionals. Finally, we indicate how the theory pertains to the study of propagation of singularities in certain systems of PDEs. The proofs combine measure theory, Young measures, and harmonic analysis.

  20. A Compact Polarization Imager

    NASA Technical Reports Server (NTRS)

    Thompson, Karl E.; Rust, David M.; Chen, Hua

    1995-01-01

    A new type of image detector has been designed to analyze the polarization of light simultaneously at all picture elements (pixels) in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a custom-designed charge-coupled device with signal-analysis circuitry, all integrated on a silicon chip. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Other applications include environmental monitoring and robot vision. Innovations in the IDID include two interleaved 512 x 1024 pixel imaging arrays (one for each polarization plane), large dynamic range (well depth of 10(exp 6) electrons per pixel), simultaneous readout and display of both images at 10(exp 6) pixels per second, and on-chip analog signal processing to produce polarization maps in real time. When used with a lithium niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can reveal tiny differences between simultaneous images at two wavelengths.

  1. Compact toroid dynamics in the Compact Toroid Injection Experiment

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Hwang, D. Q.; Evans, R. W.; Horton, R. D.; McLean, H. S.; Terry, S. D.; Howard, S.; Di Caprio, C. J.

    2002-01-01

    Work on the acceleration of a compact toroid plasma configuration between coaxial electrodes is reported. In the experiment the maximum poloidal field component and the full width at half maximum of the poloidal field are shown to increase and decrease with the accelerator voltage, respectively. The velocity of the compact toroid is shown to increase with accelerator voltage and then saturate as the accelerator voltage is increased above approximately 11 kV. The saturation in the velocity and field components of the compact toroid is due to crowbarring of the accelerator insulator. The crowbarring of the insulator is consistent with the onset of the `blowby' effect, which is the most likely triggering source.

  2. Modelling of compaction in planetesimals

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2014-07-01

    Aims: Compaction of initially porous material prior to melting is an important process that has influenced the interior structure and the thermal evolution of planetesimals in their early history. On the one hand, compaction decreases the porosity resulting in a reduction of the radius and on the other hand, the loss of porosity results in an increase of the thermal conductivity of the material and thus in a more efficient cooling. Porosity loss by hot pressing is the most efficient process of compaction in planetesimals and can be described by creep flow, which depends on temperature and stress. Hot pressing has been repeatedly modelled using a simplified approach, for which the porosity is gradually reduced in some fixed temperature interval between ?650 K and 700 K. This approach neglects the dependence of compaction on stress and other factors such as matrix grain size and creep activation energy. In the present study, we compare this parametrised method with a self-consistent calculation of porosity loss via a creep related approach. Methods: We use our thermal evolution model from previous studies to model compaction of an initially porous body and consider four basic packings of spherical dust grains (simple cubic, orthorhombic, rhombohedral, and body-centred cubic). Depending on the grain packing, we calculate the effective stress and the associated porosity change via the thermally activated creep flow. For comparison, compaction is also modelled by simply reducing the initial porosity linearly to zero between 650 K and 700 K. As we are interested in thermal metamorphism and not melting, we only consider bodies that experience a maximum temperature below the solidus temperature of the metal phase. Results: For the creep related approach, the temperature interval in which compaction takes place depends strongly on the size of the planetesimal and is not fixed as assumed in the parametrised approach. Depending on the radius, the initial grain size, the activation energy, and the initial porosity and specific packing of the dust grains, the temperature interval lies within 500-1000 K. This finding implies that the parametrised approach strongly overestimates compaction and underestimates the maximum temperature. For the cases considered, the post-compaction porous layer retained at the surface is a factor of 1.5 to 4 thicker for the creep related approach. The difference in the temperature evolution between the two approaches increases with decreasing radius and the maximum temperature can deviate by over 30% for small bodies. Appendix is available in electronic form at http://www.aanda.org

  3. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  4. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  5. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL)

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  6. Compact bilinear operators and commutators

    E-print Network

    Bé nyi, Á rpá d; Torres, Rodolfo H.

    2013-07-01

    ) T is compact. (c2) T (B1, X×Y ) is precompact. (c3) For all r > 0, T (Br, X×Y ) is precompact. (c4) For all r1, r2 > 0, T (Br1,X ×Br2,Y ) is precompact. (c5) For all bounded B ? X × Y , T (B) is precompact. (c6) For all bounded B1 ? X,B2 ? Y , T (B1 ×B2... ? H, and (5) lim t?0 ?h(·+ t)? h(·)?Lr = 0 uniformly in h ? H. Theorem 1. If b ? CMO, 1/p + 1/q = 1/r, 1 < p, q < ? and 1 ? r < ?, then [T, b]1 : Lp×Lq ? Lr is compact. Similarly, if b1, b2 are also in CMO, then [T, b2]2 and [T, b1]1 , b2]2 are compact...

  7. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  8. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  9. Electric Charge 2 Conservation of Charge 4

    E-print Network

    and attraction of particles in the atom using the same laws that apply to the leaves of an electroscope, although of Charge 4 Quantization of Charge 5 Coulomb's Law 7 Energy of a System of Charges 11 Electrical Energy in a Crystal Lattice 14 The Electric Field 15 Charge Distributions 20 Flux 21 Gauss's Law 22 Field

  10. An ultra-compact virtual source FET model for deeply-scaled devices: Parameter extraction and validation for standard cell libraries and digital circuits

    E-print Network

    Mysore, Omar

    In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, ...

  11. Compact merons and skyrmions in thin chiral magnetic films

    SciTech Connect

    Ezawa, Motohiko

    2011-03-01

    A meron is a controversial topological excitation because it carries just one-half of the skyrmion number. A vortex in thin magnetic films has been argued to be a half-skyrmion, i.e., a meron. We present another type of merons, investigating the two-dimensional nonlinear sigma model together with the Dzyaloshinskii-Moriya interaction. Here, the vortex number of a meron is zero. Basic topological excitations are merons and skyrmions. They behave as if they were free particles. A prominent feature is that the topological charge density is strictly confined within compact domains. We propose an analytic approach for these compact excitations, and construct a phase diagram. It is comprised of the helix, meron, skyrmion-crystal, skyrmion-gas, and ferromagnet phases. It captures the essential nature of the experimental data recently performed in chiral magnets such as MnSi and FeCoSi thin films.

  12. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  13. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  14. Mesoscale Simulations of Power Compaction

    SciTech Connect

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  15. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  16. Higgsless superconductivity from topological defects in compact BF terms

    NASA Astrophysics Data System (ADS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2015-02-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D - 1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D - 2)-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2) and the topological order (4) are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  17. Smooth compactness of self-shrinkers

    E-print Network

    Colding, Tobias

    2012-01-01

    We prove a smooth compactness theorem for the space of embedded self-shrinkers in R[superscript 3]. Since self-shrinkers model singularities in mean curvature flow, this theorem can be thought of as a compactness result ...

  18. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that the branches are fairly close together...

  19. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the stalk are reasonably close...

  20. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly close together...

  1. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that the branches are fairly close together...

  2. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the stalk are reasonably close...

  3. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly close together...

  4. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly close together...

  5. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the stalk are reasonably close...

  6. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the stalk are reasonably close...

  7. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the stalk are reasonably close...

  8. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly close together...

  9. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that the branches are fairly close together...

  10. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly close together...

  11. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that the branches are fairly close together...

  12. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that the branches are fairly close together...

  13. Tank farms compacted low level waste

    SciTech Connect

    Waters, M.S., Westinghouse Hanford

    1996-07-01

    This report describes the process of Low Level Waste (LLW) volume reduction by compaction. Also included is the data used for characterization of LLW destined for compaction. Scaling factors (ratios) are formed based on data contained in this report.

  14. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  15. Physics of compact stellarators* S. P. Hirshman,

    E-print Network

    Compact Helical System1 CHS and Compact Auburn Torsatron2 CAT . Transport optimized stellarators under. In addition, bootstrap currents can reduce the effects of magnetic islands self-healing effect and lead optimization codes have been developed and integrated to design experiments aimed at exploring compact

  16. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy... notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far, the...

  17. Luminosity Measurement at the Compact Linear Collider

    E-print Network

    Schwartz, Rina; Levy, Aharon

    The compact linear collider (CLIC) is a proposed high energy accelera- tor, planned to collide electrons with positrons at a maximal center-of-mass energy of 3 TeV, and a peak luminosity of 5.9·1034 cm?2s?1. Complementary to the large hadron collider, CLIC is to provide high precision measurements of both known and new physics processes. The required relative precision of luminosity measurement at the CLIC is 10?2. The measurement will be done by the luminosity calorimeter (Lumi- Cal), designed to measure the rate of low angles Bhabha scattering events, a process with well-known cross-section from electroweak theory. Beam-beam effects, which are of unprecedented intensity at the CLIC, influence the lumi- nosity spectrum shape and create a significant amount of background charge deposits in the LumiCal, thus setting a challenge on the requirement for precision. The ability of the LumiCal to provide accurate luminosity mea- surement depends on its ability to perform accurate energy reconstruction of Bhab...

  18. Compact, megavolt, rep-rated Marx generators

    NASA Astrophysics Data System (ADS)

    Ness, Richard M.; Smith, Brett D.; Chu, Edmond Y.; Thomas, Brian L.; Cooper, James R.

    1991-04-01

    A concept for compact, megavolt Marx generators has been developed, resulting in several designs which are approximately half the diameter and half the height of conventional units. The customized Marx capacitor assemblies utilize multiple windings incorporated into a single common capacitor case. Spark gap switch electrodes extend directly from the external capacitor terminals, eliminating the need for additional buswork. In order to construct the Marx generator, two capacitor assemblies are positioned opposite each other so that the electrodes line up in a vertical column between the two assemblies. Because the entire assembly is housed inside a pressurized (207 kPa of SF6) gas vessel, the need for individual switch housings is eliminated. A four-stage, 400-kV-output Marx generator has been tested, operating at a repetition rate of 2-3 pps (power supply limited) continuously for over 5000 discharge cycles at 85-kV stage charging voltage. A second design has been fabricated and tested, utilizing 16 Marx stages to develop a 1.5-MV (open circuit) output voltage, and is contained in a cylindrical gas vessel 76.2 cm in diameter and 55.9 cm in height, weighting approximately 72.6 kg. Experimental measurements indicate a stage inductance of approximately 45 nH per 100-kV Marx stage.

  19. Electron Strippers for Compact Neutron Generators

    NASA Astrophysics Data System (ADS)

    Terai, K.; Tanaka, N.; Kisaki, M.; Tsugawa, K.; Okamoto, A.; Kitajima, S.; Sasao, M.; Takeno, T.; Antolak, A. J.; Leung, K. N.; Wada, M.

    2011-09-01

    The next generation of compact tandem-type DD or DT neutron generators requires a robust electron stripper with high charge exchange efficiency. In this study, stripping foils of various types were tested, and the H- to H+ conversion efficiency, endurance to the heat load, and durability were investigated in terms of suitability in the tandem-type neutron generator. In the experiments, a H- beam was accelerated to about 180 keV, passes through a stripping foil, and produces a mixed beam of H-, H0, and H+. These ions were separated by an electric field, and detected by a movable Faraday cup to determine the conversion efficiency. The experimental results using thin foils of diamond-like carbon, gold, and carbon nano-tubes revealed issues on the robustness. As a new concept, a H- beam was injected onto a metal surface with an oblique angle, and reflected H+ ions are detected. It was found that the conversion efficiency, H+ fraction in the reflected particles, depends on the surface condition, with the maximum value of about 90%.

  20. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  1. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  2. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  3. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  4. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  5. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A. (Shelley, ID); Ward, Michael B. (Idaho Falls, ID)

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  6. Charge Transport Measurements at the Nanoscale using a Multi-Tip STM

    E-print Network

    Ku?el, Petr

    Charge Transport Measurements at the Nanoscale using a Multi-Tip STM Seminá odd. 26 Tenkých vrstev an ultra-compact, ultra-stable four-tip STM for charge transport measurements at the nanoscale for novel semiconductor devices in future electronic and opto-electronic applications such as solar cells

  7. 77 FR 22805 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ...the Compact Council for the National Crime Prevention and Privacy Compact; Correction...the date and location of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act...

  8. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  9. Intense pulsed neutron emission from a compact pyroelectric driven accelerator

    SciTech Connect

    Tang, V.; Meyer, G.; Falabella, S.; Guethlein, G.; Sampayan, S.; Kerr, P.; Rusnak, B.; Morse, J. D.

    2009-01-15

    Intense pulsed D-D neutron emission with rates of >10{sup 10} n/s during the pulse, pulse widths of approximately hundreds of nanoseconds and neutron yields of greater than 10 000 per pulse, are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO{sub 3} crystal that provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compares well with theory. Results show neutron output per pulse that scales with voltage as V{sup {approx}}{sup 1.7}. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO{sub 3} crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof of principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work and notably increase the potential applications of pyroelectric based neutron generators.

  10. Intense Pulsed Neutron Emission from a Compact Pyroelectric Driven Accelerator

    SciTech Connect

    Tang, V; Meyer, G; Falabella, S; Guethlein, G; Sampayan, S; Kerr, P; Rusnak, B; Morse, J

    2008-10-08

    Intense pulsed D-D neutron emission with rates >10{sup 10} n/s during the pulse, pulse widths of {approx}100's ns, and neutron yields >10 k per pulse are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO{sub 3} crystal which provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compare well with theory. Results show neutron output per pulse that scales with voltage as V{approx}1.7. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO{sub 3} crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof-of-principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work, and notably increase the potential applications of pyroelectric based neutron generators.

  11. Charged anisotropic matter with linear equation of state

    E-print Network

    S. Thirukkanesh; S. D. Maharaj

    2008-10-21

    We consider the general situation of a compact relativistic body with anisotropic pressures in the presence of the electromagnetic field. The equation of state for the matter distribution is linear and may be applied to strange stars with quark matter. Three classes of new exact solutions are found to the Einstein-Maxwell system. This is achieved by specifying a particular form for one of the gravitational potentials and the electric field intensity. We can regain anisotropic and isotropic models from our general class of solution. A physical analysis indicates that the charged solutions describe realistic compact spheres with anisotropic matter distribution. The equation of state is consistent with dark energy stars and charged quark matter distributions. The masses and central densities correspond to realistic stellar objects in the general case when anisotropy and charge are present.

  12. Isometric Immersions and Compensated Compactness

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Slemrod, Marshall; Wang, Dehua

    2010-03-01

    A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold {{mathcal M}^2} which can be realized as isometric immersions into {mathbb{R}^3}. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differential equations of mixed elliptic-hyperbolic type whose mathematical theory is largely incomplete. In this paper, we develop a general approach, which combines a fluid dynamic formulation of balance laws for the Gauss-Codazzi system with a compensated compactness framework, to deal with the initial and/or boundary value problems for isometric immersions in {mathbb{R}^3}. The compensated compactness framework formed here is a natural formulation to ensure the weak continuity of the Gauss-Codazzi system for approximate solutions, which yields the isometric realization of two-dimensional surfaces in {mathbb{R}^3}. As a first application of this approach, we study the isometric immersion problem for two-dimensional Riemannian manifolds with strictly negative Gauss curvature. We prove that there exists a C 1, 1 isometric immersion of the two-dimensional manifold in {mathbb{R}^3} satisfying our prescribed initial conditions. To achieve this, we introduce a vanishing viscosity method depending on the features of initial value problems for isometric immersions and present a technique to make the a priori estimates including the L ? control and H -1-compactness for the viscous approximate solutions. This yields the weak convergence of the vanishing viscosity approximate solutions and the weak continuity of the Gauss-Codazzi system for the approximate solutions, hence the existence of an isometric immersion of the manifold into {mathbb{R}^3} satisfying our initial conditions. The theory is applied to a specific example of the metric associated with the catenoid.

  13. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  14. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  15. Metastability of hadronic compact stars

    SciTech Connect

    Bombaci, Ignazio; Panda, Prafulla K.; Providencia, Constanca; Vidana, Isaac

    2008-04-15

    Pure hadronic compact stars, above a threshold value of their gravitational mass (central pressure), are metastable to the conversion to quark stars (hybrid or strange stars). In this paper, we present a systematic study of the metastability of pure hadronic compact stars using different relativistic models for the equation of state. In particular, we compare results for the quark-meson coupling model with those for the Glendenning-Moszkowski parametrization of the nonlinear Walecka model. For the quark-meson coupling model, we find large values (M{sub cr}=1.6-1.9M{sub {center_dot}}) for the critical mass of the hadronic star sequence and we find that the formation of a quark star is only possible with a soft quark matter equation of state. For the Glendenning-Moszkowski parametrization of the nonlinear Walecka model, we explore the effect of different hyperon couplings on the critical mass and on the stellar conversion energy. We find that increasing the value of the hyperon coupling constants shifts the bulk transition point for quark deconfinement to higher densities, increases the stellar metastability threshold mass and the value of the critical mass, and thus makes the formation of quark stars less likely. For the largest values of the hyperon couplings we find a critical mass which may be as high as 1.9-2.1M{sub {center_dot}}. These stellar configurations, which contain a large central hyperon fraction (f{sub Y,cr}{approx}30%), would be able to describe highly massive compact stars, such as the one associated with the millisecond pulsar PSR B1516+02B with a mass M=1.94{sub -0.19}{sup +0.17}M{sub {center_dot}}.

