Science.gov

Sample records for chemical industry

  1. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  2. Chemicals Industry Vision

    SciTech Connect

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  3. Chemical Educators Stress Industry Ties

    ERIC Educational Resources Information Center

    Worthy, Ward

    1975-01-01

    Describes various courses and programs designed to better prepare graduates to enter the chemical industry, including courses which stress the chemistry of industrial processes, and the economics of the chemical industry. (MLH)

  4. The Chemical Engineer in the Chemical Industry.

    ERIC Educational Resources Information Center

    Zabicky, Jacob

    1986-01-01

    Describes a course for third- or fourth-year chemical engineering students designed to acquaint them with the chemical industry. The course deals with productivity, characteristics of the chemical industry, sources of information, industrial intelligence, research and development, patent law, technology transfer, and quality control. (TW)

  5. The U.S. Chemical Industry, Foreign Chemical Industries

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry provides data on the chemical production of Japan, West Germany, United Kingdom, Italy, and France, including the output of major chemical products in these nations. (PR)

  6. Chemical Industry Bandwidth Study

    SciTech Connect

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  7. The chemical industry, by country

    SciTech Connect

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  8. Economic Aspects of the Chemical Industry

    NASA Astrophysics Data System (ADS)

    Koleske, Joseph V.

    Within the formal disciplines of science at traditional universities, through the years, chemistry has grown to have a unique status because of its close correspondence with an industry and with a branch of engineering—the chemical industry and chemical engineering. There is no biology industry, but aspects of biology have closely related disciplines such as fish raising and other aquaculture, animal cloning and other facets of agriculture, ethical drugs of pharmaceutical manufacture, genomics, water quality and conservation, and the like. Although there is no physics industry, there are power generation, electricity, computers, optics, magnetic media, and electronics that exist as industries. However, in the case of chemistry, there is a named industry. This unusual correspondence no doubt came about because in the chemical industry one makes things from raw materials—chemicals—and the science, manufacture, and use of chemicals grew up together during the past century or so.

  9. Control in the Chemical Industry

    ERIC Educational Resources Information Center

    Jones, R. G.

    1974-01-01

    Discusses various control techniques used in chemical processes, including measuring devices, controller functions, control valves, and feedforward and feedback actions. Applications of control to a real chemical plant are exemplified. (CC)

  10. MUTAGENISTIC TESTING OF INDUSTRIAL WASTES FROM REPRESENTATIVE ORGANIC CHEMICAL INDUSTRIES

    EPA Science Inventory

    The general applicability of the Ames test for screening wastewater samples was investigated. Application of the Ames test to raw and treated wastewaters from representative organic chemical industries involved the investigation of several problems: (1) the feasibility of using t...

  11. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  12. Neurotoxicity of industrial and commercial chemicals

    SciTech Connect

    O'Donoghue, J.L.

    1985-01-01

    This book presents a collection of information on the neurotoxicity of chemicals used in industry or having commercial value. Chemicals reported to cause a variety of effects on the nervous system are thoroughly reviewed. Exposure data, clinical manifestations, pathology, experimental neurology, metabolism, and structure activity correlates are integrated and presented by the anatomical and functional areas of the nervous systems affected, and also by chemical classes with neurotoxic effects. Much of the information is presented in tabular format.

  13. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  14. Facts and Figures, The U.S. Chemical Industry

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    Introduces the annual compilation of the essential statistics of the chemical industry, presented in eight sections (SE 506 182 to 506 189): products of the industry; sales, earnings, and other financial data; chemical company performance; industry employment; chemical R&D spending; U.S. chemical trade; raw materials for the industry; and foreign…

  15. The Microbiological Production of Industrial Chemicals.

    ERIC Educational Resources Information Center

    Eveleigh, Douglas E.

    1981-01-01

    Compares traditional and newer methods by which microorganisms are used to produce industrial chemicals. Includes a discussion of economic considerations and new genetic methods in programing microorganisms. Details methods for producing enzymes, aliphatic organic compounds, amino acids, ethanol, n-butanol, and alkene oxides. (CS)

  16. Safety Considerations in the Chemical Process Industries

    NASA Astrophysics Data System (ADS)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  17. Do Changes in the Chemical Industry Imply Changes in Curriculum?

    ERIC Educational Resources Information Center

    Cussler, E. L.

    1999-01-01

    Speculates about the future responsiveness of chemical engineering curricula to changes in the chemical industry. Focuses on changes in the chemical industry, the status of academia, and possible curricular changes. (DDR)

  18. The U.S. Chemical Industry, the Way It Performs

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    Data on the performance of chemical companies are presented in this section of the annual report on the chemical industry, including: productivity, unit labor costs, chemical company performance, wholesale prices, shipments and inventories, and industrial production. (PR)

  19. Facts & Figures for the Chemical Industry at a Glance--3. Employment in the Chemical Industry: Chemical Employment Growth Continues.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1989

    1989-01-01

    Notes that the number of workers employed in the U.S. chemical industry rose again in 1988. Provides information for the years 1978-88 for the areas of industrial employment, scientist and engineer employment, corporation employment, wages, and industrial productivity. (MVL)

  20. [Arsine: an unknown industrial chemical toxic].

    PubMed

    Plantamura, J; Dorandeu, F; Burnat, P; Renard, C

    2011-07-01

    Arsines family includes many compounds with various toxicities. Arsenic trihydride or arsine is the most toxic form of arsenic. Powerful haemolytic gas, it has never been used as a chemical weapon because its toxicity is not immediate and it is non persistent. However, cases of industrial poisoning with arsine are still identified in spite of a strict regulation at work. It is also identified as a potential toxic of chemical terrorism. This agent, of which the mechanism of action is still not well defined, is badly recognized because of intoxications rarity. However, fast detection means are available. Health professionals and especially those who are involved in piratox plan need to learn to recognize arsine intoxication (hematuria, oliguria, haemolytic anemia) in order to provide early, specific treatment and avoid damages. PMID:21840437

  1. Optical detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Pushkarsky, Michael B.; Patel, C. Kumar N.

    2004-12-01

    We present an analytical model evaluating the suitability of optical absorption based spectroscopic techniques for detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in ambient air. The sensor performance is modeled by simulating absorption spectra of a sample containing both the target and multitude of interfering species as well as an appropriate stochastic noise and determining the target concentrations from the simulated spectra via a least square fit (LSF) algorithm. The distribution of the LSF target concentrations determines the sensor sensitivity, probability of false positives (PFP) and probability of false negatives (PFN). The model was applied to CO2 laser based photoacosutic (L-PAS) CWA sensor and predicted single digit ppb sensitivity with very low PFP rates in the presence of significant amount of interferences. This approach will be useful for assessing sensor performance by developers and users alike; it also provides methodology for inter-comparison of different sensing technologies.

  2. The Soviet Chemical Industry and the Gorbachev Reforms.

    ERIC Educational Resources Information Center

    Martens, John A.

    1987-01-01

    Reviews the reform of the industrial structure of the Soviet Union. Emphasizes the influence of the communist party on chemical production, research and education. Surveys the problems facing the Soviet chemical industry. Lists important officials in the Soviet chemical industry. Discusses joint ventures between the United States and the Soviet…

  3. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  4. Carbon source in the future chemical industries

    NASA Astrophysics Data System (ADS)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  5. The U.S. Chemical Industry, the Money It Earns

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on industry earnings, sales, and spending related to: rates of return, stock prices, 50 largest chemical makers, ten-year record, funds, debt, capital spending, industry and company data. (PR)

  6. The U.S. Chemical Industry, the People It Employs

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    Employment data are presented in this section of the annual report on the chemical industry. Data are provided for: sales per employee, employment by company, industry employment, work week, earnings, unemployment of professionals, and employment of women. (PR)

  7. Occupational health surveillance in the chemical industry.

    PubMed

    Flueckiger, A

    2000-08-01

    Health surveillance has its well defined place within occupational health care. Only a few functions are specific to the chemical industry. Occupational health surveillance used to be targeted at the early detection of occupational illnesses (secondary prevention) but other purposes have gained importance in recent years: ensuring the fitness of every worker for his or her job, promoting workers' health in general, contributing to the safety of the plant operation by identifying workers whose behaviour is likely to endanger others, contributing to product quality by assisting in the fulfilment of good manufacturing practice requirements, etc. If the occupational physician wants to maintain his role as key player in protecting workers' health, he must get involved in the important activities of primary prevention contributing directly to workplace improvements. Such improvements can only be based on systematic assessments of the workplaces. These assessments again provide the necessary objective basis to structure health surveillance in a way that takes into account the possible adverse effects coming from the workplace. PMID:11294324

  8. The changing landscape of careers in the chemical industry

    NASA Astrophysics Data System (ADS)

    Watson, Keith J.

    2011-09-01

    Changes in the chemical industry over the past decade -- ranging from globalization to an increased focus on speciality chemicals -- threaten to leave the aspiring industrial chemist unprepared. This Commentary discusses those changes and outlines strategies to enter the job market as well equipped as possible.

