Science.gov

Sample records for chemical fertilizers application

  1. Quantifying Uncertainty in Daily Temporal Variations of Atmospheric NH3 Emissions Following Application of Chemical Fertilizers

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2014-12-01

    Improving modeling predictions of atmospheric particulate matter and deposition of reactive nitrogen requires representative emission inventories of precursor species, such as ammonia (NH3). Anthropogenic NH3 is primarily emitted to the atmosphere from agricultural sources (80-90%) with dominant contributions (56%) from chemical fertilizer usage (CFU) in regions like Midwest USA. Local crop management practices vary spatially and temporally, which influence regional air quality. To model the impact of CFU, NH3 emission inputs to chemical transport models are obtained from the National Emission Inventory (NEI). NH3 emissions from CFU are typically estimated by combining annual fertilizer sales data with emission factors. The Sparse Matrix Operator Kernel Emissions (SMOKE) model is used to disaggregate annual emissions to hourly scale using temporal factors. These factors are estimated by apportioning emissions within each crop season in proportion to the nitrogen applied and time-averaged to the hourly scale. Such approach does not reflect influence of CFU for different crops and local weather and soil conditions. This study provides an alternate approach for estimating temporal factors for NH3 emissions. The DeNitrification DeComposition (DNDC) model was used to estimate daily variations in NH3 emissions from CFU at 14 Central Illinois locations for 2002-2011. Weather, crop and soil data were provided as inputs. A method was developed to estimate site level CFU by combining planting and harvesting dates, nitrogen management and fertilizer sales data. DNDC results indicated that annual NH3 emissions were within ±15% of SMOKE estimates. Daily modeled emissions across 10 years followed similar distributions but varied in magnitudes within ±20%. Individual emission peaks on days after CFU were 2.5-8 times greater as compared to existing estimates from SMOKE. By identifying the episodic nature of NH3 emissions from CFU, this study is expected to provide improvements in predicting atmospheric particulate matter concentrations and deposition of reactive nitrogen.

  2. Plant Growth-promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to reduce fertilizer rates while increasing nutrient uptake to maintain high yields are very important due to the increasing cost of fertilizers and their potential negative environmental impacts. The objectives of this study were to determine (i) if reduced rates of inorganic fertilizer cou...

  3. Nitrous oxide emissions from Mollisols as affected by long-term applications of organic amendments and chemical fertilizers.

    PubMed

    Li, Lu-Jun; Han, Xiao-Zeng; You, Meng-Yang; Horwath, William R

    2013-05-01

    A field experiment was conducted to evaluate the influences of long-term applications of organic amendments and chemical fertilizers on nitrous oxide (N2O) emissions from Mollisols in northeast China and to relate soil N2O fluxes to soil moisture and temperature. A closed-chamber method was used to determine soil N2O flux during the maize growing season in 2011. In the entire maize growing period, cumulative N2O emissions were significantly (all P<0.05) increased by 66, 86 and 83% under the applications of 4.5 Mg ha(-1) maize straw combined with NPK, 7.5 and 22.5 Mg ha(-1) pig manure combined with NPK, respectively, compared with the control (0.640.01 kg N2O-N ha(-1)), whereas NPK fertilizer alone and 2.25 Mg ha(-1) maize straw combined with NPK had no remarkable influences (P>0.05). Nonetheless, even increasing nitrogen inputs, the cumulative microbial N2O emission over 126 days had an upper threshold around 1.2 kg N2O-N ha(-1). Approximately 25-44% of N2O was emitted from the applied organic amendments, and the emission factor (EF) of applied organic amendments as N2O based on 126 days was between 0.07 and 1.52%, higher than NPK fertilizer-induced EF (0.03%). Soil temperature explained 38-96% of the seasonal variation in soil N2O fluxes using exponential models, with a Q10 of 2.01-3.48. Our results suggest that the influences of organic amendments on soil N2O emissions from Mollisols primarily vary with the type of the applied organic amendments, whereas great nitrogen inputs at maximum asymptotically double baseline cumulative emissions. PMID:23523728

  4. An industrial application using meager-lean coal briquette in chemical fertilizer plant

    SciTech Connect

    Xu Zesheng; Yang Qiaowen; Zhao Yinrong; Wang Xingou; Hu Kunmo; Wang Shiquan; Tao Xilo; Wang Guangnan; Chen Zhiyon

    1998-12-31

    Mechanized mining results in increased fine coals up to 60--80% of raw coal produced. Because anthracite lump coals are used as fuel coal by Chinese small and/or middle fertilizer factories in gasifiers supplying fuel gas and syngas, an increasing disparity between supply and demand of lump coal is intensifying. The necessary development and production of gasification briquettes from coal fines is welcomed by the small and middle fertilizer factories. This paper discusses making syngas using meager-lean coal briquettes, produced from coal fines and mixed coal using the newly developed binder; the coal was from the Fourth Coal Mine, Hebi Coal Mine Bureau.

  5. Impact of organic fertilizers with and without chemical fertilizers on soil chemical properties and the establishment of nitrogen-fixing bacteria in the rhizosphere.

    PubMed

    Kaur, Kulvinder; Goyal, Sneh; Kapoor, Krishan K

    2008-01-01

    Effects of organic fertilizers with and without the application of chemical fertilizers for seven years as part of a wheat-pearl millet cropping sequence on soil chemical properties and the establishment of nitrogen fixing bacteria in the rhizosphere were examined. The application of farmyard manure, poultry manure, and sugarcane filter cake alone or in combination with chemical fertilizers improved the soil organic C, total N, P, and K status. Larger populations of Azotobacter chroococcum and Rhizobium leguminosarum biovar trifolii in the rhizosphere of wheat and Egyptian clover respectively, were maintained in soils receiving organic fertilizers either alone or in combination with chemical fertilizers than in soils given chemical fertilizers alone. PMID:21558724

  6. Differences in Chemical Composition of Soil Organic Carbon Resulting From Long-Term Fertilization Strategies

    PubMed Central

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1–3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4–6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3–52.6% and 9.4–64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration. PMID:25884713

  7. [Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping].

    PubMed

    Wang, Cong; Shen, Jian-Lin; Zheng, Liang; Liu, Jie-Yun; Qin, Hong-Ling; Li, Yong; Wu, Jin-Shui

    2014-08-01

    A field experiment was carried out to study the effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions, which were measured using the static chamber/gas chromatography method, and their global warming potentials in typical paddy fields with double-rice cropping in Hunan province. The results showed that the combined applications of pig manure and chemical fertilizers did not change the seasonal patterns of CH4 and N2O emissions from paddy soils, but significantly changed the magnitudes of CH4 and N2O fluxes in rice growing seasons as compared with sole application of chemical fertilizers. During the two rice growing seasons, the cumulative CH4 emissions for the pig manure and chemical nitrogen (N) fertilizer each contributing to 50% of the total applied N (1/2N + PM) treatment were higher than those for the treatments of no N fertilizer (ON), half amount of chemical N fertilizer (1/2N) and 100% chemical N fertilizer (N) by 54.83%, 33.85% and 43.30%, respectively (P < 0.05), whilst the cumulative N2O emissions for the 1/2N + PM treatment were decreased by 67.50% compared with N treatment, but increased by 129.43% and 119.23% compared with ON and 1/2N treatments, respectively (P < 0.05). CH4 was the dominant contributor to the global warming potential (GWP) in both rice growing seasons, which contributed more than 99% to the integrated GWP of CH4 and N2O emissions for all the four treatments. Both GWP and yield-scaled GWP for the treatment of 1/2N + PM were significantly higher than the other three treatments. The yield-scaled GWP for the treatment of 1/2N + PM was higher than those for the N, 1/2N and ON treatments by 58.21%, 26.82% and 20. 63%, respectively. Therefore, combined applications of pig manure and chemical fertilizers in paddy fields would increase the GWP of CH4 and N2O emissions during rice growing seasons and this effect should be considered in regional greenhouse gases emissions inventory. PMID:25338388

  8. Emissions of NO and NH3 from a Typical Vegetable-Land Soil after the Application of Chemical N Fertilizers in the Pearl River Delta

    PubMed Central

    Li, Dejun

    2013-01-01

    Cropland soil is an important source of atmospheric nitric oxide (NO) and ammonia (NH3). Chinese croplands are characterized by intensive management, but limited information is available with regard to NO emissions from croplands in China and NH3 emissions in south China. In this study, a mesocosm experiment was conducted to measure NO and NH3 emissions from a typical vegetable-land soil in the Pearl River Delta following the applications of 150 kg N ha−1 as urea, ammonium nitrate (AN) and ammonium bicarbonate (ABC), respectively. Over the sampling period after fertilization (72 days for NO and 39 days for NH3), mean NO fluxes (± standard error of three replicates) in the control and urea, AN and ABC fertilized mesocosms were 10.9±0.9, 73.1±2.9, 63.9±1.8 and 66.0±4.0 ng N m−2 s−1, respectively; mean NH3 fluxes were 8.9±0.2, 493.6±4.4, 144.8±0.1 and 684.7±8.4 ng N m−2 s−1, respectively. The fertilizer-induced NO emission factors for urea, AN and ABC were 2.6±0.1%, 2.2±0.1% and 2.3±0.2%, respectively. The fertilizer-induced NH3 emission factors for the three fertilizers were 10.9±0.2%, 3.1±0.1% and 15.2±0.4%, respectively. From the perspective of air quality protection, it would be better to increase the proportion of AN application due to its lower emission factors for both NO and NH3. PMID:23527173

  9. [Reducing nutrients loss by plastic film covering chemical fertilizers].

    PubMed

    Chen, Huo-jun; Wei, Ze-bin; Wu, Qi-tang; Zeng, Shu-cai

    2010-03-01

    With the low utilization rate of fertilizers by crop and the growing amount of fertilizer usage,the agricultural non-point source pollution in China is becoming more and more serious. The field experiments planting corns were conducted, in which the applied chemical fertilizers were recovered with plastic film to realize the separation of fertilizers from rain water. In the experiments, the influences of different fertilizing treatments on the growing and production of sweet corn were observed. The fertilizer utilization rate and the nutrient contents in surface run-off water with and without the film covering were also determined. Results showed that, with only 70% of the normal amount of fertilizers,the sweet corn could already get high yield under the experimental soil conditions. Soil analysis after corn crops showed that the amounts of available N, P and K in the soil increased obviously with the film-covering, and the decreasing order was: 100% fertilizers with film-covering > 70% fertilizers with film-covering > 100% fertilizers, 70% fertilizers > no fertilizer. The average utilization coefficients of fertilizers by the crop were 42%-87%, 0%-3%, 5%-15% respectively for N, P and K. It was higher with film-covering than that without covering, especially for the high fertilization treatment. Analysis of water samples collected for eight run-off events showed that, without film-covering, N, P and K average concentrations in the runoff waters with fertilizations were 27.72, 2.70 and 7.07 mg x L(-1), respectively. And they were reduced respectively by 39.54%, 28.05%, 43.74% with the film-covering. This can give significant benefits to the decrease of agricultural non-point source pollution and water eutrophication. PMID:20358842

  10. CARBON SEQUESTRATION FOLLOWING MANURE OR FERTILIZER APPLICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure or compost application can increase carbon (C) sequestration in the soil since these organic sources contain significant amounts of C. Experiment was conducted from 1992 to 1996 to evaluate the effects of annual or biennial N- and P-based manure or composted manure application and fertilized ...

  11. Graphene Oxide: A Fertile Nanosheet for Various Applications

    NASA Astrophysics Data System (ADS)

    Obata, Seiji; Saiki, Koichiro; Taniguchi, Takaaki; Ihara, Toshihiro; Kitamura, Yusuke; Matsumoto, Yasumichi

    2015-12-01

    Graphene oxide (GO) is chemically exfoliated graphene with various oxygen functional groups bound to its sp2 basal plane. GO is not only a precursor for graphene in large-scale production but provides a fertile platform for applications from electronics to biology owing to its outstanding characteristics. In this review, we introduce the preparation and reduction methods and discuss recent application examples on electrochemistry and biological sensors.

  12. A social insect fertility signal is dependent on chemical context.

    PubMed

    Smith, Adrian A; Millar, Jocelyn G; Suarez, Andrew V

    2015-01-01

    Identifying group members and individuals' status within a group are fundamental tasks in animal societies. For ants, this information is coded in the cuticular hydrocarbon profile. We manipulated profiles of the ant Odontomachus brunneus to examine whether the releaser and primer effects of fertility signals are dependent on chemical context. Fertility status is signalled through increased abundance of (Z)-9-nonacosene (Z9 : C29). Across the ant's distribution, populations have distinct hydrocarbon profiles but the fertility signal is conserved. Foreign queens and fertility-signal-treated workers from the same population, sharing a similar chemical background, elicited releaser effects from workers, whereas queens and fertility-signal-treated workers from different populations did not. Z9 : C29 presented without chemical background did not elicit releaser effects. A primer-effect experiment found that Z9 : C29, presented without a chemical background, did not inhibit worker reproduction. Our results demonstrate that a familiar chemical background is necessary for appropriate responses to fertility signals. PMID:25609832

  13. Nitrification and acidification from urea application in red soil (Ferralic Cambisol) after different long-term fertilization treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose. Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and a...

  14. [Occupational exposure of medical personnel to chemical factors affecting fertility].

    PubMed

    Sitarek, K; Berlińska, B

    1997-01-01

    Exposure to factors present in the working environment may exert an adverse effect on both those directly and on their progeny. Together with large populations exposed to harmful factors in different branches of industry (chemical, metallurgical, textile etc.), health service workers should be also taken into account as another significant group exposed. Factors affecting fertility, health service workers are mostly exposed to, are as follows: cytostatic drugs, chemicals used in sterilization, gases for general anaesthesia and enormous number of factors the health service workers are in contact with in laboratories. The authors reviewed the world literature and presented kinds of harmful factors and their effect on fertility in persons employed in health services and exposed to them. PMID:9273444

  15. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China

    PubMed Central

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (020 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mgkg?1. Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region. PMID:23028550

  16. Aqueous and gaseous nitrogen losses induced by fertilizer application

    SciTech Connect

    Gu, C.; Maggi, F.; Riley, W.J.; Hornberger, G.M.; Xu, T.; Oldenburg, C.M.; Spycher, N.; Miller, N.L.; Venterea, R.T.; Steefel, C.

    2009-01-15

    In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions and nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.

  17. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    NASA Astrophysics Data System (ADS)

    Myojin, Sachi; Kuroki, Toshihiro; Manabe, Wataru; Yamasaki, Chizuko; Yamasaki, Nakamichi

    2010-11-01

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH4H2PO4 solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200 C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca7Mg2P6O24) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of these resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acidphosphorus.

  18. Fertilization.

    PubMed

    Marcello, Matthew R; Singaravelu, Gunasekaran; Singson, Andrew

    2013-01-01

    Fertilization-the fusion of gametes to produce a new organism-is the culmination of a multitude of intricately regulated cellular processes. In Caenorhabditis elegans, fertilization is highly efficient. Sperm become fertilization competent after undergoing a maturation process during which they become motile, and the plasma membrane protein composition is reorganized in preparation for interaction with the oocyte. The highly specialized gametes begin their interactions by signaling to one another to ensure that fertilization occurs when they meet. The oocyte releases prostaglandin signals to help guide the sperm to the site of fertilization, and sperm secrete a protein called major sperm protein (MSP) to trigger oocyte maturation and ovulation. Upon meeting one another in the spermatheca, the sperm and oocyte fuse in a specific and tightly regulated process. Recent studies are providing new insights into the molecular basis of this fusion process. After fertilization, the oocyte must quickly transition from the relative quiescence of oogenesis to a phase of rapid development during the cleavage divisions of early embryogenesis. In addition, the fertilized oocyte must prevent other sperm from fusing with it as well as produce an eggshell for protection during external development. This chapter will review the nature and regulation of the various cellular processes of fertilization, including the development of fertilization competence, gamete signaling, sperm-oocyte fusion, the oocyte to embryo transition, and production of an eggshell to protect the developing embryo. PMID:22872482

  19. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  20. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  1. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  2. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  3. Fertilization ecology of egg coats: physical versus chemical contributions to fertilization success of free-spawned eggs.

    PubMed

    Podolsky, Robert D

    2002-06-01

    Free-spawned eggs are typically enclosed within accessory structures that are shed early in development. Most research on the role of these structures in fertilization has focused on chemical constituents and their influence on sperm-egg interaction. Here I test an alternative hypothesis that accessory structures play an important physical role in fertilization by increasing the size and buoyancy of the egg, making it a better target for sperm. In the sand dollar Dendraster excentricus, the jelly coat increases egg target size sixfold. At nonsaturating sperm concentrations, fertilization declined consistently following jelly coat removal by two independent methods. Regression analysis using a standard fertilization kinetics model found that 54-73% of this decline on average was predicted by changes in the rate of sperm-egg collision, resulting from changes in egg target size and density. Sperm swimming speed, a key parameter in the model, did not vary as a function of sperm concentration or exposure to egg-water. The organic cost of jelly is a fraction of that of the ovum, providing an efficient means of extending target size beyond the ovum size that is optimal for larval or juvenile development. These results support the hypothesis that physical attributes of jelly coats can account for a significant portion of their contribution to fertilization, and may help to explain why coats and other accessory structures are often substantially larger than expected from the nature of chemical interactions between egg and sperm. PMID:12000810

  4. Effect of chemical fertilizers on the fractionation of Cu, Cr and Ni in contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Duan, Chang-Qun; Zhu, Yi-Nian; Zhang, Xue-Hong; Wang, Cheng-Xian

    2007-08-01

    Effect of chemical fertilizers (urea, NH4Cl, Ca(NO3)2, KCl and KH2PO4) on the fractionation of Cu, Cr and Ni was studied by a 4-month incubation experiment. Using sequential extraction procedure, it was found that the application of fertilizers could change the distribution of Cu, Cr and Ni in the fractions of soil. Applying urea (CO(NH2)2) significantly decreased the concentrations of Cu, Cr and Ni in water soluble plus exchangeable (WE) fraction, but increased those in Fe-Mn oxides bound (FM) fraction ( p < 0.01). However, application of NH4Cl caused an increase in the WE fraction by 27.7% for Cu, 111.5% for Cr and 20.4% for Ni. The CO(NH2)2 raised the soil pH from 4.51 to 4.96, whereas NH4Cl lowered the pH of soil by 0.44 units. The WE fraction of the three heavy metals was significantly increased, while the FM fraction was significantly decreased by adding KCl ( p < 0.01). Moreover, the supply of KH2PO4 reduced the WE and carbonate bound (CB) fractions of Cu, Cr and Ni in the soil, however, it raised Cu and Ni in the residual (RS) fraction and Cr in the FM fraction. In addition, the mobility index indicated that KCl and NH4Cl increased the mobility of Cu, Cr and Ni in the soil, whereas urea and KH2PO4 decreased the mobility of the three metals in the soil. These results suggest that applying chemical fertilizers does not only provide plant nutrients, but may also change the speciation and mobility of heavy metals in the soil.

  5. SOURCE ASSESSMENT: CHEMICAL AND FERTILIZER MINERAL INDUSTRY, STATE-OF-THE-ART

    EPA Science Inventory

    Air and water pollutants are generated during the conversion of naturally occurring minerals into suitable forms for use in chemical and fertilizer production. These minerals are barite, borates, fluorspar, lithium minerals, mineral pigments, phosphate rock, potash, salt, sodium ...

  6. Nitrogen Fertilizer Applications for Corn Based on Sufficiency Index Calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn was grown in both continuous corn and corn/soybean cropping systems under irrigation in the Platte Valley of Nebraska. The objective of the study was to determine whether in-season N stress measured by using chlorophyll meters could be used to determine N fertilizer applications. Four corn hyb...

  7. Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution.

    PubMed

    Anjanadevi, Indira Parameswaran; John, Neetha Soma; John, Kuzhivilayil Susan; Jeeva, Muthulekshmi Lajapathy; Misra, Raj Shekhar

    2016-01-01

    The role of rock inhabiting bacteria in potassium (K) solubilization from feldspar and their application in crop nutrition through substitution of fertilizer K was explored through the isolation of 36 different bacteria from rocks of a major hill station at Ponmudi in Thiruvananthapuram, Kerala, India. A comprehensive characterization of K solubilization from feldspar was achieved with these isolates which indicated that the K solubilizing efficiency increases with decrease in pH and increase in viscosity and viable cell count. Based on the level of K solubilization, two potent isolates were selected and identified as Bacillus subtilis ANctcri3 and Bacillus megaterium ANctcri7. Exopolysaccharide production, scanning electron microscopic and fourier transform infrared spectroscopic studies with these efficient strains conclusively depicted the role of low pH, increase in viscosity, and bacterial attachment in K solubilization. They were also found to be efficient in phosphorus (P) solubilization, indole acetic acid production as well as tolerant to wide range of physiological conditions. Moreover, the applicability of K containing rock powder as a carrier for K solubilizing bacteria was demonstrated. A field level evaluation on the yield of a high K demanding tuberous vegetable crop, elephant foot yam (Amorphophallus paeoniifolius (dennst.) nicolson) established the possibility of substituting chemical K fertilizer with these biofertilizer candidates successfully. PMID:26350060

  8. Fertilizer summary data 1990

    SciTech Connect

    Berry, J.T.; Hargett, N.L.

    1991-05-01

    Fertilizer Summary Data, published biennially by the National Fertilizer and Environmental Research Center (NFERC), combines fertilizer application and consumption statistics, crop acreage, and farm income/expense data by state and region for the period 1970 through 1990. This sixteenth edition contains statistics on commercial fertilizers sold for farm and nonfarm use, fertilizer distribution by class, and the leading fertilizer grades. Fertilizers are classified as single- or multiple-nutrient materials. Single-nutrient fertilizers, such as anhydrous ammonia (82-0-0), contain only one primary plant nutrient. Multiple-nutrient fertilizers contain two or more plant nutrients and include the ammonium phosphates and grades manufactured by dry or fluid mixing or chemical processing. In some cases, States report materials used in blending multiple-nutrient fertilizers as single-nutrient ingredients lather than the final manufactured product. Fertilizer consumption statistics for 1970 through 1980 are from US Department of Agriculture annual reports. Annual consumption data for 1985 through 1990 are based on the tabulation of individual state fertilizer tonnage reports submitted annually to TVA for inclusion in the National record of fertilizer consumption, Commercial Fertilizers. Crop statistics, fertilizer application rates, and farm income and expense data are supplied by the National Agricultural Statistics Service and the Economic Research Service, USDA.

  9. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    SciTech Connect

    Myojin, Sachi; Yamasaki, Chizuko; Yamasaki, Nakamichi; Kuroki, Toshihiro; Manabe, Wataru

    2010-11-24

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH{sub 4}H{sub 2}PO{sub 4} solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200 deg. C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca{sub 7}Mg{sub 2}P{sub 6}O{sup 24}) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of these resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acid--phosphorus.

  10. Predicting Nitrogen in Streams: A Comparison of Two Estimates of Fertilizer Application

    NASA Astrophysics Data System (ADS)

    Mehaffey, M.; Neale, A.

    2011-12-01

    Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has called for a better accounting of nonpoint nutrient sources. Currently, modelers frequently rely on county level fertilizer sales records combined with acreage of crops to estimate nitrogen sources from fertilizer for counties or watersheds. However, since fertilizer sales data are based on reported amounts they do not necessarily reflect actual use on the fields. In addition the reported sales data quality varies by state resulting in differing accuracy between states. In this study we examine an alternative method potentially providing a more uniform, spatially explicit, estimate of fertilizer use. Our nitrogen application data is estimated at a 30m pixel resolution which allows for scalable inputs for use in water and air quality models. To develop this dataset we combined raster data from the National Cropland data layer (CDL) data with the National Land Cover Data (NLCD). This process expanded the NLCD's 'cultivated crops' classes to included major grains, cover crops, and vegetable and fruits. The Agriculture Resource Management Survey chemical fertilizer application rate data were summarized by crop type and year for each state, encompassing the corn, soybean, spring wheat, and winter wheat crop types (ARMS, 2002-2005). The chemical fertilizer application rate data were then used to estimate annual application parameters for nitrogen, phosphate, potash, herbicide, pesticide, and total pesticide, all expressed on a mass-per-unit-crop-area basis for each state for each crop type. By linking crop types to nitrogen application rates, we can better estimate where applied fertilizer would likely be in excess of the amounts used by crops or where conservation practices may improve retention and uptake helping offset the impacts to water. To test the accuracy of our finer resolution nitrogen application data, we compare its ability to predict nitrogen concentrations in streams with the ability of the county sales data to do the same.

  11. Microrobots for in vitro fertilization applications.

    PubMed

    Boukallel, M; Gauthier, M; Piat, E; Abadie, J; Roux, C

    2004-05-01

    The Micromanipulation and Micro-actuation Research Group at the LAB has activities related to biological and surgical applications. Concerning cells micromanipulation, our laboratory works in collaboration with the research team "Genetic and Reproduction" of the Besanon's hospital (France). The global final objective is the development of an automatic intra cytoplasmic sperm injection (ICSI) device in order to improve performances and ergonomics of current devices. In the future this new device will contain various modules: module for removal of cumulus cells, modules for characterization of oocytes, microinjection module, cells transport system. The first subsystem developed is a new single cell transport system. It consists in a so-called micropusher which pushes single cells without having contact with the external environment. This micropusher is a ferromagnetic particle (from 400 x 400 x 20 microm3 to 100 x 100 x 5 microm3) which follows the movement of a permanent magnet located under the biological medium. A 2D micro-positioning table moves this magnet under the glass slide. The pusher and cells positions are measured through an optical microscope with a CCD camera located above the biological medium. The second subsystem is developed to measure oocytes mechanical stiffness in order to sort them. We have then developed a micro/nano-force sensor based on the diamagnetic levitation principle: a glass tip end-effector (with 20 microm in diameter) is fixed on the equipment which is in levitation (0.5 mm in diameter, 100 mm in length). When a force is applied to the levitated glass tip, it moves to a new equilibrium position. Thanks to themeasurement of this displacement, the applied force can be measured. Since there is no contact and friction between the levitated tip and the fixed part, the resolution of this sensor is very high (10 nN). PMID:15209347

  12. Ground-water flow and effects of agricultural application of sewage sludge and other fertilizers on the chemical quality of sediments in the unsaturated zone and ground water near Platteville, Colorado, 1985-89

    USGS Publications Warehouse

    Gaggiani, N.G.

    1995-01-01

    From fall 1985 through 1989, 6,431 dry tons of anaerobic, digested, sewage sludge were applied as a fertilizer on about 1 square mile of sandy farm- land near Platteville, Colorado. Mean nitrite plus nitrate as nitrogen concentrations in the surficial aquifer increased during the period of sewage- sludge application. However, the effects of municipal sewage sludge applied to the soil in section 16 are difficult to ascertain because anhydrous ammonia and cattle and chicken manure were applied to section 16 prior to sewage-sludge application and anhydrous ammonia was applied during the period of sewage-sludge application. Mostly ammonia plus organic nitrogen was detected in the unsaturated zone while nitrite plus nitrate as nitrogen predominated in the surficial aquifer. The areas of largest concentrations of nitrite plus nitrate as nitrogen were in the northeastern and southwestern quarter sections os section 16. Changes in nitrite plus nitrate as nitrogen concentrations with depth and time were detected in water samples from the multilevel ground-water sampling devices in the surficial aquifer. Nitrogen probably entered the saturated zone in the irrigated areas and low temporarily ponded areas and moved to the northeast with water in the surficial aquifer.

  13. [Silkworm excrement organic fertilizer: its nutrient properties and application effect].

    PubMed

    Chen, Xiao-ping; Xie, Ya-jun; Luo, Guang-en; Shi, Wei-yong

    2011-07-01

    In this paper, silkworm excrement was harmless-treated via controlled fermentation to prepare silkworm excrement organic fertilizer (SEOF). The nutrient properties of the SEOF were determined, and a pot experiment was conducted to examine the application effect of the fertilizer. After fermentation, the total N, P, and K contents in the SEOF had a significant increase, being 58.0%, 84.4% , and 29.7% higher than those in the raw material, respectively. The addition of microbial inoculants shortened the fermentation period, and decreased the carbon and nitrogen losses during fermentation. With the application of SEOF, the seed germination index of cabbage and tomato was higher than 80% , suggesting that the fertilizer had no inhibitory effect on the seed germination. The application of SEOF not only increased the Chinese cabbage yield and its nutrients and Vc contents, decreased the plant nitrate content, but also improved the soil pH value, and increased the soil available nutrients and organic matter contents and soil enzyme activities, with better effect than applying composted goat feces. PMID:22007458

  14. Chemical characteristics of aerosol mists in phosphate fertilizer manufacturing facilities.

    PubMed

    Hsu, Yu-Mei; Wu, Chang-Yu; Lundgren, Dale A; Nall, J Wesley; Birky, Brian K

    2007-01-01

    Of the carcinogens listed by the National Toxicology Program (NTP), strong inorganic mists containing sulfuric acid were identified as a known human carcinogen. In this study, aerosol sampling was conducted at 24 locations in eight Florida phosphoric acid and concentrated fertilizer manufacturing plants and two locations as background in Winter Haven and Gainesville, Florida, using dichotomous samplers. The locations were selected where sulfuric acid mist may potentially exist, including sulfuric acid pump tank areas, belt or rotating table phosphoric acid filter floors, sulfuric acid truck loading/unloading stations, phosphoric acid production reactors (attack tanks), and a concentrated fertilizer granulator during scrubbing with a weak sulfuric acid mixture. An ion chromatography system was used to analyze sulfate and other water soluble ion species. In general, sulfate, fluoride, ammonium, and phosphate were the major species in the fertilizer facilities. For the rotating table/belt phosphoric acid filter floor, phosphate and fluoride were the dominant species for PM10, and the maximum concentrations were 170 and 106 microg/m3, respectively. For the attack tank, fluoride was the dominant species for PM10, and the maximum concentration was 462 microg/m3. At the sulfuric acid pump tank, sulfate was the dominant species, and the maximum PM10 sulfate concentration was 181 microg/m3. The concentration of PM10 sulfate including ammonium sulfate, calcium sulfate, and sulfuric acid were lower than 0.2 mg/m3 at all locations. The aerosols at the filter floor and the attack tank were acidic. The coarse mode aerosol at the sulfuric acid pump tank (an outdoor location) was acidic, whereas the fine mode aerosol was neutral to basic. PMID:17162477

  15. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-02-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m‑2 h‑1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha‑1 and 1.58 kg NO-N ha‑1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.

  16. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    PubMed Central

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-01-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m−2 h−1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha−1 and 1.58 kg NO-N ha−1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094

  17. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China.

    PubMed

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-01-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m(-2) h(-1) for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha(-1) and 1.58 kg NO-N ha(-1), respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094

  18. Field Trial Assessment of Biological, Chemical, and Physical Responses of Soil to Tillage Intensity, Fertilization, and Grazing

    NASA Astrophysics Data System (ADS)

    Vargas Gil, Silvina; Becker, Analia; Oddino, Claudio; Zuza, Mnica; Marinelli, Adriana; March, Guillermo

    2009-08-01

    Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize ( Zea mays L.), sunflower ( Heliantus annuus L.), and soybean ( Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.

  19. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications

    PubMed Central

    Prez, Angela L.; Anderson, Kim A.

    2014-01-01

    Cadmium is a common impurity in phosphatic fertilizers and may contribute to soil Cd accumulation. Changes in total and bioavailable Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input was investigated. Three year field studies were conducted using three dose levels of cadmium-rich, commercial, phosphate fertilizers applied at four agricultural sites. Labile Cd concentrations, measured using the passive sampling device Diffusive Gradients in Thin Films (CdDGT), increased with increasing fertilizer application rates. Cd also accumulated in the edible portion of wheat and potato crops grown at the sites, and showed strong positive dose response with fertilizer treatment. Regression models were calculated for each site, year, and for individual crops. Model comparisons indicated that soil physical and chemical parameters in addition to soil Cd fractions, were important determinants of CdDGT. Significant factors contributing to CdDGT concentrations were Cd from fertilizer input (Cdfertilizer), pH, cation exchange capacity (CEC), and total recoverable Cd (Cdtotal). Important factors used to determine Cd concentrations in wheat grain (Cdwheat) and in potato (Cdpotato) were as follows: Cdwheat:Cdfertilizer, and CdDGT; and Cdpotato:Cdfertilizer, CdDGT, % O.M. The effective concentration, CE, calculated from DGT did not correlate well with Cdwheat or with Cdpotato. Direct measurements of CdDGT correlated better with Cd found in edible plant tissue. The modeling approach presented in this study helps to estimate Cd accumulation in plant tissue over multiple years and in distinct agricultural soil systems. PMID:19552942

  20. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event.

    PubMed

    Smith, D R; Owens, P R; Leytem, A B; Warnemuende, E A

    2007-05-01

    Nutrient losses to surface waters following fertilization contribute to eutrophication. This study was conducted to compare the impacts of fertilization with inorganic fertilizer, swine (Sus scrofa domesticus) manure or poultry (Gallus domesticus) litter on runoff water quality, and how the duration between application and the first runoff event affects resulting water quality. Fertilizers were applied at 35 kg P ha-1, and the duration between application and the first runoff event varied between 1 and 29 days. Swine manure was the greatest risk to water quality 1 day after fertilization due to elevated phosphorus (8.4 mg P L-1) and ammonium (10.3 mg NH4-N L-1) concentrations; however, this risk decreased rapidly. Phosphorus concentrations were 2.6 mg L-1 29 days after fertilization with inorganic fertilizer. This research demonstrates that manures might be more environmentally sustainable than inorganic fertilizers, provided runoff events do not occur soon after application. PMID:17029684

  1. Fertilizer/Chemical Sales and Service Worker. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Ohio Competency Analysis Profile (OCAP), derived from a modified Developing a Curriculum (DACUM) process, is a current comprehensive and verified employer competency program list for fertilizer/chemical sales and service workers. Each unit (with or without subunits) contains competencies and competency builders that identify the occupational,…

  2. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mixed and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  3. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    PubMed

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions. PMID:26184407

  4. Reconsidering emissions of ammonia from chemical fertilizer usage in Midwest USA

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Srinidhi; Koloutsou-Vakakis, Sotiria; McFarland, D. Michael; Rood, Mark J.

    2015-06-01

    We present alternative methods for estimating spatial surrogates and temporal factors for ammonia (NH3) emissions from chemical fertilizer usage (CFU), in the USA, at spatial and temporal scales used to simulate regional air quality and deposition of reactive nitrogen to ecosystems. The newly developed Improved Spatial Surrogate (ISS) method incorporates year-specific fertilizer sales data, high resolution and year-specific crop maps, and local crop nitrogen demands to allocate NH3 emissions at 4 km 4 km grid cells. Results are compared with the commonly used gridded emission estimates by the Sparse Matrix Operator Kernel Emissions (SMOKE) preprocessor. NH3 emissions over Central Illinois in the USA, estimated at the 4 km 4 km grid level in SMOKE and ISS methods, exhibit differences between -10% and 120%, with 58% of the grid cells exhibiting more than 10% difference. Application of the ISS method for a larger domain over the Midwest USA, at 4 km 4 km, reflected similar differences. We also employed the Denitrification Decomposition (DNDC) model to develop daily temporal factors of NH3 emissions from CFU using multi-site and multi-year analyses. Ratio of temporal factors estimated by SMOKE and DNDC methods is 0.54 2.35, with DNDC identifying daily emission peaks 2.5-8 times greater than SMOKE. Identified emission peaks will be useful for future air quality modeling efforts to understand particulate matter episodes, as well as trends in regional particulate matter formation and nitrogen deposition for Midwest USA, using the proposed NH3 emissions inventory.

  5. Factors affecting 137Cs bio- availability under the application of different fertilizing systems

    NASA Astrophysics Data System (ADS)

    Fedorkova, M. V.; Belova, N. I.

    2012-04-01

    Although it has been 25 years since the Chernobyl accident, it was generally found that radiocaesium remained bio-availability in some regions. Plant uptake of 137Cs is depended from quantity of exchangeable radionuclide and strongly influenced by soil properties. The addition of fertilizers to soil induces chemical and biological changes that influence the distribution of free ions the different phases (soil and soil solution). In this study we try to estimate influence of different soil conditions affecting the 137Cs bio-availability under the application of manure and inorganic fertilizers. Our research carried out in 2001-2008 years on contaminated after Chernobyl accident sod-podzolic soil during of prolonged field experiment. The experimental site was located in south-west of Bryansk region, Russia. Contamination density by 137Cs in the sampling point was equal to 475±30 kBq/m2. The sequence of crops in rotation was: 1) potato; 2) oats 3) lupine 4) winter rye. Three fertilizing systems were compared: organic - 80 tons per hectare of cow manure; inorganic fertilizing system - different rates of NPK (low, temperate and high) and mixed - 40 tons per hectare of cow manure + NPK. Main soil properties and chemical form of 137Cs and K (potassium) were detected. Radiocaesium activity was determined in soil and plant samples by gamma spectrometry, using a high purity Ge detectors. Overall efficiency was known to an accuracy of about 10-12%. Obtained results shows, that various fertilizing systems influence soil properties, chemical forms of 137Cs and K in soil and radionuclide soil-to-plant transfer in different ways. The highest reduction of exchangeable 137Cs in soil was found in case with application of organic fertilizers and also - temperate NPK rates. Part of exchangeable 137Cs is equal 6.8% (from total activity) in case of manure, 7.8% in case of inorganic fertilizers with control value - 10.2%. Caesium mobility in soil is affected by such soil properties as: soil pH< available phosphorus < humus content < exchangeable Ca2+ and Mg2+ < exchangeable K+. Inorganic fertilizers in high and temperate rates decrease 137Cs transfer to crops in 2.3-5.5 times. Organic fertilizers are less efficient, but its application can decrease 137Cs accumulation by farm crops during 2-3 years. Correlation analysis shows inversely proportional dependence between organic matter content and exchangeable form of 137Cs in soil (r2 = 0.81). A linear relation between 137Cs transfer factors (TF) to plants and exchangeable radionuclide content has been found (r2=0.68). Inversely proportional relation between the mobility level of potassium, its mobile form content and TF 137Cs was detected (r2 = 0.78).

  6. MICROWAVE TECHNOLOGY CHEMICAL SYNTHESIS APPLICATIONS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses in various solvents as well as under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although th...

  7. Growth and yield responses of crops and macronutrient balance influenced by commercial organic manure used as a partial substitute for chemical fertilizers in an intensive vegetable cropping system

    NASA Astrophysics Data System (ADS)

    Lu, H. J.; Ye, Z. Q.; Zhang, X. L.; Lin, X. Y.; Ni, W. Z.

    A long-term field experiment was conducted with an annual rotation of tomato-radish-pakchoi to assess the effects of a commercial organic manure (COM) used as a partial substitute for chemical fertilizers on crop yield and nutrient balance in an intensive vegetable cropping system. Four treatments as chemical fertilizers (T1), chemical fertilizers + lower rate of COM (T2), chemical fertilizers + medium rate of COM (T3), and chemical fertilizers + high rate of COM (T4) were designed in the present experiment. The supplied doses of N, P, and K were equal for all treatments. Results showed that there were no significant differences in shoot biomass and market yields of tomato, radish and pakchoi among treatments ( P > 0.05). It was found that positive P and K balance existed in the tomato-radish-pakchoi cropping system of all treatments. Compared with no manure treatment (T1), application of medium rate of COM (T3) decreased N, P runoff losses, increased N, P, K contents in crop tissues except N, P in pakchoi shoot, and lessened P, K accumulation in soils, accordingly, improved the efficiency of macronutrient. It was concluded that appropriate COM used as a partial substitute for chemical fertilizers could not only meet the crops nutrient requirement, but also improved the efficiency of macronutrient and remained positive balance of P and K in the intensive tomato-radish-pakchoi cropping system, which can be regarded as an effective measure for a contribution towards sustainable agriculture and a control pathway for reducing the potential risk of castoff to water environment.

  8. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    NASA Astrophysics Data System (ADS)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  9. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses.

    PubMed

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0-20, 20-40?cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, ?(13)C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0-20?cm?=?1492.4?gC m(2) and 20-40?cm?=?1770.6?gC m(2)) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C. PMID:26750143

  10. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    PubMed Central

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C. PMID:26750143

  11. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    PubMed

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly though changes in the soil chemistry or indirectly through altered host legume feedbacks, and is potentially a strong selective agent acting on natural rhizobia populations. PMID:26500812

  12. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    PubMed Central

    Han, Shery; Rekret, Phil; Rentschler, Christine S.; Heath, Katy D.; Stinchcombe, John R.

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly though changes in the soil chemistry or indirectly through altered host legume feedbacks, and is potentially a strong selective agent acting on natural rhizobia populations. PMID:26500812

  13. Calculation of Effective Gas Flux from Soil following Band Application of Manure or Fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases are emitted following application of manure and nitrogen-containing fertilizers to soil. Manure and fertilizers are often applied in subsurface bands in the soil, or in bands on the soil surface. This article presents a method that has been developed for calculating the effective ...

  14. Application of image analysis techniques to evaluate the effect of urban residuals fertilization on corn (Zea mays) production

    NASA Astrophysics Data System (ADS)

    Menesatti, P.; D'Andrea, S.; Socciarelli, S.

    2007-09-01

    The work focused the application of an image analysis technique to determine corn leaves morphology as objective indicator of the growth performance of corn (Zea mays) resulting from the urban residual fertilization. The analyses were related to six fertilization plots: original soil; chemical fertilizer (160 and 200 kg ha-1 of nitrogen); organic fertilizer (32 t ha-1) and two different doses of urban residues (sewage sludges) (7.5 and 22.5 t ha-1, this last amount corresponds to is the maximum level permitted from the Italian law in three year of fertilization). Those tests were realized by full randomized plots, with two three repetitions for each treatment. Measurements were performed for the first year of the trials in the period proximate to harvest (Rome, Italy - July 2000). Four plants for each plot were harvested and stripped of all leaves, whose RGB images were acquired by a digital photo camera (Kodak Ltd). Image analysis was performed first through the separation of RGB channels into single monochromatic 8-bit distribution, than the blue channel images, the most informative, were then submitted to enhancement, low pass filtering to reduce noise, threshold of binarization (based on statistical parameter affected on Gaussian grey levels distribution), binary morphology and object measurement. For ach single leaf the length, the width, the area were measured. The test results indicated positive and significant responses in relation between the crop growth (leaves area, length and width greater) and the different doses of urban residues (sewage sludges).

  15. Germ cell toxicity: significance in genetic and fertility effects of radiation and chemicals

    SciTech Connect

    Oakberg, E.F.

    1983-01-01

    The response of the male and female to radiation and chemicals is different. Any loss of oocytes in the female cannot be replaced, and if severe enough, will result in a shortening of the reproductive span. In the male, a temporary sterile period may be induced owing to destruction of the differentiating spermatogonia, but the stem cells are the most resistant spermatogonial type, are capable of repopulating the seminiferous epithelium, and fertility usually returns. The response of both the male and female changes with development of the embryonic to the adult gonad, and with differentiation and maturation in the adult. The primordial germ cells, early oocytes, and differentiating spermatogonia of the adult male are unusually sensitive to the cytotoxic action of noxious agents, but each agent elicits a specific response owing to the intricate biochemical and physiological changes associated with development and maturation of the gametes. The relationship of germ cell killing to fertility is direct, and long-term fertility effects can be predicted from histological analysis of the gonads. The relationship to genetic effects, on the other hand, is indirect, and acts primarily by limiting the cell stages available for testing, by affecting the distribution of mitotically active stem cells among the different stages of the mitotic cycle, and thereby, changing both the type and frequency of genetic effects observed. 100 references, 38 figures, 7 tables.

  16. THE USE OF CHEMICALS AS FERTILIZERS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. ONE OF A SERIES OF EIGHT MODULES, IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SUBJECT MATTER AREAS ARE (1) CHEMICAL NUTRITION OF PLANTS, (2) PLANT GROWTH, (3) TERMINOLOGY,…

  17. [Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China].

    PubMed

    Liu, Qin-pu

    2015-05-01

    It is of great importance to have a deep understanding of the spatial distribution of NPK fertilizers application and the potential threat to the ecological environment in Jiangsu Province, which is helpful for regulating the rational fertilization, strengthening the fertilizer use risk management and guidance, and preventing agricultural non-point pollution. Based on the environmental risk assessment model with consideration of different impacts of N, P, K fertilizers on environment, this paper researched the regional differentiation characteristic and environmental risk of intensity of NPK fertilizer usages in Jiangsu. Analystic hierarchy process ( AHP) was used to determine the weithts of N, P, K. The environmental safety thresholds of N, P, K were made according to the standard of 250 kg · hm(-2) for the construction of ecological counties sponsered by Chinese government and the proportion of 1:0.5:0.5 for N:P:K surposed by some developed countries. The results showed that the intensity of NPK fertilizer application currently presented a gradually increasing trend from south to north of Jiangsu, with the extremum ratio of 3.3, and the extremum ratios of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer were 3.3, 4.5 and 4.4, respectively. The average proportion of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer of 13 cities in Jiangsu was 1:0.39:0.26. Their proportion was relatively in equilibrium in southern Jiangsu, but the nutrient structure disorder was serious in northern Jiangsu. In Jiangsu, the environmental risk index of fertilization averaged at 0.69 and in the middle-range of environmental risk. The environmental risk index of fertilizer application in southern and central Jiangsu was respectively at the low and moderate levels, while that of cities in northern Jiangsu was at the moderate, serious or severe level. In Jiangsu, the regional difference of fertilizer application and environmental risk assessment were affected by many factors, including physical and economic conditions, government policy, management system, technology, and management methods. PMID:26571668

  18. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities – A Comparison between Chemical Fertilizers and Bioinoculants

    PubMed Central

    Gupta, Rashi; Bisaria, V. S.; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant’s growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields. PMID:26231030

  19. Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities--A Comparison between Chemical Fertilizers and Bioinoculants.

    PubMed

    Gupta, Rashi; Bisaria, V S; Sharma, Shilpi

    2015-01-01

    Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant's growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields. PMID:26231030

  20. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. PMID:26024252

  1. Stabilized nitrogen fertilizers and application rate influence nitrogen losses under rainfed spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) losses associated with fertilizer application have negative economic and environmental consequences, but urease and nitrification inhibitors have potential to reduce N losses. The effectiveness of these inhibitors has been studied extensively in irrigated but not rainfed systems. Theref...

  2. [Study on fertillizer application techniques of annual Dioscoreae zingiberensis].

    PubMed

    Liu, Wei-Ming; Wang, Ri-Zhao

    2006-04-01

    The experiment N,P and K fertilizer on Dioscorea zingiberensis were studied by setting fied parameter tests with rotational design. The selecton value of three agronomic factors were put forward by establishing regression mathematics models in the production and net value. PMID:16913481

  3. Aqeuous and Gaseous Nitrogen Losses Induced by Fertilizer Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years concern has grown over the contribution of nitrogen (N) fertilizers to nitrate (NO3-) water pollution and atmospheric pollution of nitrous oxide (N2O), nitric oxide (NO), and ammonia (NH3). Characterizing the amount and species of N losses is therefore essential in developing a strat...

  4. Fertilizer applications for container-grown ornamental tree production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of better utilization of nutrients during the growing season is needed to produce marketable container-grown ornamental shade trees economically. Fertilizer practices to grow Acer rubrum ‘Red Sunset’ trees in two separate fields (each containing four plots) irrigated with either city or po...

  5. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality. PMID:14535323

  6. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    PubMed Central

    Dantas, Mara Suyane Marques; Monteiro Rolim, Mário; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Maria Regis Pedrosa, Elvira; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  7. On the Optimization of the Doses of Chemical Fertilizers for Crops

    NASA Astrophysics Data System (ADS)

    Sala, Florin; Boldea, Marius

    2011-09-01

    The mono-factorial model, which gives the relation between the yield and the dose of chemical fertilizers, is based on the Mitscherlich function f1(x) = f1(0)+a1(1-e-11x). In addition to this function, we can consider f2(x) = f2(0)+a2 tanh(b2x), to be the basis for a new mathematical model, where tanh(b2x) represents the hyperbolic tangent. In the case of a bi-factorial model: f(x,y) = f(0,0)+a1 tanh(b1x)+a2 tanh(b2y)+a3 tanh(b1x)tanh(b2y) represents a generalization of the last relation. The constants that are involved in these functions are determined with the least squares method, by comparison with the experimental data. Taking into account both the market value of the products and the cost of fertilizers, we can find the optimal doses for maximizing certain economic indicators, such as revenue or profitability.

  8. Chemical attributes of soil fertilized with cassava mill wastewater and cultivated with sunflower.

    PubMed

    Dantas, Mara Suyane Marques; Rolim, Mrio Monteiro; Duarte, Anamaria de Sousa; de Silva, nio Farias de Frana; Pedrosa, Elvira Maria Regis; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitria de Santo Anto. The experimental design was randomized blocks with 6 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m(3) ha(-1)); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  9. Disease incidence and severity of rice plants in conventional chemical fertilizer input compared with organic farming systems

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Luo, Fan

    2015-04-01

    To study the impacts of different fertilizer applications on rice growth and disease infection, a 3-year field experiment of rice cultivation was carried out in the suburb of Shanghai from 2012-2014. No any pesticides and herbicides were applied during the entire experiment to prevent their disturbance to rice disease. Compared with green (GM) and cake manures (CM), the application of chemical fertilizer (CF) stimulated the photosysthesis and vegetative growth of rice plants more effectively. Chlorophyll content, height and tiller number of the rice plants treated with the CF were generally higher than those treated with the GM and CM and the control; the contents of nitrate (NO3--N), ammonium (NH4+-N), Kjeldahl nitrogen (KN) and soluble protein treated with the CF were also higher than those with the others during the 3-year experiment. The 3-year experiment also indicated that the incidences of stem borers, shreath blight, leaf rollers and planthoppers of the rice treated with the CF were signficantly higher than those treated with the GM and CM and the control. Especially in 2012 and 2014, the incidences of rice pests and diseases treated with the CF were far more severe than those with the others. As a result, the grain yield treated with the CF was not only lower than that treated with the GM and CM, but also lower than that of the no-fertilizer control. This might be attributed to two reasons: Pests favor the rice seedlings with sufficient N-related nutrients caused by CF application; the excessive accumulation of nutrients in the seedlings might have toxic effects and weaken their immune systems, thus making them more vulnerable to pests and diseases. In comparison, the plants treated with a suitable amount of organic manure showed a better capability of disease resistance and grew more healthy. In addition, the incidences of rice pests and diseases might also be related to climatic conditions. Shanghai was hit by strong subtropical storms in the summer of both 2012 and 2014, which might explain a high incidence of rice planthoppers in the two years. While a a continous high-temperature and no-storm climate in the summer of 2013 might lead to the low incidences of planthoppers and other pests and diseases in the year.

  10. Effects of nitrogen source and rate and method of fertilizer application on yield and fruit size in 'Bluecrop' highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was done to determine the effects of N source and rate and two common methods of fertilizer application on yield and fruit size in a maturing field of highbush blueberry. Plants were fertilized by drip fertigation or with granular fertilizer using urea or ammonium sulfate applied at a rate o...

  11. Fertilizer trends

    SciTech Connect

    Donaldson, R.

    1992-01-01

    This fourteenth edition of Fertilizer Trends presents historical fertilizer market data to aid industry, government, and financial market analysis and planners in their study of fertilizer and agricultural market cycles, market planning, and investment decisions. A 27-year summary of the US fertilizer market is presented in graphic and tabular form. Production, use, and trade data are included for each plant nutrient and sulfur. Canadian statistics have been included because of the important role of the Canadian fertilizer industry in the US fertilizer market. World production and consumption of nitrogen, phosphate, and potash are included because of the strong influence of world markets on the domestic market. Planted acreage and plant nutrient application rates for the major crops have been included to illustrate their effect on fertilizer use. Retail prices of the leading US fertilizer materials also are given.

  12. Fertilizer trends

    SciTech Connect

    Donaldson, R.

    1992-12-31

    This fourteenth edition of Fertilizer Trends presents historical fertilizer market data to aid industry, government, and financial market analysis and planners in their study of fertilizer and agricultural market cycles, market planning, and investment decisions. A 27-year summary of the US fertilizer market is presented in graphic and tabular form. Production, use, and trade data are included for each plant nutrient and sulfur. Canadian statistics have been included because of the important role of the Canadian fertilizer industry in the US fertilizer market. World production and consumption of nitrogen, phosphate, and potash are included because of the strong influence of world markets on the domestic market. Planted acreage and plant nutrient application rates for the major crops have been included to illustrate their effect on fertilizer use. Retail prices of the leading US fertilizer materials also are given.

  13. Bioremediation with oleophilic fertilizer

    SciTech Connect

    Basseres, A.; Ladousse, A.

    1993-12-31

    To enhance hydrocarbon breakdown by indigenous microbial communities, a fertilizer formulation that would keep nutrients in contact with oil, was designed ten years ago by ELF AQUITAINE. The fertilizer known as INIPOL EAP 22 is an oil soluble additive but also an easily biodegradable carbon source (oleic acid). Numerous experiments, in both laboratory and field, have shown that the application of this fertilizer increases the number of hydrocarbon degrading organisms and the extent and rate of hydrocarbon biodegradation Laboratory experiments with radiolabelled hydrocarbons have shown that in addition to its physico chemical role, oleic acid acts as a biological starter, increasing the biomass and the rate of biodegradation. A large bioremediation project in ALASKA has shown that it its possible to enhance the biodegradation of oil through the application of such a fertilizer, on coarse sediments. Recently, on sandy sediments, the use of INIPOL EAP 22 shown a clear development in hydrocarbon specific bacteria, and an increase of the rate of biodegradation.

  14. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falco, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de ndio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  15. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers.

    PubMed

    Nosheen, Asia; Bano, Asghari; Ullah, Faizan

    2016-02-01

    This study aimed to find out the effect of plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense and Azotobacter vinelandii) either alone or in combination with different doses of nitrogen and phosphate fertilizers on growth, seed yield, and oil quality of Brassica carinata (L.) cv. Peela Raya. PGPR were applied as seed inoculation at 10(6) cells/mL(-1) so that the number of bacterial cells per seed was 2.6 × 10(5) cells/seed. The chemical fertilizers, namely, urea and diammonium phosphate (DAP) were applied in different doses (full dose (urea 160 kg ha(-1) + DAP 180 kg ha(-1)), half dose (urea 80 kg ha(-1) + DAP 90 kg ha(-1)), and quarter dose (urea 40 kg ha(-1) + DAP 45 kg ha(-1)). The chemical fertilizers at full and half dose significantly increased the chlorophyll, carotenoids, and protein content of leaves and the seed yield (in kilogram per hectare) but had no effect on the oil content of seed. The erucic acid (C22:1) content present in the seed was increased. Azospirillum performed better than Azotobacter and its effect was at par with full dose of chemical fertilizers (CFF) for pigments and protein content of leaves when inoculated in the presence of half dose of chemical fertilizers (SPH). The seed yield and seed size were greater. Supplementing Azospirillum with SPH assisted Azospirillum to augment the growth and yield, reduced the erucic acid (C22:1) and glucosinolates contents, and increased the unsaturation in seed oil. It is inferred that A. brasilense could be applied as an efficient bioinoculant for enhancing the growth, seed yield, and oil quality of Ethiopian mustard at low fertilizer costs and sustainable ways. PMID:24097367

  16. A literature review of waste treatment technologies which may be applicable to wastes generated at fertilizer/agrichemical dealer sites

    SciTech Connect

    Norwood, V.M.

    1990-10-01

    Pesticide and fertilizer products, as well as petroleum fuels and oils, are handled by several thousand agricultural chemical dealers (dealers) in the United States. incidental spillage of these products, as well as improper disposal or recycling of equipment and container rinsewaters, can result in contamination of soil, surface water and groundwater with hazardous chemicals. Past accidental spills and improperdisposal and management practices are another source of contamination. As dealers continue their efforts to contain, collect, and recycle their wastes and spills, there will be an increasing need for safe, efficient, and cost-effective waste treatment technologies to treat that portion of the wastes and spills that cannot be recycled. The National Fertilizer & Environmental Research Center (NFERC) has initiated an effort to modify, research, develop, demonstrate, introduce, and market waste treatment technologies for dealers. This report supports this effort by providing a review of the literature concerning several physical and chemical waste treatment technologies which may be applicable to the wastes generated by dealers. Applicable waste treatment technologies identified in the literature search include carbon adsorption, UV-ozonation with biological degradation, wet-air oxidation, solar photooxidation, supercritical water oxidation, or microwave plasma destruction. Waste minimization and management technologies, such as recycling, are discussed in this report. The current regulatory environment concerning wastes generated by dealers is also reviewed. Finally, the issues discussed at several national and regional conferences on pesticide waste treatment and disposal technologies are reviewed and conclusions drawn from this information are presented.

  17. A literature review of waste treatment technologies which may be applicable to wastes generated at fertilizer/agrichemical dealer sites

    SciTech Connect

    Norwood, V.M.

    1990-10-01

    Pesticide and fertilizer products, as well as petroleum fuels and oils, are handled by several thousand agricultural chemical dealers (dealers) in the United States. incidental spillage of these products, as well as improper disposal or recycling of equipment and container rinsewaters, can result in contamination of soil, surface water and groundwater with hazardous chemicals. Past accidental spills and improperdisposal and management practices are another source of contamination. As dealers continue their efforts to contain, collect, and recycle their wastes and spills, there will be an increasing need for safe, efficient, and cost-effective waste treatment technologies to treat that portion of the wastes and spills that cannot be recycled. The National Fertilizer Environmental Research Center (NFERC) has initiated an effort to modify, research, develop, demonstrate, introduce, and market waste treatment technologies for dealers. This report supports this effort by providing a review of the literature concerning several physical and chemical waste treatment technologies which may be applicable to the wastes generated by dealers. Applicable waste treatment technologies identified in the literature search include carbon adsorption, UV-ozonation with biological degradation, wet-air oxidation, solar photooxidation, supercritical water oxidation, or microwave plasma destruction. Waste minimization and management technologies, such as recycling, are discussed in this report. The current regulatory environment concerning wastes generated by dealers is also reviewed. Finally, the issues discussed at several national and regional conferences on pesticide waste treatment and disposal technologies are reviewed and conclusions drawn from this information are presented.

  18. Nitrogen Fertigation is Less Efficient but Safer than Granular Fertilizer Application in Newly-Planted Blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer methods and rates were evaluated in a new field of highbush blueberry (Vaccinium corymbosum L. Bluecrop). Treatments included four application methods (split fertigation, continuous fertigation, and two non-fertigated controls) and four rates of N application (0, 50, 100, and 1...

  19. Macronutrients use efficiency and changes in chemical properties of an oxisol as influenced by phosphorus fertilization and tropical cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical and biological properties. A green house experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient use efficiency of 14 tropical cover crops. The P leve...

  20. Manufacture of gasification briquettes from meager-lean coal for use in chemical fertilizer-plant gasifiers

    SciTech Connect

    Xu Zesheng; Yang Qiaowen; Zhao Yinrong; Wang Xingou; Hu Kunmo; Wang Shiquan; Tao Xilo; Wang Guangnan; Meng Zhongze

    1998-12-31

    Chinese fertilizer plants, especially middle or small fertilizer plants, feed lump anthracite to atmospheric fixed bed gasifiers to produce fuel gas and syngas. However, the available lump coal meets less than one half the demand for fertilizer production, and the price of good lump anthracite has risen. Most good anthracite is produced in Shanxi Province. Chemical fertilizer plants in other areas pay high transportation costs and leave Shanxi mines with waste fine coal and slime that cause environmental pollution. So, it is important to fully utilize fine anthracite coal or bituminous coal to produce the industrial gasification briquettes. That may mitigate the disparity between supply and demand of lump coal, reduce the fertilizer production cost, and decrease the degree of environmental pollution. The briquettes don`t require heat-drying in their production and have the characteristics of high strength and water resistance. This technology is very important for local fertilizer plants where only meager-lean coal is produced. This paper discusses the processing technique and parameters, the quality standards and testing methods of briquettes made from meager-lean coal.

  1. Chemically and biologically-mediated fertilizing value of manure-derived biochar.

    PubMed

    Subedi, R; Taupe, N; Ikoyi, I; Bertora, C; Zavattaro, L; Schmalenberger, A; Leahy, J J; Grignani, C

    2016-04-15

    This study evaluates the potential of manure-derived biochars in promoting plant growth and enhancing soil chemical and biological properties during a 150day pot experiment. Biochars from pyrolysis of poultry litter (PL) and swine manure (SM) at 400 and 600°C, and a commonly available wood chip (WC) biochar produced at high temperature (1000°C) were incorporated to silt-loam (SL) and sandy (SY) soils on a 2% dry soil weight basis. Ryegrass was sown and moisture was adjusted to 60% water filled pore space (WFPS). The PL400 and SM400 biochars significantly increased (p<0.05) shoot dry matter (DM) yields (SL soil) and enhanced nitrogen (N), phosphorus (P) and potassium (K) uptake by the plants in both soils, compared to the Control. All biochars significantly increased the soil carbon (C) contents compared to the Control. Total N contents were significantly greater for PL400 and PL600 treatments in both soils. The dehydrogenase activity (DA) significantly increased for PL400 and SM400 treatments and was positively correlated with the volatile matter (VM) contents of the biochars, while β-glucosidase activity (GA) decreased for the same treatments in both soils. All biochars significantly shifted (p≤0.05) the bacterial community structure compared to the Control. This study suggests that pyrolysis of animal manures can produce a biochar that acts as both soil amendment and an organic fertilizer as proven by increased NPK uptake, positive liming effect and high soil nutrient availability, while WC biochar could work only in combination with fertilizers (organic as well as mineral). PMID:26851878

  2. A literature review of biological treatment and bioremediation technologies which may be applicable at fertilizer/agrichemical dealer sites

    SciTech Connect

    Norwood, V.M.; Randolph, M.E.

    1990-10-01

    Pesticide and fertilizer products, as well as petroleum fuels and oils, are handled by several thousand fertilizer/agrichemical dealers in the United States. Incidental spillage of these products, as well as improper disposal or recycling of equipment and container rinsewaters, can result in contamination of soil, surface, and groundwaters with hazardous chemicals. Past accidental spills and previously acceptable disposal and management practices are another source of contamination. As dealers continue their efforts to contain, collect, and recycle their wastes and spills, there will be an increasing need for safe, efficient, and cost-effective waste treatment and site remediation technologies to address this issue of pesticide and fertilizer product contamination of soil and water media at dealer sites. The National Fertilizer Environmental Research Center (NFERC) has initiated an effort to modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies for dealers. This report supports this effort by providing a review of the literature concerning the biodegradability of specific classes of pesticides, as well as biological treatment and bioremediation technologies which may be applicable to the wastes generated by dealers. Biological treatment technologies include the trickling filter and activated sludge processes. Bioremediation technologies for contaminated soil at dealer sites include land application, soil mounds, and composting. Commercial firms offer several other bioremediation technologies including in situ bioremediation and slurry-phase biodegradation. Site characterization factors required prior to implementing bioremediation technologies are discussed in this report. Finally, a case history concerning the bioremediation of pesticide-contaminated soil and groundwater is summarized, and conclusions drawn from this information are presented.

  3. A literature review of biological treatment and bioremediation technologies which may be applicable at fertilizer/agrichemical dealer sites

    SciTech Connect

    Norwood, V.M.; Randolph, M.E.

    1990-10-01

    Pesticide and fertilizer products, as well as petroleum fuels and oils, are handled by several thousand fertilizer/agrichemical dealers in the United States. Incidental spillage of these products, as well as improper disposal or recycling of equipment and container rinsewaters, can result in contamination of soil, surface, and groundwaters with hazardous chemicals. Past accidental spills and previously acceptable disposal and management practices are another source of contamination. As dealers continue their efforts to contain, collect, and recycle their wastes and spills, there will be an increasing need for safe, efficient, and cost-effective waste treatment and site remediation technologies to address this issue of pesticide and fertilizer product contamination of soil and water media at dealer sites. The National Fertilizer & Environmental Research Center (NFERC) has initiated an effort to modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies for dealers. This report supports this effort by providing a review of the literature concerning the biodegradability of specific classes of pesticides, as well as biological treatment and bioremediation technologies which may be applicable to the wastes generated by dealers. Biological treatment technologies include the trickling filter and activated sludge processes. Bioremediation technologies for contaminated soil at dealer sites include land application, soil mounds, and composting. Commercial firms offer several other bioremediation technologies including in situ bioremediation and slurry-phase biodegradation. Site characterization factors required prior to implementing bioremediation technologies are discussed in this report. Finally, a case history concerning the bioremediation of pesticide-contaminated soil and groundwater is summarized, and conclusions drawn from this information are presented.

  4. Reducing fertilizer-derived N2O emission: Point injection vs. surface application of ammonium-N fertilizer at a loamy sand site

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kcke, Martin; Flessa, Heinz

    2013-04-01

    N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on N2O in the gas phase and on ammonium and nitrate extracted from soil samples.

  5. [Further reduction of nitrogen fertilizer application in paddy field under green manuring of Taihu Area, China].

    PubMed

    Zhao, Dong; Yan, Ting-mei; Qiao, Jun; Yang, Lin-zhang; Tang, Fang; Song, Yun-fei

    2015-06-01

    This study focused on the nitrogen loss via runoff, change of nitrogen in different forms in surface water in paddy field, and grain yield, through further reduction of nitrogen fertilizer application rate under green manuring without basal dressing. Results showed that with 150 kg hm(-2) inorganic N fertilizer input after return of green manure to soil, no basal dressing could not only sharply reduce N concentration in surface water and decrease 17.2% of N loss, but also increase 2.8% of grain yield in comparison with basal dressing. It was a worthwhile farming method that inorganic nitrogen fertilizer was not used for basal dressing but for topdressing after return of green ma- nure to soil in Taihu Area. However, the grain yield would decrease if the rate of topdressing nitro- gen was excessively reduced or increased. After all, it was feasible to realize harmonization of grain yield and environmental benefits in Taihu Area, with 133 kg hm(-2) inorganic N fertilizer input after return of green manure to soil as well as no application of basal dressing, which could greatly reduce N fertilizer input and N loss as well as ensure rice yield. PMID:26572018

  6. Nutrient and Estrogenic Activity of Runoff Post–Application of Animal Waste-Based Fertilizer to Frozen Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While nutrient loading of surface waters from agricultural use of fertilizer has long been an environmental concern, recently attention has focused on hormonal contamination of waters from application of animal wastes as fertilizer. Application of manure to frozen fields may further increase the env...

  7. Nitrous Oxide Gas Fluxes in a Potato Field Following Application of Urea and Coated Urea Fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of urea and other forms of nitrogen (N) fertilizer can generate atmospheric emissions of nitrous oxide (N2O), which is a potent greenhouse gas. Field experiments were conducted on a loamy sand soil in Becker, Minnesota to evaluate the effects of soluble and coated forms of urea on N2O fl...

  8. Residual effects of compost and fertilizer applications on nutrients in runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of compost or fertilizer at rates that exceed crop nutrient requirements can result in phosphorus (P) and nitrogen (N) accumulation in soil. This study was conducted to determine the influence of soil P and N contents on the concentrations and total amounts of P and N transported in...

  9. Agricultural Chemical and Fertilizer Storage Rules: Costs and Benefits for Insuring Cleaner Water for Indiana.

    ERIC Educational Resources Information Center

    Welch, Mary A., Ed.

    1991-01-01

    The analysis of public goods is presented with a discussion of the rules for fertilizer and pesticide storage units in Indiana. A basic rule summary is presented with descriptions of the types of dikes that might be considered for containment. Estimated costs are projected along with the number of contained liquid fertilizer spills by size in…

  10. Chemical sensors for space applications.

    PubMed

    Bonting, S L

    1992-01-01

    There will be a great need for a wide variety of chemical analyses, both for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom and later long-term space missions. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. Chemical sensors offer several advantages over conventional analysis onboard a spacecraft. They require less crew time, space, and power. A chemical sensor consists of a selector which selectively interacts with the analyte present in a mixture of substances, and a transducer which produces an electric signal in response to the interaction of analyte and selector. The transducer signal thus provides a quantitative and selective measurement of the analyte. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed. With chemical sensors, a wide variety of analytes can be determined selectively without separation steps. In principle, chemical sensors can provide (near) real-time monitoring of many important analytes. In some cases they can even provide continuous monitoring of such analytes. The sensors, and even the ancillary instruments, are small compared to conventional analytical instruments. Their power consumption is low. Sensor measurements do not require extensive sample treatment before analysis. In most cases a sensor can simply be inserted in, or be attached to, the organism; or be placed in the water flowing through the water recycling system. Since the sensor signal can usually be provided in digitized form, rapid transmission to the ground is possible. The use of sensors thus provides an efficient use of the scarce resources of crew time, pressurized volume, and power. PMID:1342247

  11. Bayesian Inference of Baseline Fertility and Treatment Effects via a Crop Yield-Fertility Model

    PubMed Central

    Chen, Hungyen; Yamagishi, Junko; Kishino, Hirohisa

    2014-01-01

    To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM) on maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max) yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer. PMID:25405353

  12. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    PubMed

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P <0. 05) increased the SOC content of sand- (2-0.02 mm), silt- (0.02-0.002 mm) and clay-sized (< 0.002 mm) fractions. However, no significant difference was observed in the accumulation of silt- and clay-associated SOC between CK and rice straw (RS) treatments. Besides, in comparison with plots applied with NPK fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than those of the organically amended plots and unfertilized treatments, indicating decreased recalcitrance of SOC against decomposition. We concluded that long-term application of organic manure combined with chemical fertilizers, either through increased accumulation of both recalcitrant compounds and carbohydrates or reduced decomposition of organic matter, was a sustainable strategy for facilitating carbon accumulation of the paddy soil investigated in this study. PMID:26314136

  13. Waste waters from vacuum-sulfur treatment in coke-chemical plants are effective reagent anticaking matter for potassium fertilizer

    SciTech Connect

    Yanovskaya, A.P.; Karpitskaya, L.N.; Mozheiko, F.F.; Aleksandrovich, K.A.

    1983-04-01

    The caking of potassium fertilizers is usually avoided by treating them with aliphatic amines (C/sub 16/-C/sub 20/) which are expensive, deficient and toxic. In order to improve the mechanical and physicochemical properties of potassium chloride, a large number of various additives were tested e.g. inorganic salts, water-repellant surfactants and inert powders with a highly developed surface. Of all the additives studied, the most attention was given to waste waters from vacuum-carbonate sulfur treatment in coke-chemical plants, which are extremely efficient and are complete substitutes for the aliphatic amines. The present work presents the results of research on waste waters used as a conditioning additive for potassium fertilizers, such as the fine-grained flotation concentrate developed at the Belorusakalii PA and crystalline KCl of grade ''chemical purity''. The hygroscopicity and solubility of potassium chloride were studied in relation to its treatment with various amounts of waste waters.

  14. Comparative analysis of fertility signals and sex-specific cuticular chemical profiles of Odontomachus trap-jaw ants.

    PubMed

    Smith, Adrian A; Millar, Jocelyn G; Suarez, Andrew V

    2016-02-01

    The lipid mixture that coats the insect cuticle contains a number of chemical signals. Mate choice in solitary insects is mediated by sexually dimorphic cuticular chemistry, whereas in eusocial insects, these profiles provide information through which colony members are identified and the fertility status of individuals is assessed. Profiles of queens and workers have been described for a number of eusocial species, but there have been few comparisons of fertility signals among closely related species. Additionally, sexual dimorphism in cuticular lipid profiles has only been reported in two species of ants. This study describes the cuticular chemical profiles of queens, workers and males of three species of Odontomachus trap-jaw ants: O. ruginodis, O. relictus and O. haematodus. These are compared with fertility signals and sexually dimorphic profiles already described from O. brunneus. We report that fertility signals are not conserved within this genus: chemical compounds that distinguish queens from workers vary in number and type among the species. Furthermore, the compounds that were most abundant in cuticular extracts of O. ruginodis queens relative to workers were novel 2,5-dialkyltetrahydrofurans. Bioassays of extracts of O. ruginodis queens indicate that the dialkyltetrahydrofuran and hydrocarbon fractions of the profile are likely to work synergistically in eliciting behavioral responses from workers. In contrast, cuticular lipids that distinguish males from females are more conserved across species, with isomeric and relative abundance variations comprising the main differences among species. Our results provide new insights into how these contact chemical signals may have arisen and evolved within eusocial insects. PMID:26847561

  15. Net nitrogen mineralization from past year's manure and fertilizer applications.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure from the semiarid West’s dairy industries is a rich nutrient source, but its use for crops can be problematic because soil N availability from manure may vary substantially depending on the year of application. Experimental plots established in Idaho on a Portneuf silt loam (coarse silty, mi...

  16. Effects of fertilizer application to sweet corn (Zea mays.) grown on sandy soil.

    PubMed

    Orosz, Ferenc; Jakab, Samuel; Losak, Tomas; Slezak, Katalin

    2009-11-01

    In our experiment we tried to find out what kind of eventual changes in the environment and in plant chemical composition occurred in response to different fertilizer treatments applied to sweet corn (Zea mays convar. saccharata) grown on sandy soil with low humus content. The ploughed layer contained <1% CaCO3 and around 1% humus. The soil was very well supplied with P, well supplied with K, Mg, Mn and Cu, and weakly supplied with N and Ca. The treatments were planned in accordance with the recommendations, with a planned unhusked ear yield of 16 tons per hectare, of the new environmental friendly advisory system recently elaborated for field vegetable crops in Hungary. The treatments applied included: G1 (blank control)(N0P0K0), G2(N222.5P22.2K143), G3(N445 P22.5 K143), G4(N222.5 P22.5K143), G5(N222.5P22.5 K286), G6(N222.5 P22.5 K143) + Mg(1.52). According to our findings, of the composition parameters of the grains of the treatments with no fertilizer application, the invert and reducing sugar contents (4.42%, respectively 2.59% relative to fresh weight(-1)) in grains were the highest among the treatments. The same conclusion was drawn on the K 120.2, Mg 13.3, Fe 0.24, Cu 0.66 mg 100 g(-1) grain dry weight levels among minerals. In the case of the basic treatment (G2) recommended by the advisory system we obtained favourable results for the measured parameters, including yields. Invert and reducing sugar contents were (3.26% respectively 1.97% relative to fresh weight(-1)), and mineral contents K 101.9; Mg 11.8; Fe 0.21; Cu 0.56 mg 100 g(-1) dry weight. In the grains, no translocation of toxic elements was observed in response to the direct or indirect effect of the treatments. PMID:20329385

  17. Influences of Chemical Fertilizers and a Nitrification Inhibitor on Greenhouse Gas Fluxes in a Corn (Zea mays L.) Field in Indonesia.

    PubMed

    Jumadi, Oslan; Hala, Yusminah; Muis, Abd; Ali, Alimuddin; Palennari, Muhiddin; Yagi, Kazuyuki; Inubushi, Kazuyuki

    2008-01-01

    The influences of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes (N(2)O and CH(4)) in a corn field in Indonesia were investigated using a closed chamber. Plots received 45+45 kg-N ha(-1) of nitrogen fertilizer by split applications of urea, a single application of controlled-release fertilizer (CRF-LP30) or urea+dicyandiamide (DCD; a nitrification inhibitor), and no nitrogen application (control). Cumulative amounts of N(2)O emitted from the field were 1.87, 1.70, 1.06, and 0.42 kg N(2)O-N ha(-1) season(-1) for the urea, CRF-LP30, urea+DCD, and control plots, respectively. The application of urea+DCD reduced the emission of N(2)O by 55.8% compared with urea. On the other hand, the soil acted as a sink for CH(4) in the CRL-LP30, control, and urea+DCD plots with value of -0.09, -0.06 and -0.06 kg CH(4)-C ha(-1) season(-1), respectively. When the viability of AOB (ammonia-oxidizing bacteria) and NOB (nitrite-oxidizing bacteria) were monitored, AOB numbers were correlated with the N(2)O emission. These results suggest that 1) there is a potential for reducing emissions of N(2)O by applying DCD, and 2) corn fields treated with CRF or urea+DCD can act as a sink for CH(4) in a tropical humid climate. PMID:21558684

  18. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  19. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  20. [Effects of calcium fertilizer application on peanut growth, physiological characteristics, yield and quality under drought stress].

    PubMed

    Gu, Xue-hua; Sun, Lian-qiang; Gao, Bo; Sun, Qi-ze; Liu, Chen; Zhang, Jia-lei; Li, Xiang-dong

    2015-05-01

    An experiment was carried out to study the effects of different rates of calcium application on peanut growth, physiological characteristics, yield and quality under drought stress at pegging stage and pod setting stage in pool cultivation with rainproof, using variety 606 as experimental material. The results showed that applying Ca fertilizer under drought stress could promote peanut growth, increase the chlorophyll content, leaf photosynthetic rate and the root vitality, increase the recovery ability of peanut during rewatering after drought stress, alleviate the impact of drought stress on peanut. Applying Ca fertilizer under drought stress increased pod and kernel yields because of the increase of kernel rate and pod number per plant. It also increased the fat and protein contents of peanut kernel, and improved peanut kernel quality under drought stress. It was suggested that 300 kg hm(-2) Ca application is the best choice to alleviate the impact of drought stress on peanut. PMID:26571662

  1. Agricultural chemical application practices to reduce environmental contamination.

    PubMed

    Bode, L E

    1990-01-01

    Current practices of applying agricultural chemicals play a major role in the environmental health concerns of agriculture. Those who mix, load, and handle the concentrated formulations run the greatest risk of exposure but field hands and others can encounter significant levels of pesticides. Drift can be a major source of contamination to residents, wildlife, and water sources. Improved methods of application and ways of reducing the total amount of pesticide applied can help reduce environmental contamination. Chemigation, direct injection, closed system handling, and fertilizer impregnation are examples of technology that affect the efficiency of applying agricultural chemicals. An area of beneficial research is related to leak and spill technology. Current surveys indicate that point sources such as spills, mixing and loading areas, back-siphoning, and direct routes for surface water movement into the ground are often a major cause of pesticides reaching groundwater. The commercial dealer/applicator provides storage, handling, mixing, and loading for large amounts of chemicals and has received limited guidance regarding the products. Education remains an important element of any rural environmental health strategy. With appropriate information about pesticide risks and groundwater, people will be better equipped to address environmental concerns. By design, agricultural chemicals are biologically active and, in most cases, toxic. Thus, they pose potential risks to humans, wildlife, water, and the environment in general. The magnitude of the risks depends to some degree on the methods and techniques used to apply the chemicals. Pesticides are applied by persons possessing a variety of skills, using equipment ranging from hand-operated systems to aircraft. PMID:2248252

  2. Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer.

    PubMed

    Yao, Ying; Gao, Bin; Chen, Jianjun; Yang, Liuyan

    2013-08-01

    This work explored the potential application of an engineered biochar prepared from Mg-enriched tomato tissues to reclaim and reuse phosphate (P) from aqueous solution. Findings from batch sorption experiments suggested that, although sorption of P on the biochar was controlled by relatively slow kinetics, the maximum P sorption capacity of the biochar could reach >100 mg·g(-1). Mathematical modeling and postsorption characterization results indicated that the sorption was mainly controlled by two mechanisms: precipitation of P through chemical reaction with Mg particles and surface deposition of P on Mg crystals on biochar surfaces. Most of the P retained in the engineered biochar was bioavailable and could be released equally at multiple successive extractions. In addition, the P-laden biochar significantly stimulated grass seed germination and growth. These results suggested the postsorption biochar can be cycled back directly to soils as an effective slow-release P-fertilizer. PMID:23848524

  3. Properties and applications of chemically functionalized graphene

    NASA Astrophysics Data System (ADS)

    Craciun, M. F.; Khrapach, I.; Barnes, M. D.; Russo, S.

    2013-10-01

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene.

  4. [Effects of continuous application of bio-organic fertilizer on banana production and cultural microflora of bulk soil in orchard with serious disease incidence].

    PubMed

    Zhong, Shu-tang; Shen, Zong-zhuan; Sun, Yi-fei; Lyu, Na-na; Ruan, Yun-ze; Li, Rong; Shen, Qi-rong

    2015-02-01

    A field experiment was conducted for two years to investigate the effects of different fertilization applications on the suppression of banana fusarium wilt disease, crop yield, fruit quality and culturable microflora in a banana orchard which has been monocultured with banana for 12 years and suffered serious banana fusarium wilt disease. The fertilizers included chemical fertilizer (CF), cow manure compost (CM), pig manure compost (PM) and bio-organic fertilizer (BIO). The banana soil microflora was invested using plate-counting method and culture-dependent polymerase chain reaction denaturing gradient gel electrophoresis method (CD PCR-DGGE). Results showed that, compared with the other treatments, 2-year consecutive application of BIO significantly reduced the banana fusarium wilt disease incidence, and improved the banana mass per tree, crop yield, total soluble sugar content and the ratio of total soluble sugar to titratable acidity of fruits (sugar/acid ratio). Moreover, the analysis of culturable microflora showed that BIO application significantly increased the soil microbial biomass, soil culturable bacteria, bacillus and actinomycetes, and the ratio of bacteria to fungi (B/F) , while decreased the Fusarium oxysporum. Based on the CD PCR-DGGE results, the BIO application significantly altered the soil culturable bacterial structure and showed highest richness and diversity after 2 years of BIO application. The phylogenetic analysis of the selected bands showed that BIO application enriched the soil with the species of Paenibacillus sp., Burkholderia sp., uncultured Verrucomicrobia sp. and Bacillus aryabhattai, and depressed the species of Ralstonia sp., Chryseobacterium gleum, Fluviicola taffensis, Enterobacter sp. and Bacillus megaterium. These results confirmed that the continuous application of BIO effectively controlled the fusarium wilt disease, improved the crop yield and fruit quality, and modulated the soil culturable microflora under field condition. PMID:26094464

  5. 1986 Fertilizer Summary Data

    SciTech Connect

    Berry, J.T.; Hargett, N.L.

    1987-05-01

    ''Fertilizer Summary Data'' is published every two years as part of TVA's fertilizer research, development, and education program. It brings together historical fertilizer use and crop statistics, application rates, and farm income and expense data for market planning and evaluation. This edition summarizes US consumption (including Puerto Rico) of fertilizer and plant nutrients through the year ended June 30, 1986.

  6. NH3 Emission from Fertilizer Application: A Collaborative Study in the Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Myles, L.; Koloutsou-Vakakis, S.; Bernacchi, C.; Lehmann, C.; Saylor, R. D.; Heuer, M.; Sibble, D.; Caldwell, J. A.; Balasubramanian, S.; Nelson, A. J.; Rood, M. J.

    2014-12-01

    Atmospheric ammonia (NH3) is a precursor for secondary particulate matter and a contributor to soil acidification and eutrophication when deposited to land and surface waters. Fertilizer application is a major source of atmospheric NH3, particularly in intensive agricultural regions such as the Midwestern U.S. Quantification of NH3 emission from fertilized crops remains highly uncertain, which limits the representativeness of NH3 emissions that are used in air quality models. A collaborative study to improve understanding of NH3 emission from fertilizer application focused on [1] measurement of above-canopy NH3 fluxes from a fertilized corn field in Illinois using the relaxed eddy accumulation (REA) and flux gradient methods and in-canopy fluxes with the inverse Lagrangian dispersion analysis method, [2] estimation of NH3 emissions at the regional scale using a process-based approach with available archived independent variables, and the currently used top-down approach, in order to compare and determine differences in predicted spatial and temporal variability of NH3 emissions, and [3] performance of spatial analysis to determine spatial and temporal patterns of ammonia emissions and relate them to independent variables characteristic of land use, soil, meteorology, and agricultural management practices. NH3 flux was measured over and within a maize canopy from pre-cultivation through senescence (May-September 2014) at the University of Illinois at Urbana-Champaign (UIUC) Energy Biosciences Institute Energy Farm, and data from the field study was incorporated into models to facilitate connection of local emissions with the regional scale and to improve understanding of the processes that drive emission and deposition.

  7. Use of human urine fertilizer in cultivation of cabbage (Brassica oleracea)--impacts on chemical, microbial, and flavor quality.

    PubMed

    Pradhan, Surendra K; Nerg, Anne-Marja; Sjblom, Annalena; Holopainen, Jarmo K; Heinonen-Tanski, Helvi

    2007-10-17

    Human urine was used as a fertilizer in cabbage cultivation and compared with industrial fertilizer and nonfertilizer treatments. Urine achieved equal fertilizer value to industrial fertilizer when both were used at a dose of 180 kg N/ha. Growth, biomass, and levels of chloride were slightly higher in urine-fertilized cabbage than with industrial-fertilized cabbage but clearly differed from nonfertilized. Insect damage was lower in urine-fertilized than in industrial-fertilized plots but more extensive than in nonfertilized plots. Microbiological quality of urine-fertilized cabbage and sauerkraut made from the cabbage was similar to that in the other fertilized cabbages. Furthermore, the level of glucosinolates and the taste of sauerkrauts were similar in cabbages from all three fertilization treatments. Our results show that human urine could be used as a fertilizer for cabbage and does not pose any significant hygienic threats or leave any distinctive flavor in food products. PMID:17894454

  8. Phosphorus availability and microbial immobilization in a Nitisol with the application of mineral and organo-mineral fertilizers.

    PubMed

    Morais, Francisco A; Gatiboni, Luciano C

    2015-12-01

    The aim of this study was to evaluate P availability, P and C contained in the microbial biomass, and enzymatic activity (acid phosphatases and β-glucosidases) in a Nitisol with the application of mineral and organo-mineral fertilizers. The experiment was performed in a protected environment with control over air temperature and soil moisture. The experimental design was organized in a "5 x 4" factorial arrangement with five sources of P and four times of soil incubation. The sources were: control (without P), triple superphosphate, diammonium phosphate, natural Arad reactive rock phosphate, and organo-mineral fertilizer. The experimental units consisted of PVC columns filled with agricultural soil. The columns were incubated and broken down for analysis at 1, 20, 40, and 60 days after application of the fertilizers. In each column, samples were taken at the layers of 0-2.5, 2.5-5.0, and 5.0-15.0 cm below the zone of the fertilizers. The application of soluble phosphates and organo-mineral fertilizer temporarily increased P availability in the zone near the fertilizers (0-2.5 cm), with maximum availability occurring at approximately 32 days. Microbial immobilization showed behavior similar to P availability, and the greatest immobilizations occurred at approximately 30 days. The organo-mineral fertilizer was not different from soluble phosphates. PMID:26628018

  9. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization. PMID:16422505

  10. Arsenic in Ironite fertilizer: The absorption by hamsters and the chemical form

    SciTech Connect

    Aposhian, M.M.; Koch, I.; Avram, M.D.; Chowdhury, U.K.; Smith, P.G.; Reimer, K.J.; Aposhian, H.V.

    2009-09-11

    We determined the gastrointestinal absorption of the arsenic in Ironite, a readily available fertilizer, for male hamsters (Golden Syrian), considered to be an excellent model for how the human processes inorganic arsenic. Urine and feces were collected after administering an aqueous suspension of Ironite by stomach tube. In addition, we studied the forms and oxidation states of arsenic in Ironite by synchrotron spectroscopic techniques. The absorption of the arsenic in Ironite (1-0-0) was 21.2% and the absorption relative to sodium arsenite was 31.0%. Our results using XANES spectra determinations indicate that Ironite contains scorodite (AsV) as well as previously reported arsenopyrite (As(-1)). Since the 1-0-0 Ironite is readily available for purchase, its risk assessment for children by professionals is recommended. This is especially important because it is used to fertilize large areas of grass in playgrounds and parks where children play. The absorption of the arsenic in it, the hand to mouth activity of children, and the potential of ground water contamination makes the use of 1-0-0 Ironite as a fertilizer a potential environmental hazard.

  11. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates* #

    PubMed Central

    Hussain, Nazim; Li, Hui; Jiang, Yu-xiao; Jabeen, Zahra; Shamsi, Imran Haider; Ali, Essa; Jiang, Li-xi

    2014-01-01

    Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased α-, γ-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of γ-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and α-/γ-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape. PMID:24510711

  12. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates.

    PubMed

    Hussain, Nazim; Li, Hui; Jiang, Yu-xiao; Jabeen, Zahra; Shamsi, Imran Haider; Ali, Essa; Jiang, Li-xi

    2014-02-01

    Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased ?-, ?-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of ?-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and ?-/?-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape. PMID:24510711

  13. Slug responses to grassland cutting and fertilizer application under plant functional group removal

    NASA Astrophysics Data System (ADS)

    Everwand, Georg; Scherber, Christoph; Tscharntke, Teja

    2013-04-01

    Current studies on trophic interactions in biodiversity experiments have largely relied on artificially sown gradients in plant diversity, but removal experiments with their more natural plant community composition are more realistic. Slugs are a major part of the invertebrate herbivore community, with some species being common pests in agriculture. We therefore investigated how strongly slugs are influenced by grassland management, plant biodiversity and composition. Here we analysed the effects of cutting frequency, fertilizer application and plant functional group composition on slug densities and their contribution to herbivory on Rumex acetosa in a removal experiment within a >100-year old grassland in Northern Germany. The experiment was laid out as a Latin rectangle with full factorial combinations of (i) plant functional group removal (3 levels) using herbicides, (ii) fertilizer application (2 levels) and (iii) cutting frequency (2 levels). The resulting 12 treatment combinations were replicated 6 times, resulting in 72 plots. We collected a total of 1020 individuals belonging to three species Arion distinctus (60.4% of individuals), Deroceras reticulatum (34.7%) and Arion lusitanicus (4.9%) using a cover board technique and additionally measured herbivore damage to R. acetosa. We found the highest slug abundance on plots with a low cutting frequency and high food resource availability (increased cover of forbs and taller vegetation). Fertilizer application had no significant effect on slug abundance, but caused higher herbivore damage to on R. acetosa, possibly as a result of increased tissue quality. The negative effect of higher cutting frequency on slug abundance was lowest in control plots with their naturally developed graminoid-forb communities (cutting reduced slug density by 6% in the control vs. 29% in herbicide plots). Our experiments therefore support the idea that more natural plant species compositions reduce the impact of disturbances (e.g. through cutting or grazing) on invertebrates.

  14. Lime and Soil Moisture Effects on Nitrogen gas Loss Following Fertilizer Application

    NASA Astrophysics Data System (ADS)

    Gu, C.; Maggi, F.; Riley, W.; Oldenburg, C.