  16. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the same outer geometry if desired.

  17. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  18. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  19. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  20. Compact anti-radon facility

    NASA Astrophysics Data System (ADS)

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.; Fojtík, P.; Hýža, M.; Hůlka, J.; Jílek, K.; Sto?ek, P.; Veselý, J.; Busto, J.

    2015-08-01

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m3/h of purified air (air radon activity at the output ˜10mBq/m3). The basic features and preliminary results of anti-radon device testing are presented.

  1. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  2. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate (from both creep and constant strain rate experiments), the characteristics (geometry, thickness) of a compaction band remain essentially the same. Several lines of evidence, notably the similarity between the differential stress dependence of creep strain rate in the dilatant and compactive regimes, suggest that, as for dilatant creep, compactant creep is driven by subcritical stress corrosion cracking. We highlight the attendant implications for time-dependent porosity loss, subsidence, and permeability reduction in sandstone reservoirs.

  3. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  4. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  5. Incompletely compacted equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Sasso, M. R.; Macke, R. J.; Boesenberg, J. S.; Britt, D. T.; Rivers, M. L.; Ebel, D. S.; Friedrich, J. M.

    2009-12-01

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography (µCT) and helium pycnometry. We found total porosities ranging from ~10 to 20% within these chondrites, and with µCT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not “fluffed” on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  6. Compacted soil liner study completed

    SciTech Connect

    Not Available

    1988-11-01

    McClelland Engineers, Waste Management Services, announced its conclusions from an EPA-funded research project on the permeability of compacted clay liners for hazardous waste landfills. The results of the three-year EPA Liner Study will set safer criteria for the regulation, design and construction of landfill liners and caps. As the design of landfills became more environmentally sound, evidence indicated that clay liners, once thought to be impermeable, could be permeable under the right conditions. Under some circumstances, we found that seepage occurred predominantly through macrovoids between soil clods and along the interlift boundary. Historically, it has been thought that seepage migrates only through the finer pores between the soil particles in the clods. This was proved not to be the case. With the primary seepage paths identified, we found that for clay liners to meet the 1 x 10/sup /minus/7/ cm/sec or less federal permeability specification, certain construction objectives had to be achieved. To meet these objectives, one must choose an appropriate combination of these variables; moisture content of the soil; type and weight of the roller; thickness of each lift; size of clods before compaction; and number of passes by the roller. With these conclusions, we now know how to design and construct less permeable clay liners and caps to better protect the soil and groundwater from contamination. However, further research is needed to assess roller performance and laboratory testing methods for predicting and evaluating soil liner permeability.

  7. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  8. Compact hybrid Si microring lasers

    NASA Astrophysics Data System (ADS)

    Liang, Di; Bowers, John E.; Fiorentino, Marco; Beausoleil, Raymond G.

    2010-02-01

    In this paper we review the recent progress in developing compact microring lasers on the hybrid silicon platform. A simplified self-aligned process is used to fabricate devices as small as 15 ?m in diameter. The optically-pumped, continuous wave (cw) devices show low threshold carrier density, comparable to the carrier density to reach material transparency. In the electrically-pumped lasers, the short cavity length leads to the minimum laser threshold less than 5 mA in cw operation. The maximum cw lasing temperature is up to 65 °C. Detailed studies in threshold as a function of coupling coefficient and bus waveguide width are presented. Surface recombination at the dry-etched exposed interface is investigated qualitatively by studying the current-voltage characteristics. Ring resonator-based figures of merits including good spectral purity and large side-mode suppression ratio are demonstrated. Thermal impedance data is extracted from temperature-dependent spectral measurement, and buried oxide layer in silicon-on-insulator wafer is identified as the major thermal barrier to cause high thermal impedance for small-size devices. The demonstrated compact hybrid ring lasers have low power consumption, small footprint and dynamic performance. They are promising for Si-based optical interconnects and flip-flop applications.

  9. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  10. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  11. Compact submanifolds supporting singular interactions

    SciTech Connect

    Kaynak, Burak Tevfik Teoman Turgut, O.

    2013-12-15

    A quantum particle moving under the influence of singular interactions on embedded surfaces furnish an interesting example from the spectral point of view. In these problems, the possible occurrence of a bound-state is perhaps the most important aspect. Such systems can be introduced as quadratic forms and generically they do not require renormalization. Yet an alternative path through the resolvent is also beneficial to study various properties. In the present work, we address these issues for compact surfaces embedded in a class of ambient manifolds. We discover that there is an exact bound state solution written in terms of the heat kernel of the ambient manifold for a range of coupling strengths. Moreover, we develop techniques to estimate bounds on the ground state energy when several surfaces, each of which admits a bound state solution, coexist. -- Highlights: •Schrödinger operator with singular interactions supported on compact submanifolds. •Exact bound-state solution in terms of the heat kernel of the ambient manifold. •Generalization of the variational approach to a collection of submanifolds. •Existence of a lower bound for a unique ground state energy.

  12. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  13. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  14. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  15. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  16. Anisotropic charged stellar models in Generalized Tolman IV spacetime

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan; Fatema, Saba

    2015-01-01

    With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.

  17. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  18. Fractal Heteroaggregation of Oppositely Charged Colloids.

    PubMed

    Kim; Berg

    2000-09-15

    Floc structures resulting from selective heteroaggregation of positively and negatively charged colloids are investigated as a function of number ratio and shear conditions at pH 6. Negatively charged silica and positively charged alumina-coated silica undergo rapid aggregation due to attractive electrostatic interactions. At either extreme in number ratio, growth is terminated at an early stage, presumably because the aggregates acquire the same sign of charge, eliminating the driving force for further aggregation. For intermediate number ratios, extensive growth occurs, since the distribution of positive and negative charges is more uniform. Structure evolution of large heteroaggregates is assessed by static light scattering. Shear strongly influences the packing geometry and the tendency for the aggregates to undergo restructuring. At high shear (N(Re)>2000), heteroaggregates show relatively dense packing and do not restructure. Fractal dimension D(f) decreases from 2.64 to 2.26 as the number of positive particles is increased. At low shear (N(Re)<200), packing of the particles is more open and restructuring occurs. The lowest observed fractal dimension is 1.79. In the absence of applied shear, heteroaggregates with D(f)=1.79 rearrange to more compact structures with D(f)=1.88. Copyright 2000 Academic Press. PMID:10985842

  19. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...the Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S. Barron at (304) 625-2803...CONTACT: Inquiries may be addressed to Mr. Gary S. Barron, FBI Compact Officer, Compact Council Office, Module D3, 1000...

  20. Compact Polymers on Fractal Lattices

    NASA Astrophysics Data System (ADS)

    Elezovi?-Hadži?, Sun?ica; Mar?eti?, Dušanka; Maleti?, Slobodan

    2007-04-01

    We study compact polymers, modelled by Hamiltonian walks (HWs), i.e. self-avoiding walks that visit every site of the lattice, on various fractal lattices: Sierpinski gasket (SG), Given-Mandelbrot family of fractals, modified SG fractals, and n-simplex fractals. Self-similarity of these lattices enables establishing exact recursion relations for the numbers of HWs conveniently divided into several classes. Via analytical and numerical analysis of these relations, we find the asymptotic behaviour of the number of HWs and calculate connectivity constants, as well as critical exponents corresponding to the overall number of open and closed HWs. The nonuniversality of the HW critical exponents, obtained for some homogeneous lattices is confirmed by our results, whereas the scaling relations for the number of HWs, obtained here, are in general different from the relations expected for homogeneous lattices.

  1. Studies of accelerated compact toruses

    SciTech Connect

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  2. Compact Quantum Cascade Laser Transmitter

    SciTech Connect

    Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.

    2009-04-01

    ): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.

  3. Anisotropic models for compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Dayanandan, Baiju

    2015-05-01

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor with the help of both metric potentials and . Here we consider the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model.

  4. Uncertainty Principles for Compact Groups

    E-print Network

    Gorjan Alagic; Alexander Russell

    2008-08-29

    We establish an operator-theoretic uncertainty principle over arbitrary compact groups, generalizing several previous results. As a consequence, we show that if f is in L^2(G), then the product of the measures of the supports of f and its Fourier transform ^f is at least 1; here, the dual measure is given by the sum, over all irreducible representations V, of d_V rank(^f(V)). For finite groups, our principle implies the following: if P and R are projection operators on the group algebra C[G] such that P commutes with projection onto each group element, and R commutes with left multiplication, then the squared operator norm of PR is at most rank(P)rank(R)/|G|.

  5. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  6. Scalar curvature and projective compactness

    NASA Astrophysics Data System (ADS)

    ?ap, Andreas; Gover, A. Rod

    2015-12-01

    Consider a manifold with boundary, and such that the interior is equipped with a pseudo-Riemannian metric. We prove that, under mild asymptotic non-vanishing conditions on the scalar curvature, if the Levi-Civita connection of the interior does not extend to the boundary (because for example the interior is complete) whereas its projective structure does, then the metric is projectively compact of order 2; this order is a measure of volume growth towards infinity. This implies a host of results including that the metric satisfies asymptotic Einstein conditions, and induces a canonical conformal structure on the boundary. Underpinning this work is a new interpretation of scalar curvature in terms of projective geometry. This enables us to show that if the projective structure of a metric extends to the boundary then its scalar curvature also naturally and smoothly extends.

  7. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  8. Compact torus experiments and theory

    SciTech Connect

    Armstrong, W.T.; Barnes, D.C.; Bartsch, R.R.

    1980-01-01

    Two types of compact toroids have been studied: spheromaks and field-reversed configurations (FRC). Spheromaks, which contain both toroidal and poloidal fields, have been formed with a magnetized coaxial injector and trapped in both prolate and oblate flux conservers. As expected from theory, the prolate configuration always tilts, but the oblate configuration can be made stable even in the presence of a guide field. Observations include 150..mu..s lifetimes, approx. 10/sup 14/ cm/sup -3/, and a decrease of field fluctuations by a factor of 100 at the time of complete reconnection. Theoretical studies of the FRC (no toroidal field) have been compared with the results of two field-reversed theta-pinches, FRX-A and FRX-B.

  9. A Compact Wakefield Measurement Facility

    NASA Astrophysics Data System (ADS)

    Power, J. G.; Gai, W.

    2015-10-01

    The conceptual design of a compact, photoinjector-based, facility for high precision measurements of wakefields is presented. This work is motivated by the need for a thorough understanding of beam induced wakefield effects for any future linear collider. We propose to use a high brightness photoinjector to generate (approximately) a 2 nC, 2 mm-mrad drive beam at 20 MeV to excite wakefields and a second photoinjector to generate a 5 MeV, variably delayed, trailing witness beam to probe both the longitudinal and transverse wakefields in the structure under test. Initial estimates show that we can detect a minimum measurable dipole transverse wake function of 0.1 V/pC/m/mm and a minimum measurable monopole longitudinal wake function of 2.5 V/pC/m. Simulations results for the high brightness photoinjector, calculations of the facility's wakefield measurement resolution, and the facility layout are presented.

  10. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  11. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  12. Exploration of Compact Stellarators as Power Plants

    E-print Network

    California at San Diego, University of

    Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study Farrokh, see: http://aries.ucsd.edu/ #12;Exploration and Optimization of Compact Stellarators as Power Plants in the context of power plant studies, e.g., particle loss Divertor (location, particle and energy distribution

  13. Norm attaining compact operators Miguel Martin

    E-print Network

    Martín, Miguel

    Norm attaining compact operators Miguel Mart´in http://www.ugr.es/local/mmartins Texas A Miguel Mart´in (Granada) Norm attaining compact operators College Station, TX, USA 2 / 28 #12;Preliminaries Preliminaries Secci´on 1 1 Preliminaries Bishop-Phelps theorem Norm attaining operators

  14. COMPACTLY ACCESSIBLE CATEGORIES AND QUANTUM KEY DISTRIBUTION

    E-print Network

    Murawski, Andrzej

    COMPACTLY ACCESSIBLE CATEGORIES AND QUANTUM KEY DISTRIBUTION CHRIS HEUNEN Institute for Computing to the whole compactly accessible category. As an example, we model a quantum key distribution protocol, Accessible categories, Quantum key distribution. LOGICAL METHODS IN COMPUTER SCIENCE DOI:10.2168/LMCS-??? c

  15. 3D N = 4 Gauge Theory Compactication

    E-print Network

    Bigelow, Stephen

    Outline 3D N = 4 Gauge Theory Compactication Twistors 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler Metrics Richard Eager UCSB Friday, October 17th, 2008, 4:00 p.m. Richard Eager UCSB 3D N = 4 Supersymmetric Gauge Theories and Hyperk¨ahler M #12;Outline 3D N = 4 Gauge Theory Compactication Twistors

  16. An Obstruction to Quantizing Compact Symplectic Manifolds

    E-print Network

    Mark J. Gotay; Janusz Grabowski; Hendrik B. Grundling

    1999-10-21

    We prove that there are no nontrivial finite-dimensional Lie representations of certain Poisson algebras of polynomials on a compact symplectic manifold. This result is used to establish the existence of a universal obstruction to quantizing a compact symplectic manifold, regardless of the dimensionality of the representation.

  17. Compacted Soil Liner Interface Strength Importance

    E-print Network

    Case Study Compacted Soil Liner Interface Strength Importance Timothy D. Stark, F.ASCE1 ; Hangseok interface is not the geomembrane (GM)/compacted low-permeability soil liner (LPSL) but a soil­soil interface placing the cover soil from bottom to top. DOI: 10.1061/(ASCE)GT.1943-5606 .0000556. © 2012 American

  18. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  19. Cooling of Color Superconducting Compact Stars

    E-print Network

    David Blaschke

    2006-03-26

    We review the status of research on the cooling of compact stars, with emphasis on the influence of color superconducting quark matter phases. Although a consistent microscopic approach is not yet available, severe constraints on the phase structure of matter at high densities come from recent mass and cooling observations of compact stars.

  20. Unusual photon isospin mixing and instantaneous Coulomb effects on the thermodynamics of compact matter

    E-print Network

    Ji-sheng Chen

    2007-01-23

    A hidden local symmetry formalism with a two-photon counterterm approach is performed based on the relativistic continuum quantum many-body theory. The underlying electromagnetic under-screening as well as screening effects between the electric charged point-like electrons and composite protons are discussed by analyzing the in-medium isospin mixing of Lorentz vector with scalar due to electromagnetic photon. Besides the usual screening results, the main conclusion is that an effective oscillatory instantaneous Coulomb potential between the like-charged collective electrons contributes a very large negative term to the equation of state. This counterintuitive like-charged attraction results from the modulation factor of the opposite charged baryon superfluid background. The anomalous long distance quantum dragging effects between the collective electrons can be induced in a compact Coulomb confinement environment. The physics is of the strongly coupling characteristic in a specific dilute regime.

  1. A compact high power pulsed modulator based on spiral Blumlein line.

    PubMed

    Liu, Jinliang; Yin, Yi; Ge, Bin; Cheng, Xinbing; Feng, Jiahuai; Zhang, Jiande; Wang, Xinxin

    2007-10-01

    A compact high power pulsed modulator based on spiral water Blumlein line, which consists of primary storage capacitors, a Tesla transformer, a spiral Blumlein line of water dielectric, and a field-emission diode, is described. The experimental results showed that the diode voltage is more than 500 kV, the electron beam current of diode is about 32 kA, and the pulse duration is about 180 ns. The distributions for electrical field in the spiral water Blumlein line were obtained by the simulations. In addition, the process of the charging a spiral Blumlein line was simulated through the PSPICE software to get the wave form of charging voltage of pulse forming line, the diode voltage, and diode current of modulator. The theoretical and simulated results are in agreement. This accelerator is very compact and works stably and reliably. PMID:17979411

  2. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  3. Spacecraft Charging Technology, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.

  4. A compact bipolar pulse-forming network-Marx generator based on pulse transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 ? could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  5. A Compact High-Voltage Pulse Generator for Plasma Applications

    NASA Astrophysics Data System (ADS)

    Spassov, V. A.; Barroso, J.; Ueda, M.; Guerguiev, L.

    The design and construction of a compact high-voltage pulse generator for providing input electron beam power for the LAP/INPE 32 GHz gyrotron and for treatment of metal and polymer materials by plasma immersion ion implantation (PIII) are described. The generator was built on a circuit category of Pulse Forming Network (PFN), consisting of nine LC sections with L = 270 muH and C = 2.5 nF. The instrument was designed to produce a flat 30 kV, several Amps pulse in 15 mus pulse length with pulse repetition frequency (PRF) of 8 to 100 Hz. By means of a resonant charging inductance it is possible to gain an output voltage with a factor of 1.8 higher than the voltage supplied by the pulse generator. The generator is fed with sine-wave, constant current source, and a 60 kV, 15 mA switching power supply.

  6. Application of a compact microwave ion source to radiocarbon analysis

    SciTech Connect

    Schneider, R. J.; Reden, K. F. von; Hayes, J. M.; Wills, J. S. C.