  9. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  10. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    PubMed

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry. PMID:23394962

  11. A Course in Project Evaluation in the Chemical Process Industries.

    ERIC Educational Resources Information Center

    Valle-Riestra, J. Frank

    1983-01-01

    Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…

  12. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  13. The chemical industry, a novel market NICHE for fuel cells?

    SciTech Connect

    Dijkema, G.P.J.; Grievink, J.; Luteijn, C.P.; Weijnen, M.P.C.

    1996-12-31

    The chemical industry may be seen as a market for fuel cells. Fuel cells can be applied to upgrade by-product hydrogen. Fuel cell stacks may be fully integrated in the process system design to enhance the chemical process performance. In this case the arrangement of stacks is one of the unit operations which the chemical process is composed of. Finally trigeneration systems may be designed to produce chemicals, power and heat simultaneously, as equally important commercial products. Identification of novel market opportunities in the chemical industry can be done by a three-step method. The economic feasibility largely depends on stack lifetime and stack capital cost.

  14. Employment in the U.S. Chemical Industry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1988

    1988-01-01

    Reports that overall employment reversed a two-year decline begun in 1984. States that employment of scientists and engineers increased although chemicals were modestly produced. Relates a steady rise in wages for chemical workers. Tables include industrial employment; employment of scientists and engineers; chemical employment; wages; and…

  15. The U.S. Chemical Industry, the Products It Makes

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  16. Challenges and Benefits of Chemical Information Service in Industry.

    ERIC Educational Resources Information Center

    Hansen, Mary E.; Curtis, Jan M.

    1997-01-01

    Discusses chemical information services offered in industrial chemical libraries, based on experiences at the 3M Library. Topics include qualifications of chemical information professionals; corporate culture; clients; services, including reference, current awareness, confidentiality, and end-user support; and information resources, including…

  17. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  18. Chemical Modification of Cotton for Industrial Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (cellulose) is a known favorite in the textile industry and is the most used natural fiber-cloth to date. As we move to use more biodegradable, renewable and sustainable resources, cellulose, a natural polymer, is attracting attention and finding application in oil recovery, cosmetics, surfac...

  19. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  20. A Framework for the Environmental Professional in the Chemical Industry.

    ERIC Educational Resources Information Center

    Priesing, Charles P.

    1982-01-01

    Addresses four areas of environmental concern in the chemical industry: (1) needs and responsibilities of environmental protection; (2) organization and distribution of environmental affairs within the corporate structure; (3) functions and operations associated with industrial environmental management; and (4) origins and tasks of the…

  1. Employment in the U.S. Chemical Industry. Chemical Work Force Tops 1.1 Million.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1990

    1990-01-01

    The annual census of industrial employment, production workers, women, the workweek, scientists and engineers, chemical employment, wages, and productivity in the chemical industry is presented. Trends in the numbers of workers, productivity, and unit labor costs are illustrated in graphs. (CW)

  2. Manufacturing waste disposal practices of the chemical propulsion industry

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Adams, Daniel E.; Schutzenhofer, Scott A.

    1995-01-01

    The waste production, mitigation and disposal practices of the United States chemical propulsion industry have been investigated, delineated, and comparatively assessed to the U.S. industrial base. Special emphasis has been placed on examination of ozone depleting chemicals (ODC's). The research examines present and anticipated future practices and problems encountered in the manufacture of solid and liquid propulsion systems. Information collected includes current environmental laws and regulations that guide the industry practices, processes in which ODC's are or have been used, quantities of waste produced, funding required to maintain environmentally compliant practices, and preventive efforts.

  3. News from Online: Industrial Chemicals and Polymers

    NASA Astrophysics Data System (ADS)

    Sweeney Judd, Carolyn

    1999-02-01

    of the American Chemical Society Divisions of Polymer Chemistry and Polymeric Materials: Science and Engineering and General Electric Corporation. The POLYED site, http:/ /chemdept.uwsp.edu/polyed/index.htm, is hosted by the University of Wisconsin at Stevens Point. This National Center for Polymer Education is another good place to go for information. More education is available at the Ziegler Research Group Home Page at http://www.chem.ucalgary.ca/groups/ziegler/index.html . Go to Metallocene as Olefin Polymerization Catalysis: An Introduction ( http://www.chem.ucalgary.ca/groups/ziegler/met_intro.html ) for historical accounts of metallocene and Ziegler-Natta catalysts. Movies are available here too. This Canadian site is well-documented and educational. Back at the University of Wisconsin-Madison, The Why Files site at http://whyfiles.news.wisc.edu helps bring important chemical and technology news to the public. Go to the archived files of October 1997 ( http://whyfiles.news.wisc.edu/shorties/catalyst.html ) to find information about the importance of low-temperature metallocene catalysts. The Why Files received funding from the National Science Foundation. Go here for science information in an easy-to-read format. One of the driving forces toward better catalysis is the attempt to reach 100% product, combining efficiency with lowered pollution. Companies can look to the Environmental Protection Agency for information: Environsense at http://es.epa.gov/ is pledged to offer "Common Sense Solutions to Environmental Problems". So where can we get these polymers? The American Chemical Society can help. Go to Chemcylopedia at http://pubs.acs.org/chemcy99/ for great information. Both purchasers and users of chemicals can benefit from this site. Searches can be made on the chemical or on the supplier. Information provided includes CAS Registry Numbers and special shipping requirements as well as potential applications. Do you remember that we started with paper? Let

  4. Dermal absorption potential of industrial chemicals: Criteria for skin notation

    SciTech Connect

    Fiserova-Bergerova, V.; Pierce, J.T.; Droz, P.O. )

    1990-01-01

    A dermal penetration rate (flux), predicted from physical properties of 132 chemicals, is suggested as an index of the dermal absorption potential of industrial chemicals. The prediction is designed for organic nonelectrolytes. Two reference values are recommended as criteria for skin notation: (1) dermal absorption potential, which relates to dermal absorption raising the dose of nonvolatile chemicals or biological levels of volatile chemicals 30% above those observed during inhalation exposure to TLV-TWA only--dermal absorption of chemicals belonging to this category should be considered when data obtained by biological monitoring are interpreted; and (2) dermal toxicity potential, which relates to dermal absorption that triples biological levels as compared with levels observed during inhalation exposure to TLV-TWA only. Chemicals belonging in this category should carry a skin notation. The toxicity criteria may not be valid for chemicals whose TLVs are based on preventing irritation and discomfort.

  5. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  6. Real World of Industrial Chemistry. The Second 50 Industrial Chemicals, Part 2.

    ERIC Educational Resources Information Center

    Chenier, Philip J.; Artibee, Danette S.

    1988-01-01

    Completes a report from a previous article by presenting the important manufacture and uses of industrial chemicals. Gives structural formulas and percentages of each major use as well as the typical method of manufacture. (CW)

  7. Perspective on opportunities in industrial biotechnology in renewable chemicals.

    PubMed

    Erickson, Brent; Nelson; Winters, Paul

    2012-02-01

    From biomass to renewable chemicals: while industrial biotechnology offers a clear value proposition, a number of hurdles need to be addressed to fully realize the commercial potential of bio-based products and chemicals over the coming decade. A review of an early roadmap for biological production of chemicals from renewable sugars reveals a focus on those that would provide co-products for integrated biorefineries producing biofuels and bioenergy. A growing number of companies are now focusing on specialty chemicals as an entry point to build the bio-based economy. PMID:21932250

  8. Motivation of chemical industry social responsibility through Responsible Care.

    PubMed

    Givel, Michael

    2007-04-01

    Advocates of corporate social responsibility argue corporations should not only meet the needs of shareholders, but other key stakeholders including the community, customers, suppliers, and employees. Since 1988, the chemical industry has engaged in a major self-regulatory "Responsible Care" industry-wide social responsibility campaign to ensure environmental, public health, safety, and security performance among member companies. Contrary to the arguments of advocates of corporate social responsibility that such efforts meet the needs of stakeholders other than shareholders such as the community, the primary goal of the Responsible Care effort has been to change public concerns and opinion about chemical industry environmental and public health practices while also opposing support for stronger and more expensive public health and environmental legislation and regulation of chemical products, even if warranted. PMID:16797774

  9. A multivariate chemical map of industrial chemicals--assessment of various protocols for identification of chemicals of potential concern.

    PubMed

    Stenberg, Mia; Linusson, Anna; Tysklind, Mats; Andersson, Patrik L

    2009-08-01

    In present study the Industrial chemical map was created, and investigated. Molecular descriptors were calculated for 56072 organic substances from the European inventory of existing commercial chemical substances (EINECS). The resulting multivariate dataset was subjected to principal component analysis (PCA), giving five principal components, mainly reflecting size, hydrophobicity, flexibility, halogenation and electronical properties. It is these five PCs that form the basis of the map of organic, industrial chemicals, the Industrial chemical map. The similarities and diversity in chemical characteristics of the substances in relation to their persistence (P), bioaccumulation (B) and long-range transport potential were then examined, by superimposing five sets of entries obtained from other relevant databases onto the Industrial chemical map. These sets displayed very similar diversity patterns in the map, although with a spread in all five PC vectors. Substances listed by the United Nations Environment Program as persistent organic pollutants (UNEP POPs) were on the other hand clearly grouped with respect to each of the five PCs. Illustrating similarities and differences in chemical properties are one of the strengths of the multivariate data analysis method, and to be able to make predictions of, and investigate new chemicals. Further, the results demonstrate that non-testing methods as read-across, based on molecular similarities, can reduce the requirements to test industrial chemicals, provided that they are applied carefully, in combination with sound chemical knowledge. PMID:19515399

  10. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 6. THE INDUSTRIAL ORGANIC CHEMICALS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the U.S. Entries for each industry are in consistent format and form separate chapters of the study. Industrial organic chemica...

  11. Chemical dosing for sulfide control in Australia: An industry survey.

    PubMed

    Ganigue, Ramon; Gutierrez, Oriol; Rootsey, Ray; Yuan, Zhiguo

    2011-12-01

    Controlling sulfide (H(2)S) production and emission in sewer systems is critical due to the corrosion and malodour problems that sulfide causes. Chemical dosing is one of the most commonly used measures to mitigate these problems. Many chemicals have been reported to be effective for sulfide control, but the extent of success varies between chemicals and is also dependent on how they are applied. This industry survey aims to summarise the current practice in Australia with the view to assist the water industry to further improve their practices and to identify new research questions. Results showed that dosing is mainly undertaken in pressure mains. Magnesium hydroxide, sodium hydroxide and nitrate are the most commonly used chemicals for sewers with low flows. In comparison, iron salts are preferentially used for sulfide control in large systems. The use of oxygen injection has declined dramatically in the past few years. Chemical dosing is mainly conducted at wet wells and pumping stations, except for oxygen, which is injected into the pipe. The dosing rates are normally linked to the control mechanisms of the chemicals and the dosing locations, with constant or profiled dosing rates usually applied. Finally, key opportunities for improvement are the use of mathematical models for the selection of chemicals and dosing locations, on-line dynamic control of the dosing rates and the development of more cost-effective chemicals for sulfide control. PMID:22018528

  12. Concepts in health evaluation of commercial and industrial chemicals

    NASA Technical Reports Server (NTRS)

    Mcnamara, B. P.

    1975-01-01

    A method is described for determining no toxic effect exposure levels based on short-term testing of industrial and commercial chemicals. Procedures for monitoring all organs and body functions for the presence or absence of toxicological effects are demonstrated using various laboratory animals.

  13. Nonleaded Gasoline: Its Impact on the Chemical Industry.

    ERIC Educational Resources Information Center

    Wittcoff, Harold

    1987-01-01

    Explores some of the ways that lead is being replaced in the production of gasolines. Discusses the effects these changes are having on the chemical industry. Contrasts the use of ethyl alcohol from renewable sources with alcohols depending on the availability of isobutene. (TW)

  14. ENVIRONMENTAL IMPLICATIONS OF CHANGES IN THE BROMINATED CHEMICALS INDUSTRY

    EPA Science Inventory

    In light of the large-scale changes occuring within the bromine-based chemicals industry, the U.S. Environmental Protection Agency commissioned a study to investigate the potential for adverse environmental effects that might result from such changes. In particular, EPA was inter...

  15. Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?

    ERIC Educational Resources Information Center

    Tolman, Chadwick A.; Parshall, George W.

    1999-01-01

    Describes major changes that have occurred in the chemical industry over the last 50 years including trends in the development of products and processes, changes in chemical manufacturing, the globalization of business, and modifications of research laboratory practices. Discusses implications for chemistry education and predictions for future…

  16. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  17. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOEpatents

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  18. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    PubMed

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. PMID:25455660

  19. Dynamic simulation of chemical industry wastewater treatment plants.

    PubMed

    Bury, S J; Groot, C K; Huth, C; Hardt, N

    2002-01-01

    High variability, stringent effluent permits, and often extreme operating conditions define the practice of wastewater treatment in the chemical industry. This paper reviews the benefits and challenges of applying dynamic simulation to chemical-industry wastewater treatment plants by describing case studies at full-scale wastewater treatment plants (WWTP). The applications range from process troubleshooting to optimization and control. The applications have been valuable and useful in developing a deeper understanding of the plants as integrated systems. However there still remains substantial work to implement the dynamic simulations for daily real-time use by plant engineers and operators. This opportunity to improve plant operations is still largely untapped and will remain so until dynamic state estimation and data reconciliation are incorporated into simulation packages for use in developing the on-line simulations. PMID:11936653

  20. Reactive formulations for a neutralization of toxic industrial chemicals

    SciTech Connect

    Tucker, Mark D.; Betty, Rita G.

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  1. New frontiers for encapsulation in the chemical industry.

    PubMed

    Andrade, Brenda; Song, Ziyuan; Li, Jun; Zimmerman, Steven C; Cheng, Jianjun; Moore, Jeffrey S; Harris, Keith; Katz, Joshua S

    2015-04-01

    Encapsulation of actives comprises an area of exploration undergoing rapid growth in both academic and industrial research settings. Encapsulation processes are employed as a part of product synthesis processes for improved efficiency, enhanced stability, active ingredient compatibility, increased safety, targeted delivery, and novel performance of the end product. Such technical benefits enable producers to offer products with increased formulation complexity, access new markets, differentiate products, and improve compatibility and stability, while meeting consumer demands with improved performance, reduced costs, and new actives. In this review, we highlight several emerging academic areas of encapsulation that we believe have specific relevance to industrial formulation, with a focus on three primary areas: supramolecular encapsulation, aqueous self-assembled systems, and emulsion-based capsules. The goal of this review is to help identify the major challenges facing encapsulation technology adoption in the chemical industry, bringing focus and maximizing the potential value of ongoing research efforts. PMID:25764282

  2. POTENTIALLY TOXIC AND HAZARDOUS SUBSTANCES IN THE INDUSTRIAL ORGANIC CHEMICALS AND ORGANIC DYES AND PIGMENTS INDUSTRIES

    EPA Science Inventory

    The objective of this program were identification of the potential hazards associated with the production and use of industrial organic chemicals (IOC) and organic dyes and pigments (ODP) and determination of the state of the art of the control and treatment of potentially hazard...

  3. Biological monitoring IX: Concomitant exposure to medications and industrial chemicals

    SciTech Connect

    Rosenberg, J.

    1994-05-01

    A significant proportion of workers may be receiving prescription or nonprescription medications. In two surveys, one in the United States and the other in the Netherlands, 15 to 30 percent of workers reported current use of pharmaceuticals. In a viscose rayon factory in Belgium, 31 percent of 129 workers exposed to carbon disulfide and 19.8 percent of 81 control workers from other factories reported use of some medication. Some of the drugs may affect the relationship between the external exposure (dose) of a chemical and the concentration of that chemical or its metabolite(s) in a sampled biological medium (internal dose), and/or the relationship between external exposure and concentration at a receptor site. They may also modulate the response of the receptor, as suggested by the increased reports of neurological symptoms in carbon disulfide-exposed workers taking certain medications. There are two obvious differences between drugs and industrial chemicals: (1) The effects of drugs cover a wider spectrum and include effects not known to be the result of any industrial chemicals. Examples include selective destructive inhibition of hepatic enzymes (monoamine oxidase inhibitors, indomethacin) and alteration of hepatic blood flow (adrenergic agents, cimetidine). (2) Drugs are administered to produce specific therapeutic effects. 18 refs., 1 tab.

  4. Metabolic engineering is key to a sustainable chemical industry.

    PubMed

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon. PMID:21666928

  5. Impacts on industry of Europe's emerging chemicals policy REACh.

    PubMed

    Angerer, Gerhard; Nordbeck, Ralf; Sartorius, Christian

    2008-03-01

    For Europe, a new regime in chemicals regulation is about to start. After the proposal of the European Commission concerning the Registration, Evaluation and Authorization of Chemicals (REACh) passed its readings in the European Parliament and some differences with the European Council of Ministers were resolved, the regulation will come into force in June 2007. This paper is focused on the question how serious the cost burdens for industry induced by REACh will be, and whether the New European Member States (NMS) which joined the European Union in May 2004 will be able to cope with the regulation. This evaluation has been done by assessing the legislative, administrative and economic framework in New Member States and by analysing real business cases in companies. The empirical showcase business impact studies are at the same time of interest for companies of EU-15 states, other European countries who may implement the regulation, and even for exporters of raw materials and chemicals outside Europe, who will also have to comply with REACh if they market in the European Community. The results give no indications that REACh adoption will bring significant drawbacks to companies in the NMS. The emerging regulation will bring challenges for individual companies, especially for small and medium-sized ones, but for the European chemical industry as a whole, there is no question that it will be able to cope with REACh burdens without losing its global competitiveness. PMID:17321032

  6. Short-term toxicity of nine industrial chemicals

    SciTech Connect

    Komsta, E.; Secours, V.E.; Chu, I.; Morris, R.; Harrison, J.; Baranowski, E.; Villeneuve, D.C. ); Valli, V.E. )

    1989-07-01

    There are a number of industrial chemicals currently used in Canada in sufficiently large quantities that warrant a careful environmental and human health hazard assessment by the regulatory agencies. A review of the existing toxicity data for these chemicals indicated that most of the studies were inadequate due to study design, small group size, inadequate procedures or insufficient parameters being monitored. In order to determine if further studies were warranted it was decided to screen 9 of these chemicals in a short-term study using male and female rats. The chemicals were chosen based on considerations such as quantity, availability of toxicological data, chemical and structural properties and commercial availability. The chemicals selected were: tri(butoxyethyl) phosphate, dimethylol urea, 2-butyne-1,4-diol, triallyl-s-triazine-trione, cyclohexanone oxime, p-toluene sulphonhydrazide, 2-nitroaniline, propargyl alcohol and 5-methyl-1H-benzotriazole. The assay consisted of a 14-day oral dosing regime followed by a comprehensive evaluation of biochemical, hematological and histophathological changes.

  7. The U.S. Chemical Industry, the Foreign Trade It Generates

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The foreign trade of the United States chemical industry is reviewed in this section of the annual chemical industry report, including data presented for: U.S. chemical trade, U.S. trade as per cent of world trade, total U.S. trade, chemical trade growth, and U.S. chemical trade partners. (PR)

  8. [The pharmaceutical industry in the industrial chemical group: the National Union of Chemical-Pharmaceutical Laboratories (1919-1936)].

    PubMed

    Nozal, Raúl Rodríquez

    2011-01-01

    The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The 'Cámara Nacional de Industrias Químicas', in Barcelona, represented the national chemical industry to its ultimate assimilation by the 'Organización Sindical' in 1939. In this association, matters relating to pharmaceutical products -- which we will especially deal with in this work -- were managed by the 'Unión Nacional de Laboratorios Químico-Farmacéuticos', which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. this created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the 'Unión Farmacéutica Nacional'. PMID:22372007

  9. Chemical production from industrial by-product gases: Final report

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  10. Chemical changes during vermicomposting of sago industry solid wastes.

    PubMed

    Subramanian, Selvi; Sivarajan, M; Saravanapriya, S

    2010-07-15

    A laboratory study was undertaken to examine the temporal changes in physico-chemical properties during vermicomposting of sago industry waste. The sago industry waste was blended with cow dung, poultry manure at various proportions, kept for pre-treatment for 21 days and subsequently vermicomposted for a period of 45 days under shade. Earthworm species (Eisenia foetida) was introduced at the rate of 50 g/kg of waste. The substrate moisture content and temperature were monitored regularly. The vermicomposts were sampled at 0, 15, 30 and 45 days for the assessment of temporal changes in physico-chemical properties. The data revealed vermicomposting of sago wastes, cow dung and poultry manure mixed at equal proportion (1:1:1) produced a superior quality manure with desirable C:N ratio and higher nutritional status than composting. E. foetida is an earthworm suitable for composting organic wastes such as poultry manure with extreme pH and high temperature and sago waste with high organic carbon in a shorter period of time. This study suggests that the sago industry solid waste could be effectively converted into highly valuable manure that can be exploited to promote crop production. PMID:20359816

  11. Microfabricated Instrumentation for Chemical Sensing in Industrial Process Control

    SciTech Connect

    Ramsey, J. M.

    2000-06-01

    The monitoring of chemical constituents in manufacturing processes is of economic importance to most industries. The monitoring and control of chemical constituents may be of importance for product quality control or, in the case of process effluents, of environmental concern. The most common approach now employed for chemical process control is to collect samples which are returned to a conventional chemical analysis laboratory. This project attempts to demonstrate the use of microfabricated structures, referred to as 'lab-on-a-chip' devices, that accomplish chemical measurement tasks that emulate those performed in the conventional laboratory. The devices envisioned could be used as hand portable chemical analysis instruments where samples are analyzed in the field or as emplaced sensors for continuous 'real-time' monitoring. This project focuses on the development of filtration elements and solid phase extraction elements that can be monolithically integrated onto electrophoresis and chromatographic structures pioneered in the laboratory. Successful demonstration of these additional functional elements on integrated microfabricated devices allows lab-on-a-chip technologies to address real world samples that would be encountered in process control environments. The resultant technology has a broad application to industrial environmental monitoring problems. such as monitoring municipal water supplies, waste water effluent from industrial facilities, or monitoring of run-off from agricultural activities. The technology will also be adaptable to manufacturing process control scenarios. Microfabricated devices integrating sample filtration, solid phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the same inlet with an array of seven channels each 1 {micro}m deep and 18 {micro}m wide. Sample concentration and separation were performed on channels 5 {micro}m deep and 25 {micro

  12. In Situ Sensors for the Chemical Industry- Final Report

    SciTech Connect

    Tate, J D; Knittel, Trevor

    2006-06-30

    The project focused on analytical techniques that can be applied in situ. The innovative component of this project is the focus on achieving a significant breakthrough in two of the three primary Process Analytical (PA) fields. PA measurements can roughly be broken down into:Single component measurements, Multiple component measurements and Multiple component isomer analysis. This project targeted single component measurements and multiple component measurements with two basic technologies, and to move these measurements to the process, achieving many of the process control needs. During the project the following achievements were made: Development of a low cost Tunable Diode Laser (TDL) Analyzer system for measurement of 1) Oxygen in process and combustion applications, 2) part per million (ppm) H2O impurities in aggressive service, 3) ppm CO in large scale combustion systems. This product is now commercially available Development of a process pathlength enhanced (high sensitivity) Laser Based Analyzer for measurement of product impurities. This product is now commercially available. Development of signal processing methods to eliminate measurement errors in complex and changing backgrounds (critical to chemical industry measurements). This development is incorporated into 2 commercially available products. Development of signal processing methods to allow multi-component measurements in complex chemical streams. This development is incorporated into 2 commercially available products. Development of process interface designs to allow in-situ application of TDL technology in aggressive (corrosive, high temperature, high pressure) commonly found in chemical processes. This development is incorporated in the commercially available ASI TDL analyzer. Field proving of 3 laser-based analyzer systems in process control and combustion applications at Dow Chemical. Laser based analyzers have been available for >5yrs, however significant product price/performance issues have

  13. Cogeneration handbook for the chemical process industries. [Contains glossary

    SciTech Connect

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  14. The subacute inhalation toxicity of 109 industrial chemicals

    PubMed Central

    Gage, J. C.

    1970-01-01

    Gage, J. C. (1970).Brit. J. industr. Med.,27, 1-18. The subacute inhalation toxicity of 109 industrial chemicals. The inhalation toxicity of 109 substances has been studied by exposing experimental animals to known concentrations in air for periods of about three weeks. The toxic properties of these substances are reviewed in relation to the effects of similar compounds on animals and on man. Provisional operational limits are suggested to assist in the design of new plant and in the establishment of codes for safe manufacturing practice. PMID:5418916

  15. An operational centre for managing major chemical industrial accidents.

    PubMed

    Kiranoudis, C T; Kourniotis, S P; Christolis, M; Markatos, N C; Zografos, K G; Giannouli, I M; Androutsopoulos, K N; Ziomas, I; Kosmidis, E; Simeonidis, P; Poupkou, N

    2002-01-28

    The most important characteristic of major chemical accidents, from a societal perspective, is their tendency to produce off-site effects. The extent and severity of the accident may significantly affect the population and the environment of the adjacent areas. Following an accident event, effort should be made to limit such effects. Management decisions should be based on rational and quantitative information based on the site specific circumstances and the possible consequences. To produce such information we have developed an operational centre for managing large-scale industrial accidents. Its architecture involves an integrated framework of geographical information system (GIS) and RDBMS technology systems equipped with interactive communication capabilities. The operational centre was developed for Windows 98 platforms, for the region of Thriasion Pedion of West Attica, where the concentration of industrial activity and storage of toxic chemical is immense within areas of high population density. An appropriate case study is given in order to illuminate the use and necessity of the operational centre. PMID:11744201

  16. Reproductive effects in birds exposed to pesticides and industrial chemicals

    SciTech Connect

    Fry, D.M.

    1995-10-01

    Environmental contamination by agricultural chemicals and industrial waste disposal results in adverse effects on reproduction of exposed birds. The diversity of pollutants results in physiological effects at several levels, including direct effects on breeding adults as well as developmental effects on embryos. The effects on embryos include mortality or reduced hatchability, failure of chicks to thrive (wasting syndrome), and teratological effects producing skeletal abnormalities and impaired differentiation of the reproductive and nervous systems through mechanisms of hormonal mimicking of estrogens. The range of chemical effects on adult birds covers acute mortality, sublethal stress, reduced fertility, suppression of egg formation, eggshell thinning, and impaired incubation and chick rearing behaviors. The types of pollutants shown to cause reproductive effects include organochlorine pesticides and industrial pollutants, organophosphate pesticides, petroleum hydrocarbons, heavy metals, and in a fewer number of reports, herbicides, and fungicides. o,p`-DDT, polychlorinated biphenyls (PCBs), and mixtures of organochlorines have been identified as environmental estrogens affecting populations of gulls breeding in polluted {open_quotes}hot spots{close_quotes} in southern California, the Great Lakes, and Puget Sound. Estrogenic organochlorines represent an important class of toxicants to birds because differentiation of the avian reproductive system is estrogen dependent. 85 refs.

  17. Reproductive effects in birds exposed to pesticides and industrial chemicals.

    PubMed Central

    Fry, D M

    1995-01-01

    Environmental contamination by agricultural chemicals and industrial waste disposal results in adverse effects on reproduction of exposed birds. The diversity of pollutants results in physiological effects at several levels, including direct effects on breeding adults as well as developmental effects on embryos. The effects on embryos include mortality or reduced hatchability, failure of chicks to thrive (wasting syndrome), and teratological effects producing skeletal abnormalities and impaired differentiation of the reproductive and nervous systems through mechanisms of hormonal mimicking of estrogens. The range of chemical effects on adult birds covers acute mortality, sublethal stress, reduced fertility, suppression of egg formation, eggshell thinning, and impaired incubation and chick rearing behaviors. The types of pollutants shown to cause reproductive effects include organochlorine pesticides and industrial pollutants, organophosphate pesticides, petroleum hydrocarbons, heavy metals, and in a fewer number of reports, herbicides, and fungicides. o,p'-DDT, polychlorinated biphenyls (PCBs), and mixtures of organochlorines have been identified as environmental estrogens affecting populations of gulls breeding in polluted "hot spots" in southern California, the Great Lakes, and Puget Sound. Estrogenic organochlorines represent an important class of toxicants to birds because differentiation of the avian reproductive system is estrogen dependent. PMID:8593865

  18. Reproductive effects in birds exposed to pesticides and industrial chemicals.

    PubMed

    Fry, D M

    1995-10-01

    Environmental contamination by agricultural chemicals and industrial waste disposal results in adverse effects on reproduction of exposed birds. The diversity of pollutants results in physiological effects at several levels, including direct effects on breeding adults as well as developmental effects on embryos. The effects on embryos include mortality or reduced hatchability, failure of chicks to thrive (wasting syndrome), and teratological effects producing skeletal abnormalities and impaired differentiation of the reproductive and nervous systems through mechanisms of hormonal mimicking of estrogens. The range of chemical effects on adult birds covers acute mortality, sublethal stress, reduced fertility, suppression of egg formation, eggshell thinning, and impaired incubation and chick rearing behaviors. The types of pollutants shown to cause reproductive effects include organochlorine pesticides and industrial pollutants, organophosphate pesticides, petroleum hydrocarbons, heavy metals, and in a fewer number of reports, herbicides, and fungicides. o,p'-DDT, polychlorinated biphenyls (PCBs), and mixtures of organochlorines have been identified as environmental estrogens affecting populations of gulls breeding in polluted "hot spots" in southern California, the Great Lakes, and Puget Sound. Estrogenic organochlorines represent an important class of toxicants to birds because differentiation of the avian reproductive system is estrogen dependent. PMID:8593865

  19. A Survey of Industrial Organic Chemists: Understanding the Chemical Industry's Needs of Current Bachelor-Level Graduates

    ERIC Educational Resources Information Center

    Fair, Justin D.; Kleist, Elyse M.; Stoy, Dylan M.

    2014-01-01

    A survey was conducted of companies from the chemical industry with an emphasis on the organic division. The data include results from 377 respondents from more than 100 different companies. More than half of all undergraduates gain fulltime work in the chemical industry or government after graduating with a bachelor's degree in chemistry.…

  20. Reactive chromophores for sensitive and selective detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.

    2005-05-01

    A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.

  1. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect

    Olszewski, M.; Zaltash, A.

    1995-03-01

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  2. A 'Fine' chemical industry for life science products: green solutions to chemical challenges.

    PubMed

    Bruggink, A; Straathof, A J J; van der Wielen, L A M

    2003-01-01

    Modern biotechnology, in combination with chemistry and process technology, is crucial for the development of new clean and cost effective manufacturing concepts for fine-chemical, food specialty and pharmaceutical products. The impact of biocatalysis on the fine-chemicals industry is presented, where reduction of process development time, the number of reaction steps and the amount of waste generated per kg of end product are the main targets. Integration of biosynthesis and organic chemistry is seen as a key development. The advances in bioseparation technology need to keep pace with the rate of development of novel bio- or chemocatalytic process routes with revised demands on process technology. The need for novel integrated reactors is also presented. The necessary acceleration of process development and reduction of the time-to-market seem well possible, particularly by integrating high-speed experimental techniques and predictive modelling tools. This is crucial for the development of a more sustainable fine-chemicals industry. The evolution of novel 'green' production routes for semi-synthetic antibiotics (SSAs) that are replacing existing chemical processes serves as a recent and relevant case study of this ongoing integration of disciplines. We will also show some challenges in this specific field. PMID:12747542

  3. Biotechnology-a sustainable alternative for chemical industry.

    PubMed

    Gavrilescu, Maria; Chisti, Yusuf

    2005-11-01

    This review outlines the current and emerging applications of biotechnology, particularly in the production and processing of chemicals, for sustainable development. Biotechnology is "the application of scientific and engineering principles to the processing of materials by biological agents". Some of the defining technologies of modern biotechnology include genetic engineering; culture of recombinant microorganisms, cells of animals and plants; metabolic engineering; hybridoma technology; bioelectronics; nanobiotechnology; protein engineering; transgenic animals and plants; tissue and organ engineering; immunological assays; genomics and proteomics; bioseparations and bioreactor technologies. Environmental and economic benefits that biotechnology can offer in manufacturing, monitoring and waste management are highlighted. These benefits include the following: greatly reduced dependence on nonrenewable fuels and other resources; reduced potential for pollution of industrial processes and products; ability to safely destroy accumulated pollutants for remediation of the environment; improved economics of production; and sustainable production of existing and novel products. PMID:15919172

  4. Hydrogen fuel cells in chemical industry: The assemini project

    SciTech Connect

    Caserza, G.; Bozzoni, T.; Porcino, G.; Pasquinucci, A.

    1996-12-31

    Chemical and petrochemical industries generate large quantities of hydrogen-rich streams, in the range 50%-100% H{sub 2} concentration by volume, as by-products of electrochemical or dehydrogenation processes, or exhausts/purging in hydrogenation processes. Due to safety aspects, and because of the low density, which makes difficult transportation and storage, such streams often constitute a problem for plant managers. In most cases recycling within the plant processes is not possible, and transportation to other sites, generally by truck after compression in cylinders, is not economical. Many of these streams arc therefore simply co-burned in plant boilers, and in some cases even wasted by venting or flaring. Their value ranges from zero (if vented), to the value of the fuel used in the boiler, where they are co-burned.

  5. Oilseed crops as renewable sources of industrial chemicals

    SciTech Connect

    McKeon, T.A.; Lin, Jiann-Tsyh; Goodrich-Tanrikulu, M.

    1995-12-01

    The presence of specific functional groups on a fatty acid confers value for industrial uses. The plant kingdom contains numerous examples of plants that produce seed oils containing fatty acids with epoxy groups, hydroxyl groups, triple bonds or with unusual double bond positions. These fatty acids can be used directly or are readily modified for use in specialty lubricants, plastics and coatings. Many of these plants are not cultivated in the U.S. due to unsuitable climate or growth habit. Such plants provide a source of genes coding for enzymes that will carry out the desired fatty acid modification. Genetic technology allows the transfer of these genes into domestically grown crops such as rapeseed or soybean, with consequent production of the desired fatty acid in the seed oil. One biotechnology company has commercialized a transgenic oilseed crop with an altered fatty acid composition. This talk will review current and projected plans for developing oilseed crops to serve as renewable resources that meet current industrial needs or provide chemical feedstocks for new uses.

  6. Source assessment of hexachlorobenzene from the organic chemical manufacturing industry.

    PubMed

    Jacoff, F S; Scarberry, R; Rosa, D

    1986-01-01

    The Office of Solid Waste of the US Environmental Protection Agency determines the hazards of wastes produced by the organic chemical manufacturing industry. Based on these determinations, regulations have been laid down for many wastes under the Resource Conservation and Recovery Act. Additional wastes from this industry will be considered for regulation following further study and evaluation. Among the wastes under study are hexachlorobenzene (HCB)-containing wastes. Although HCB is no longer manufactured in the USA, the US Environmental Protection Agency has estimated that approximately 4130 t are generated annually as a by-product in the production of chlorinated organics and pesticides. Of this total, about 77% (3178 t) is generated from the production of three chlorinated solvents: tetrachloroethylene, carbon tetrachloride and trichloroethylene. All wastewater containing HCB is treated biologically in surface impoundments, resulting in HCB accumulation in the biological sludge. Disposal methods for HCB-containing sludges and distillation bottoms are incineration and landfilling, with 81% (3345 t) being incinerated and 19% (785 t) going to landfills. PMID:3596719

  7. Trends in the Chemical Industry. 1987 Survey of ACS Corporation Associates.

    ERIC Educational Resources Information Center

    1987

    In July, 1986, the American Chemical Society (ACS) initiated a study which was intended to address future trends in the chemical industry. A survey was developed by and distributed to the member companies of Corporation Associates, which is the formal link between ACS and the chemical industry. The Executive Summary of the report, which makes up…

  8. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  9. Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Pushkarsky, Michael; Patel, C. Kumar N.

    2005-06-01

    We present an analysis of optical techniques for the detection of chemical warfare agents and toxic industrial chemicals in real-world conditions. We analyze the problem of detecting a target species in the presence of a multitude of interferences that are often stochastic and we provide a broadly applicable technique for evaluating the sensitivity, probability of false positives (PFP), and probability of false negatives (PFN) for a sensor through the illustrative example of a laser photoacoustic spectrometer (L-PAS). This methodology includes (1) a model of real-world air composition, (2) an analytical model of an actual field-deployed L-PAS, (3) stochasticity in instrument response and air composition, (4) repeated detection calculations to obtain statistics and receiver operating characteristic curves, and (5) analyzing these statistics to determine the sensor's sensitivity, PFP, and PFN. This methodology was used to analyze variations in sensor design and ambient conditions, and can be utilized as a framework for comparing different sensors.

  10. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  11. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  12. The U.S. Chemical Industry, the Raw Materials It Uses

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)

  13. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    SciTech Connect

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  14. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS GENERAL INFORMATION AND OVERVIEW OF THE CHEMICAL WEAPONS CONVENTION... Schedule 2 chemicals may be useful in the production of chemical weapons, they also have legitimate uses...

  15. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS GENERAL INFORMATION AND OVERVIEW OF THE CHEMICAL WEAPONS CONVENTION... Schedule 2 chemicals may be useful in the production of chemical weapons, they also have legitimate uses...

  16. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS GENERAL INFORMATION AND OVERVIEW OF THE CHEMICAL WEAPONS CONVENTION... Schedule 2 chemicals may be useful in the production of chemical weapons, they also have legitimate uses...

  17. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS GENERAL INFORMATION AND OVERVIEW OF THE CHEMICAL WEAPONS CONVENTION... Schedule 2 chemicals may be useful in the production of chemical weapons, they also have legitimate uses...

  18. Chemical Industry: A New Interdisciplinary Course for Secondary Schools.

    ERIC Educational Resources Information Center

    Nae, Nehemia; And Others

    1980-01-01

    Describes an advanced high school course which incorporates an industrial approach into the chemistry curriculum. Presents three case studies as examples taken from the local chemistry industry--the production of copper, bromine, and plastics. (CS)

  19. The U.S. Chemical Industry, the R & D It Conducts

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The section on research and development (R and D) of the annual report on the chemical industry presents data related to: chemical R and D spending, R and D as per cent of sales, R and D employment, company R and D spending, R and D costs, and all industrial R and D employment. (PR)

  20. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Overview of scheduled chemicals and examples of affected industries. 710.4 Section 710.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS...

  1. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  2. Origins of behavioral teratology and distinctions between research on pharmaceutical agents and environmental/industrial chemicals

    SciTech Connect

    Nelson, B.K. )

    1990-07-01

    Most behavioral teratology studies have focused on pharmaceutical agents. Investigations of developmental toxicity are lacking for the majority of the nearly 100,000 industrial chemicals currently in use. Only some three dozen chemicals have been examined for behavioral/neurochemical deviations in offspring following maternal exposures. Examination of industrial agents for developmental toxicity, therefore, remains a major public health need. Most developmental research addresses the effects of pharmaceutical agents, but these studies frequently do not address environmental/industrial concerns due to fundamental differences in experimental methodology. The route, duration, and timing of exposure, usefulness of fostering of offspring, and potential concomitant exposure of both parents are all variables which should be treated differently in research on industrial chemicals as opposed to pharmaceutical agents. After briefly tracking the history of behavioral teratology, the present paper discusses differences in application of behavioral teratological principles to industrial versus pharmaceutical agents, and points to the largely untested number of industrial chemicals needing investigation. 57 references.

  3. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    PubMed

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. PMID:26476351

  4. Adapting SimpleTreat for simulating behaviour of chemical substances during industrial sewage treatment.

    PubMed

    Struijs, J; van de Meent, D; Schowanek, D; Buchholz, H; Patoux, R; Wolf, T; Austin, T; Tolls, J; van Leeuwen, K; Galay-Burgos, M

    2016-09-01

    The multimedia model SimpleTreat, evaluates the distribution and elimination of chemicals by municipal sewage treatment plants (STP). It is applied in the framework of REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). This article describes an adaptation of this model for application to industrial sewage treatment plants (I-STP). The intended use of this re-parametrized model is focused on risk assessment during manufacture and subsequent uses of chemicals, also in the framework of REACH. The results of an inquiry on the operational characteristics of industrial sewage treatment installations were used to re-parameterize the model. It appeared that one property of industrial sewage, i.e. Biological Oxygen Demand (BOD) in combination with one parameter of the activated sludge process, the hydraulic retention time (HRT) is satisfactory to define treatment of industrial wastewater by means of the activated sludge process. The adapted model was compared to the original municipal version, SimpleTreat 4.0, by means of a sensitivity analysis. The consistency of the model output was assessed by computing the emission to water from an I-STP of a set of fictitious chemicals. This set of chemicals exhibit a range of physico-chemical and biodegradability properties occurring in industrial wastewater. Predicted removal rates of a chemical from raw sewage are higher in industrial than in municipal STPs. The latter have typically shorter hydraulic retention times with diminished opportunity for elimination of the chemical due to volatilization and biodegradation. PMID:27344605

  5. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 15. BRINE AND EVAPORITE CHEMICALS INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The Brine and Ev...

  6. Developing a chemicals/fuels industry from renewable resources

    SciTech Connect

    Villet, R.H.

    1981-01-01

    With the increasing cost and scarcity of nonrenewable resources, the motivation for substituting biomass-derived chemicals for certain key petro-chemicals is likely to grow. Two goals for research and development are recommended: 1) a near-term objective to revive the older fermentation technology based on readily fermentable substrates and to reduce the cost of production to a competetive level; and 2) the longer-term development of a new biotechnology for producing chemicals and fuels efficiently from biomass of various kinds. Current developments in this area are reviewed. (Refs. 28).

  7. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry

  8. STRUCTURE-TOXICITY RELATIONSHIPS FOR INDUSTRIAL CHEMICALS CAUSING TYPE(II) NARCOSIS SYNDROME

    EPA Science Inventory

    Several structure-activity relationships have been published for estimating the lethality of nonpolar nonelectrolytes to fish. The vast majority of non-reactive industrial chemicals produce toxicity symptoms consistent with narcosis. However, researchers have found that many chem...

  9. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    SciTech Connect

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  10. Chemical industry accidents, liability, and community right to know

    SciTech Connect

    Baram, M.S.

    1986-05-01

    The communication of hazard information is now recognized as a vital feature of the new self-help efforts being made by workers and community residents to prevent industrial risks and avoid harms. Legislation at state and federal levels, regulatory actions and common law doctrines now impose on industry the duty to warn of hazards, and also provide persons at risk with the right-to-know hazard information. Thus, hazard communication is more than a theory or moral imperative; it is now rooted in explicit and enforceable legal doctrines. Moreover, hazard communication is not an isolated development: it has broad implications for corporate management. The duty to warn imposed on industry carries with it two concomitant duties for industrial officials: the duty to identify hazards through reasonable efforts and the use of expertise so that the duty to warn will be meaningful; and the duty to act diligently to control or reduce the hazards, once they have been identified, so that the duty to warn will not be dispositive on the matter of corporate responsibility. Thus, three corporate functions for risk management are inextricably linked. Exercise of their rights under these doctrines, and of other authority for the right to know by persons who perceive they may be at risk provides the continuing pressure on industry and agencies to comply with these duties, and assures corporate accountability in carrying out the duties to identify, warn and act. Thus, powerful tools are now available for use in the new self-help era of occupational and environmental protection.

  11. Carcinogenicity tests of certain environmental and industrial chemicals

    SciTech Connect

    Weisburger, E.K.; Ulland, B.M.; Nam, J.; Gart, J.J.; Weisburger, J.H.

    1981-07-01

    Fourteen chemicals of varied uses were tested for carcinogenicity by oral administration in male and female Charles River CD rats. Under the conditions of the tests, propane sultone, propylene imine, and ethylenethiourea, in addition to the positive control N-2-fluorenylacetamide, were carcinogenic. Avadex, bis(2-chloroethyl) ether, the potassium salt of bis(2-hydroxyethyl) dithiocarbamic acid, ethylene carbonate, and semicarbazide hydrochloride were not carcinogenic under the test conditions. Dithiooxamide, glycerol alpha-monochlorohydrin, and thiosemicarbazide gave somewhat ambiguous results, though administered at high enough dose levels to be toxic. An inadequate number of animals survived treatments with sodium azide, sodium bisulfide, and vinylene carbonate, or the animals may not have received sufficiently high doses of the test chemicals to provide maximum test sensitivity. However, there were no indications that these three chemicals were carcinogenic under the test conditions.

  12. Preventing percutaneous absorption of industrial chemicals: the skin denotation

    SciTech Connect

    Grandjean, P.; Berlin, A.; Gilbert, M.; Penning, W.

    1988-01-01

    Percutaneous absorption has received comparatively little attention in occupational health, although this route of entry has repeatedly caused occupation-related intoxications. In practice, the evaluation of skin penetration rates is far from simple. Much evidence has been obtained from studies of chemicals used for cosmetics and topical therapeutics, but the information available on compounds encountered in occupational health is limited. The data obtained from experimental studies have confirmed that the concentration, type of vehicle, skin area, skin condition, and extent of occlusion are important factors in determining the degree of percutaneous absorption, but no general model has been developed. Also, too little is known about the basic chemical properties governing the rate of penetration. Thus, prediction is difficult and bound to be rather inaccurate. Current preventive practice follows the procedure used by ACGIH and is mainly based on a skin denotation in official listings of chemicals to which exposure limits have been allocated. The number of substances and groups of chemicals which have received skin denotation in 17 selected countries varies between 24 and 179 and a total of 275 are listed as a skin hazard in one or more countries; ACGIH lists 143. Thus, the denotation practice varies. As an unfortunate result of these discrepancies and the dichotomy of skin denotation, the absence of skin denotation may erroneously indicate that efforts to protect the skin are unnecessary. Thus, an evaluation of skin penetration potentials should be incorporated in occupational health practice as a supplement to the official denotations. 23 references.

  13. Chemical and Physical Sensing in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Disko, Mark

    2008-03-01

    World-scale oil, gas and petrochemical production relies on a myriad of advanced technologies for discovering, producing, transporting, processing and distributing hydrocarbons. Sensing systems provide rapid and targeted information that can be used for expanding resources, improving product quality, and assuring environmentally sound operations. For example, equipment such as reactors and pipelines can be operated with high efficiency and safety with improved chemical and physical sensors for corrosion and hydrocarbon detection. At the interface between chemical engineering and multiphase flow physics, ``multi-scale'' phenomena such as catalysis and heat flow benefit from new approaches to sensing and data modeling. We are combining chemically selective micro-cantilevers, fiber optic sensing, and acoustic monitoring with statistical data fusion approaches to maximize control information. Miniaturized analyzers represent a special opportunity, including the nanotech-based quantum cascade laser systems for mid-infrared spectroscopy. Specific examples for use of these new micro-systems include rapid monocyclic aromatic molecule identification and measurement under ambient conditions at weight ppb levels. We see promise from emerging materials and devices based on nanotechnology, which can one day be available at modest cost for impact in existing operations. Controlled surface energies and emerging chemical probes hold the promise for reduction in greenhouse gas emissions for current fuels and future transportation and energy technologies.

  14. VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN.

    ERIC Educational Resources Information Center

    CHRISTENSEN, MAYNARD; CLARK, RAYMOND M.

    THIS STUDY WAS CONDUCTED TO DETERMINE THE VOCATIONAL COMPETENCIES NEEDED FOR EMPLOYMENT BELOW THE MANUFACTURING LEVEL IN THE AGRICULTURAL-CHEMICAL INDUSTRY IN MICHIGAN. NINE FUNCTIONS PERFORMED IN THE INDUSTRY WERE LISTED--RESEARCH, TRANSPORTATION, PROCESSING, PUBLIC RELATIONS, SALES, SERVICE, OFFICE RECORDS AND MANAGEMENT, MAINTENANCE, AND…

  15. A FLUORESCENCE-BASED SCREENING ASSAY FOR DNA DAMAGE INDUCED BY GENOTOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    The possibility of deliberate or accidental release of toxic chemicals in industrial, commercial or residential settings has indicated a need for rapid, cost-effective and versatile monitoring methods to prevent exposures to humans and ecosystems. Because many toxic industrial c...

  16. Development of A Flexible System for the Simultaneous Conversion of Biomass to Industrial Chemicals and the Production of Industrial Biocatalysts

    SciTech Connect

    Gao, Johnway; Hooker, Brian S.; Skeen, R S.; Anderson, D B.; Lankey, R. L.; Anastas, P. T.

    2002-01-01

    A flexible system was developed for the simultaneous conversion of biomass to industrial chemicals and the production of industrial biocatalysts. In particular, the expression of a bacterial enzyme, beta-glucuronidase (GUS), was investigated using a genetically modified starch-degrading Saccharomyces strain in suspension cultures in starch media. Different sources of starch including corn and waste potato starch were used for yeast biomass accumulation and GUS expression studies under controls of inducible and constitutive promoters. A thermostable bacterial cellulase, Acidothermus cellulolyticus E1 endoglucanase gene was also cloned into an episomal plasmid expression vector and expressed in the starch-degrading Saccharomyces strain.

  17. Chemical durability of glasses obtained by vitrification of industrial wastes.

    PubMed

    Pisciella, P; Crisucci, S; Karamanov, A; Pelino, M

    2001-01-01

    The vitrification of zinc-hydrometallurgy wastes, electric arc furnace dust (EAFD), drainage mud, and granite mud was shown to immobilize the hazardous components in these wastes. Batch compositions were prepared by mixing the wastes with glass-cullet and sand to force the final glass composition into the glass forming region of the SiO2-Fe2O3-(CaO, MgO) system. The vitrification was carried out in the 1400-1450 degrees C temperature range followed by quenching in water or on stainless steel mold. The United States (US) Environmental Protection Agency (EPA) toxic characterization leaching procedure (TCLP) test was used as a standard method for evaluating the leachability of the elements in the glasses and glass-ceramics samples made with different percentages of wastes. The results for EAFD glasses highlighted that the chemical stability is influenced by the glass structure formed, which, in turn, depends on the Si/O ratio in the glass. The chemical durability of jarosite glasses and glass-ceramics was evaluated by 24 h contact in NaOH, HCl and Na2CO3, at 95 degrees C. Jarosite glass-ceramics containing pyroxene (J40) are more durable than the parent glass in HCl. Jarosite glass-ceramics containing magnetite type spinels (J50) have a durability similar to the parent glass and even lower in HCl because the magnetite is soluble in HCl. PMID:11150126

  18. Major chemical accidents in industrializing countries: the socio-political amplification of risk.

    PubMed

    de Souza Porto, M F; de Freitas, C M

    1996-02-01

    Accidents in the chemical industry, such as those that took place in Seveso (1976) and Bhopal (1984), may kill or injure thousands of people, cause serious health hazards and irreversible environmental damage. The aim of this paper is to examine the ever-increasing risk of similar accidents becoming a frequent ocurrence in the so-called industrializing countries. Using figures from some of the worst chemical accidents in the last decades, data on the Bhopal disaster, and Brazil's social and institutional characteristics, we put forward the hypothesis that present social, political and economic structures in industrializing countries make these countries much more vulnerable to such accidents and create the type of setting where--if and when these accidents occur--they will have even more catastrophic consequences. The authors argue that only the transformation of local structures, and stronger technical cooperation between international organizations, industrialized and industrializing countries could reduce this vulnerability. PMID:8868221

  19. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    PubMed

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism. PMID:27023229

  20. Federal agencies active in chemical industry-related research and development

    SciTech Connect

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  1. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry.

    PubMed

    Singh, Khareen; Oates, Christopher; Plant, Jane; Voulvoulis, Nikolaos

    2014-07-01

    Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of

  2. Potential for geothermal direct use in the greenhouse, lumber, chemical, and potato and onion processing industries

    SciTech Connect

    Bressler, S.E.

    1980-09-01

    It has generally been assumed that rising energy costs in industries with high energy needs for low-temperature process heat will induce increasingly widespread geothermal direct use, so long as technical feasibility and cost advantage can be demonstrated. However, few systematic attempts have been made to determine how industry management and technical personnel within these industries view this possibility in light of factors they deem important to their own firms' energy supply choices. This paper discusses that subject in relation to potential commercial geothermal use in the greenhouse, lumber, chemical, and potato and onion processing industries. It is based upon extensive interviews with decision-makers in over 50 firms representing various segments of these industries and is a selected synthesis of material compiled into reports on each industry.

  3. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    PubMed

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (<100 mg l(-1)) of Chinese Notational Integrated Wastewater Discharge Standard (GB8978-1996) even if without using any dilution water. Compared with the original dilution and biological process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year. PMID:19273902

  4. Wastewater treatment: Chemical industry. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Wastewater treatment: Chemical industry. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains a minimum of 204 citations and includes a subject term index and title list.)

  6. Wastewater treatment: Chemical industry. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains a minimum of 181 citations and includes a subject term index and title list.)

  7. Tailor-made biocatalysts enzymes for the fine chemical industry in China.

    PubMed

    Jiang, Yu; Tao, Rongsheng; Yang, Sheng

    2016-09-01

    The Center of Industrial Biotechnology (CIBT) was established in Huzhou for fine chemicals in 2006 and CIBT Shanghai was founded for bulk chemicals in 2008. CIBT is a non-profit organization under auspices of the Shanghai Institutes for Biological Sciences, Shanghai Branch of the Chinese Academy of Sciences (CAS) and Huzhou Municipal Government. CIBT is affiliated with the CAS, which enables it to take advantage of the rich R&D resources and support from CAS; yet CIBT operates as an independent legal entity. The goal of CIBT is to incubate industrial biotechnologies and accelerate the commercialization of these technologies with corporate partners in China. PMID:27593705

  8. Quantitative Estimation of Trace Chemicals in Industrial Effluents with the Sticklet Transform Method

    SciTech Connect

    Mehta, N C; Scharlemann, E T; Stevens, C G

    2001-04-02

    Application of a novel transform operator, the Sticklet transform, to the quantitative estimation of trace chemicals in industrial effluent plumes is reported. The sticklet transform is a superset of the well-known derivative operator and the Haar wavelet, and is characterized by independently adjustable lobe width and separation. Computer simulations demonstrate that they can make accurate and robust concentration estimates of multiple chemical species in industrial effluent plumes in the presence of strong clutter background, interferent chemicals and random noise. In this paper they address the application of the sticklet transform in estimating chemical concentrations in effluent plumes in the presence of atmospheric transmission effects. They show that this transform retains the ability to yield accurate estimates using on-plume/off-plume measurements that represent atmospheric differentials up to 10% of the full atmospheric attenuation.

  9. Implementation of responsible care in the chemical industry: evidence from Greece.

    PubMed

    Evangelinos, K I; Nikolaou, I E; Karagiannis, A

    2010-05-15

    The chemical industry can be held accountable for numerous large-scale accidents which have led to the release of dangerous hazardous materials, pollutants and toxic chemicals into the environment, two well-known examples being the Union Carbide Bhopal disaster and the Three Mile Island tragedy). To ensure environmental protection and the Health and Safety (H&S) of communities, the chemical industry has voluntarily adopted integrated management programs such as the Responsible Care Program. The theoretical body of relevant literature attempts to explain the origin of the Responsible Care Program (RCP) through socio-political and economic theories. At the same time, the empirical research examines the ways in which various factors affect the choice of the chemical industry in their adoption of the RCP. This paper contributes to the debate by examining the challenges and barriers faced by the Greek chemical industry when adopting RCP, the environmental and H&S issues that prevail and finally, the extent of participation of stakeholders in the planning of RCP in the sector. PMID:20097475

  10. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    PubMed

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. PMID:24839109

  11. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    PubMed Central

    Róg, Tomasz; Cramariuc, Oana; Vanhala, Esa; Tornaeus, Jarkko; Taberman, Helena; Jänis, Janne; Alenius, Harri; Vattulainen, Ilpo; Laine, Olli

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water. PMID:25473947

  12. Petroleum Refining, Industrial Chemical, Drug, and Paper and Allied Products Industries. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on occupations in refining and industrial chemical, drug, and paper manufacturing industries, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in…

  13. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  14. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  15. PORTABLE IMAGING DEVICES FOR INDUSTRIAL LEAK DETECTION AT PETROLEUM REFINERIES AND CHEMICAL PLANTS

    EPA Science Inventory

    Undiscovered gas leaks, or fugitive emissions, in chemical plants and refinery operations can impact regional air quality as well as being a public health problem. Surveying a facility for potential gas leaks can be a daunting task. Industrial Leak Detection and Repair (LDAR) pro...

  16. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  17. Communicating CSR and Business Identity in the Chemical Industry through Mission Slogans

    ERIC Educational Resources Information Center

    Verboven, Hans

    2011-01-01

    This article analyzes the communication of corporate social responsibility (CSR) and corporate image in the chemical industry through mission slogans. Morsing's (2006) CSR communication framework is adapted for a comparative analysis of the strategies behind mission slogans. By grouping rhetorical strategies in a mission slogan into a mission…

  18. NONPROCESS SOLVENT USE IN THE FURNITURE REFINISHING AND REPAIR INDUSTRY: EVALUATION OF ALTERNATIVE CHEMICAL STRIPPERS

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of using alternatives to high volatile organic compound/hazardous air pollutant (VOC/HAP) solvent-based, chemical strippers that are currently used in the furniture repair and refinishing industry to remove both traditi...

  19. Aquatic toxicity of forty industrial chemicals: Testing in support of hazardous substance spill prevention regulation

    NASA Astrophysics Data System (ADS)

    Curtis, M. W.; Ward, C. H.

    1981-05-01

    The U.S. Environmental Protection Agency is presently developing hazardous substance spill regulations to help prevent water pollution. Aquatic animal toxicity data are used as criteria for the designation and categorization of substances as hazardous, even though this type of data is not available for many industrial chemicals. Static 96-hr. toxicity tests were conducted with 40 such chemicals to provide basic toxicity data for regulatory decision making. Thirty-two of the 40 chemicals tested were hazardous to aquatic life as determined by 96-hr. LC 50's less than or equal to 500 mg/l. All 40 chemicals were tested with the fresh-water fathead minnow, Pimephales promelas, and ten chemicals were also tested with the salt-water grass shrimp, Palaemonetes pugio.

  20. Utilization of oleo-chemical industry by-products for biosurfactant production

    PubMed Central

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  1. Environmental stability of chemically amplified resists: proposing an industry standard methodology for testing

    NASA Astrophysics Data System (ADS)

    Dean, Kim R.; Kishkovich, Oleg P.

    2000-06-01

    The authors propose the establishment of a new industry standard methodology for testing the environmental stability of chemically amplified chemical resists. Preparatory to making this proposal, they developed a pertinent test apparatus and test procedure that might be used uniformly as an industry-wide best practice. To demonstrate and validate their proposed methodology, the authors subjected two different 193 nm chemically amplified photoresists to test conditions in the 'torture chamber,' simulating actual lithographic environmental scenarios. Depending on the variables of each test run (e.g., different resists, different resist thicknesses, different pollutants, different concentrations, and different humidity levels), a variety of defects were noted and described quantitatively. Of the three contaminants tested, ammonia had the strongest effect. The thin resists were more strongly affected by the contamination.

  2. Fatal work-related injuries in the U.S. chemical industry 1984-89.

    PubMed

    Suruda, A; Wallace, D

    1996-01-01

    Several mortality studies of the chemical industry have examined fatal injuries, but most of these studies have been of employees of large chemical firms and have not separated work-related from non-work-related injuries. We examined all U.S. Occupational Safety and Health Administration (OSHA) investigation files in 1984-89 in 47 U.S. states of fatal injuries in the chemical industry, Standard Industrial Classification (SIC) 2800-2899. OSHA investigates all reported deaths over which it has jurisdiction; this includes most causes of work-related death except for homicide and motor vehicle crashes. For the 6 year period, there were 234 fatalities in the chemical industry, for a work-related fatality rate of 0.55 per 10,000 workers/year. The largest category of deaths was from explosions, with 99 (42%), followed by fire & burns, with 32 (14%), poisoning, with 31 (13%), and falls, with 18 (8%). Of the 99 deaths from explosions, 45 (45%) involved manufacture or handling of fireworks or other explosives. The fatality rate at firms with fewer than 50 employees was more than twice that of larger firms (P < 0.05) and employees at small firms were less likely to have been covered by a union contract (P < 0.05). OSHA issued citations for safety violations in 73% of the deaths. While regulatory authorities and the media often focus attention on large, multinational chemical corporations, the highest worker fatality rates are found at the smallest chemical firms. PMID:8891780

  3. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  4. Spatial Autocorrelation Analysis of Chinese Inter-Provincial Industrial Chemical Oxygen Demand Discharge

    PubMed Central

    Zhao, Xiaofeng; Huang, Xianjin; Liu, Yibo

    2012-01-01

    A spatial autocorrelation analysis method is adopted to process the spatial dynamic change of industrial Chemical Oxygen Demand (COD) discharge in China over the past 15 years. Studies show that amount and intensity of industrial COD discharges are on a decrease, and the tendency is more remarkable for discharge intensity. There are large differences between inter-provincial discharge amount and intensity, and with different spatial differentiation features. Global spatial autocorrelation analysis reveals that Global Moran’s I of discharge amount and intensity is on the decrease. In space, there is an evolution from an agglomeration pattern to a discretization pattern. Local spatial autocorrelation analysis shows that the agglomeration area of industrial COD discharge amount and intensity varies greatly in space with time. Stringent environmental regulations and increased funding for environmental protections are the crucial factors to cut down industrial COD discharge amount and intensity. PMID:22829788

  5. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  6. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe

    SciTech Connect

    Debellefontaine, H.; Foussard, J.N.

    2000-07-01

    Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e., oxidation (or combustion) by molecular oxygen in the liquid phase, at high temperature (200--325 C) and pressure (up to 175 bar). This method is suited to the elimination of special aqueous wastes from the chemical industry as well as to the treatment of domestic sludge. It is an enclosed process, with a limited interaction with the environment, as opposed to incineration. Usually, the operating cost is lower than 95 Euro M{sup {minus}3} and the preferred COD load ranges from 10 to 80 kg m{sup {minus}3}. Only a handful of industrial reactors are in operation world-wide, mainly because of the high capital investment they require. This paper reviews the major results obtained with the WAO process and assess its field of possible application to industrial wastes. In addition, as only a very few studies have been devoted to the scientific design of such reactors (bubble columns), what needs to be known for this scientific design is discussed. At present, a computer program aimed at determining the performance of a wet air oxidation reactor depending on the various operating parameters has been implemented at the laboratory. Some typical results are presented, pointing out the most important parameters and the specific behavior of these units.

  7. