Science.gov

Sample records for charged polytropic compact

  1. Study of polytropes with generalized polytropic equation of state

    NASA Astrophysics Data System (ADS)

    Azam, M.; Mardan, S. A.; Noureen, I.; Rehman, M. A.

    2016-06-01

    The aim of this paper is to discuss the theory of Newtonian and relativistic polytropes with a generalized polytropic equation of state. For this purpose, we formulated the general framework to discuss the physical properties of polytropes with an anisotropic inner fluid distribution under conformally flat condition in the presence of charge. We investigate the stability of these polytropes in the vicinity of a generalized polytropic equation through the Tolman mass. It is concluded that one of the derived models is physically acceptable.

  2. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  3. Cracking of general relativistic anisotropic polytropes

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Fuenmayor, E.; León, P.

    2016-01-01

    We discuss the effect that small fluctuations of the local anisotropy of pressure and of the energy density may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of state. Two different kinds of polytropes are considered. For both, it is shown that departures from equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining the polytrope. Prospective applications of the obtained results to some astrophysical scenarios are pointed out.

  4. Spherical polytropic balls cannot mimic black holes

    NASA Astrophysics Data System (ADS)

    Saida, Hiromi; Fujisawa, Atsuhito; Yoo, Chul-Moon; Nambu, Yasusada

    2016-04-01

    The so-called black hole shadow is a dark region which is expected to appear in a fine image of optical observation of black holes. It is essentially an absorption cross section of the black hole, and the boundary of shadow is determined by unstable circular orbits of photons (UCOP). If there exists a compact object possessing UCOP but no black hole horizon, it can provide us with the same shadow image as black holes, and detection of a shadow image cannot be direct evidence of black hole existence. This paper examines whether or not such compact objects can exist under some suitable conditions. We investigate thoroughly the static spherical polytropic ball of perfect fluid with single polytrope index, and then investigate a representative example of a piecewise polytropic ball. Our result is that the spherical polytropic ball which we have investigated cannot possess UCOP, if the speed of sound at the center is subluminal (slower than light). This means that, if the polytrope treated in this paper is a good model of stellar matter in compact objects, the detection of a shadow image can be regarded as good evidence of black hole existence. As a by-product, we have found the upper bound of the mass-to-radius ratio of a polytropic ball with single index, M_{ast }/R_{ast } < 0.281, under the condition of subluminal sound speed.

  5. New results on charged compact boson stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar

    2016-05-01

    In this work we present some new results that we have obtained in a study of the phase diagram of charged compact boson stars in the theory involving massive complex scalar fields coupled to the U(1) gauge field and gravity in a conical potential in the presence of a cosmological constant Λ , which we treat as a free parameter taking positive and negative values and thereby allowing us to study the theory in de Sitter and anti de Sitter spaces, respectively. We obtain four bifurcation points (the possibility of more bifurcation points not being ruled out) in the de Sitter region. We present a detailed discussion of the various regions in our phase diagram with respect to four bifurcation points. Our theory is seen to have rich physics in a particular domain for positive values of Λ , which is consistent with the accelerated expansion of the Universe.

  6. Flying through polytropes

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean

    2016-03-01

    Dropping objects into a tunnel bored through Earth has been used to visualize simple harmonic motion for many years, and even imagined for use as rapid transport systems. Unlike previous studies that assumed a constant density Earth, here we calculate the fall-through time of polytropes, models of Earth's interior where the pressure varies as a power of the density. This means the fall-through time can be calculated as the central condensation varies from one to large within the family of polytropes. Having a family of models, rather than a single model, helps to explore the properties of planets and stars. Comparing the family of phase space solutions shows that the fall-through time and velocity approach the limit of radial free-fall onto a point mass as the central condensation increases. More condensed models give higher maximum velocities but do not have the right global properties for Earth. The angular distance one can travel along the surface is calculated as a brachistochrone (path of least time) tunnel that is a function of the depth to which the tunnel is bored. We also show that completely degenerate objects, simple models of white dwarf stars supported by completely degenerate electrons, have sizes similar to Earth but their much higher masses mean a much larger gravitational strength and a shorter fall-through time. Numerical integrations of the equations describing polytropes and completely degenerate objects are used to generate the initial models. Analytic solutions and numerical integration of the equations of motion are used to calculate the fall-through time for each model, and numerical integrations with analytic approximations at the boundaries are used to calculate the brachistochrones in the polytropes. Scaling relationships are provided to help use these results in other planets and stars.

  7. A new model for charged anisotropic compact star

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Jasim, M. K.; Gupta, Y. K.; Smitha, T. T.

    2016-05-01

    In this paper, we have obtained a new singularity free charged anisotropic fluid solution of Einstein's field equations. The physical parameters as radial pressure, tangential pressure, energy density, charge density, electric field intensity, velocity of sound and red-shift are well behaved everywhere inside the star. The obtained compact star models can represent the observational compact objects as PSR 1937{+}21 and PSR J1614-2230.

  8. A compact source for bunches of singly charged atomic ions

    NASA Astrophysics Data System (ADS)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  9. Superposition of Polytropes in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.

    2016-03-01

    This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density-temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log-log scale is now generalized to a concave-downward parabola that is able to describe the observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ˜ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.

  10. A Polytropic Model of the Solar Interior

    NASA Astrophysics Data System (ADS)

    Calvo-Mozo, B.; Buitrago Casas, J. C.; Martinez Oliveros, J. C.

    2015-12-01

    In this work we considered different processes in the solar interior that can be described using polytropes. This assumption implies a radially variable continuous polytropic exponent, that is, our model is a multi-polytropic model of the Sun. We derived the equations for this type of multi-polytropic structure and solved them using numerical integration methods. Both, the exponent and proportionality factor in the polytropic model equation of state were taken as input functions, for each spherical layer in the solar interior. Using the spatial distribution of the density and pressure terms from a solar standard model (SSM) we obtained the variable with depth polytropic exponents. We found that the radial distribution of these exponents show four different zones. These can be interpreted as a first region where the energy transport is controlled by radiation. The second region is defined by a sudden change in the polytropic index, which can be associated to the tachocline, followed by a region with a nearly constant polytropic index which suits well a convective zone. Finally, the exponent decreases radially at the photosphere.

  11. Perturbation analysis of a general polytropic homologously collapsing stellar core

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Lou, Yu-Qing

    2009-12-01

    For dynamic background models of Goldreich & Weber and Lou & Cao, we examine three-dimensional perturbation properties of oscillations and instabilities in a general polytropic homologously collapsing stellar core of a relativistically hot medium with a polytropic index γ = 4/3. Perturbation behaviours, especially internal gravity g modes, depend on the variation of specific entropy in the collapsing core. Among possible perturbations, we identify acoustic p modes and surface f modes as well as internal gravity g+ and g- modes. As in stellar oscillations of a static star, we define g+ and g- modes by the sign of the Brunt-Väisälä buoyancy frequency squared for a collapsing stellar core. A new criterion for the onset of instabilities is established for a homologous stellar core collapse. We demonstrate that the global energy criterion of Chandrasekhar is insufficient to warrant the stability of general polytropic equilibria. We confirm the acoustic p-mode stability of Goldreich & Weber, even though their p-mode eigenvalues appear in systematic errors. Unstable modes include g- modes and sufficiently high-order g+ modes, corresponding to core instabilities. Such instabilities occur before the stellar core bounce, in contrast to instabilities in other models of supernova (SN) explosions. The breakdown of spherical symmetry happens earlier than expected in numerical simulations so far. The formation and motion of the central compact object are speculated to be much affected by such g-mode instabilities. By estimates of typical parameters, unstable low-order l = 1 g-modes may produce initial kicks of the central compact object. Other high-order and high-degree unstable g modes may shred the nascent neutron core into pieces without an eventual compact remnant (e.g. SN 1987A). Formation of binary pulsars and planets around neutron stars might originate from unstable l = 2 g-modes and high-order high-degree g modes, respectively.

  12. A Compact Wireless Charging System for Electric Vehicles

    SciTech Connect

    Ning, Puqi; Miller, John M; Onar, Omer C; White, Cliff P

    2013-01-01

    In this paper, a compact high efficiency wireless power transfer system has been designed and developed. The detailed gate drive design, cooling system design, power stage development, and system assembling are presented. The successful tests verified the feasibility of wireless power transfer system to achieve over-all 90% efficiency.

  13. Industrial test coking of partially compacted charges by the method of briquetting without a binder

    SciTech Connect

    Olfert, A.I.; Taits, E.M.; Semenov, B.M.; Ruban, N.V.; Pavlov, V.V.; Ivanov, A.I.; Kovaleva, N.A.; Kalika, V.G.

    1981-01-01

    As a result of industrial test investigations on the coking of partially compacted charges by the method of briquetting without a binder it was shown that: (1) It is possible in practice to briquette coal charges without a binder to obtain small briquettes weighing about 7-8 g, with density of 1.14 to 1.15 g/cm/sup 3/, sufficiently strong that these briquettes may be used as a component of a coal charge loaded into coke ovens. (2) There ia an increase in the mechanical strength of the coke by the M40 index by 3% and a decrease in the M10 by 1.2% in the box coking of partially compacted industrial coal charge of the Moscow Coke Gas Plant. (3) There is an increase in the yield of the over 40 mm size class coke (by 5 to 10%) with a corresponding decrease in the yield of the finer size classes) depending on the caking capacity in the box coking of partially compacted charges. (4) It is possible to increase (with partial compaction of the charges) the proportion of Kuznetsk poorly-caking coal in the industrial charge of the Moscow Coke Gas Plant to 50 to 60% in comparison to the present 20%.

  14. Magnetic flux concentrations in a polytropic atmosphere

    NASA Astrophysics Data System (ADS)

    Losada, I. R.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2014-04-01

    Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has been done for isothermal layers, in which the density scale height is constant throughout. Aims: We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface. Methods: To allow for a continuous transition from isothermal to polytropic layers, we employ a generalization of the exponential function known as the q-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such that the scale height is always the same at some reference height. We used both mean-field simulations (MFS) and direct numerical simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both horizontal and vertical applied magnetic fields were considered. Results: Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover, the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with horizontal magnetic fields to reach premature nonlinear saturation by what is called the "potato-sack" effect. The horizontal cross-section of such

  15. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  16. Rotational properties of composite polytrope models

    SciTech Connect

    Rucinski, S.M.

    1988-06-01

    Factional radii of gyration for both the convective envelope and the radiative core have been determined using the composite-polytrope model of Rappaport et al. (1983) which describes low-mass stars by appropriately matched polytropes n(outer) = 3/2 and n(inner) = 3. Radii of gyration computed for ZAMS stars with masses of 0.4-1.2 solar masses are used to obtain ZAMS angular momenta for low-mass rapidly rotating stars in the Pleiades and Alpha Persei clusters. Results indicate that there is little chance of observing single young early G and late F type stars in rapid rotation because of the very short timescales for braking of their thin convective envelopes. 41 references.

  17. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively. PMID:26429466

  18. Universal charge-radius relation for subatomic and astrophysical compact objects.

    PubMed

    Madsen, Jes

    2008-04-18

    Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature. PMID:18518093

  19. General polytropic Larson-Penston-type collapses

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-12-01

    We investigate self-similar hydrodynamics of a general polytropic (GP) gas with spherical symmetry under self-gravity and extend the conventional polytropic (CP) relation n = 2 - γ for the self-similar index n and the polytropic index γ to a general relation n = 2(q + γ - 2)/(3q - 2), where q is a real parameter by specific entropy conservation along streamlines. We derive GP Larson-Penston (LP)-type solutions for q > 2/3 and γ > 4/3; Larson-Penston-Hunter (LPH)-type solutions are also constructed in a GP gas by a time-reversal operation on a GP-LP-type solution and by connecting to a GP free-fall-type solution across t = 0. These GP-LPH solutions describe dynamic processes that a GP gas globule, static and dense initially, undergoes a runaway collapse under self-gravity, forms a central mass singularity, and keeps accreting during a free-fall stage. We apply such GP-LPH-type solutions with variable envelope mass infall rates (EMIRs) for the dynamic evolution of globules and dense cores in star-forming molecular clouds. In particular, a GP-LPH-type solution can sustain an EMIR as low as 10-8 ˜ 10-6 M⊙ yr-1 or even lower - much lower than that of Shu's isothermal model for a cloud core in Class 0 and Class I phases. Such GP-LPH-type solutions with EMIRs as low as 10-9 ˜ 10-8 M⊙ yr-1 offer a sensible viable mechanism of forming brown dwarfs during the accretion stage in a collapsed GP globules with 1.495 ≤ γ ≤ 1.50 and 0.99 ≤ n ≤ 1.0. The GP-LPH solutions with 0.94 < n < 0.99 and 1.47 < γ < 1.495 can even give extremely low EMIRs of 10-12 ˜ 10-9 M⊙ yr-1 to form gaseous planet-type objects in mini gas globules.

  20. A variable polytrope index applied to planet and material models

    NASA Astrophysics Data System (ADS)

    Weppner, S. P.; McKelvey, J. P.; Thielen, K. D.; Zielinski, A. K.

    2015-09-01

    We introduce a new approach to a century-old assumption which enhances not only planetary interior calculations but also high-pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method, we create a high-quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 1018 Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our Solar system. We argue that the bulk modulus and its derivatives have been underutilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe that this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

  1. A variable polytrope index applied to planet and material models

    NASA Astrophysics Data System (ADS)

    Thielen, Kevin; Weppner, Stephen; Zielinski, Alexander

    2016-01-01

    We introduce a new approach to a century-old assumption which enhances not only planetary interior calculations but also high-pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method, we create a high-quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 1018 Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our Solar system. We argue that the bulk modulus and its derivatives have been underutilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe that this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

  2. Stationary spiral flow in polytropic stellar models

    SciTech Connect

    Pekeris, C.L.

    1980-06-01

    It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models.

  3. Rapidly rotating polytropes in general relativity

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct an extensive set of equilibrium sequences of rotating polytropes in general relativity. We determine a number of important physical parameters of such stars, including maximum mass and maximum spin rate. The stability of the configurations against quasi-radial perturbations is diagnosed. Two classes of evolutionary sequences of fixed rest mass and entropy are explored: normal sequences which behave very much like Newtonian evolutionary sequences, and supramassive sequences which exist solely because of relativistic effects. Dissipation leading to loss of angular momentum causes a star to evolve in a quasi-stationary fashion along an evolutionary sequence. Supramassive sequences evolve towards eventual catastrophic collapse to a black hole. Prior to collapse, the star must spin up as it loses angular momentum, an effect which may provide an observational precursor to gravitational collapse to a black hole.