    1999-04-26

    The compact, high current, 2.45 GHz microwave-driven plasma ion source which was built for the Chalk River TASCC facility is presently being adapted for testing as a gas ion source for accelerator mass spectrometry, at the Woods Hole Oceanographic Institution accelerator mass spectrometer. The special requirements for producing carbon-ion beams from micromole quantities of carbon dioxide produced from environmental samples will be discussed. These samples will be introduced into the ion source by means of argon carrier gas and a silicon capillary injection system. Following the extraction of positive ions from the source, negative ion formation in a charge exchange vapor will effectively remove the argon from the carbon beam. Simultaneous injection of the three carbon isotopes into the accelerator is planned.

  7. Design and Build a Compact Raman Sensor for Identification of Chemical Composition

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-01-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  8. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  9. Compact pulsed electron beam system for microwave generation

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Deb, P.; Shukla, R.; Banerjee, P.; Prabaharan, T.; Adhikary, B.; Verma, R.; Sharma, A.; Shyam, A.

    2012-11-01

    A compact 180 kV electron beam system is designed for high power microwave generation. The electron beam system is consists of a secondary energy storage device, which can deliver energy to the load at faster rate than usual primary energy storage system such as tesla transformers or marx generator. The short duration, high voltage pulse with fast rise time and good flattop is applied to vacuum diode for high power microwave generation. The compact electron beam system is made up of single turn primary tesla transformer which charges a helical pulse forming line and transfers its energy to vacuum diode through a high voltage pressurized spark gap switch. We have used helical pulse forming line which has higher inductance as compared to coaxial pulse forming line, which in turns increases, the pulse width and reduce the length of the pulse forming line. Water dielectric medium is used because of its high dielectric constant, high dielectric strength and efficient energy storage capability. The time dependent breakdown property and high relative permittivity of water makes it an ideal choice for this system. The high voltage flat-top pulse of 90 kV, 260 ns is measured across the matched load. In this article we have reported the design details, simulation and initial experimental results of 180 kV pulsed electron beam system for high power microwave generation.

  10. Compaction of North-sea chalk

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Dániel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2014-05-01

    The Ekofisk field is the largest petroleum field in the Norwegian North Sea territory where oil is produced from chalk formations. Early stage of oil production caused considerable changes in pore fluid pressure which led to a reservoir compaction. Pore collapse mechanism caused by the dramatic increase of effective stress, which in turn was caused by the pressure reduction by hydrocarbon depletion, was early identified as a principal reason for the reservoir compaction (Sulak et al. 1991). There have been several attempts to model this compaction. They performed with variable success on predicting the Ekofisk subsidence. However, the most of these models are based on empirical relations and do not investigate in detail the phenomena involved in the compaction. In sake of predicting the Ekofisk subsidence while using only independently measurable variables we used a chalk compaction model valid on geological time-scales (Japsen et al. 2011) assuming plastic pore-collapse mechanism at a threshold effective stress level. We identified the phenomena involved in the pore collapse. By putting them in a sequential order we created a simple statistical analytical model. We also investigated the time-dependence of the phenomena involved and by assuming that one of the phenomena is rate-limiting we could make estimations of the compaction rate at smaller length-scales. By carefully investigating the nature of pressure propagation we could upscale our model to reservoir scale. We found that the predicted compaction rates are close enough to the measured rates. We believe that we could further increase accuracy by refining our model. Sulak, R. M., Thomas, L. K., Boade R. R. (1991) 3D reservoir simulation of Ekofisk compaction drive. Journal of Petroleum Technology, 43(10):1272-1278, 1991. Japsen, P., Dysthe, D. K., Hartz, E. H., Stipp, S. L. S., Yarushina, V. M., Jamtveit. (2011) A compaction front in North Sea chalk. Journal of Geophysical Research: Solid Earth (1978-2012), 116(B11)

  11. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  12. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  13. General Relativity and Compact Objects

    E-print Network

    Patrick Das Gupta

    2015-09-22

    Starting with the conceptual foundation of general relativity (GR) - equivalence principle, space-time geometry and special relativity, I train cross hairs on two characteristic predictions of GR - black holes and gravitational waves. These two consequences of GR have played a significant role in relativistic astrophysics, e.g. compact X-ray sources, GRBs, quasars, blazars, coalescing binary pulsars, etc. With quantum theory wedded to GR, particle production from vacuum becomes a generic feature whenever event horizons are present. In this paper, I shall briefly discuss the fate of a `black hole atom' when Hawking radiation is taken into account. In the context of gravitational waves, I shall focus on the possible consequences of gravitational and electromagnetic radiation from highly magnetized and rapidly spinning white dwarfs. The discovery of RX J0648.0-4418 system - a WD in a binary with mass slightly over 1.2 $ M_{\\odot}$, and rotating with spin period as short as 13.2 s, provides an impetus to revisit the problem of WD spin evolution due to energy loss.

  14. Compact vs. Exponential-Size LP Relaxations

    SciTech Connect

    Carr, R.D.; Lancia, G.

    2000-09-01

    In this paper we introduce by means of examples a new technique for formulating compact (i.e. polynomial-size) LP relaxations in place of exponential-size models requiring separation algorithms. In the same vein as a celebrated theorem by Groetschel, Lovasz and Schrijver, we state the equivalence of compact separation and compact optimization. Among the examples used to illustrate our technique, we introduce a new formulation for the Traveling Salesman Problem, whose relaxation we show equivalent to the subtour elimination relaxation.

  15. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  16. Ultra-compact (X-ray) binaries

    E-print Network

    G. Nelemans; P. G. Jonker

    2006-05-30

    A short review of ultra-compact binaries, focused on ultra-compact X-ray binaries, is followed by a discussion of recent results of our VLT campaign to obtain optical spectra of (candidate) ultra-compact X-ray binaries. We find evidence for carbon/oxygen as well as helium/nitrogen discs and no evidence for (traces) of hydrogen. This suggests that the donors in the observed systems are white dwarfs. However, we also find large differences between the two C/O discs of which we have good spectra, which highlights the need for a better understanding of the optical spectra.

  17. Compactivity measurements for a bidimensional granular

    NASA Astrophysics Data System (ADS)

    Lechenault, Frederic; Dacruz, Frederic; Dauchot, Olivier; Bertin, Eric

    2006-03-01

    We investigate experimentally the statistical properties of the free volumes inside a bidimensional granular packing. Having in mind the more general issue of the measure of intensive thermodynamical parameters in out-of-equilibrium systems, we propose an experimental procedure to access the compactivity of the packing from the free volume distributions over clusters of grains, varying the size of the cluster. Our main result is that the logarithm of the probability to find a given free volume in a cluster scales in a nonextensive way. The compactivity of the packing is then extracted from the corresponding scaling function for two different kinds of grains, and two levels of compaction.

  18. Charged anisotropic matter with linear or nonlinear equation of state

    E-print Network

    Varela, Victor; Ray, Saibal; Chakraborty, Kaushik; Kalam, Mehedi

    2010-01-01

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplification achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or non-linear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the...

  19. Solvation Effects on Structure and Charge Distribution in Anionic Clusters

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias

    2015-03-01

    The interaction of ions with solvent molecules modifies the properties of both solvent and solute. Solvation generally stabilizes compact charge distributions compared to more diffuse ones. In the most extreme cases, solvation will alter the very composition of the ion itself. We use infrared photodissociation spectroscopy of mass-selected ions to probe how solvation affects the structures and charge distributions of metal-CO2 cluster anions. We gratefully acknowledge the National Science Foundation for funding through Grant CHE-0845618 (for graduate student support) and for instrumentation funding through Grant PHY-1125844.

  20. Solution Phase Space and Conserved Charges: Charges Associated with Exact Symmetries, A General Formulation

    E-print Network

    K. Hajian; M. M. Sheikh-Jabbari

    2015-12-17

    We provide a general formulation for calculating conserved charges for solutions to generally covariant gravitational theories with possibly other internal gauge symmetries, in any dimensions and with generic asymptotic behaviors. These solutions are generically specified by a number of exact (continuous, global) symmetries and some parameters. We define "parametric variations" as field perturbations generated by variations of the solution parameters. Employing the covariant phase space method, we establish that the set of these solutions (up to pure gauge transformations) form a phase space, the solution phase space, and that the tangent space of this phase space include the parametric variations. We then compute conserved charge variations associated with the exact symmetries of the family of solutions, caused by parametric variations. Integrating the charge variations over a path in the solution phase space, we define the conserved charges. In particular, we revisit "black hole entropy as a conserved charge" and the derivation of first law of black hole thermodynamics. We show that the solution phase space setting enables us to define black hole entropy by an integration over any compact, codminesion two, smooth spacelike surface encircling the hole, as well as to a natural generalization of Wald and Iyer-Wald analysis to cases involving gauge fields.

  1. Structure of water at charged interfaces: a molecular dynamics study.

    PubMed

    Dewan, Shalaka; Carnevale, Vincenzo; Bankura, Arindam; Eftekhari-Bafrooei, Ali; Fiorin, Giacomo; Klein, Michael L; Borguet, Eric

    2014-07-15

    The properties of water molecules located close to an interface deviate significantly from those observed in the homogeneous bulk liquid. The length scale over which this structural perturbation persists (the so-called interfacial depth) is the object of extensive investigations. The situation is particularly complicated in the presence of surface charges that can induce long-range orientational ordering of water molecules, which in turn dictate diverse processes, such as mineral dissolution, heterogeneous catalysis, and membrane chemistry. To characterize the fundamental properties of interfacial water, we performed molecular dynamics (MD) simulations on alkali chloride solutions in the presence of two types of idealized charged surfaces: one with the charge density localized at discrete sites and the other with a homogeneously distributed charge density. We find that, in addition to a diffuse region where water orientation shows no layering, the interface region consists of a "compact layer" of solvent next to the surface that is not described in classical electric double layer theories. The depth of the diffuse solvent layer is sensitive to the type of charge distributions on the surface and the ionic strength. Simulations of the aqueous interface of a realistic model of negatively charged amorphous silica show that the water orientation and the distribution of ions strongly depend on the identity of the cations (Na(+) vs Cs(+)) and are not well represented by a simplistic homogeneous charge distribution model. While the compact layer shows different solvent net orientation and depth for Na(+) vs Cs(+), the depth (~1 nm) of the diffuse layer of oriented waters is independent of the identity of the cation screening the charge. The details of interfacial water orientation revealed here go beyond the traditionally used double and triple layer models and provide a microscopic picture of the aqueous/mineral interface that complements recent surface specific experimental studies. PMID:24979659

  2. Pharmaceutical tablet compaction : product and process design

    E-print Network

    Pore, Mridula

    2009-01-01

    This thesis explores how tablet performance is affected by microstructure, and how microstructure can be controlled by selection of excipients and compaction parameters. A systematic strategy for formulation and process ...

  3. Initial Activation Assessment for ARIES Compact Stellarator

    E-print Network

    Initial Activation Assessment for ARIES Compact Stellarator Power Plant Initial Activation Madison, WI #12;· Perform systematic activation assessment for interim ARIES-CS design. · Evaluate: ­ Activity ­ Decay Heat · Address waste-related issues: ­ Waste Disposal Rating ­ Breakdown of Class

  4. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C. (Livermore, CA)

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  5. ACTIVELY CONTROLLED AFTERBURNER FOR COMPACT WASTE INCINERATION

    EPA Science Inventory

    In a continuing research program directed at developing technology for compact shipboard incinerators, active control of fluid dynamics has been used to enhance mixing in incinerator afterburner (AB) experiments and increase the DRE for a waste surrogate. Experiments were conduc...

  6. A CMOS-compatible compact display

    E-print Network

    Chen, Andrew R. (Andrew Raymond)

    2005-01-01

    Portable information devices demand displays with high resolution and high image quality that are increasingly compact and energy-efficient. Microdisplays consisting of a silicon CMOS backplane integrated with light ...

  7. Gravitational waves from merging compact binaries

    E-print Network

    Hughes, Scott A.

    Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. ...

  8. Deep Compaction Control of Sandy Soils

    NASA Astrophysics Data System (ADS)

    Ba?achowski, Lech; Kurek, Norbert

    2015-02-01

    Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  9. Our compact with tomorrow's doctors.

    PubMed

    Cohen, Jordan J

    2002-06-01

    In recent years, the image of medicine as a caring profession has been badly tarnished by a rash of critical reports in the media. In the face of this negative publicity, do young people still want to be doctors? The author reviews conventional reasons given for the declining applicant pool (e.g., issues of declining income, loss of autonomy, etc.) and posits that an additional reason may be perceptions that doctors no longer command respect and that they are being oppressed by, rather than being guardians of, the health care system. Such views challenge academic medicine to broadcast to the world a realistic picture of the fabulous opportunities and gratifications that lie ahead for the next generation of physicians. However, academic medicine must also address some current realities within medical education, such as the admission process (where at present there is a tendency to overemphasize indices of academic achievement and underemphasize the personal characteristics sought in applicants) and the acculturation process in medical school (which can often dehumanize students and convert idealistic ones into cynics). The author acknowledges that these are tough challenges. He suggests as a first step that leaders of academic medicine prepare and disseminate an explicit statement of their commitments, a kind of compact between teachers and learners of medicine. He outlines these commitments, and states his hope that by fulfilling them, the academic medicine community can make clear that medicine-which at its core is still about the doctor-patient relationship-is a true calling, not just beleaguered occupation. PMID:12063190

  10. Selected problems in astrophysics of compact objects

    E-print Network

    Armen Sedrakian

    2012-12-01

    I review three problems in astrophysics of compacts stars: (i) the phase diagram of warm pair-correlated nuclear matter a sub-saturation densities at finite isospin asymmtery; (ii) the Standard Model neutrino emission from superfluid phases in neutron stars within the Landau theory of Fermi (superfluid) liquids; (iii) the beyond Standard Model physics of axionic cooling of compact stars by the Cooper pair-breaking processes.

  11. Death by compaction in a garbage truck.

    PubMed

    Staats, Paul N; Jumbelic, Mary I; Dignan, Caroline R

    2002-09-01

    We report on two deaths by compaction in a garbage truck that recently occurred in this county. In both cases, the victim apparently climbed into a recycling dumpster to sleep, and was emptied with the contents of the receptacle into a garbage truck. Subsequent compaction of the victim with the load led to death. We also discuss several similar fatalities that have been reported to the U.S. Consumer Product Safety Commission. PMID:12353548

  12. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  13. Compact Picture in Extended Superconformal Field Theories

    E-print Network

    Nedanovski, Dimitar

    2015-01-01

    There is a complex conformal transformation, which maps the $D$ - dimensional real Minkowski space on a bounded set in the $D$ - dimensional complex vector space. It generalizes the Cayley map from $D=1$ dimensions to higher space-time dimensions. This transformation provides a very convenient coordinate picture for Conformal Field Theories called compact picture. In this paper we extend the compact picture coordinates for superconformal field theories in four space-time dimensions.

  14. Compact Picture in Extended Superconformal Field Theories

    E-print Network

    Dimitar Nedanovski

    2015-10-20

    There is a complex conformal transformation, which maps the $D$ - dimensional real Minkowski space on a bounded set in the $D$ - dimensional complex vector space. It generalizes the Cayley map from $D=1$ dimensions to higher space-time dimensions. This transformation provides a very convenient coordinate picture for Conformal Field Theories called compact picture. In this paper we extend the compact picture coordinates for superconformal field theories in four space-time dimensions.

  15. Rotating compact star with superconducting quark matter

    SciTech Connect

    Panda, P.K.; Nataraj, H.S.

    2006-02-15

    A compact star with a superconducting quark core, a hadron crust, and a mixed phase between the two is considered. The quark-meson coupling model for hadron matter and the color-flavor-locked quark model for quark matter is used to construct the equation of state for the compact star. The effect of pairing of quarks in the color-flavor-locked phase and the mixed phase on the mass, radius, and period of the rotating star is studied.

  16. Stuck-at-fault test set compaction 

    E-print Network

    Vanfickell, Jason Michael

    2013-02-22

    . 1 ormula for computation ot'thc pattern metric Figurc 3. Htgh-level SupcrDA prograin tlon chart. 1 igurc 4. Pattern Score and Fault Detections before compaction . . . . . . 13 Figure 5. Pattern Score and Dctections after compaction. . Figure 6... within that model are assumed the only points of failure that the test patterns should need to be able to detect. Beside the advantage of technology abstraction, alternative fault models also greatly reduce the number of faults under consideration...

  17. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  18. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  19. Battery formation charging apparatus

    SciTech Connect

    Stewart, J.L.

    1987-08-04

    An apparatus is describe for charging electric storage batteries, the apparatus comprising: (a) a host computer for providing charging information to and receiving status information from at least one slave computer by means of a data link; and (b) at least one control module coupled to the slave computer for applying charging current to at least one electric storage battery in response to instructions received from the slave computer, and for providing feedback and status information to the slave computer.

  20. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  1. Strongly Charged Polymer Brushes

    E-print Network

    Ben O'Shaughnessy; Qingbo Yang

    2005-08-10

    Charged polymer brushes are layers of surface-tethered chains. Experimental systems are frequently strongly charged. Here we calculate phase diagrams for such brushes in terms of salt concentration n_s, grafting density and polymer backbone charge density. Electrostatic stiffening and counterion condensation effects arise which are absent from weakly charged brushes. In various phases chains are locally or globally fully stretched and brush height H has unique scaling forms; at higher salt concentrations we find H ~ n_s^(-1/3), in good agreement with experiment.