    2007-12-01

    The loss of nitrogen from fertilizer application through ammonia volatilization and nitrous oxide emissions are of major environmental concern. Liming has been regarded as a mitigation option for lowering soil nitrogen gas emissions following the addition of fertilizers. A mechanistic nitrogen-cycle model (TOUGHREACT-N) has been developed to simulate the interaction of water saturation variation with biogeochemical processes, and the balance between liming and soil buffering capacity. The model was tested with data from a laboratory soil incubation following the addition of synthetic urine (500 kg N ha-1). Simulation results agreed well with measured N2O emissions and soil inorganic-N concentrations. The study indicated that liming significantly increase NH3 volatilization, while the reduction in cumulative N2O emissions depended strongly on water regime. The cumulative N2O emissions under relatively dry conditions were reduced by up to 243% with liming. However, the cumulative N2O and N2 emissions were predicted to increase by up to 346% following liming because the resulting NO3--N pools (from enhanced nitrification) were susceptible to enhanced N2O and N2 losses during subsequent water application. Consequently, short-term (i.e., days C weeks) gains made in reducing soil N2O emissions by liming can be offset, and potentially reversed, by emissions later in the growing season. We describe an approach using the modeling framework to optimize N gas reductions using liming under various edaphic, crop type, fertilizer and irrigation application rates, and climate conditions.

  15. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application.

    PubMed

    Lee, Chia-Hsing; Huang, Hsuan-Han; Syu, Chien-Hui; Lin, Tzu-Huei; Lee, Dar-Yuan

    2014-07-15

    Silicon (Si) was shown to be able to reduce arsenic (As) uptake by rice in hydroponic culture or in low As soils using high Si application rates. However, the effect of Si application on As uptake of rice grown in As-contaminated soils using Si fertilizer recommendation rate has not been investigated. In this study, the effect of Si application using Si fertilizer recommendation rate on As release and phytotoxicity in soils with different properties and contents of As was examined. The results show that the concentrations of As in soil solutions increased after Si applications due to competitive adsorption between As and Si on soil solids and the Si concentrations in soil solutions were also elevated to beneficial levels for rice growth. The rice seedlings accumulated more As and its growth was inhibited by Si application in As contaminated/spiked soils. The results indicate that there is an initial aggravation in As toxicity before the beneficial effects of Si fertilizing to rice were revealed when Si application based on fertilizer recommendation rate to As-contaminated paddy soils. Therefore, for As-contaminated paddy soils with high levels of As, the application of Si fertilizer could result in increasing As phytotoxicity and uptake by rice. PMID:24892775

  16. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the ``Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.`` The overall objectives of this project are ``to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.`` This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  17. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.'' The overall objectives of this project are to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.'' This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  18. Compact chemical energy system for seismic applications

    DOEpatents

    Engelke, Raymond P. (Los Alamos, NM); Hedges, Robert O. (Los Alamos, NM); Kammerman, Alan B. (Los Alamos, NM); Albright, James N. (Los Alamos, NM)

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  19. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production.

    PubMed

    Boakye-Boaten, Nana Abayie; Xiu, Shuangning; Shahbazi, Abolghasem; Wang, Lijun; Li, Rui; Mims, Michelle; Schimmel, Keith

    2016-03-01

    The effects of wet and dry processing of miscanthus on bioethanol production using simultaneous saccharification and fermentation (SSF) process were investigated, with wet samples showing higher ethanol yields than dry samples. Miscanthus grown with no fertilizer, with fertilizer and with swine manure were sampled for analysis. Wet-fractionation was used to separate miscanthus into solid and liquid fractions. Dilute sulfuric acid pretreatment was employed and the SSF process was performed with saccharomyces cerevisiae and a cocktail of enzymes at 35°C. After pretreatment, cellulose compositions of biomass of the wet samples increased from 61.0-67.0% to 77.0-87.0%, which were higher than the compositions of dry samples. The highest theoretical ethanol yield of 88.0% was realized for wet processed pretreated miscanthus, grown with swine manure. Changes to the morphology and chemical composition of the biomass samples after pretreatment, such as crystallinity reduction, were observed using SEM and FTIR. These changes improved ethanol production. PMID:26773953

  20. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents

    PubMed Central

    Xia, Pengguo; Guo, Hongbo; Zhao, Hongguang; Jiao, Jie; Deyholos, Michael K.; Yan, Xijun; Liu, Yan; Liang, Zongsuo

    2015-01-01

    Background Blind and excessive application of fertilizers was found during the cultivation of Panax notoginseng in fields, as well as increase in root rot disease incidence. Methods Both “3414” application and orthogonal test designs were performed at Shilin county, Yunnan province, China, for NPK (nitrogen, phosphorus, and potassium) and mineral fertilizers, respectively. The data were used to construct the one-, two-, and three-factor quadratic regression models. The effect of fertilizer deficiency on root yield loss was also analyzed to confirm the result predicted by these models. A pot culture experiment was performed to observe the incidence rate of root rot disease and to obtain the best range in which the highest yield of root and saponins could be realized. Results The best application strategy for NPK fertilizer was 0 kg/667 m2, 17.01 kg/667 m2, and 56.87 kg/667 m2, respectively, which can produce the highest root yield of 1,861.90 g (dried root of 100 plants). For mineral fertilizers, calcium and magnesium fertilizers had a significant and positive effect on root yield and the content of four active saponins, respectively. The severity of root rot disease increased with the increase in soil moisture. The best range of soil moisture varied from 0.56 FC (field capacity of water) to 0.59 FC, when the highest yield of root and saponins could be realized as well as the lower incidence rate of root disease. Conclusion These results indicate that the amount of nitrogen fertilizer used in these fields is excessive and that of potassium fertilizer is deficient. Higher soil moisture is an important factor that increases the severity of the root rot disease. PMID:26843820

  1. [Application of ICP-mS and AFS to detecting heavy metals in phosphorus fertilizers].

    PubMed

    Huang, Qing-Qing; Liu, Xing; Zhang, Qian; Qiao, Yu-Hui; Su, De-Chun; Jiang, Rong-Feng; Rui, Yu-Kui; Li, Hua-Fen

    2014-05-01

    In order to investigate heavy metals in phosphorus fertilizers in China, 159 samples of phosphorus fertilizers including imported fertilizers and domestic fertilizers were collected from fertilizer markets, and the contents of heavy metals were determined by ICP-MS and AFS after microwave digestion. The results showed that the phosphorous fertilizers contained certain amount of heavy metals, and there was great variability in the contents of heavy metals. The mean contents of Cd, Cu, Zn, Cr, Pb, Ni, As and Hg were 0. 77, 35.6, 102.7, 24. 1, 16.6, 15.4, 19.4 and 0. 08 mg kg-1 fertilizer, respectively; based on the calculation of P2O5, the mean contents of above heavy metals were 4. 48, 258. 4, 767. 4, 190. 0, 151.3, 134. 5, 155. 8 and 8. 79 mg kg-1 P2 O5, respectively. The contents of heavy metals Cd, Cr, Pb, As and Hg in the tested samples accord with the ecological index of arsenic, cadmium, lead, chromium and mercury for fertilizers (GB/T 23349-2009), with the exception of Cd in one imported sample of diammonium phosphate and As in one sample of mono-ammonium phosphate. Analyzing the contents of heavy metals in imported fertilizers, the Cd contents in imported fertilizers was ranged from 0. 02 to 27. 2 mg kg-1 fertilizer, the mean and median Cd contents in imported fertilizers were 3. 20 and 0. 41 mg kg-1 fertilizer, respectively. And the Cu, Cr and Hg contents in the imported fertilizers were higher than that of domestic fertilizers, the mean contents of Cu, Cr and Hg in imported fertilizers were 39. 4, 26. 6 and 0. 47 mg kg-1 fertilizer, respectively. PMID:25095447

  2. [Relationship of NO3(-)-N, NO2(-)-N accumulation in some crop seeds with N fertilizers application].

    PubMed

    Qin, Y

    2000-02-01

    From 1996 to 1997, the effect of applying organic and chemical fertilizers on NO3- and NO2- accumulation in crop seeds was studied in four green food bases of kidney beans (Yunan Province), red small beans (Hebei Province), soybeans (Heilongjiang Province), and peanuts (Shandong Province). For kidney beans and red small beans, the highest grey correlation was existed between available N in soil and NO2- in seeds, no matter whether organic fertilizer or urea was applied. In organic fertilizer trials, the highest grey correlation appeared in soil pool (between total N and available N) or seed pool (between NO3- and NO2-), while in chemical N fertilizer trials, it existed between total N in soil and NO3- in seeds. For kidney beans and red small beans, the dynamics of NO3-/NO2- in seeds was different with the kind of fertilizers applied. Extremely significant negative linear correlation and positive linear regression were existed between the content of NO3- and NO2- in all four crop seeds. PMID:11766597

  3. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    PubMed

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment. PMID:25081006

  4. [Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil].

    PubMed

    Zhang, Wei; Liu, Man-Qiang; He, Yuan-Qiu; Fan, Jian-Bo; Chen, Yan

    2014-08-01

    Soil biota plays a key role in ecosystem functioning of red soil. Based on the long-term inorganic fertilization field experiment (25-year) in an upland red soil, the impacts of different inorganic fertilization managements, including NPK (nitrogen, phosphorus and potassium fertilizers), NPKCaS (NPK plus gypsum fertilizers), NP (nitrogen and phosphorus fertilizers), NK (nitrogen and potassium fertilizers) and PK (phosphorus and potassium fertilizers), on the assemblage of soil nematodes during the growing period of peanut were investigated. Significant differences among the treatments were observed for total nematode abundance, trophic groups and ecological indices (P < 0.01). The total nematode abundance decreased in the order of PK > NPKCaS > NPK > NP > NK. The total number of nematodes was significantly higher in NPKCaS and PK than in NPK, NP and NK except in May. Plant parasitic nematodes were the dominant trophic group in all treatments excepted in NPKCaS, and their proportion ranged between 38% and 65%. The dominant trophic group in NPKCaS was bacterivores and represented 42.1%. Furthermore, the higher values of maturity index, Wasilewska index and structure index in NPKCaS indicated that the combined application of NPK and gypsum could remarkably relieve soil acidification, resulting in a more mature and stable soil food web structure. While, that of the NK had the opposite effect. In conclusion, our study suggested that the application of both gypsum and phosphate is an effective practice to improve soil quality. Moreover, the analysis of nematode assemblage is relevant to reflect the impact of different inorganic fertilizer on the red soil ecosystem. PMID:25509090

  5. CFD applications in chemical propulsion engines

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    The present research is aimed at developing analytical procedures for predicting the performance and stability characteristics of chemical propulsion engines. Specific emphasis is being placed on understanding the physical and chemical processes in the small engines that are used for applications such as spacecraft attitude control and drag make-up. The small thrust sizes of these engines lead to low nozzle Reynolds numbers with thick boundary layers which may even meet at the nozzle centerline. For this reason, the classical high Reynolds number procedures that are commonly used in the industry are inaccurate and of questionable utility for design. A complete analysis capability for the combined viscous and inviscid regions as well as for the subsonic, transonic, and supersonic portions of the flowfield is necessary to estimate performance levels and to enable tradeoff studies during design procedures.

  6. Graphene Chemical Sensor for Heliophysics Applications

    NASA Technical Reports Server (NTRS)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-01-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species. In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as oxonium, hydron and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  7. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  8. [Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in a Populus xeuramericana cv. 'Guariento' plantation].

    PubMed

    Dai, Teng-fei; Xi, Ben-ye; Yan, Xiao-li; Jia, Li-ming

    2015-06-01

    A field experiment was conducted to investigate the effects of fertilization methods, i.e., drip (DF) and furrow fertilization (GF), and nitrogen (N) application rates (25, 50, 75 g N plant(-1) time(-1)) on the dynamics of soil N vertical migration in a Populus x euramericana cv. 'Guariento' plantation. The results showed that soil NH4(+)-N and NO3(-)-N contents decreased with the increasing soil depth under different fertilization methods and N application rates. In the DF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-40 cm soil layer, and their contents ascended firstly and then descended, reaching their maximum values at the 5th day (211.1 mg kg(-1)) and 10th day (128.8 mg kg(-1)) after fertilization, respectively. In the GF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-20 cm layer, and the content of soil NO3(-)-N rose gradually and reached its maximum at the 20th day (175.7 mg kg(-1)) after fertilization, while the NH4(+)-N content did not change significantly after fertilization. Overall, N fertilizer had an effect within 20 days in the DF treatment, and more than 20 days in the GF treatment. In the DF treatment, the content and migration depth of soil NH4(+)-N and NO3(-)-N increased with the N application rate. In the GF treatment, the NO3(-)-N content increased with the N application rate, but the NH4(+)-N content was not influenced. Under the DF treatment, the hydrolysis rate, nitrification rate and migration depth of urea were higher or larger than that under the GF treatment, and more N accumulated in deep soil as the N application rate increased. Considering the distribution characteristics of fine roots and soil N, DF would be a better fertilization method in P. xeuramericana cv. 'Guariento' plantation, since it could supply N to larger distribution area of fine roots. When the N application rate was 50 g tree(-1) each time, nitrogen mainly distributed in the zone of fine roots and had no risk of deep leaching, consequently improving the fertilizer utilization efficiency. PMID:26572014

  9. Using insurance to enhance nitrogen fertilizer application to reduce nitrogen losses to the environment.

    PubMed

    Huang, W Y; Heifner, R G; Taylor, H; Uri, N D

    2001-05-01

    The advantage of using insurance to help a farmer adopt a best nitrogen management plan (BNMP) that reduces the impact of agricultural production on the environment is analytically and empirically demonstrated. Using an expected value analysis, it is shown that an insurance program can be structured so as to reduce a farmer's cost of bearing the adoption risk associated with changing production practices and, thus, to improve the farmer's certainty equivalent net return thereby promoting the adoption of a BNMP. Using the adoption of growing-season only N fertilizer application in Iowa as a case study, it is illustrated how insurance may be used to promote the adoption of this practice to reduce N fertilizer use. It is shown that it is possible for a farmer and an insurance company both to have an incentive to develop an insurance adoption program that will benefit both the farmer and the insurance company, increasing net social welfare and improving environmental quality in Iowa. PMID:11393425

  10. Impact of tillage and fertilizer application method on gas emissions in a corn cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. This study was conducted to determine the impact of fertilizer sources, land management practices, and fertilizer placement methods on greenhouse gas emissions. A new prototype i...

  11. VARIABLE SOURCE N FERTILIZER APPLICATIONS TO OPTIMIZE CROP N USE EFFICIENCY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of nitrogen (N) fertilizer in corn has long been essential for improving yields and increasing economic returns. The efficient utilization of N fertilizer is becoming increasingly more important because of rising fertilizer costs and the possible negative impact of environmental N loss. The lo...

  12. Changes in fertility parameters and contents of heavy metals of soddy-podzolic soils upon the long-term application of sewage sludge

    NASA Astrophysics Data System (ADS)

    Vasbieva, M. T.; Kosolapova, A. I.

    2015-05-01

    The effect of the long-term sewage sludge (SS) application on the chemical, agrophysical, and biological properties of a soddy-podzolic soil ( Umbric Albeluvisols Abruptic) was studied. Regular SS application in the course of five crop rotations (1976-2013) ensured the improvement of the soil fertility parameters, i.e., a rise in the contents of humus, available phosphorus, and exchangeable potassium; a better state of the soil adsorption complex, bulk density, and aggregation; and higher cellulolytic, nitrification, and urease activities. The efficiencies of SS and the traditional organic fertilizer (cattle manure) were compared. The effect of the long-term application of SS on the accumulation of heavy metals in the soils was also studied. It was found that the application of SS caused a rise in the bulk content of heavy metals and in the contents of their acid-extractable and mobile forms by 1.1-6.0 times. However, the maximum permissible concentrations of heavy metals in the soils were not exceeded. In the soil subjected to the application of SS for more than 25 years, the cadmium concentration somewhat exceeded the maximum permissible concentration.

  13. Acidification rate from chemical N fertilization and alleviation by manure in an 18year field experiment in a ferralic cambisol, South China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil acidification from chemical N fertilization has worsened and is a major yield-limiting factor in the red soils of southern China. Assessment of the acidification process under field conditions over a long term is essential to develop strategies for maintaining soil productivity. The objective o...

  14. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice.

    PubMed

    Barberi, Tiziano; Klivenyi, Peter; Calingasan, Noel Y; Lee, Hyojin; Kawamata, Hibiki; Loonam, Kathleen; Perrier, Anselme L; Bruses, Juan; Rubio, Maria E; Topf, Norbert; Tabar, Viviane; Harrison, Neil L; Beal, M Flint; Moore, Malcolm A S; Studer, Lorenz

    2003-10-01

    Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer-derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into gamma-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell-derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell-derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease. PMID:14502203

  15. Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass.

    PubMed

    Shuman, L M

    2002-01-01

    Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist. PMID:12371190

  16. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China.

    PubMed

    He, Y T; Zhang, W J; Xu, M G; Tong, X G; Sun, F X; Wang, J Z; Huang, S M; Zhu, P; He, X H

    2015-11-01

    Soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC) and nitrogen (MBN) are important factors of soil fertility. However, effects of the combined chemical fertilizer and organic manure or straw on these factors and their relationships are less addressed under long-term fertilizations. This study addressed changes in SOC, TN, MBC and MBN at 0-20 cm soil depth under three 17 years (September 1990-September 2007) long-term fertilization croplands along a heat and water gradient in China. Four soil physical fractions (coarse free and fine free particulate organic C, cfPOC and ffPOC; intra-microaggregate POC, iPOC; and mineral associated organic C, MOC) were examined under five fertilizations: unfertilized control, chemical nitrogen (N), phosphorus (P) and potassium (K) (NPK), NPK plus straw (NPKS, hereafter straw return), and NPK plus manure (NPKM and 1.5NPKM, hereafter manure). Compared with Control, manure significantly increased all tested parameters. SOC and TN in fractions distributed as MOC > iPOC > cfPOC > ffPOC with the highest increase in cfPOC (329.3%) and cfPTN (431.1%), and the lowest in MOC (40.8%) and MTN (45.4%) under manure. SOC significantly positively correlated with MBC, cfPOC, ffPOC, iPOC and MOC (R(2) = 0.51-0.84, P < 0.01), while TN with cfPTN, ffPTN, iPTN and MTN (R(2) = 0.45-0.79, P < 0.01), but not with MBN, respectively. Principal component analyses explained 86.9-91.2% variance of SOC, TN, MBC, MBN, SOC and TN in each fraction. Our results demonstrated that cfPOC was a sensitive SOC indicator and manure addition was the best fertilization for improving soil fertility while straw return should take into account climate factors in Chinese croplands. PMID:26119378

  17. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer.

    PubMed

    Tabbara, Hadi

    2003-01-01

    Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer. PMID:12809305

  18. Effects of exposure to four endocrine disrupting-chemicals on fertilization and embryonic development of Barbel chub ( Squaliobarbus curriculus)

    NASA Astrophysics Data System (ADS)

    Niu, Cuijuan; Wang, Wei; Gao, Ying; Li, Li

    2013-09-01

    The toxicities of 4 common endocrine-disrupting chemicals (EDCs), 17?-estradiol (E2), p,p'-dichlorodiphenyldichloro-ethylene (DDE), 4-nonylphenol (NP) and tributyltin (TBT), to sperm motility, fertilization rate, hatching rate and embryonic development of Barbel chub ( Squaliobarbus curriculus) were investigated in this study. The duration of sperm motility was significantly shortened by exposure to the EDCs at the threshold concentrations of 10 ng L-1 for E2 and TBT, 1 ?g L-1 for NP and 100 ?g L-1 for DDE, respectively. The fertilization rate was substantially reduced by the EDCs at the lowest observable effect concentrations (LOECs) of 10 ng L-1 for E2 and TBT and 10 ?g L-1 for DDE and NP, respectively. Of the tested properties of S. curriculus, larval deformity rate was most sensitive to EDC exposure and was significantly increased by DDE at the lowest experimental level of 0.1 ?g L-1. Other EDCs increased the larval deformity rate at the LOECs of 1 ng L-1 for E2, 10 ng L-1 for TBT and 1 ?g L-1 for NP, respectively. Despite their decreases with the increasing EDC concentrations, the hatching rate and larval survival rate of S. curriculus were not significantly affected by the exposure to EDCs. The results indicated that all the 4 EDCs affected significantly and negatively the early life stages of the freshwater fish S. curriculus. Overall, E2 and TBT were more toxic than NP and DDE, while DDE might be more toxic to larval deformity rate than to other measured parameters. Thus, the 4 EDCs showed potential negative influences on natural population dynamics of S. curriculus. Our findings provided valuable basic data for the ecological risk assessment of E2, DDE, NP and TBT.

  19. Sugarcane yields and soil chemical properties due to mill mud application to a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mill mud is a potentially beneficial by-product from the sugar milling process. An experiment was conducted to assess sugarcane yield and nutrient movement into subs after mill mud application in sandy soil. Treatments consisted of fertilizer (low fertilizer (LF) and adequate fertilizer (AF)), and m...

  20. A laboratory evaluation of ammonia volatilization and nitrate leaching following nitrogen fertilizer application on a coarse-textured soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a series of field studies, differing rainfall patterns within the first month after nitrogen (N) fertilizer application to a coarse-textured soil significantly affected yields and N-use efficiency of irrigated corn (Zea mays L.), and responses varied with N source. A laboratory study was conducte...

  1. Development of a web-based runoff forecasting tool to guide fertilizer and manure application in the Chesapeake Bay watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managing the land application of fertilizers and manures is critical to protecting water quality in the Chesapeake Bay watershed. While modern nutrient management tools are designed to help farmers with their long-term field management planning, they do not support daily decisions such as when to a...

  2. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  3. Chemically-induced TLE models: Topical application.

    PubMed

    Jefferys, John; Steinhäuser, Christian; Bedner, Peter

    2016-02-15

    Epilepsy is a condition of the brain that occurs in many different forms. For obvious reasons, understanding the complex mechanisms underlying the process of epileptogenesis cannot be fully acquired in clinical studies or analyses of surgically resected human epileptic specimens. Accordingly, a variety of animal models have been developed that recapitulate different aspects of the various forms of epilepsies. In our review we mainly focus on those chemically induced models that recapitulate characteristics typically seen in human temporal lobe epilepsies. By comparing models based on topical application of different agents, advantages and disadvantages are discussed with respect to parameters including reliability and mortality, as well as the similarity with the human condition of functional and morphological alterations occurring in different brain regions in the course of epileptogenesis and in the chronic state. PMID:25960204

  4. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Exemption of chemical mixtures; application. 1310.13 Section 1310.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RECORDS AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application....

  5. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of chemical mixtures; application. 1310.13 Section 1310.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RECORDS AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application....

  6. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Exemption of chemical mixtures; application. 1310.13 Section 1310.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RECORDS AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application....

  7. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Exemption of chemical mixtures; application. 1310.13 Section 1310.13 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RECORDS AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a) The Administrator may, by publication...

  8. The application of biosorption for production of micronutrient fertilizers based on waste biomass.

    PubMed

    Tuhy, Lukasz; Samoraj, Mateusz; Michalak, Izabela; Chojnacka, Katarzyna

    2014-10-01

    In the present paper, new environmental-friendly fertilizer components were produced in biosorption process by the enrichment of the biomass with zinc, essential in plant cultivation. The obtained new preparations can be used as controlled release micronutrient fertilizers because microelements are bound to the functional groups present in the cell wall structures of the biomass. It is assumed that new fertilizing materials will be characterized by higher bioavailability, gradual release of micronutrients required by plants, and lower leaching to groundwater. The biological origin of the material used in plant fertilization results in the elimination of toxic effect towards plants and groundwater mainly caused by low biodegradability of fertilizers. Utilitarian properties of new formulations enable to reduce negative implications of fertilizers for environmental quality and influence ecological health. In this work, the utilitarian properties of materials such as peat, bark, seaweeds, seaweed post-extraction residues, and spent mushroom substrate enriched via biosorption with Zn(II) ions were examined in germination tests on Lepidium sativum. Obtained results were compared with conventional fertilizers-inorganic salt and chelate. It was shown that zinc fertilization led to biofortification of plant in these micronutrients. Moreover, the mass of plants fertilized with zinc was higher than in the control group. PMID:25108517

  9. Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin.

    PubMed

    Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S

    2015-01-01

    Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil. PMID:26398021

  10. Uniform and variable-rate application of potassium fertilizers in Louisiana sugarcane production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    If sugar and cane yields are to be optimized and profitability improved, it is critical that a sugarcane crop receive the proper levels of plant nutrients. Under-fertilization can result in reduced cane yields, while over-fertilization can reduce sugar recovery. Potassium (K) has been associated wit...

  11. Fertilizer Application Timing Influences Greenhouse Gas Fluxes Over a Growing Season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial production and consumption of greenhouse gases (GHG) is influenced by temperature and nutrients, especially during the first few weeks after agricultural fertilization. The effect of fertilization on GHG fluxes should be sensitive to environmental conditions during and shortly after appli...

  12. Application of gypsum to control P runoff from poultry litter fertilization of pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper will discuss the utilization of gypsum (CaSO4 .2H2O) to reduce P losses from surface runoff when poultry litter is used as a fertilizer source in agriculture. Utilization of poultry litter as a fertilizer source is common in regions with intense poultry production. While poultry litter ...

  13. Chemical fertilizers as a source of (238)U, (40)K, (226)Ra, (222)Rn, and trace metal pollutant of the environment in Saudi Arabia.

    PubMed

    Alshahri, Fatimh; Alqahtani, Muna

    2015-06-01

    The specific activities of (238)U, (226)Ra, (40)K, and (222)Rn in chemical fertilizers were measured using gamma ray spectrometer and Cr-39 detector. In this study, 21 chemical fertilizers were collected from Eastern Saudi Arabian markets. The specific activities of (238)U ranged from 23 ± 0.5 to 3900 ± 195 Bq kg(-1); (226)Ra ranged from 5.60 ± 2.80 to 392 ± 18 Bq kg(-1); and (40)K ranged from 18.4 ± 3 to 16,476 ± 820 Bq kg(-1). The radon concentrations and the radon exhalation rates were found to vary from 3.20 ± 1.20 to 1532 ± 160 Bq m(-3) and from 1.60 to 774 mBq m(-2) h(-1), respectively. Radium equivalent activities (Raeq) were calculated for the analyzed samples to assess the radiation hazards arising due to the use of these chemical fertilizers in the agriculture soil. The Raeq for six local samples (nitrogen, phosphorous, and potassium (NPK) and single superphosphate (SSP)) and one imported sample (Sulfate of Potash (SOP)) were greater than the acceptable value 370 Bq kg(-1). The total air absorbed doses rates in air 1 m above the ground (D) were calculated for all samples. All samples, except one imported granule sample diammonium phosphate (DAP), were higher than the estimated average global terrestrial radiation of 55 nGy h(-1). The highest annual effective dose was in triple super phosphate (TSP) fertilizers (2.1 mSv y(-1)). The results show that the local TSP, imported SOP, and local NPK (sample 13) fertilizers were unacceptable for use as fertilizers in agricultural soil. Furthermore, the toxic elements and trace metals (Pb, Cd, Cr, Co, Ni, Hg, and As) were determined using atomic absorption spectrometer. The concentrations of chromium in chemical fertilizers were higher than the global values. PMID:25532871

  14. Influence of wastewater application and fertilizer use on growth, photosynthesis, nutrient homeostatis, yield and heavy metal accumulation in okra (Abelmoschus esculentus L. Moench).

    PubMed

    Faizan, Shahla; Kausar, Saima; Akhtar, Neelima

    2014-05-01

    The scarceness of freshwater assets is a serious problem in semi-arid zones and marginal quality water is increasingly being used in agriculture. This study aimed at evaluating the physico-chemical and biological risks on irrigated soils of treated wastewater, the nutrient supply and the effect on okra plant. A pot experiment based on completely randomized block design was conducted with Treated Wastewater (TW) and inorganic fertilizers to observe a comparative effect on biochemical characters using Okra var. Nidhi. The physico-chemical analysis of the TW showed that it was rich in total suspended and dissolved solids with large amount of BOD and COD. The higher amount of Cl-, Ca++, Mg++ and K+ were also present in the effluent. The heavy metal (Cd, Cr, Ni and Pb) content in TW is comparatively more than groundwater (GW). The values of these heavy metals were slightly higher in the soil irrigated with TW. The effluent severely affects crop plants and soil properties when used for irrigation. The growth parameters, photosynthetic characteristics, chlorophyll content, yield and nutrient homeostatis were analyzed during different growth periods in all treatments. All the parameters were found to increase due to wastewater application. Among the fertilizer treatments, N120 proved optimum, N90 deficient and N150 proved as luxury dose. The seeds accumulated Cd and Ni but their level was under permissible limits. Thus, it may be concluded that wastewater may be used profitably for the cultivation of okra. PMID:26030995

  15. 1984 Fertilizer summary data

    SciTech Connect

    Hargett, N.L.; Berry, J.T.

    1985-06-01

    ''Fertilizer Summary Data'' is published every two years as part of TVA's fertilizer research, development, and education program. It brings together historical fertilizer use and crop statistics, application rates, and farm income and expense data for use in production planning and market evaluation. This edition summarizes US consumption (including Puerto Rico) of fertilizer and plant nutrients through the year ended June 30, 1984. It also includes TVA distribution of fertilizer materials in the industry demonstration program for 1981 through 1984. The summaries are presented for regions of USA.

  16. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  17. Soil Aggregates and Organic Carbon Distribution in Red Soils after Long-term Fertilization with Different Fertilizer Treatments

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, Y.

    2013-12-01

    Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long-term fertilization. OC mainly existed in the macroaggregate (> 0.25 mm) of red soils after the long-term fertilization, and the organic matter was the most important colloid material for macroaggregates. We conclude that the long-term, appropriate application of chemical fertilizer and the combination with organic manure were the most effective measures to improve soil structure and organic carbon contents in red soil regions.

  18. Impact of fertilizer phosphorus application on phosphorus release kinetics in some calcareous soils

    NASA Astrophysics Data System (ADS)

    Hosseinpur, A. R.; Biabanaki, F. S.

    2009-01-01

    Phosphate reactions and retention in the soil are of paramount importance from the perspective of plant nutrition and fertilizer use efficiency. The objective of this work was to study the kinetics of phosphorus (P) desorption in different soils of Hamadan in fertilized and unfertilized soils. Soils were fertilized with 200 mg P kg-1. Fertilized and unfertilized soils were incubated at 25 ± 1°C for 6 months. After that, release of P was studied by successive extraction with 0.5 M NaHCO3 over a period of 1,752 h. The results showed that phosphorus desorption from the fertilized and unfertilized soils began with a fast initial reaction, followed by a slow secondary reaction. The amount of P released after 1,752 h in fertilized and unfertilized soils ranged from 457 to 762.4 and 309.6 to 586.7 mg kg-1, respectively. The kinetics of cumulative P release was evaluated using the five kinetic equations. Phosphorus desorption kinetics were best described by parabolic diffusion law, first order, and power function equations. Rate constants of these equations were higher in fertilized than unfertilized soils. Results from this study indicate that release rate of P plays a significant role in supplying available P and released P in runoff.

  19. Microheater as an alternative to lasers for in-vitro fertilization applications

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel V.; Turovets, Igor; Glazer, Rima; Reubinoff, Benjamin E.; Hilman, Dalia; Lewis, Aaron

    1999-06-01

    During the last decade various lasers have been applied to drilling of the micrometer-sized holes in the zona pellucida of oocytes for in-vitro fertilization applications. In this paper we describe an alternative approach to laser instrumentation based on microfabricated device capable of precise drilling of uniform holes in the zona pellucida of oocytes. This device consists of a thin (1 micrometer) film microheater built on the tip of glass capillary with a diameter varying between a few to a few tens of micrometers. Duration of the pulse of heat produced by this microheater determines the spatial confinement of the heat wave in the surrounding liquid medium. We have demonstrated that gradual microdrilling of the zona pellucida can be accomplished using a series of pulses with duration of about 300 microseconds when the microheater was held in contact with the zona pellucida. Pulse energy applied to 20 micrometer tip was about 4 (mu) J. In vitro development and hatching of 127 micromanipulated embryos was compared to 103 non-drilled control embryos. The technique was found to be highly efficient in creating round, uniform, well defined holes with a smooth wall surface, matching the size of the heating source. The architecture of the surrounding zona pellucida was unaffected by the drilling, as demonstrated by scanning electron microscopy. Micromanipulated embryos presented no signs of thermal damage under light microscopy. The rate of blastocyst formation and hatching was similar in the micromanipulated and control groups. Following further testing in animal models, this methodology may be used as a cost- effective alternative to laser-based instrumentation in clinical applications such as assisted hatching and embryo biopsy.

  20. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    PubMed Central

    Nayak, Nabakishore; Rath, Shakti

    2014-01-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  1. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro.

    PubMed

    Padhy, Rabindra N; Nayak, Nabakishore; Rath, Shakti

    2014-03-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  2. Trends in Moslem fertility and the application of the demographic transition model.

    PubMed

    Nagi, M H

    1983-01-01

    The current status of Moslem fertility, the emerging fertility differentials among Moslem countries, and the degree to which recent fertility declines in some of these countries are associated with modernization and family planning efforts were examined on the basis of data from 30 countries in which Islam is the predominant religion. The majority of Moslem countries experienced some decline in their crude birth rates in the 1960-80 period, with the exception of the countries south of the Sahara. However, the birth rates of the countries included in this study were higher than those for the non-Moslem countries in the same region. The 1980s show a definite trend toward differential fertility among Moslem countries, with significant decreases in the crude birth rate occurring in Malaysia, Indonesia, Tunisia, Turkey, Lebanon, Eqypt, and Morocco. When Moslem countries are ranked by scores on a composite index of socioeconomic development, the data show a lack of a clear association between index scores and the crude birth rate. This suggests that there is no easily definable threshold of social and economic progress required for fertility to begin to decline. The data further refute the hypothesis that a substantial decline in infant mortality will produce a corresponding decline in fertility. In addition, Indonesia, which has recently shown a steep fertility decline, exhibits little aggregate social change to explain this phenomenon. On the other hand, the data point to the importance of family planning efforts for fertility declines in Moslem countries. The fertility decline between 1970 and 1980 averaged 6% in countries with no family planning program, 9% in countries with a weak program, and 21% in countries with a moderately strong program. Socioeconomic changes in the absence of family planning efforts have produced few declines in fertility. The trend toward relatively later age at marriage in some Moslem countries has produced little overall effect on the level of marriage and has not been a significant factor in the fertility decline in most countries. It is concluded that the situation in the Moslem world calls for a reinterpretation of the demographic transition model. PMID:6680800

  3. [Sunscreens--chemical structure and application].

    PubMed

    Klimowicz, Adam; Bielecka-Grzela, Stanisława; Czuba, Ewelina; Zejmo, Maria

    2007-01-01

    In the paper chemical structures and classification of active ingredients of sunscreens as physical or chemical filters are presented. Adequately selected to skin phototype sunscreen protects body against sunburn and prolonged sunlight exposure skin changes, induced by harmful ultraviolet radiation. PMID:18561604

  4. Nutritional Applications of the Chemical Senses.

    ERIC Educational Resources Information Center

    Naim, Michael; Kare, Morley R.

    1984-01-01

    Discusses the relationship of taste and smell to ingestion, digestion, and metabolism. Indicates that the response of these physiological systems can be chemical specific and that chemical senses may play different roles in regulating diet during nutrient deficiency and during nutrient surplus situations. (JN)

  5. Fertility Awareness

    MedlinePLUS

    ... avoided during the fertile period. continue Protection Against STDs Fertility awareness does not protect against sexually transmitted diseases (STDs) . Couples having sex must always use condoms ...

  6. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. I. Effect of phosphate fertilizer rate on P losses from paddy soil.

    PubMed

    Zhang, H C; Cao, Z H; Shen, Q R; Wong, M H

    2003-02-01

    A field plot study was conducted on two types of paddy soils in the Taihu Lake Region, during the rice season of year 2000 in order to assess phosphorus (P) losses by runoff and vertical leaching, which are considered the two main pathways of P movement from paddy soil into its surrounding water course. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg applied P ha m(-2). The experiments consisted of three replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5 x 6 m2 in a randomized block. Results revealed that the average concentration range for total P (TP) in runoff was 1.857-7.883, 1.038-5.209, 0.783-1.255 and 0.572-0.691 mg P l(-1) respectively for P300, P150, P30 and P0 in Anzhen, while it was 2.431-2.449, 1.578-1.890, 1.050-1.315 and 0.749-0.941 mg P l(-1) respectively in Changshu. In all treatments, particulate P (PP) represented a major portion of the TP lost in runoff, it was 80% in Anzhen, and it was even more (>90%) in Changshu. Phosphate fertilizer treatments significantly affected P concentrations and P loads in the runoff. The mean concentration and average seasonal TP load from the P150 plots were 1.809 mg P l(-1) and 395 g P ha m(-2) season(-1) respectively, and lower than that from the P300 plots (2.957 mg P l(-1) and 652 g P ha m(-2) season(-1)). These were obviously higher than from the P30 (0.761 mg P l(-1) and 221 g P ha m(-2) season(-1)) and P0 (0.484 mg P l(-1) and 146 g P ha m(-2) season(-1)) respectively. There was no significant difference found between the P30 and the P0 in both sites. Under usual P application rate, there were total 31.7 and 20.6 tones P removed by runoff from permeable (Anzhen site) and waterlogged (Changshu site) paddy soils in the southern Jiangsu region (major part of the TLR) in the rice season of the year 2000. But if the P application rate is unusual high, or the Olsen P in soil accumulates to above a certain level, then this could sharply increase in the future. The average concentration of molybdate reactive phosphorus (MRP) in the vertical leachate from the four different P treatments ranged from 0.058 to 0.304 mg P l(-1) in Anzhen and from 0.048 to 0.394 mg P l(-1) in Changshu. P application rate significantly affected the MRP concentration at each depth in both sites, except for the 90 cm in Anzhen. The average MRP loads during the rice season moved by vertical leaching from the four treatments ranged from 163 to 855 g P ha m(-2) season(-1) in Anzhen and 208-1,825 g P ha m(-2) season(-1) in Changshu. Vertical leachate movement does not necessarily mean that it moves towards surface water and contaminate the watercourses in this flat plain paddy soil region, it does, however, imply that P can move down from surface layers of soil to deeper levels. PMID:12688478

  7. Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas

    PubMed Central

    Philibert, Aurore; Loyce, Chantal; Makowski, David

    2012-01-01

    Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2. In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or absence of the explanatory variable “applied N”, (ii) the function relating N2O emission to applied N (exponential or linear function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear models, and models including one or two random effects outperformed those including fixed effects only. The use of an exponential function rather than a linear function has an important practical consequence: the emission factor is not constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower than 1% when the amount of N applied was below 160 kg N ha−1. Our uncertainty analysis shows that the uncertainty range currently used by the IPCC-Tier 1 method could be reduced. PMID:23226430

  8. Improved Access to Supercomputers Boosts Chemical Applications.

    ERIC Educational Resources Information Center

    Borman, Stu

    1989-01-01

    Supercomputing is described in terms of computing power and abilities. The increase in availability of supercomputers for use in chemical calculations and modeling are reported. Efforts of the National Science Foundation and Cray Research are highlighted. (CW)

  9. Computational Toxicology: Application in Environmental Chemicals

    EPA Science Inventory

    This chapter provides an overview of computational models that describe various aspects of the source-to-health effect continuum. Fate and transport models describe the release, transportation, and transformation of chemicals from sources of emission throughout the general envir...

  10. Online measurement of contents in compound fertilizer and application research using VIS-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Zhidan; Wang, Yubing; Wang, Rujing; Liu, Jing; Lu, Cuiping; Wang, Liusan

    2015-10-01

    The on-line measurement of the main component contents is essential for production, detection and identification of compound fertilizer. Using developed VIS-NIR sensors for on-line measurement of the main component contents in compound fertilizer, primary results about nitrogen (N), phosphorus pentoxide (P2O5) and potassium oxide (K2O) were reported. A visible (VIS) and near infrared (NIR) spectrophotometer (Ocean Optics), with a measurement range of 360.18-2221.53 nm was used to measure fertilizer spectra in reflectance mode. By using principal component analysis (PCA) and mahalanobis distance method, 3 outlier samples were detected and eliminated from 174 samples firstly. Then these models of three components with the 124 samples in calibration set were established using principal component regress (PCR) and partial least squares regression (PLS) coupled respectively with the full cross-validation technique after preprocessing the original spectrum with different methods. These models were used to estimate the contents of N, P2O5 and K2O of the other 47 samples in predicted set. The research results showed that the method could be applied to rapid measurement to the main component contents in compound fertilizer. Compared with the traditional analysis method, the on-line measurement could do it rapidly, inexpensively and pollution-freely. It suggested the potential use of the VIS-NIR sensing system for on-line measurement in the production, detection and identification process of compound fertilizer.

  11. [Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses].

    PubMed

    Wang, Xiao-Juan; Wei, Chang-Zhou; Zhang, Jun; Dong, Peng; Wang, Juan; Zhu, Qi-Chao; Wang, Jin-Xin

    2012-10-01

    A field experiment was conducted to study the effects of different irrigation modes (drip irrigation and furrow irrigation) and different N application rates (0, 240, 360 and 480 kg N x hm(-2)) on the fertilizer N use efficiency and N losses in a cotton field in Xinjiang, Northwest China. The main N cycling pathways, such as the N uptake by cotton plant, NO3(-)-N residual in soil, NH3 volatilization, NO3(-)-N leaching, and nitrification-denitrification, were quantitatively monitored. Compared with furrow irrigation, drip irrigation increased the seed cotton yield, plant N uptake, and fertilizer N use efficiency significantly. The NO3(-)-N residual in soil was significantly greater under furrow irrigation than under drip irrigation. With the application of fertilizer N, the N loss from NH3 volatilization under drip irrigation occupied 0.06% -0.14% of applied N, and was significantly greater than that under furrow irrigation. The N loss from NO3(-)-N leaching under drip irrigation and furrow irrigation was 4.4% and 8.8% of the applied N, respectively. Compared with furrow irrigation, drip irrigation could significantly decrease the NO3(-)-N leakage rate in leakage water. The nitrification-dinetrification loss under drip irrigation and furrow irrigation was 17.9% and 16.8% of the applied N, respectively. It was suggested that NO3(-)-N leaching and nitrification-denitrification were the main N losses in the cotton fields of Xinjiang. PMID:23359936

  12. [Quantitative analysis of contents in compound fertilizer and application research using near infrared reflectance spectroscopy].

    PubMed

    Song, Le; Zhang, Hong; Ni, Xiao-Yu; Wu, Lin; Liu, Bin-Mei; Yu, Li-Xiang; Wang, Qi; Wu, Yue-Jin

    2014-01-01

    In the present study, a new approach to fast determining the content of urea, biuret and moisture in compound fertilizer composed of urea, ammonium dihydrogenphosphate and potassium chloride was proposed by using near infrared diffuse reflectance spectroscopy. After preprocessing the original spectrum, partial least squares (PLS) models of urea, biuret and moisture were built with the R2 values of 0.9861, 0.9770 and 0.9713 respectively, the root mean square errors of cross validation were 2.59, 0.38, 0.132 respectively. And the prediction correlation factors were 0.9733, 0.9215 and 0.9679 respectively. The authors detected six kinds of compound fertilizer in market for the model verification, the correlation factors were 0.9237, 0.9786 and 0.9874 respectively. The data implied that the new method can be used for situ quality control in the production process of compound fertilizer. PMID:24783536

  13. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    NASA Astrophysics Data System (ADS)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  14. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    PubMed

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), nitrate (NO3(-) -N) and ammonia (NH4(+) -N) were significantly related to abundances of nirS-denitrifers (r = 0.724-0.922, P < 0.05) and the DEA (r = 0.453-0.938, P < 0.01). In addition, the DEAs were linearly and positively correlated with the abundances of nirS-type denitrifers (r = 0.85, P < 0.01). Redundancy analysis showed that except moisture, pH and concentrations of TP, TP, TOC, NH4(+) -N and NO3(-) -N were significantly correlated with the community structure of nirS-type denirifiers (r = 0.440-0.862, P < 0.01). Furthermore, the DEAs were significantly correlated with the compositions of nirS-denirifiers (r = 0.863, P < 0.01). In conclusion, the airS-type denitrifiers in the black soil are more responsive to the organic treatments than to the inorganic treatments in terms of community composition and abundance, both of which are correlated with the changes of DEAs. PMID:23323433

  15. Computer Applications in Balancing Chemical Equations.

    ERIC Educational Resources Information Center

    Kumar, David D.

    2001-01-01

    Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)

  16. Microwave Technology--Applications in Chemical Synthesis

    EPA Science Inventory

    Microwave heating, being specific and instantaneous, is unique and has found a place for expeditious chemical syntheses. Specifically, the solvent-free reactions are convenient to perform and have advantages over the conventional heating protocols as summarized in the previous se...

  17. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils

    NASA Astrophysics Data System (ADS)

    Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A. J.