  4. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed. PMID:25725838

  5. The Intrinsic Beauty of Polytropic Spheres in Reduced Variables

    NASA Astrophysics Data System (ADS)

    Caimmi, Roberto

    The concept of reduced variables is revisited with regard to van der Waals' theory and an application is made to polytropic spheres, where the reduced radial coordinate is ${\\rm red}(r)=r/R=\\xi/\\Xi$, $R$ radius, and the reduced density is ${\\rm red}(\\rho)=\\rho/\\lambda=\\theta^n$, $\\lambda$ central density. Reduced density profiles are plotted for several polytropic indexes within the range, $0\\le n\\le5$, disclosing two noticeable features. First, any point of coordinates, $({\\rm red}(r),{\\rm red}(\\rho))$, $0\\le{\\rm red}(r)\\le1$, $0\\le{\\rm red}(\\rho)\\le1$, belongs to a reduced density profile of the kind considered. Second, sufficiently steep i.e. large $n$ reduced density profiles exhibit an oblique inflection point, where the threshold is found to be located at $n=n_{\\rm th}=0.888715$. Reduced pressure profiles, ${\\rm red}(P)=P/\\varpi=\\theta^{n+1}$, $\\varpi$ central pressure, Lane-Emden fucntions, $\\theta=(\\rho/\\lambda)^{1/n}$, and polytropic curves, ${\\rm red}(P)={\\rm red}(P)({\\rm red}(\\rho))$, are also plotted. The method can be extended to nonspherical polytropes with regard to a selected direction, ${\\rm red}(r)(\\mu)=r(\\mu)/R(\\mu)=\\xi(\\mu)/\\Xi(\\mu)$. The results can be extended to polytropic spheres made of collisionless particles, for polytropic index within a more restricted range, $1/2\\le n\\le5$.

  6. A new class of solutions of compact stars with charged distributions on pseudo-spheroidal spacetime

    NASA Astrophysics Data System (ADS)

    Thomas, V. O.; Pandya, D. M.

    2015-12-01

    In this paper a new class of exact solutions of Einstein's field equations for compact stars with charged distributions is obtained on the basis of pseudo-spheroidal spacetime characterized by the metric potential g_{rr}=1+K{r2/R2}/{1+r2/R2}, where K and R are geometric parameters of the spacetime. The expressions for radial pressure (pr) and electric field intensity (E) are chosen in such a way that the model falls in the category of physically acceptable one. The bounds of geometric parameter K and the physical parameters p0 and α are obtained by imposing the physical requirements and regularity conditions. The present model is in good agreement with the observational data of various compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, SMC X-4, Cen X-3 given by Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013). When α = 0, the model reduces to the uncharged anisotropic distribution given by Thomas and Pandya (arXiv:1506.08698v1 [gr-qc], 2015).

  7. A compact Charged-Particle Spectrometer for OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Rosenberg, M. J.; Seguin, F. H.; Gatu Johnson, M.; Sio, H.; Zylstra, A. B.; Rinderknecht, H. G.; Rojas, J. A.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu,

    2015-11-01

    A very compact scattering pinhole diagnostic (SPD) has been implemented and used to measure the mean energy of charged particles produced in Inertial Confinement (ICF) experiments. This was done by measuring the spatial distribution of mono-energetic particles that passed through a small pinhole, scattered in a thin foil that was positioned about a centimeter in front of a CR-39 detector. To determine the mean energy from the spatial distribution of the scattered particles on the CR-39, an empirical relationship between the scattering angle and the incoming particle energy for a given foil was determined using simulations. Two methods for the energy determination are discussed in this presentation. The capabilities of this diagnostic are demonstrated with DD proton and D3He alpha data from the OMEGA laser. To check the fidelity of the SPD measurements, the results are contrasted to data obtained with other well-established techniques. This work was supported in part by NLUF, US DOE, and LLE.

  8. Charge-based compact analytical model for triple-gate junctionless nanowire transistors

    NASA Astrophysics Data System (ADS)

    Ávila-Herrera, F.; Paz, B. C.; Cerdeira, A.; Estrada, M.; Pavanello, M. A.

    2016-08-01

    A new compact analytical model for short channel triple gate junctionless transistors is proposed. Based on a previous model for double-gate transistors which neglected the fin height effects, a new 3-D continuous model has been developed, including the dependence of the fin height and the short channel effects. An expression for threshold voltage is presented. The model defines a one-dimensional semiconductor effective capacitance due to the width and the height of the fin, which in turn redefines the potentials and charges, without altering the general modeling procedure. Threshold voltage roll-off, subthreshold slope, DIBL and channel length modulation, as well as, the mobility degradation and the velocity saturation have been introduced into the model. The validation was done by 3-D numerical simulations for different fin heights and channel lengths, as well as, by experimental measurements in nanowire transistors with doping concentrations of 5 × 1018 and 1 × 1019 cm-3. The developed model is suitable for describing the current-voltage characteristics in all operating regions from double-gate to nanowire transistor with only 8 adjusting parameters.

  9. Analytical solutions of the Rayleigh equation for arbitrary polytropic exponent

    NASA Astrophysics Data System (ADS)

    Kudryashov, Nikolay A.; Sinelshchikov, Dmitry I.

    2016-06-01

    The Rayleigh equation for the description of spherical gas-filled bubbles dynamics is considered. It is shown that this equation can be transformed into an equation for the elliptic function for arbitrary values of the polytropic exponent. General analytical solutions of the Rayleigh equation are studied for some particular cases, such as the isothermal case.

  10. A varying polytropic gas universe and phase space analysis

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.

    2016-05-01

    In this paper, we will consider a phenomenological model of a dark fluid that is able to explain an accelerated expansion of our low redshift universe and the phase transition to this accelerated expanding universe. Recent developments in modern cosmology towards understanding of the accelerated expansion of the large scale universe involve various scenarios and approaches. Among these approaches, one of well-known and accepted practice is modeling of the content of our universe via dark fluid. There are various models of dark energy fluid actively studied in recent literature and polytropic gas is among them. In this work, we will consider a varying polytropic gas which is a phenomenological modification of polytropic gas. Our model of varying polytropic dark fluid has been constructed to analogue to a varying Chaplygin gas actively discussed in the literature. We will consider interacting models, where dark matter is a pressureless fluid, to have a comprehensive picture. Phase space analysis is an elegant mathematical tool to earn general understanding of large scale universe and easily see an existence of a solution to cosmological coincidence problem. Imposing some constraints on parameters of the models, we found late time attractors for each case analytically. Cosmological consequences for the obtained late time attractors are discussed.

  11. A compact T-shaped nanodevice for charge sensing of a tunable double quantum dot in scalable silicon technology

    NASA Astrophysics Data System (ADS)

    Tagliaferri, M. L. V.; Crippa, A.; De Michielis, M.; Mazzeo, G.; Fanciulli, M.; Prati, E.

    2016-03-01

    We report on the fabrication and the characterization of a tunable complementary-metal oxide semiconductor (CMOS) system consisting of two quantum dots and a MOS single electron transistor (MOSSET) charge sensor. By exploiting a compact T-shaped design and few gates fabricated by electron beam lithography, the MOSSET senses the charge state of either a single or double quantum dot at 4.2 K. The CMOS compatible fabrication process, the simplified control over the number of quantum dots and the scalable geometry make such architecture exploitable for large scale fabrication of multiple spin-based qubits in circuital quantum information processing.

  12. Polytropic index of magnetosheath ions based on homogeneous MHD Bernoulli Integral

    NASA Astrophysics Data System (ADS)

    Pang, Xuexia; Cao, Jinbin; Ma, Yuduan

    2016-03-01

    This paper uses Cluster data during the period from 2001 to 2010 to study the polytropic processes of magnetosheath ions. Utilizing the method of homogeneous magnetohydrodynamic (MHD) Bernoulli integral (MBI), we first identify streamflow tubes, then use the constant of polytropic relation to guarantee that the streamflow tube experiences an unchanged polytropic process, and finally determine the polytropic index of ions in these streamflow tubes. The statistical results show that the magnetosheath is a complicated system in which the polytropic index of ions ranges from -2 to 3. The polytropic index distribution of ions is dependent on the electromagnetic energy flux perpendicular to the streamline. The median polytropic index of ions in the magnetosheath is 0.960, 0.965, and 0.974 for perpendicular electromagnetic energy ratio δE × B < 5%, δE × B < 3%, and δE × B < 1%, respectively. There are two basic polytropic processes in the magnetosheath: the dominant isothermal process and the isobaric process. When there is no exchange of electromagnetic energy between neighboring streamflow tubes, the magnetosheath ions are isothermal. However, when the perpendicular electromagnetic energy ratio increases, the isobaric polytropic process starts to emerge. The magnetosheath ion flows are highly localized because most streamflow tubes experiencing same polytropic processes last less than 60 s. Thus, the polytropic index of magnetosheath ion flows is highly variable.

  13. Quasi-Radial Modes of Pulsating Neutron Stars: Numerical Results for General-Relativistic Rigidly Rotating Polytropic Models

    NASA Astrophysics Data System (ADS)

    Geroyannis, Vassilis; Tzelati, Eleftheria

    In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of $\\sim 10 \\, \\mathrm{km}$ and mass between $\\sim 1.4$ and $3.2$ solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.

  14. Charge Density and Molecular Weight of Polyphosphoramidate Gene Carrier Are Key Parameters Influencing Its DNA Compaction Ability and Transfection Efficiency

    PubMed Central

    Ren, Yong; Jiang, Xuan; Pan, Deng; Mao, Hai-Quan

    2011-01-01

    A series of polyphosphoramidates (PPA) with different molecular weights (MWs) and charge densities were synthesized and examined for their DNA compaction ability and transfection efficiency. A strong correlation was observed between the transfection efficiency of PPA/DNA nanoparticles and the MW and net positive charge density of the PPA gene carriers in three different cell lines (HeLa, HEK293 and HepG2 cells). An increase in MW and/or net positive charge density of PPA carrier yielded higher DNA compaction capacity, smaller nanoparticles with higher surface charges and higher complex stability against challenges by salt and polyanions. These favorable physicochemical properties of nanoparticles led to enhanced transfection efficiency. PPA/DNA nanoparticles with the highest complex stability showed comparable transfection efficiency as PEI/DNA nanoparticles likely by compensating the low buffering capacity with higher cellular uptake and affording higher level of protection to DNA in endolysosomal compartment. The differences in transfection efficiency were not attributed by any difference in cytotoxicity among the carriers, as all nanoparticles showed minimal level of cytotoxicity under the transfection conditions. Using PPA as a model system, we demonstrated the structural dependence of transfection efficiency of polymer gene carrier. These results offer more insights into nanoparticle engineering for non-viral gene delivery. PMID:21067136

  15. Determination of the polytropic index in the plasma sheet

    SciTech Connect

    Baumjohann, W.; Paschmann, G.

    1989-04-01

    Using eight months of magnetotail plasma data, we have done a statistical survey on the relation between ion density and pressure in the Earth's plasmasheet. More than 270,000 spin averaged (4.5s) samples of ion density and thermal pressure obtained in the central plasma sheet and the plasma sheet boundary layer were cross-correlated in order to obtain typical values of the polytropic index ..gamma.. for different tail regions and disturbance conditions. The plasma sheet ion population behaves, on average, adiabatically both in the central plasma sheet and the plasma sheet boundary layer. However, a polytropic index of about 1.4 for the quiet plamsa sheet indicates that the latter behaves like a poorly insulated vessel. Hence, there seems to be no quiet time magnetotail equilibrium (''ground state''), but rather continuous cooling until new enegy is entering from the outside. copyright American Geophysical Union 1989

  16. Supersymmetric formulation of polytropic gas dynamics and its invariant solutions

    SciTech Connect

    Grundland, A. M.; Hariton, A. J.

    2011-04-15

    In this paper, a supersymmetric extension of the polytropic gas dynamics equations is constructed through the use of a superspace involving two independent fermionic variables and two bosonic superfields. A superalgebra of symmetries of the proposed extended model is determined and a systematic classification of the one-dimensional subalgebras of this superalgebra is performed. Through the use of the symmetry reduction method, a number of invariant solutions of the supersymmetric polytropic gas dynamics equations are found. Several types of solutions are obtained including algebraic-type solutions and propagation waves (simple and double waves). Many of the obtained solutions involve arbitrary functions of one or two bosonic or fermionic variables. In the case where the arbitrary functions involve only the independent fermionic variables, the solutions are expressed in terms of Taylor expansions.

  17. Polytropic equation of state and primordial quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Freitas, R. C.; Gonçalves, S. V. B.

    2014-12-01

    We study the primordial Universe in a cosmological model where inflation is driven by a fluid with a polytropic equation of state . We calculate the dynamics of the scalar factor and build a Universe with constant density at the origin. We also find the equivalent scalar field that could create such an equation of state and calculate the corresponding slow-roll parameters. We calculate the scalar perturbations, the scalar power spectrum, and the spectral index.

  18. Polytropic dark matter flows illuminate dark energy and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Spyrou, N. K.

    2015-04-01

    Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the

  19. Near-polytropic stellar simulations with a radiative surface

    NASA Astrophysics Data System (ADS)

    Barekat, A.; Brandenburg, A.

    2014-11-01

    Context. Studies of solar and stellar convection often employ simple polytropic setups using the diffusion approximation instead of solving the proper radiative transfer equation. This allows one to control separately the polytropic index of the hydrostatic reference solution, the temperature contrast between top and bottom, and the Rayleigh and Péclet numbers. Aims: Here we extend such studies by including radiative transfer in the gray approximation using a Kramers-like opacity with freely adjustable coefficients. We study the properties of such models and compare them with results from the diffusion approximation. Methods: We use the Pencil code, which is a high-order finite difference code where radiation is treated using the method of long characteristics. The source function is given by the Planck function. The opacity is written as κ = κ0ρaTb, where a = 1 in most cases, b is varied from -3.5 to + 5, and κ0 is varied by four orders of magnitude. We adopt a perfect monatomic gas. We consider sets of one-dimensional models and perform a comparison with the diffusion approximation in one- and two-dimensional models. Results: Except for the case where b = 5, we find one-dimensional hydrostatic equilibria with a nearly polytropic stratification and a polytropic index close to n = (3 - b)/(1 + a), covering both convectively stable (n> 3/2) and unstable (n< 3/2) cases. For b = 3 and a = -1, the value of n is undefined a priori and the actual value of n depends then on the depth of the domain. For large values of κ0, the thermal adjustment time becomes long, the Péclet and Rayleigh numbers become large, and the temperature contrast increases and is thus no longer an independent input parameter, unless the Stefan-Boltzmann constant is considered adjustable. Conclusions: Proper radiative transfer with Kramers-like opacities provides a useful tool for studying stratified layers with a radiative surface in ways that are more physical than what is possible with

  20. Self-similar polytropic champagne flows in HII regions

    NASA Astrophysics Data System (ADS)

    Hu, Ren-Yu; Lou, Yu-Qing

    2008-11-01

    We explore large-scale hydrodynamics of HII regions for various self-similar shock flows of a polytropic gas cloud under self-gravity and with quasi-spherical symmetry. We formulate cloud dynamics by invoking specific entropy conservation along streamlines and obtain global self-similar `champagne flows' for a conventional polytropic gas with shocks as a subclass. Molecular cloud cores are ionized and heated to high temperatures after the onset of nuclear burning of a central protostar. We model subsequent evolutionary processes in several ways and construct possible self-similar shock flow solutions. We may neglect the mass and gravity of the central protostar. The ionization and heating of the surrounding medium drive outflows in the inner cloud core and a shock travels outwards, leading to the so-called `champagne phase' with an expanding outer cloud envelope. Complementarily, we also consider the expansion of a central cavity around the centre. As the inner cloud expands plausibly due to powerful stellar winds, a cavity (i.e. `void' or `bubble') can be created around the centre, and when the cavity becomes sufficiently large, one may neglect the gravity of the central protostar. We thus present self-similar shock solutions for `champagne flows' with an expanding central void. We compare our solutions with isothermal solutions and find that the generalization to the polytropic regime brings about significant differences of the gas dynamics, especially for cases of n < 1, where n is a key scaling index in the self-similar transformation. We also compare our global polytropic self-similar solutions with numerical simulations on the expansion of HII regions. We further explore other possible dynamic evolutions of HII regions after the initiation of nuclear burning of the central protostar, for example asymptotic inflows or contractions far from the cloud centre and the ongoing infall around a central protostar. In particular, it is possible to use the downstream

  1. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    SciTech Connect

    Vorobjev, G.; Sokolov, A.; Herfurth, F.; Kester, O.; Quint, W.; Stoehlker, Th.; Thorn, A.; Zschornack, G.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} have been measured.

  2. Polytropic index of central plasma sheet ions based on MHD Bernoulli integral

    NASA Astrophysics Data System (ADS)

    Pang, Xuexia; Cao, Jinbin; Liu, Wenlong; Ma, Yuduan; Lu, Haoyu; Yang, Junying; Li, Liuyuan; Liu, Xu; Wang, Jing; Wang, Tieyan; Yu, Jiang

    2015-06-01

    This paper uses the data of Cluster from 2001 to 2009 to study the polytropic processes of central plasma sheet (CPS) ions. We first adopt the approach of MHD Bernoulli integral (MBI) to identify homogeneous streamflow tubes (quasi-invariant MBI regions) and then calculate the polytropic index of ions for those streamflow tubes whose outward electromagnetic energy ratios δ < 0.05. The central plasma sheet is actually a complicated system, which comprises many streamflow tubes with different polytropic relations and the transition layers in between. The polytropic indexes of the CPS ions range from 0.1 to 1.8 and have a quasi-Gaussian distribution. The median polytropic index is 0.93 for AE < 200 nT and 0.91 for AE ≥ 200 nT. Thus, there is no obvious difference between the polytropic indexes of the quiet time and the substorm time CPS ions, which suggests that the thinning and thickening processes of plasma sheet during substorm times do not change obviously the polytropic relation of the CPS ions. The statistical analysis using different δ (δ < 0.05, 0.025, and 0.01) shows that the outward emission of electromagnetic energy is an effective cooling mechanism and can make the polytropic index to decrease and shift toward isobaric. It is inferred that the CPS ions as a whole much likely behave in a way between isobaric and isothermal.

  3. Optimization of a compact multicusp He{sup +} ion source for double-charge-exchanged He{sup -} beam

    SciTech Connect

    Shinto, K.; Sugawara, H.; Takenaga, M.; Takeuchi, S.; Tanaka, N.; Okamoto, A.; Kitajima, S.; Sasao, M.; Nishiura, M.; Wada, M.

    2006-03-15

    Preliminary test bench results to study the beam quality extracted from a compact multicusp He{sup +} ion source for He{sup -} beam production are reported. The bench is a part of the beam diagnostic system equipped with energy analyzers, emittance meters, focusing beam optics, an alkali-metal charge-exchange cell, a neutral particle energy analyzer, a double focusing magnetic momentum analyzer, a postaccelerator, and a drift tube. Utilizing the front end of the bench, the transverse emittance and the energy distribution function of a He{sup +} beam extracted from a multi-line-cusp magnetic-field ion source 8 cm in diameter and 9 cm in length were measured. The results indicated that improvements in both formation of the plasma meniscus and reinforcement of pumping in the extraction region are necessary to produce a higher brightness He{sup +} beam.

  4. The Equilibrium Structure of Charged Rotating Relativistic Stars

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    General relativistic equilibrium conditions imply that an electrically charged compact star, in a spherically symmetric configuration, can sustain a huge amount of electric charge (up to 1020 C). The equilibrium, however, is reached under very critical conditions such that a perturbation to the stellar structure can cause these systems to collapse. We study the effects of rotation in charged compact stars and obtain conditions, the modified Tolman-Oppenheimer-Volkoff (TOV) equations, under which such stars form a stable gravitational system against Coulomb repulsion. We assume the star to be rotating slowly. We also assume that the charge density is proportional to the mass density everywhere inside the star. The modified TOV equations for hydrostatic equilibrium are integrated numerically for the general equation of state for a polytrope. The detailed numerical study shows that the centrifugal force adds to the Coulomb pressure in the star. In the stable equilibrium configurations, therefore, a loss in stellar mass (energy) density occurs for higher values of the angular frequency. The additional energy is radiated in the form of electrical energy. The stellar radius is also decreased so that the star does not necessarily becomes more compact.

  5. Shear instabilities in a fully compressible polytropic atmosphere

    NASA Astrophysics Data System (ADS)

    Witzke, V.; Silvers, L. J.; Favier, B.

    2015-05-01

    Shear flows have a significant impact on the dynamics in an assortment of different astrophysical objects, including accretion discs and stellar interiors. Investigating shear flow instabilities in a polytropic atmosphere provides a fundamental understanding of the motion in stellar interiors where turbulent motions, mixing processes, and magnetic field generation take place. Here, a linear stability analysis for a fully compressible fluid in a two-dimensional Cartesian geometry is carried out. Our study focuses on determining the critical Richardson number for different Mach numbers and the destabilising effects of high thermal diffusion. We find that there is a deviation in the predicted stability threshold for moderate Mach number flows, along with a significant effect on the growth rate of the linear instability for small Péclet numbers. We show that in addition to a Kelvin-Helmholtz instability, a Holmboe instability can appear, and we discuss the implication of this in stellar interiors.

  6. Some non-linear interactions in polytropic gas cosmology: phase space analysis

    NASA Astrophysics Data System (ADS)

    Khurshudyan, Martiros

    2015-11-01

    There are various cosmological models with polytropic equation of state associated to dark energy. Polytropic EoS has important applications in astrophysics, therefore a study of it on cosmological framework continues to be interesting. From the other hand, there are various forms of interactions phenomenologically involved into the darkness of the universe able to solve important cosmological problems. This is a motivation for us to perform a phase space analysis of various cosmological scenarios where non-linear interacting polytropic gas models are involved. Dark matter is taken to be a pressureless fluid.

  7. A low-energy charged particle distribution imager with a compact sensor for space applications

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Burchill, J. K.; Berg, K.; Cameron, T.; Enno, G. A.; Marcellus, C. G.; King, E. P.; Wevers, I.; King, R. A.

    2003-01-01

    Low-energy plasmas having temperatures of order 1 eV or less are found commonly in the ionospheres and space environments of Earth and other planets. Measuring the density, temperature, drift velocities, phase-space anisotropies, and other properties of these plasmas presents numerous challenges. Examples are distortions of particle trajectories due to spacecraft wakes, spacecraft charging, and particle gyromotion in magnetized plasmas. Furthermore, these plasmas are known to organize into structures as small as tens of meters across, traversed by spacecraft in tens of milliseconds or less. The Suprathermal Plasma Imager (SPI) was developed to address these challenges. The SPI is optimized for measurements of particles with ~1 eV energies, and of the suprathermal extension of those populations up to several hundred eV. The SPI is sensitive to particle flux intensities of order 6×105 cm-2 s-1 sr-1 eV-1 and greater. It produces 3024-pixel images corresponding to two-dimensional (angle/energy) cuts through plasma velocity distribution functions, with an image frame rate of up to 100 s-1. The SPI has a cylindrical sensor head measuring 37.5 mm in diameter and 14 cm long, with a mass of 350 g. The relatively small size and mass of the sensor allow it to be deployed easily on a boom, outside of the spacecraft's electrical sheath and in a region where wake perturbations are reduced. The SPI sensor head contains no electronic circuitry, but instead creates a visible image of the particle distribution with a system of dc-biased grids, microchannel plates, and a phosphor screen. The phosphor image is transferred via an imaging fiber-optic cable to an instrument box in the main spacecraft body, where it is sampled with a charge-coupled device and support electronics. Inside the sensor, angle/energy images of incident particle distributions are formed by a pair of concentric hemispherical grids. The incident energies Ei accessible to the analyzer lie in the range 0<=Ei

  8. A Relationship Between Skin Thermal Conductivity and Gas Polytropic Index in an Open Atmospheric Balloon.

    NASA Astrophysics Data System (ADS)

    de La Torre, A.; Alexander, P.; Cornejo, J.

    2003-02-01

    With the assumption of a polytropic evolution for the lifting gas, the response of an ascending open atmospheric balloon to a monochromatic gravity wave is specified among other parameters by the heat balance with the surrounding air. If one considers the bubble of gas inside the open balloon as a thermodynamic system in contact through the balloon skin with a uniform thermal source (isothermic atmosphere), a relationship between the skin thermal conductivity and the polytropic index for the lifting gas [hydrogen (H2) or helium (He)] may be found. The results for both gases are extended to the case of a typical tropospheric linearly decreasing temperature profile. Constant and variable balloon skin thicknesses are studied for both background temperature profiles. The polytropic index is found to be lower for the changing skin and shows a sensitive difference between the two temperature profiles. The relationship between the thermal conductivity and polytropic index becomes abrupt only when the latter approaches the isothermal or adiabatic values.

  9. Compact multichannel neutral particle analyzer for measurement of energetic charge-exchanged neutrals in Alcator C-Mod

    SciTech Connect

    Tang, V.; Liptac, J.; Parker, R. R.; Bonoli, P. T.; Fiore, C. L.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Wukitch, S. J.; Frenje, J. A.; Leiter, R.; Mcduffee, S.; Petrasso, R. D.

    2006-08-15

    A four-channel compact neutral particle analyzer (CNPA) based on operating small Si diode detectors in pulse-height analysis (PHA) mode is used to measure energetic hydrogen minority ions with energies between {approx}50 and 350 keV stemming from ion-cyclotron range-of-frequency heated D(H) Alcator C-Mod plasmas with both active and passive charge exchange (CX). First core minority ion distribution results from Alcator C-Mod discharges and a detailed description of the diagnostic are presented. The diagnostic employs integrated electronics and fast digitization of the shaping amplifier voltage. The digitized data are stored for postshot PHA, which removes the constraints of real-time PHA and allows for improved performance via elimination of base line shift effects and potentially relieving pileup through Gaussian fitting routines. The CNPA is insensitive to the large gamma and neutron background in Alcator C-Mod discharges but is susceptible to the plasma's soft x-ray flux. The soft x-ray flux limits the CNPA energy resolution to {approx}15-20 keV. A simple model is used to interpret the active CNPA data which permits rapid estimates of the core hydrogen minority temperatures and anisotropy with a time resolution of {approx}100 ms. Hydrogenlike boron is identified as an important electron donor for the CX signal.

  10. Polytropic scaling of a flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP Flow Z-Pinch project investigates the use of velocity shear to mitigate MHD instabilities. The ZaP-HD experiment produces 50 cm long pinches of varying radii. The power to the experiment is split between the plasma formation and acceleration process and the pinch assembly and compression process. Once the pinch is formed, low magnetic fluctuations indicate a quiescent, long-lived pinch. The split power supply allows more control of the pinch current than previous machine iterations, with a designed range from 50 to 150 kA. Radial force balance leads to the Bennett relation which indicates that as the pinch compresses due to increasing currents, the plasma pressure and/or linear density must change. Through ion spectroscopy and digital holographic interferometry coupled with magnetic measurements of the pinch current, the components of the Bennett relation can be fully measured. A scaling relation is then assumed to follow a polytrope as the pinch pressure, initially approximately 250 kPa, increases from an initially formed state to much higher values, approaching 100 MPa. A preliminary analysis of pinch scaling is shown corroborating with other diagnostics on the machine along with extrapolations to required currents for an HEDLP machine. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  11. General polytropic dynamic cylinder under self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing

    2015-12-01

    We explore self-similar hydrodynamics of general polytropic (GP) and isothermal cylinders of infinite length with axial uniformity and axisymmetry under self-gravity. Specific entropy conservation along streamlines serves as the dynamic equation of state. Together with possible axial flows, we construct classes of analytic and semi-analytic non-linear dynamic solutions for either cylindrical expansion or contraction radially by solving cylindrical Lane-Emden equations. By extensive numerical explorations and fitting trials in reference to asymptotes derived for large index n, we infer several convenient empirical formulae for characteristic solution properties of cylindrical Lane-Emden equations in terms of n values. A new type of asymptotic solutions for small x is also derived in the Appendix. These analyses offer hints for self-similar dynamic evolution of molecular filaments for forming protostars, brown dwarfs and gaseous planets and of large-scale gaseous arms or starburst rings in (barred) spiral galaxies for forming young massive stars. Such dynamic solutions are necessary starting background for further three-dimensional (in)stability analysis of various modes. They may be used to initialize numerical simulations and serve as important benchmarks for testing numerical codes. Such GP formalism can be further generalized to include magnetic field for a GP magnetohydrodynamic analysis.

  12. General polytropic magnetohydrodynamic cylinder under self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Xing, Heng-Rui

    2016-02-01

    Based on general polytropic (GP) magnetohydrodynamics (MHD), we offer a self-similar dynamic formalism for a magnetized, infinitely long, axially uniform cylinder of axisymmetry under self-gravity with radial and axial flows and with helical magnetic field. We identify two major classes of solution domains and obtain a few valuable MHD integrals in general. We focus on one class that has the freedom of prescribing a GP dynamic equation of state including the isothermal limit and derive analytic asymptotic solutions for illustration. In particular, we re-visit the isothermal MHD problem of Tilley & Pudritz (TP) and find that TP's main conclusion regarding the MHD solution behaviour for a strong ring magnetic field of constant toroidal flux-to-mass ratio Γϕ to be incorrect. As this is important for conceptual scenarios, MHD cylinder models, testing numerical codes and potential observational diagnostics of magnetized filaments in various astrophysical contexts, we show comprehensive theoretical analysis and reasons as well as extensive numerical results to clarify pertinent points in this Letter. In short, for any given Γϕ value be it small or large, the asymptotic radial scaling of the reduced mass density α(x) at sufficiently large x should always be ˜x-4 instead of ˜x-2 contrary to the major claim of TP.

  13. Critical rotation of general-relativistic polytropic models revisited

    NASA Astrophysics Data System (ADS)

    Geroyannis, V.; Karageorgopoulos, V.