  2. Mystery of point charges

    E-print Network

    Andrei Gabrielov; Dmitry Novikov; Boris Shapiro

    2004-09-03

    We discuss the problem of finding an upper bound for the number of equilibrium points of a potential of several fixed point charges in R^n. This question goes back to J.C.Maxwell and M.Morse. Using fewnomial theory we show that for a given number of charges there exists an upper bound independent on the dimension, and show it to be 12 for three charges. We conjecture the exact upper bound for a given configuration of nonnegative charges in terms of its Voronoi diagram, and prove it asymptotically.

  3. Charging of interplanetary grains

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.

    1995-01-01

    The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.

  4. A compact, all solid-state LC high voltage generator

    NASA Astrophysics Data System (ADS)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 ?H, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  5. Shock Response and Explosive Launch of Compacted Reactive Material

    NASA Astrophysics Data System (ADS)

    Molitoris, John; Gash, Alexander; Garza, Raul; Gagliardi, Franco; Tringe, Joseph; Batteux, Jan; Souers, P.; HEAF Team

    2013-06-01

    We have performed a series of experiments investigating the detailed dynamic response of compacted reactive material to shock and blast. Here a granular reactive formulation (Fe2O3/Al based thermite) was pressed into a solid cylinder of material and mated to a high-explosive charge of the same diameter. Detonation of the charge transmitted a shock wave to the thermite cylinder and imparted momentum launching it in the direction of the detonation. High-resolution time sequence radiography was used to image the dynamic response of the thermite. This technique allowed a detailed investigation of material deformation in addition to changes in the internal structure and indications of reactivity. The effect of variations in the initial density of the pressed thermite was also examined. We find that these pressed thermites behave much like solid metals during shock transit, then respond much differently. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. MONOTONICALLY MONOLITHIC SPACES, CORSON COMPACTS, AND D-SPACES

    E-print Network

    Gruenhage, Gary

    MONOTONICALLY MONOLITHIC SPACES, CORSON COMPACTS, AND D-SPACES GARY GRUENHAGE Abstract. Monotonically monolithic spaces were recently introduced by V.V. Tkachuk, and monotonically -monolithic spaces- tonically -monolithic compact spaces must be Corson compact, yet there is a Corson compact space which

  7. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. PMID:20176096

  8. 77 FR 22805 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy... the date and location of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). The document listed...

  9. Charged particle radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Saunders, A.

    2013-04-01

    New applications of charged particle radiography have been developed over the past two decades that extend the range of radiographic techniques providing high-speed sequences of radiographs of thicker objects with higher effective dose than can be obtained with conventional radiographic techniques. In this paper, we review the motivation and the development of flash radiography and in particular, charged particle radiography.

  10. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge magnitude of initial drops from a precipitation event, gross cloud charge can be estimated and necessary precautions can be taken during convective cloud events. Being a site of high lightning incidence in tropics, Kerala state is affected in India and calls for much attention in lightning hazards mitigation. Installing this charge sensor and atmospheric electric field mill, an attempt to a better warning system can be attempted.

  11. 77 FR 60475 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... (304) 625-2803, at least 24 hours prior to the start of the session. The notification should contain... Compact Officer, Module D3, 1000 Custer Hollow Road, Clarksburg, West Virginia 26306, telephone (304) 625-2803, facsimile (304) 625-2868. Dated: September 19, 2012. Gary S. Barron, FBI Compact...

  12. 78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... (304) 625-2803, at least 24 hours prior to the start of the session. The notification should contain... Compact Officer, Module D3, 1000 Custer Hollow Road, Clarksburg, West Virginia 26306, telephone (304) 625-2803, facsimile (304) 625-2868. Dated: September 25, 2013. Gary S. Barron, FBI Compact...

  13. 78 FR 20355 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    .... Barron at (304) 625-2803, at least 24 hours prior to the start of the session. The notification should... Compact Officer, Module D3, 1000 Custer Hollow Road, Clarksburg, West Virginia 26306, telephone (304) 625-2803, facsimile (304) 625-2868. Dated: March 26, 2013. Gary S. Barron, FBI Compact Officer,...

  14. Fornax compact object survey FCOS: On the nature of Ultra Compact Dwarf galaxies

    E-print Network

    S. Mieske; M. Hilker; L. Infante

    2004-01-29

    The results of the Fornax Compact Object Survey (FCOS) are presented. The FCOS aims at investigating the nature of the Ultra Compact Dwarf galaxies (UCDs) recently discovered in the center of the Fornax cluster (Drinkwater et al. 2000). 280 unresolved objects in the magnitude space covering UCDs and bright globular clusters (1820 mag) at 96% confidence. The mean velocity of the bright compact objects is consistent with that of the dwarf galaxy population in Fornax, but inconsistent with that of NGC 1399's globular cluster system at 93.5% confidence. The compact objects follow a colour magnitude relation with a slope very similar to that of normal dEs, but shifted about 0.2 mag redwards. The magnitude distribution of compact objects shows a fluent transition between UCDs and GCs with an overpopulation of 8 +/- 4 objects for V<20 mag with respect to the extrapolation of NGC 1399's GC luminosity function. The spatial distribution of bright compact objects is in comparison to the faint ones more extended at 88% confidence. All our findings are consistent with the threshing scenario (Bekki et al. 2003), suggesting that a substantial fraction of compact Fornax members brighter than V~20 mag could be created by threshing dE,Ns. Fainter than V~20 mag, the majority of the objects seem to be genuine GCs. Our results are also consistent with merged stellar super-clusters (Fellhauer & Kroupa 2002) as an alternative explanation for the bright compact objects.

  15. Charging Black Saturn?

    E-print Network

    Brenda Chng; Robert Mann; Eugen Radu; Cristian Stelea

    2008-10-28

    We construct new charged static solutions of the Einstein-Maxwell field equations in five dimensions via a solution generation technique utilizing the symmetries of the reduced Lagrangian. By applying our method on the multi-Reissner-Nordstrom solution in four dimensions, we generate the multi-Reissner-Nordstrom solution in five dimensions. We focus on the five-dimensional solution describing a pair of charged black objects with general masses and electric charges. This solution includes the double Reissner-Nordstrom solution as well as the charged version of the five-dimensional static black Saturn. However, all the black Saturn configurations that we could find present either a conical singularity or a naked singularity. We also obtain a non-extremal configuration of charged black strings that reduces in the extremal limit to a Majumdar-Papapetrou like solution in five dimensions.

  16. Modeling of planetesimal compaction by hot pressing

    NASA Astrophysics Data System (ADS)

    Neumann, W.; Breuer, D.; Spohn, T.

    2014-07-01

    Compaction of initially porous material prior to melting is an important process that has influenced the interior structure and the thermal evolution of planetesimals in their early history. On one hand, compaction decreases the porosity resulting in a reduction of the radius. On the other hand, the loss of porosity results in an increase of the thermal conductivity of the material and, thus, in a more efficient cooling. Porosity loss by hot pressing is the most efficient process of compaction in planetesimals and can be described by creep flow, which depends on temperature and stress. Hot pressing has been repeatedly modeled using a simplified approach, for which the porosity is gradually reduced in some fixed temperature interval between ~650 K and 700 K [see e.g. 1--3]. This approach neglects the dependence of compaction on stress. In the present study [see 4], we compare this ''parametrized'' method with a self-consistent calculation of porosity loss via a ''creep-related'' approach. We use our thermal evolution model from previous studies [5] to model compaction of an initially porous ordinary chondritic body and consider four basic packings of spherical dust grains (simple cubic, orthorhombic, rhombohedral, and body-centered cubic). Depending on the grain packing, we calculate the effective stress and the associated porosity change via the thermally activated creep flow. For comparison, compaction is also modeled by simply reducing the initial porosity linearly to zero between 650 and 700 K. Since we are interested in thermal metamorphism and not melting, we only consider bodies that experience a maximum temperature below the solidus temperature of the metal phase. For the creep related approach, the temperature interval in which compaction takes place depends strongly on the size of the planetesimal and is not fixed as assumed in the parametrized approach. Depending on the radius, the initial grain size, the activation energy, the initial porosity, and the specific packing of the dust grains, the temperature interval lies within 600--1200 K. This finding implies that the parametrized approach strongly overestimates compaction and underestimates the maximal temperature. For the cases considered, the post-compaction porous layer retained at the surface, is a factor of 2.5 to 4.5 thicker for the creep-related approach. The difference in the temperature evolution between the two approaches increases with decreasing radius, and the maximal temperature can deviate by about 40 % for small bodies.

  17. Diagnostics of soil compaction in steppe zone

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Kust, German

    2014-05-01

    Land degradation and desertification are among the major challenges in steppe zone, and leads the risks of food security in affected areas. Soil compaction is one of the basic reasons of degradation of arable land. The processes of soil compaction have different genesis. Knowledge of soil compaction mechanisms and their early diagnostics permit to accurately forecast velocity and degree of degradation processes as well as to undertake effective preventive measures and land reclamation activities. Manifestations of soil compaction and degradation of soil structure due to vertic, alkaline and and mechanical (agro-) compaction, as well as caused by combination of these processes in irrigated and rainfed conditions were studied in four model plots in Krasnodar and Saratov regions of Russia. Typic chernozems, solonetz and kashtanozem solonetz, south chernozem and dark-kashtanozem soils were under investigation. Morphological (mesomorphological, micromorphological and microtomographic) features, as well as number of physical (particle size analyses, water-peptizable clays content (WPC), swelling and shrinking, bulk density and moisture), chemical (humus, pH, CAC, EC), and mineralogical (clay fraction) properties were investigated. Method for grouping soil compaction types by morphological features was proposed. It was shown that: - overcompacted chernozems with vertic features has porosity close to natural chernozems (about 40%), but they had the least pore diameter (7-12 micron) among studied soils. Solonetzic soils had the least amount of "pore-opening" (9%). - irrigation did not lead to the degradation of soil structure on micro-level. - "mechanically" (agro-) compacted soils retained an intra-aggregate porosity. - studied soils are characterized by medium and heavy particle size content (silt [<0.1mm] of 30-60%). Subsoil horizons of chernozems with vertic and alkaline features were the heaviest by particle size content. - the share of WPC to clay ratio was 40% in average, this ratio in vertic and alkaline soils was up to more than 70%. - overcompacted chernozems with vertic features has the swelling degree of 17-25%, all studied soils have the maximum value of swelling degree in subsoil compacted horizon. - humus content varied from 2 to 4%, pH - from 6.9 to 8.2. Studied soils were saturated with basics, Ca of 30 mg*eq/100g and more, Na was more relevant to compacted solonetz and solonetz-like soils (up to 4.3 mg*eq/100g)

  18. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  19. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  20. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-15

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  1. Charged anisotropic matter with linear or nonlinear equation of state

    E-print Network

    Victor Varela; Farook Rahaman; Saibal Ray; Koushik Chakraborty; Mehedi Kalam

    2010-09-04

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplification achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or non-linear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge ($10^{19}\\,C$) and maximum electric field intensities are very large ($10^{23}-10^{24}\\,statvolt/cm$) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  2. Modulation of folding energy landscape by charge-charge interactions: linking experiments with computational modeling.

    PubMed

    Tzul, Franco O; Schweiker, Katrina L; Makhatadze, George I

    2015-01-20

    The kinetics of folding-unfolding of a structurally diverse set of four proteins optimized for thermodynamic stability by rational redesign of surface charge-charge interactions is characterized experimentally. The folding rates are faster for designed variants compared with their wild-type proteins, whereas the unfolding rates are largely unaffected. A simple structure-based computational model, which incorporates the Debye-Hückel formalism for the electrostatics, was used and found to qualitatively recapitulate the experimental results. Analysis of the energy landscapes of the designed versus wild-type proteins indicates the differences in refolding rates may be correlated with the degree of frustration of their respective energy landscapes. Our simulations indicate that naturally occurring wild-type proteins have frustrated folding landscapes due to the surface electrostatics. Optimization of the surface electrostatics seems to remove some of that frustration, leading to enhanced formation of native-like contacts in the transition-state ensembles (TSE) and providing a less frustrated energy landscape between the unfolded and TS ensembles. Macroscopically, this results in faster folding rates. Furthermore, analyses of pairwise distances and radii of gyration suggest that the less frustrated energy landscapes for optimized variants are a result of more compact unfolded and TS ensembles. These findings from our modeling demonstrates that this simple model may be used to: (i) gain a detailed understanding of charge-charge interactions and their effects on modulating the energy landscape of protein folding and (ii) qualitatively predict the kinetic behavior of protein surface electrostatic interactions. PMID:25564663

  3. Modulation of folding energy landscape by charge–charge interactions: Linking experiments with computational modeling

    PubMed Central

    Tzul, Franco O.; Schweiker, Katrina L.; Makhatadze, George I.

    2015-01-01

    The kinetics of folding–unfolding of a structurally diverse set of four proteins optimized for thermodynamic stability by rational redesign of surface charge–charge interactions is characterized experimentally. The folding rates are faster for designed variants compared with their wild-type proteins, whereas the unfolding rates are largely unaffected. A simple structure-based computational model, which incorporates the Debye–Hückel formalism for the electrostatics, was used and found to qualitatively recapitulate the experimental results. Analysis of the energy landscapes of the designed versus wild-type proteins indicates the differences in refolding rates may be correlated with the degree of frustration of their respective energy landscapes. Our simulations indicate that naturally occurring wild-type proteins have frustrated folding landscapes due to the surface electrostatics. Optimization of the surface electrostatics seems to remove some of that frustration, leading to enhanced formation of native-like contacts in the transition-state ensembles (TSE) and providing a less frustrated energy landscape between the unfolded and TS ensembles. Macroscopically, this results in faster folding rates. Furthermore, analyses of pairwise distances and radii of gyration suggest that the less frustrated energy landscapes for optimized variants are a result of more compact unfolded and TS ensembles. These findings from our modeling demonstrates that this simple model may be used to: (i) gain a detailed understanding of charge–charge interactions and their effects on modulating the energy landscape of protein folding and (ii) qualitatively predict the kinetic behavior of protein surface electrostatic interactions. PMID:25564663

  4. GRAVITATIONALLY FOCUSED DARK MATTER AROUND COMPACT STARS

    SciTech Connect

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable {gamma}-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  5. Anisotropic Compact stars with variable cosmological constant

    E-print Network

    Sk. Monowar Hossein; Farook Rahaman; Jayanta Naskar; Mehedi Kalam; Saibal Ray

    2012-11-22

    Recently the small value of the cosmological constant and its ability to accelerate the expansion of the Universe is of great interest. We discuss the possibility of forming of anisotropic compact stars from this cosmological constant as one of the competent candidates of dark energy. For this purpose we consider the analytical solution of Krori and Barua metric. We take the radial dependence of cosmological constant and check all the regularity conditions, TOV equations, stability and surface redshift of the compact stars. It has been shown as conclusion that this model is valid for any compact star and we have cited $4U 1820-30$ as a specific example of that kind of star.

  6. Anisotropic Compact stars with variable cosmological constant

    E-print Network

    Hossein, Sk Monowar; Naskar, Jayanta; Kalam, Mehedi; Ray, Saibal

    2012-01-01

    Recently the small value of the cosmological constant and its ability to accelerate the expansion of the Universe is of great interest. We discuss the possibility of forming of anisotropic compact stars from this cosmological constant as one of the competent candidates of {\\it dark energy}. For this purpose we consider the analytical solution of Krori and Barua metric. We take the radial dependence of cosmological constant and check all the regularity conditions, TOV equations, stability and surface redshift of the compact stars. It has been shown as conclusion that this model is valid for any compact star and we have cited $4U~1820-30$ as a specific example of that kind of star.

  7. Compactible powders of omega-3 and ?-cyclodextrin.

    PubMed

    Vestland, Tina Lien; Jacobsen, Øyvind; Sande, Sverre Arne; Myrset, Astrid Hilde; Klaveness, Jo

    2015-10-15

    Omega-3 fatty acids are used in both nutraceuticals and pharmaceuticals in the form of triglycerides and ethyl esters. Administration forms available for omega-3 include bulk oil, soft gel capsules, emulsions and some powder compositions. Cyclodextrins are substances well known for their ability to encapsulate lipophilic molecules. In the present work, powders loaded with omega-3 oil, ranging from 10 to 40% (w/w), have been prepared by vacuum drying, freeze drying or spray granulation of aqueous mixtures of omega-3 oil and ?-cyclodextrin. The powders were found to be partially crystalline by powder X-ray diffraction and to contain crystalline phases not present in pure ?-cyclodextrin, indicating true complexation. The compactibility of the powders has been explored, revealing that a dry and compactible powder can be prepared from various omega-3 oils and ?-cyclodextrin. Spray granulation was found to be the superior drying method for the preparation of compactible powders. PMID:25952853

  8. The birthplace of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Diaferio, Antonaldo; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We use complete redshift surveys to study the redshift neighborhoods of 38 Hickson compact groups (HCGs). Twenty-nine of these HCGs (76%) are embedded in rich looser systems which we call HCG associations. Analysis of the redshift neighborhood of HCGs outside the CfA survey suggests that most HCGs are embedded in more extended physical systems. Rich loose groups extracted from the CfA survey (Ramella et al. (1994)) have physical properties similar to those of the HCG associations. These rich loose groups often contain compact configurations. N-body experiments (Diaferio (1994)) suggest that compact configurations analogous to HCGs form continually during the collapse of rich loose groups. These observational and numerical results suggest that rich loose groups are the birthplace of HCGs.