    2009-04-01

    The Pedernales province (Dominican Republic) has the main part of the only Biosphere Reserve in that Caribbean Island, including the Bahoruco and Jaragua National Parks. In these Parks is possible to find almost the totality of tropical forest ecosystems (evergreen rain forest, latifoliated forest, dry forest and mangrove forest on mainland), as well as the most frequent soil uses in the Dominican country. The consulted bibliography about the soils is very scarce and it does not give any information relating to this natural resource, which is basic for a sustainable development management in this territory. When Christopher Columbus reached the island, its plant cover constituted 95% of the land. This was largely because the limited, rudimentary tools used by the Indians to exploit the soil, allowed them to maintain a well-balanced ecological system. The initial type of agriculture practised by the indigenous inhabitants was scarcely destructive and based on vegetatively reproducing crops propagated through cuttings, but later forest burning was an especially significant management practice aimed at releasing nutrients into the soil, in an environment in which under natural conditions, particularly those of the rainforest, these were mostly locked within plant structures. The colonial system, on the contrary, brought with it more elaborate methods and utensils enabling them to cultivate cereals (somewhat unknown to the native Indians) and to rear livestock (cows, goats) yet contributed to the growth of deforestation. Agricultural activities were not confined to the plains; even the virgin woods of the mountains were exploited. The monocrops grown across vast expanses rapidly rid the soil of its productive capacity. Cutting down and burning forest for agricultural uses, and also industrial exploitation of bauxite and limestone produced also important alterations in the soil processes. Agricultural activities were not confined to the plains; even the virgin woods of the mountains were exploited. The monocrops grown across vast expanses rapidly rid the soil of its productive capacity. The Factors affecting soil degradation in this territory may be generally divided into the three groups: physic-natural, political, and socio-economic. The climate and geomorphology are the natural factors mostly influencing the soils. Its relief means its soils are highly vulnerable and sensitive to erosion, and its different ecosystems are similarly sensitive to the actions of cyclones and hurricanes. Many of the lands have slopes exceeding 20%, and 40%. Since the colonisation another cause of the degradation of its soils has been a lack of political will to protect the natural resources. The situation of extreme poverty of the territory, especially in the rural areas, particularly affects plant resources and the soil: to meet needs, the population have to exploit the most marginal of territories rather than intensifying existing systems. Thus, the dynamics of poverty becomes a vicious cycle, with poverty as the cause and consequence of the deteriorated natural resources. As a consequence of all these factors, the expansion of agricultural boundaries following deforestation is one of the causes of soil erosion affecting mountain lands. On the other hand, climatic change including more irregular and less rainfall, along with an increased incidence of natural disasters (cyclones, hurricanes, floods), have placed this territory in a situation very difficult. Our recent discovery of important levels of Al, Pb, Zn, Cu, Cr and Cd in the territory, especially on the superficial layer of river Pedernales Basin soils (Dominican Republic-Haiti), made us to investigate about the possible effects of the soil degradation and erosion produced on the toxicity of these metals. The source of these metals is linked to geoedaphic processes more than to human impacts, in a region that comprises core, intensive agriculture and buffer areas of the reserve, harbouring mines (bauxite and limestone), crops and livestock. The hypothesis that heavy metals liberated by geochemical actions in some of these tropical ecosystems could be related both to productivity and to human and animal health, led us also to assess metal bioavailability in the area's main crops as the primary source of food or fodder. To establish the context of the heavy metal pollution, we characterized the geoedaphic features of the region. The predominant rocks are sedimentary limestones: with limestone colluvial deposits dominant in the tropical conifer forest and rain forest of the Sierra de Bahoruco; crystalline limestones in the tropical latifoliated forest; and Quaternary detritic rocks and reefs (carbonates overlying alterites) in the dry tropical forest. Across the territory, there is a marked predominance of soils that range from surface soils to shallow, poorly developed stony soils of low natural fertility. Most can be classified as entisols. Soils of recent alluvial origin lack pedogenetic horizons and are subjected to diverse humidity and temperature regimens. Slopes are pronounced and relief and altitudes vary. Their profiles include A-R horizons characterised by displaying an ochre epipedon over a fractured rock bed whose depth is shallow and A-C horizons of a sandy to clayey soil and subsoil texture, whose colours range from dark brown to grey and depths from very shallow to deep. Soils occur from the mountains to landscapes including rivers or sandy coasts. The ecosystems examined occur from an altitude of 1300-1200 m to sea level and the cultivated soils have the main food sources for human and animal consumption: bean, corn, sorghum, coffee, Guinea banana, fruit trees and tubers. We present these data for 79 soil samples according to the corresponding landscape units (forests) along with their dominant lithologies (crystalline limestones, carbonated limestones on alterites and coral limestones). Our study describes edaphic processes linked to physical and chemical erosion in this region. The main types of clay are: hematite, kaolin, bohemite (the most abundant) gibbsite and calcite. Textures range from sandy-silty to clayey. Sand and clay fractions seem more abundant than silt ones. Soil pHs are generally in the basic range with infrequent acid soils. OM and total Nitrogen levels are not low, especially OM in the dry forest and N in the latifoliated forest. Available K contents are low in mountain forests and high in dry forests. Available P contents are generally low to very low. The topsoil layers (0-20 cm) of different types of wet and dry tropical forests and agroecosystems were assessed in terms of several physical factors related to erosion. These factors were: particle size, aggregate structural instability index (Is), and soil physical degradation index, erodibility index and erosionability index. This study reports also fertility loss, OM and heavy metal data obtained in the topsoil samples from both natural ecosystems and agroecosystems. Soil fertility also needs to be assessed since has been severely compromised by changes in the physical and chemical properties of the soil induced by the felling and burning of trees to make way for crops. Acknowledgements: Projects CTM2005-02165/TECNO (MEC) & CTM2008-04827/TECNO (MceI). Program EIADES S-0505/AMB/0296 (CAM) and Project "Promoción de la calidad educativa y el desarrollo local en la provincia de Pedernales, R. Dominicana" (CAM & Centro Cultural Poveda of Sto. Domingo, Dominican Republic).

  18. FERTILIZATION BY SPERM MICROINJECTION AND ZONA DRILLING: APPLICATIONS IN THE BASIC AND CLINICAL SCIENCES

    EPA Science Inventory

    Experimental manipulation of fertilization provides an exciting research approach for studying mechanisms involved in sperm/egg interaction and holds great promise as a means for overcoming some forms of human infertility. The report will focus on three methods for assisted ferti...

  19. A Comparison of Continuous Nitrogen Fertigation to Conventional Granular Fertilizer Application in Highbush Blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertigation practices are currently being evaluated and compared to conventional fertilizer aplication on 0.6 acres of 'Bluecrop' blueberry planted April 2006 in Corvallis, OR. Plants are spaced 2.5 x 10 ft. apart and growing on mulched, raised beds. Treatments include two methods of fert...

  20. Derivation of a Variable Rate Nitrogen Application Model for In-Season Fertilization of Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizers used in crop production contribute to pollution of groundwater by nitrate and occurrence of hypoxia in the Gulf of Mexico. Economic and environmental pressures are forcing producers to improve nitrogen use efficiency. The objective of this study was to develop a production-based...

  1. Do nitrogen fertilizer rate and application timing make a difference in corn production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high prices of nitrogen fertilizer have forced corn producers to consider strategies to increase nitrogen use efficiency. Improving nitrogen management in corn could involve the implementation of several management strategies. Side dressing, adjustment of nitrogen levels according to the site’s...

  2. Application of microbial inoculants as tools for reducing nitrous oxide emissions from different nitrogen fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of nitrous oxide (N2O) are increasing due to several factors, including increased use of nitrogen fertilizers. New management tools are needed to reduce N2O emissions from production agriculture. One potential such tool is the use of microbial inoculants, which are increasingly being used ...

  3. EFFECT OF ORGANIC FERTILIZER APPLICATIONS ON GROWTH YIELD AND PESTS OF VEGETABLE CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to measure the yield response of Cantaloupe (Cucumis melo), pepper (Capsicum annuum), and tomato (Lycopersicon esculentum) to an organic fertilizer derived from hydrolyzed feather, meat, bone, and blood meal, sulfate of potash and langeinite (Nature Safe 10-2-8). Th...

  4. Reducing rice field algae and cyanobacteria abundance by altering phosphorus fertilizer applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California’s water seeded rice systems algal/cyanobacterial biomass can be a problem during rice establishment. Algal/cyanobacterial growth may be stimulated by phosphorus (P) additions in freshwater habitats, so we set up experiments to evaluate the effects of fertilizer P management on algal/cy...

  5. Application of intracytoplasmic sperm injection (ICSI) for fertilization and development in birds.

    PubMed

    Shimada, Kiyoshi; Ono, Tamao; Mizushima, Shusei

    2014-01-15

    Intracytoplasmic sperm injection (ICSI) technology in birds has been hampered due to opacity of oocyte. We developed ICSI-assisted fertilization and gene transfer in quail. This paper reviews recent advances of our ICSI experiments. The oocyte retrieved from the oviduct and a quail sperm was injected into the oocyte under a stereomicroscope. The oocyte was cultured for 24h at 41C under 5% CO2 in air. The fertilization and development was assessed by microscopic observation. The fertility rate ranged 12-18% and development varied from stage II to V in trials. To improve the fertility rate, phospholipase C (PLC) zeta was injected with a sperm. It was increased to 37-50%. Furthermore, injection of inositol trisphosphate increased to over 85%. Quail oocyte can be fertilized with chicken sperm and so can testicular elongated spermatid. To extend embryonic development, chicken eggshell was used as a surrogate culture at 37C after the 24h incubation at 41C under 5% CO2 in air. It survived up to 2days thereafter. Finally, gene transfer was attempted in quail egg. The sperm membrane was disrupted with Triton X-100 (TX-100) and was injected with PLCzeta cRNA and enhanced green fluorescent protein (EGFP) gene in oocyte. The GFP expression was evaluated at 24h incubation at 41C under 5% CO2 in air in the embryos. While the expression was not detected in the control oocytes, the experimental treatment induced blastoderm development (44%) of the oocytes and 86% of blastoderm showed fluorescent emission. In addition, PCR analysis detected EGFP fragments in 50% of GFP-expressing blastoderm. Our ICSI method may be the first step toward the production of transgenic birds. PMID:24239795

  6. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil.

    PubMed

    Hernndez, Marcela; Jia, Zhongjun; Conrad, Ralf; Seeger, Michael

    2011-12-01

    s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50?g g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils. PMID:22066929

  7. Integrated Microreactor for Chemical and Biochemical Applications

    NASA Technical Reports Server (NTRS)

    Schwesinger, N.; Dressler, L.; Frank, Th.; Wurmus, H.

    1995-01-01

    A completely integrated microreactor was developed that allows for the processing of very small amounts of chemical solutions. The entire system comprises several pumps and valves arranged in different branches as well as a mixing unit and a reaction chamber. The streaming path of each branch contains two valves and one pump each. The pumps are driven by piezoelectric elements mounted on thin glass membranes. Each pump is about 3.5 mm x 3.5 mm x 0.7 mm. A pumping rate up to 25 microliters per hour can be achieved. The operational voltage ranges between 40 and 200 V. A volume stroke up to 1.5 millimeter is achievable from the membrane structures. The valves are designed as passive valves. Sealing is by thin metal films. The dimension of a valve unit is 0.8 x 0.8. 07 mm. The ends of the separate streaming branches are arranged to meet in one point. This point acts as the beginning of a mixer unit which contains several fork-shaped channels. The arrangement of these channels allows for the division of the whole liquid stream into partial streams and their reuniting. A homogeneous mixing of solutions and/or gases can be observed after having passed about 10 of the fork elements. A reaction chamber is arranged behind the mixing unit to support the chemical reaction of special fluids. This unit contains heating elements placed outside of the chamber. The complete system is arranged in a modular structure and is built up of silicon. It comprises three silicon wafers bonded together by applying the silicon direct bonding technology. The silicon structures are made only by wet chemical etching processes. The fluid connections to the outside are realized using standard injection needles glued into v-shaped structures on the silicon wafers. It is possible to integrate other components, like sensors or electronic circuits using silicon as the basic material.

  8. Application of synchrotron radiation in chemical dynamics

    SciTech Connect

    Heimann, P.; Koike, M.; Kung, A.H.; Ng, C.Y.; White, M.G.; Wodtke, A.

    1993-05-01

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL`s Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs.

  9. Application of synchrotron radiation in chemical dynamics

    SciTech Connect

    Heimann, P.; Koike, M.; Kung, A.H.; Ng, C.Y.; White, M.G.; Wodtke, A.

    1993-05-01

    In October 1992, funding was approved to begin construction of a beamline and two end stations to support chemical dynamics experiments at LBL's Advanced Light Source (ALS). This workshop was organized to develop specifications and plans and to select a working team to design and supervise the construction project. Target date for starting the experiments is January 1995. Conclusions of the workshop and representative experiments proposed in earlier workshops to form the basis for beamline plans and end-station designs are summarized in this report. 6 figs.

  10. Biomedical applications of chemically-modified silk fibroin

    PubMed Central

    Murphy, Amanda R.

    2009-01-01

    Silk proteins belong to a class of unique, high molecular weight, block copolymer-like proteins that have found widespread use in biomaterials and regenerative medicine. The useful features of these proteins, including self-assembly, robust mechanical properties, biocompatibility and biodegradability can be enhanced through a variety of chemical modifications. These modifications provide chemical handles for the attachment of growth factors, cell binding domains and other polymers to silk, expanding the range of cell and tissue engineering applications attainable. This review focuses on the chemical reactions that have been used to modify the amino acids in silk proteins, and describes their utility in biomedical applications. PMID:20161439

  11. Chemical Modification of Cotton for Industrial Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (cellulose) is a known favorite in the textile industry and is the most used natural fiber-cloth to date. As we move to use more biodegradable, renewable and sustainable resources, cellulose, a natural polymer, is attracting attention and finding application in oil recovery, cosmetics, surfac...

  12. Effect of fertilizer application on Urtica dioica and its element concentrations in a cut grassland

    NASA Astrophysics Data System (ADS)

    Mllerov, Vladimra; Hejcman, Michal; Hejcmanov, Pavla; Pavl?, Vilm

    2014-08-01

    Little is known about the effects of nutrient availability in cut grasslands on growth characteristics of Urtica dioica and its aboveground chemical composition (N, P, K, Ca, Mg, Cu, Fe, Mn and Zn). The effects of N, P and K application on the growth of U. dioica were studied over five years in a Dactylis glomerata grassland cut twice per year under unfertilized control, P, N, NP and NPK treatments (300, 80 and 200 kg of N, P and K ha-1 per year). Nitrogen application in the form of NH4NO3 over five years decreased the soil pH, while P and K application increased P and K availability in the soil. Over five years, cover of U. dioica increased from 1% initially to 7, 9, 58, 83 and 99% in the control, P, N, NP and NPK treatments, respectively. Concentrations of N, P and Ca in the aboveground biomass of U. dioica were very high in comparison to other species and concentrations of Cu, Fe, Mn and Zn were comparable with other grassland species. N and P limitation of U. dioica growth was expected if concentrations of N and P in the aboveground biomass were lower than 25 g N kg-1 and 4 g P kg-1 in the phenological stage of flowering. We concluded that two cuts per year are not sufficient to suppress expansion of U. dioica under high N, P and K availability. This probably explains why U. dioica survive also in frequently cut intensive grasslands under adequately high nutrient supply.

  13. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating. PMID:16964940

  14. Influence of hormonal secretion and fertility in merino mutton sheep by exogenous pheromone application during the breeding season.

    PubMed

    al-Merestani, M R; Brckner, G

    1992-01-01

    The effect of a ram-pheromome extracted from the wool of insemination rams with excellent libido sexualis of the merino mutton sheep breed was examined with respect to the hormonal secretion and fertility of adult ewes during the breeding season. A control group (untreated animals) was at disposal for every experiment. There were significant differences between the ewes treated with pheromone and the controls in the course of the preovulatory LH wave and the oestradiol concentration of the oestrus sheep at the beginning of the breeding season. The ovulation in ewes after prostaglandin application was stimulated by pheromone applications. The regime practised in the experiment on pherome application had a positive influence on the conception rate of the inseminated ewes and resulted in a significant increase of the lambing results (lambs/birth). PMID:1340753

  15. The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System

    PubMed Central

    Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang

    2014-01-01

    With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure. PMID:24830463

  16. [Fertility and Environmental Impacts of Urban Scattered Human Feces Used as Organic Granular Fertilizer for Leaf Vegetables].

    PubMed

    L, Wen-zhou; Qiao, Yu-xiang; Yu, Ning; Shi, Rong-hua; Wang, Guang-ming

    2015-09-01

    The disposal of urban scattered human feces has become a difficult problem for the management of modern city. In present study, the scattered human feces underwent the collection, scum removal, flocculation and dehydration, finally became the granular fertilizer; the effects of the ratio of fertilizer to soil on the growth of the pakchoi and the quality of soil and leaching water were evaluated, and the feasibility of granular fertilizer manuring the pakchoi was discussed by pot experiments. The results showed that the granular fertilizer significantly enhanced the production of the pakchoi which were not polluted by the intestinal microorganisms under the experiment conditions; meanwhile, at the proper ratio of fertilizer to soil, the concentration of these microorganisms in the leaching water was lower than that in the control check. Chemical analyses of soil revealed that the nutrient content of nitrogen, phosphorus, potassium and organic matters in soil became much richer in all treatments. In addition, the granular fertilizer improved the physical- chemical properties of soil, including raising the level of soil porosity and reducing the volume weight of soil. Application of granular fertilizer won't pollute the soil or leaching water; instead, it can also prevent nitrogen, potassium and intestinal microorganisms from leaching inio ground water at the proper ratio of granular fertilizer to soil. PMID:26717716

  17. PHYSIOLOGICAL ONTOGENY : A. CHICKEN EMBRYOS. II. CATABOLISM. CHEMICAL CHANGES IN FERTILE EGGS DURING INCUBATION. SELECTION OF STANDARD CONDITIONS.

    PubMed

    Murray, H A

    1925-09-20

    As this paper goes to press a complete review of the chemistry of the fertile egg will be appearing (19). The author, Mr. J. Needham, was kind enough to allow me to inspect his manuscript and thus avail myself of the comprehensive bibliography and discussion. It is surprising that no biochemists have estimated the changing water content of the egg during incubation. Many of the analyses reported in Needham's review were expressed in per cent of total weight or per cent of dry solid, and consequently are of questionable value, since these latter functions are themselves changing; the former due to water evaporation and the latter through the addition of shell constituents and the burning of oxidizable organic compounds. Moreover, there has been no statistical treatment of the results, and the reliability of the average, figures obtained has consequently been difficult to estimate. Tangl's work, quoted throughout this paper, except for its lack of statistical treatment is more enlightening. However, his concept of the so called "Energy of Embryogenesis" which he propounds, seems to me misleading and unwarranted. What Tangl measured was the amount and the caloric value of the solid material burned and thus the quantity of energy lost during the embryonic period. The latter is equivalent to the usual measurements of catabolism. In the case of the embryo it is not basal metabolism which is being estimated, since the conditions are not basal. The embryo is absorbing and assimilating nutriment all the while at a relatively rapid rate. The calorific value of the oxidized solid, which is in truth the amount of energy lost during a certain chosen interval, in Tangl's judgment stands for the energy of embryogenesis; i.e., the energy of development (growth + differentiation). We believe that this conception is erroneous. The two processes, anabolism and catabolism, occur together and undoubtedly have some relationship, but surely one is not a measure of the other. In a starving animal, and so probably in a starving embryo, there is a considerable amount of so called basal metabolism. Thus if the "Embryogenetic Energy" were measured under these conditions a figure would be obtained for which there was no growth to correspond, or in other words there would be a value for something which did not exist. It will be seen in our later communications that the changes with age of metabolic rate and growth rate do not coincide. The amount of catabolism under certain circumstances does not accelerate growth or anabolism, but seems rather to be a limiting factor. It is as if when the absorbed energy were constant an increase of catabolism would make inroads upon the amount of energy which otherwise would remain for storage (growth). If, as Pembrey's (20) experiments would tend to show, there is an increase of metabolism in the oldest embryos when the outside temperature is lowered, one would find at the end of incubation in such cases that there was a greater amount of so called "Energy of Development" but smaller embryo. It seems that the potential energy amassed as growth comes from that remaining after the needs of the body have been satisfied. The results of the experiments described in this paper have formed the basis for judgment in the selection of suitable standard conditions for the incubation of hen's eggs. Standardization was necessary so that in future experiments the more important environmental factors might be kept uniform within a certain appropriate range and therefore not be held accountable for deviations observed in the embryos. Henceforth in this series of papers the term "standard incubation conditions" will signify that (1) the temperature was constantly at 38.8 +/- 0.4 degrees C., (2) the humidity at 67.5 +/- 2.5 per cent, (3) there was a continuous flow of warm air into the incubator to provide the necessary circulation, and (4) the eggs were rolled once a day within the constant temperature room. The incubator, a double-walled copper cabinet, stands in a constant temperature room, the fluctuations of which are +/- 1.0 degrees C. The space between the walls of the incubator is filled with water which serves as a buffer to outer variations. It might be repeated that all the eggs are from White Leghorn hens, are incubated 2 days after laying, and that they are kept cold during the interval necessary for transportation. With the figures from our chemical analyses and metabolic rate experiments, it was possible to calculate values for the concentration of total solids, fat, and nitrogen throughout the incubation period. These data were necessary as a general chemical background for further work. The results of the calculations are obviously rough. Because of the great variability of the eggs a satisfactory degree of accuracy could not have been attained without a very large number of analyses supplemented by complete statistical treatment. The necessity for such a comprehensive study was not evident, and it is our belief that the approximations reached in this paper are sufficiently close to serve our present purposes. The chief facts that have been ascertained in this investigation are (1) Loss of water by the egg during incubation is a function of the atmospheric humidity in its immediate environment. More rapid circulation of air lowers the humidity around the egg and thus increases evaporation. Other facts influencing evaporation are (a) atmospheric temperature, (b) thickness and surface area of the shell, and (c) conditions within the egg, the most important of which, it is suggested, is the amount of heat produced by the embryo. The latter factor, in turn, depends upon its size and age, and a significant change does not become apparent until the last 3 or 4 days of incubation, that is to say, when the embryo is of sufficient mass to exert a measurable force. (2) The surface area of the eggs in sq. cm. may be approximately represented by the formula S = K W(2/3), where K = 5.07 +/- 0.10, and W = the weight of the whole egg in gm. (3) There is a loss of weight by the shell during incubation. This is most noticeable near the end of the cycle, when the loss seems to parallel in general the weight of the embryo. (4) There is also a loss of solid matter during incubation. Chemical analyses indicate that about 98 per cent of the material oxidized is fat. This conclusion is corroborative of previous work by Hasselbalch, Hasselbalch and Bohr, and Tangl. (5) Carbon dioxide may be measured with relative accuracy. When it is assumed that it is derived from the oxidation of fat, satisfactory corroboration of the chemical analyses is obtained. These experiments have furnished the data from which the values have been calculated for total solids, fats, and protein in the whole egg throughout incubation. The figures may be used later for comparison with the concentration of these substances within the embryo. PMID:19872226

  18. Bee Pollen: Chemical Composition and Therapeutic Application

    PubMed Central

    Komosinska-Vassev, Katarzyna; Olczyk, Pawel; Kaźmierczak, Justyna; Olczyk, Krystyna

    2015-01-01

    Bee pollen is a valuable apitherapeutic product greatly appreciated by the natural medicine because of its potential medical and nutritional applications. It demonstrates a series of actions such as antifungal, antimicrobial, antiviral, anti-inflammatory, hepatoprotective, anticancer immunostimulating, and local analgesic. Its radical scavenging potential has also been reported. Beneficial properties of bee pollen and the validity for their therapeutic use in various pathological condition have been discussed in this study and with the currently known mechanisms, by which bee pollen modulates burn wound healing process. PMID:25861358

  19. High Temperature Materials for Chemical Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  20. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.

    PubMed

    Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan

    2015-10-01

    Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20?40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk. PMID:26004564

  1. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil

    NASA Astrophysics Data System (ADS)

    Signor, D.; Cerri, C. E. P.; Conant, R.

    2013-03-01

    Among the main greenhouse gases (CO2, CH4 and N2O), N2O has the highest global warming potential. N2O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N2O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (So Paulo state) and Goiansia (Gois state). In Piracicaba, N2O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha-1 of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goiansia, N2O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha-1. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N2O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.

  2. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-01-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer application and livestock. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack the temporal or spatial details, which are needed to accurately predict NH3 emissions. In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using an agricultural fertilizer modeling system coupling a regional air quality model (the Community Multi-Scale Air Quality model, CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, EPIC), which improves the spatial and temporal resolution of NH3 emission from this sector. Cropland area data of 14 crops from 2710 counties and the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data are combined to determine the crop distribution. The fertilizer application rate and method for different crop are collected at provincial or agriculture-regional level. The EPIC outputs of daily fertilizer application and soil characteristics are inputed into the CMAQ model and the hourly NH3 emission are calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emission in this study is about 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, the peak ammonia emissions occur from April to July.Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.

  3. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, S. X.; Ran, L. M.; Pleim, J. E.; Cooter, E.; Bash, J. O.; Benson, V.; Hao, J. M.

    2015-06-01

    Atmospheric ammonia (NH3) plays an important role in atmospheric aerosol chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from agricultural practices, such as fertilizer application and livestock production. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack temporal or spatial details, which are needed to accurately predict NH3 emissions. This study provides the first online estimate of NH3 emissions from agricultural fertilizer application in China, using an agricultural fertilizer modeling system which couples a regional air quality model (the Community Multi-scale Air Quality model, or CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, or EPIC). This method improves the spatial and temporal resolution of NH3 emissions from this sector. We combined the cropland area data of 14 crops from 2710 counties with the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data to determine the crop distribution. The fertilizer application rates and methods for different crops were collected at provincial or agricultural region levels. The EPIC outputs of daily fertilizer application and soil characteristics were input into the CMAQ model and the hourly NH3 emissions were calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emissions in this study were approximately 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, peak ammonia emissions occur from April to July. Compared with previous researches, this study considers an increased number of influencing factors, such as meteorological fields, soil and fertilizer application, and provides improved NH3 emissions with higher spatial and temporal resolution.

  4. Carbon Balance in an Irrigated Corn Field after Inorganic Fertilizer or Manure Application

    NASA Astrophysics Data System (ADS)

    Lentz, R. D.; Lehrsch, G. A.

    2014-12-01

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC and IC (POC, PIC) concentrations in irrigation inflow, runoff, and percolation waters (6-7 irrigations/y); C inputs from soil amendments and crop biomass; harvested C; and gaseous C emissions from field plots cropped to silage corn (Zea mays L.) in southern Idaho. Annual treatments included: (M) 13 (y 1) and 34 Mg/ha (y 2) stockpiled dairy manure; (F) 78 (yr 1) and 195 kg N/ha (y 2) inorganic N fertilizer; or (NA) no amendment--control. The mean annual total C input into M plots averaged 16.1 Mg/ha, 1.4-times greater than that for NA (11.5 Mg/ha) or F (11.1 Mg/ha), while total C outputs for the three treatments were similar, averaging 11.8 Mg/ha. Thus, the manure plots ended each growing season with an average net gain of 3.8 Mg C/ha (a positive net C flux), while the control (-0.5 Mg C/ha) and fertilizer (-0.4 Mg C/ha) treatments finished the season with a net C loss. Atmospheric CO2 incorporated into the crop biomass contributed 96% of the mean annual C input to NA and F plots but only 68% to M plots. We conclude that nutrient amendments substantially influence the short-term carbon balance of our furrow-irrigated system. Amendments had both direct and indirect influences on individual C components, such as the losses of DIC and POC in runoff and DOC in percolation water, producing temporally complex outcomes which may depend on environmental conditions external to the field.

  5. Human sperm capacitation and in-vitro fertilization in a chemically defined and protein-free medium SMART1.

    PubMed

    Parinaud, J; Milhet, P; Vieitez, G; Richoilley, G

    1998-09-01

    Media for sperm capacitation and in-vitro fertilization (IVF) are supplemented by proteins (albumin, globulins) extracted from human or animal sera, which raises the problem of potential contamination by pathogens. The present study aimed to evaluate the efficiency of a protein-free medium (SMART1, Bio-Media, Boussens, France) and to compare it with a human serum albumin (HSA) containing medium (FertiCult, FertiPro NV, Aalter, Belgium). In the first part of the study, media were compared for their ability to support human sperm functions. Total motility, progressive motility and rapid motility were no different between media after a 30 min and a 4 h incubation, but were significantly reduced using SMART1 after a 24 h incubation. However, the kinematic parameters (straight line velocity, mean path velocity, curvilinear velocity and mean amplitude of lateral head displacement) were significantly lower using SMART1, whatever the incubation time. The spontaneous acrosome reaction and the acrosome response to A23187 ionophore were similar in both media. In the second part of the study, media were compared in a randomized trial in 93 IVF attempts. No significant difference was found in the transfer per attempt rate (92 versus 87% respectively for SMART1 and FertiCult, NS) but the percentage of fertilized oocytes was significantly higher using SMART1 (65 versus 55% respectively for SMART1 and FertiCult, P < 0.01). The percentage of embryos with a fair morphology was identical in both media (30 versus 30% respectively for SMART1 and FertiCult, NS). In conclusion, despite a decrease in sperm kinematics, SMART1 medium allows an increase in fertilization rate and, since it is devoid of any human or animal compound, may be preferable for human use. PMID:9806287

  6. Applications of direct chemical oxidation to demilitarization

    SciTech Connect

    Cooper, J.F., LLNL

    1998-06-01

    Research is reported concerning an aqueous process for oxidative destruction of solid- and liquid organic wastes, including ongoing work relevant to demilitarization This process uses acidified ammonium- or sodium peroxydisulfate and operates at ambient pressure and at temperatures of 80- 100 C The oxidant may be regenerated by electrolysis of the sulfate by- product at Pt anodes at roughly 80% coulombic efficiency, even in the presence of inorganic contaminants (e g , nitrate, phosphate or chloride) found in the original waste and entrained in the recycle stream Integral rate constants have been determined for the oxidation of diverse organic compounds at low concentrations (50 ppm, C), with rate constants (based on equivalents) of 0 004-O 02 miri Higher concentrations generally react at a 2-4X higher rate. The process has been carried through full- scale laboratory tests and initial pilot plant tests on chlorinated solvents, using a hydrolysis pretreatment Integral rate data indicate throughput rates of about 200 kg- C/m3-day The process may benefit the demilitarization efforts in various specialized applications destruction of solvents; destruction of trace propellants and explosives in shell casings remaining after bulk removal, destruction of red and pink waters, in situ remediation of soils at open pit burning/detonation sites; and as a regenerative filter for offgas carrying toxic or explosive substances.

  7. Understanding emissions of ammonia from buildings and the application of fertilizers: an example from Poland

    NASA Astrophysics Data System (ADS)

    Werner, M.; Ambelas Skjøth, C.; Kryza, M.; Dore, A. J.

    2015-06-01

    A Europe-wide dynamic ammonia (NH3) emissions model has been applied for one of the large agricultural countries in Europe, and its sensitivity on the distribution of emissions among different agricultural functions was analyzed by comparing with observed ammonia concentrations and by implementing all scenarios in a chemical transport model (CTM). The results suggest that the dynamic emission model is most sensitive to emissions from animal manure, in particular how animal manure and its application on fields is connected to national regulations. To incorporate the national regulations, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with calculations from the Weather Research and Forecasting model (WRF). The model was used to calculate four emission scenarios with high spatial (5 km × 5 km) and temporal resolution (3 h) for the entire year 2010. In the four scenarios, we have compared a constant emission approach (FLAT), scenario (1) against (2) a dynamic approach based on the Europe-wide default settings (Skjøth et al., 2011, scenario DEFAULT); (3) a dynamic approach that takes into account Polish practice and less regulation compared to Denmark (POLREGUL); (4) a scenario that focuses on emissions from agricultural buildings (NOFERT). The ammonia emission was implemented into the chemical transport model FRAME (Fine Resolution Atmospheric Multi-pollutant Exchange) and modelled ammonia concentrations were compared with measurements. The results for an agricultural area suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained at a national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a reliable but challenging objective for CTM models that continue to use fixed emission profiles.

  8. Comparative effects of nitrogen fertigation and granular fertilizer application on growth and availability of soil nitrogen during establishment of highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. Bluecrop). Treatments included four methods of N application (split fertigation, ...

  9. Natural regulation of fertility.

    PubMed

    Howie, P W

    1993-01-01

    Natural methods play an important part in the overall control of world fertility. Lactational amenorrhoea makes a very large contribution to fertility control in developing countries and recent advances in our understanding of the biology of lactation and fertility have enabled guidelines to be prepared to help nursing mothers who wish to use the natural contraceptive effect of breastfeeding to space their families. Methods to identify more reliably the fertile phase of the menstrual cycle, possibly using home monitoring of hormone levels in the urine, would greatly increase the applicability of NFP methods. If used effectively, natural family planning can have a high effectiveness rate but all methods are extremely unforgiving of risk-taking in the fertile phase. More research is required to identify those factors which could serve to improve the efficacy of NFP methods. PMID:8324608

  10. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    PubMed

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield. PMID:26685599

  11. MHD augmented chemical rocket propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Schulz, R. J.; Chapman, J. N.; Rhodes, R. P.

    1992-07-01

    A performance analysis is carried out of a magnetohydrodynamic (MHD) augmented chemical thruster (based on a gaseous hydrogen-oxygen system) for space applications such as orbit transfer. The mathematical model used in the analysis is a one-dimensional flow model using equilibrium chemistry for the combustor, choked nozzle, and MHD channel portions of the system, and chemical nonequilibrium kinetics for the high area-ratio gas dynamic nozzle portion of the system. The performance of the chemical-MHD-augmented thruster is compared with that of a pure electric thruster of the same specific impulse level.

  12. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  13. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities.

    PubMed

    Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D

    2012-10-01

    Scientific publications and patents on nanomaterials (NM) used in plant protection or fertilizer products have exponentially increased since the millennium shift. While the United States and Germany have published the highest number of patents, Asian countries released most scientific articles. About 40% of all contributions deal with carbon-based NM, followed by titanium dioxide, silver, silica, and alumina. Nanomaterials come in many diverse forms (surprisingly often ≫100 nm), from solid doped particles to (often nonpersistent) polymer and oil-water based structures. Nanomaterials serve equally as additives (mostly for controlled release) and active constituents. Product efficiencies possibly increased by NM should be balanced against enhanced environmental NM input fluxes. The dynamic development in research and its considerable public perception are in contrast with the currently still very small number of NM-containing products on the market. Nanorisk assessment and legislation are largely in their infancies. PMID:22963545

  14. Understanding emissions of ammonia from buildings and application of fertilizers: an example from Poland

    NASA Astrophysics Data System (ADS)

    Werner, M.; Ambelas Skjøth, C.; Kryza, M.; Dore, A. J.

    2015-01-01

    A Europe-wide dynamic ammonia (NH3) emissions model has been applied for one of the large agricultural countries in Europe, and its sensitivity on the distribution of emissions among different agricultural functions was analysed by comparing with observed ammonia concentrations and by implementing all scenarios in a chemical transport model (CTM). The results suggest that the dynamic emission model is most sensitive to emission from animal manure, in particular how animal manure and its application on fields is connected to national regulations. In contrast, the model is most robust with respect to emission from buildings and storage. To incorporate the national regulations, we obtained activity information on agricultural operations at the sub-national level for Poland, information about infrastructure on storages, and current regulations on manure practice from Polish authorities. The information was implemented in the existing emission model and was connected directly with the NWP calculations from the Weather Research and Forecasting model (WRF-ARW). The model was used to calculate four emission scenarios with high spatial (5 km × 5 km) and temporal resolution (3 h) for the entire year 2010. In the four scenarios, we have compared the Europe-wide default model settings against (1) a scenario that focuses on emission from agricultural buildings, (2) the existing emission method used in WRF-Chem in Poland, and (3) a scenario that takes into account Polish infrastructure and agricultural regulations. The ammonia emission was implemented into the CTM FRAME and modelled ammonia concentrations was compared with measurements. The results suggest that the default setting in the dynamic model is an improvement compared to a non-dynamical emission profile. The results also show that further improvements can be obtained on the national scale by replacing the default information on manure practice with information that is connected with local practice and national regulations. Implementing a dynamical approach for simulation of ammonia emission is a viable objective for all CTM models that continue to use fixed emission profiles. Such models should handle ammonia emissions in a similar way to other climate-dependent emissions (e.g. biogenic volatile organic compounds). Our results, compared with previous results from the DEHM and the GEOS-CHEM models, suggest that implementing dynamical approaches improves simulations in general, even in areas with limited information about the location of the agricultural fields, livestock and agricultural production methods such as Poland.

  15. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  16. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism

  17. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory. The provisions... paper at semi-chemical mills....

  18. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory. The provisions... paper at semi-chemical mills....

  19. Effect of pollinator abundance on self-fertilization and gene flow: application to GM Canola.

    PubMed

    Hoyle, Martin; Hayter, Katrina; Cresswell, James E

    2007-10-01

    Cross-pollination from fields of transgenic crops is of great public concern. Although cross-pollination in commercial canola (Brassica napus) fields has been empirically measured, field trials are expensive and do not identify the causes of cross-pollination. Therefore, theoretical models can be valuable because they can provide estimates of cross-pollination at any given site and time. We present a general analytical model of field-to-field gene flow due to the following competing mechanisms: the wind, bees, and autonomous pollination. We parameterize the model for the particular case of field-to-field cross-pollination of genetically modified (GM) canola via the wind and via bumble bees (Bombus spp.) and honey bees (Apis mellifera). We make extensive use of the large data set of bee densities collected during the recent U.K. Farm Scale Evaluations. We predict that canola approaches almost full seed set without pollinators and that autonomous pollination is responsible for > or = 25% of seed set, irrespective of pollinator abundance. We do not predict the relative contribution of bees vs. the wind in landscape-scale gene flow in canola. However, under model assumptions, we predict that the maximum field-to-field gene flow due to bumble bees is 0.04% and 0.13% below the current EU limit for adventitious GM presence for winter- and spring-sown canola, respectively. We predict that gene flow due to bees is approximately 3.1 times higher at 20% compared to 100% male-fertility, and due to the wind, 1.3 times higher at 20% compared to 100% male-fertility, for both winter- and spring-sown canola. Bumble bee-mediated gene flow is approximately 2.7 times higher and wind-mediated gene flow approximately 1.7 times lower in spring-sown than in winter-sown canola, regardless of the degree of male-sterility. The model of cross-pollination due to the wind most closely predicted three previously published observations: field-to-field gene flow is low; gene flow increases with the proportion of plants that are male-sterile; and gene flow is higher in winter- than in spring-sown canola. Our results therefore suggest that the wind, not bees, is the main vector of long-distance gene flow in canola. PMID:17974346

  20. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    PubMed

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them. PMID:19637602

  1. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    SciTech Connect

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  2. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  3. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  4. Controlling Fertility.

    ERIC Educational Resources Information Center

    Donnay, France

    1991-01-01

    Recent developments in fertility control are presented in relation to the global demographic situation. Discussion focuses on changes in scientific knowledge and concepts that have shifted the focus from birth control to planned parenthood to the notion of controlled fertility. The place of family planning programs, including their socioeconomic

  5. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time. PMID:26219587

  6. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    PubMed

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review. PMID:25924296

  7. [Present situation of rice fertilization in qin-ba mountainous area of Southern Shaanxi, China].

    PubMed

    Wang, Xiao-Ying; Liu, Fen; Tong, Yan-An; Zhao, Zuo-Ping

    2013-11-01

    In order to understand the present situation of rice fertilization and the existing problems in the farmers' nutrient resources input in the Qin-Ba mountainous area of southern Shaanxi, the survey data from 2854 households in 11 counties of this area in the project "soil testing and formulated fertilization in 2006-2009" were analyzed and evaluated, and the countermeasures for the existing problems in the farmers' nutrient resources input were proposed. In the study area, the average rice yield was 7822 kg x hm(-2) per year, and the ratio of the households obtained the medium level yield was up to 50.9%. The input of the total fertilizers N, P2O5, K2O was 169, 68, and 54 kg x hm(-2), and the chemical fertilizer rate was 159, 62, and 45 kg x hm(-2), with the partial factor productivity (PFP) of the N, P2O5, and K2O being 51.52, 135.69, and 158.26 kg x kg(-1), respectively. According to the nutrient fertilization level, the proportion of the households fertilized with rational level of chemical N, P2O5, and K2O occupied 48.0%, 42.4%, and 7.2%, that of the households fertilized with excessive level was 22.6%, 11.2%, and 0.6%, and the proportion of the households fertilized with insufficient level occupied 29.4%, 46.5%, and 92.2%, respectively. The rice yield in the Qin-Ba mountainous area could be increased by 77 thousand tons if the households fertilizing with insufficient level of chemical NPK fertilizers increased the fertilization rate to a rational level. The existing problems in the farmers' nutrient resources input were mainly the coexistence of excessive and insufficient application of nitrogen and phosphate fertilizers and the insufficient input of potassium fertilizer and organic manure. In the rice fertilization in this area, the focus would be the balanced application of nitrogen and phosphate fertilizers, the increase of the fertilization rates of potassium fertilizer and organic manure, and the increase of top dressing, especially potassium. PMID:24564138

  8. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liong-Yu; Neudeck, Phil G.; Knight, Dale; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, Darby; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  9. Chemical Gas Sensors for Aeronautic and Space Applications 2

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  10. Chemical Gas Sensors for Aeronautics and Space Applications III

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; Rauch, W. A.; Hall, G.

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  11. Allele-specific chemical genetics: concept, strategies, and applications.

    PubMed

    Islam, Kabirul

    2015-02-20

    The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed. PMID:25436868

  12. Application of repetitive pulsed power technology to chemical processing

    SciTech Connect

    Kaye, R.J.; Hamil, R.

    1995-12-31

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm{sup 2} in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment.

  13. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  14. Developments and Applications of Membranes in Chemical and Bioprocess Engineering

    NASA Astrophysics Data System (ADS)

    England, Richard

    Membranes are increasingly being used in the chemical and bioprocess industries replacing more conventional separation techniques and as a means of producing high purity intermediates for further processing. Application of membranes in the water industry and waste treatment is also becoming increasingly important as water shortage and environmental problems need to be addressed. An outline of the materials used for the production of membranes and their applications are described. Some of the research into the development of more selective membranes for vapour separations and pervaporation is discussed. An example of the latest work on the development of ceramic hollow fibre membranes is also given.

  15. Applications of neural networks in chemical engineering: Hybrid systems

    SciTech Connect

    Ferrada, J.J.; Osborne-Lee, I.W. ); Grizzaffi, P.A. )

    1990-01-01

    Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applications of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.

  16. Merging applicability domains for in silico assessment of chemical mutagenicity.

    PubMed

    Liu, Ruifeng; Wallqvist, Anders

    2014-03-24

    Using a benchmark Ames mutagenicity data set, we evaluated the performance of molecular fingerprints as descriptors for developing quantitative structure-activity relationship (QSAR) models and defining applicability domains with two machine-learning methods: random forest (RF) and variable nearest neighbor (v-NN). The two methods focus on complementary aspects of chemical mutagenicity and use different characteristics of the molecular fingerprints to achieve high levels of prediction accuracies. Thus, while RF flags mutagenic compounds using the presence or absence of small molecular fragments akin to structural alerts, the v-NN method uses molecular structural similarity as measured by fingerprint-based Tanimoto distances between molecules. We showed that the extended connectivity fingerprints could intuitively be used to define and quantify an applicability domain for either method. The importance of using applicability domains in QSAR modeling cannot be understated; compounds that are outside the applicability domain do not have any close representative in the training set, and therefore, we cannot make reliable predictions. Using either approach, we developed highly robust models that rival the performance of a state-of-the-art proprietary software package. Importantly, based on the complementary approach used by the methods, we showed that by combining the model predictions we raised the applicability domain from roughly 80% to 90%. These results indicated that the proposed QSAR protocol constituted a highly robust chemical mutagenicity prediction model. PMID:24494696

  17. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  18. The subtle danger of symmetry restrictions in time series regressions, with application to fertility models.