    2013-09-01

    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  14. Ion Mobility-Mass Spectrometry Reveals Highly-Compact Intermediates in the Collision Induced Dissociation of Charge-Reduced Protein Complexes

    NASA Astrophysics Data System (ADS)

    Bornschein, Russell E.; Niu, Shuai; Eschweiler, Joseph; Ruotolo, Brandon T.

    2016-01-01

    Protocols that aim to construct complete models of multiprotein complexes based on ion mobility and mass spectrometry data are becoming an important element of integrative structural biology efforts. However, the usefulness of such data is predicated, in part, on an ability to measure individual subunits removed from the complex while maintaining a compact/folded state. Gas-phase dissociation of intact complexes using collision induced dissociation is a potentially promising pathway for acquiring such protein monomer size information, but most product ions produced are possessed of high charge states and elongated/string-like conformations that are not useful in protein complex modeling. It has previously been demonstrated that the collision induced dissociation of charge-reduced protein complexes can produce compact subunit product ions; however, their formation mechanism is not well understood. Here, we present new experimental evidence for the avidin (64 kDa) and aldolase (157 kDa) tetramers that demonstrates significant complex remodeling during the dissociation of charge-reduced assemblies. Detailed analysis and modeling indicates that highly compact intermediates are accessed during the dissociation process by both complexes. Here, we present putative pathways that describe the formation of such ions, as well as discuss the broader significance of such data for structural biology applications moving forward.

  15. Compact Analytic Expression for the Electric Field of a 2DElliptical Charge Distribution Inside a Perfectly Conducting CircularCylinder

    SciTech Connect

    Furman, M.A.

    2007-05-29

    By combining the method of images with calculus of complex variables, we provide a simple expression for the electric field of a two-dimensional (2D) static elliptical charge distribution inside a perfectly conducting cylinder. The charge distribution need not be concentric with the cylinder.

  16. Models of universe with a polytropic equation of state: I. The early universe

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2014-02-01

    We construct models of universe with a generalized equation of state having a linear component and a polytropic component. Concerning the linear equation of state , we assume . This equation of state describes radiation ( or pressureless matter (. Concerning the polytropic equation of state , we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0 . In that case, the polytropic component dominates the linear component in the early universe where the density is high. For , n = 1 and , where g/m3 is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0 , its size is less than the Planck length m. In this model, the universe undergoes an inflationary expansion with the Planck density g/m3 (vacuum energy) that brings it from the Planck size m at t = 0 to a size m at s (corresponding to about 23.3 Planck times s). For , n = 1 and , we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a 1 . Actually, this universe becomes physical at a time s from which the velocity of sound is less than the speed of light. When , the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant ℏ plays the role of finite-size effects (the standard Big Bang theory is recovered for ℏ = 0.

  17. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  18. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  19. Design of a compact, low-energy-charged-particle-spectrometer for stellar nucleosynthesis experiments at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Armstrong, E.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Rinderknecht, H.; Rosenberg, M.; Seguin, F. H.; Sio, H.; Zylstra, A.; Petrasso, R. D.

    2014-10-01

    A compact ``Orange'' Spectrometer is being designed for measurements of alpha and proton spectra in the range of ~ 1-5 MeV, produced in low-yield 3He3He experiments at the OMEGA laser and at the National Ignition Facility (NIF). Particle ray-tracing through magnetic fields, modeled by COMSOL, were conducted with the code Python. The goal is to identify an optimal setup for a spectrometer to measure alpha particles at relatively low energies and at low yield. Ability to study the alpha particles in addition to the protons is essential for understanding the nuclear physics governing the final-state interactions between pairs of particles in the three-body final state. This work was supported in part by the U.S. DOE and NLUF.

  20. Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    NASA Astrophysics Data System (ADS)

    Ponce de Leon, J.

    2003-08-01

    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the ``splitting'' of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure ``constant'' and the Thomson cross section are also discussed.

  1. Ultrahigh charging of dust grains by the beam-plasma method for creating a compact neutron source

    NASA Astrophysics Data System (ADS)

    Akishev, Yu. S.; Karal'nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V.

    2016-01-01

    Generation of high-voltage high-current electron beams in a low-pressure ( P = 0.1-1 Torr) gas discharge is studied experimentally as a function of the discharge voltage and the sort and pressure of the plasma-forming gas. The density of the plasma formed by a high-current electron beam is measured. Experiments on ultrahigh charging of targets exposed to a pulsed electron beam with an energy of up to 25 keV, an electron current density of higher than 1 A/cm2, a pulse duration of up to 1 μs, and a repetition rate of up to 1 kHz are described. A numerical model of ultrahigh charging of dust grains exposed to a high-energy electron beam is developed. The formation of high-energy positive ions in the field of negatively charged plane and spherical targets is calculated. The calculations performed for a pulse-periodic mode demonstrate the possibility of achieving neutron yields of higher than 106 s-1 cm-2 in the case of a plane target and about 109 s-1 in the case of 103 spherical targets, each with a radius of 250 μm.

  2. Effective geometry of the n=1 uniformly rotating self-gravitating polytrope

    SciTech Connect

    Bini, D.; Cherubini, C.; Filippi, S.; Geralico, A.

    2010-08-15

    The ''effective geometry'' formalism is used to study the perturbations of a perfect barotropic Newtonian self-gravitating rotating and compressible fluid coupled with gravitational backreaction. The case of a uniformly rotating polytrope with index n=1 is investigated, due to its analytical tractability. Special attention is devoted to the geometrical properties of the underlying background acoustic metric, focusing, in particular, on null geodesics as well as on the analog light cone structure.

  3. The ion polytropic coefficient in a collisionless sheath containing hot ions

    NASA Astrophysics Data System (ADS)

    Lin, Binbin; Xiang, Nong; Ou, Jing

    2016-08-01

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  4. Effects of a Piecewise Polytropic Equation of State on Turbulent Fragmentation

    NASA Astrophysics Data System (ADS)

    Jappsen, A.-K.; Li, Y.; Mac Low, M.-M.; Klessen, R. S.

    2003-12-01

    We study the effect of a piecewise polytropic equation of state on the formation of stellar clusters in turbulent, self-gravitating molecular clouds using three-dimensional, smoothed particle hydrodynamics simulations. We use the publicly available parallel code GADGET (Springel et al. 2001) in which we have implemented sink particles that can replace high-density gas cores, and with a uniform turbulent driving field. Recently several of us conducted a systematic study of the effects of a varying polytropic index γ on turbulent fragmentation. Their results showed that γ determines how strongly self-gravitating gas fragments. However in their computation, γ was left strictly constant in each simulation. In this study we extend our previous work by using a piecewise polytropic equation of state changing γ at some chosen density. We investigate if a change in γ determines the characteristic mass of the gas clump spectrum and thus perhaps the turn-over mass of the IMF. Preliminary results changing γ from 0.7 to 1.1 seem to corroborate this hypothesis, but with a weaker than expected dependence on the chosen density. We conduct a parameter study on the density at which γ changes to specify its effect on the resulting mass spectra. AKJ acknowledges support by the Kade Fellowship. M-MML acknowledges support by NSF CAREER grant AST99-85392. AKJ and RSK acknowledge support by the Emmy Noether Program of the Deutsche Forschungsgemeinschaft KL1385/1.

  5. ROSSBY WAVE INSTABILITY IN LOCALLY ISOTHERMAL AND POLYTROPIC DISKS: THREE-DIMENSIONAL LINEAR CALCULATIONS

    SciTech Connect

    Lin, Min-Kai

    2012-07-20

    Numerical calculations of the linear Rossby wave instability (RWI) in global three-dimensional (3D) disks are presented. The linearized fluid equations are solved for vertically stratified, radially structured disks with either a locally isothermal or polytropic equation of state, by decomposing the vertical dependence of the perturbed hydrodynamic quantities into Hermite and Gegenbauer polynomials, respectively. It is confirmed that the RWI operates in 3D. For perturbations with vertical dependence assumed above, there is little difference in growth rates between 3D and two-dimensional (2D) calculations. Comparison between 2D and 3D solutions of this type suggests the RWI is predominantly a 2D instability and that 3D effects, such as vertical motion, can be interpreted as a perturbative consequence of the dominant 2D flow. The vertical flow around corotation, where vortex formation is expected, is examined. In locally isothermal disks, the expected vortex center remains in approximate vertical hydrostatic equilibrium. For polytropic disks, the vortex center has positive vertical velocity, whose magnitude increases with decreasing polytropic index n.

  6. An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data

    NASA Technical Reports Server (NTRS)

    Totten, T. L.; Freeman, J. W.; Arya, S.

    1995-01-01

    Observations of solar wind proton temperatures indicate that the solar wind is heated as it moves outward toward the orbit of Earth. This heating, which may be the results of electron heat conduction and perhaps MHD waves, has proven difficult to quantify and hence is often neglected in MHD models of the solar wind. An alternate approach to finding explicit heating terms for the MHD energy equation is to use a polytropic approximation. This paper discusses the properties of the polytropic approximation and its application to the solar wind plasma. By using data from the Helios 1 spacecraft, an empirical value for the polytropic index of the free-streaming solar wind is determined. Various corrections to the data are made to account for velocity, nonuniformity in radial sampling, and stream interaction regions. The polytropic index, as derived from proton data, is found to indepedent of speed state, within statistical error, and has an average value of 1.46. If magnetic pressure is included, the polytropic index has an average value of 1.58.

  7. VISCOUS ACCRETION OF A POLYTROPIC SELF-GRAVITATING DISK IN THE PRESENCE OF WIND

    SciTech Connect

    Abbassi, Shahram; Nourbakhsh, Erfan; Shadmehri, Mohsen E-mail: e.nourbakhsh@mail.sbu.ac.ir

    2013-03-10

    Self-similar and semi-analytical solutions are found for the height-averaged equations governing the dynamical behavior of a polytropic, self-gravitating disk under the effects of winds around the nascent object. In order to describe the time evolution of the system, we adopt a radius-dependent mass loss rate, then highlight its importance on both the traditional {alpha} and innovative {beta} models of viscosity prescription. In agreement with some other studies, our solutions represent that the Toomre parameter is less than one in most regions on the {beta}-disk, which indicates that in such disks gravitational instabilities can occur at various distances from the central accretor. So, the {beta}-disk model might provide a good explanation of how the planetary systems form. The purpose of the present work is twofold: examining the structure of a disk with wind in comparison to a no-wind solution and seeing whether the adopted viscosity prescription significantly affects the dynamical behavior of the disk-wind system. We also considered the temperature distribution in our disk by a polytropic condition. The solutions imply that, under our boundary conditions, the radial velocity is larger for {alpha}-disks and increases as wind becomes stronger in both viscosity models. Also, we noticed that the disk thickness increases by amplifying the wind or adopting larger values for the polytropic exponent {gamma}. It also may globally decrease if one prescribes a {beta}-model for the viscosity. Moreover, in both viscosity models, the surface density and mass accretion rate diminish as the wind gets stronger or {gamma} increases.

  8. Surface curvature singularities of polytropic spheres in Palatini f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Barrientos O., José; Rubilar, Guillermo F.

    2016-01-01

    We consider Palatini f (R ,T ) gravity models, similar to those introduced by Harko et al. (2012), where the gravitational Lagrangian is given by an arbitrary function of the curvature scalar R and of the trace of the energy-momentum tensor T . Interior spherical static solutions are studied considering the model of matter given by a perfect fluid configuration and a polytropic equation of state. We analyze the curvature singularities found previously for Palatini f (R ) gravity and discuss the possibility to remove them in some particular f (R ,T ) models. We show that it is possible to construct a restricted family of models for which these singularities are not present.

  9. Analytic solutions for single and multiple cylinders of gravitating polytropes in magnetostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    Exact analytic solutions for the static equilibrium of a gravitating plasma polytrope in the presence of magnetic fields are presented. The means of generating various equilibrium configurations to illustrate directly the complex physical relationships between pressure, magnetic fields, and gravity in self-gravitating systems is demonstrated. One of the solutions is used to model interstellar clouds suspended by magnetic fields against the galactic gravity such as may be formed by the Parker (1966) instability. It is concluded that the pinching effect of closed loops of magnetic fields in the clouds may be a dominant agent in further collapsing the clouds following their formation.

  10. Quasiequilibrium models for triaxially deformed rotating compact stars

    NASA Astrophysics Data System (ADS)

    Huang, Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryū, Kōji

    2008-12-01

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  11. Compact baby Skyrmions

    SciTech Connect

    Adam, C.; Klimas, P.; Sanchez-Guillen, J.; Wereszczynski, A.

    2009-11-15

    For the baby Skyrme model with a specific potential, compacton solutions, i.e., configurations with a compact support and parabolic approach to the vacuum, are derived. Specifically, in the nontopological sector, we find spinning Q-balls and Q-shells, as well as peakons. Moreover, we obtain compact baby skyrmions with nontrivial topological charge. All these solutions may form stable multisoliton configurations provided they are sufficiently separated.

  12. Self-gravitating rotating anisotropic pressure plasma in presence of Hall current and electrical resistivity using generalized polytrope laws

    SciTech Connect

    Prajapati, R. P.; Chhajlani, R. K.; Soni, G. D.

    2008-06-15

    The effects of uniform rotation, finite electrical resistivity, electron inertia, and Hall current on the self-gravitational instability of anisotropic pressure plasma with generalized polytrope laws have been studied. A general dispersion relation is obtained with the help of the relevant linearized perturbed magnetohydrodynamic (MHD) equations incorporating the relevant contributions of various effects of the problem using the method of normal mode analysis. The general dispersion relation is further reduced for the special cases of rotation; i.e., parallel and perpendicular to the direction of the magnetic field. The longitudinal and transverse modes of propagation are discussed separately for investigation of condition of instability. The effects of rotation, Hall current, finite electron inertia, and polytropic indices are discussed on the gravitational, ''firehose,'' and ''mirror'' instabilities. The numerical calculations have been performed to obtain the dependence of the growth rate of the gravitational unstable mode on the various physical parameters involved. The finite electrical resistivity, rotation, and Hall current have a stabilizing influence on the growth rate of the unstable mode of wave propagation. The finite electrical resistivity removes the effect of magnetic field and polytropic index from the condition of instability in the transverse mode of propagation for both the cases of rotation. It is also found that the Jeans criterion of gravitational instability depends upon rotation, electron inertia, and polytropic indices. In the case of transverse mode of propagation with the axis of rotation parallel to the magnetic field, it is observed that the region of instability and the value of the critical Jeans wavenumber are larger for the Chew-Goldberger-Low set of equations in comparison with the MHD set of equations. The stability of the system is discussed by applying Routh-Hurwitz criterion. The inclusion of rotation or Hall current or both

  13. The density structure and star formation rate of non-isothermal polytropic turbulence

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Banerjee, Supratik

    2015-04-01

    The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.

  14. Adult Compacts.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin focuses on adult compacts, three-way agreements among employers, potential employees, and trainers to provide the right kind of quality training to meet the employers' requirements. Part 1 is an executive summary of a report of the Adult Compacts Project, which studied three adult compacts in Birmingham and Loughborough, England, and…

  15. Initial data for high-compactness black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-05-01

    For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.

  16. An empirical polytrope law for solar wind thermal electrons between 0.45 and 4.76 AU: Voyager 2 and Mariner 10

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Scudder, J. D.

    1979-01-01

    Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed.

  17. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  18. Variation of the plasma-sheet polytropic index along the midnight meridian in a finite-width magnetotail. Technical report

    SciTech Connect

    Spence, H.E.; Kivelson, M.G.

    1990-08-15

    The polytropic index is obtained as a function of distance along the midnight meridian in the terrestrial magnetotail. As our purpose is to establish the effects of the finite width of the magnetotail, we use a simple theoretical model of plasma sheet convection, i.e., two-dimensional field structure and adiabatic inward convection of a uniform distant tail source. Particle orbits are treated independently for portions of the phase space distribution on shells of constant energy. On the midnight meridian, the moments of the distribution are parameterized by tau, the ratio of half the cross-tail potential energy to the characteristic Maxwellian energy of a distant down-tail plasma source. We infer from the model the plasma pressure, P, and the number density, n, along the midnight meridian as a function of tau. P and n define locally an effective polytropic index. Gamma ranges between 5/3 and 1, depending on the value of tau and on geocentric distance. The qualitative differences between the recent empirical determinations of the polytropic index by Baumjohann and Paschmann and Huang et al. may be accounted for in part by this simple model.

  19. The variation of the plasma sheet polytropic index along the midnight meridian in a finite width magnetotail

    SciTech Connect

    Spence, H.E. ); Kivelson, M.G. )

    1990-04-01

    The authors have obtained the polytropic index as a function of distance along the midnight meridian in the terrestrial magnetotail. As their purpose is to establish the effects of the finite width of the magnetotail, they use a simple theoretical model of plasma sheet convection, i.e., 2-dimensional (2D) field structure and adiabatic inward convection of a uniform distant tail source. Particle orbits are treated independently for portions of the phase space distribution on shells of constant energy. On the midnight meridian, the moments of the distribution are parameterized by {tau}, the ratio of half the crosstail potential energy to the characteristic maxwellian energy of a distant downtail plasma source. They infer from the model the plasma pressure, P, and the number density, n, along the midnight meridian as a function of {tau}. P and n define locally an effective polytropic index, {gamma}. They find that {gamma} ranges between 5/3 and 1, depending on the value of {tau} and on geocentric distance. They suggest that the qualitative differences between the recent empirical determinations of the polytropic index by Baumjohann et al. (1989) and Huang et al. (1989) may be accounted for in part by this simple model.

  20. Compact Modeling of Floating-Base Effect in Injection-Enhanced Insulated-Gate Bipolar Transistor Based on Potential Modification by Accumulated Charge

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takao; Miyake, Masataka; Miura-Mattausch, Mitiko

    2013-04-01

    We have developed a compact model of the injection-enhanced insulated-gate bipolar transistor (IGBT) applicable for circuit optimization. The main development is modeling the hole accumulation in the floating-base region. It is demonstrated that the observed negative gate capacitance is well reproduced with the developed model.

  1. QUIPS: Time-dependent properties of quasi-invariant self-gravitating polytropes

    SciTech Connect

    Munier, A.; Feix, M.R.

    1983-04-01

    Quasi-invariance, a method based on group tranformations, is used to obtain time-dependent solutions for the expansion and/or contraction of a self-gravitating sphere of perfect gas with polytopic index n. Quasi-invariance transforms the equations of hydrodynamics into ''dual equations'' exhibiting extra terms such as a friction, a mass source or sink term, and a centripetal/centrifugal force. The search for stationary solutions in this ''dual space'' leads to a new class of time-dependent solutions, the QUIP (for Quasi-invariant polytrope), which generalizes Emden's static model and introduces a characteristic frequency a related to Jean's frequency. The second order differential equation describing the solution is integrated numerically. A critical point is seen always to exist for nnot =3. Solutions corresponding in the ''dual space'' to a time-dependent generalization of Eddington's standard model (n = 3) are discussed. These solutions conserve both the total mass and the energy. A transition between closed and open structures is seen to take place at a particular frequency a/sub c/. For n = 3, no critical point arises in the ''dual space'' due to the self-similar motion of the fluid. A new time-dependent mass-radius relation and a generalized Betti-Ritter relation are obtained. Conclusions about the existence of a minimum Q-factor are presented.

  2. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses.

    PubMed Central

    Battini, J L; Heard, J M; Danos, O

    1992-01-01

    The envelope glycoproteins (SU) of mammalian type C retroviruses possess an amino-terminal domain of about 200 residues, which is involved in binding a cell surface receptor. In this domain, highly conserved amino acid sequences are interrupted by two segments of variable length and sequence, VRA and VRB. We have studied the role of these variable regions in receptor recognition and binding by constructing chimeric molecules in which portions of the amino-terminal domains from amphotropic (4070A), xenotropic (NZB), and polytropic (MCF 247) murine leukemia virus SU proteins were permuted. These chimeras, which exchanged either one or two variable regions, were expressed at the surface of replication-defective viral particles by a pseudotyping assay. Wild-type or recombinant env genes were transfected into a cell line producing Moloney murine leukemia virus particles devoid of envelope glycoproteins in which a retrovirus vector genome carrying an Escherichia coli lacZ gene was packaged. The host range and sensitivity to interference of pseudotyped virions were assayed, and we observed which permutations resulted in receptor switch or loss of function. Our results indicate that the determinants of receptor choice are found within the just 120 amino acids of SU proteins. Downstream sequences contribute to the stabilization of the receptor-specific structure. PMID:1310758

  3. Gravitational Instability of Rotating, Pressure-confined, Polytropic Gas Disks with Vertical Stratification

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo

    2012-12-01

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c eff of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c eff and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  4. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  5. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  6. Rational design of hierarchical ZnO superstructures for efficient charge transfer: mechanistic and photovoltaic studies of hollow, mesoporous, cage-like nanostructures with compacted 1D building blocks.

    PubMed

    Chetia, Tridip Ranjan; Ansari, Mohammad Shaad; Qureshi, Mohammad

    2016-02-21

    Mesoporous and hollow zinc oxide (ZnO) hierarchical superstructures assembled with compact 1D building blocks that provide an efficient and faster transport pathway for photo-generated charge carriers have been synthesized using a biomass derived polysaccharide "alginic acid". To understand the interactions between the organic bio-template and inorganic growth units of ZnO in aqueous medium, the effects of additives such as the alginate ion (ALGI) and ammonium hydroxide (NH4OH), along with the controlled reaction conditions, are investigated using Field Emission Scanning Electron Microscopy (FESEM) and powder X-ray diffraction. Dynamic and steady-state photoluminescence measurements are carried out to understand the charge transfer processes in the compact 1D superstructures. Experimental analyses reveal that the alginate ions, under hydrothermal reaction conditions, act as a structure directing agent and assemble 1D ZnO nanorods (NRs) hierarchically while NH4OH assists the formation of ZnO growth units. A plausible mechanism for ZnO cage formation is proposed based on the experimental observations. Morphology dependent photovoltaic properties of ZnO heterostructures, i.e., for ZnO cages, ZnO NRs and ZnO PNPs, have been studied along with electrochemical impedance spectroscopy (EIS). Enhancement of ∼ 60% and ∼ 35% in power conversion efficiency (PCE) is observed in ZnO cage based devices as compared to ZnO NR- and ZnO PNP-based devices, respectively. PMID:26818181

  7. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo E-mail: wkim@astro.snu.ac.kr E-mail: sshong@astro.snu.ac.kr

    2012-12-20

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c{sub eff} of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c{sub eff} and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  8. Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state

    NASA Astrophysics Data System (ADS)

    Harko, T.; Mak, M. K.

    2016-09-01

    Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.

  9. A compact electric potential sensor array for the acquisition and reconstruction of the 7-lead electrocardiogram without electrical charge contact with the skin.

    PubMed

    Harland, C J; Clark, T D; Peters, N S; Everitt, M J; Stiffell, P B

    2005-12-01

    Conventional electrocardiogram (ECG) systems make use of separate electrical connections to the arms and legs. These use a 'long baseline' for the voltage reference potential which in the case of precordial ECG leads is provided using a Wilson central terminal (WCT) wiring configuration. The aims of this project were (a) to construct compact, non-invasive surface ECG sensor arrays which would operate without the need for a WCT reference, (b) to obtain high quality precordial ECGs showing fine differences in ECG detail between small adjacent areas of the chest and (c) to reconstruct, from a compact array of four sensors, ECGs which closely match to the conventional 7-lead ECG system, but without the need for multiple wires and long baselines. In this paper, we describe two sensor array configurations which have been constructed using electric potential sensors (EPSs). We show high quality precordial ECGs obtained from small areas of the surface of the chest and show the different angular vectors (leads) in the frontal cardiac plane constructed using signals from the array elements. We suggest that these ECG arrays, which are simple to apply, should prove to be a valuable tool in providing useful information about the state of the heart. PMID:16311443

  10. Self-similar evolution of interplanetary magnetic clouds and Ulysses measurements of the polytropic index inside the cloud

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Berdichevsky, D.

    1997-01-01

    A self similar model for the expanding flux rope is developed for a magnetohydrodynamic model of interplanetary magnetic clouds. It is suggested that the dependence of the maximum magnetic field on the distance from the sun and the polytropic index gamma has the form B = r exp (-1/gamma), and that the ratio of the electron temperature to the proton temperature increases with distance from the sun. It is deduced that ion acoustic waves should be observed in the cloud. Both predictions were confirmed by Ulysses observations of a 1993 magnetic cloud. Measurements of gamma inside the cloud demonstrate sensitivity to the internal topology of the magnetic field in the cloud.

  11. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  12. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  13. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....7 of the Compact shall be deemed to authorize the Commission to impose any charge for water... without charge on the effective date of the Compact; * * *” In compliance with this provision: There shall be no charge for water withdrawn or diverted in quantities not exceeding the legal entitlement of...

  14. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....7 of the Compact shall be deemed to authorize the Commission to impose any charge for water... without charge on the effective date of the Compact; * * *” In compliance with this provision: There shall be no charge for water withdrawn or diverted in quantities not exceeding the legal entitlement of...

  15. Interacting Holographic Dark Energy, Future Singularity and Polytropic Gas Model of Dark Energy in Closed FRW Universe

    NASA Astrophysics Data System (ADS)

    Sarkar, Sanjay

    2016-01-01

    The present work deals with the accretion of two interacting fluids: dark matter and a hypothetical fluid as the holographic dark energy components onto wormhole in a non-flat FRW universe. First of all, following Cruz et al. (Phys. Lett. B 669, 271 2008), we obtained an exact solution of the Einstein's field equations. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. After that we have studied the evolution of the mass of wormhole embedded in this FRW universe in order to reproduce a stable universe protected against future-time singularity. We found that the accretion of these dark components leads to a gradual increase of wormhole mass. It is also observed that contrary to the case as shown by Cruz et al. (Phys. Lett. B 669, 271 2008), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip. We have established a correspondence between the holographic dark energy with the polytropic gas dark energy model and obtained the potential as well as dynamics of the scalar field which describes the polytropic cosmology.

  16. Baryon currents in QCD with compact dimensions

    SciTech Connect

    Lucini, B.; Patella, A.; Pica, C.

    2007-06-15

    On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.

  17. Compact Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.

    2016-07-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  18. The evolution of highly compact binary stellar systems

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Joss, P. C.; Webbink, R. F.

    1982-01-01

    A new theoretical treatment of the evolution of highly compact binary systems is presented. The evolution is calculated until almost the entire mass of the secondary has been transferred to the primary or lost from the system. It is assumed that gravitational radiation from the system is the cause of mass transfer. It is found that the structure of the mass-losing star can be approximated by an n = 3/2 polytrope, and as a result a relatively large number of different cases can be explored and some general conclusions drawn. An explanation is found for the existence of a cutoff in the orbital period distribution among the cataclysmic variables and light is shed upon the possible generic relationships among cataclysmic variables, the low-mass X-ray binaries, and the spectrally soft transient X-ray sources.

  19. MOSFET Electric-Charge Sensor

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  20. Low Mach number two-dimensional hydrodynamic turbulence - Energy budgets and density fluctuations in a polytropic fluid

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Matthaeus, W. H.

    1992-01-01

    Theory suggests that three distinct types of turbulence can occur in the low Mach number limit of polytropic flow: nearly incompressible flows dominated by vorticity, nearly pure acoustic turbulence dominated by compression, and flows characterized by near statistical equipartition of vorticity and compressions. Distinctions between these kinds of turbulence are investigated here by direct numerical simulation of two-dimensional compressible hydrodynamic turbulence. Dynamical scalings of density fluctuations, examination of the ratio of transverse to longitudinal velocity fluctuations, and spectral decomposition of the fluctuations are employed to distinguish the nature of these low Mach number solutions. A strong dependence on the initial data is observed, as well as a tendency for enhanced effects of compressibility at later times and at higher wave numbers, as suggested by theories of nearly incompressible flows.

  1. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  2. A THREE-DIMENSIONAL NUMERICAL SOLUTION FOR THE SHAPE OF A ROTATIONALLY DISTORTED POLYTROPE OF INDEX UNITY

    SciTech Connect

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John E-mail: K.Zhang@exeter.ac.uk

    2013-02-15

    We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star ({alpha} Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybrid inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J {sub 2} of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For {alpha} Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening.

  3. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior. PMID:18280716

  4. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  5. A Three-dimensional Non-spherical Calculation Of The Rotationally Distorted Shape And Internal Structure Of A Model Of Jupiter With A Polytropic Index Of Unity

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.

    2012-10-01

    An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390

  6. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  7. Michel accretion of a polytropic fluid with adiabatic index \\gamma \\gt 5/3: global flows versus homoclinic orbits

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Mach, Patryk; Sarbach, Olivier

    2016-05-01

    We analyze the properties of a polytropic fluid that is radially accreted into a Schwarzschild black hole. The case where the adiabatic index γ lies in the range of 1\\lt γ ≤slant 5/3 has been treated in previous work. In this article, we analyze the complementary range of 5/3\\lt γ ≤slant 2. To this purpose, the problem is cast into an appropriate Hamiltonian dynamical system, whose phase flow is analyzed. While, for 1\\lt γ ≤slant 5/3, the solutions are always characterized by the presence of a unique critical saddle point, we show that, when 5/3\\lt γ ≤slant 2, an additional critical point might appear, which is a center point. For the parametrization used in this paper, we prove that, whenever this additional critical point appears, there is a homoclinic orbit. Solutions corresponding to homoclinic orbits differ from standard transonic solutions with vanishing asymptotic velocities in two aspects: they are local (i.e., they cannot be continued to arbitrarily large radii); the dependence of the density or the value of the velocity on the radius is not monotonic.

  8. Accretion onto a charged higher-dimensional black hole

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Iftikhar, Sehrish

    2016-03-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordström black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q=0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge.