  9. Settlement of footing on compacted ash bed

    SciTech Connect

    Ramasamy, G.; Pusadkar, S.S.

    2007-11-15

    Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

  10. Powder and compaction characteristics of pregelatinized starches.

    PubMed

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders. PMID:22822539

  11. Shock compaction of high- Tc superconductors

    SciTech Connect

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. ); Seaman, C.L.; Early, E.A.; Maple, M.B. . Dept. of Physics); Kramer, M.J. ); Syono, Y.; Kikuchi, M. )

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  12. Compaction and Sintering of Mo Powders

    SciTech Connect

    Nunn, Stephen D; Kiggans, Jim; Bryan, Chris

    2013-01-01

    To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

  13. Cylindrically Symmetric Models of Anisotropic Compact Stars

    E-print Network

    G. Abbas; Sumara Nazeer; M. A. Meraj

    2014-12-16

    In this paper we have discussed the possibility of forming anisotropic compact stars from cosmological constant as one of the competent candidates of dark energy with cylindrical symmetry. For this purpose, we have applied the analytical solution of Krori and Barua metric to a particular cylindrically symmetric spacetime. The unknown constants in Krori and Barua metric have been determined by using masses and radii of class of compact stars like 4$U$1820-30, Her X-1, SAX J 1808-3658. The properties of these stars have been analyzed in detail. In this setting the cosmological constant has been taken as a variable which depends on the radial coordinates. We have checked all the regularity conditions, stability and surface redshift of the compact stars 4$U$1820-30, Her X-1, SAX J 1808-3658.

  14. Relativistically spinning charged sphere

    SciTech Connect

    Lynden-Bell, D.

    2004-11-15

    When the equatorial spin velocity v of a charged conducting sphere approaches c, the Lorentz force causes a remarkable rearrangement of the total charge q. Charge of that sign is confined to a narrow equatorial belt at latitudes b{<=}{radical}(3)(1-v{sup 2}/c{sup 2}){sup 1/2} while charge of the opposite sign occupies most of the sphere's surface. The change in field structure is shown to be a growing contribution of the 'magic' electromagnetic field of the charged Kerr-Newman black hole with Newton's G set to zero. The total charge within the narrow equatorial belt grows as (1-v{sup 2}/c{sup 2}){sup -(1/4)} and tends to infinity as v approaches c. The electromagnetic field, Poynting vector, field angular momentum, and field energy are calculated for these configurations. Gyromagnetic ratio, g factor, and electromagnetic mass are illustrated in terms of a 19th century electron model. Classical models with no spin had the small classical electron radius e{sup 2}/mc{sup 2}{approx} a hundredth of the Compton wavelength, but models with spin take that larger size but are so relativistically concentrated to the equator that most of their mass is electromagnetic. The method of images at inverse points of the sphere is shown to extend to charges at points with imaginary coordinates.

  15. Explaining compact groups as change alignments

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams & Rood 1987; Sulentic 1987; Hickson & Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke & Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups.

  16. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-print Network

    Subramani, Praveen

    2012-01-01

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  17. Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes

    SciTech Connect

    Kovar, Jiri; Slany, Petr; Stuchlik, Zdenek; Karas, Vladimir; Cremaschini, Claudio; Miller, John C.

    2011-10-15

    Astrophysical fluids may acquire nonzero electrical charge because of strong irradiation or charge separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and produce new equilibrium configurations, which are different from the uncharged ones. Following our previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we introduce here a simple test model of a charged perfect fluid torus in strong gravitational and electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an extreme limiting case which can provide a useful reference against which to compare subsequent more complicated astrophysically motivated calculations. To clearly demonstrate the features of our model, we construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordstroem black holes and compare them with equivalent configurations of electrically neutral tori.

  18. Transverse Charge Densities

    E-print Network

    Gerald A. Miller

    2010-02-01

    Electromagnetic form factors have long been used to probe the underlying charge and magnetization densities of hadrons and nuclei. Traditional three-dimensional Fourier transform methods are not rigorously applicable for systems with constituents that move relativistically. The use of the transverse charge density is a new, rigorously defined way to analyze electromagnetic form factors of hadrons.This review is concerned with the following issues: what is a transverse charge density; how is one extracted one from elastic scattering data; the existing results; what is the relationship with other observable quantities; and, future prospects.

  19. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  20. Compact accelerator concept for proton therapy

    NASA Astrophysics Data System (ADS)

    Caporaso, G. J.; Sampayan, S.; Chen, Y.-J.; Harris, J.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Sullivan, J.; Wang, L.; Watson, J.

    2007-08-01

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash X-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  1. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  2. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  3. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  4. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.

  5. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  6. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  7. Specific features of the charge neutralization of silicon carbide in sintering by electron beam in the forevacuum range of pressures

    NASA Astrophysics Data System (ADS)

    Klimov, A. S.; Burdovitsin, V. A.; Zenin, A. A.; Oks, E. M.; Khasanov, O. L.; Dvilis, E. S.; Khasanov, A. O.

    2015-08-01

    It is shown that a noticeable role in the electron beam charge neutralization in the course of electron-beam sintering of compacted silicon carbide samples is played, as the sample temperature increases, by the electrical conductivity of a sample being sintered, as well as by thermionic emission from its surface. Experimental results obtained for compacted silicon carbide are used to determine its energy gap width and the electron work function.

  8. Entropic attraction: Polymer compaction and expansion induced by nano-particles in confinement

    NASA Astrophysics Data System (ADS)

    Liao, Guo-Jun; Chien, Fan-Tso; Luzhbin, Dmytro; Chen, Yeng-Long

    2015-05-01

    We investigated nanoparticle (NP)-induced coil-to-globule transition of a semi-flexible polymer in a confined suspension of ideal NP using Langevin dynamics. DNA molecules are often found to be highly compact, bound with oppositely charged proteins in a crowded environment within cells and viruses. Recent studies found that high concentration of electrostatically neutral NP also condenses DNA due to entropically induced depletion attraction between DNA segments. Langevin dynamics simulations with a semi-flexible chain under strong confinement were performed to investigate the competition between NP-induced monomer-monomer and monomer-wall attraction under different confinement heights and NP volume fractions. We found that whether NP induce polymer segments to adsorb to the walls and swell or to attract one another and compact strongly depends on the relative strength of the monomer-wall and the NP-wall interactions.

  9. A compact time-of-flight mass spectrometer for ion source characterization

    SciTech Connect

    Chen, L. Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters.

  10. Can Water Store Charge?

    PubMed Central

    Ovchinnikova, Kate; Pollack, Gerald H.

    2010-01-01

    Previous work from this and other laboratories has demonstrated large pH gradients in water. Established by passing current between immersed electrodes, pH gradients between electrodes were found to disappear slowly, persisting for tens of minutes after the current had been turned off. We find here that these pH gradients reflect a genuine separation of charge: at times well after disconnection of the power supply, current could be drawn through a resistor placed between the charging electrodes or between pairs of electrodes positioned on either side of the midline between original electrodes. In some experiments, it was possible to recover the majority of charge that had been imparted to the water. It appears, then, that water has the capacity to store and release substantial amounts of charge. PMID:19053655

  11. Granular matter: Charges dropped

    NASA Astrophysics Data System (ADS)

    Spahn, Frank; Sei?, Martin

    2015-09-01

    Granular charging can create some spectacular interactions, but gravity obscures our ability to observe and understand them. A neat desktop experiment circumvents this problem, shining a light on granular clustering -- and perhaps even planet formation.

  12. Charged Schrodinger black holes

    E-print Network

    Adams, Allan

    We construct charged and rotating asymptotically Schrödinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

  13. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  14. Radioactive decays of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Gao, B. S.; Najafi, M. A.; Atanasov, D. R.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, X. C.; Dillmann, I.; Dimopoulou, Ch.; Faestermann, Th.; Geissel, H.; Gernhäuser, R.; Hillenbrand, P.-M.; Kovalenko, O.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Piotrowski, J.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Trageser, Ch.; Tu, X. L.; Weick, H.; Winckler, N.; Xu, H. S.; Yamaguchi, T.; Yan, X. L.; Zhang, Y. H.; Zhou, X. H.

    2015-05-01

    Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state ?-decay and its time-mirrored counterpart, orbital electron-capture.

  15. FODO-Supercell Based Compact Ring Design with Tunable Momentum Compaction and Optimized Dynamic Aperture

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-05-11

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and pre-damping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  16. Electrically charged targets

    DOEpatents

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  17. Particle-Charge Spectrometer

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen; Wilson, Gregory R.

    2008-01-01

    An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.

  18. PrP charge structure encodes interdomain interactions

    PubMed Central

    Martínez, Javier; Sánchez, Rosa; Castellanos, Milagros; Makarava, Natallia; Aguzzi, Adriano; Baskakov, Ilia V.; Gasset, María

    2015-01-01

    Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the ?-fold by an electrostatic compensation between the polybasic 23–30 region and the ?3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the ?-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the ?3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes. PMID:26323476

  19. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  20. Compaction and Wear Concerns on Sports Fields.

    ERIC Educational Resources Information Center

    Gillan, John

    1999-01-01

    Describes relatively simple measures athletic-facility managers can use to alleviate the turf destruction and compaction of athletic fields including seed and soil amendments and modifications on team practice. Ways of enhancing surface traction and lessen surface hardness are explored. (GR)

  1. COMPACT COILED DENUDER FOR ATMOSPHERIC SAMPLING

    EPA Science Inventory

    A compact coiled denuder has been designed and its performance evaluated both theoretically and experimentally. he design is based on special features of laminar flow in a curved tube, which significantly enhance the mass transfer Sherwood number governing gas collection at the w...

  2. Modelling Gravitational Waves from Inspiralling Compact Binaries

    E-print Network

    T. Damour; B. R. Iyer; B. S. Sathyaprakash

    1998-01-07

    Gravitational waves from inspiralling compact binaries can be reliably extracted from a noisy detector output only if the template used in the detection is a faithful representation of the true signal. In this article we suggest a new approach to constructing faithful signal models.

  3. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  4. Unified beaming models and compact radio sources

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.

    The basics of relativistic beaming from compact radio sources are reviewed, and unified models to account for this beaming are discussed. The Scheuer-Redhead model, which proved to be incorrect, is reviewed, showing where it went wrong. The Orr-Browne and the Blandford-Rees models are compared and discussed.

  5. Compact discrete-time chaos generator circuit

    E-print Network

    Dudek, Piotr

    Compact discrete-time chaos generator circuit P. Dudek and V.D. Juncu A three-transistor CMOS circuit is presented, with adjustable nonlinear characteristics, which can be used as a map that generates discrete-time chaotic signals. A method of constructing a chaos generator using two map circuits is also

  6. Pathway to a Compact SASE FEL Device

    E-print Network

    Dattoli, G; Petrillo, V; Rau, J V; Sabia, E; Spassovsky, I; Biedron, S G; Einstein, J; Milton, S V

    2015-01-01

    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.

  7. Compact range for variable-zone measurements

    DOEpatents

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  8. "Identity Crises and Strong Compactness" by

    E-print Network

    Cummings, James

    * *easurable cardinal, in which case ~ isn't even 2~ supercompact. A generalization of this * *result Carnegie-Mellon University Pittsburgh, Pennsylvania 15213, for fixed but arbitrary finite n, the first n stro* *ngly compact cardinals ~1, . .,.~n are so that ~ifor i

  9. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  10. Trust and compactness in social network groups.

    PubMed

    De Meo, Pasquale; Ferrara, Emilio; Rosaci, Domenico; Sarné, Giuseppe M L

    2015-02-01

    Understanding the dynamics behind group formation and evolution in social networks is considered an instrumental milestone to better describe how individuals gather and form communities, how they enjoy and share the platform contents, how they are driven by their preferences/tastes, and how their behaviors are influenced by peers. In this context, the notion of compactness of a social group is particularly relevant. While the literature usually refers to compactness as a measure to merely determine how much members of a group are similar among each other, we argue that the mutual trustworthiness between the members should be considered as an important factor in defining such a term. In fact, trust has profound effects on the dynamics of group formation and their evolution: individuals are more likely to join with and stay in a group if they can trust other group members. In this paper, we propose a quantitative measure of group compactness that takes into account both the similarity and the trustworthiness among users, and we present an algorithm to optimize such a measure. We provide empirical results, obtained from the real social networks EPINIONS and CIAO, that compare our notion of compactness versus the traditional notion of user similarity, clearly proving the advantages of our approach. PMID:25099965

  11. FAULT PREDICTIVE CONTROL OF COMPACT DISK PLAYERS

    E-print Network

    Wickerhauser, M. Victor

    FAULT PREDICTIVE CONTROL OF COMPACT DISK PLAYERS Peter Fogh Odgaard Mladen Victor Wickerhauser playing certain discs with surface faults like scratches and fingerprints. The problem is to be found in an other publications of the first author. This scheme is based on an assumption that the surface faults do

  12. 28 CFR 2.107 - Interstate Compact.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...on parole supervision pursuant to the Interstate Parole and Probation Compact authorized by D.C. Code 24-451: (1) All...be released or transferred to the supervision of a U.S. Probation Office outside the District of Columbia. (c)...

  13. 28 CFR 2.107 - Interstate Compact.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...on parole supervision pursuant to the Interstate Parole and Probation Compact authorized by D.C. Code 24-451: (1) All...be released or transferred to the supervision of a U.S. Probation Office outside the District of Columbia. (c)...

  14. 28 CFR 2.107 - Interstate Compact.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...on parole supervision pursuant to the Interstate Parole and Probation Compact authorized by D.C. Code 24-451: (1) All...be released or transferred to the supervision of a U.S. Probation Office outside the District of Columbia. (c)...

  15. 28 CFR 2.107 - Interstate Compact.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...on parole supervision pursuant to the Interstate Parole and Probation Compact authorized by D.C. Code 24-451: (1) All...be released or transferred to the supervision of a U.S. Probation Office outside the District of Columbia. (c)...

  16. 28 CFR 2.107 - Interstate Compact.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...on parole supervision pursuant to the Interstate Parole and Probation Compact authorized by D.C. Code 24-451: (1) All...be released or transferred to the supervision of a U.S. Probation Office outside the District of Columbia. (c)...

  17. Compact Signatures for Network Coding Jonathan Katz

    E-print Network

    Katz, Jonathan

    Compact Signatures for Network Coding Jonathan Katz Brent Waters Abstract Network coding offers of packets (i.e., "pollution attacks") by Byzantine nodes in the network; see [11, 19] for Dept. of Computer, University of Texas at Austin. bwaters@crl.sri.com. Supported by NSF CNS- 0749931, CNS-0524252, CNS-0716199

  18. Pathway to a compact SASE FEL device

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Di Palma, E.; Petrillo, V.; Rau, Julietta V.; Sabia, E.; Spassovsky, I.; Biedron, S. G.; Einstein, J.; Milton, S. V.

    2015-10-01

    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.

  19. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  20. Diffusion of humic colloids in compacted bentonite

    NASA Astrophysics Data System (ADS)

    Wold, Susanna; Eriksen, Trygve

    Through-diffusion experiments in bentonite with humic colloids in the size range of 1-10 nm were carried out. Bentonite was compacted to 0.6-1.8 g/cm 3 dry density and equilibrated with 0.01 and 0.1 M NaClO 4 solutions. Experiments with Eu(III) diffusing in the absence and presence of humics were run in parallel, as well as Co(II) diffusing through compacted bentonite in the presence of humics. The humic colloid diffusion experiments were run for 60 days and the humic concentration in the outlet solutions measured at time intervals. The experimental breakthrough curves for humic substances (HS) as well as the HS, Co(II) and Eu(III) profiles in the bentonite were simulated using the finite difference based computer code ANADIFF. Regardless of the compaction and ionic strength of solutions, humic colloids diffused through the compacted bentonite. The effects of humic colloids on both Co(II) and Eu(III) sorption as well as on diffusion were significant. The apparent diffusivity ( Da) increased significantly for both Co(II) and Eu(III) when humic colloids were present and the distribution coefficient ( Kd) values decreased.

  1. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D. (Columbus, OH); Rudduck, Roger C. (Columbus, OH); Yu, Jiunn S. (Albuquerque, NM)

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  2. Compact Translating-Head Magnetic Memories

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1992-01-01

    Stationary magnetic media stores information at densities up to 6.5 Gb/cm(Sup 2). High-density memory devices combine features of advanced rotating-disk magnetic recording and playback systems with compact two-axis high-acceleration linear actuators. New devices weigh less, occupy less space, and consume less power than disk and tape recorders.

  3. Compact MIMO Antenna for LTE Handsets

    NASA Astrophysics Data System (ADS)

    Wong, H. S.; Kibria, S.; Mansor, M. F. B.; Islam, M. T.

    2015-11-01

    This paper presents a compact MIMO antenna for LTE 700, LTE 2300 and LTE 2500 applications. The antenna is configured by two symmetrical quarter wavelength meandered lines on the front side and a slotted ground plane at the back side. An decoupling patch is used to achieve good isolation between two symmetrical quarter wavelength meandered lines.

  4. Compact Ultradense Objects in the Solar System

    E-print Network

    J. Rafelski; Ch. Dietl; L. Labun

    2013-03-19

    We describe properties and gravitational interactions of meteor-mass and greater compact ultra dense objects with nuclear density or greater (CUDO s). We discuss possible enclosure of CUDO s in comets, stability of these objects on impact with the Earth and Sun and show that the hypothesis of a CUDO core helps resolve issues challenging the understanding of a few selected cometary impacts.

  5. Realisation of a compact methane optical clock

    SciTech Connect

    Gubin, M A; Kireev, A N; Konyashchenko, A V; Kryukov, P G; Tausenev, A V; Tyurikov, D A; Shelkovnikov, A S

    2008-07-31

    A compact optical clock based on a double-mode He-Ne/CH{sub 4} optical frequency standard and a femtosecond Er{sup 3+} fibre laser is realised and its stability against a commercial hydrogen frequency standard is measured. (letters)

  6. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  7. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  8. Investigation of HMA compactability using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising. Actually, the prediction is not regulated by any standards or specifications, although the practice is considered to be workable. In view of the above, an extensive experiment was carried out in both the laboratory and the field based on a trial asphalt pavement section under construction. In the laboratory, the study focused on the estimation of the density of HMA specimens achieved through three different roller compaction modes (static, vibratory and a combination of both) targeted to simulate field compaction and assess the asphalt mix compactability. In the field, the different compaction modes were successively implemented on three subsections of the trial pavement section. Along each subsection, GPR data was collected in order to determine the new material's dielectric properties and based on that, to predict its density using proper algorithm. Thus, cores were extracted to be used as ground truth data. The comparison of the new asphalt material compactability as obtained from the laboratory specimens, the predictions based on GPR data and the field cores provided useful information that facilitated the selection of the most effective compaction mode yielding the proper compaction degree in the field. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  9. Electric Charge Electric charge is a fundamental property

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    · Electrical properties of materials such as metals, water, plastic, glass and the human body are due Charges · Charged objects interact by exerting forces on one another · Law of Charges: Like charges repel electrons · Solids where electrons move freely about are called conductors ­ metal, body, water · Solids

  10. 77 FR 20051 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S. Barron at (304) 625-2803... Hollow Road, Clarksburg, West Virginia 26306, telephone (304) 625-2803, facsimile (304) 625-2868....

  11. The Dynamic Compact Control Language: A compact marshalling scheme for acoustic communications

    E-print Network

    Schneider, Toby Edwin

    The Dynamic Compact Control Language (DCCL) extends the ubiquitous Extensible Markup Language (XML) to provide a structure for defining very short messages comprised of bounded basic variable types, suitable for transmission ...

  12. Entailment systems for stably locally compact Steven Vickers

    E-print Network

    Vickers, Steve

    for the distribu­ tive lattices (of compact opens), and goes on to describe SFP domains in similar terms [Vic99], which takes the compact points of an SFP domain as the tokens.) Reasons for using information

  13. Entailment systems for stably locally compact Steven Vickers

    E-print Network

    Vickers, Steve

    for the distribu- tive lattices (of compact opens), and goes on to describe SFP domains in similar terms [Vic99], which takes the compact points of an SFP domain as the tokens.) Reasons for using information

  14. Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints

    E-print Network

    Dany Page; Sanjay Reddy

    2006-08-17

    We review theoretical developments in studies of dense matter and its phase structure of relevance to compact stars. Observational data on compact stars, which can constrain the properties of dense matter, are presented critically and interpreted.

  15. Compact model for photo-generation current in organic solar cell

    NASA Astrophysics Data System (ADS)

    Li, Ling; Hyuk Kwon, Jang; Jang, Jin

    2011-11-01

    A compact model is presented for the photo-generation current in organic solar cell. It is developed rigorously by extending the photo-generation current in Goodman [A. M. Goodman and A. Rose, J. Appl. Phys. 7, 2823 (1971)] to include charge variable range hopping transport and recombination in organic semiconductors. Based on the extended model, a variety of temperature/material disorders and light intensity dependence of the photo-generation current can be well described. Good agreement between the calculation and recent experimental data is also observed.

  16. Compact narrow-band THz radiation source based on photocathode rf gun

    NASA Astrophysics Data System (ADS)

    Li, Wei-Wei; He, Zhi-Gang; Jia, Qi-Ka

    2014-04-01

    Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).

  17. Fornax compact object survey FCOS: On the nature of Ultra Compact Dwarf galaxies

    E-print Network

    Mieske, S; Infante, L

    2004-01-01

    The results of the Fornax Compact Object Survey (FCOS) are presented. The FCOS aims at investigating the nature of the Ultra Compact Dwarf galaxies (UCDs) recently discovered in the center of the Fornax cluster (Drinkwater et al. 2000). 280 unresolved objects in the magnitude space covering UCDs and bright globular clusters (1820 mag) at 96% confidence. The mean velocity of the bright compact objects is consistent with that of the dwarf galaxy population in Fornax, but inconsistent with that of NGC 1399's globular cluster system at 93.5% confidence. The compact objects follow a colour magnitude relation with a slope very similar to that of normal dEs, but shifted about 0.2 mag redwards. The magnitude distribution of compact objects shows a fluent transition between UCDs and GCs with an overpopulation of 8 +/- 4 objects for V<20 mag with respect to the extrapolation of NGC 1399's GC luminosity function. The spatial distribution of bright compact objects is in comparison to the faint ones more extended at 88...

  18. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.

    PubMed

    Mosig, Johanna; Kleinebudde, Peter

    2015-03-01

    The influence of lubrication and particle size on the reduced compactability after dry granulation was investigated. Powder cellulose, lactose, magnesium carbonate, and two types of microcrystalline cellulose were roll compacted, granulated, and sieved into particle fractions. Particle fractions were compressed into tablets using internal and external lubrication. Internal lubrication resulted in an overlubrication of the granule material compared with the powder material. This resulted in extraordinary high reduction of compactability after dry granulation for lubricant-sensitive materials. The granule size can cause differences in strength, whereby the degree of this effect was material dependent. The loss in strength with increasing compaction force was comparable for different particles sizes of one material, suggesting a change in material properties independently of the size. Granule hardening could be one reason as for higher compaction forces the integrity of the granule structure survived the compression step. The results demonstrated that granule lubrication mainly influence the degree of the reduced compactability after dry granulation and must be considered for the evaluation of mechanism for this phenomenon. Hardening of the material as well as size enlargement will cause the loss in strength after recompression, but the influence of both depends strongly on the material. PMID:25558976

  19. GPS based Compaction Technology June 24-26, 2008

    E-print Network

    ak e M1 0 0 Br ak eBr ak e M1 0 0 Road Asphalt Paving Process Soil Compaction Tandem Roller Paver/Finisher Single Drum Roller Plate Bearing Test June 24-26, 2008 ETH Zurich 3 Compaction Measurement DisplayStiffness ctionDepth Compaction/S Number of Passes/Time Compac June 24-26, 2008 ETH Zurich 6 #12;4 Loading

  20. Observing compact quark matter droplets in relativistic nuclear collisions

    E-print Network

    K. Paech; J. Brachmann; M. A. Lisa; A. Dumitru; H. Stoecker; W. Greiner

    2000-10-11

    Compactness is introduced as a new method to search for the onset of the quark matter transition in relativistic heavy ion collisions. That transition supposedly leads to stronger compression and higher compactness of the source in coordinate space. That effect could be observed via pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space.

  1. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  2. Optimally Compact Finite Sphere Packings | Hydrophobic Cores in the FCC

    E-print Network

    Will, Sebastian

    Optimally Compact Finite Sphere Packings | Hydrophobic Cores in the FCC Rolf Backofen and Sebastian compact hydrophobic core. Our method allows us to enumerate maximally compact hydrophobic cores for suÆciently great number of hydrophobic amino-acids. We have used our method to prove the optimality

  3. Approximating Radon measures on first--countable compact spaces

    E-print Network

    Plebanek, Grzegorz

    Approximating Radon measures on first--countable compact spaces Grzegorz Plebanek (Wroc/law) Abstract The assertion every Radon measure defined on a first--countable compact space is uniformly regular under CH. In this note we consider some properties of finite Radon measures defined on compact spaces

  4. Compact Lorentz manifolds with local symmetry Karin Melnick

    E-print Network

    Melnick, Karin

    Compact Lorentz manifolds with local symmetry Karin Melnick October 20, 2006 1 #12; 1: which compact Lorentz manifolds admit a positive­dimensional pseudogroup of local isometries? This question can be loosely rephrased as, which compact Lorentz manifolds have nontrivial local symmetry

  5. Compact Lorentz manifolds with local symmetry Karin Melnick

    E-print Network

    Melnick, Karin

    Compact Lorentz manifolds with local symmetry Karin Melnick October 20, 2006 1 #12: which compact Lorentz manifolds admit a positive-dimensional pseudogroup of local isometries? This question can be loosely rephrased as, which compact Lorentz manifolds have nontrivial local symmetry

  6. MFPS XV Preliminary Version On the compact-regular coreflection

    E-print Network

    Escardó, Martín

    as the patch frame. We show that the patch construction * *ex- hibits the category of compact regular locales locales and spectral maps. We relate our patch constructio* *n to Banaschewski and Br continuous nuclei, patch topology, stably loca* *lly compact locales, perfect maps, compact regular locales

  7. Modelling the mechanical behaviour of pharmaceutical powders during compaction

    E-print Network

    Elliott, James

    . Introduction Powder compaction is a process widely used in many industries. For instance, in the powder metallurgy and ceramic industries, powders are generally compacted into a green body before being sintered are made of dry powder through a powder compaction process. In the pharmaceutical industry, billions

  8. Dissolution and compaction instabilities in geomaterials

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International Journal for Numerical and Analytical Methods in Geomechanics, 27(9): 705-732

  9. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64t/m(3) (simply poured) to 0.74t/m(3) (tapped) and finally to 0.82t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. PMID:26337963

  10. Some electrically charged relativistic stellar models in general relativity

    NASA Astrophysics Data System (ADS)

    Mahbubur Rahman, A. H. M.; Murad, Mohammad Hassan

    2014-05-01

    Some new families of electrically charged stellar models of ultra-compact star have been studied. With the help of particular form of one of the metric potentials the Einstein-Maxwell field equations in general relativity have been transformed to a system of ordinary differential equations. The interior matter pressure, energy-density, and the adiabatic sound speed are expressed in terms of simple algebraic functions. The constant parameters involved in the solution have been set so that certain physical criteria satisfied. Based on the analytic model developed in the present work, the values of the relevant physical quantities have been calculated by assuming the estimated masses and radii of some well known potential strange star candidates like X-ray pulsar Her X-1, millisecond X-ray pulsar SAX J 1808.4-3658, and 4U 1820-30. The analytical equations of state of the charged matter distribution may play a significant role in the study of the internal structure of highly compact charged stellar objects in general relativity.

  11. Charge gradient microscopy.

    PubMed

    Hong, Seungbum; Tong, Sheng; Park, Woon Ik; Hiranaga, Yoshiomi; Cho, Yasuo; Roelofs, Andreas

    2014-05-01

    Here we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement current and the relocation or removal of surface charges, which enabled us to visualize the ferroelectric domains at a scan frequency above 78 Hz over 10 ?m. We envision that CGM can be used in high-speed ferroelectric domain imaging and piezoelectric energy-harvesting devices. PMID:24760831

  12. Charge gradient microscopy

    PubMed Central

    Hong, Seungbum; Tong, Sheng; Park, Woon Ik; Hiranaga, Yoshiomi; Cho, Yasuo; Roelofs, Andreas

    2014-01-01

    Here we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement current and the relocation or removal of surface charges, which enabled us to visualize the ferroelectric domains at a scan frequency above 78 Hz over 10 ?m. We envision that CGM can be used in high-speed ferroelectric domain imaging and piezoelectric energy-harvesting devices. PMID:24760831

  13. Polytropic relationship in interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.; Lepping, R. P.; Fainberg, J.; Stone, R. G.

    1993-01-01

    High time-resolution data from the ISEE 3 and IMP 8 spacecraft are presented for the magnetic field and the proton and electron populations of a number of magnetic clouds, in order to investigate such clouds' thermodynamics and the relationship between their magnetic and thermodynamic structures. It is judged on the basis of these data that while the magnetic flield of the cloud expands, the ions are cooled. Hot electrons are trapped by the magnetic field in the magnetic cloud's core. These conditions are favorable for the generation of ion-acoustic waves.

  14. Operating single quantum emitters with a compact Stirling cryocooler

    SciTech Connect

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T. Reitzenstein, S.

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  15. a Compact Thomson X-Ray Source at Shi

    NASA Astrophysics Data System (ADS)

    Sakai, Fumio; Nakajyo, Terunobu; Yanagida, Tatsuya; Ito, Shinji

    A compact, high-brightness x-ray source has been developed through Thomson scattering between photons and relativistic electrons. 33keV energy photons (maximum) were generated in a 165-degree interaction configuration with 38MeV electrons and 800nm-wavelength Ti:sapphire laser light. The number of total photons generated at an interaction point was 106 photons/pulse for a 0.8nC electron bunch charge and 150mJ laser pulse energy. In a 90-degree interaction configuration, 105 photons/pulse total photons were obtained (maximum). Transverse profiles of x-ray intensity and energy were measured by an x-ray CCD camera. These experiment profiles agreed with the analytical results. Imaging using this x-ray source was demonstrated as an application. X-ray images for some objects were taken with various lengths between the objects and the camera. As a result, the refraction contrast images were observed with 17keV x-rays.

  16. Operating single quantum emitters with a compact Stirling cryocooler

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T.; Reitzenstein, S.

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g(2)(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g(2)(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  17. Operating single quantum emitters with a compact Stirling cryocooler.

    PubMed

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources. PMID:25638078

  18. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  19. VELOCE - A Compact Pulser for Magnetically Driven Isentropic Compression Experiments

    NASA Astrophysics Data System (ADS)

    Avrillaud, Gilles; Delchambre, Michael; Guerre, Jean; Bayol, Frederic; Cubaynes, Fabrice; Kovalchuk, Boris; Bavay, Mathias; Mervini, Joe; Spielman, Rick; Asay, James; Hall, Clint; Hickman, Randy; Ao, Tommy; Willis, Michael; Gupta, Yogendra; Asay, James; Bakeman, Cory

    2007-06-01

    Sharing similarities with the Gepi pulser dedicated to Isentropic Compression Experiments, Veloce, an even more compact electrical pulser has been designed and built in duplicate for SNL and WSU (LxWxH=3.5x2.5x2m^3). This type of machines complements gun facilities in the study of materials. In order to achieve a broad loading capability and fast turn around, the design is built around a solid dielectric transmission line to couple current from eight low inductance capacitors and switches. Peaking capacitors enhanced by a low inductance, multi-channel sharpening switch reduces the quarter period of the pulser down to 470 ns (0-100%). Gas mixtures in the switch cavity and inductances in parallel allow modifying the shape of the induced pressure wave. At 80kV of charge voltage, the peak current reaches approximately 3.5MA. Design of the pulser, range of pressures and velocities, as well as potential applications will be presented.

  20. The electrically charged universe

    E-print Network

    Michael Düren

    2012-01-31

    The paper discusses the possibility of a universe that is not electrically neutral but has a net positive charge. It is claimed that such a universe contains a homogeneous distribution of protons that are not bound to galaxies and fill up the intergalactic space. This proton `gas' charges macroscopic objects like stars and planets, but it does not generate electrostatic or magnetic fields that affect the motion of these bodies significantly. However, the proton gas may contribute significantly to the total dark matter of the universe and its electrostatic potential may contribute to the dark energy and to the expansion of the universe.

  1. Charged colloidal heteroaggregation kinetics

    NASA Astrophysics Data System (ADS)

    Puertas, A. M.; Fernández-Barbero, A.; De Las Nieves, F. J.

    2001-01-01

    A model for describing heteroaggregation kinetics has been developed and tested with experiments in a colloidal system composed of positively and negatively charged particles. At first order, the model reduces to the classical Hogg, Healy, and Fuerstenau approximation. Static light scattering was used to monitor the aggregations. The dependence of the initial aggregation rate on the relative particle fraction and on the surface charges was studied and compared with the theoretical predictions. The experimental results indicated that first-order approximation cannot be used to describe the kinetics. However, good agreement was found when second order was introduced in the theoretical model.

  2. A compact light concentrator by the use of plasmonic faced folded nano-rods.

    PubMed

    Chung, Taerin; Lim, Yongjun; Lee, Il-Min; Lee, Seoung-Yeol; Choi, Jinyoung; Roh, Sookyoung; Kim, Kyoung-Youm; Lee, Byoungho

    2011-10-10

    We propose a compact nano-metallic structure for enhancing and concentrating far-field transmission: a faced folded nano-rod (FFR) unit, composed of two folded metallic nano-rods placed facing each other in an aperture. By analyzing local charge, field, and current distributions in the FFR unit using three-dimensional finite difference time domain (FDTD) calculation results, we show that although charge and field configurations become somewhat different depending on the polarization states of the illumination, similar current flows are formed in the FFR unit, which entail similar far-field radiation patterns regardless of the polarization states, making the FFR unit a quasi-polarization-insensitive field concentrator. We demonstrate this functionality of the FFR unit experimentally using the holographic microscopy which provides us a three-dimensional map of the complex wavefronts of optical fields emanating from the FFR unit. PMID:21997085

  3. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.