    PubMed

    Haynes, S E

    1983-10-01

    It is widely known that linear restrictions involve bias. What is not known is that some linear restrictions are especially dangerous for hypothesis testing. For some, the expected value of the restricted coefficient does not lie between (among) the true unconstrained coefficients, which implies that the estimate is not a simple average of these coefficients. In this paper, the danger is examined regarding the additive linear restriction almost universally imposed in statistical research--the restriction of symmetry. Symmetry implies that the response of the dependent variable to a unit decrease in an expanatory variable is identical, but of opposite sign, to the response to a unit increase. The 1st section of the paper demonstrates theoretically that a coefficient restricted by symmetry (unlike coefficients embodying other additive restrictions) is not a simple average of the unconstrained coefficients because the relevant interacted variables are inversly correlated by definition. The next section shows that, under the restriction of symmetry, fertility in Finland from 1885-1925 appears to respond in a prolonged manner to infant mortality (significant and positive with a lag of 4-6 years), suggesting a response to expected deaths. However, unscontrained estimates indicate that this finding is spurious. When the restriction is relaxed, the dominant response is rapid (significant and positive with a lag of 1-2 years) and stronger for declines in mortality, supporting an aymmetric response to actual deaths. For 2 reasons, the danger of the symmetry restriction may be especially pervasive. 1st, unlike most other linear constraints, symmetry is passively imposed merely by ignoring the possibility of asymmetry. 2nd, modles in a wide range of fields--including macroeconomics (e.g., demand for money, consumption, and investment models, and the Phillips curve), international economics (e.g., intervention models of central banks), and labor economics (e.g., sticky wage models)--predict asymmetry. The conclusion of the study is that, to avoid spurious hypothesis testing, empirical research should systematically test for asymmetry, especially when predicted by theory. PMID:12339352

  19. Application of a multiple-trait, multiple-country genetic evaluation model for female fertility traits.

    PubMed

    Nilforooshan, M A; Jakobsen, J H; Fikse, W F; Berglund, B; Jorjani, H

    2010-12-01

    The need to implement a method that can handle multiple traits per country in international genetic evaluations is evident. Today, many countries have implemented multiple-trait national genetic evaluations and they may expect to have their traits simultaneously analyzed in international genetic evaluations. Traits from the same country are residually correlated and the method currently in use, single-trait multiple across-country evaluation (ST-MACE), cannot handle nonzero residual correlations. Therefore, multiple-trait, multiple across-country evaluation (MT-MACE) was proposed to handle several traits from the same country simultaneously. To test the robustness of MT-MACE on real data, female fertility was chosen as a complex trait with low heritability. Data from 7 Holstein populations, 3 with 2 traits and 4 with 1 trait, were used. The differences in the estimated genetic correlations by MT-MACE and the single ST-MACE analysis (average absolute deviation of 0.064) were due to the bias of considering several traits from the same country in the ST-MACE analysis. However, the differences between the estimated genetic correlations by MT-MACE and multiple ST-MACE analyses avoiding more than one trait per country in each analysis (average absolute deviation of 0.066) were due to the lack of analysis of the correlated traits from the same country together and using the reported within-country genetic correlations. Applying MT-MACE resulted in reliability gain in international genetic evaluations, which was different from trait to trait and from bull to bull. The average reliability gain by MT-MACE over ST-MACE was 3.0 points for domestic bulls and 6.3 points for foreign bulls. Even countries with 1 trait benefited from the joint analysis of traits from the 2-trait countries. Another superiority of MT-MACE over ST-MACE is that the bulls that do not have national genetic evaluation for some traits from multiple trait countries will receive international genetic evaluations for those traits. Rank correlations were high between ST-MACE and MT-MACE when considering all bulls. However, the situation was different for the top 100 bulls. Simultaneous analysis of traits from the same country affected bull ranks, especially for top 100 bulls. Multi-trait MACE is a recommendable and robust method for international genetic evaluations and is appropriate for handling multiple traits per country, which can increase the reliability of international genetic evaluations. PMID:21094772

  20. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Welz, Bernhard

    2014-02-01

    In this work, chemical modifiers in solution (Pd/Mg, NH4H2PO4 and NH4NO3/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH4H2PO4 was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH4NO3/Pd the optimum pyrolysis and atomization temperatures were 900 C and 1900 C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 C and 900 C, respectively, and up to atomization temperature of 1700 C. The limit of detection (LOD) was 17 ng g- 1 using Pd/Mg and 29 ng g- 1 using NH4NO3/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g- 1 Pb for Ir and 10 ng g- 1 Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH4NO3/Pd.

  1. Applications of the Cambridge Structural Database in chemical education1

    PubMed Central

    Battle, Gary M.; Ferrence, Gregory M.; Allen, Frank H.

    2010-01-01

    The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metalorganic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout. PMID:20877495

  2. Release mitigation spray safety systems for chemical demilitarization applications.

    SciTech Connect

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  3. Biochar application to temperate soils - effects on soil fertility and crop yield

    NASA Astrophysics Data System (ADS)

    Kloss, S.; Zehetner, F.; Feichtmair, S.; Wimmer, B.; Zechmeister-Boltenstern, S.; Kitzler, B.; Watzinger, A.; Soja, G.

    2012-04-01

    Biochar (BC) application to soil as a potential soil amendment is currently intensively explored. Depending on feedstock and highest treatment temperature (HTT), BC application to soil may contribute to the soil nutrient status by directly adding nutrients to the soil as well as by increasing pH, cation exchange and water holding capacity. These parameters are known to play an important role in the soil nutrient status and nutrient availability. A positive effect on plant growth after BC application to tropical soils has been observed repeatedly; however, the effect of BC application to soils in temperate climate regions is much less explored. We investigated the effect of BC to temperate soils and crop yield using a randomized pot experiment in a greenhouse with three agricultural soils (Planosol, Cambisol, Chernozem) and four BC types (from straw, mixed woodchips and vineyard pruning, all pyrolyzed at 525C). In order to analyze the effect of pyrolysis temperature, we additionally applied vineyard pruning BC pyrolyzed at 400C. Selected treatments were planted with mustard (Sinapis alba L.), followed by barley (Hordeum vulgare). Soil sampling was carried out after barley harvest. Investigated soil parameters included pH, electrical conductivity (EC), C/N ratio, cation exchange capacity (CEC), CAL-extractable P and K, EDTA extractable Cu, Fe, Mn, Zn as well as nitrogen supplying potential (NSP). Biomass production of the two crops was determined as well as its elemental composition. Biochar application (3% wood-based BC) caused a considerable pH increase for the acidic Planosol. The effect of BC application on CEC was dependent on the original status of the soil, notably soil pH and texture. 3 % BC application (wood) decreased CEC by 3.5 % and 10 % for the Chernozem and Cambisol, respectively, but increased CEC by 35 % for the acidic, sandy Planosol, which may be due to the strong liming effect found for the Planosol. BC application significantly raised CAL-extractable K for all soils. CAL-extractable P only increased in the Planosol and Cambisol at 3% application rate. Mustard yield decreased by 67% for vineyard pruning BC if nitrogen deficiency was not compensated for, straw-derived BC only caused a 2 % decrease of mustard yield. Barley yield was still significantly lower in most BC-treated pots compared to the controls, however, plant yields were less reduced for the second crop. Only straw-derived BC treatments showed a significantly higher barley yield (1955 40 g m-2) compared to the control (1837 70 g m-2). The results of the elemental composition of the barley grains showed that Al uptake in the Planosol significantly decreased after application of wood and straw BC, which may be due to the pH increase after BC application. In addition, Ca uptake in barley grains was significantly higher in the 3% wood BC treatment compared to the control. This may be caused by a higher Ca content of the wood BC as revealed by XRF. Mn uptake, on the other hand, was significantly reduced after BC application.

  4. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low nitrogen use efficiency (NUE) and adverse environmental impacts caused by N fertilization increasingly threaten the sustainability of agriculture. To develop strategies for efficient nutrient management, we investigated the effects of long-term (1991-2005) various fertilization regimes on yield,...

  5. Using hyperspectral data in precision farming applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision farming practices such as variable rate applications of fertilizer and agricultural chemicals require accurate field variability mapping. This chapter investigated the value of hyperspectral remote sensing in providing useful information for five applications of precision farming: (a) Soil...

  6. Corn response to long-term applications of cattle manure, swine effluent, and inorganic nitrogen fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle (Bos taurus) manure and swine (Sus scrofa) effluent are applied to cropland to recycle nutrients, build soil quality, and increase crop productivity. The objective of this study was to determine the long-term effects of land application of cattle manure and swine effluent using the Kansas Nut...

  7. Chemical vapour deposition synthetic diamond: materials, technology and applications

    NASA Astrophysics Data System (ADS)

    Balmer, R. S.; Brandon, J. R.; Clewes, S. L.; Dhillon, H. K.; Dodson, J. M.; Friel, I.; Inglis, P. N.; Madgwick, T. D.; Markham, M. L.; Mollart, T. P.; Perkins, N.; Scarsbrook, G. A.; Twitchen, D. J.; Whitehead, A. J.; Wilman, J. J.; Woollard, S. M.

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  8. Chemical vapour deposition synthetic diamond: materials, technology and applications.

    PubMed

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-09-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product. PMID:21832327

  9. Optics applications of chemical vapor deposited beta-SiC

    NASA Astrophysics Data System (ADS)

    Goela, Jitendra S.; Pickering, Michael A.

    1997-09-01

    The fabrication process, properties and optics applications of transparent and opaque chemical vapor deposited (CVD) (beta) -SiC are reviewed. CVD-SiC is produced by the pyrolysis of methyltrichlorosilane, in excess H2, in a low-pressure CVD reactor. The CVD process has been successfully scaled to produce monolithic SiC parts of diameter up to 1.5-m and thickness 2.5-cm. The characterization of CVD-SiC for important physical, optical, mechanical and thermal properties indicates that it is a superior material for optics applications. Important properties of CVD-SiC are compared with those of the other candidate mirror and window materials. The applications of CVD-SiC for lightweight optics, x-ray telescopes, optical buffers, lens molds, optical standards and windows and domes are discussed in detail.

  10. Chemical Gas Sensors for Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  11. Impact of Organic Amendments with and Without Mineral Fertilizers on Soil Microbial Respiration

    NASA Astrophysics Data System (ADS)

    Gilani, S. S.; Bahmanyar, M. A.

    A field experiment was conducted to study the effects of Sewage Sludge (SS), Municipal Waste Compost (MWC) and Vermicompost (VC) with and without chemical fertilizer (Urea, 50 kg ha-1 + Potassium sulfate, 100 kg ha-1 + Triple super phosphate, 127.5 kg ha-1) on Soil Microbial Respiration (SMR) and Total Organic Carbon (TOC) in a soil cropped to soybean. Experiment was arranged in a complete block design with three replications. Organic amendments were added to soil at rate of 0 (control treatment), 20 and 40 Mg ha-1. Furthermore each level of organic fertilizers with ½ normal of chemical fertilizer was also enriched. Soil samples were taken after one year of fertilization. Results illustrated that application of organic amendments increased TOC and SMR and soybean yield compared to control and chemical fertilizer treatments. Sewage sludge amended soils showed higher SMR, TOC and soybean yield than that of other organic amendment treatments. An increasing trend was observed in all studied parameters, as rates of application increased. All parameters were greater in treatments receiving a combination of chemical fertilizers and organic amendments (enriched treatments) compared to soils receiving organic amendments alone. Results obtained by discriminate analysis indicated that rates of application were more effective to create discriminating among treatments. This study showed that TOC was significantly correlated with SMR. Significant correlation was also observed between SMR and soybean yield.

  12. Study of interfacial phenomena for bio/chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the dissertation focuses on chemical sensing and biosensing applications. For chemical sensing, we describe the characteristics of room temperature ionic liquid (RTIL) as a chemical recognition material and integrate it into the quartz crystal resonator arrays to realize chemically selective microsensor arrays. The quartz crystal resonator array integrated with RTIL doped ionomer is then used to detect the presence of volatile organic compounds (VOCs) and to qualitatively and quantitatively discriminate the composition of VOC mixtures. For multianalyte discrimination, we explored the linear discriminant analysis (LDA) technique. For biosensing application, nanoporous gold (np-Au) fabricated by selectively dealloying Ag/Au alloy, is integrated onto the sensor array as an active Raman substrate to provide a special structure for enhancement of Raman signal. Using thiol based biomolecular functionalization in combination with the quartz crystal resonator array based gravimetric sensing and surface-enhanced Raman spectroscopy (SERS) based molecular identification, both quantitative and qualitative (dual-mode) sensing has been achieved. The use of nanoporous gold electrode enables label-free biomolecular fingerprinting via SERS. 24-mer oligonucleotide binding reaction was investigated to prove the usefulness of np-Au for a possible dual mode sensing application using the proposed sensing system and SERS.

  13. Miniaturised wireless smart tag for optical chemical analysis applications.

    PubMed

    Steinberg, Matthew D; Kassal, Petar; Tkal?ec, Biserka; Murkovi? Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. PMID:24274311

  14. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  15. MATHEMATICAL MODEL OF PLANT UPTAKE AND TRANSLOCATION OF ORGANIC CHEMICALS: APPLICATION TO EXPERIMENTS

    EPA Science Inventory

    Uptake, transport, and accumulation of organic chemicals by plants are influenced by characteristics of the plant and properties of the chemical, soil, and environmental conditions. athematical model for uptake of organic chemicals by plants was calibrated by application to data ...

  16. 40 CFR 414.80 - Applicability; description of the specialty organic chemicals subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specialty organic chemicals subcategory. 414.80 Section 414.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals 414.80 Applicability; description of the specialty organic...

  17. Graphene oxide as a chemically tunable platform for optical applications.

    PubMed

    Loh, Kian Ping; Bao, Qiaoliang; Eda, Goki; Chhowalla, Manish

    2010-12-01

    Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp(2)- and sp(3)-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp(2)-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications. PMID:21107364

  18. Chemical modification of graphene aerogels for electrochemical capacitor applications.

    PubMed

    Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok

    2015-12-14

    Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed. PMID:26536234

  19. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  20. [Effects of herb residue vermicompost on maize growth and soil fertility].

    PubMed

    Li, Jing-Juan; Zhou, Bo; Zhang, Chi; Zhang, Jing; Xu, Huan; Yang, Xiao-Xue; Chen, Xu-Fei; Dai, Jun

    2013-09-01

    A pot experiment was conducted to evaluate the effects of herb residue vermicompost on maize growth and soil fertility. With the increasing application rate of vermicompost, the plant height, stem diameter, leaf area, and chlorophyll content of maize all increased significantly. After 60 days growth of maize, the soil bulk density in most vermicompost treatments decreased significantly. The soil pH in vermicompost treatments was significantly higher than that in CK and in chemical fertilization treatments. In addition, the soil total nitrogen and organic matter contents in vermicompost treatments were obviously higher than those in chemical fertilization treatments. It was suggested that herb residue vermicompost could be used as an efficient and high-quality organic fertilizer, and its appropriate application could improve soil physical structure, alleviate soil acidification, increase soil organic matter and nitrogen contents, and promote crop growth. PMID:24417126

  1. ASSESSMENT OF PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    Perchlorate has been positively detected only in those materials known to be derived from Chilean caliche, which constitute less than 0.2% of U.S. fertilizer application. The data obtained in the preponderance of investigations suggest that fertilizers do not contribute to envir...

  2. GROUNDWATER POLLUTION BY PHOSPHORUS FERTILIZERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a primary nutrient necessary for plant growth. When soil P level is below what is needed for plant needs, P is supplied to the soil by the addition of P fertilizer or organic residuals (i.e., manure). Because of P fertilizer use in the past few decades or application of manure, a g...

  3. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  4. Fertility Preservation

    PubMed Central

    Jensen, Jani R.; Morbeck, Dean E.; Coddington, Charles C.

    2011-01-01

    Of the estimated 1.5 million men and women who were diagnosed as having cancer in 2010, approximately 10% are younger than 45 years. For these individuals, cancer treatment can be lifesaving but can permanently affect reproductive capacity. The American Society of Clinical Oncology has recommended that oncologists discuss the possibility of infertility with reproductive-age cancer patients and offer referral for fertility preservation consultation and therapy. Fertility preservation is an emerging field that offers treatment aimed at protecting future reproductive ability for individuals with cancer or other serious illnesses. Although fertility preservation strategies vary by patient age and sex, many allow patients to store gametes or reproductive tissues for potential future use to create offspring. As an emerging discipline, many questions remain about the role of fertility preservation. We performed a MEDLINE search from 1950 to June 2010 using the following MeSH terms: amenorrhea; antineoplastic agents; ovarian failure; premature; infertility, female; fertility preservation; infertility, male; adolescent and cancer; child and cancer; cryopreservation; and reproductive technologies, assisted. Studies considered for inclusion included those written in English and published before June 2010. PMID:21193655

  5. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    PubMed Central

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-01-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing ?-cyclodextrin (?-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. ?-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8?mM?1s?1 which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs. PMID:24141204

  6. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-10-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing ?-cyclodextrin (?-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. ?-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8 mM-1s-1 which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs.

  7. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  8. Chemical nonequilibrium for interacting bosons: Applications to the pion gas

    SciTech Connect

    Fernandez-Fraile, D.; Gomez Nicola, A.

    2009-09-01

    We consider an interacting pion gas in a stage of the system evolution where thermal but not chemical equilibrium has been reached, i.e., for temperatures between thermal and chemical freeze-out T{sub ther}chemical potential {mu}{sub {pi}} within a diagrammatic thermal field-theory approach, valid in principle for any bosonic field theory in this regime. The resulting Feynman rules are derived here and applied within the context of chiral perturbation theory to discuss thermodynamical quantities of interest for the pion gas such as the free energy, the quark condensate, and thermal self-energy. In particular, we derive the {mu}{sub {pi}}{ne}0 generalization of Luscher and Gell-Mann-Oakes-Renner-type relations. We pay special attention to the comparison with the conventional kinetic theory approach in the dilute regime, which allows for a check of consistency of our approach. Several phenomenological applications are discussed, concerning chiral symmetry restoration, freeze-out conditions, and Bose-Einstein pion condensation.

  9. Near-field fiber optic chemical sensors and biological applications

    NASA Astrophysics Data System (ADS)

    Tan, Weihong; Shi, Zhong-You; Thorsrud, Bjorn A.; Harris, C.; Kopelman, Raoul

    1994-03-01

    Near-field optics has been applied in the nanofabrication of subwavelength optical fiber chemical and biological sensors and their operation in chemical and biological analysis. A thousandfold miniaturization of immobilized optical fiber sensors has been achieved by a near- field photo-nanofabrication technique, which is based on nanofabricated optical fiber tips and near-field photopolymerization. This technique has been further developed by multistep near- field nanofabrication and multidye probe fabrication. Multistep nanofabrication can further miniaturize optical fiber sensors, while multidye fabrication results in multifunctional optic and excitonic probes with extremely small size. These probes emit multiwavelength photons or produce excitons of different energy levels, and may have multiple chemical or biological sensitivities. The nondestructive submicrometer sensor has demonstrated its ability to carry out static and dynamic determinations of pH in intact rat conceptuses of varying gestational ages. The ability of the sensors to measure pH changes, in real time, in the intact rat conceptus, demonstrates their potential applications for dynamic analysis in multicellular organisms and single cells. The near-field interaction of photons with matter is discussed.

  10. LWIR hyperspectral imaging application and detection of chemical precursors

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-10-01

    Detection and identification of Toxic industrial chemicals (TICs) represent a major challenge to protect and sustain first responder and public security. In this context, passive Hyperspectral Imaging (HSI) is a promising technology for the standoff detection and identification of chemical vapors emanating from a distant location. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test Very Long Wave Infrared (VLWIR) HSI sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs), surrogates and precursors. Sensors such as the Improved Compact ATmospheric Sounding Interferometer (iCATSI) and the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) were developed for this application. This paper presents the sensor developments and preliminary results of standoff detection and identification of TICs and precursors. The iCATSI and MoDDIFS sensors are based on the optical differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios are reported. These results serve to establish the potential of passive standoff HSI detection of TICs, precursors and surrogates.

  11. A low-cost chemical sensor for fixed security applications

    NASA Astrophysics Data System (ADS)

    Holland, Stephen K.; Lewin, Gregory C.; Zehr, Robert T.; Baker, Jason D.; Laufer, Gabriel; Krauss, Roland H.

    2006-05-01

    A low-cost infrared sensor that uses room temperature pyroelectric detectors integrated with bandpass filters to provide low-resolution spectral scans of the absorption characteristics of hazardous chemicals was developed for fixed security applications. The sensor provides fast (1 s) and continuous monitoring, detection, and identification capabilities. A unique detection and identification algorithm that uses non-linear computation techniques to account for the exponential nature of optical absorption was developed. Chemical detection and identification is achieved by matching the recorded sensor response vector to an updatable signature library that currently includes the signatures of 14 chemicals. The sensor and algorithm were tested by introducing methanol vapor at optical depths between 225 - 270 ppm-m. Using 1 s signal samples obtained during approximately 20 min. test, resulted in no false positive alarms and 3.4% of false negatives. All false negatives were shown to be due to misidentification of methanol as isopropanol, which is spectrally similar to methanol. By grouping isopropanol with methanol the rate of false negatives was reduced to 0%. Results of the same test using a 30 s signal integration time resulted in no false positive and no false negative alarms.

  12. Chemical nonequilibrium for interacting bosons: Applications to the pion gas

    NASA Astrophysics Data System (ADS)

    Fernndez-Fraile, D.; Gmez Nicola, A.

    2009-09-01

    We consider an interacting pion gas in a stage of the system evolution where thermal but not chemical equilibrium has been reached, i.e., for temperatures between thermal and chemical freeze-out Ttherchemical potential ?? within a diagrammatic thermal field-theory approach, valid in principle for any bosonic field theory in this regime. The resulting Feynman rules are derived here and applied within the context of chiral perturbation theory to discuss thermodynamical quantities of interest for the pion gas such as the free energy, the quark condensate, and thermal self-energy. In particular, we derive the ???0 generalization of Luscher and Gell-Mann-Oakes-Renner-type relations. We pay special attention to the comparison with the conventional kinetic theory approach in the dilute regime, which allows for a check of consistency of our approach. Several phenomenological applications are discussed, concerning chiral symmetry restoration, freeze-out conditions, and Bose-Einstein pion condensation.

  13. Effect of silicon-based fertilizer applications on the reproduction and development of the citrus mealybug (Hemiptera: Pseudococcidae) feeding on green coleus.

    PubMed

    Hogendorp, Brian K; Cloyd, Raymond A; Swiader, John M

    2009-12-01

    Mealybugs are major insect pests of greenhouses, interiorscapes, and conservatories because they feed on a wide-range of horticultural crops. Furthermore, mealybugs are difficult to regulate with insecticides due to the presence of a nearly impervious protective waxy covering, which means that alternative management strategies are required. As such, this study, involving two replicated experiments, was designed to determine the value of applying silicon-based fertilizers, as potassium silicate, to coleus, Solenstemon scutellarioides (L.) Codd, plants as a way to prevent outbreaks of the citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae). The first experiment evaluated the effects of different application methods (foliar and drench), at 50 ppm silicon, using the commercially-available product, ProTek 0-0-3 The Silicon Solution. The second experiment entailed applying the silicon-based fertilizer as a drench to the growing medium at different rates (0, 100, 400, 800, and 1,600 ppm silicon). We determined the effects of the silicon-based fertilizer treatments on citrus mealybug life history parameters including number of eggs laid by the adult female, body size, and developmental time from first instar to ovipositing adult female. Furthermore, we used a plant alkaline fusion technique to assess the concentration (milligrams per kilogram or ppm) of silicon in the coleus plant tissues at variable time intervals (days). In general, this technique involved dry-ashing plant tissue in a muffle furnace, followed by alkaline fusion and then colormetric analysis. The silicon-based fertilizer application treatments, in both experiments, did not negatively affect any of the citrus mealybug life history parameters measured. In the first experiment, citrus mealybug female egg load ranged from 199.5 (drench application) to 219.4 (combination spray and drench application), and developmental time (days) from first instar crawler to ovipositing female ranged from 34.2 (combination spray and drench application) to 35.7 (drench application). For the second experiment, citrus mealybug female egg load ranged from 223.1 (1,600 ppm silicon) to 249.2 (800 ppm silicon). Developmental time from first-instar crawler to ovipositing female ranged from 35.0 (400 ppm silicon) to 36.6 (800 ppm silicon). Our results indicate that coleus is a silicon "rejector," and as such, applications of silicon-based fertilizers may not benefit dicot plants such as coleus as much as monocot plants in regards to avoiding insect pest outbreaks because dicots tend not to accumulate sufficient quantities of silicon. PMID:20069849

  14. Fertilizer-derived uranium and sulfur in rangeland soil and runoff: A case study in central Florida

    USGS Publications Warehouse

    Zielinski, R.A.; Orem, W.H.; Simmons, K.R.; Bohlen, P.J.

    2006-01-01

    Fertilizer applications to rangeland and pastures in central Florida have potential impact on the nutrient-sensitive ecosystems of Lake Okeechobee and the Northern Everglades. To investigate the effects of fertilizer applications, three soil profiles from variably managed and improved rangeland, and four samples of surface runoff from both fertilized and unfertilized pasture were collected. In addition to determining nutrient concentrations, isotopic analyses of uranium (U) and sulfur (S) were performed to provide isotopic evidence for U derived from historically applied phosphate (P)-bearing fertilizer ( 234 U 238U activity ratio =1.0 ?? 0.05), and Sderived from recently applied ammonium sulfate fertilizer(??34 S=3.5permil).The distribution and mobility of fertilizer-derived U in these samples is considered to be analogous to that of fertilizer-derived phosphate.Variations of U concentrations and 234 U/238 U activity ratios in soils indicate contribution of fertilizer-derived U in the upper portions of the fertilized soil (15-}34 percent of total U). The U isotope data for runoff from the fertilized field also are consistent with some contribution from fertilizer-derived U. Parallel investigations of S showed no consistent chemical or isotopic evidence for significant fertilizer-derived sulfate in rangeland soil or runoff. Relatively abundant and isotopically variable S present in the local environment hinders detection of fertilizer-derived sulfate. The results indicate a continuing slow-release of fertilizer-derived U and, by inference, P, to the P-sensitive ecosystem, and a relatively rapid release of sulfate of possible natural origin. ?? Springer 2006.

  15. Interfacial characterization and analytical applications of chemically-modified surfaces

    SciTech Connect

    Wang, J.

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  16. State waste discharge permit application, 200-E chemical drain field

    SciTech Connect

    Not Available

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect ground would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). The Consent Order No. DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. This document presents the State Waste Discharge Permit (SWDP) application for the 200-E Chemical Drain Field. Waste water from the 272-E Building enters the process sewer line directly through a floor drain, while waste water from the 2703-E Building is collected in two floor drains, (north and south) that act as sumps and are discharged periodically. The 272-E and 2703-E Buildings constitute the only discharges to the process sewer line and the 200-E Chemical Drain Field.

  17. Net Mineralization Response to Fertilizer Application and Site-Specific Setting in a No-Till Dryland Wheat Agroecosystem in the Pacific Northwest (USA)

    NASA Astrophysics Data System (ADS)

    Bruner, Emily A.; Brown, David J.; Carpenter-Boggs, Lynn

    2015-04-01

    Application of nitrogen (N) fertilizers is pivotal to maintaining agricultural productivity. Nutrient management is typically guided by a combined assessment of crop yield requirements, residual soil inorganic N concentration, and predicted N supply from organic matter. However, laboratory assays employed to forecast mineralization potential do not reflect in situ processes occurring in soils, processes that can vary spatially within a field. Furthermore, fertilizer application alters biogeochemical cycles through a variety of mechanisms including priming effects and microbial community alterations. This study investigates in-situ ammonification/nitrification rates utilizing mineralization cores as part of a five-year Site-Specific Climate-Friendly Farming (SCF) project. In-depth accounting of nitrate and ammonium production and flux was possible via a six bag mixed-bed ion exchange resin system. Soil cores (7.5 cm diameter by 15 cm deep) were isolated from the surrounding soil by three resin bags sealed in the top and bottom of individual plastic cylinders. Fifteen locations were selected across a commercial direct-seed wheat field based on statistical clustering of primary and secondary topographic variables. In each location surface soil-resin cores were installed in fertilized and unfertilized plots immediately after spring planting and removed before harvest. In situ ammonification/nitrification rates will be analyzed as a function of both fertilizer application and site-specific environmental characteristics as determined from soil moisture monitoring, soil characterization, and crop analysis at each measurement location. This site-specific information on N transformations and availability can then be used to guide site-specific crop management.

  18. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    PubMed

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the bioprocess step and in downstream processing, high prices for fossil fuels and low prices for fermentable sugar. We strongly recommend to develop an integrated White Biotechnology strategy taking into account these four core requirements and other important accompanying activities. PMID:19306570

  19. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production. PMID:25223033

  20. Multifunctional slow-release organic-inorganic compound fertilizer.

    PubMed

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2010-12-01

    Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture. PMID:21058723

  1. A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data

    NASA Astrophysics Data System (ADS)

    Kaivosoja, Jere; Pesonen, Liisa; Kleemola, Jouko; Pölönen, Ilkka; Salo, Heikki; Honkavaara, Eija; Saari, Heikki; Mäkynen, Jussi; Rajala, Ari

    2013-10-01

    Different remote sensing methods for detecting variations in agricultural fields have been studied in last two decades. There are already existing systems for planning and applying e.g. nitrogen fertilizers to the cereal crop fields. However, there are disadvantages such as high costs, adaptability, reliability, resolution aspects and final products dissemination. With an unmanned aerial vehicle (UAV) based airborne methods, data collection can be performed cost-efficiently with desired spatial and temporal resolutions, below clouds and under diverse weather conditions. A new Fabry-Perot interferometer based hyperspectral imaging technology implemented in an UAV has been introduced. In this research, we studied the possibilities of exploiting classified raster maps from hyperspectral data to produce a work task for a precision fertilizer application. The UAV flight campaign was performed in a wheat test field in Finland in the summer of 2012. Based on the campaign, we have classified raster maps estimating the biomass and nitrogen contents at approximately stage 34 in the Zadoks scale. We combined the classified maps with farm history data such as previous yield maps. Then we generalized the combined results and transformed it to a vectorized zonal task map suitable for farm machinery. We present the selected weights for each dataset in the processing chain and the resultant variable rate application (VRA) task. The additional fertilization according to the generated task was shown to be beneficial for the amount of yield. However, our study is indicating that there are still many uncertainties within the process chain.

  2. Proposal of a defense application for a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-05-01

    Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.

  3. Optical fiber chemical sensors at IROE for medical applications

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco

    1994-02-01

    In this paper an overview on the activity developed at IROE in the field of optical fiber sensor for medical applications is given. Bile sensor for monitoring the entero-gastric reflux, pH sensors for the detection of blood and gastric acidity and oxygen sensor, also suitable for the measurement of biological compounds via enzyme reactions, are described. Before the realization of each sensor, a thorough spectrophotometric investigation was undertaken: it has been considered fundamental in the design and planning of the optical fiber chemical sensor, since it allows us to obtain a better understanding of the behavior of the chromophores, immobilized or not, which act as optical transducer in the optrode and therefore, to optimize the optrode from an optical point of view. Moreover, if the final goal of the sensor was the utilization for in vivo measurements, particular attention was paid to the biocompatibility of the optrode.

  4. Application of new physical chemical methods in soil ecological investigations.

    PubMed

    Motuzas, Algirdas; Vaisvalavicius, Rimantas; Prosycevas, Igoris

    2002-01-01

    The article discusses methodological investigations for the improvement and unification of soil testing in combination with the application of complex physico-chemical methods. An analytical procedure involving different extractions was used in order to determine the total and mobile amount of heavy metals (Cd, Cr, Pb, Ni, Cu, Zn, etc.) by atomic absorption spectrophotometry in soil and its fine-dispersive fraction (< 0.005 mm). The average samples (effected upon by background pollution) of Calcari Epihypogleyic Luvisol, (Lvg-p-w-cc, FAO-Unesco, 1998) has been taken from the rotation field of the experimental station of the Lithuanian University of Agriculture Subsequently, a fine-dispersive fraction was separated by a principle of peptization in distilled water. The investigation results obtained have shown a substantial dependence on the extractor used and the amount of fine-dispersive fraction in soil as well. It was found that the greatest reliability of the mobile heavy metal form is by using 1N CH3 COONH4 extractor and an HCl+HF mixture extractor for their total amount. Additionally, for the first time in Lithuania, the X-ray photoelectron spectroscopy (XPS) it has been applied for the interpretation of soil chemical composition. PMID:12638750

  5. Application of physiologically based pharmacokinetic models in chemical risk assessment.

    PubMed

    Mumtaz, Moiz; Fisher, Jeffrey; Blount, Benjamin; Ruiz, Patricia

    2012-01-01

    Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting "in silico" tools such as physiologically based pharmacokinetic (PBPK) models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application-health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The "human PBPK model toolkit" is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures. PMID:22523493

  6. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  7. Direct chemical oxidation: applications to hazardous waste treatment in demilitarization

    SciTech Connect

    Balazs, G B; Cooper, J F; Lewis, P

    1999-05-01

    Several applications of Direct Chemical Oxidation (DCO) relevant to the demilitarization of munitions are reported and evaluated here. The role of low levels of transition metal catalysts on rate of oxidation of organics by peroxydisulfate was investigated, because such materials are normally present in demilitarization wastes and could conceivably alter the rate or effectiveness of DCO. It was found that the presence of transition metal ions of Fe, Co, Cu, and Mn had little or no accelerating effect. Silver alone substantially increased oxidation rate, except where segregated as AgCl by free chloride. The destruction of trace explosives on metal substrates (mild steel, copper and brass) was found to be effective in basic media, where the peroxydisulfate prevented corrosion of the base metal (anodic chemical passivation) without impeding oxidation of the organic explosive. A method of detection of completeness of reaction (based on mass- spectroscopic detection of the intermediate oxidation product, formaldehyde) was proposed. Rate data on the destruction of 2,4,6-trinitrotoluene by acidified ammonium peroxydisulfate is reported. Appended to the report is a comprehensive bibliography on DCO.

  8. Application of Metabolomics to Multiple Chemical Sensitivity Research.

    PubMed

    Katoh, Takahiko; Fujiwara, Yuki; Nakashita, Chihiro; Lu, Xi; Hisada, Aya; Miyazaki, Wataru; Azuma, Kenichi; Tanigawa, Mari; Uchiyama, Iwao; Kunugita, Naoki

    2016-01-01

    Multiple chemical sensitivity (MCS) is an acquired chronic disorder characterized by nonspecific symptoms in multiple organ systems associated with exposure to low-level chemicals. Diagnosis of MCS can be difficult because of the inability to assess the causal relationship between exposure and symptoms. No standardized objective measures for the identification of MCS and no precise definition of this disorder have been established. Recent technological advances in mass spectrometry have significantly improved our capacity to obtain more data from each biological sample. Metabolomics comprises the methods and techniques that are used to determine the small-level molecules in biofluids and tissues. The metabolomic profile-the metabolome-has multiple applications in many biological sciences, including the development of new diagnostic tools for medicine. We performed metabolomics to detect the difference between 9 patients with MCS and 9 controls. We identified 183 substances whose levels were beyond the normal detection limit. The most prominent differences included significant increases in the levels of both hexanoic acid and pelargonic acid, and also a significant decrease in the level of acetylcarnitine in patients with MCS. In conclusion, using metabolomics analysis, we uncovered a hitherto unrecognized alteration in the levels of metabolites in MCS. These changes may have important biological implications and may have a significant potential for use as biomarkers. PMID:26832623

  9. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  10. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  11. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  12. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills....

  13. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  14. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  15. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of...) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of...

  16. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of...) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of...

  17. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.70 Applicability; description of the bulk organic chemicals...

  18. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of...) PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of...

  19. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.70 Applicability; description of the bulk organic chemicals...

  20. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.70 Applicability; description of the bulk organic chemicals...

  1. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals § 414.70 Applicability; description of the bulk organic chemicals...

  2. Phosphorus content in long-term fertilized soils

    NASA Astrophysics Data System (ADS)

    Pizzeghello, D.; Morari, F.; Berti, A.; Nardi, S.; Giardini, L.

    2009-04-01

    Phosphorous (P) is often considered a limiting nutrient in crop production. However, particularly in intensive livestock and pig farming areas large surplus of P inputs associated with manure application to agricultural soils may result in an excessive P accumulation and a consequent gradual saturation of the soil P-sorption capacity. This event must be discouraged in order to contain possible eutrophication. In this study we investigated the impact of a long-term fertilization experiment on the accumulation in soil of different form of P. The experiment has been underway since 1964 on the University of Padova Experimental farm. The treatments derived from the factorial combination of 3 types of soil (clay, sandy and peaty) with 3 types of mineral, organic or mixed fertilization, organized in two randomized blocks. A total of 36 lysimeters (surface of 4 m2 and 80 cm deep) were cultivated. Fertilization rates were as follows: 0, no fertilization; F1 manure (20 t ha-1 y-1); M1, mineral fertilization (100 kg ha-1 y-1 N); F1M1, manure (20 t ha-1 y-1) + mineral fertilization (100 kg ha-1 y-1 N); F2 manure (40 t ha-1 y-1); M2, mineral fertilization (200 kg ha-1 y-1 N - 100 P2O5 - 280 K2O). Soil samples were taken using a 2-cm diameter auger from 0 to 100 cm depth, every 10 cm. P was analysed in term of total, organic and available (Olsen) phosphorus. Only treatments 0, M2 and F2 were subjected to soil sampling and chemical analyses. Results showed as the variables were affected by all the factors considered (treatment, soil and depth). Both farmyard manure and mineral fertilization increased the P content in function of soil types. In particular, as concerning the interaction between fertilization and depth, manure as well as mineral fertilization influenced the available P along soil profiles. The long-term fertilizer applications increased the P content at a level which resulted potentially hazardous for the environment.

  3. Metal clad leaky waveguides for chemical and biosensing applications.

    PubMed

    Zourob, Mohammed; Goddard, Nicholas J

    2005-03-15

    Novel metal clad leaky waveguide (MCLW) sensor devices have been developed for sensing applications. These chips are designed to confine the light in a low refractive index waveguide that encompasses the chemically-selective layer, maximising the overlap between the optical mode and the chemistry, thus improving the sensitivity. In this work, a thin metal layer was inserted between the substrate and the thick waveguide layer, increasing the reflectivity of the waveguide/metal interface and decreasing the light lost at each of reflection in the leaky mode, which in turn increases the propagation distance. The device has been used for a range of biosensing applications, including the detection of organophosphoros pesticides. The limit of detection for paraoxon, based on absorbance detection, was calculated to be 6 nM. Refractive index detection was demonstrated by monitoring the change in the out-coupled angle resulting from the binding of protein A to anti-protein A immobilized on agarose. The sensor was also used for detecting the quenching of the fluorescence of an acid-base sensitive ruthenium complex immobilized within the sol-gel and with glucose oxidase enzyme. The limit of detection for glucose was 3 microM. The advantage of using the metal layer in the MCLW was that an electrical potential could be applied to accelerate the diffusion of the analyte to the immobilised antibody, which resulted in a shortened analysis time and a reduction in non-specific binding. PMID:15681186

  4. Intelligent Chemical Sensor Systems for In-space Safety Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  5. Applications of Chemical Shift Imaging to Marine Sciences

    PubMed Central

    Lee, Haakil; Tikunov, Andrey; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The successful applications of magnetic resonance imaging (MRI) in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT) or positron emission (PET) scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS). MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H) including carbon (13C) or phosphorus (31P). In vivo MR spectra can be obtained from single region of interest (ROI or voxel) or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI). Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism. PMID:20948912

  6. [Effects of applying controlled-release fertilizer blended with conventional nitrogen fertilizer on Chinese cabbage yield and quality as well as nitrogen losses].

    PubMed

    Yang, Jun-gang; Xu, Kai; Tong, Er-jian; Cao, Bing; Ni, Xiao-hui; Xu, Jun-xiang

    2010-12-01

    An open field experiment was conducted to study the effects of applying controlled-release fertilizer blended with rapidly available chemical N fertilizer on Chinese cabbage yield and quality as well as nitrogen losses, including ammonia volatilization and NO3- -N accumulation and leaching in Beijing suburb. The results showed that a combined application of 2:1 controlled-release fertilizer and urea fertilizer (total N rate 150 kg x hm(-2)) did not induce the reduction of Chinese cabbage yield, and decreased the leaf nitrate and organic acid contents significantly, compared with conventional urea N application (300 kg x hm(-2)), and had no significant difference in the cabbage yield and leaf nitrate content, compared with applying 150 kg x hm(-2) of urea N. The combined application of 2:1 controlled-release fertilizer and urea fertilizer improved the N use efficiency of Chinese cabbage, and reduced the ammonia volatilization and NO3- -N leaching. At harvest, the NO3- -N concentrations in 20-40, 60-80 and 80-100 cm soil layers were significantly lower in the combined application treatment than in urea N treatment. PMID:21443002

  7. Tillage and Fertilizer Application Methods Effects on Greenhouse Gas Flux (CO2, CH4 and N2O)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. Thus, a field experiment was conducted at the Sand Mountain Research Station located in the Appalachian Plateau region of Northeast Alabama on a Hartsells fine sandy loam. Measure...

  8. Organic and inorganic inputs and losses in an irrigated corn field after inorganic fertilizer or manure application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC an...

  9. Effects of swine lagoon effluent relative to commercial fertilizer applications on warm-season forage nutritive value

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to evaluate the effects of variable rates of swine lagoon effluent and fertilizer on the quality parameters of forage grasses grown on an acid Vaiden silty clay (very fine, montmorillonitic, thermic, Vertic Hapludalf) and an alkaline Okolona silty clay (fine, montmor...

  10. 77 FR 70188 - Manufacturer of Controlled Substances; Notice of Application; Cayman Chemical Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Cayman Chemical... that on September 25, 2012, Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, Michigan... controlled substances for distribution to their research and forensics customers conducting drug testing...

  11. 40 CFR 455.20 - Applicability; description of the organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR 124.8. ... organic pesticide chemicals manufacturing subcategory. 455.20 Section 455.20 Protection of Environment... Organic Pesticide Chemicals Manufacturing Subcategory § 455.20 Applicability; description of the...

  12. 40 CFR 455.20 - Applicability; description of the organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR 124.8. ... organic pesticide chemicals manufacturing subcategory. 455.20 Section 455.20 Protection of Environment... Organic Pesticide Chemicals Manufacturing Subcategory § 455.20 Applicability; description of the...

  13. 40 CFR 455.20 - Applicability; description of the organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR 124.8. ... organic pesticide chemicals manufacturing subcategory. 455.20 Section 455.20 Protection of Environment... Organic Pesticide Chemicals Manufacturing Subcategory § 455.20 Applicability; description of the...

  14. Center-pivot irrigation system for independent site-specific management of water and chemical application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of lateral-move and center-pivot irrigation systems equipped for spatially variable water application and those equipped with an independent chemical application system have largely evolved independently. Integration of independent site-specific water and chemical application with l...

  15. Changes in the biological activity of chestnut soils upon the long-term application of fertilizers in a rotation with oil-bearing crops

    NASA Astrophysics Data System (ADS)

    Eleshev, R. E.; Bakenova, Z. B.

    2012-11-01

    Experimental studies showed that irrigated chestnut soils on the piedmont of the Zailiiskiy Alatau Range are characterized by the moderate activity of the hydrolytic and redox enzymes. The use of these soils in the crop rotation system increases the hydrolytic activity of the enzymes (invertase, urease, and ATP synthase) by 30% in comparison with the monoculture; at the same time, it does not have a significant impact on the changes in the biological activity of the redox enzymes (catalase and dehydrogenase). The hydrolytic activity of the soils is activated to a greater extent in the crop rotation and in the monoculture against the background application of organic fertilizers. In this case, the recommended rates of mineral fertilizers do not inhibit the activity of the hydrolytic and redox enzymes. An increase in the hydrolytic activity of the enzymes directly affects the yield of oilseed flax. Therefore, indices of the hydrolytic activity of soils can be used as a test for the diagnostics of the efficiency of fertilizers both in crop rotation and monoculture systems.

  16. Terahertz spectroscopy for chemicals and biological sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bo

    Terahertz (THz) radiation offers innovative sensing and imaging technologies that can provide information unavailable through other conventional electromagnetic techniques. With the advancement of THz technologies, THz sensing will impact a broad range of areas. This thesis focuses on the use of THz spectroscopy for sensing applications including explosives detection, pharmaceutical identification and biological characterization. Using both a THz time-domain spectroscopy (THz-TDS) system and a Fourier transform far-infrared spectrometer (FT-FIR), a THz spectral database of explosives and related compounds (ERCs) in the range of 0.1-20 THz was established. The transmission measurements show good agreement with the diffuse reflectance measurements, which are more feasible for practical applications. Density Functional Theory was employed to calculate structures and vibrational modes of several important ERCs and the calculated spectra are in good accordance with the experimental data in the 3-20 THz range. The detection and identification of the explosive RDX using diffusely reflected THz waves were also demonstrated. THz-TDS was applied successfully for pharmaceutical study, such as investigating drug interactions, as well as identifying hydrated and anhydrous drugs, based upon the intermolecular vibrational modes of drug substances. Dehydrations and complex solid state reactions of pharmaceutical materials were studied with THz-TDS and the reaction kinetics was successfully probed. These investigations have opened new avenues for using THz technologies in pharmaceutical science and industry. THz spectra of amino acids, purines and other biomolecules were recorded. Most of these solid-state biocompounds have THz spectral features in the 0.1-3.0 THz range. THz spectroscopy of solid-state proteins and bioactive protein micro suspensions in organic media was studied and their THz absorption features may reflect their collective vibrational modes which could be used to probe their functional 3D conformation states. Owing to the high sensitivity of differential THz-TDS, it was successfully used to sense the minute change of biological cell monolayers. The results point to a new way for biosensing applications via differential THz-TDS. As a powerful sensing technique, THz spectroscopy will continue to make profound contribution to the understanding of basic physics, chemistry and biology problems, as well as to the technological applications in chemical and biomedicine sensing areas.

  17. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  18. [Effects of fertilization on the P accumulation and leaching in vegetable greenhouse soil].

    PubMed

    Zhao, Ya-jie; Zhao, Mu-qiu; Lu, Cai-yan; Shi, Yi; Chen, Xin

    2015-02-01

    A packed soil column experiment was conducted to investigate the effect of different fertilization practices on phosphorus (P) accumulation and leaching potential in a vegetable greenhouse soil with different fertility levels. The results showed that the leaching loss of total P in the leachates elevated with the increment of leaching time while the accumulative leaching loss of total P was relatively low, indicating P was mainly accumulated in the soil instead of in the leachate. At the end of the leaching experiment, soil fertility and fertilization treatment affected the content of total phosphorus and Olsen-P significantly. Compared with the low-level-fertility soil, the contents of total P and Olsen-P increased by 14.3% and 12.2% in the medium-level-fertility soil, 33.3% and 37.7% in the high-level-fertility soil. Total P in the combined application of poultry manure and chemical fertilizer (M+NPK) was elevated by 5.7% and 4.3%, compared with the NPK and M treatment. Compared with NPK treatment, Olsen-P in M and M + NPK treatments augmented by 13.0% and 3.1%, respectively. Soil total P and Olsen-P mainly accumulated in the 0-10 cm and 10-20 cm soil layers, and much less in the 20-40 cm soil layer. PMID:26094462

  19. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; Hall, G.

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  20. [Content and evolution characteristics of organic carbon associated with particle-size fractions of grey desert soil under long-term fertilization].

    PubMed

    Liu, Hua; Tong, Xiao-Gang; Ma, Xing-Wang; Wang, Xi-He; Zhang, Wen-Ju; Xu, Yong-Mei; Xu, Ming-Gang

    2010-01-01

    Physical fractionation technique was used to analyze the content, distribution, and temporal evolution of organic carbon associated with particle-size fractions of grey desert soil under long-term (1990-2007) fertilization. Compared with no fertilization, a combined application of manure and chemical fertilizers increased the organic carbon associated with particle-size fractions significantly, with the highest increment (0.34 g x kg(-1) x a(-1)) in sand. Following also increased the organic carbon associated with clay and silt significantly. Straw return to cropland only maintained the organic carbon content in different particle-size fractions, while long-term application of chemical fertilizers was not beneficial to the organic carbon increase in particle-size fractions. Coarse silt and coarse clay had the highest distribution rates of organic carbon (27.9% and 27.1%, respectively), being the important fractions in sequestrating organic carbon. When manure was applied with chemical fertilizers, the organic carbon in sand was significantly increased by 119.4%, while that in fine silt and coarse clay was significantly decreased by 40.3% and 37.9%, respectively, which resulted in the increase in the ratio of particulate organic carbon content (W(POC)) to mineral-associated organic carbon content (W(MOC)), and improvd soil carbon property. Long-term application of manure combined with chemical fertilizers was the best mode to increase the organic carbon content in particle-size fractions and improve the fertility of grey desert soil. PMID:20387428

  1. Chemical vapor deposition of silver films for superconducting wire applications

    SciTech Connect

    Shapiro, M.J.

    1991-01-01

    Chemical vapor deposition (CVD) was used to deposit silver films for superconducting wire applications. Silver halide and silver organometallic reagents were initially tested for use as CVD precursors. AgI, silver trifluoroacetate (Ag(TFA)), and perfluoro-1-methylpropenylsilver (Ag(PF)) produced the most promising silver films. CVD processing was optimized on these three precursors to produce the best possible silver films. Thermodynamic calculations were preformed using a modified version of the SOLGASMIX-PV computer program to assist the optimization studies. The model tested the effects of temperature, pressure, and hydrogen concentration on the CVD process. Experiments done with AgI, Ag(TFA), and Ag(PF) were compared to the results of the program. Ag(PF) was found to produce continuous silver films by CVD at 300 C and 30 torr. YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) was deposited on top of the silver films and silver was deposited on top of YBCO. A fiber which contained a silver barrier layer and a YBCO overlayer was found to be a superconductor at 72 K.

  2. Direct chemical oxidation: applications to demilitarization and decontamination

    SciTech Connect

    Cooper, J.F.; Balazs, B.; Lewis, P.

    1998-04-01

    The applicability of using aqueous solutions of sodium peroxydisulfate in the destruction of mustard gas surrogates has been demonstrated. This technique, known as Direct Chemical Oxidation (DCO), resulted in oxidative destruction of these surrogates, and a refinement was added to prevent the formation of slow-to-oxidize intermediates. Specifically, it was shown that `one-armed mustard` gas could be hydrolyzed to thiodiethanol and free chloride ion, and this species could then be partially oxidized to either the sulfoxide or sulfone depending on oxidant stoichiometry. Hydrolysis was accomplished on a mild basic solution at ambient temperature over a number of hours; oxidation was carried out at 90{degrees}C using peroxydisulfate solutions, Partial oxidation of thiodiethanol in the presence of chloride under basic conditions resulted in a a substantially pure mixture of the corresponding sulfone and sulfoxide, with no formation of chlorine gas. Analogous experiments in acid solutions produced a more complex mix of products and some oxidant was consumed in the evolution of chlorine. Complete destruction of the surrogates (to ppm level of detection) was achieved in either acid or base solution with less than a 7-fold excess of oxidant.

  3. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils.

    PubMed

    Zhu, Xia; Silva, Lucas C R; Doane, Timothy A; Wu, Ning; Horwath, William R

    2013-01-01

    Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission. For soils in which compost caused a decrease in emission, this decrease was larger than any of the observed increases in the other soils. The five most important factors driving emission across all soils, in order of increasing importance, were native dissolved organic carbon (DOC), treatment-induced change in DOC, native inorganic N, change in pH, and soil iron (Fe). Notable was the prominence of Fe as a regulator of NO emission. In general, compost is a viable amendment, considering the agronomic benefits it provides against the risk of producing a small increase in NO emissions. However, if soil properties and conditions are taken into account, management can recognize the potential effect of compost and thereby reduce NO emissions from susceptible soils, particularly by avoiding application of compost under wet conditions and together with ammonium fertilizer. PMID:23673959

  4. Soil with a short history of poultry litter fertilization remains superior to normally fertilized soil for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has shown poultry litter is a superior fertilizer for cotton and other row crops. The productivity of soil that had received poultry litter as a fertilizer is not known after cessation of litter application and returning to conventional fertilization with inorganic fertilizers. This study ...

  5. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region.

    PubMed

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang

    2016-03-01

    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion. PMID:26517994

  6. Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale soil application of biochar might enhance soil fertility and increase crop production, while also sequestering atmospheric carbon. Reaching these outcomes requires an undertanding of the chemical structure of biochar. Using advanced solid-state 13C nuclear magnetic resonance spectroscopy...

  7. P-31 NMR characterization of fertilizer residual P in cotton/corn fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an essential plant nutrient. However, over application of P to soils has raised concerns because excess P in runoff could result in eutrophication of fresh water bodies. A field experiment of poultry litter (PL) and chemical fertilizer (CF) to a Cecil soil used for cotton and corn...

  8. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the bulk organic chemicals subcategory. 414.70 Section 414.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Bulk Organic Chemicals §...

  9. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PESTICIDE CHEMICALS Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of...

  10. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Chemical milling maskant... Standards: Chemical milling maskant application operations. (a) Each owner or operator of a new or existing chemical milling maskant operation subject to this subpart shall comply with the requirements specified...

  11. Chemical consolidation for roadway surrounding rock - it`s theory and applications

    SciTech Connect

    Jinhua Wang; Wei Chen; Jiling Feng

    1996-12-01

    Based on engineering examples and theoretical analysis, the mechanism of chemical consolidation for fractured roadway surrounding rock was discussed. The chemical consolidating materials and three consolidating methods, that is, capsule, forced infusion and spraying, were introduced. Finally the application effects of the chemical consolidating technique to reinforce the fractured surrounding rock of roadways were analyzed.

  12. 40 CFR 414.60 - Applicability; description of the commodity organic chemicals subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commodity organic chemicals subcategory. 414.60 Section 414.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.60 Applicability; description of the commodity organic...

  13. 40 CFR 414.80 - Applicability; description of the specialty organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specialty organic chemicals subcategory. 414.80 Section 414.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.80 Applicability; description of the specialty organic...

  14. 40 CFR 414.60 - Applicability; description of the commodity organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commodity organic chemicals subcategory. 414.60 Section 414.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.60 Applicability; description of the commodity organic...

  15. 40 CFR 414.80 - Applicability; description of the specialty organic chemicals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specialty organic chemicals subcategory. 414.80 Section 414.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.80 Applicability; description of the specialty organic...

  16. 40 CFR 414.60 - Applicability; description of the commodity organic chemicals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commodity organic chemicals subcategory. 414.60 Section 414.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.60 Applicability; description of the commodity organic...

  17. 40 CFR 414.60 - Applicability; description of the commodity organic chemicals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commodity organic chemicals subcategory. 414.60 Section 414.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.60 Applicability; description of the commodity organic...

  18. 40 CFR 414.60 - Applicability; description of the commodity organic chemicals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commodity organic chemicals subcategory. 414.60 Section 414.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Commodity Organic Chemicals § 414.60 Applicability; description of the commodity organic...

  19. 40 CFR 455.30 - Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metallo-organic pesticide chemicals manufacturing subcategory. 455.30 Section 455.30 Protection of... Metallo-Organic Pesticide Chemicals Manufacturing Subcategory § 455.30 Applicability; description of the metallo-organic pesticide chemicals manufacturing subcategory. The provisions of this subpart...

  20. 40 CFR 414.80 - Applicability; description of the specialty organic chemicals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specialty organic chemicals subcategory. 414.80 Section 414.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.80 Applicability; description of the specialty organic...

  1. 40 CFR 414.80 - Applicability; description of the specialty organic chemicals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specialty organic chemicals subcategory. 414.80 Section 414.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Specialty Organic Chemicals § 414.80 Applicability; description of the specialty organic...

  2. Chemical, physical and mechanical properties of nanomaterials and its applications

    NASA Astrophysics Data System (ADS)

    Ghorai, Suman

    The contribution of atmospheric aerosols towards radiative forcing has a very high uncertainty due to their short atmospheric lifetime. The aerosol effects are largely controlled by the density, elemental composition, and hygroscopic properties of the aerosol particles. Therefore, we have performed designed new methodology using Scanning Transmission X-ray Microscopy (STXM), Atomic force spectroscopy (AFM), micro-FTIR spectroscopy and Scanning Electron Microscopy (SEM) to quantify these important aerosol properties. Hygroscopic properties are quantified by plotting the mass of water on a single particle basis, calculated from STXM, as a function of relative humidity. Alternatively, micro-FTIR spectra have been used to study the effect of composition of aerosol particles on the hygroscopic properties of NaCl. Moreover, a unique combination of STXM and AFM has been utilized to quantify density and elemental composition of micrometer dimensional particles. This method has also been extended towards exploring mixing state of particles, consisting of heterogeneously mixed inorganic and organic compounds. In addition to these above mentioned properties, the fate of an atmospheric particle is often altered by chemical transformation and that in turn is influenced by the atmospheric RH. Therefore, we have studied an unusual keto-enol tautomerism in malonic acid particles at high RH, which is not observed in bulk. This observation could potentially be utilized to significantly improve the models to estimate Secondary Organic Aerosols (SOA). Using STXM and micro-FTIR technique, RH dependent equilibrium constant of the tautomerism reaction has been quantified as well. Organic nanocrystals capable of undergoing solid state photochemical changes in a single-crystal-to-single-crystal (SCSC) manner have been particularly important in fabricating molecular switches, data storage devices etc. Mechanical properties of these nanomaterials may control its SCSC reactivity. In addition, investigation of mechanical stiffness is important to define allowable limit of stiffness towards device application. Therefore, we studied mechanical properties of series organic nano cocrystals primarily consisting of trans-1,2-bis(4-pyridyl)ethylene and substituted resorcinol using AFM nanoindentation technique. Dependence of mechanical properties and SCSC reactivity on the resorcinol structure is also investigated as well. Moreover, photolithography on the thin film of these organic cocrystals has been performed to demonstrate its applicability as a photoresist.

  3. Application of Photoacoustic Effect to Chemical Kinetics in Solution.

    NASA Astrophysics Data System (ADS)

    Cheng, Huy-Zu.

    The application of the pulsed photoacoustic technique (PA) to the study of chemical kinetics in very dilute solutions is demonstrated with three different reactions: A bidental ligand substitution of 1,2-bi(diphenylphosphino) ethane on the five-coordinate cobalt dithiolene complex, a nucleophilic addition of tributyl phosphite to (p-(dimethylamino)triphenyl)methyl cation, and an enzyme catalyzed reduction of nicotinamide adenine dinucleotide by glucose-6-phosphate. Photoacoustic detection is shown to be 100 times more sensitive than spectrophotometric detection. As a consequence, it allows one to use lower reactant concentrations so that the time scale for the corresponding fast reactions can be lengthened. The pulsed PA technique also provides an alternative method for the direct determination of reverse rate constants and equilibrium constants of reactions. Moreover, Michaelis constants of biochemical reactions, especially for enzymes whose K_{rm m} values is below 1.0 muM, can be measured more accurately using photoacoustic detection than using spectrophotometric detection. Additionally, the pulsed PA method can be very valuable for the study of reactions that are restricted by the low solubility, availability, or high cost of reactants. The sensitivity of the PA method is found to be limited by the background signal resulting from solvents. Photoacoustic signals generated in strongly absorbing media are also studied and results are in agreement with the theory developed by G. J. Diebold. From the time profile of the acoustic signal, the absorption coefficient of strongly absorbing medium can be determined provided the sound speed is known. Since the pulse shape of the acoustic transient depends upon the relative density and the acoustic velocity of the transparent and the strongly absorbing media, the physical properties of the transparent medium can also be determined with the use of the PA technique.

  4. Characterization of ammonia borane for chemical propulsion applications

    NASA Astrophysics Data System (ADS)

    Weismiller, Michael

    Ammonia borane (NH3BH3; AB), which has a hydrogen content of 19.6% by weight, has been studied recently as a potential means of hydrogen storage for use in fuel cell applications. Its gaseous decomposition products have a very low molecular weight, which makes AB attractive in a propulsion application, since specific impulse is inversely related to the molecular weight of the products. AB also contains boron, which is a fuel of interest for solid propellants because of its high energy density per unit volume. Although boron particles are difficult to ignite due to their passivation layer, the boron molecularly bound in AB may react more readily. The concept of fuel depots in low-earth orbit has been proposed for use in deep space exploration. These would require propellants that are easily storable for long periods of time. AB is a solid at standard temperature and pressure and would not suffer from mass loss due to boil-off like cryogenic hydrogen. The goal of this work is to evaluate AB as a viable fuel in chemical propulsion. Many studies have examined AB decomposition at slow heating rates, but in a propellant, AB will experience rapid heating. Since heating rate has been shown to affect the thermolysis pathways in energetic materials, AB thermolysis was studied at high heating rates using molecular dynamics simulations with a ReaxFF reactive force field and experimental studies with a confined rapid thermolysis set-up using time-of-flight mass spectrometry and FTIR absorption spectroscopy diagnostics. Experimental results showed the formation of NH3, H2NBH2, H2, and at later times, c-(N3B3H6) in the gas phase, while polymer formation was observed in the condensed phase. Molecular dynamics simulations provided an atomistic description of the reactions which likely form these compounds. Another subject which required investigation was the reaction of AB in oxidizing environments, as there were no previous studies in the literature. Oxygen bond descriptions were added to the ReaxFF force field and molecular dynamics simulations were performed to identify important species and reactions in the AB oxidation. Since the thermodynamic properties of many of these species were unknown, density functional theory (DFT) calculations were performed in the Jaguear 7.8 program using the B3LYP functional and 6-311G**++ basis set to calculate enthalpy and entropy of formation, as well as specific heat as a function of temperature. These results were used to create a gas-phase chemical kinetic mechanism for AB combustion. New elementary reactions (57) were combined with those found in the literature for ammonia and boron oxidation, to form a mechanism of 201 reversible reactions. Results from a simple homogenous, constant pressure and energy calculation are presented in this work. The results show that H2NBH2 can be dehydrogenated via radical attack when temperatures are too low to overcome the hydrogen elimination barrier and pressures are low enough to allow sufficient radicals to form. Molecular dynamics calculations require very high pressures to facilitate reactions over a short simulation time, and show the formation of heavy B/N/H/O molecules, such as HNBOH and H2NB(OH)2. On the other hand, the chemical kinetics calculations at 1 atm show that if the HNBO molecule is further oxidized, the products will likely fission with B-N bond cleavage. The final objective towards the research goal was to study how AB can be effectively integrated into a propulsion application. AB was added to a paraffin wax binder to form a heterogeneous solid fuel matrix. Opposed-flow burner experiments were performed where a flow of gaseous oxygen was impinged on the solid fuel surface and regression rates were measured. Regression rates were shown to increase with small additions of AB, but the condensed phase product build-up at higher AB concentrations limited the solid fuel regression. Solid fuel grains with various amounts of AB were manufactured and tested in a lab scale hybrid rocket engine, where performance parameters such as thrust, chamber pressure, specific impulse (Isp) and characteristic exhaust velocity (C*), were measured. AB addition was shown to increase I sp and C*, but large additions were shown to reduce the overall thrust due to the hindrance of the solid fuel regression.

  5. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. PMID:26657371

  6. Definition and applications of a versatile chemical pollution footprint methodology.

    PubMed

    Zijp, Michiel C; Posthuma, Leo; van de Meent, Dik

    2014-09-16

    Because of the great variety in behavior and modes of action of chemicals, impact assessment of multiple substances is complex, as is the communication of its results. Given calls for cumulative impact assessments, we developed a methodology that is aimed at expressing the expected cumulative impacts of mixtures of chemicals on aquatic ecosystems for a region and subsequently allows to present these results as a chemical pollution footprint, in short: a chemical footprint. Setting and using a boundary for chemical pollution is part of the methodology. Two case studies were executed to test and illustrate the methodology. The first case illustrates that the production and use of organic substances in Europe, judged with the European water volume, stays within the currently set policy boundaries for chemical pollution. The second case shows that the use of pesticides in Northwestern Europe, judged with the regional water volume, has exceeded the set boundaries, while showing a declining trend over time. The impact of mixtures of substances in the environment could be expressed as a chemical footprint, and the relative contribution of substances to that footprint could be evaluated. These features are a novel type of information to support risk management, by helping prioritization of management among chemicals and environmental compartments. PMID:25111657

  7. Chemical named entities recognition: a review on approaches and applications

    PubMed Central

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132

  8. Applications of quantum cascade lasers in chemical sensing

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Deev, Andrei; Tang, Yongchun

    2010-09-01

    We show new results in modulating and modifying Quantum Cascade (QC) lasers to make them more suitable for chemical sensing spectroscopy. Spectroscopy results using QC lasers are demonstrated with whispering gallery mode CaF2 disc/ball, saturated absorption in hollow waveguide and direct chemical analysis in water.

  9. Cars applications in chemical reactors, combustion and heat transfer

    NASA Astrophysics Data System (ADS)

    Greenhalgh, D. A.; Porter, F. M.

    1986-08-01

    This paper illustrates the use of the CARS technique in the fields of Chemical Reactor engineering, combustion and Heat Transfer. Examples of recent results from a catalytic chemical reactor, an operating production petrol engine and an oil spray furnace are given. The experimentally determined accuracy of CARS nitrogen thermometry for both mean and single pulse measurements is presented.

  10. Chemical named entities recognition: a review on approaches and applications.

    PubMed

    Eltyeb, Safaa; Salim, Naomie

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132

  11. Chemical-Help Application for Classification and Identification of Stormwater Constituents

    USGS Publications Warehouse

    Granato, Gregory E.; Driskell, Timothy R.; Nunes, Catherine

    2000-01-01

    A computer application called Chemical Help was developed to facilitate review of reports for the National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS). The application provides a tool to quickly find a proper classification for any constituent in the NDAMS review sheets. Chemical Help contents include the name of each water-quality property, constituent, or parameter, the section number within the NDAMS review sheet, the organizational levels within a classification hierarchy, the database number, and where appropriate, the chemical formula, the Chemical Abstract Service number, and a list of synonyms (for the organic chemicals). Therefore, Chemical Help provides information necessary to research available reference data for the water-quality properties and constituents of potential interest in stormwater studies. Chemical Help is implemented in the Microsoft help-system interface. (Computer files for the use and documentation of Chemical Help are included on an accompanying diskette.)

  12. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOEpatents

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  13. Variations in the natural ?N abundance of Brassica chinensis grown in uncultivated soil affected by different nitrogen fertilizers.

    PubMed

    Yuan, Yuwei; Hu, Guixian; Zhao, Ming; Chen, Tianjin; Zhang, Yongzhi; Zhu, Jiahong; Wang, Qiang

    2014-11-26

    To further investigate the method of using ?(15)N as a marker for organic vegetable discrimination, the effects of different fertilizers on the ?(15)N in different growing stages of Brassica chinensis (B. chinensis) grown in uncultivated soil were investigated with a pot experiment. B. chinensis was planted with uncultivated soil and different fertilizer treatments and then harvested three times in three seasons consecutively. For the spring experiments in the years of 2011 and 2012, the ?(15)N value of B. chinensis, which increased due to organic manure application and decreased due to chemical fertilizer application, was significantly different (p < 0.05) with manure treatment and chemical treatment. The ?(15)N value of vegetables varied among three growing stages and ranged from +8.6 to +11.5 for the control, from +8.6 to +12.8 for the compost chicken manure treatment, from +2.8 to +7.7 for the chemical fertilizer urea treatment, and from +7.7 to +10.9 for the compost-chemical fertilizer treatment. However, the ?(15)N values observed in the autumn experiment of 2011 without any fertilizer application increased ranging from +13.4 to +15.4, + 11.2 to +17.7, +10.7 to +17.1, and +10.6 to +19.1, respectively, for the same treatments mentioned above. This result was not significantly different between manure treatment and chemical treatment. The ?(15)N values of soil obtained in the spring of 2011 during three growing stages were slightly affected by fertilizers and varied in the range of +1.6 to +2.5 for CK, +4.7 to +6.5 for compost treatment, +2.1 to +2.4 for chemical treatment, and +2.7 to +4.6 for chemical-compost treatment, respectively. High ?(15)N values of B. chinensis were observed in these experiments, which would be useful to supplement a ?(15)N database for discriminating organic vegetables. Although there was a significant difference between manure treatment and chemical treatment, it was still difficult to discriminate whether a labeled organic vegetable was really grown without chemical fertilizer just with a fixed high ?(15)N value, especially for the vegetables planted simultaneously with chemical and compost fertilizer. PMID:25369912

  14. Portable chemical protective clothing test method: application at a chemical plant

    SciTech Connect

    Berardinelli, S.P.; Rusczek, R.A.; Mickelsen, R.L.

    1987-10-01

    The National Institute for Occupational Safety and Health (NIOSH), in cooperation with Monsanto Chemical Company, conducted an on-site evaluation of chemical protective clothing at Monsanto's Nitro, West Virginia plant. The Monsanto plant manufactures additives for the rubber industry including antioxidants, pre-vulcanization inhibitors, accelerators, etc. This survey evaluated six raw materials that have a potential for skin absorption: aniline, cyclohexylamine, diisorpropylamine, tertiary butylamine, morpholine and carbon disulfide. Five generic glove materials were tested against these chemicals; nitrile, neoprene, polyvinylchloride, natural latex and natural rubber. The NIOSH chemical permeation portable test system was used to generate breakthrough time data. The results were compared to permeation data reported in the literature that were obtained by using the ASTM F739-85 test method. The test data demonstrated that aniline has too low a vapor pressure for reliable analysis on the portable direct reading detectors used. The chemical permeation test system, however provided comparable, reliable permeation data for the other tested chemicals. Monsanto has used this data to better select chemical protective clothing for its intended use.

  15. Emission factors for organic fertilizer-induced N2O emissions from Japanese agricultural soils

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishina, K.; Sudo, S.

    2013-12-01

    1. Introduction Agricultural fields are significant sources of nitrous oxide (N2O), which is one of the important greenhouse gases with a contribution of 7.9% to the anthropogenic global warming (IPCC, 2007). Direct fertilizer-induced N2O emission from agricultural soil is estimated using the emission factor (EF). National greenhouse gas inventory of Japan defines direct EF for N2O associated with the application of chemical and organic fertilizers as the same value (0.62%) in Japanese agricultural fields. However, it is necessary to estimate EF for organic fertilizers separately, because there are some differences in factors controlling N2O emissions (e.g. nutrient content) between chemical and organic fertilizers. The purpose of this study is to estimate N2O emissions and EF for applied organic fertilizers in Japanese agricultural fields. 2. Materials and Methods We conducted the experiments at 10 prefectural agricultural experimental stations in Japan (Yamagata, Fukushima, Niigata, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto, and Kagoshima) to consider the variations of cultivation and environmental conditions among regions. Field measurements had been conducted for 2-2.5 years during August 2010-April 2013. Each site set experimental plots with the applications of composted manure (cattle, swine, and poultry), chemical fertilizer, and non-nitrogen fertilizer as a control. The annual amount of applied nitrogen ranged from 16 g-N m-2 y-1 to 60 g-N m-2 y-1 depending on cropping system and cultivated crops (e.g. cabbage, potato) at each site. N2O fluxes were measured using a closed-chamber method. N2O concentrations of gas samples were measured with gas chromatography. The EF value of each fertilizer was calculated as the N2O emission from fertilizer plots minus the background N2O emission (emission from a control plot), and was expressed as a percentage of the applied nitrogen. The soil NH4+ and NO3-, soil temperature, precipitation, and WFPS (water filled pore space) were also measured. 3. Results and Discussion The large N2O emissions from soils were mainly observed after the rain following fertilizer application from spring through fall. However, N2O emissions were limited at some sites where crops were cultivated during winter because of low soil temperature. The mean annual N2O emissions and EFs for sites varied depending on the type of applied fertilizers. The mean annual N2O emission (× standard deviation) for non-nitrogen fertilizer was the smallest (110 × 140 mg-N m-2), followed in order by those for cattle manure (280 × 327 mg-N m-2), swine manure (454 × 463 mg-N m-2), chemical fertilizer (464 × 587 mg-N m-2), and poultry manure (480 × 523 mg-N m-2). Hence, mean EF for cattle manure was 0.31 × 0.28%, followed in order by those for swine manure (0.56 × 0.77%), poultry manure (0.88 × 1.04%), and chemical fertilizer (0.89 × 1.22%), while significant differences in EFs were not found among fertilizers. The N2O emissions and EFs differed among sites. The N2O emissions from Andosol soil were found to be smaller than those from other soil types. There were no significant correlation between annual N2O emission and annual mean air temperature or precipitation. The differences in soil physical and chemical properties would result in variations in N2O emissions and EFs among regions.

  16. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA limit for this ion in drinking water. Finally, Chapter 6 describes the synthesis of high density lipoprotein biomimetic nanoparticles capable of binding cholesterol. These structures use a gold nanoparticle core to template the assembly of a mixed phospholipid layer and the adsorption of apolipoprotein A-I. These synthesized structures have the general size and surface composition of natural HDL and bind free cholesterol with a Kd of 4 nM.

  17. Chemically assisted ion beam etching for photonics applications

    NASA Astrophysics Data System (ADS)

    Hryniewicz, John Vetold

    In this work, the art of chemically assisted ion beam etching (CAIBE) is extended in ways which will enhance the quality and flexibility of fabrication for future photonic integrated systems. The starting point is the establishment of a capability to create very high quality three-dimensional microstructures in GaAs/AlGaAs by CAIBE in a contamination-free environment. All ultrahigh vacuum etching chamber construction with a high throughput turbomolecular pump and high vacuum loadlock provide routine high quality etching of AlGaAs without the use of etch chamber cryo panels or cryo pumps. The technology is extended by moving the process to lower ion energies (200 eV) where etching-induced crystal damage can be greatly reduced. The difficulties encountered by previous workers at lower energies are overcome by the use of three grid ion optics in a Kaufman ion source. The improvements are shown to allow the performance of CAIBE at low energies with highly parallel sidewalls and good surface morphology. The ability to etch at low energies allows the use of a non hardbaked photoresist mask which adds simplicity and flexibility to the use of CAIBE in complex processing sequences for photonic integration. Benefits include high pattern resolution and fidelity, moderate mask erosion rate, good dimensional control, and easy, complete mask stripping. Image analysis tools are developed and applied to the quantification of scanning electron micrographs of etch profiles. This analysis is used to provide insight into the erosion of the mask during the CAIBE process, aiding in the achievement of high quality etch results. An ion milling profile evolution model applied to the quantified mask profiles using an empirical angle dependent yield function is shown to reproduce important features of the mask erosion. The etching and masking processes are shown to be useful in the fabrication of components for photonic integration, through the example of low loss single mode etched ridge waveguides. Controlled sloped etching is demonstrated using a moving shadow mask technique applicable to the fabrication of vertically tapered alignment-tolerant optical waveguides. Experience with these developments is used to suggest future directions for work in CAIBE for photonic integration.

  18. FIELD APPLICATIONS OF CHEMICAL TIME-SERIES SAMPLING

    EPA Science Inventory

    Two municipal supply wells in Lakewood, Washington, were found to be contaminated with trichloroethylene, transdichloroethylene, and tetrachloroethylene. Sequential samples were taken for chemical analyses, in conjunction with drawdown measurement during aquifer (pump) tests desi...

  19. Economics of dairy waste use as fertilizer in central Texas.

    PubMed

    Adhikari, Murali; Paudel, Krishna P; Martin, Neil R; Gauthier, Wayne M

    2005-01-01

    Dairy manure is an unavoidable natural, but negative, byproduct of milk production. Its nitrogen, phosphate, and potash contents represent a potential substitute for commercial fertilizers on field crops. In the absence of subsidies, manure transportation and land application costs limit its utilization as a substitute for chemical fertilizer. The results from a study of the economics of manure use in Central Texas suggest that, at the current costs for loading, hauling, and spreading, dairy manure cannot be economically transported from surplus to deficit areas within the study area. The estimated breakeven transport distance for manure application to four crops varied from 28 to 41 km; however, the distances between manure-surplus and manure-deficit counties in the study region varied from 40 to 90 km. An analysis of potential subsidies paid by the government or dairy farmers showed that the breakeven distance could increase by up to 30 km. A decrease in the assumed moisture content of the manure from 50% to 40% is shown to increase the breakeven distance by 10 km. The study suggests that dairy manure loading, transportation, and land application, with appropriate subsidies or reductions in moisture content, has the potential to be profitably substituted for chemical fertilizers. PMID:16139493

  20. Dioxin levels in fertilizers from Belgium: determination and evaluation of the potential impact on soil contamination.

    PubMed

    Elskens, M; Pussemier, L; Dumortier, P; Van Langenhove, K; Scholl, G; Goeyens, L; Focant, J F

    2013-06-01

    Dioxins are harmful persistent organic pollutants (POPs) to which humans are exposed mostly via the consumption of animal products. They can enter the food chain at any stage, including crop fertilization. Fertilizers belong to several categories: synthetic chemicals providing the essential elements (mostly N, P and K) that are required by the crops but also organic fertilizers or amendments, liming materials, etc. Ninety-seven samples of fertilizers were taken in Belgium during the year 2011 and analyzed after a soft extraction procedure for polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (DL-PCBs) using GC-IDHRMS. Only small qualitative differences could be observed between the main fertilizer categories since the PCDD:PCDF:DL-PCB average ratio obtained with the results expressed in TEQ was often close to 30:30:40 (typically for sewage sludge) or 40:30:30 (typically for compost). The median dioxin levels determined were generally lower than recorded previously and were the highest for sewage sludge and compost (5.6 and 5.5 ng TEQ/kg dry weight (dw), respectively). The levels in other fertilizers were lower including manure for which the median value was only 0.2 ng TEQ/kg dw. Several fertilization scenarios relying on the use of those fertilizers were assessed taking into consideration the application conditions prevailing in Belgium. From this assessment it could be concluded that the contribution of fertilizers to the overall soil contamination will be low by comparison of other sources of contamination such as atmospheric depositions. At the field scale, intensive use of compost and sewage sludge will increase dramatically the dioxin inputs compared with other fertilization practices but this kind of emission to the soil will still be relatively low compared to the dioxin atmospheric depositions. PMID:23562689

  1. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum 66 days after base fertilizer application, but maintained the high level for a long time. In short, the application of organic manure, especially the fermenting manure, is more beneficial to maintain high levels of soil enzyme activities and biodiversity. (2) The tomato yield treated with the CF, CM, FM and CK was 50055 kg/ha, 37814 kg/ha, 36965 kg/ha and 29937 kg/ha, respectively. The yield increasing rates of the CF, CM and FM were 67.2%, 26.3% and 23.5%, respectively. The application of chemical fertilizer could raise the tomato yield more effectively. The use of organic manure, especially the fermenting manure, however, could improve the fruit quality more effectively, especially increase soluble sugar and vitamin C contents and reduce nitrate content in tomato fruit significantly. The application of biological fermenting manure is beneficial to promote the recycling agriculture in China. It could also be used in the organic farming promisingly.

  2. Application of the Raven UAV for chemical and biological detection

    NASA Astrophysics Data System (ADS)

    Altenbaugh, Ryan; Barton, Jeff; Chiu, Christopher; Fidler, Ken; Hiatt, Dan; Hawthorne, Chad; Marshall, Steven; Mohos, Joe; McHugh, Vince; Nicoloff, Bill

    2010-04-01

    This paper presents the plume tracking algorithms developed for a series of outdoor chemical-stimulant testing conducted at Dugway Proving Ground in 2008 and 2009 employing a Raven UAV equipped with a real-time chemical sensor. The flights were conducted as part of the a program under the sponsorship of the Army JPM NBC Contamination Avoidance and in conjunction with the Army PM-Unmanned Aircraft Systems, the Defense Threat Reduction Agency, and Edgewood Chemical Biological Center. This test demonstrated the Raven's ability to autonomously detect and track a chemical plume during a variety of atmospheric conditions. During the testing, the Raven conducted over a dozen flights, tracking outdoor releases of simulated chemical weapons over significant distances. The Raven was cued to the releases with standoff detection systems through Cursor on Target messages. Upon reaching the plume, the Raven used on-board sensors and on-board meteorological data to track the plume autonomously and determine the extent of the plume. Results were provided in real-time to the UAV operator.

  3. Utilization of biosensors and chemical sensors for space applications

    NASA Astrophysics Data System (ADS)

    Bonting, S. L.

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  4. Utilization of biosensors and chemical sensors for space applications.

    PubMed

    Bonting, S L

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed. PMID:1457091

  5. Surface acoustic wave device for chemical and biological applications

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-Hoon; Lee, Young-Jun; Jung, Dongsoo; Kim, Joo-Hyung

    2014-04-01

    We investigate surface acoustic wave (SAW) sensor for chemical and biological detector as measuring the frequency shift based on adsorption quantities of chemical analyte on SAW propagation path. Important features that define the performance of these sensors are selectivity, sensitivity, stability, response time and dynamic range. In this paper, two inter-digital transducers (IDT) for working frequency of 50MHz, 100 MHz were designed and fabricated using conventional lift-off technique. The shift in SAW velocity due to surface loading leads to a shift in phase, which in turn generates a shift in frequency of the oscillator is confirmed. By different concentration of chemical vapor, the sensitivity of SAW devices will be presented.

  6. Utilization of biosensors and chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.

    1992-01-01

    There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.

  7. Improving continuous monitoring of VOC emissions from alternative fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of alternative fertilizers, such as biosolids, to agricultural fields is an environmentally beneficial practice. Biosolids provide producers with a ready source of organic matter and plant nutrients instead of using commercial fertilizers. However, concerns regarding nuisance odors cause...

  8. 77 FR 43861 - Importer of Controlled Substances; Notice of Application; Boehringer Ingelheim Chemicals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Enforcement Administration Importer of Controlled Substances; Notice of Application; Boehringer Ingelheim..., Boehringer Ingelheim Chemicals, Inc., 2820 N. Normandy Drive, Petersburg, Virginia 23805, made application by..., 40 FR 43745-46, all applicants for registration to import a basic class of any controlled...

  9. Laser applications to chemical analysis: an introduction by the feature editors

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Ramsey, J. Michael; Lucht, Robert P.

    1995-06-01

    This issue of Applied Optics features papers on the application of laser technology to chemical analysis. Many of the contributions, although not all, result from papers presented at the Fourth OSA Topical Meeting on Laser Applications to Chemical Analysis, which was held at Jackson Hole, Wyoming, March, 1994. This successful meeting, with nearly one hundred participants, continued the tradition of earlier LACA meetings to focus on the optical science of laser-based measurements of temperature and trace chemical assays in a wide variety of practical applications.

  10. Practices, perceptions, and implications of fertilizer use in East-Central China.

    PubMed

    Yang, Xiaoying; Fang, Shubo

    2015-11-01

    Face-to-face interviews (n = 553) were conducted in five counties in East-Central China to study farmers' fertilizer application behaviors, decision-making processes, attitudes towards adopting better fertilizer application technologies, and environmental consciousness. The survey results revealed widespread fertilizer misapplication and highly variable application behaviors in the study regions. The lack of scientific knowledge on fertilizers and the absence of guidance from agricultural extension services have forced the farmers to rely on personal judgment and advice from fertilizer dealers and friends to make decisions in fertilizer application. Overall, farmers have been idiosyncratic in fertilizer application with limited adoption of better fertilizer application technologies. There are great potentials for reducing pollutant load from agricultural runoff through promoting scientific fertilizer application in the regions. However, farmers' diverse preferences over agricultural extension programs necessitate an integrated approach emphasizing farmer involvement throughout the development of such programs for promoting better fertilizer application practices. PMID:25698058

  11. CHEMICAL AND MICROBIAL ASPECTS OF SLUDGE COMPOSTING AND LAND APPLICATION

    EPA Science Inventory

    A series of six studies was conducted to evaluate selected microbial and chemical aspects of composting and sludge spreading. Ammonia (NH3 was shown to be viricidal at pH 7 to 9). Enzymatic activity was not inhibited when well stabilized or composted sludge containing high concen...

  12. Carbon Footprint Calculations: An Application of Chemical Principles

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  13. Carbon Footprint Calculations: An Application of Chemical Principles

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional

  14. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  15. Crystallographic properties of fertilizer compounds

    SciTech Connect

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  16. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    NASA Astrophysics Data System (ADS)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium incubation approach. With cumulative field emissions of 2.9±0.8 kg N2O-N ha-1 and 3.9±0.4 kg N2O-N ha-1 after trail hose application and injection, respectively, our results showed no clear application effect. NH3-N losses were higher for trail hose application (7.2 kg NH3-N ha-1) compared to injection (5.2 kg NH3-N ha-1). The calculated N budgets showed negative values (accumulative deficit) up to -6 kg N ha-1 and -32 kg N ha-1 for trail hose application and injection, respectively. But differences between treatments were not significant. Overall N budgets were more influenced by plant N uptake (91-96%) than by gaseous N losses (4-9%). However, results from the laboratory incubation indicate that N2 may also be a potentially important pathway of N loss, contributing to 34% of total gaseous N loss, corresponding to 5 kg N2-N ha-1 yr-1.

  17. [Effect of the same amount of faba bean fresh straw returning with different ratios of chemi- cal fertilizer on single cropping late rice].

    PubMed

    Wang, Jian-hong; Zhang, Xian; Cao, Kai; Hua, Jin-wei

    2015-05-01

    A field experiment was conducted on paddy soil derived from alluvial materials at Bihu Town, Lishui City, Zhejiang Province, China to explore the effects of combined application of faba bean fresh straw and different-rate chemical fertilizer on nutrient uptake, nutrient use efficiencies, and yields of single cropping late rice and to determine the optimal rate of chemical fertilizer under the condition of application of faba bean fresh straw at the rate of 15 t hm(-2) (GM15) in 2012, April to December. The experiments consisted of 7 treatments: CK (no fertilizers) , CF (conventional chemical fertilizer rate) , and combined application of 15 t hm(-2) of faba bean fresh straw and 0%, 20%, 40%, 60% and 80% of the conventional chemical fertilizer rate. The results showed that the highest total uptake amounts of N, P and K by the aboveground part were obtained from the treatments of GM15 + 60%CF and GM15 + 80% CF, but the highest nutrient agronomy use efficiencies of N, P and K in rice grains were obtained from the treatments of GM15 + 60% CF and GM15 + 40% CF. The agronomy use efficiencies and physiological use efficiencies of N, P, and K were significantly correlated with rice grain yields, thus they could be used for accurate comprehensive evaluation of fertilizer efficiencies of N, P, and K. Compared with no fertilizer treatment, the treatments of 100% CF and combined application of faba bean fresh straw and different-rate chemical fertilizer increased rice gain yields by 25.0% and 6.1%-29.2%, respectively. In the cropping system of faba bean-single cropping late rice, returning of 15 t hm2 faba bean fresh straw to the paddy field did not result in the runt seedling of rice. From the point of improving fertilizer use efficiency and reducing environmental risk perspective, the optimum rate of chemical fertilizer was 60% of the conventional chemical fertilizer rate when 15 t h(-2) of faba bean fresh straw was applied. PMID:26571653

  18. Chemical vapor deposition coating of fibers using microwave application

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Hoover, Gordon (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    Chemical vapor deposition coating is carried out in a cylindrical cavity. The fibers are heated by a microwave source that is uses a TM0N0 mode, where O is an integer, and produces a field that depends substantially only on radius. The fibers are observed to determine their heating, and their position can be adjusted. Once the fibers are uniformly heated, a CVD reagent is added to process the fibers.

  19. Chemical Applications of Graph Theory: Part II. Isomer Enumeration.

    ERIC Educational Resources Information Center

    Hansen, Peter J.; Jurs, Peter C.

    1988-01-01

    Discusses the use of graph theory to aid in the depiction of organic molecular structures. Gives a historical perspective of graph theory and explains graph theory terminology with organic examples. Lists applications of graph theory to current research projects. (ML)

  20. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... necessary for determining if the application should be granted. (e) Within a reasonable period of time after... appropriate. (f) The Administrator may, at any time, terminate or modify an exemption for any product...

  1. Induction generator applications for petroleum and chemical plants

    SciTech Connect

    Owen, E.L.; Griffith, G.R.

    1983-11-01

    A 13000-hp 1200-r/min induction machine has been applied as a motor/generator in a compressor-expander string associated with a fluid catalytic cracking (FCC) process. Power factor correction capacitors are connected at the terminals of the induction machine. The specific principles of application, as they apply to generator applications, of induction machines are reviewed. Mechanical design, overspeed, excitation, electrical and mechanical transients, and machine control are studied in detail.

  2. 77 FR 16263 - Manufacturer of Controlled Substances, Notice of Application; Cayman Chemical Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... Enforcement Administration Manufacturer of Controlled Substances, Notice of Application; Cayman Chemical... that on February 27, 2012, Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, Michigan 48108... above listed controlled substances to supply these materials to the research and forensics community...

  3. 77 FR 38086 - Manufacturer of Controlled Substances; Notice of Application; Chattem Chemicals Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Chattem Chemicals Inc. Pursuant to Sec. 1301.33(a), Title 21 of the Code of Federal Regulations (CFR), this is notice that on May 16, 2012, Chattem Chemicals...

  4. NEIGHBORHOOD COMPLEXITIES AND SYMMETRY OF CHEMICAL GRAPHS AND THEIR BIOLOGICAL APPLICATIONS

    EPA Science Inventory

    Quantitative measures of molecular complexity are calculated through the application of information-theoretic formalism on chemical graphs. The vertex set of a chemical graph is partitioned into disjoint subsets on the basis of the equivalence of various orders of closed neighbor...

  5. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Development, L.P., Order No. 2644, June 8, 2009 at p. 12. \\6\\ ConocoPhillips Company, DOE/FE Order No. 2731... Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of... The Dow Chemical Company (Dow), requesting blanket authorization to export liquefied natural gas...

  6. 21 CFR 1309.25 - Temporary exemption from registration for chemical registration applicants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Temporary exemption from registration for chemical registration applicants. 1309.25 Section 1309.25 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF... Requirements for Registration 1309.25 Temporary exemption from registration for chemical...

  7. 21 CFR 1309.25 - Temporary exemption from registration for chemical registration applicants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Temporary exemption from registration for chemical registration applicants. 1309.25 Section 1309.25 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF... Requirements for Registration 1309.25 Temporary exemption from registration for chemical...

  8. 21 CFR 1309.25 - Temporary exemption from registration for chemical registration applicants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Temporary exemption from registration for chemical registration applicants. 1309.25 Section 1309.25 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF... Requirements for Registration 1309.25 Temporary exemption from registration for chemical...

  9. 21 CFR 1309.25 - Temporary exemption from registration for chemical registration applicants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Temporary exemption from registration for chemical registration applicants. 1309.25 Section 1309.25 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF... Requirements for Registration 1309.25 Temporary exemption from registration for chemical...

  10. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  11. Lessons learned from the design of chemical space networks and opportunities for new applications.

    PubMed

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications. PMID:26945865

  12. Pumping applications in the petroleum and chemical industries

    SciTech Connect

    Armintor, J.K.; Connors, D.P.

    1987-01-01

    There has been a great deal of discussion and literature on saving electrical energy used by centrifugal pumps. Most of the attention, however, has been given to one general type of centrifugal pump application-variable-flow variable-pressure-and the role of the control loops of the system has generally not been dealt with. In actual practice, centrifugal pump applications can be classified into three general types: 1) variable-flow variable-pressure; 2) constant-flow variable-pressure; and 3) variable-flow constant-pressure. The actual type is determined by the control loops of the system. A user who is interested in implementing an energy savings program by using electrical adjustable speed control must select and analyze specific applications, which may fall into any of the above three categories. Each of these applications must be analyzed with a different approach-they cannot all be analyzed as variable-flow variable-pressure systems. This paper reviews the three general types of applications which are seen for centrifugal pumps and suggests a method of implementing an energy savings program and analyzing each type of system.

  13. Application of thermo-chemical models on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Applebaum, Michael P.; Mitchell, Curtis R.; Walters, Robert W.; McGrory, William D.

    1993-01-01

    Numerical techniques for solving the Euler equations with a generalized thermodynamic and chemistry model on both structured and unstructured meshes are presented. Attention is focused on the use of thermochemical models in the governing equations. In addition, a method for uncoupling the equilibrium chemistry calculations from the flow solver is discussed. For many chemical equilibrium models, multiple roots may exist which causes linear convergence with Newton's method in the uncoupled equilibrium chemistry solver. A technique for accelerating the convergence of a linearly convergent method for equilibrium chemistry calculations is presented.

  14. Dealer model site demonstrations. Program for fertilizer and agrichemical dealers

    SciTech Connect

    Mann, H.C.

    1992-08-01

    Model site demonstrations are joint efforts between TVA and cooperating organizations to improve the industry`s environmental stewardship. Program objectives are to develop, demonstrate, and transfer technologies and management practices to help retail fertilizer/agricultural chemical dealers minimize adverse environmental impacts. The model site demonstrations serve as `real life` laboratories for researchers, technologists, educators and participants. The retail dealership is treated as a complete unit. The program recognizes the need to: Develop information and experience to guide others; Test numerous methods of containment, materials of construction, management practices, and monitoring techniques; Strengthen and highlight industry`s commitment to envirorunental stewardship; Identify future research needs; and Provide a catalyst for cooperation across a broad spectrum of groups and organizations to identify problems and develop solutions appropriate for fertilizer and agrichemical dealers. Emphasis is on transferring current technology and developing and introducing needed new technologies. Field testing and applied research are encouraged at demonstration sites. One of the key concepts is to bridge the gap between research findings and their practical application and evaluation in field settings. Primary audiences include fertilizer dealers and professional workers in agriculture, the fertilizer industry, the environmental arena, and related institutions across the nation. Experiences at participating dealer sites are shared through organized tours, open houses, news articles and publications. Sixteen sites have been selected for demonstrations, and at least four more are planned. TVA provides assistance in engineering, design and educational forums. Dealers pay for installation of needed containment and related features.

  15. The role of chemical fingerprinting: application to Ephedra.

    PubMed

    Schaneberg, Brian T; Crockett, Sara; Bedir, Erdal; Khan, Ikhlas A

    2003-03-01

    Ephedra sinica, known as Ma Huang, is one of the oldest medicinal herbs in Traditional Chinese Medicine (TCM). Preparations, namely teas, of E. sinica have been used for over 5000 years as a stimulant and as an antiasthmatic. In the West, extracts of E. sinica, E. intermedia or E. equisetina are most commonly used in dietary supplements as a stimulant and to promote weight loss. More than 50 species of Ephedra are native to both hemispheres, but the detection of ephedrine alkaloids has been limited to species in Eurasia. Currently, methods exist to quantitate the ephedrine alkaloids in extracts of plant material or dietary supplements, but the methods are not able to verify the extract is of an Ephedra species. Reverse phase high performance liquid chromatography with photodiode array detection was applied for the chemical fingerprinting of the Ephedra species. Two regions of comparison were determined in the chromatograms at 320 nm. The series of peaks between 52 and 64 min confirms an Ephedra species is being analyzed. The aforementioned peaks also could distinguish between Ephedra species from Eurasia, North America and South America. Peaks at ca. 57 and 59 min were isolated and determined to be two new compounds, 4-(2-eicosyloxycarbonyl-vinyl)-benzoic acid and 4-(2-docosyloxycarbonyl-vinyl)-benzoic acid respectively. Authentication of ground plant material as Ephedra can be achieved by this chemical fingerprinting method. PMID:12590118

  16. Wet chemical synthesis of quantum dots for medical applications

    NASA Astrophysics Data System (ADS)

    Cepeda-Pérez, E. I.; López-Luke, T.; Pérez-Mayen, L.; Hidalgo, Alberto; de la Rosa, E.; Torres-Castro, Alejandro; Ceja-Fdez, Andrea; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana L.

    2015-07-01

    In recent years the use of nanoparticles in medical applications has boomed. This is because the various applications that provide these materials like drug delivery, cancer cell diagnostics and therapeutics [1-5]. Biomedical applications of Quantum Dots (QDs) are focused on molecular imaging and biological sensing due to its optical properties. The size of QDs can be continuously tuned from 2 to 10 nm in diameter, which, after polymer encapsulation, generally increases to 5 - 20 nm diminishing the toxicity. The QDs prepared in our lab have a diameter between 2 to 7 nm. Particles smaller than 5 nm can interact with the cells [2]. Some of the characteristics that distinguish QDs from the commonly used fluorophores are wider range of emission, narrow and more sharply defined emission peak, brighter emission and a higher signal to noise ratio compared with organic dyes [6]. In this paper we will show our progress in the study of the interaction of quantum dots in live cells for image and Raman spectroscopy applications. We will also show the results of the interaction of quantum dots with genomic DNA for diagnostic purposes.

  17. [Use efficiency and fate of fertilizer N in tomato field of Nanjing suburb].

    PubMed

    Cao, Bing; He, Fayun; Xu, Qiuming; Cai, Guixin

    2006-10-01

    Field plot and micro-plot experiments were conducted to investigate the use efficiency (UE) , fate, and loss of chemical fertilizer N in tomato field of Nanjing suburb. The results showed that the application of chemical fertilizer N did not show any benefit to the tomato yield, due to the adequate N supply from native soil and organic manure amendment. The UE of fertilizer N calculated by difference method ranged from 14.5% to 22.5%. In micro-plot experiment, 16.6% - 28.8% of applied urea 15N was recovered by the plant, and 34. 2% - 46.0% of it was lost. Applying fertilizer N increased the nitrate content in 0-100 cm soil layer, and 10% - 10.2% of urea 15N was leached to the depth below 40 cm at harvest time. N application increased the denitrification loss and N2O emission significantly, which occupied 5.50% - 6.01 % and 2. 62% - 4. 92% of the applied N, respectively. No ammonia volatilization was detected during the whole growth season. Reducing N application rate or applying coated urea could decrease the environmental risks of N application in vegetable fields, especially the risks from nitrate leaching and nitrification-denitrification loss. PMID:17209380

  18. Environmentally friendly slow-release nitrogen fertilizer.

    PubMed

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2011-09-28

    To sustain the further world population, more fertilizers are required, which may become an environmental hazard, unless adequate technical and socioeconomic impacts are addressed. In the current study, slow-release formulations of nitrogen fertilizer were developed on the basis of natural attapulgite (APT) clay, ethylcellulose (EC) film, and sodium carboxymethylcellulose/hydroxyethylcellulose (CMC/HEC) hydrogel. The structural and chemical characteristics of the product were examined. The release profiles of urea, ammonium sulfate, and ammonium chloride as nitrogen fertilizer substrates were determined in soil. To further compare the release profiles of nitrogen from different fertilizer substrates, a mathematical model for nutrient release from the coated fertilizer was applied to calculate the diffusion coefficient D. The influence of the product on water-holding and water-retention capacities of soil was determined. The experimental data indicated that the product can effectively reduce nutrient loss, improve use efficiency of water, and prolong irrigation cycles in drought-prone environments. PMID:21848295

  19. Real-time interactive data mining for chemical imaging information: application to automated histopathology

    PubMed Central

    2013-01-01

    Background Vibrational spectroscopic imaging is now used in several fields to acquire molecular information from microscopically heterogeneous systems. Recent advances have led to promising applications in tissue analysis for cancer research, where chemical information can be used to identify cell types and disease. However, recorded spectra are affected by the morphology of the tissue sample, making identification of chemical structures difficult. Results Extracting features that can be used to classify tissue is a cumbersome manual process which limits this technology from wide applicability. In this paper, we describe a method for interactive data mining of spectral features using GPU-based manipulation of the spectral distribution. Conclusions This allows researchers to quickly identify chemical features corresponding to cell type. These features are then applied to tissue samples in order to visualize the chemical composition of the tissue without the use of chemical stains. PMID:23651487

  20. [Fertility and youth].

    PubMed

    Alvarez Vasquez, L

    1981-01-01

    This work examines the history and current characteristics of fertility among Cuban women aged 15-24 and speculates on the determinants of fertility patterns among them. Cuban fertility has tended in different periods to peak at an early age, with the modal age of giving birth in the 20-24 group. The level of fertility was high from 1955-59, increasing slightly in the 1st years after the Revolution and beginning to decline again in the mid 1960s. Age specific fertility rates still showed peak fertility at the younger cohorts. Cuba remains unique among low fertility countries in having such a high fertility rate among young women aged 15-19. The fertility of women aged 20-24 began to decline in the late 1960s but that of women 15-20 continued to increase until the early 1970s. Age specific fertility rates for the cohort aged 20-24 declined by 45.5% between 1975-78 while that for women aged 15-19 years declined by 71.1%. The proportion of births to women under 20 has increased due to the fertility decline at older cohorts despite the reduced rate of early fertility. The basic causes of early marriage and elevated fertility among the young have been the greater freedom of youths and the strengthening of matrimony and parental responsibility in conjunction with persistent false moralistic concepts within families and a lack of sex education. PMID:12311914

  1. Time series hyperspectral chemical imaging data: challenges, solutions and applications.

    PubMed

    Gowen, A A; Marini, F; Esquerre, C; O'Donnell, C; Downey, G; Burger, J

    2011-10-31

    Hyperspectral chemical imaging (HCI) integrates imaging and spectroscopy resulting in three-dimensional data structures, hypercubes, with two spatial and one wavelength dimension. Each spatial image pixel in a hypercube contains a spectrum with >100 datapoints. While HCI facilitates enhanced monitoring of multi-component systems; time series HCI offers the possibility of a more comprehensive understanding of the dynamics of such systems and processes. This implies a need for modeling strategies that can cope with the large multivariate data structures generated in time series HCI experiments. The challenges posed by such data include dimensionality reduction, temporal morphological variation of samples and instrumental drift. This article presents potential solutions to these challenges, including multiway analysis, object tracking, multivariate curve resolution and non-linear regression. Several real world examples of time series HCI data are presented to illustrate the proposed solutions. PMID:21962370

  2. Application of Surface Chemical Analysis Tools for Characterization of Nanoparticles

    PubMed Central

    Baer, DR; Gaspar, DJ; Nachimuthu, P; Techane, SD; Castner, DG

    2010-01-01

    The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES); X-ray photoelectron spectroscopy (XPS); time of flight secondary ion mass spectrometry (TOF-SIMS); low energy ion scattering (LEIS); and scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface analysis methods for the characterization of nanoparticles are discussed and summarized, along with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties. PMID:20052578

  3. Morphological and chemical characterization of microfabricated fibres for biological applications.

    PubMed

    Gold, J; Kasemo, B

    1997-05-01

    Monodisperse fibres and particulates of different materials with controllable three-dimensional shape, size and chemical composition are of interest in research on toxic respirable fibres as well as wear debris around orthopaedic implants. We have previously demonstrated the production of well-controlled, metal and oxide microfabricated fibres having dimensions 0.1 to 10 microm. While our previous results focused on how controlled fibres can be prepared by microfabrication methods, this paper evaluates property-production relationships for microfabricated fibres. Here we have briefly reviewed the production of 0.1 microm x 0.5 microm x 10 microm microfabricated fibres made by electron beam lithography from evaporated titanium or silicon oxide films using a double lift-off method. We have also analysed the properties of these fibres with respect to morphology and chemical composition, and how they are affected by variations in the production process. Two different solution types have been used to place fibres into liquid suspension and to clean and sterilize them for biological testing. One method involves the use of organic solvents; the other a hydroxide solution and water. While fibre dimensions appear to be material-specific, differences can be corrected for by compensation of the size of the lithographic pattern. Similarly the crystallinity of fibres is material-specific, as is to be expected of evaporated thin films, but should be possible to modify by varying deposition parameters or heat treating, for example. Of the cleaning methods used, the one using an aqueous hydroxide solution is preferred over solvent cleaning, as it is easier to perform and appears to be more effective at removing resist from the fibre suspension. PMID:15348746

  4. Improvement of chemical and biological characteristics of gossan mine wastes following application of amendments and growth of Cistus ladanifer L.

    NASA Astrophysics Data System (ADS)

    Santos, Erika; Abreu, Maria Manuela; Macías, Felipe; de Varennes, Amarilis

    2013-04-01

    Cistus ladanifer is considered a good option for phytostabilization of mine wastes, composed of several materials, but its growth is very slow due to substrata conditions (acidic pH, low fertility and water availability, high total concentrations of hazardous elements). To enhance the growth of C. ladanifer with application of organic/inorganic amendments can be a strategy to speed up remediation. This study aimed to evaluate the influence of different rates of amendments and C. ladanifer growth on the improvement of chemical and biological characteristics of gossan wastes. Composite samples of mining wastes (gossan+host rocks) were collected at the São Domingos mine. Amendments used were mixtures (30, 75, 150 Mg/ha) of rockwool, agriculture wastes and wastes from liquor distillation obtained from fruits of Arbutus unedo. Four treatments (n=6 replicates) were carried out (control and three amended treatments) under controlled conditions in a greenhouse. After one month of incubation at 70% of water holding capacity, C. ladanifer was sown in half of the pots from each treatment (n=3), and the other three pots remained in the same conditions without plant. Chemical and biological characteristics of the wastes (with/without plants) were analysed after incubation and fifteen months. Gossan wastes had great total concentrations of several elements (g/kg; Al: 24.8, As: 3.03, Cu: 0.23, Pb; 9.21) whereas in an extracting solution (diluted solution of organic acids) these were small (0.5 units), fertility (Corganic, Pextractable, Ntotal) and dehydrogenase activity of mine wastes, principally with the rate of 150 Mg/ha, even after one month of incubation and after the plants be sown. In both sampling periods (beginning/end of the experiment), Kextractable concentrations increased only with the high application rates (control and 30 Mg/ha treatment: 1.02-1.88 mg/kg; other amended treatments: 2.13-3.55 mg/kg). At the end of the experiment, the presence of the plant increased Corganic and Pextractable concentrations, compared to treatments without plants, reaching the highest values in the treatments combining amendments and plants. After one month of incubation, the dehydrogenase activities in wastes were more than twice in the amended treatments (1.71-33.55 μg TPF g sample 16h-1, depending on amendments application rate and sampling period). Nevertheless, wastes from treatments with plants had higher dehydrogenase activities (9.66-33.55 μg TPF g sample 16h-1, depending on amendments application rate) than in treatments using only amendments (4.98-22.30 μg TPF g sample 16h-1), but both were higher than control. The plants in control presented lower fresh biomass than in amended treatments. Plants growth in control was not sufficient to enhance dehydrogenase activity of mine wastes (1.51 and 1.72 μg TPF g sample 16h-1, with/without plants, respectively). The extractable nutrients (Ca, Fe, K, Mg, Mn, Zn) increased with amendment application, an advantage for remediation purposes. Although extractable Al, As, Na also increased in the same treatments, they remained small. In contrast, extractable Cu and Pb were, generally, lower in amended treatments than in control. The presence of the plant did not increase the concentration of elemental in the extractant solution.

  5. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous exide and ammonia

    NASA Astrophysics Data System (ADS)

    Matthews, Elaine

    1994-12-01

    The global distribution of nitrogen input via application of chemical nitrogenous fertilizers to agricultural ecosystems is presented. The suite of 1 (latitude/longitude) resolution data bases includes primary data on fertilizer consumption, as well as supporting data sets defining the distribution and intensity of agriculture associated with fertilizer use. The data were developed from a variety of sources and reflect conditions for the mid-1980s. East Asia, where fertilizer use is increasing at 10%/year, accounted for 37% of the total, while North America and western Europe, where fertilizer use is leveling off, accounted for 17% and 14% of global use, respectively. Former centrally planned economies of Europe consumed one fifth of the 1984 total, but rapid increases in the 1980s are slowing, and consumption trends are variable. The most widely used chemical nitrogenous fertilizer is urea which accounted for 40% of the world's total in the mid-1980s. While almost every country consumes urea, 75% of the large East Asian fertilizer use is supplied by this one fertilizer. Ammonium nitrate, used primarily in the former centrally planned economies of Europe, in West Asia, and in Africa, accounted for about one quarter of global consumption. These data were used to estimate distributions of the annual emission of nitrous oxide (N2O) and of ammonia (NH3) associated with the use of fertilizers. Applying published ranges of emission coefficients for fertilizer types in the data base yields a median emission of 0.1 Tg N2O-N, with lower and upper values of 0.03 and 2.0 Tg N2O-N in 1984. This equals <1% to 3% of the total nitrogen applied via commercial fertilizers and represents <1% to 15% of the annual emission of N2O from terrestrial sources. Assuming that the 4% annual increase in consumption of nitrogenous fertilizers during the 1980s corresponds to a 4% rise in the release of N2O-N, yearly increases in emissions from fertilizer use are <0.01 to 0.08 Tg N2O-N equal to <1% to 3% of the current growth of atmospheric nitrous oxide. However, since no measurements of fertilizer-derived nitrous oxide emissions are available for agricultural environments in the tropics/subtropics, where 40% of fertilizer N is consumed and where consumption is increasing rapidly, relative contributions of climatic regions to current and future emissions remain uncertain. Ammonia emission coefficients for simple groups of fertilizer types were applied to derive the global distribution of ammonia volatilization associated with nitrogenous fertilizer consumption. The 1984 total of 5-7 Tg NH3-N, about 10-15% of the annual ammonia source, is concentrated overwhelmingly in subtropical Asia owing to the dominant use of urea with high rates of volatilization. However, the paucity of measurements in representative ecological and management environments suggests that the magnitude and distribution of current and future ammonia emission from fertilizers is still poorly known.

  6. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer.

    PubMed

    Ling, Ning; Deng, Kaiying; Song, Yang; Wu, Yunchen; Zhao, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2014-01-01

    The application method for a novel bioorganic fertilizer (BIO) was developed to improve its biocontrol efficacy of Fusarium wilt (Ling et al. 2010). However, its efficacy on controlling Fusarium wilt and the variations of microbial community after long-term application for watermelon production had not been elucidated. To clarify, a 4-years pot experiment of mono-cropping watermelon was conducted. The results revealed that though the disease incidences were increased in all treatments with the increase of continuous cropping years, the treatment of BIO application both in nursery and pot soil always maintained the lowest disease incidence. The real-time PCR results showed that the population of Paenibacillus polymyxa was decreased with continuous cropping years, but in all seasons, the treatment with BIO application both in nursery and pot soil had a highest population of P. polymyxa than the other treatments. On the other hand, the abundance of the pathogen FON was increased with the increase of continuous cropping years and the lowest rate of increase was found by BIO application in both nursery and pot soil. DGGE patterns showed that the bacterial diversity was weakened after mono-cropping of watermelon for 4 years, but the consecutive applications of BIO at nursery and transplanting stage resulted in the minimal change of bacterial diversity. More detailed differences on bacterial diversity between control and double application of BIO treatment after 4-years monoculture were analyzed by 454 pyrosequencing, which showed the dominant phyla found in both samples were Firmicutes, Proteobacteria and Actinobacteria, and the consecutive applications of BIO recruited more beneficial bacteria than control, such as Bacillus, Paenibacillus, Haliangium, Streptomyces. Overall, these results, to a certain extent, approved that the consecutive applications of BIO at nursery and transplanting stage could effectively suppress watermelon Fusarium wilt by regulating the rhizosphere bacterial diversity. These results could give some clues that how to regulate the soil microbial community to an appropriate level which can keep the plant healthy and thus control the soil-borne diseases. PMID:24263158

  7. Effects of nitrogen fertilizer types on nitrous oxide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The factors controlling nitrous oxide (N2O) emissions after fertilizer nitrogen (N) applications are well studied. This information can be used to choose appropriate fertilizer sources and placement methods in order to minimize direct fertilizer-induced N2O emissions in cropping systems. Several fie...

  8. Validating potassium fertilizer guidelines in alfalfa-corn rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2008 to 2010, on-farm research was conducted on 10 fields with medium soil test K (STK) to validate Minnesota K fertilizer guidelines by determining the effect of K fertilizer applications on alfalfa yield and quality in its last production year and estimating the carryover of excess fertilizer...

  9. Baseflow and peakflow chemical responses to experimental applications of ammonium sulphate to forested watersheds in north-central West Virginia, USA

    NASA Astrophysics Data System (ADS)

    Edwards, Pamela J.; Wood, Frederica; Kochenderfer, James N.

    2002-08-01

    Stream water was analysed to determine how induced watershed acidification changed the chemistry of peakflow and baseflow and to compare the relative timing of these changes. Two watersheds in north-central West Virginia, WS3 and WS9, were subjected to three applications of ammonium sulphate fertilizer per year to induce acidification. A third watershed, WS4, was the control. Samples were collected for 8 years from WS9 and for 9 years from WS3. Prior to analyses, concentration data were flow adjusted, and the influence of natural background changes was removed by accounting for the chemical responses measured from WS4. This yielded residual values that were evaluated using robust locally weighted regression and Mann-Kendall tests. On WS3, analyte responses during baseflow and peakflow were similar, although peakflow responses occurred soon after the first treatment whereas baseflow responses lagged 1-2 years. This lag in baseflow responses corresponded well with the mean transit time of baseflow on WS3. Anion adsorption on WS3 apparently delayed increases in SO4 leaching, but resulted in enhanced early leaching losses of Cl and NO3. Leaching of Ca and Mg was strongly tied, both by timing and stoichiometrically, to NO3 and SO4 leaching. F-factors for WS3 baseflow and peakflow indicated that the catchment was insensitive to acid neutralizing capacity reductions both before and during treatment, although NO3 played a large role in reducing the treatment period F-factor. By contrast, the addition of fertilizer to WS9 created an acid sensitive system in both baseflow and peakflow. On WS9, baseflow and peakflow responses also were similar to each other, but there was no time lag after treatment for baseflow. Changes in concentrations generally were not as great on WS9 as on WS3, and several ions showed no significant changes, particularly for peakflow. The lesser response to treatment on WS9 is attributed to the past abusive farming and site preparation before larch planting that resulted in poor soil fertility, erosion, and consequently, physical and chemical similarities between upper and lower soil layers. Even with fertilizer-induced NO3 and SO4 leaching increases, base cations were in low supplies and, therefore, unavailable to leach via charge pairing. The absence of a time lag in treatment responses for WS9 baseflow indicates that it has substantially different flow paths than WS3. The different hydrologies on these nearby watersheds illustrates the importance of understanding watershed hydrology when establishing a monitoring programme to detect ecosystem change. Published in 2002 by John Wiley & Sons, Ltd.

  10. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application.

    PubMed

    Shen, Zongzhuan; Wang, Dongsheng; Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  11. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  12. Growth and fruit production of highbush blueberry fertilized with ammonium sulfate and urea applied by fertigation or as granular fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of granular sources of nitrogen (N) fertilizers, including ammonium sulfate and urea, were compared to fertigation with liquid forms of the fertilizers in northern highbush blueberry during the first 5 years of fruit production. The granular fertilizers were banded on each side of t...

  13. The increase of the fertility of soils using the liquid organic fertilizers and fertilizers based on sugar-beet wastes.

    NASA Astrophysics Data System (ADS)

    Vyborova, Oxana

    2010-05-01

    The fertility of soil is a capacity for ensuring plants by water, nutrients, air and capacity for making optimal conditions for growth and development of plants. The result of it is a yield. The main characteristic of fertility of soil is maintenance of humus. The humus is important part of organic matter. The supporting of soil fertility is impossible by traditional methods. The amount of receiving mineral fertilizers in agriculture will not increase in future, because mineral fertilizers are very expensive. The mineral fertilizers don't influence on maintenance of total amount of humus in soil and improve the circulation of nutrients. Every hectare of fields have to receive no less than 8-10 tons of organic fertilizers, therefore we will have self-supporting balance of humus and the fertility of soils will be increasing. Consequently we are looking for new types of organic materials and we include them in modern agro technologies. One of them is an organomineral fertilizer (lignitic materials). The humic chemicals in the form of lignitic materials of natrium, potassium and ammonium are permitted for using them in agriculture at the beginning of 1984. The Department of agriculture in Russian Federation considered the problem of using humic chemicals and made a decision to use them on the fields of our country, because the lignitic materials can restore the fertility of our fields. The lignitic materials increase the amount of spore-forming bacteria, mold fungi and actinomycete. Therefore the organic decomposition occurs more strongly, the processes of humification increase the speed and the amount of humus rises in the soil. The new forming humus has a high biological activity and it improves chemical and physical soil properties. The addition of lignitic materials in soil activates different groups of microorganisms, which influence on mobilization of nutrients and transformation from potential to effective fertility. The inclusion of humic fertilizers improves physical, physicochemical properties of soils, its air, water and thermal rate. Humic acids with mineral and organomineral particles of soil form the soil absorbent complex. The inclusion of humic fertilizers promotes the process when humic substances form a very valuable water-stable clumpy-granular structure, which improves water-carrying and water-holding capacity, its air permeability by agglutination of mineral particles with each other. The soils, where humic fertilizers are carried in soils regularly, are more stable for influence of chemical polluting substances (for example, radioactive nuclides, heavy metals, pesticides) than poor soils. The inclusion of humic fertilizers is very important in period of urbanization and cropping on the plough-lands not far from a big industrial area. The lignitic materials tie together the detrimental compounds formed the insoluble complex in soil solution. The detrimental compounds don't go into plants, subsoil waters and atmosphere. The lignitic watering of soils (in concentration from 0.1 to 0.01%) increases biological activity of soil in a man-caused zones and it promotes to stability of plants to detrimental emission of enterprises. Today the problem of processing of sugar-beet industry is very important. In the result of storing sugar-beet wastes the pollution of environment is occurred, examples of this pollution are gassing, salinization of soils and ground waters by filtrational sediments. One of these wastes is defecation sludge. The defecation sludge consists of CaCO3, organic matter, nitrogen, phosphorus, potassium and microelements. The technology of receiving N-Ca fertilizer based on defecate was developed because of impossibility of using this waste in pure form. For available data, using of these fertilizers improves the soil fertility and degree of pollution by heavy metals don't exceed an acceptance limits.

  14. Effect of foliar and soil application of potassium fertilizer on soybean seed protein, oil, fatty acids, and minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to evaluate the effectiveness of soil and foliar application of potassium (K) on leaf and seed mineral concentration levels, and seed composition (protein, oil, fatty acids, and minerals). Soybean cultivar (Pioneer 95470) of maturity group 5.7 was grown in a repeat...

  15. [Applications of real-time monitoring techniques in chemical synthetic ingredients].

    PubMed

    Shi, Kai-Yun; Xia, Zhi-Ning; Gan, Ting-Ting; Jiang, Xue-Mei; Xia, Chen

    2010-02-01

    Real-time monitoring technique for process parameters and/or insight variables of chemical synthetic ingredients is a novel chemical process analysis method, which can real time monitor the chemical synthetic ingredients, reveal the mechanism of chemical reaction occurring, reaction courses and kinetic characteristics, and monitor, control and adjust chemical reaction to determine the endpoint of reaction and enhance selectivity of reaction, quality and yields of product. Many real-time monitoring techniques were achieved to satisfy the demands in several chemical synthetic reactions. The structure and principles of current real-time monitoring techniques was stated, and a review was summarized on its applications in chemical synthetic ingredients. The research, development and applications of real-time monitoring techniques such as spectrometry (i. e. ultraviolet-visible spectrophotometry, infrared spectrometry, Raman spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry and fluorescence spectroscopy), chromatography (i. e. thin layer chromatography, gas chromatography, high performance liquid chromatography and capillary electrophoresis) and their coupled techniques (i. e. GC-MS, GC-IR and LC-MS) for chemical synthetic ingredients were evaluated. The coupled techniques were utilized to take the advantages of their high performance separation and quantitative power of chromatography, and sensitive and qualitative identification capacity of spectrometric techniques could realize the real-time monitoring for special chemical synthetic ingredients in complex systems. The future developmental trends and application prospects of real-time monitoring techniques are also discussed. With the research & development of microprocessor and embedded system, the real-time monitoring instrument for chemical synthetic ingredients will have a trend to miniaturization, intelligence, digitization, functionalization and multichannel with widely versatile and strongly compatible features. PMID:20384154

  16. Copper chelators: chemical properties and bio-medical applications.

    PubMed

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined. PMID:24934357

  17. Using optical resonances for chemical and biological sensing applications

    NASA Astrophysics Data System (ADS)

    Tanyeri, Melikhan

    A micro droplet acts as an optical cavity that supports Morphology Dependent Resonances (MDRs) at wavelengths where the droplet circumference is an integer multiple of the emission wavelength. An experimental setup is built consisting of a home-built droplet generator modified from a piezo inkjet printhead, a function generator, a delay generator, a laser, a spectrometer and collection optics. Through this setup, it is possible to probe single droplets for chemical and biological detection. By utilizing a secondary laser/photodiode droplet detection system to the setup, the shot-to-shot differences in signal intensity are reduced resulting in improved signal stability and reproducibility. By utilizing the developed setup, single bacterial cell detection is accomplished by observing suppression of optical resonances inside microdroplets. The effect of cell morphology and viability on lasing peaks was investigated. In addition, a FRET-based immunoassay in microdroplets is demonstrated. Optical resonances in microdroplets increased the sensitivity of the detection through enhanced radiative energy transfer occurring at the droplet rim. An emulsion based technique is developed to localize the immunoassay reaction at the rim of a pendant droplet, increasing the coupling efficiency of the optical resonances. Finally, lasing from spherical microdroplets ejected into a liquid medium with lower refractive index is observed in a microchannel. A microfabricated device that combines the droplet production and excitation/detection has been designed and fabricated. Droplet images show intense lasing emission around the droplet rim. Spectra from the droplets exhibit morphology dependent resonances (MDRs) which are red shifted relative to the bulk fluorescence emission from the dyes. The dependence of resonant peak intensities on the pump beam power is nonlinear.

  18. Application of friction welding in petroleum and chemical engineering

    SciTech Connect

    Dzhabarov, R.D.; Fataliev, N.S.; Tkachev, Yu.A.; Timofeev, V.I.; Abdullaev, V.G.

    1995-05-01

    Welding, as a technological process, is widely practiced in modern engineering. Resistance or arc welding is most common, but these techniques are increasingly giving way to friction welding which has several advantages, namely higher labor productivity and better quality, possibility of joining diverse and poorly weldable metals and alloys, dispensing with high-grade welding materials and highly skilled welders, ecological cleanness of the process, etc. The major criterion of efficient application of friction welding is its use in large-scale manufacture of a specific equipment, whereupon the cost of the machine is recovered in a short period. That is why friction welding with creation and fabrication of specific machines was adopted by the petroleum machinery manufacture (manufacture of geological prospecting and drill pipes, pump rods of the welded design, and gate valves of high-pressure Christmas trees). By applying friction welding for the manufacture of geological prospecting and drill pipes in place of resistance butt welding, accidents during drilling due to failure of the welded joints were prevented totally. Application of friction welding for making pump rods of the welded design (with welded nipples and heads) made it possible to save costly high-strength and corrosion-resistance alloy steel to the extent of 90%. Use of friction welding in the manufacture of high-pressure gate valves with welded flanges simplifies the valve-making technology and improves the reliability of the welded joints, even at temperatures as low as -60{degrees}C. In particular, cast gate valve bodies with friction-welded side flanges were tested before their breakdown. The welded joints of the branch pipes, even though they were sharpened to reduce wall thickness, did not fail, which shows high reliability of the gate valve bodies of the welded design.

  19. Commercial fertilizers 1992

    SciTech Connect

    Berry, J.T.; Montgomery, M.H.

    1992-12-01

    Fertilizer consumption information in the USA for 1992 submitted by state regulatory officials is presented. This includes total sales or shipments for farm and non-farm use. Liming materials were excluded. Materials used for manufacture or blending of reported fertilizers or for use in other fertilizers are excluded to avoid double-counting. The consumption of multiple-nutrient and single-nutrient fertilizers is listed. Dry bulk, fluid, and bagged classes are given. Typical fertilizers include: anhydrous ammonia, aqua ammonia, nitrogen solutions, urea, ammonium nitrates, ammonium sulfates, phosphoric acid, superphosphates, potassium chlorides, and potassium sulfates.

  20. USE OF THE FUNGICIDE CARBENDAZIM AS A MODEL COMPOUND TO DETERMINE THE IMPACT OF ACUTE CHEMICAL EXPOSURE DURING OOCYTE MATURATION AND FERTILIZATION ON PREGNANCY OUTCOME IN THE HAMSTER

    EPA Science Inventory

    Here we use a hamster animal model to identify early pregnancy loss due to an acute chemical exposure to the female during the perifertilization interval. The fungicide carbendazim (methyl 1H-benzimidazole-2-carbamate), a microtubule poison with antimitotic activity, was selected...

  1. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  2. Chemical Applications of a Programmable Image Acquisition System

    NASA Astrophysics Data System (ADS)

    Ogren, Paul J.; Henry, Ian; Fletcher, Steven E. S.; Kelly, Ian

    2003-06-01

    Image analysis is widely used in chemistry, both for rapid qualitative evaluations using techniques such as thin layer chromatography (TLC) and for quantitative purposes such as well-plate measurements of analyte concentrations or fragment-size determinations in gel electrophoresis. This paper describes a programmable system for image acquisition and processing that is currently used in the laboratories of our organic and physical chemistry courses. It has also been used in student research projects in analytical chemistry and biochemistry. The potential range of applications is illustrated by brief presentations of four examples: (1) using well-plate optical transmission data to construct a standard concentration absorbance curve; (2) the quantitative analysis of acetaminophen in Tylenol and acetylsalicylic acid in aspirin using TLC with fluorescence detection; (3) the analysis of electrophoresis gels to determine DNA fragment sizes and amounts; and, (4) using color change to follow reaction kinetics. The supplemental material in JCE Online contains information on two additional examples: deconvolution of overlapping bands in protein gel electrophoresis, and the recovery of data from published images or graphs. The JCE Online material also presents additional information on each example, on the system hardware and software, and on the data analysis methodology.

  3. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia

    SciTech Connect

    Matthews, E.

    1994-12-01

    The global distribution of nitrogen input via application of chemical nitrogenous fertilizers to agricultural ecosystems is presented. The suite of 1{degrees} (latitude/longitude) resolution data bases includes primary data on fertilizer consumption, as well as supporting data sets defining the distribution and intensity of agriculture associated with fertilizer use. The data were developed from a variety of sources and reflect conditions for the mid-1980s. East Asia, where fertilizer use is increasing at {approximately}10%/year, accounted for {approximately}37% of the total, while North America and western Europe, where fertilizer use is leveling off, accounted for 40% of the world`s total in the mid-1980s. While almost every country consumes urea, {approximately}75% of the large East Asian fertilizer use is supplied by this one fertilizer. Ammonium nitrate, used primarily in the former centrally planned economies of Europe, in West Asia, and in Africa, accounted for about one quarter of global consumption. These data were used to estimate distributions of the annual emission of nitrous oxide (N{sub 2}O) and ammonia (NH{sub 3}) associated with the use of fertilizers. Applying published ranges of emission coefficients for fertilizer types in the data base yields a median emission of 0.1 Tg N{sub 2}O-N, with lower and upper values of 0.03 and 2.0 Tg N{sub 2}O-N in 1984. This equals <1% to {approximately}3% of the total nitrogen applied via commercial fertilizers and represents ,=<1% to 15% of the annual emission of N{sub 2}O from terrestrial sources. Assuming that the {approximately}4% annual increase in consumption of nitrogenous fertilizers during the 1980s corresponds to a {approximately}4% rise in the release of N{sub 2}O-N, yearly increases in emissions from fertilizer use are <0.01 to 0.08 Tg N{sub 2}O-N equal to <1% to 3% of the current growth of atmospheric nitrous oxide. 98 refs., 3 figs., 5 tabs.

  4. Effects of pre-harvest chemical application on rice desiccation and seed quality.

    PubMed

    He, Yong-Qi; Cheng, Jin-Ping; Liu, Liang-Feng; Li, Xiao-Dan; Yang, Bin; Zhang, Hong-Sheng; Wang, Zhou-Fei

    2015-10-01

    Pre-harvest desiccation may increase the efficiency of seed production. Field studies were conducted to determine the effects of diquat, paraquat, and ethephon applications on grain moisture, grain weight, and seed germination of hybrid rice Yanliangyou 88 (Oryza sativa ssp. indica) and conventional rice Wuyunjing 7 (Oryza sativa ssp. japonica). In 2013, we tested 12 treatments applied at four weeks (Yanliangyou 88) and six weeks (Wuyunjing 7) after heading. Results showed that reductions in moisture content were significant two and four days after chemical application. Chemical applications had no adverse effects on 1000-grain weight, germination percentage, or germination index, but there were negative effects on the percentage of normal seedlings. Desiccation effects increased with increase in the period after application, while the effect of ethephon combined with diquat or paraquat on desiccation was limited compared with that of diquat or paraquat alone in a short period after application. In 2013, chemical applications reduced the moisture content by from 0.5% to 6.4%, the germination percentage by from 0% to 3.3%, and the percentage of normal seedlings by from 13.3% to 100.0%. Among the treatments, diquat applied at 120 g/ha resulted in effective desiccation with fewer negative effects on grain weight and seed germination in 2013 and 2014. Therefore, diquat may have potential as a pre-harvest chemical desiccation treatment for rice. These results may provide a basis for developing and implementing protocols for large scale field trials. PMID:26465129

  5. Effects of pre-harvest chemical application on rice desiccation and seed quality*

    PubMed Central

    HE, Yong-qi; CHENG, Jin-ping; LIU, Liang-feng; LI, Xiao-dan; YANG, Bin; ZHANG, Hong-sheng; WANG, Zhou-fei

    2015-01-01

    Pre-harvest desiccation may increase the efficiency of seed production. Field studies were conducted to determine the effects of diquat, paraquat, and ethephon applications on grain moisture, grain weight, and seed germination of hybrid rice Yanliangyou 88 (Oryza sativa ssp. indica) and conventional rice Wuyunjing 7 (Oryza sativa ssp. japonica). In 2013, we tested 12 treatments applied at four weeks (Yanliangyou 88) and six weeks (Wuyunjing 7) after heading. Results showed that reductions in moisture content were significant two and four days after chemical application. Chemical applications had no adverse effects on 1000-grain weight, germination percentage, or germination index, but there were negative effects on the percentage of normal seedlings. Desiccation effects increased with increase in the period after application, while the effect of ethephon combined with diquat or paraquat on desiccation was limited compared with that of diquat or paraquat alone in a short period after application. In 2013, chemical applications reduced the moisture content by from 0.5% to 6.4%, the germination percentage by from 0% to 3.3%, and the percentage of normal seedlings by from 13.3% to 100.0%. Among the treatments, diquat applied at 120 g/ha resulted in effective desiccation with fewer negative effects on grain weight and seed germination in 2013 and 2014. Therefore, diquat may have potential as a pre-harvest chemical desiccation treatment for rice. These results may provide a basis for developing and implementing protocols for large scale field trials. PMID:26465129

  6. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    SciTech Connect

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of x-rays in high Z elements.

  7. DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING

    PubMed Central

    Jing, Chaoran; Cornish, Virginia W.

    2013-01-01

    Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994

  8. Cysteine analogs with a free thiol group promote fertilization by reducing disulfide bonds in the zona pellucida of mice.

    PubMed

    Takeo, Toru; Horikoshi, Yuka; Nakao, Satohiro; Sakoh, Kazuhito; Ishizuka, Yuta; Tsutsumi, Aki; Fukumoto, Kiyoko; Kondo, Tomoko; Haruguchi, Yukie; Takeshita, Yumi; Nakamuta, Yuko; Tsuchiyama, Shuuji; Nakagata, Naomi

    2015-04-01

    Archives of cryopreserved sperm harvested from genetically engineered mice, in mouse resource centers, are a readily accessible genetic resource for the scientific community. We previously reported that exposure of oocytes to reduced glutathione (GSH) greatly improves the fertilization rate of frozen-thawed mouse sperm. Application of GSH to in vitro fertilization techniques is widely accepted as a standard protocol to produce sufficient numbers of mice from cryopreserved sperm. However, the detailed mechanism of the enhancement of fertilization mediated by GSH in vitro is not fully understood. Here we focused on the chemical by determining the effects of its amino acid constituents and cysteine analogs on the fertilization of oocytes by frozen-thawed sperm. Furthermore, we determined the stability of these compounds in aqueous solution. We show here that l-cysteine (l-Cys), d-cysteine (d-Cys), or N-acetyl-l-cysteine (NAC) increased the rate of fertilization when added to the medium but did not adversely affect embryo development in vitro or in vivo. The levels of thiol groups of proteins in the zona pellucida (ZP) and the expansion of the ZP were increased by l-Cys, d-Cys, and NAC. These effects were abrogated by the methylation of the thiol group of l-Cys. NAC was the most stable of these compounds in the fertilization medium at 4C. These results suggest that the thiol groups of cysteine analogs markedly enhance the fertilization rate of mouse oocytes. PMID:25715791

  9. Effect of organic fertilizer and biochar application on soil macro-aggregate formation and organic carbon turnover

    NASA Astrophysics Data System (ADS)

    Grunwald, Dennis; Kaiser, Michael; Ludwig, Bernard

    2015-04-01

    Macro-aggregates are important for the organic matter dynamic and thus the productivity of sustainably managed soils. To date, less is known about the influence of biochar in comparison to other commonly used organic soil additives on the formation of macro-aggregates and organic carbon turnover. Here we aimed to analyze the effects of biochar applied individually and in combination with slurry versus the effects of the individual application of slurry and manure on macro-aggregate yield, the associated organic carbon concentration, and the organic carbon mineralization. For this, we crushed the macro-aggregate fraction (>250 μm) of two different soils that were then mixed with biochar (combustion temperature: 550° C, feedstock: woodchips) and/or cattle-slurry or cattle-manure and incubated within a microcosm experiment at 5° C, 15° C, and 25° C. We monitored the CO2 evolution during the incubation experiment. After four and eight weeks, we determined the dry mass and the carbon concentration of the newly formed macro-aggregates (>250 μm) and the microbial biomass carbon concentration. Carbon mineralization was modelled assuming first-order kinetics and using a rate modifying factor for the temperature (taken from the RothC-26.3 model). Two pools were considered (mineralization of the native organic matter from the control soils and mineralization of the substrates added) in each treatment and the models were calibrated to the C mineralization data at 25° C, whereas the data for 15° C and 5° C were used for validation. Independent from the incubation temperature and the duration of the experiment, the individual application of biochar did not show significant effects on the macro-aggregate yield, the associated carbon concentration, or the CO2 emission rate compared to the control sample receiving no amendments. For the application of biochar in combination with slurry, we observed only for the 15° C treatment higher CO2 emission rates in combination with higher macro-aggregate yields and microbial biomass carbon concentrations compared to the control sample. Among the analyzed treatments, the individual application of slurry resulted at 15° C in the largest increase in the macro-aggregate yield and associated carbon concentration compared to the control sample. However, this did not coincide with respective differences regarding the microbial biomass and the CO2 emission rate. The CO2 emissions for the control and biochar treatments were well estimated by the chosen model approach indicating a strong positive temperature influence on the C mineralization kinetic. The CO2 emissions in the treatments with application of slurry (with and without biochar) and manure were well to satisfactorily described (25° C) and estimated (15° C and 5° C). No adjustment of maximum mineralizable C amounts or rate constants were required at the different temperatures, indicating the usefulness of the rate-modifying factor for temperature for the different amendments. Our results further suggest that the biochar studied here is only beneficial for soil macro-aggregate formation if applied in combination with a further organic additive such as slurry. The formation of macro-aggregates seems to be influenced by the temperature with the largest positive effect observed here at 15° C compared to 5° C and 25° C incubation temperature.

  10. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen ) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  11. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    PubMed

    Chen, Jingjing; Kim, Hyunjin; Yoo, Gayoung

    2015-01-01

    Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea. PMID:26020941

  12. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil

    PubMed Central

    Chen, Jingjing; Kim, Hyunjin; Yoo, Gayoung

    2015-01-01

    Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea. PMID:26020941

  13. Molecule database framework: a framework for creating database applications with chemical structure search capability

    PubMed Central

    2013-01-01

    Background Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Results Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes: ?Support for multi-component compounds (mixtures) ?Import and export of SD-files ?Optional security (authorization) For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures). Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. Conclusions By using a simple web application it was shown that Molecule Database Framework successfully abstracts chemical structure searches and SD-File import and export to simple method calls. The framework offers good search performance on a standard laptop without any database tuning. This is also due to the fact that chemical structure searches are paged and cached. Molecule Database Framework is available for download on the projects web page on bitbucket: https://bitbucket.org/kienerj/moleculedatabaseframework. PMID:24325762

  14. Utilization of phosphate rock from Lisina for direct application: release of plant nutrients in the exchange-fertilizer mixtures.