  9. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....7 of the Compact shall be deemed to authorize the Commission to impose any charge for water... be no charge for water withdrawn or diverted in quantities not exceeding the legal entitlement of the... of such proof of these conditions as of October 27, 1961, the quantity of water exempt from charge...

  10. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....7 of the Compact shall be deemed to authorize the Commission to impose any charge for water... be no charge for water withdrawn or diverted in quantities not exceeding the legal entitlement of the... of such proof of these conditions as of October 27, 1961, the quantity of water exempt from charge...

  11. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....7 of the Compact shall be deemed to authorize the Commission to impose any charge for water... be no charge for water withdrawn or diverted in quantities not exceeding the legal entitlement of the... of such proof of these conditions as of October 27, 1961, the quantity of water exempt from charge...

  12. The dynamics of compact laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-07-01

    We discuss the use of a class of exact finite energy solutions to the vacuum source-free Maxwell equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged point particles. These compact solutions are classified in terms of their chiral content and their influence on particular charge configurations in space. The results of such classical interactions motivate a phenomenological quantum description of a propagating laser pulse in a medium in terms of an effective quantum Hamiltonian.

  13. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  14. Compact Doppler magnetograph

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, Alexander; Moynihan, Philip I.; Vaughan, Arthur H.; Cacciani, Alessandro

    1998-11-01

    We designed a low-cost flight instrument that images the full solar disk through two narrow band filters at the red nd blue 'wings' of the solar potassium absorption line. The images are produced on a 1024 X 1024 charge-coupled device with a resolution of 2 arcsec per pixel. Four filtergrams taken in a very short time at both wings in the left and right states of circular polarization are used to yield a Dopplergram and a magnetogram simultaneously. The noise-equivalent velocity associated with each pixel is less than 3 m/s. The measured signal is linearly proportional to the velocity in the range +/- 4000 m/s. The range of magnetic fields is from 3 to 3000 Gauss. The optical system of the instrument is simple and easily aligned. With a pixel size of 12 micrometers , the effective focal length is 126 cm. A Raleigh resolution limit of 4 arcsec is achieved with a 5-cm entrance apertures, providing an f/25 focal ratio. The foreoptic is a two-component telephoto lens serving to limit the overall optical length to 89 cm or less. The mass of the instrument is 14 kg. the power required is less than 30 Watts. The Compact Doppler Magnetograph can be used in space mission with severe mass and power requirements. It can also be effectively used for ground-based observations: large telescope, dome or other observatory facilities are not required.

  15. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  16. Dynamic fission instabilities in rapidly rotating n = 3/2 polytropes - A comparison of results from finite-difference and smoothed particle hydrodynamics codes

    SciTech Connect

    Durisen, R.H.; Gingold, R.A.; Tohline, J.E.; Boss, A.P.

    1986-06-01

    The effectiveness of three different hydrodynamics models is evaluated for the analysis of the effects of fission instabilities in rapidly rotating, equilibrium flows. The instabilities arise in nonaxisymmetric Kelvin modes as rotational energy in the flow increases, which may occur in the formation of close binary stars and planets when the fluid proto-object contracts quasi-isostatically. Two finite-difference, donor-cell methods and a smoothed particle hydrodynamics (SPH) code are examined, using a polytropic index of 3/2 and ratios of total rotational kinetic energy to gravitational energy of 0.33 and 0.38. The models show that dynamic bar instabilities with the 3/2 polytropic index do not yield detached binaries and multiple systems. Ejected mass and angular momentum form two trailing spiral arms that become a disk or ring around the central remnant. The SPH code yields the same data as the finite difference codes but with less computational effort and without acceptable fluid constraints in low density regions. Methods for improving both types of codes are discussed. 68 references.

  17. High-frequency behavior of w-mode pulsations of compact stars

    SciTech Connect

    Zhang, Y. J.; Wu, J.; Leung, P. T.

    2011-03-15

    We study the asymptotic behavior of the quasinormal modes (QNMs) of w-mode pulsations of compact stars in the high-frequency regime. We observe that both the axial and polar w-mode QNMs attain similar asymptotic behaviors in spite of the fact that they are described by two totally different differential equation systems. We obtain robust asymptotic formulas relating w-mode QNMs of different polarities and different angular momenta. To explore the physical reason underlying such similarity, we first derive a high-frequency approximation for the polar w-mode oscillations to unify the descriptions for both cases. Then, we develop WKB-type analyses for them and quantitatively explain the observed asymptotic behaviors for polytropic stars and quark stars. We also point out that such asymptotic behaviors for realistic stars are strongly dependent on the equation of state near the stellar surface.

  18. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  19. Compaction Behavior of Isomalt after Roll Compaction

    PubMed Central

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  20. Compaction behavior of isomalt after roll compaction.

    PubMed

    Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter

    2012-01-01

    The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist. PMID:24300366

  1. ACOUSTIC COMPACTION LAYER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The depth and strength of compacted layers in fields have been determined traditionally using the ASAE standardized cone penetrometer method. However, an on-the-go method would be much faster and much less labor intensive. The soil measurement system described here attempts to locate the compacted...

  2. Dynamical compactness and sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Khilko, Danylo; Kolyada, Sergiĭ; Zhang, Guohua

    2016-05-01

    To link the Auslander point dynamics property with topological transitivity, in this paper we introduce dynamically compact systems as a new concept of a chaotic dynamical system (X , T) given by a compact metric space X and a continuous surjective self-map T : X → X. Observe that each weakly mixing system is transitive compact, and we show that any transitive compact M-system is weakly mixing. Then we discuss the relationships between it and other several stronger forms of sensitivity. We prove that any transitive compact system is Li-Yorke sensitive and furthermore multi-sensitive if it is not proximal, and that any multi-sensitive system has positive topological sequence entropy. Moreover, we show that multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity for M-systems. We also give a quantitative analysis for multi-sensitivity of a dynamical system.

  3. Reply to "Comment on the Paper ''On the Determination of Electron Polytrope Indices Within Coronal Mass Ejections in the Solar Wind'"'. Appendix 5

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Riley, P.; Skoug, R. M.

    2001-01-01

    We strongly disagree with the essence of the Osherovich (hereafter Osherovich) comment on one of our papers. The following paragraphs provide the basis of our disagreement and elaborate on why we believe that none of the concluding statements in his Comment are true. Our most important point is that one can apply the model developed by Osherovich and colleagues to real data obtained at a single point in space to determine the polytropic index within magnetic clouds if and only if the highly idealized assumptions of that model conform to physical reality. There is good reason to believe that those assumptions do not provide an accurate physical description of real magnetic clouds in the spherically expanding solar wind.

  4. A nonclassical Radau collocation method for solving the Lane-Emden equations of the polytropic index 4.75 ≤ α < 5

    NASA Astrophysics Data System (ADS)

    Tirani, M. D.; Maleki, M.; Kajani, M. T.

    2014-11-01

    A numerical method for solving the Lane-Emden equations of the polytropic index α when 4.75 ≤ α ≤ 5 is introduced. The method is based upon nonclassical Gauss-Radau collocation points and Freud type weights. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced and are utilized in the interval [0,1]. A smooth, strictly monotonic transformation is used to map the infinite domain x ∈ [0,∞) onto a half-open interval t ∈ [0,1). The resulting problem on the finite interval is then transcribed to a system of nonlinear algebraic equations using collocation. The method is easy to implement and yields very accurate results.

  5. A Multicenter Blinded Analysis Indicates No Association between Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and either Xenotropic Murine Leukemia Virus-Related Virus or Polytropic Murine Leukemia Virus

    PubMed Central

    Alter, Harvey J.; Mikovits, Judy A.; Switzer, William M.; Ruscetti, Francis W.; Lo, Shyh-Ching; Klimas, Nancy; Komaroff, Anthony L.; Montoya, Jose G.; Bateman, Lucinda; Levine, Susan; Peterson, Daniel; Levin, Bruce; Hanson, Maureen R.; Genfi, Afia; Bhat, Meera; Zheng, HaoQiang; Wang, Richard; Li, Bingjie; Hung, Guo-Chiuan; Lee, Li Ling; Sameroff, Stephen; Heneine, Walid; Coffin, John; Hornig, Mady; Lipkin, W. Ian

    2012-01-01

    ABSTRACT The disabling disorder known as chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) has been linked in two independent studies to infection with xenotropic murine leukemia virus-related virus (XMRV) and polytropic murine leukemia virus (pMLV). Although the associations were not confirmed in subsequent studies by other investigators, patients continue to question the consensus of the scientific community in rejecting the validity of the association. Here we report blinded analysis of peripheral blood from a rigorously characterized, geographically diverse population of 147 patients with CFS/ME and 146 healthy subjects by the investigators describing the original association. This analysis reveals no evidence of either XMRV or pMLV infection. PMID:22991430

  6. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  7. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  8. Multipolar universal relations between f -mode frequency and tidal deformability of compact stars

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Sham, Y.-H.; Leung, P. T.; Lin, L.-M.

    2014-12-01

    Though individual stellar parameters of compact stars usually demonstrate obvious dependence on the equation of state (EOS), EOS-insensitive universal formulas relating these parameters remarkably exist. In the present paper, we explore the interrelationship between two such formulas, namely the f -I relation connecting the f -mode quadrupole oscillation frequency ω2 and the moment of inertia I , and the I -Love-Q relations relating I , the quadrupole tidal deformability λ2, and the quadrupole moment Q , which have been proposed by Lau, Leung, and Lin [Astrophys. J. 714, 1234 (2010)] and Yagi and Yunes [Science 341, 365 (2013)], respectively. A relativistic universal relation between ωl and λl with the same angular momentum l =2 ,3 ,… , the so-called "diagonal f -Love relation" that holds for realistic compact stars and stiff polytropic stars, is unveiled here. An in-depth investigation in the Newtonian limit is further carried out to pinpoint its underlying physical mechanism and hence leads to a unified f -I -Love relation. We reach the conclusion that these EOS-insensitive formulas stem from a common physical origin—compact stars can be considered as quasiincompressible when they react to slow time variations introduced by f -mode oscillations, tidal forces and rotations.

  9. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  10. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented. PMID:25771881

  11. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  12. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .

  13. DNA compaction by azobenzene-containing surfactant

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina; Santer, Svetlana

    2011-08-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  14. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  15. Paramagnetism in colour superconductivity and compact stars

    NASA Astrophysics Data System (ADS)

    Ferrer, Efrain J.; de la Incera, Vivian

    2007-06-01

    It is quite plausible that colour superconductivity occurs in the inner regions of neutron stars. At the same time, it is known that strong magnetic fields exist in the interior of these compact objects. In this paper we discuss some important effects that can occur in the colour superconducting core of compact stars due to the presence of the stars' magnetic field. In particular, we consider the modification of the gluon dynamics for a colour superconductor with three massless quark flavours in the presence of an external magnetic field. We show that the long-range component of the external magnetic field that penetrates the colour-flavour locked phase produces an instability for field values larger than the charged gluons' Meissner mass. As a consequence, the ground state is restructured forming a vortex state characterized by the condensation of charged gluons and the creation of magnetic flux tubes. In the vortex state the magnetic field outside the flux tubes is equal to the applied one, while inside the tubes its strength increases by an amount that depends on the amplitude of the gluon condensate. This paramagnetic behaviour of the colour superconductor can be relevant for the physics of compact stars.

  16. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses

    PubMed Central

    2011-01-01

    In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases. PMID:21342521

  17. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  18. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  19. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  20. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  1. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  2. Compact waveguide splitter networks.

    PubMed

    Qian, Yusheng; Song, Jiguo; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P

    2008-03-31

    We demonstrate compact waveguide splitter networks in siliconon- insulator (SOI) rib waveguides using trench-based splitters (TBSs) and bends (TBBs). Rather than a 90 degrees geometry, we use 105 degrees TBSs to facilitate reliable fabrication of high aspect ratio trenches suitable for 50/50 splitting when filled with SU8. Three dimensional (3D) finite difference time domain (FDTD) simulation is used for splitter and bend design. Measured TBB and TBS optical efficiencies are 84% and 68%, respectively. Compact 105 degrees 1 x 4, 1 x 8, and 1 x 32 trench-based splitter networks (TBSNs) are demonstrated. The measured total optical loss of the 1 x 32 TBSN is 9.15 dB. Its size is only 700 microm x 1600 microm for an output waveguide spacing of 50 microm. PMID:18542598

  3. Compact infrared detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    Broadband IR detector integrated into compact package for pollution monitoring and weather prediction is small, highly responsive, and immune to high noise. Sensing material is transparent sheet metalized with reflecting coating and overcoated with black material on same side. Pulse produced by chopping of infrared source beam creates transient "thermal lens" that temporarily defocuses laser beam probe. Detector monitoring beam measures defocusing which parallels infrared intensity.

  4. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  5. Compact heat exchangers

    SciTech Connect

    Kays, W.M.; London, A.L.

    1984-01-01

    This third edition is an update of the second edition published in 1964. New data and more modern theoretical solutions for flow in the simple geometries are included, although this edition does not differ radically from the second edition. It contains basic test data for eleven new surface configurations, including some of the very compact ceramic matrices. Al dimensions are given in both the English and the Systeme International (SI) system of units.

  6. Granule consolidation during compaction.

    PubMed

    Rubinstein, M H

    1976-03-01

    The deformation of small cylindrical aggregates of dibasic calcium phosphate was measured during compaction. An analogy between these aggregates and cylindrical granules was proposed. No change in the original shape of the aggregates occurred; the cylindrical shape was maintained even at high compaction pressures. Relaxation of the aggregates occurred at pressures higher than 420 MNm-2 (60.9 x 10(3) lb in.-2) when removed from the compacts, but no relaxation took place at pressures below this value. In addition, the aggregates relaxed by an increase in thickness only; there was no corresponding change in diameter. Up to a pressure of 200 MNm-2 (29.0 x 10(3) lb in.-2), an increase in aggregate diameter occurred, which was accompanied by a reduction in thickness. This change produced only a small reduction in volume, which was attributable to interparticulate slippage resulting in a closer packed arrangement. At a pressure of 200 MNm-2, the aggregate diameter no longer increased because solid bridges were formed between the particles and the die wall, preventing further spreading. From 200 to 420 MNm-2, failure of the material occurred by plastic deformation, which produced only a decrease in aggregate thickness. From 420 to 800 MNm-2 (116.0 x 10(3) lb in.-2), a structure was formed that could support the applied load without further reduction of thickness, and this structure was shown to behave elastically. PMID:1263085

  7. Fracture of explosively compacted aluminum particles in a cylinder

    NASA Astrophysics Data System (ADS)

    Frost, David; Loiseau, Jason; Goroshin, Sam; Zhang, Fan; Milne, Alec; Longbottom, Aaron

    2015-06-01

    The explosive compaction, fracture and dispersal of aluminum particles contained within a cylinder have been investigated experimentally and computationally. The aluminum particles were weakly confined in a cardboard tube and surrounded a central cylindrical burster charge. The compaction and fracture of the particles are visualized with flash radiography and the subsequent fragment dispersal with high-speed photography. The aluminum fragments produced are much larger than the original aluminum particles and similar in shape to those generated from the explosive fracture of a solid aluminum cylinder, suggesting that the shock transmitted into the aluminum compacts the powder to near solid density. The casing of the burster explosive (plastic-, copper-, and un-cased charges were used) had little influence on the fragment size. The effect of an air gap between the burster and the aluminum particles was also investigated. The particle motion inferred from the radiographs is compared with the predictions of a multimaterial hydrocode.

  8. CHARGE BOTTLE FOR A MASS SEPARATOR

    DOEpatents

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  9. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  10. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  11. Compact LINAC for deuterons

    SciTech Connect

    Kurennoy, S S; O' Hara, J F; Rybarcyk, L J

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  12. Compact multiframe blind deconvolution.

    PubMed

    Hope, Douglas A; Jefferies, Stuart M

    2011-03-15

    We describe a multiframe blind deconvolution (MFBD) algorithm that uses spectral ratios (the ratio of the Fourier spectra of two data frames) to model the inherent temporal signatures encoded by the observed images. In addition, by focusing on the separation of the object spectrum and system transfer functions only at spatial frequencies where the measured signal is above the noise level, we significantly reduce the number of unknowns to be determined. This "compact" MFBD yields high-quality restorations in a much shorter time than is achieved with MFBD algorithms that do not model the temporal signatures; it may also provide higher-fidelity solutions. PMID:21403711

  13. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  14. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  15. CHARGE IMBALANCE

    SciTech Connect

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  16. Nanoparticles of compacted DNA transfect postmitotic cells.

    PubMed

    Liu, Ge; Li, DeShan; Pasumarthy, Murali K; Kowalczyk, Tomasz H; Gedeon, Christopher R; Hyatt, Susannah L; Payne, Jennifer M; Miller, Timothy J; Brunovskis, Peter; Fink, Tamara L; Muhammad, Osman; Moen, Robert C; Hanson, Richard W; Cooper, Mark J

    2003-08-29

    Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore. PMID:12807905

  17. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  18. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  19. Internal Charging

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  20. On intrinsic nonlinear particle motion in compact synchrotrons

    NASA Astrophysics Data System (ADS)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  1. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  2. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  8. Compact SPS - Power delivery

    NASA Astrophysics Data System (ADS)

    Pospisil, M.; Pospisilova, L.

    1982-09-01

    The power deliverable by a compact solar Space Power Station (SPS) is a function of its outer surface shape. Methods of fitting the power delivery curve of such a system to different patterns of daily power demand are considered that involve the appropriate choice of the number of satellites, their maximal power, height to width ratio and the shift of longitude with respect to the receiving station. Changes in the daily delivery curve can be made by altering the longitudes and orientations of the satellites. Certain limitations to the choice of parameters exist, such as: the height to width ratio should be near 1.2, and the sum of longitude and orientation changes will probably not be greater than 50 deg. The optimization of the peak to average power ratio is also discussed.

  9. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  10. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  11. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  12. Compact ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Baird, Brian Walter

    1997-09-01

    This dissertation presents theoretical analysis and experimental investigation of a compact ultraviolet laser, comprising an unstable resonator semiconductor (URSL) laser-pumped potassium titanyl phosphate (KTP) periodically segmented waveguide (PSW) laser. A comprehensive survey of existing short wavelength visible and near ultraviolet laser technologies suitable for the development of compact ultraviolet lasers is presented. This survey establishes the suitability of a diode-pumped KTP PSW laser as an attractive approach for developing a compact ultraviolet laser. Requirements for an efficient diode-pumped KTP PSW laser are given, leading to the selection of a frequency-stabilized URSL and hydrothermal KTP PSWs as the component technologies to be developed and integrated. Since the design requirements for the URSL and KTP PSW are critically dependent on a thorough understanding of the spatial mode properties of KTP PSWs, analyses and modeling of the spatial mode properties of these devices is presented using effective index method (EIM) and beam propagation method (BPM) models. In addition, a new expression for the normalized conversion efficiency is presented which explicitly incorporates the dependence of this important parameter on the lateral variation of the refractive index and d coefficient. To assess the theoretical performance of an URSL-pumped KTP PSW, the BPM model was extended to incorporate second harmonic generation. This represents an important contribution to the development of numerical methods for modeling nonlinear waveguides, in general, and provides important information on the cooperative effects of diffraction and spatial mode beating on the SHG output from KTP PSWs. Extensive optical characterization of NUV SHG in hydrothermal KTP PSWs using an argon-ion laser-pumped Ti:Sapphire laser as the infrared laser pump source is presented. Spectral characterization, spatial mode characterization, and the temperature dependence of the QPM

  13. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  14. Upgrading coke strength by a coal-blend-compaction process

    SciTech Connect

    Fun, F.; Brayton, W.E.; Shoenberger, R.W.

    1981-01-01

    In the continuing effort to upgrade the strength of coke made from available coal blends, US Steel is developing coal-blend compaction as an alternative method to coal preheating. In this process the coal blend is compacted to produce relatively weak compacted materials, which are subsequently degraded into controlled size fractions of intimately integrated particles of the multicomponent coal blend. The degraded blend particles are charged into conventional coke ovens for coking. Coal-blend-compaction tests conducted in the laboratory with coals from the Appalachian basin showed substantial improvement in coke strength. The encouraging laboratory results dictated a commerical scale test at US Steel's Gary Works. This plant test, in which more than 200 tons of coal blend was used, further confirmed the improvement in coke strength by the coal-blend-compaction process. Potential benefits of the process include (1) retrospective adaptation to existing coke batteries, (2) improved strength of coke from regular coal blends, (3) maintenance of same or higher coke strength with poor coal blends, and (4) economics that are competitive with or better than those of coal preheating. Continuing developments are being investigated in a compaction pilot plant and commercial coke ovens at US Steel's Clairton Works, mainly to establish engineering criteria and optimal controls for large-scale installations. 9 figures, 2 tables.

  15. Compost improves compacted urban soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  16. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  17. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  18. Development of a repetitive compact torus injector

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  19. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect

    Sun, Y.; /SLAC

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  20. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  1. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  2. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  3. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  4. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  5. Magnetostatic traps for charged and neutral particles

    NASA Astrophysics Data System (ADS)

    Gomer, V.; Harms, O.; Haubrich, D.; Schadwinkel, H.; Strauch, F.; Ueberholz, B.; Aus der Wiesche, S.; Meschede, D.

    1997-08-01

    We have constructed magnetostatic traps from permanent magnets for trapping charged and neutral atoms. Two storage experiments are presented: a compact Penning trap for light ions and magnetic trapping of single neutral atoms. The dynamics of cold neutral atoms and their loss mechanisms in a quadrupole magnetostatic trap are discussed.

  6. Compaction of DNA with Lipid Modified Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Savarala, Sushma; Wunder, Stephanie L.; Ilies, Marc

    2012-02-01

    There is an increasing interest in modified inorganic nanoparticles, polymers or hybrid polymer-inorganic nanoparticles for use in DNA transfection, rather than viral vectors or liposomes. Adsorption of the DNA to the nanoparticles prevents enzymatic degradation of the DNA, although the reason for this protection is not completely understood. In order to compact the negatively charged DNA, a positively charged surface is required, and for transfection applications, the nanosystems must remain stable in suspension. It is also useful to minimize the amount of cytotoxic cationic lipid needed for DNA compaction in delivery applications. Here we investigate the colloidal stability of supported lipid bilayers (SLBs) composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0 PC) and 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP, 14:0 TAP), and their ability to compact plasmid DNA. Ionic strengths and DMPC/DMTAP ratios that resulted in SLB formation, no excess small unilamellar vesicles (SUVs) in the suspensions, and colloidal stability, were determined. DNA/SLB/lipid ratios that resulted in compaction were then investigated.

  7. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  8. Compact dc link

    SciTech Connect

    Flairty, C. )

    1991-10-01

    The EPRI Compact Substation Project (a HVDC Converter Station) was developed, designed, and constructed per EPRI Agreement RP213. In December 1983, the converter station operated at its rating (100 MW power transmission and 300 kV dc bias plus 100 kV operating voltage). From January to May 1984, the converter station operated at various power transmission levels. Operation was intermittent due to a randomly occurring voltage breakdown. The voltage breakdown was isolated to the steel tanks containing the thyristor valves in an SF{sub 6} environment. The type of insulators stressed within the valve tanks were: (1) the epoxy cone shape insulators providing an interface to the bus entering the valve tank; (2) epoxy fiberglass hydraulic columns for the flow of the R113 refrigerant to and from the thyristor valves; and (3) the epoxy fiberglass support columns supporting the thyristor valves from the floor of the valve tank. The cause of the randomly occurring breakdown was investigated and determined to be the epoxy fiberglass support columns. The random dielectric breakdowns were due to excessive voltage gradients existing at the epoxy fiberglass support columns. This probably was caused by the misplacement of an internal insert within the column with respect to an external shield on the column. The cost and time to retrofit the support columns outweighed the benefits expected from resuming the project. Consequently, work was terminated and the equipment disassembled. Examination of the epoxy fiberglass support columns revealed several arcing tracks along the inside surface confirming the earlier hypothesis. 53 figs., 32 tabs.

  9. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  10. Compact Holographic Data Storage

    NASA Technical Reports Server (NTRS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  11. Collective Deceleration: Toward a Compact Beam Dump

    SciTech Connect

    Wu, H.-C.; Tajima, T.; Habs, D.; Chao, A.W.; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  12. Compact stars and the symmetry energy

    NASA Astrophysics Data System (ADS)

    Providência, Constana; Cavagnoli, Rafael; Menezes, Debora P.; Panda, Prafulla K.; Rabhi, Aziz

    2013-02-01

    The effect of the symmetry energy on some properties of compact stars which contain strange degrees of freedom is discussed. Both the onset of hyperons or kaon condensation will be considered. The hyperon-meson couplings are chosen according to experimental values of the hyperon nuclear matter potentials and possible uncertainties are considered. It is shown that a softer symmetry energy affects the onset of strangeness, namely neutral (negatively charged) strange particles set on at larger (smaller) densities, and gives rise to a smaller strangeness fraction as a function of density. A softer symmetry energy will possibily give rise to maximum mass configurations with larger masses. Hyperon-meson couplings have a strong effect on the mass of the star. It is shown that, for stars with masses above 1 Msolar, the radius of the star varies linearly with the symmetry energy slope L.

  13. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  14. A compact electron spectrometer for an LWFA.

    SciTech Connect

    Lumpkin, A.; Crowell, R.; Li, Y.; Nemeth, K.

    2007-01-01

    The use of a laser wakefield accelerator (LWFA) beam as a driver for a compact free-electron laser (FEL) has been proposed recently. A project is underway at Argonne National Laboratory (ANL) to operate an LWFA in the bubble regime and to use the quasi-monoenergetic electron beam as a driver for a 3-m-long undulator for generation of sub-ps UV radiation. The Terawatt Ultrafast High Field Facility (TUHFF) in the Chemistry Division provides the 20-TW peak power laser. A compact electron spectrometer whose initial fields of 0.45 T provide energy coverage of 30-200 MeV has been selected to characterize the electron beams. The system is based on the Ecole Polytechnique design used for their LWFA and incorporates the 5-cm-long permanent magnet dipole, the LANEX scintillator screen located at the dispersive plane, a Roper Scientific 16-bit MCP-intensified CCD camera, and a Bergoz ICT for complementary charge measurements. Test results on the magnets, the 16-bit camera, and the ICT will be described, and initial electron beam data will be presented as available. Other challenges will also be addressed.

  15. Weakly charged cationic nanoparticles induce DNA bending and strand separation.

    PubMed

    Railsback, Justin G; Singh, Abhishek; Pearce, Ryan C; McKnight, Timothy E; Collazo, Ramón; Sitar, Zlatko; Yingling, Yaroslava G; Melechko, Anatoli V

    2012-08-16

    Weakly charged cationic nanoparticles cause structural changes including local denaturing and compaction to DNA under mild conditions. The charged ligands bind to the phosphate backbone of DNA and the uncharged ligands penetrate the helix and disrupt base pairing. Mobility shifts in electrophoresis, molecular dynamics, and UV-vis spectrophotometry give clues to the details of the interactions. PMID:22711427

  16. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  17. A Compact Beam Measurement Setup

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.

    2016-03-01

    We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.

  18. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  19. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  20. A Compact Beam Measurement Setup

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.

    2016-08-01

    We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.

  1. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  2. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  3. Design of compact Marx module with square pulse output.

    PubMed

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m(3) and 140 GW/m(3), respectively. PMID:27475580

  4. Design of compact Marx module with square pulse output

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m3 and 140 GW/m3, respectively.

  5. Novelties in physics of explosive welding and powder compaction

    NASA Astrophysics Data System (ADS)

    Plaksin, I.; Campos, J.; Ribeiro, J.; Mendes, R.; Direito, J.; Braga, D.; Pruemmer, R.

    2003-09-01

    Widely known technologies of explosive (X) welding and explosive (X) powder compaction are based on applications of porous composite solid or liquid explosives. Recent results on dynamics of X-welding and X-powder compaction are presented and discussed in this paper in the conceptual context of an orderly oscillating detonation wave (DW), a synergetic phenomenon observed in detonation of all classes of composite energetic materials, that was discovered in LEDAP in last eight years. Regular instabilities that are induced by oscillating DW, are transmitted through the interface of the impacted materials, causing the local instability and fluctuations in both processes, formation of the interfacial waves (X-welding mechanism) and in an initial phase of powder compaction. Application of high resolution optical probes (spatial resolution 250 μm, temporal resolution 1 ns, 96 independent channels) allowed the simultaneous registration of the oscillating DW in the X-charge and transmission of oscillations, through the flyer plate, up to the welding zone. Similar measurements have been made in experiments with X-compaction of tungsten powder providing the continuos registration of shock wave velocity inside the compacted powder, its geometrical shape, their instabilities and irregularities.

  6. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  7. A Compact Polarization Imager

    NASA Technical Reports Server (NTRS)

    Thompson, Karl E.; Rust, David M.; Chen, Hua

    1995-01-01

    A new type of image detector has been designed to analyze the polarization of light simultaneously at all picture elements (pixels) in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a custom-designed charge-coupled device with signal-analysis circuitry, all integrated on a silicon chip. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Other applications include environmental monitoring and robot vision. Innovations in the IDID include two interleaved 512 x 1024 pixel imaging arrays (one for each polarization plane), large dynamic range (well depth of 10(exp 6) electrons per pixel), simultaneous readout and display of both images at 10(exp 6) pixels per second, and on-chip analog signal processing to produce polarization maps in real time. When used with a lithium niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can reveal tiny differences between simultaneous images at two wavelengths.

  8. Compact boson stars in K field theories

    NASA Astrophysics Data System (ADS)

    Adam, C.; Grandi, N.; Klimas, P.; Sánchez-Guillén, J.; Wereszczyński, A.

    2010-11-01

    We study a scalar field theory with a non-standard kinetic term minimally coupled to gravity. We establish the existence of compact boson stars, that is, static solutions with compact support of the full system with self-gravitation taken into account. Concretely, there exist two types of solutions, namely compact balls on the one hand, and compact shells on the other hand. The compact balls have a naked singularity at the center. The inner boundary of the compact shells is singular, as well, but it is, at the same time, a Killing horizon. These singular, compact shells therefore resemble black holes.

  9. Modelling of compaction in planetesimals

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2014-07-01

    Aims: Compaction of initially porous material prior to melting is an important process that has influenced the interior structure and the thermal evolution of planetesimals in their early history. On the one hand, compaction decreases the porosity resulting in a reduction of the radius and on the other hand, the loss of porosity results in an increase of the thermal conductivity of the material and thus in a more efficient cooling. Porosity loss by hot pressing is the most efficient process of compaction in planetesimals and can be described by creep flow, which depends on temperature and stress. Hot pressing has been repeatedly modelled using a simplified approach, for which the porosity is gradually reduced in some fixed temperature interval between ≈650 K and 700 K. This approach neglects the dependence of compaction on stress and other factors such as matrix grain size and creep activation energy. In the present study, we compare this parametrised method with a self-consistent calculation of porosity loss via a creep related approach. Methods: We use our thermal evolution model from previous studies to model compaction of an initially porous body and consider four basic packings of spherical dust grains (simple cubic, orthorhombic, rhombohedral, and body-centred cubic). Depending on the grain packing, we calculate the effective stress and the associated porosity change via the thermally activated creep flow. For comparison, compaction is also modelled by simply reducing the initial porosity linearly to zero between 650 K and 700 K. As we are interested in thermal metamorphism and not melting, we only consider bodies that experience a maximum temperature below the solidus temperature of the metal phase. Results: For the creep related approach, the temperature interval in which compaction takes place depends strongly on the size of the planetesimal and is not fixed as assumed in the parametrised approach. Depending on the radius, the initial grain size, the

  10. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  11. Photon and neutrino redshift in the field of braneworld compact stars

    SciTech Connect

    Hladík, Jan; Stuchlík, Zdeněk E-mail: zdenek.stuchlik@fpf.slu.cz

    2011-07-01

    We study gravitational redshift of photons and neutrinos radiated by the braneworld neutron or quark stars that are considered in the framework of the simple model of the internal spacetime with uniform distribution of energy density, and the external spacetime described by the Reissner-Nordström geometry characterized by the braneworld ''tidal'' charge b. For negative tidal charges, the external spacetime is of the black-hole type, while for positive tidal charges, the external spacetime can be of both black-hole and naked-singularity type. We consider also extremely compact stars allowing existence of trapped null geodesics in their interior. We assume radiation of photons from the surface at radius R, neutrinos from the whole compact star interior, and their motion along radial null geodesics of the spacetime. In dependency on the compact stars parameters b and R, the photon surface redshift is related to the range of the neutrino internal redshift and the signatures of the tidal charge and possible existence of extremely compact stars are discussed. When both surface (photon) and internal (neutrino) redshift are given by observations, both compact star parameters R and b can be determined in the framework of our simple model.

  12. Compaction Behavior of Granular Materials

    NASA Astrophysics Data System (ADS)

    Endicott, Mark R.; Kenkre, V. M.; Glass, S. Jill; Hurd, Alan J.

    1996-03-01

    We report the results of our recent study of compaction of granular materials. A theoretical model is developed for the description of the compaction of granular materials exemplified by granulated ceramic powders. Its predictions are compared to observations of uniaxial compaction tests of ceramic granules of PMN-PT, spray dried alumina and rutile. The theoretical model employs a volume-based statistical mechanics treatment and an activation analogy. Results of a computer simulation of random packing of discs in two dimensions are also reported. The effect of type of particle size distribution and other parameters of that distribution on the calculated quantities are discussed. We examine the implications of the results of the simulation for the theoretical model.

  13. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  14. VARIABLE MOMENTUM COMPACTION LATTICE STUDIES.

    SciTech Connect

    KRAMER,S.; MURPHY,J.B.

    1999-03-29

    The VUV storage ring at the National Synchrotron Light Source was used to study the impact of changes in the momentum compaction factors over a large range from positive to negative values. Changes in bunch length and synchrotron tune were measured versus current and RF parameters for these different lattices. By controlling both the first and second-order momentum compaction factors, a lattice was developed in which a pair of alpha buckets was created within the energy aperture of the vacuum chamber and beam was stored simultaneously in both buckets.

  15. Modeling of compact loop antennas

    SciTech Connect

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  16. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  17. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  18. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    1987-09-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).

  19. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  20. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  1. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... of the Council should notify the Federal Bureau of Investigation (FBI) Compact Officer, Mr. Gary S..., FBI Compact Officer, Compact Council Office, Module D3, 1000 Custer Hollow Road, Clarksburg,...

  2. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  3. Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jincheng; Shi, Chengwu; Chen, Junjun; Wang, Yanqing; Li, Mingqian

    2016-06-01

    In this paper, the ultra-thin and high-quality WO3 compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO3 and TiO2 compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO2 compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO3 and TiO2 compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO3 compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO2 compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency.

  4. CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS

    SciTech Connect

    Matthews, L. S.; Land, V.; Hyde, T. W.

    2012-01-01

    Combining a particle-particle, particle-cluster, and cluster-cluster agglomeration model with an aggregate charging model, the coagulation and charging of dust particles in plasma environments relevant for protoplanetary disks have been investigated, including the effect of electron depletion in high dust density environments. The results show that charged aggregates tend to grow by adding small particles and clusters to larger particles and clusters, and that cluster-cluster aggregation is significantly more effective than particle-cluster aggregation. Comparisons of the grain structure show that with increasing aggregate charge the compactness factor, {phi}{sub {sigma}}, decreases and has a narrower distribution, indicating a fluffier structure. Neutral aggregates are more compact, with larger {phi}{sub {sigma}}, and exhibit a larger variation in fluffiness. Overall, increased aggregate charge leads to larger, fluffier, and more massive aggregates.

  5. HU multimerization shift controls nucleoid compaction

    PubMed Central

    Hammel, Michal; Amlanjyoti, Dhar; Reyes, Francis E.; Chen, Jian-Hua; Parpana, Rochelle; Tang, Henry Y. H.; Larabell, Carolyn A.; Tainer, John A.; Adhya, Sankar

    2016-01-01

    Molecular mechanisms controlling functional bacterial chromosome (nucleoid) compaction and organization are surprisingly enigmatic but partly depend on conserved, histone-like proteins HUαα and HUαβ and their interactions that span the nanoscale and mesoscale from protein-DNA complexes to the bacterial chromosome and nucleoid structure. We determined the crystal structures of these chromosome-associated proteins in complex with native duplex DNA. Distinct DNA binding modes of HUαα and HUαβ elucidate fundamental features of bacterial chromosome packing that regulate gene transcription. By combining crystal structures with solution x-ray scattering results, we determined architectures of HU-DNA nucleoproteins in solution under near-physiological conditions. These macromolecular conformations and interactions result in contraction at the cellular level based on in vivo imaging of native unlabeled nucleoid by soft x-ray tomography upon HUβ and ectopic HUα38 expression. Structural characterization of charge-altered HUαα-DNA complexes reveals an HU molecular switch that is suitable for condensing nucleoid and reprogramming noninvasive Escherichia coli into an invasive form. Collective findings suggest that shifts between networking and cooperative and noncooperative DNA-dependent HU multimerization control DNA compaction and supercoiling independently of cellular topoisomerase activity. By integrating x-ray crystal structures, x-ray scattering, mutational tests, and x-ray imaging that span from protein-DNA complexes to the bacterial chromosome and nucleoid structure, we show that defined dynamic HU interaction networks can promote nucleoid reorganization and transcriptional regulation as efficient general microbial mechanisms to help synchronize genetic responses to cell cycle, changing environments, and pathogenesis. PMID:27482541

  6. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  7. Generalized high order compact methods.

    SciTech Connect

    Spotz, William F.; Kominiarczuk, Jakub

    2010-09-01

    The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed.

  8. The Compact Project: Final Report.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    The National Alliance of Business (NAB) surveyed the 12 sites that participated in the Compact Project to develop and implement programs of business-education collaboration. NAB studied start-up activities, key players, conditions for collaboration, accomplishments, challenges, and future plans. Program outcomes indicated that building successful…

  9. Mesoscale Simulations of Power Compaction

    SciTech Connect

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  10. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  11. Compact color schlieren optical system

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.; Griffin, Devon W.

    1993-01-01

    A compact optical system for use with rainbow schlieren deflectometry is described. Both halves of the optical system consist of well-corrected telescopes whose refractive elements are all from manufacturer's stock catalogs, with the reflective primary being a spherical surface. As a result, the system is relatively easy to construct and meets the requirement of long focal length for quantitative rainbow schlieren measurements.

  12. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  13. Detonation performance of high-dense BTF charges

    NASA Astrophysics Data System (ADS)

    Dolgoborodov, Alexander; Brazhnikov, Michael; Makhov, Michael; Gubin, Sergey; Maklasova, Irina

    2013-06-01

    New experimental data on detonation wave parameters and explosive performance for benzotrifuroxan (BTF) are presented. Optical pyrometry was applied in order to measure the temperature and pressure of BTF detonation products. Chapman-Jouguet pressure and temperature were obtained as following: 33.8 GPa and 3990 K; 34.5 GPa and 4170 K (initial charge densities 1.82 and 1.84 g/cc respectively), the polytropic exponent was estimated as 2.8. The heat of explosion and acceleration ability were measured also. The results of calorimetric measurements performed in bomb calorimeter indicate that BTF slightly surpasses HMX in the heat of explosion. However BTF is inferior to HMX in the acceleration ability, measured by the method of copper casing expansion. It is also considered the hypothesis of formation of nanocarbon particles in detonation products directly behind the detonation front and influence of this processes on the temperature-time history in detonation products. The results of calculations with in view of formation of liquid nanocarbon in products of a detonation also are presented.

  14. Compaction in the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Boorman, S.; Boudreau, A.

    2003-12-01

    Compaction in the mush zone of a crystallizing chamber is a model for fractionation, whereby evolved interstitial liquid expelled from the compacting crystal pile is returned to the magma chamber. If compaction was important during crystallization of the Lower and Critical Zones of the Bushveld Complex, certain textural features are expected; and, these features should correlate to position in the section, as well as to the number of mineral phases present. We report on a spectrum of textural data for 30 samples form the Lower and Critical Zones of the Bushveld Complex. Crystal Size Distributions (CSDs) are a semi-log plot of population density against crystal size, and provide information about magmatic processes such as crystal accumulation, removal and aging. Changes to the magmatic system are reflected in the shape of the CSD plot. CSDs of Bushveld rocks show a log-linear trend overturned at smaller grain sizes, a result consistent with both crystal aging, wherein larger grains grow at the expense of small ones in the crystallizing pile, and melt migration, where nucleation is suppressed by the loss of late melt fractions. CSD slope and intercept data vary with stratigraphy. Slopes in the Critical Zone are steeper, indicating less recrystallization and less of a compaction effect. In contrast, slopes in the Lower Zone are shallower, a result consistent with slower cooling and a greater compaction/recrystallization effect. Likewise, lower CSD intercepts are associated with the shallower slopes of the lower zone and vice versa. The extent of foliation is measured as alignment factor (AF), determined by orientation statistics of the major axes of the grains of interest. AF decreases with stratigraphic height and foliation is best developed in the nearly monomineralic harzburgite of the Lower Zone (AF avg=64). At the Lower Zone-Critical Zone transition, plagioclase content increases, decreasing bulk density and thus, the systems ability to accommodate compaction

  15. Compact Raman instrumentation for process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Carrabba, Michael M.; Spencer, Kevin M.; Rauh, R. D.

    1991-04-01

    Raman spectroscopy is a powerful noninvasive tool for elucidating chemical structure. Like infrared spectroscopy, it has many potential practical applications, such as process monitoring, environmental sensing, clinical analysis, forensic identification, and as a detector for use with analytical instruments. Until recently, however, Raman has been considered mainly in the context of basic research. The present generation of high performance Raman instruments tend to be large, complex and expensive, and thus have been of primary interest only to specialists in the field. This paper will discuss the development of a compact Raman spectrometer system consisting of a diode laser, fiber optics of excitation and collection, and a compact spectrograph with charge coupled device (CCD) detection.

  16. Thermodynamic instabilities in dense asymmetric nuclear matter and in compact stars

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Drago, A.; Pagliara, G.; Pigato, D.

    2014-07-01

    We investigate the presence of thermodynamic instabilities in compressed asymmetric baryonic matter, reachable in high energy heavy ion collisions, and in the cold β-stable compact stars. To this end we study the relativistic nuclear equation of state with the inclusion of Δ-isobars and require the global conservation of baryon and electric charge numbers. Similarly to the low density nuclear liquid-gas phase transition, we show that a phase transition can occur in dense asymmetric nuclear matter and it is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the electric charge concentration). Such thermodynamic instabilities can imply a very different electric charge fraction Z/A in the coexisting phases during the phase transition and favoring an early formation of Δ- particles with relevant phenomenological consequences in the physics of the protoneutron stars and compact stars. Finally, we discuss the possible co-existence of very compact and very massive compact stars in terms of two separate families: compact hadronic stars and very massive quark stars.

  17. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  18. Powder compaction in systems of bimodal distribution

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  19. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  20. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  1. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  2. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  3. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  4. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  5. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  6. Compact color schlieren optical system.

    PubMed

    Buchele, D R; Griffin, D W

    1993-08-01

    A compact optical system for use with rainbow schlieren deflectometry is described. Both halves of the optical system consist of well-corrected telescopes whose refractive elements are all from manufacturer's stock catalogs, with the reflective primary being a spherical surface. As a result, the system is relatively easy to construct and meets the requirement of long focal length for quantitative rainbow schlieren measurements. PMID:20830072

  7. Compact Color Schlieren Optical System

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.; Griffin, Devon W.

    1996-01-01

    Compact, rugged optical system developed for use in rainbow schlieren deflectometry. Features unobscured telescope with focal-length/aperture-width ratio of 30. Made of carefully selected but relatively inexpensive parts. All of lenses stock items. By-product of design is optical system with loose tolerances on interlens spacing. One of resulting advantages, insensitivity to errors in fabrication of optomechanical mounts. Another advantage is ability to compensate for some of unit-to-unit variations inherent in stock lenses.

  8. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  9. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  10. Thixoforming of Stellite Powder Compacts

    NASA Astrophysics Data System (ADS)

    Hogg, S. C.; Atkinson, H. V.; Kapranos, P.

    2007-04-01

    Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperature to be in the range 1340°C-1350°C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.