    PubMed

    Wojciechowski, Konrad; Leijtens, Tomas; Siprova, Svetlana; Schlueter, Christoph; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Li, Chang-Zhi; Jen, Alex K-Y; Lee, Tien-Lin; Snaith, Henry J

    2015-06-18

    Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance. PMID:26266623

  4. Monochromatic short pulse laser produced ion beam using a compact passive magnetic device

    SciTech Connect

    Chen, S. N.; Gauthier, M.; Higginson, D. P.; Dorard, S.; Marquès, J.-R.; Fuchs, J.; Mangia, F.; Atzeni, S.; Riquier, R.; CEA, DAM, DIF, F-91297 Arpajon

    2014-04-15

    High-intensity laser accelerated protons and ions are emerging sources with complementary characteristics to those of conventional sources, namely high charge, high current, and short bunch duration, and therefore can be useful for dedicated applications. However, these beams exhibit a broadband energy spectrum when, for some experiments, monoenergetic beams are required. We present here an adaptation of conventional chicane devices in a compact form (10 cm × 20 cm) which enables selection of a specific energy interval from the broadband spectrum. This is achieved by employing magnetic fields to bend the trajectory of the laser produced proton beam through two slits in order to select the minimum and maximum beam energy. The device enables a production of a high current, short duration source with a reproducible output spectrum from short pulse laser produced charged particle beams.

  5. On the Interplay of Fermions and Monopoles in Compact QED_3

    E-print Network

    Simon Hands; John B. Kogut; Biagio Lucini

    2005-12-30

    The infra-red properties of three-dimensional abelian lattice gauge theory are known to be governed by a neutral plasma of magnetic monopole excitations. We address the fate of these monopoles in the presence of light dynamical fermions, using a lattice formulation of compact QED_3 with N_f=4 fermion flavors supplemented by a four-fermi contact term permitting numerical Monte Carlo simulations in the chiral limit. Our data hint at a restoration of chiral symmetry above a critical value of the (inverse) coupling beta. By performing simulations in a sector of non-vanishing magnetic charge, we are able to study the response of the theory to an external magnetic test charge. Our results suggest that the monopole plasma persists even once chiral symmetry is restored, and hence survives the continuum limit.

  6. Chemical Abundances of Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  7. Tidal deformations of a spinning compact object

    E-print Network

    Pani, Paolo; Maselli, Andrea; Ferrari, Valeria

    2015-01-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole mom...

  8. Spinning compact binary dynamics and chameleon orbits

    NASA Astrophysics Data System (ADS)

    Gergely, László Árpád; Keresztes, Zoltán

    2015-01-01

    We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.

  9. RNA isolation and fractionation with compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, J. C.; Fox, G. E.; Willson, R. C.

    2001-01-01

    A new approach to the isolation of RNA from bacterial lysates employs selective precipitation by compaction agents, such as hexammine cobalt and spermidine. Using 3.5 mM hexammine cobalt, total RNA can be selectively precipitated from a cell lysate. At a concentration of 2 mM hexammine cobalt, rRNA can be fractionated from low molecular weight RNA. The resulting RNA mixture is readily resolved to pure 5S and mixed 16S/23S rRNA by nondenaturing anion-exchange chromatography. Using a second stage of precipitation at 8 mM hexammine cobalt, the low molecular weight RNA fraction can be isolated by precipitation. Compaction precipitation was also applied to the purification of an artificial stable RNA derived from Escherichia coli 5S rRNA and to the isolation of an Escherichia coli-expressed ribozyme. Copyright 2001 Academic Press.

  10. Proving the CEP with compact stars?

    E-print Network

    D. E. Alvarez-Castillo; D. Blaschke

    2013-05-06

    We present a model for hybrid compact stars composed of a quark core and a hadronic mantle with an abrupt first order phase transition at the interface and in accordance with the latest astrophysical measurements of two 2 M_sun pulsars. We demonstrate the possibility of a disconnected mass-radius sequence (third family) of high-mass pulsars as a distinct feature due to a large jump $\\Delta \\epsilon$ in the energy density of the first order phase transition setting in at $\\epsilon_{\\rm crit}\\approx 500$ MeV/fm$^3$ and fulfilling $\\Delta \\epsilon/\\epsilon_{\\rm crit} > 0.6$. We conclude that the measurement of so called \\textit{twin} compact stars at high mass (~ 2 M_sun) would support the existence of a first order phase transition in symmetric matter at zero temperature entailing the existence of a critical end point (CEP) in the QCD phase diagram.

  11. Relativistic Compact Objects and their Environs

    NASA Astrophysics Data System (ADS)

    McKinney, Jonathan

    2009-05-01

    The violent birth of black holes and neutron stars during core- collapse supernovae and merging events probes the fundamental nature of gravity, neutrinos, high-density equations of state, and beyond-QED-strength magnetic fields. Post-birth these compact objects continue to be of significant interest by powering pulsar wind nebulae, active galactic nuclei, x- ray binaries, and giant flares from magnetars. Recent time-dependent numerical general relativistic magnetohydrodynamic (GRMHD) simulations have broken new ground in explaining these systems' birth and evolution, including how magnetized accretion flows around rotating black holes launch ultrarelativistic jets and how pulsars power their surroundings. I discuss some of these recent successes, outstanding questions such as how core-collapse supernovae occur, and how future time-dependent simulations will play a vital role in progressing our understanding of compact objects and their environments.

  12. Compact dusty clouds in a cosmic environment

    SciTech Connect

    Tsytovich, V. N.; Ivlev, A. V.; Burkert, A.; Morfill, G. E.

    2014-01-10

    A novel mechanism of the formation of compact dusty clouds in astrophysical environments is discussed. It is shown that the balance of collective forces operating in space dusty plasmas can result in the effect of dust self-confinement, generating equilibrium spherical clusters. The distribution of dust and plasma density inside such objects and their stability are investigated. Spherical dusty clouds can be formed in a broad range of plasma parameters, suggesting that this process of dust self-organization might be a generic phenomenon occurring in different astrophysical media. We argue that compact dusty clouds can represent condensation seeds for a population of small-scale, cold, gaseous clumps in the diffuse interstellar medium. They could play an important role in regulating its small-scale structure and its thermodynamical evolution.

  13. Compact Toroidal Ion Trap Design and Optimization

    E-print Network

    Madsen, M J

    2010-01-01

    We present the design of a new type of compact toroidal, or "halo", ion trap. Such traps may be useful for mass spectrometry, studying small Coulomb cluster rings, quantum information applications, or other quantum simulations where a ring topology is of interest. We present results from a Monte Carlo optimization of the trap design parameters using finite-element analysis simulations that minimizes higher-order anharmonic terms in the trapping pseudopotential, while maintaining complete control over ion placement at the pseudopotential node in 3D using static bias fields. These simulations are based on a practical electrode design using readily-available parts, yet can be easily scaled to any size trap with similar electrode spacings. We also derive the conditions for a crystal phase transition for two ions in the compact halo trap, the first non-trivial phase transition for Coulomb crystals in this geometry.

  14. Compact Toroidal Ion Trap Design and Optimization

    E-print Network

    M. J. Madsen; C. H. Gorman

    2010-07-14

    We present the design of a new type of compact toroidal, or "halo", ion trap. Such traps may be useful for mass spectrometry, studying small Coulomb cluster rings, quantum information applications, or other quantum simulations where a ring topology is of interest. We present results from a Monte Carlo optimization of the trap design parameters using finite-element analysis simulations that minimizes higher-order anharmonic terms in the trapping pseudopotential, while maintaining complete control over ion placement at the pseudopotential node in 3D using static bias fields. These simulations are based on a practical electrode design using readily-available parts, yet can be easily scaled to any size trap with similar electrode spacings. We also derive the conditions for a crystal phase transition for two ions in the compact halo trap, the first non-trivial phase transition for Coulomb crystals in this geometry.

  15. Spinning compact binary dynamics and chameleon orbits

    E-print Network

    László Árpád Gergely; Zoltán Keresztes

    2014-12-20

    We analyse the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that General Relativity predicts stronger gravity at short distances than Newtonian theory does.

  16. Computer modeling of a compact isochronous cyclotron

    NASA Astrophysics Data System (ADS)

    Smirnov, V. L.

    2015-11-01

    The computer modeling methods of a compact isochronous cyclotron are described. The main stages of analysis of accelerator facilities systems are considered. The described methods are based on theoretical fundamentals of cyclotron physics and mention highlights of creation of the physical project of a compact cyclotron. The main attention is paid to the analysis of the beam dynamics, formation of a magnetic field, stability of the movement, and a realistic assessment of intensity of the generated bunch of particles. In the article, the stages of development of the accelerator computer model, analytical ways of assessment of the accelerator parameters, and the basic technique of the numerical analysis of dynamics of the particles are described.

  17. Compaction of granular material inside confined geometries

    E-print Network

    Benjy Marks; Bjørnar Sandnes; Guillaume Dumazer; Jon Alm Eriksen; Knut Jørgen Måløy

    2015-05-15

    In both nature and engineering, loosely packed granular materials are often compacted inside confined geometries. Here, we explore such behaviour in a quasi-two dimensional geometry, where parallel rigid walls provide the confinement. We use the discrete element method to investigate the stress distribution developed within the granular packing as a result of compaction due to the displacement of a rigid piston. We observe that the stress within the packing increases exponentially with the length of accumulated grains, and show an extension to current analytic models which fits the measured stress. The micromechanical behaviour is studied for a range of system parameters, and the limitations of existing analytic models are described. In particular, we show the smallest sized systems which can be treated using existing models. Additionally, the effects of increasing piston rate, and variations of the initial packing fraction, are described.

  18. On quantum symmetries of compact metric spaces

    NASA Astrophysics Data System (ADS)

    Chirvasitu, Alexandru

    2015-08-01

    An action of a compact quantum group on a compact metric space (X , d) is (D)-isometric if the distance function is preserved by a diagonal action on X × X. In this study, we show that an isometric action in this sense has the following additional property: the corresponding action on the algebra of continuous functions on X by the convolution semigroup of probability measures on the quantum group contracts Lipschitz constants. In other words, it is isometric in another sense due to Li, Quaegebeur, and Sabbe, which partially answers a question posed by Goswami. We also introduce other possible notions of isometric quantum actions in terms of the Wasserstein p-distances between probability measures on X for p ? 1, which are used extensively in optimal transportation. Indeed, all of these definitions of quantum isometry belong to a hierarchy of implications, where the two described above lie at the extreme ends of the hierarchy. We conjecture that they are all equivalent.

  19. Kosaki-Longo index and classification of charges in 2D quantum spin models

    NASA Astrophysics Data System (ADS)

    Naaijkens, Pieter

    2013-08-01

    We consider charge superselection sectors of two-dimensional quantum spin models corresponding to cone localisable charges, and prove that the number of equivalence classes of such charges is bounded by the Kosaki-Longo index of an inclusion of certain observable algebras. To demonstrate the power of this result we apply the theory to the toric code on a 2D infinite lattice. For this model we can compute the index of this inclusion, and conclude that there are four distinct irreducible charges in this model, in accordance with the analysis of the toric code model on compact surfaces. We also give a sufficient criterion for the non-degeneracy of the charge sectors, in the sense that Verlinde's matrix S is invertible.

  20. Use of a migration technique to study alteration of compacted sand-bentonite mixture in contact with concrete

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takafumi; Tsuji, Yukikazu

    In this research, a migration technique was applied to accelerate the migration of calcium ions from the pore solution of concrete so as to investigate the alteration of compacted bentonite in contact with the concrete. A 15 V of direct current was used for a composite specimen with 100 mm in diameter and 100 mm in length in which the electrical potential gradient was equal to 167 V/m. This composite consists of compacted bentonite (Na-type) sand mixture and concrete that is adjacent to each other. After a target cumulative electric charge of 13 × 10 3 C was reached, the specimen was removed for analysis. The results of electron probe micro analyzer (EPMA) showed that the concentration of calcium became higher in the compacted bentonite in the vicinity of the interface with the concrete. This observation was supported by the results of thermogravimetry/differential thermal analysis (TG-DTA) that provided distinct evidences of reduced quantities of Ca(OH) 2 in the concrete in the vicinity of the interface with the compacted bentonite. Therefore, calcium ions migrated from the concrete to the compacted bentonite under the given electric field. The results of the X-ray diffraction (XRD) curves indicated possible transformation of the characteristic of the compacted bentonite. However depending on the mix proportions of concrete employed, altered characterization of the compacted bentonite was different. It was found that the swelling capacity of the compacted bentonite in contact with normal concrete was decreased to 64% of its initial swelling capacity as the ratio of calcium content to sodium content (Ca/Na) increased up to 3.7. On the other hand the swelling capacity of the compacted bentonite in contact with fly ash concrete was 85% of its initial swelling capacity with a ratio (Ca/Na) of 2.3. Accordingly the use of the electrical migration technique enables quantitative evaluation of the reduced swelling capacity of the compacted bentonite in accordance with different types of hardened concrete.

  1. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  2. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ? 0.4 and z ? 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  3. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randi?, Milan; Vra?ko, Marjan; Zupan, Jure; Novi?, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human ?-globin and gorilla ?-globin.

  4. ROSAT: X ray survey of compact groups

    NASA Technical Reports Server (NTRS)

    Vangorkom, Jacqueline

    1993-01-01

    This is the final technical report on grant NAG5-1954, which was awarded under the NASA ROSAT Guest Investigator Program to Columbia University. This grant was awarded for a number of projects on two rather different topics: (1) an x-ray survey of compact groups of galaxies; and (2) the fate of gas in merging galaxies. Progress made in these projects is presented.

  5. Compact, Automated, Frequency-Agile Microspectrofluorimeter

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.

    1995-01-01

    Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.

  6. Light, Compact Pumper for Harbor Fires

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1983-01-01

    Report describes development of new transportable water-pumping unit for fire-fighting. Compact, self-contained unit provides fire protection at coastal and inland ports and is lighter than standard firetruck pumper of same capacity. Used to fight fires in harbors, cities, forests, refineries, chemical plants, and offshore drilling platforms. Other possible applications include cleaning up oilspills, pumping out ships, and flood control pumping.

  7. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  8. The Evolution of Compact Binary Star Systems

    E-print Network

    Konstantin Postnov; Lev Yungelson

    2014-03-21

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact binary stars are expected to be the most important sources for the forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binary stars with NS and/or black components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically important thermonuclear SN Ia. We also consider AM CVn-stars which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  9. Compaction dynamics of a magnetized powder.

    PubMed

    Lumay, G; Dorbolo, S; Vandewalle, N

    2009-10-01

    We have investigated experimentally the influence of a magnetic interaction between the grains on the compaction dynamics of a granular pile submitted to a series of taps. The granular material used to perform this study is a mixture of metallic and glass grains. The packing is immersed in homogeneous external magnetic field. The magnetic field induces an interaction between the metallic grains that constitutes the tunable cohesion. The compaction characteristic time and the asymptotic packing fraction have been measured as a function of the Bond number which is the ratio between the cohesive magnetic force and the grain weight. These measurements have been performed for different fractions of metallic beads in the pile. When the pile is only made of metallic grains, the characteristic compaction time increases as the square root of the Bond number. While the asymptotic packing fraction decreases as the inverse of the Bond number. For mixtures, when the fraction of magnetized grains in the pile is increased, the characteristic time increases while the asymptotic packing fraction decreases. A simple mesoscopic model based on the formation of granular chains along the magnetic field direction is proposed to explain the observed macroscopic properties of the packings. PMID:19905303

  10. Vibratory Shock Compaction of Granular Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Amme, Robert C.

    2004-05-01

    Vibratory Shock Compaction (VSC) is a proven means for quickly forming strong, durable solids from a wide variety of granular materials[1]. Calcination of tank and other forms of high level radioactive wastes results in fine granular material that is quite amenable to volume reduction and stabilization. We have employed utilities coal ash as a calcine waste surrogate, blended with a quartz/feldspar-rich sand and 0-20% proportions of a borosilicate glass. The blends were compacted at room temperature and fired so that the glass melt could form an efficient binder. Included in the blend are small quantities of three RCRA metals, chromium, cadmium and lead, to permit testing for heavy metal stability. The VSC process is described and the results presented in terms of the waste form dissolution rates, compressive strengths, elastic moduli as determined from resonant frequency measurements, and heavy metal leach rates from Toxicity Characteristic Leaching Procedure measurements. Vibratory shock compaction employing glass binders appears to be a viable alternative to traditional vitrification processes for granular waste forms. [1] See http://www.resonantshockcompact.com

  11. Compact high-speed scanning lidar system

    NASA Astrophysics Data System (ADS)

    Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander

    2012-06-01

    The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.

  12. Effects of Compaction and Temperature on Sorption and Diffusion of Cs and HTO in Compacted Bentonite Saturated with Saline Water

    SciTech Connect

    Satoru Suzuki; Masashi Haginuma; Kazunori Suzuki

    2007-07-01

    The sorption and diffusion of Cs and tritiated water (HTO) in compacted bentonite was investigated at temperatures from 30 to 60 deg. C. The apparent (D{sub a}) and effective (D{sub e}) diffusion coefficients were determined by in-diffusion and through-diffusion experiments with a constant boundary concentration maintained. The temperature dependence of De and Da obeyed an Arrhenius-type equation, allowing determination of the activation energy for diffusion of Cs and HTO. The D{sub e} value of Cs was three times the D{sub e} of HTO, which is considered to be a result of surface-excess diffusion. Cs may be concentrated near the surface of the negatively charged clay, thus giving a large diffusive flux. The activation energies for Cs diffusion were 21.4{+-}2.8 kJ/mol and 37.3{+-}1.5 kJ/mol as determined based on D{sub e} and D{sub a}, respectively. This difference was due to the temperature dependence of the distribution coefficient K{sub d} of Cs. (authors)

  13. Instrumentation for Studies of Electron Emission and Charging From Insulators

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.

    2004-01-01

    Making measurements of electron emission properties of insulators is difficult since insulators can charge either negatively or positively under charge particle bombardment. In addition, high incident energies or high fluences can result in modification of a material s conductivity, bulk and surface charge profile, structural makeup through bond breaking and defect creation, and emission properties. We discuss here some of the charging difficulties associated with making insulator-yield measurements and review the methods used in previous studies of electron emission from insulators. We present work undertaken by our group to make consistent and accurate measurements of the electron/ion yield properties for numerous thin-film and thick insulator materials using innovative instrumentation and techniques. We also summarize some of the necessary instrumentation developed for this purpose including fast response, low-noise, high-sensitivity ammeters; signal isolation and interface to standard computer data acquisition apparatus using opto-isolation, sample-and-hold, and boxcar integration techniques; computer control, automation and timing using Labview software; a multiple sample carousel; a pulsed, compact, low-energy, charge neutralization electron flood gun; and pulsed visible and UV light neutralization sources. This work is supported through funding from the NASA Space Environments and Effects Program and the NASA Graduate Research Fellowship Program.

  14. Fractional charge search

    SciTech Connect

    Innes, W.; Klein, S.; Perl, M.; Price, J.C.

    1982-06-01

    A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour.

  15. An Innovative Magnetic Charging Chute to Improve Productivity of Sinter Machine at Rourkela Steel Plant

    NASA Astrophysics Data System (ADS)

    Selvam, Sambandham Thirumalai; Chaudhuri, Subhasis; Das, Arunaba; Singh, Mithilesh Kumar; Mahanta, H. K.

    Sintering is a process in sinter machine for agglomeration of iron ore and other raw material fines into a compact porous mass, i.e., sinter, used in Blast Furnaces as an iron bearing input charge material for hot metal production. 'Permeability' of sinter-bed on sinter machine i.e., the porosity in sinter-bed of charged materials, facilitates atmospheric air passes from the top to bottom across the depth of sinter-bed, when suction created from the bottom of the bed, for efficient heat carry over from top to bottom of the bed for complete burning of charged materials for effective sintering process controls the productivity of the sinter machine. The level of 'permeability' in sinter-bed is depending upon the effectiveness of 'charging chute' in size-wise 'segregation' of charge materials across the depth in sinter-bed, achieved due to differences in the sliding velocities of particles during charging into the moving sinter-bed. The permeability achieved by the earlier conventional 'charging chute' was limited due to its design and positional constraints in sinter machine. Improving the productivity of sinter machine, through increased permeability of sinter bed is successfully achieved through implementation of an innovatively designed and developed, "Magnetic Charging Chute" at Sinter Plant no. 2 of Rourkela Steel Plant. The induced magnetic force on the charged materials while the charge materials dropping down through the charge chute has improved the permeability of sinter bed through an unique method of segregating the para-magnetic materials and the finer materials of the charge materials to top layer of sinter bed along with improved size-wise segregation of charge materials. This has increased the productivity of the sinter machine by 3% and also reduced the solid fuel consumption i.e., coke breeze in input charge materials by 1 kg/t of sinter.

  16. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J. (Pleasanton, CA)

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  17. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  18. Approximation functions for airblast environments from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-11-01

    In EMI report E 1/93, ``Airblast Environments from Buried HE-Charges,`` fit functions were used for the compact description of blastwave parameters. The coefficients of these functions were approximated by means of second order polynomials versus DOB. In most cases, the agreement with the measured data was satisfactory; to reduce remaining noticeable deviations, an approximation by polygons (i.e., piecewise-linear approximation) was used instead of polynomials. The present report describes the results of the polygon approximation and compares them to previous data. We conclude that the polygon representation leads to a better agreement with the measured data.

  19. An Ultra-Compact Marx-Type High-Voltage Generator

    SciTech Connect

    Goerz, D; Ferriera, T; Nelson, D; Speer, R; Wilson, M

    2001-06-15

    This paper discusses the design of an ultra-compact, Marx-type, high-voltage generator. This system incorporates high-performance components that are closely coupled and integrated into an extremely compact assembly. Low profile, custom ceramic capacitors with coplanar extended electrodes provide primary energy storage. Low-inductance, spark-gap switches incorporate miniature gas cavities imbedded within the central region of the annular shaped capacitors, with very thin dielectric sections separating the energy storage capacitors. Carefully shaped electrodes and insulator surfaces are used throughout to minimize field enhancements, reduce fields at triple-point regions, and enable operation at stress levels closer to the intrinsic breakdown limits of the dielectric materials. Specially shaped resistors and inductors are used for charging and isolation during operation. Forward-coupling ceramic capacitors are connected across successive switch-capacitor-switch stages to assist in switching. Pressurized SF, gas is used for electrical insulation in the spark-gap switches and throughout the unit. The pressure housing is constructed entirely of dielectric materials, with segments that interlock with the low-profile switch bodies to provide an integrated support structure for all of the components. This ultra-compact Marx generator employs a modular design that can be sized as needed for a particular application. Units have been assembled with 4, 10, and 30 stages and operated at levels up to 100 kV per stage.

  20. Charge Density of the Neutron

    E-print Network

    Gerald A. Miller

    2007-11-19

    A model-independent analysis of the infinite-momentum-frame charge density of partons in the transverse plane is presented for the nucleon. We find that the neutron parton charge density is negative at the center, so that the square of the transverse charge radius is positive, in contrast with many expectations. Additionally, the proton's central u quark charge density is larger than that of the d quark by about 70 %. The proton (neutron) charge density has a long range positively (negatively) charged component.

  1. Gated charged-particle trap

    DOEpatents

    Benner, W. Henry (Danville, CA)

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  2. Improved calculations of compactness and a reevaluation of continuous compact units.

    PubMed

    Zehfus, M H

    1993-07-01

    A new method for calculating compactness (Z) that uses look-up table-based algorithms for area and volume computations is introduced. These algorithms can be used in any iterative area or volume calculation, are more than 1000 times faster than the original algorithms, and have equal or better precision. With the faster algorithms it is now possible to calculate the compactness of all continuous units in a protein, and to precisely locate the optimal compact units without the screening functions and limited resolution used previously. These methods have been incorporated into a fully automatic domain finding algorithm, and this method has been applied to the 21 proteins originally analyzed as well as 12 additional proteins. This method is robust, and yields similar units even when applied to coordinates of protein crystals grown under different experimental conditions. PMID:8394001

  3. Structure and expression of a novel compact myelin protein – Small VCP-interacting protein (SVIP)

    SciTech Connect

    Wu, Jiawen; Peng, Dungeng; Voehler, Markus; Sanders, Charles R.; Center for Structural Biology, Vanderbilt University ; Li, Jun; Tennessee Valley Healthcare System – Nashville VA

    2013-10-11

    Highlights: •SVIP (small p97/VCP-interacting protein) co-localizes with myelin basic protein (MBP) in compact myelin. •We determined that SVIP is an intrinsically disordered protein (IDP). •The helical content of SVIP increases dramatically during its interaction with negatively charged lipid membrane. •This study provides structural insight into interactions between SVIP and myelin membranes. -- Abstract: SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.

  4. Compact Quantum Dots for Single-molecule Imaging

    PubMed Central

    Smith, Andrew M.; Nie, Shuming

    2012-01-01

    Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology 1-4. To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation 5. Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large 4,6,7. Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past 8,9. The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an insulating CdyZn1-yS shell, further coated with a multidentate polymer ligand modified with short polyethylene glycol (PEG) chains (Figure 1). Compared with conventional CdSe nanocrystals, HgxCd1-xSe alloys offer greater quantum yields of fluorescence, fluorescence at red and near-infrared wavelengths for enhanced signal-to-noise in cells, and excitation at non-cytotoxic visible wavelengths. Multidentate polymer coatings bind to the nanocrystal surface in a closed and flat conformation to minimize hydrodynamic size, and PEG neutralizes the surface charge to minimize nonspecific binding to cells and biomolecules. The end result is a brightly fluorescent nanocrystal with emission between 550-800 nm and a total hydrodynamic size near 12 nm. This is in the same size range as many soluble globular proteins in cells, and substantially smaller than conventional PEGylated QDs (25-35 nm). PMID:23093375

  5. Charge detection in semiconductor nanostructures

    E-print Network

    MacLean, Kenneth (Kenneth MacLean, III)

    2010-01-01

    In this thesis nanometer scale charge sensors are used to study charge transport in two solid state systems: Lateral GaAs quantum dots and hydrogenated amorphous silicon (a-Si:H). In both of these experiments we use ...

  6. Partially massless monopoles and charges

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Kurt; Rosen, Rachel A.

    2015-11-01

    Massive higher spin fields on de Sitter space exhibit enhanced gauge symmetries at special values of the mass. These fields are known as "partially massless." We study the structure of the charges and Gauss laws which characterize sources for the partially massless spin-2. Despite having a simple scalar gauge symmetry, there is a rich structure of gauge charges. The charges come in electric and magnetic varieties, each taking values in the fundamental representation of the de Sitter group. We find two invariant electriclike charges and two invariant magneticlike charges and we find the pointlike monopole solutions which carry these charges, analogous to the electric point-charge solution and Dirac monopole solution of Maxwell electrodynamics. These solutions are related by partially massless duality, analogous to the electromagnetic duality that relates electric to magnetic charges.

  7. Surface charge and size spectra of marine particles

    NASA Astrophysics Data System (ADS)

    Hunter, Keith A.

    This technique is well established in colloid chemistry, but needs modification for application to marine particles. The technique measures the electrophoretic mobility of individual particles in suspension, i.e., their velocity per unit of applied field. It is closely related to other electrokinetic techniques: electro-osmosis, streaming potential and sedimentation potential. The theory and practice of electrophoresis has been reviewed by Shaw [1969]. The electric field surrounding a particle in an electrolyte suspension is determined by several factors. These include charges developed at the particle surface through ionization processes, specific adsorption of ions in the inner and outer compact layers and the diffuse double layer. During electrophoretic motion, a viscous slipping plane develops within the double layer. This results in part of the double layer moving with the particle in a combined electrophoretic unit. Consequently, electrophoretic mobilities cannot be directly related to the charge on the surface of the particle.

  8. Compact Q=2 Abelian Higgs model in the London limit: Vortex-monopole chains and the photon propagator

    SciTech Connect

    Chernodub, M.N.; Feldmann, R.; Schiller, A.; Ilgenfritz, E.-M.

    2005-04-01

    The confining and topological properties of the compact Abelian Higgs model with doubly-charged Higgs field in three space-time dimensions are studied. We consider the London limit of the model. We show that the monopoles are forming chainlike structures (kept together by Abrikosov-Nielsen-Olesen vortices), the presence of which is essential for getting simultaneously permanent confinement of singly-charged particles and breaking of the string spanned between doubly-charged particles. In the confinement phase, the chains are forming percolating clusters, while in the deconfinement (Higgs) phase, the chains are of finite size. The described picture is in close analogy with the synthesis of the Abelian monopole and the center vortex pictures in confining non-Abelian gauge models. The screening properties of the vacuum are studied by means of the photon propagator in the Landau gauge.

  9. Time-dependent compaction band formation in sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Brantut, Nicolas; Baud, Patrick; Meredith, Philip G.

    2015-07-01

    Compaction bands in sandstone are laterally extensive planar deformation features that are characterized by lower porosity and permeability than the surrounding host rock. As a result, this form of localization has important implications for both strain partitioning and fluid flow in the Earth's upper crust. To better understand the time dependency of compaction band growth, we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (initial porosity = 0.24) under constant stress (creep) conditions in the compactant regime. Our experiments show that inelastic strain accumulates at a constant stress in the compactant regime, manifest as compaction bands. While creep in the dilatant regime is characterized by an increase in porosity and, ultimately, an acceleration in axial strain rate to shear failure, compaction creep is characterized by a reduction in porosity and a gradual deceleration in axial strain rate. The global decrease in the rates of axial strain, acoustic emission energy, and porosity change during creep compaction is punctuated at intervals by higher rate excursions, interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence, background creep strain rate, is decreased. However, the inelastic strain associated with the growth of a compaction band remains constant over strain rates spanning several orders of magnitude (from 10-8 to 10-5 s-1). We find that despite the large differences in strain rate and growth rate (from both creep and constant strain rate experiments), the characteristics (geometry and thickness) of the compaction bands remain essentially the same. Several lines of evidence, notably the similarity between the differential stress dependence of creep strain rate in the dilatant and compactant regimes, suggest that as for dilatant creep, subcritical stress corrosion cracking is the mechanism responsible for compactant creep in our experiments. Our study highlights that stress corrosion is an important mechanism in the time-dependent porosity loss, subsidence, and permeability reduction of sandstone reservoirs.

  10. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2013-09-01

    Infrared sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection has become application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive infrared (IR) sensors, the Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage and 2-stage cold-head architectures with an inventive set of warm-end mechanisms into a single mechanical module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (<20% improvement) and exported vibration performance (<=25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  11. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  12. Fractionally charged quasiparticles

    NASA Astrophysics Data System (ADS)

    Heiblum, M.

    2003-12-01

    Fractionally charged quasiparticles were proposed by Laughlin to explain the fractional quantum Hall effect. Flowing in one-dimensional-like strips along the edges of the sample the quasiparticles are expected to condense to a chiral Luttinger liquid (CLL). Adding a backscattering impurity in the path of the quasiparticles induces correlation among the scattering events at sufficiently low temperatures, hence leading to highly non-linear I-V characteristic and non-Poissonian shot noise. Moreover, a sufficiently strong backscatterer induces bunching of the backscattered quasiparticles with a super Poissonian shot noise corresponding to stochastic transfer of electrons. Diluting the impinging quasiparticle beam mimics an increased temperature. For example, correlation among scattering events in dilute beams relaxes and bunching ceased altogether. At finite temperature and fractionally charged quasiparticles are found to traverse almost opaque barriers. Turning to the extremely low-temperature regime ( ?9 mK) we found unexpected results. At higher order fractions, ?= p/ m with p>1, and very weak backscattering potential a spontaneous bunching of quasiparticles to q= ?e took place, namely, at ?=2/5, q=2 e/5 and at ?=3/7, q?3 e/7. As the temperature increases bunching ceased and the scattered charge was again the familiar Laughlin's quasiparticle q= e/ m independent of p.

  13. Adsorption of highly charged Gaussian polyelectrolytes to oppositely charged surfaces

    E-print Network

    Sandipan Dutta; Y. S. Jho

    2015-11-16

    In many biological processes highly charged biomolecules are adsorbed into oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which can not be explained by the conventional Poisson-Boltzmann theory. Many of the flexible biomolecules can be described by Gaussian polymers. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when the Gaussian polyelectrolytes are confined a) by one charged wall, and b) between two charged walls. The effects of salt and the geometry of the polymers on their adsorption- depletion transitions in the strong coupling regime are discussed.

  14. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (?25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  15. Compact component for integrated quantum optic processing

    PubMed Central

    Sahu, Partha Pratim

    2015-01-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1–2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963?±?0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler. PMID:26584759

  16. Impact compaction of a granular material

    DOE PAGESBeta

    Fenton, Gregg; Asay, Blaine; Dalton, Devon

    2015-05-19

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore »used for computational modeling.« less

  17. Almost commuting elements in compact Lie groups

    E-print Network

    Armand Borel; Robert Friedman; John W. Morgan

    1999-07-01

    We describe the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in terms of the extended Dynkin diagram of the simply connected cover, together with the coroot integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.

  18. A new compact spectrometer on atmospheric sounding

    NASA Astrophysics Data System (ADS)

    Li, Huan; Zhou, Feng; Wang, Zheng; Zhao, Jia

    2014-11-01

    Global warming has become a very serious issue for human beings. The substantial increase of column carbon dioxide (CO2) results in temperature raised of the earth's surface. One important specification is that it must have an ultra-spectral ability to measure concentration inversion of CO2, developing ultra-spectral remote sensors is an significant direction. This paper brings a new spectrometer on atmospheric sounding, that splits spectrum with a new type of narrow-band interference filter. It can simultaneity get super finely spectrum, compact configuration, and easy to achieve. That has broad applied foreground.

  19. Phase conversion dissipation in multicomponent compact stars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Han, Sophia; Schwenzer, Kai

    2015-05-01

    We propose a mechanism for the damping of density oscillations in multicomponent compact stars. The mechanism is the periodic conversion between different phases, i.e., the movement of the interface between them, induced by pressure oscillations in the star. The damping grows nonlinearly with the amplitude of the oscillation. We study in detail the case of r-modes in a hybrid star with a sharp interface, and we find that this mechanism is powerful enough to saturate the r-mode at very low saturation amplitude, of order 10-10, and is therefore likely to be the dominant r-mode saturation mechanism in hybrid stars with a sharp interface.

  20. Raytheon's next generation compact inline cryocooler architecture

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (?25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.