    PubMed

    Mihajlovi?, Marija; Perii?, Neboja; Pezo, Lato; Stojanovi?, Mirjana; Milojkovi?, Jelena; Lopi?i?, Zorica; Petrovi?, Marija

    2014-10-15

    This study examined the possibility of direct application of phosphate rock (PR) from Lisina deposit, in a mixture with natural clinoptilolite (Cp) and clinoptilolite partially saturated with ammonium ions (NH4-Cp). Solution P concentrations of the NH4-Cp/PR mixtures were sufficient for plant growth and ranged from 0.36 to 0.82 mg L(-1). The median NH4-Cp/PR ratio and the longest proposed mixing time had the most positive impact on the P concentration. Solution Ca concentrations of the NH4-Cp/PR mixtures were between 112.5 and 700.5 mg L(-1), indicating that use of the proposed NH4-Cp/PR mixtures solves the potential lack of Ca(2+) in the solution, which is typical for substrates of similar composition. Selected artificial neural networks (ANNs) were able to predict experimental variables for a broad range of the process parameters all through assay. Manifold effects of small changes in composition of the mixtures and time on the observed concentrations of nutrients were shown using the sensitivity analysis. PMID:25229418

  15. Fertility preservation in female classic galactosemia patients

    PubMed Central

    2013-01-01

    Almost every female classic galactosemia patient develops primary ovarian insufficiency (POI) as a diet-independent complication of the disease. This is a major concern for patients and their parents, and physicians are often asked about possible options to preserve fertility. Unfortunately, there are no recommendations on fertility preservation in this group. The unique pathophysiology of classic galactosemia with a severely reduced follicle pool at an early age requires an adjusted approach. In this article recommendations for physicians based on current knowledge concerning galactosemia and fertility preservation are made. Fertility preservation is only likely to be successful in very young prepubertal patients. In this group, cryopreservation of ovarian tissue is currently the only available technique. However, this technique is not ready for clinical application, it is considered experimental and reduces the ovarian reserve. Fertility preservation at an early age also raises ethical questions that should be taken into account. In addition, spontaneous conception despite POI is well described in classic galactosemia. The uncertainty surrounding fertility preservation and the significant chance of spontaneous pregnancy warrant counseling towards conservative application of these techniques. We propose that fertility preservation should only be offered with appropriate institutional research ethics approval to classic galactosemia girls at a young prepubertal age. PMID:23866841

  16. Fertility options in transgender people.

    PubMed

    De Roo, Chloë; Tilleman, Kelly; T'Sjoen, Guy; De Sutter, Petra

    2016-02-01

    Hormonal and surgical treatments for transgender people have a devastating effect on the possibility for these patients to reproduce. Additionally, transgender people tend to start sex reassignment treatment at a young age, when reproductive wishes are not yet clearly defined nor fulfilled. The most recent Standards of Care of the World Professional Association for Transgender Health recommend clearly informing patients regarding their future reproductive options prior to initiation of treatment. This review gives an overview of the current knowledge and state-of-the-art techniques in the field of fertility preservation for transgender people. Where genital reconstructive surgery definitely results in sterility, hormone therapy on the other hand also has an important, but partially reversible impact on fertility. The current fertility preservation options for trans men are embryo cryopreservation, oocyte cryopreservation and ovarian tissue cryopreservation. For trans women, sperm cryopreservation, surgical sperm extraction and testicular tissue cryopreservation are possible. Although certain fertility preservation techniques could be applicable in a standardized manner based on clear biological criteria, the technique that eventually will be performed should be the preferred choice of the patient after extended explanation of all possible options. PMID:26835612

  17. Toilet compost and human urine used in agriculture: fertilizer value assessment and effect on cultivated soil properties.

    PubMed

    Sangare, D; Sou Dakoure, M; Hijikata, N; Lahmar, R; Yacouba, H; Coulibaly, L; Funamizu, N

    2015-01-01

    Toilet compost (TC) and human urine are among natural fertilizers, which raise interest due to their double advantages to combine sanitation and nutrient recovery. However, combination of urine and TC is not so spread probably because the best ratio (urine/TC) is still an issue and urine effect on soil chemical properties remains poorly documented. This study aims to determine the best ratio of urine and TC in okra cultivation, by targeting higher fertilization effect combined with lower impact on soil chemical properties. Based on Nitrogen requirement of okra, seven treatments were compared: (T0) no fertilizer, (T1) chemical fertilizer (NPK: 14-23-14), (T2) 100% urine, (T3) 100% TC, (T4) ratio of 75% urine+25% TC, (T5) 50% urine+50% TC and (T6) 25% urine+75% TC. Results indicated that T4 (75% urine+25% TC) gave the highest plant height and yield. In contrast, T2 (100% urine) gave the lowest results among all treatments, indicating toxicity effects on plant growth and associated final yield. Such toxicity is confirmed by soil chemical properties at T2 with soil acidification and significant increase in soil salinity. In contrast, application of urine together with TC mitigates soil acidification and salinity, highlighting the efficiency of urine and TC combination on soil chemical properties. However, further investigation is necessary to refine better urine/TC ratio for okra production. PMID:25371046

  18. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture.

    PubMed

    Umina, Paul A; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  19. Chemical applications carried out by local pair natural orbital based coupled-cluster methods.

    PubMed

    Sparta, Manuel; Neese, Frank

    2014-07-21

    The scope of this review is to provide a brief overview of the chemical applications carried out by local pair natural orbital coupled-electron pair and coupled-cluster methods. Benchmark tests reveal that these methods reproduce, with excellent accuracy, their canonical counterparts. At the same time, the speed up achieved by exploiting the locality of the electron correlation permits us to tackle chemical systems that, due to their size, would normally only be addressable with density functional theory. This review covers a broad variety of the chemical applications e.g. simulation of transition metal catalyzed reactions, estimation of weak interactions, and calculation of lattice properties in molecular crystals. This demonstrates that modern implementations of wavefunction-based correlated methods are playing an increasingly important role in applied computational chemistry. PMID:24676339

  20. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  1. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture

    PubMed Central

    Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  2. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability: Description of the chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  3. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability: Description of the chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  4. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability: Description of the chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  5. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability: Description of the chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  6. 40 CFR 413.60 - Applicability: Description of the chemical etching and milling subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the chemical etching and milling subcategory. 413.60 Section 413.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY...

  7. Numerical modeling of D-mappings with applications to chemical kinetics

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1984-01-01

    Numerical modeling of D-mappings was studied and applied to solving nonlinear stiff systems. These mappings were locally linearized for convergence analysis, and some applications were made to chemical kinetics. The technique avoids using multistep implicit codes that require inversion of Jacobian matrices, but depends on the Jacobians for its convergence analysis.

  8. 78 FR 52801 - Importer of Controlled Substances; Notice of Application; Chattem Chemicals, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... to import narcotic raw material are not appropriate. 72 FR 3417(2007). Any bulk manufacturer who is... (f). As noted in a previous notice published in the Federal Register on September 23, 1975, 40 FR... Enforcement Administration Importer of Controlled Substances; Notice of Application; Chattem Chemicals,...

  9. EVALUATION OF POLYESTER AND METALLIZED-POLYETHYLENE FILMS FOR CHEMICAL PROTECTIVE CLOTHING APPLICATIONS

    EPA Science Inventory

    The permeation resistance of thin polyester films and metallized, low-density polyethylene (LDPE) films was evaluated to assess their feasibility for use in chemical protective clothing applications. For a 0.002 cm polyester film, permeation tests were conducted with acetone, car...

  10. Synthesis and applications of 2-aminopyrimidine derivatives as key intermediates in chemical synthesis of biomolecules

    NASA Astrophysics Data System (ADS)

    Koroleva, Elena V.; Gusak, K. N.; Ignatovich, Zh V.

    2010-10-01

    Published data on the main approaches to the formation of the heterocyclic 2-aminopyrimidine system, which is one of important pharmacophores responsible for the biological properties of its derivatives, are described systematically. Main chemical transformations of functionalized 2-aminopyrimidines and their application in the synthesis of modern pharmaceuticals are considered.

  11. 40 CFR 63.747 - Standards: Chemical milling maskant application operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Chemical milling maskant application operations. 63.747 Section 63.747 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National...

  12. CYTOKINE PROFILING FOR CHEMICAL SENSITIZERS: APPLICATION OF THE RIBONUCLEASE PROTECTION ASSAY AND EFFECT OF DOSE

    EPA Science Inventory

    Cytokine Profiling for Chemical Sensitizers: Application of the Ribonuclease Protection Assay and Effect of Dose. L.M. Plitnick1, S.E. Loveless3, G.S. Ladics3, M.P. Holsapple4, M.J. Selgrade2, D.M. Sailstad2 and R.J. Smialowicz2. 1UNC, Curriculum in Toxicology, Chapel Hill, NC a...

  13. Sampling reactive pathways with random walks in chemical space: Applications to molecular dissociation and catalysis

    NASA Astrophysics Data System (ADS)

    Habershon, Scott

    2015-09-01

    Automatically generating chemical reaction pathways is a significant computational challenge, particularly in the case where a given chemical system can exhibit multiple reactants and products, as well as multiple pathways connecting these. Here, we outline a computational approach to allow automated sampling of chemical reaction pathways, including sampling of different chemical species at the reaction end-points. The key features of this scheme are (i) introduction of a Hamiltonian which describes a reaction "string" connecting reactant and products, (ii) definition of reactant and product species as chemical connectivity graphs, and (iii) development of a scheme for updating the chemical graphs associated with the reaction end-points. By performing molecular dynamics sampling of the Hamiltonian describing the complete reaction pathway, we are able to sample multiple different paths in configuration space between given chemical products; by periodically modifying the connectivity graphs describing the chemical identities of the end-points we are also able to sample the allowed chemical space of the system. Overall, this scheme therefore provides a route to automated generation of a "roadmap" describing chemical reactivity. This approach is first applied to model dissociation pathways in formaldehyde, H2CO, as described by a parameterised potential energy surface (PES). A second application to the HCo(CO)3 catalyzed hydroformylation of ethene (oxo process), using density functional tight-binding to model the PES, demonstrates that our graph-based approach is capable of sampling the intermediate paths in the commonly accepted catalytic mechanism, as well as several secondary reactions. Further algorithmic improvements are suggested which will pave the way for treating complex multi-step reaction processes in a more efficient manner.

  14. Sampling reactive pathways with random walks in chemical space: Applications to molecular dissociation and catalysis.

    PubMed

    Habershon, Scott

    2015-09-01

    Automatically generating chemical reaction pathways is a significant computational challenge, particularly in the case where a given chemical system can exhibit multiple reactants and products, as well as multiple pathways connecting these. Here, we outline a computational approach to allow automated sampling of chemical reaction pathways, including sampling of different chemical species at the reaction end-points. The key features of this scheme are (i) introduction of a Hamiltonian which describes a reaction "string" connecting reactant and products, (ii) definition of reactant and product species as chemical connectivity graphs, and (iii) development of a scheme for updating the chemical graphs associated with the reaction end-points. By performing molecular dynamics sampling of the Hamiltonian describing the complete reaction pathway, we are able to sample multiple different paths in configuration space between given chemical products; by periodically modifying the connectivity graphs describing the chemical identities of the end-points we are also able to sample the allowed chemical space of the system. Overall, this scheme therefore provides a route to automated generation of a "roadmap" describing chemical reactivity. This approach is first applied to model dissociation pathways in formaldehyde, H2CO, as described by a parameterised potential energy surface (PES). A second application to the HCo(CO)3 catalyzed hydroformylation of ethene (oxo process), using density functional tight-binding to model the PES, demonstrates that our graph-based approach is capable of sampling the intermediate paths in the commonly accepted catalytic mechanism, as well as several secondary reactions. Further algorithmic improvements are suggested which will pave the way for treating complex multi-step reaction processes in a more efficient manner. PMID:26342358

  15. Applications of Mass Spectrometry in Investigations of Alleged Use of Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Read, Robert W.

    Chemical warfare agents were used extensively throughout the twentieth century. Many such uses are well documented; however some allegations of use of chemical warfare agents were not easily confirmed. During the early 1980s interest developed into investigation of alleged use by analytical techniques, particularly mass spectrometry. Since that time, many combined chromatographic - mass spectrometric methods have been developed, both for application to the analysis of environmental and biomedical samples and for investigation of physiological interactions of chemical warfare agents. Examples are given of some of the investigations in which the author has been involved, including those into Yellow Rain and uses of chemical warfare agents in Iraq and Iran. These examples illustrate the use of combined chromatographic-mass spectrometric methods and emphasise the importance of controls in analytical investigations.

  16. Long-term fertilization of organic manure led to the succession of Bacillus community in an alluvial-aquic soil

    NASA Astrophysics Data System (ADS)

    Chen, Ruirui; Lin, Xiangui; Feng, Youzhi; Hu, Junli; Wang, Ruirui

    2014-05-01

    Long-term fertilization inevitably influences soil physic-chemical and biological properties. Our previous studies with a long-term fertilization experiment on an alluvial-aquic have revealed that specific Bacillus spp. was observed in organic manure-fertilized soils. The current study investigated the effects of long-term fertilization on the succession of Bacillus community in soils and their functions. The experiment included three fertilizer treatments: organic manure (OM), mineral fertilizers (NPK) and the control (without fertilizers). The results showed that long-term application of chemical fertilizers didn't increase the quantity of soil microbial population as much as organic fertilizers did, but it played an important role in maintaining the diversity and community structure of indigenous Bacilli. Correspondingly, long-term application of organic manure significantly increased the quantity while significantly decreased the diversity of Bacilli community. The ratio of Bacilli/bacteria was more constant in OM treatment than NPK indicating the stability of the response to long-term organic fertilizers. PCR-DGGE and clone library revealed the succession of Bacillus community after long-term application of organic manure and the dominant Bacillus spp occurred in the treatmen OM was Bacillus asahii. Our results also proved that Bacillus asahii was not derived from exogenous organic manure, but one of indigenous bacteria in the soil. Bacillus asahii was induced by the substrate after the application of organic manure, and gradually evolved into dominant Bacillus after 4 to 5 years. With an enzyme assay test of pure species and a soil incubation experiment, we came to a preliminary judgment, that the dominant Bacillus asahii didn't significantly influence the decomposition rate of cellulose and protein in the soil, but it promoted the decomposition of lipids, and could also improve the transformation process from fresh organic matter to humus. Applied organic manure led to the succession of soil microbial community, as a response, the changed microbial community and their activities influenced the turnover of exogenous and native soil organic matter, as well as the residuals of decomposition and microbial metabolisms.

  17. [Fertility trends in Haiti].

    PubMed

    Guengant, J; May, J F

    1992-01-01

    5 surveys and the 1971 and 1981 censuses have provided differing and apparently contradictory assessments of fertility levels in Haiti over the past 2 decades. This work surveys the published fertility estimates to ascertain whether any trends are discernable and analyzes to what extent variations in total fertility rates can be explained by variations in proximate fertility determinants. 3 methods of data collection were used in the surveys. The 1971-73 survey was conducted in multiple rounds. The 1977 Haiti Fertility Survey, the 1987 Survey of Mortality, Morbidity, and Service Utilization, and the 1989 Contraceptive Prevalence Survey involved partial or total reconstruction of the respondents' fertility histories. The 1983 Contraceptive Prevalence Survey only included the date of the most recent birth. The data corresponding to the 1970s suggest an overall fertility decline from 6 children per women in the late 1960s to slightly over 5 in the mid-1970s. Results of the 1983 and 1987 surveys, on the other hand, indicate a fertility increase, with total fertility rates of 6.2 for 1982-83, 6.3 for 1982-86, and 7.0 for the first half of 1987. The 1989 survey indicated a total fertility rate of 4.6 for 1984-89. Two somewhat different conclusions may be drawn from the data. The first is that, taking into account the variable quality and precision of the data, Haitian total fertility rates appear to have remained between 5.5 and 6.5 during the past 20 years. This conclusion is supported by the fact that almost all of the observed and adjusted total fertility rates fall within the range of 5.5-6.5. The second possible conclusion is that after a decline from around 6 in the late 1960s to 5.5 in the mid-1970s, the total fertility rate increased again to over 6 in the early 1980s. The linear adjustment of observed and adjusted results of the 5 surveys lends support to this conclusion. Analysis of results of the 1977, 1983, and 1987 surveys using Brass's method tends to corroborate this conclusion, as does analysis of the proximate fertility determinants using Bongaarts' method. It is likely that fertility increased from the mid-1970s to the mid-1980s, to decline slightly to a level equal to or under 6 children/woman by 1989. Control of reproduction in Haiti appears to be achieved through variations in the frequency and stability of unions and in the duration of breast feeding. Recent increases in contraceptive usage revealed by the 1989 survey may signal the beginning of a transition and new modes of fertility control. PMID:12286510

  18. Models of fertilization kinetics

    PubMed Central

    Lehtonen, Jussi

    2015-01-01

    Fertilization functions describe how the number of realized fertilizations depends on gamete numbers or density. They provide insight into the fertilization process, and are important components in models on the evolution of reproductive and sex-specific traits. Existing fertilization functions generally examine the proportion of fertilized eggs as a function of sperm numbers or density in a given fertilization environment. Because these functions have been developed for species with highly diverged gametes, there is an inbuilt (and well justified) asymmetry in them: they treat eggs and sperm, and therefore the two sexes, differently. Although very useful, such functions cannot therefore be used to consistently model early stages in the evolution of the two sexes, or extant species where sex-specific gamete sizes and numbers are similar. Here, I derive fertilization functions that describe the fertilization process without making prior assumptions about the two sexes, and are therefore consistent under any level of gamete dimorphism. These functions are compatible with simpler fertilization functions under appropriate conditions. Such functions can be particularly useful in understanding the early stages in the differentiation of the two sexes, as well as its consequences, where the gametes from the two sexes should be treated on an equal basis. PMID:26473043

  19. [Effects of Organic and Inorganic Slow-Release Compound Fertilizer on Different Soils Microbial Community Structure].

    PubMed

    Wang, Fei; Yuan, Ting; Gu, Shou-kuan; Wang, Zheng-yin

    2015-04-01

    As a new style fertilizer, slow-control release fertilizer had been an important subject in recent years, but few researches were about soil microbial community structure diversity. Phospholipid fatty acid method was used to determined the microbial community structure diversity of acid soil and slight alkaline soil applied with slow-release compound fertilizer (SRF), chemical fertilizer (CF) and common compound fertilizer (CCF) at the 10th, 30th, 60th and 90th day under the constant temperature incubation condition. Results indicated that various bacteria (i. e 13:0, i14:0,14:0, i15:0, a15:0, i16:0, 16:12OH, 16:1w5c,16:0, i17:0, a17:0, cy17:0, 17:02OH, i18:0, 18:0 and cy19:0w8c), two actinomycetes (10Me17:0 and 10Me18:0) and only one fungus (18:1 w9c) were detected in two soils after applying slow-release compound fertilizer and other fertilizers during the whole incubation period. SRF could significantly increase the fungi PLFA content by 8.3% and 6.8% at the early stage (the 10th day and 30th day) compared with CF, as well as significantly increase by 22.7% and 17.1% at the late stage (the 60th day and 90th day) compared with CCF in acid soil. SRF significantly increased bacteria, fungi and gram positive bacteria compared with CF and CCF in incubation period (except at the 30th day) in slight alkaline soil. SRF could significantly improve the ratio of normal saturated fatty acid and monounsaturated fatty acid at the 30th day and 90th days in acid soil compared with no fertilizer (CK), CF and CCF, while as to slight alkaline soil, SRF was significantly greater than that of CK, CF and CCF only at the 60th day. SRF could significantly decrease the ratio of iso PLFA and anteiso PLFA in acid soil (in 30-90 days) and slight alkaline soil (in 10-60 days). For two soils PLFA varieties, contents and ratios of microbial community, slow-release compound fertilizer increased soil microbial PLFA varieties and contents, and decreased the influence to microbial survival environment, especially for the acid soil. Through the research of slow-release compound fertilizer on soil microbial community structure diversity, it could provide a scientific basis for widely application of slow-release compound fertilizer in agricultural production. PMID:26164927

  20. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    PubMed

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372

  1. Long-Term Fertilization Modifies the Structures of Soil Fulvic Acids and Their Binding Capability with Al

    PubMed Central

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372

  2. Occurrence of priority organic pollutants in the fertilizers, China.

    PubMed

    Mo, Ce-Hui; Cai, Quan-Ying; Li, Yun-Hui; Zeng, Qiao-Yun

    2008-04-15

    The use of large quantities of chemical fertilizers is usually associated with environmental problems. A lot of work has been done on the concentrations of heavy metals and radionuclides in chemical fertilizers, but little work has focused on the occurrence of semi-volatile organic compounds (SVOCs). In this study the occurrence of 43 SVOCs listed as priority pollutants in 22 widely used-fertilizers of China was determined by gas chromatography coupled with mass spectrometry. Twenty-six SVOCs were detected with different detection frequencies and concentrations. The most abundant compounds were phthalic acid esters (PAEs; ranging from 1.17 to 2795 microg kg(-1) dry weight, d.w.) and nitroaromatics (up to 9765 microg kg(-1) d.w.), followed by polycyclic aromatic hydrocarbons (PAHs; <140 microg kg(-1) d.w.) and halogenated hydrocarbons (<900 microg kg(-1) d.w.). Chlorobenzenes and haloethers occurred generally at low concentrations. There are large variations in concentrations of various compounds in different fertilizers, and the total concentrations of each class of contaminants varied widely, too. The highest levels of sum concentration for 16 PAHs, for 6 PAEs and for nitroaromatics were found in organic fertilizer containing pesticide and soil amendments. Concentrations of SVOCs in coated fertilizers (the controlled release fertilizer with coating) were considerably higher than those in the corresponding fertilizers without coating. The occurrence frequencies of SVOCs in the straight fertilizers (containing only one of the major plant nutrients) were lower than in the other fertilizers. PMID:17826902

  3. Toxicity of pesticide and fertilizer mixtures simulating corn production to eggs of snapping turtles (Chelydra serpentina).

    PubMed

    de Solla, Shane Raymond; Martin, Pamela Anne; Mikoda, Paul

    2011-09-15

    Many reptiles oviposit in soils associated with agricultural landscapes. We evaluated the toxicity of a pesticide and fertilizer regime similar to those used in corn production in Ontario on the survivorship of exposed snapping turtle (Chelydra serpentina) eggs. The herbicides atrazine, dimethenamid, and glyphosate, the pyrethroid insecticide tefluthrin, and the fertilizer ammonia, were applied to clean soil, both as partial mixtures within chemical classes, as well as complete mixtures. Eggs were incubated in the soil in a garden plot in which these mixtures were applied at a typical field application rate, and higher rates. Otherwise, the eggs were unmanipulated and were subject to ambient temperature and weather conditions. Eggs were also exposed at male producing temperatures in the laboratory in covered bins in the same soil, where there was less opportunity for loss through volatilization or leaching. Egg mortality was 100% at 10× the typical field application rate of the complete mixture, both with and without tefluthrin. At typical field application rates, hatching success ranged between 91.7 and 95.8%. Eggs exposed only to herbicides were not negatively affected at any application rates. Although fertilizer treatments at typical field application rates did not affect eggs, mortality was remarkably higher at three times this rate, and 100% at higher rates. The frequency of deformities of hatchlings was elevated at the highest application rate of the insecticide tefluthrin. The majority of the toxicity of the mixture was not due to the herbicides or insecticide, but was due to the ammonia fertilizer. At typical field application rates, the chemical regime associated with corn production does not appear to have any detrimental impacts upon turtle egg development; however toxicity dramatically increases if this threshold is passed. PMID:21831407

  4. Chemical engineering applications on the MPP, Alliant FX/8 and Encore Multimax parallel computers

    SciTech Connect

    Carmichael, G.R.; Cohen, D.M.; Potra, F.; Marciano, R.; Shin, W.C.; Linhardt, R.J. )

    1988-01-01

    The authors have begun to evaluate various parallel computers for use in chemical engineering applications. Their group is actively involved in the use of the following machines: The MPP, a 16,365 processor SIMD computer, at NASA/Goddard; the Encore Multimax, a bus connected 18 processor 54 MIPS computer; and the Alliant FX/8, a bus connected 8 processor, each with pipeline and integral vector processing facilities (98MFLOPS). They are performing a variety of applications including: a large scale three-dimensional coupled transport/chemistry model for analysis of acid deposition; the elucidation of the structural features of heparin, an important therapeutic anticoagulant; and the implementation of parallel algorithms for SIMPLEX optimization. Their results and experiences related to the applicability of these parallel architectures for use in solving chemical engineering problems is presented.

  5. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are

  6. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  7. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-11-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice-wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha-1 yr-1, 20% organic fertilizer), control-released urea treatment (CRU, 390 kg N ha-1 yr-1, 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha-1 yr-1, all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha-1 yr-1, all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha-1 yr-1, all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20-32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28-48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but decreased the ammonia volatilization loss. Soil total N and organic matter content showed a decrease after three continuous cropping years with inorganic fertilizer application alone, but there was an increase with the OCN treatment. N balance analysis showed a N surplus for FN treatment and a balanced N budget for OCN treatment. To reduce the environmental impact and maintain a high crop production, proper N reduction together with organic amendments could be sustainable in the rice-wheat rotation system in the Taihu Lake region for a long run.

  8. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Nez-Delgado, A; Lpez-Periago, E; Quiroga-Lago, F; Daz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC. PMID:11496670

  9. Detection of herbicides in the urine of pet dogs following home lawn chemical application.

    PubMed

    Knapp, Deborah W; Peer, Wendy A; Conteh, Abass; Diggs, Alfred R; Cooper, Bruce R; Glickman, Nita W; Bonney, Patty L; Stewart, Jane C; Glickman, Lawrence T; Murphy, Angus S

    2013-07-01

    Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P<0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dog's access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs. PMID:23584031

  10. Growth, Root Formation, and Nutrient Value of Triticale Plants Fertilized with Biosolids

    PubMed Central

    Rauw, Wendy Mercedes; Teglas, Michael Bela; Chandra, Sudeep; Forister, Matthew Lewis

    2012-01-01

    Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500?ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P < 0.001); production was similar for the 100 to 400?mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P < 0.001), higher nitrogen concentration (P < 0.05), and lower potassium concentration (P < 0.01) than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative. PMID:22593686

  11. [Fertility transition in Peru].

    PubMed

    Ferrando, D; Aramburu, C E

    1992-12-01

    Data from national censuses and sample surveys are the basis for this examintion of differential fertility and the fertility transition in Peru. Changes in the level and structure of fertility in the 3 major geographic regions are compared, and the role of contraceptive usage and nuptiality changes in the fertility decline are analyzed. Peru's total fertility rate was estimated at 6.85 in 1965 and has since declined to 6.56 in 1965-70, 6.00 in 1970-75, 5.30 in 1975-80, 4.65 in 1980-85, and 4.00 in 1985-90. The fertility decline varied in intensity and timing in the geographic regions. A clear fertility decline began among upper and middle income groups in the principal cities in the 1960s, spreading gradually to the urban low income sectors. Not until the late 1970s did the fertility decline spread to the rest of the population, coinciding with the years of severe economic crisis. The urban total fertility rate declined from 6 to 3.77 during 1961-86, but rural fertility increased through 1972 to 8.12, before declining slightly to 7.62 in 1981 and more markedly to 6.65 in 1986. Sociocultural and economic differences between Peru's natural regions are appreciable, and account for the contrasts in fertility trends. The greatest changes occurred in metropolitan Lima, which already had relatively low fertility in 1961. Its total fertility rate declined 44% from 5.6 in 1961 to 3.13 in 1986. Fertility declined by slightly under 40% in the rest of the coast, by almost 25% in the jungle, and by scarcely 14% in the sierra. The total fertility rates in 1961 and 1986, respectively, were 6.38 and 4.13 on the coast, 6.64 and 6.45 in the highlands, and 7.92 and 5.97 in the lowlands. The fertility decline, especially in the lower classes, was a response initially to the process of cultural modernization which in slightly over 2 decades saw a profound transformation of Peru from a rural, Andean, illiterate, and agrarian society to an urban, coastal, literate, and commercial society. From 1972 on, the fertility decline spread in the rural sectors and was intensified as a response to the profound economic crisis experienced in Peru from 1975 to the present. Increased contraceptive usage was apparently the most important cause of Peru's fertility decline. Overall prevalence increased from 31% in 1977-78 to 46% in 1986, and use of modern methods by women in union doubled in the same years. Regional fertility differences are correlated strongly to contraceptive prevalence and especially to prevalence of modern methods. The 3 most recent national fertility surveys and a series of more limited surveys suggest that women have an increasingly strong desire to control their fertility. The greatest barriers to use of modern contraception are fears of health effects and lack of knowledge. PMID:12287034

  12. Analysis of Iron in Lawn Fertilizer: A Sampling Study

    ERIC Educational Resources Information Center

    Jeannot, Michael A.

    2006-01-01

    An experiment is described which uses a real-world sample of lawn fertilizer in a simple exercise to illustrate problems associated with the sampling step of a chemical analysis. A mixed-particle fertilizer containing discrete particles of iron oxide (magnetite, Fe[subscript 3]O[subscript 4]) mixed with other particles provides an excellent

  13. Analysis of Iron in Lawn Fertilizer: A Sampling Study

    ERIC Educational Resources Information Center

    Jeannot, Michael A.

    2006-01-01

    An experiment is described which uses a real-world sample of lawn fertilizer in a simple exercise to illustrate problems associated with the sampling step of a chemical analysis. A mixed-particle fertilizer containing discrete particles of iron oxide (magnetite, Fe[subscript 3]O[subscript 4]) mixed with other particles provides an excellent…

  14. Commercial fertilizers 1991

    SciTech Connect

    Hargett, N.L.; Berry, J.T.; Montgomery, M.H.

    1991-12-01

    This document contains consumption data for commercial fertilizers in the USA for 1991. Graphical information on the consumption by class is given for the nation. State by state data for consumption of several types of commercial fertilizers are presented. Only numerical data is included.

  15. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  16. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  17. Proximate determinants of fertility in peninsular Malaysia.

    PubMed

    Tey, Nai Peng; Ng, Sor Tho; Yew, Siew Yong

    2012-05-01

    The continuing decline in fertility despite a contraction in contraceptive use in Peninsular Malaysia since the mid-1980s has triggered considerable interest in the reasons behind this phenomenon, such as increase in abortion, sterility, and out-of-wedlock pregnancy. Fertility decline has been attributed to rapid socioeconomic development, which can only influence fertility through the intermediate variables. Application of vital statistics, population census, and survey data of Peninsular Malaysia on Bongaarts's model vindicates that marriage postponement and contraceptive use are the 2 most important proximate determinants of fertility, but the effects are not uniform across the ethnic groups. For instance, the predicted total fertility rate for Chinese and Malays are 2.9 and 1.6, respectively, compared with the observed level of 3.0 and 1.9. Postpartum infecundability and abortion also play a part in explaining ethnic fertility differentials. The fertility inhibiting effects of these proximate determinants have significant implications on reproductive health and future population growth. PMID:21490114

  18. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Chemical name CAS No. 1. Organic compounds a. 1,3-butadiene 106990 b. 1,3-dichloropropene 542756 c... Determine Applicability of Chemical Manufacturing Operations 1 Table 1 to Subpart VVVVVV of Part 63... 1 Table 1 to Subpart VVVVVV of Part 63Hazardous Air Pollutants Used To Determine Applicability...

  19. Fertilizer use and price statistics, 1960-1991. Statistical bulletin

    SciTech Connect

    Vroomen, H.; Taylor, H.

    1992-11-01

    Fertilizer consumption grew rapidly throughout the 1960's and 1970's and peaked at 23.7 million nutrient tons in 1981. After falling to 18.1 million tons in 1983, use has remained relatively stable, ranging from 19.1 million to 21.8 million tons in 1984-91. Use declined from its peak level because of fewer planted acres and stabilizing rates of application. Retail fertilizer prices, while stable or declining during the 1960's, have varied widely since 1973. The bulletin includes quarterly or semiannual time series for retail fertilizer prices, annual retail and wholesale fertilizer price indexes, fertilizer consumption by plant nutrient and major selected products, consumption of mixed fertilizers and secondary and micronutrients, and statistics on fertilizer use per acre by nutrient in the major producing States for corn, cotton, soybeans, and wheat.

  20. Controlled-release fertilizer (CRF): a green fertilizer for controlling non-point contamination in agriculture.

    PubMed

    Mao, Xiao-yun; Sun, Ke-jun; Wang, De-han; Liao, Zong-wen

    2005-01-01

    Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas (N2O) and eutrophication of water bodies. How to solve this problem has become a serious challenge, especially for China as its high ecological pressure. Controlled-release fertilizer(CRF) has been developed to minimize the contamination while keeping high yield and has become a green fertilizer for agriculture. Several CRFs made with special coating technology were used for testing the fertilizer effects in yield and environment through pot experiment and field trial. The result indicated that the CRFs had higher N use efficiency, thus reducing N loss through leaching and volatilization while keeping higher yields. Comparing with imported standard CRFs, the test on CRFs showed similar fertilizer effect but with much lower cost. CRFs application is becoming a new approach for minimizing non-point contamination in agriculture. PMID:16295884

  1. Controlled release fertilizer workshop, 1991: Proceedings

    SciTech Connect

    Scheib, R.M.

    1991-11-01

    Over the last 20 years the Tennessee Valley Authority's National Fertilizer and Environmental Research Center (NFERC) has carried out a number of programs to develop controlled release fertilizers. They pioneered the development and commercialization of sulfur coated urea and conducted extensive research in an attempt to develop an economical synthesis for oxamide. In recent years there has developed an increasing interest in the environmental impact of fertilizers, particularly on the potential for ground water contamination by nitrate derived from fertilizer materials. In response to this interest NFERC's Chemical Research Department organized a five member Controlled Release Fertilizer (CRF) Team to reassess the potential for controlled release materials in agriculture with a view to minimizing any adverse environmental impact and increasing the efficiency of nutrient utilization by the crop. This workshop was part of that reassessment program. The workshop goals were: To determine the present status of CRF research, production and use; to assess the future needs of CRF producers and consumers; and to promote communication and exchange of information. To accomplish these goals the team invited speakers from across' the United States representing academics, experimental station researchers, fertilizer producers, environmentalists, and marketing experts to present papers.

  2. Controlled release fertilizer workshop, 1991: Proceedings

    SciTech Connect

    Scheib, R.M.

    1991-11-01

    Over the last 20 years the Tennessee Valley Authority`s National Fertilizer and Environmental Research Center (NFERC) has carried out a number of programs to develop controlled release fertilizers. They pioneered the development and commercialization of sulfur coated urea and conducted extensive research in an attempt to develop an economical synthesis for oxamide. In recent years there has developed an increasing interest in the environmental impact of fertilizers, particularly on the potential for ground water contamination by nitrate derived from fertilizer materials. In response to this interest NFERC`s Chemical Research Department organized a five member Controlled Release Fertilizer (CRF) Team to reassess the potential for controlled release materials in agriculture with a view to minimizing any adverse environmental impact and increasing the efficiency of nutrient utilization by the crop. This workshop was part of that reassessment program. The workshop goals were: To determine the present status of CRF research, production and use; to assess the future needs of CRF producers and consumers; and to promote communication and exchange of information. To accomplish these goals the team invited speakers from across` the United States representing academics, experimental station researchers, fertilizer producers, environmentalists, and marketing experts to present papers.

  3. Laser and chemical surface modifications of titanium grade 2 for medical application

    NASA Astrophysics Data System (ADS)

    Kwa?niak, P.; Pura, J.; Zwoli?ska, M.; Wieci?ski, P.; Skar?y?ski, H.; Olszewski, L.; Marczak, J.; Garbacz, H.; Kurzyd?owski, K. J.

    2015-05-01

    The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone-implants interactions.

  4. 1982 fertilizer summary data. Bulletin Y-180

    SciTech Connect

    Hargett, N.L.; Berry, J.T.

    1983-05-01

    This report describes historical fertilizer use and crop statistics, application rates, and farm income and expense data for use in production planning and market evaluation. This edition summarizes US consumption (including Puerto Rico) of fertilizer and plant nutrients through the year ended June 30, 1982. It also includes TVA distribution of fertilizer materials in the industry demonstration program for 1979 through 1982. Acres harvested and plant nutrients used on corn for grain, wheat, soybeans, and cotton are reported by state. Statistics on plant nutrient use by crop are from an annual survey made by the ESCS, USDA. Totals are shown for states where these crops are the major farm products. Harvested crop acreage is the total of all principal crops, including commercial vegetables. A brief summary of major fertilizer trends in the US since 1962 is included.

  5. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    NASA Astrophysics Data System (ADS)

    Liu, Ruiqiang; Lal, Rattan

    2014-07-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 +/- 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  6. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max).

    PubMed

    Liu, Ruiqiang; Lal, Rattan

    2014-01-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication. PMID:25023201

  7. Advantages of macromolecular to nanosized chemical-exchange saturation transfer agents for MRI applications.

    PubMed

    Wu, Yunkou; Evbuomwan, Mary; Melendez, Milleo; Opina, Ana; Sherry, A Dean

    2010-03-01

    Chemical-exchange saturation transfer (CEST) agents are a new class of MRI contrast agents that offer a number of advantages over conventional Gd(3+) agents. Over the past few years, a variety of small-molecule CEST agents responsive to physiological conditions, such as pH and temperature, have been designed and their imaging applications have been reported. One of the major drawbacks of current small-molecule CEST agents is their relatively low sensitivity. The advantages of using macromolecular and nanosized systems with large numbers of exchangeable groups to improve contrast sensitivity are highlighted in this brief review. Although this approach has been shown to amplify contrast sensitivity, other limitations, including relatively small chemical-shift differences between the exchanging species and bulk water and less than optimal proton exchange rates, still exist. By addressing these issues, it is anticipated that CEST agents will find useful applications in the detection of specific biomarkers of disease. PMID:21426171

  8. [Advances on investigation of chemical constituents, pharmacological activities and clinical applications of Capparis spinosa].

    PubMed

    Yang, Tao; Liu, Yu-Qing; Wang, Chang-Hong; Wang, Zheng-Tao

    2008-11-01

    In this paper, the chemical constituents, pharmacological activities and clinical applications of Capparis spinosa had been reviewed. The constituents of C. spinosa include the saccharides and glycosides, flavonoids, alkaloids, terpenoids and volatile oils, fatty acids and steroides and so on. C. spinosa had many extensive pharmacological effects such as anti-inflammatory, odynolysis, antifungus, hepatoprotective effect, hypoglycemic activity, antioxidation, anti-hyperlipemia, anticoagulated blood, smooth muscle stimulation, anti-stress reaction, improve memory. It was used to treat arthrolithiasis, rheumarthritis and dermatosis in clinic in domestic, and it would have a broad application prospects. PMID:19149246

  9. DERMAL ABSORPTION OF CHEMICALS: EFFECT OF APPLICATION OF CHEMICAL AS A SOLID, AQUEOUS PASTE, SUSPENSION OR IN VOLATILE VEHICLE

    EPA Science Inventory

    The purpose of this study was to investigate the dermal absorption of chemicals applied to female F344 rats in different physical forms. hese forms included chemical as a solid, aqueous paste, suspension or dissolved in the volatile vehicle ethanol. he chemicals investigated were...

  10. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  11. Principles of ESCA and applications to metal corrosion, coating and lubrication. [Electron Spectroscopy for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1978-01-01

    The principles of ESCA (electron spectroscopy for chemical analysis) are described by comparison with other spectroscopic techniques. The advantages and disadvantages of ESCA as compared to other surface sensitive analytical techniques are evaluated. The use of ESCA is illustrated by actual applications to oxidation of steel and Rene 41, the chemistry of lubricant additives on steel, and the composition of sputter deposited hard coatings. Finally, a bibliography of material that is useful for further study of ESCA is presented and commented upon.

  12. A cause of severe chemical burn: topical application of herbal medicines

    PubMed Central

    Karacor-Altuntas, Z.; Ince, B.; Dadaci, M.; Altuntas, M.

    2014-01-01

    Summary We report a 73-year-old male patient with progressive chemical burn on his lower extremities following topical application of a mixture of the oils derived from Rosmarinus officinalis, Brassica nigra alba and Laurus nobilis. It should be kept in mind that herbal medicines which seem harmless can sometimes be dangerous and life-threatening, especially in elderly and diabetic patients. PMID:26170795

  13. The Impact of Fertilizer Type and Application Method on the Loss of Greenhouse (CO2, N2O, CH4), and Air Quality (NH3) Gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment initiated in the Spring of 2007 at the Sand Mountain Agricultural Experiment Station in Crossville, AL will be discussed. The objective of this experiment is to evaluate the loss of NH3 from different land management (conventional tillage vs. conservation tillage), fertilizers (urea-a...

  14. Tillage and Fertilizer Application Practices Effects on Greenhouse Gas Flux (CO2, CH4 and N2O) and Yield in a Corn Cropping System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage and fertilization practices used in row crop production are thought to alter greenhouse gas emissions from soil. Thus, a field experiment was conducted at the Sand Mountain Research and Extension Center located in the Appalachian Plateau region of Northeast Alabama on a Hartsells fine sandy ...

  15. Effects of Method and Level of Nitrogen Fertilizer Application on Soil pH, Electrical Conductivity, and Availability of Ammonium and Nitrate in Blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (Vaccinium spp.) require low soil pH and prefer N primarily as ammonium for optimum production. Nitrogen fertilizer methods and rates were evaluated in a new field of ‘Bluecrop’ blueberry (Vaccinium corymbosum L.) to determine their effects on soil pH and availability of ammonium and nit...

  16. Applications of a versatile technique for trace analysis: atmospheric pressure negative chemical ionization.

    PubMed Central

    Thomson, B A; Davidson, W R; Lovett, A M

    1980-01-01

    The ability to use ambient air as a carrier and reagent gas in an atmospheric pressure chemical ionization source allows instantaneous air analysis to be combined with hypersensitivity toward a wide variety of compounds. The TAGA (Trace Atmospheric Gas Analyser) is an instrument which is designed to use both positive and negative atmospheric pressure chemical ionization (APCI) for trace gas analysis; this paper describes several applications of negative APCI which demonstrates that the technique is not limited to environmental monitoring. Examples are described which suggest that the TAGA can be used for the detection of illicit drugs and explosives, and for the analysis of breath or skin emissions, as well as for air pollution measurements. The applications are not restricted by the use of ambient air as a reagent gas; addition to the air carrier of various gases allows specific reagent ions such as Cl- or Br- to be generated. Furthermore, in certain situations pure gas carriers can be used to provide even more flexibility in the ion chemistry, with a short term absorber-desorber system used to transfer the sample from the ambient air into the ion source region. The potential uses for APCI are expanding continuously as the understanding of the complex ion-molecule chemistry grows. This paper underlines the complementary relation between the development of new negative chemical ionization (NCI) techniques and practical applications using the TAGA system. PMID:6775945

  17. Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals.

    PubMed

    Stein, Andreas; Wilson, Benjamin E; Rudisill, Stephen G

    2013-04-01

    Templating with colloidal crystals composed of monodisperse spheres is a convenient chemical method to obtain porous materials with well-ordered periodicity and interconnected pore systems. The three-dimensionally ordered macroporous (3DOM) products or inverse opals are of interest for numerous applications, both for the optical properties related to structural color of these photonic crystal materials and because of their bicontinuous nanostructure, i.e., a continuous nanostructured skeleton with large interfacial area and a three-dimensionally interconnected pore system with low tortuosity. This review outlines various synthetic methods used to control the morphology of 3DOM materials with different compositions. It highlights aspects of the choice of colloidal particles, assembly of the colloidal crystal template, infiltration and processing, template removal, and other necessary modifications to enhance the functionality of the materials. It also considers syntheses within the confinement of 3DOM materials and summarizes characterization methods that are particularly useful in the analysis of 3DOM materials. The review then discusses chemical applications of 3DOM materials, namely sorption and controlled release, optical and electrochemical sensors, solar cells, lithium ion batteries, supercapacitors, fuel cells, and environmental and chemical fuel catalysis. A focus is on structural features and materials properties that enable these applications. PMID:23079696

  18. Integration of Chemical Sensors with LSI Technology — History and Applications

    NASA Astrophysics Data System (ADS)

    Tixier-Mita, Agnès; Takahashi, Takuya; Toshiyoshi, Hiroshi

    Chemical sensors are one of the oldest fields of research closely related to the semiconductor technology. From the Ion-Sensitive Field-Effect Transistors (ISFET) in the 70's, through Micro-Electro-Mechanical-System (MEMS) sensors from the end of the 80's, chemical sensors are combining in the 90's MEMS technology with LSI intelligence to devise more selective, sensitive and autonomous devices to analyse complex mixtures. A brief history of chemical sensors from the ISFET to the nowadays LSI integrated sensors is first detailed. Then the states-of-the-art of LSI integrated chemical sensors and their wide range of applications are discussed. Finally the authors propose a brand-new usage of integrated wireless MEMS sensors for remote surveillance of chemical substances, such as food-industry or pharmaceutical products, that are stored in closed environment like a bottle, for a long period. In such environment, in-situ analyse is necessary, and electrical cables, for energy supply or data transfer, cannot be used. Thanks to integrated MEMS, an autonomous long-term in-situ quality deterioration tracking system is possible.

  19. [On adolescent fertility].

    PubMed

    Pongracz, T

    1987-10-01

    A comparative analysis of adolescent fertility in Hungary is presented. It is noted that, in comparison to 29 other developed countries, the fertility rate of Hungarian women under age 18 is exceeded only by that of black Americans. Factors related to the high rate of adolescent fertility in Hungary include the high proportion of married women aged 15-19, induced abortion, agricultural employment, conservative attitudes toward sexuality, pronatalist policies, high rates of adolescent economic activity, high alcohol consumption levels, and lack of contraceptive knowledge among the young. PMID:12268786

  20. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic dead zones, and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at moderate levels (67 kg N ha-1). Increasing fertilizer application beyond the point of diminishing returns for grain (67 kg N ha-1) to double the regionally-recommended amount (202 kg N ha-1) resulted in only marginal increases (25%) in crop residue carbohydrate yield, while increasing lignin yields 41%. In the case of at least this ecosystem, high fertilization rates did not result in large carbohydrate yield increases in the crop residue, and instead produced a lower quality feedstock for cellulosic ethanol production.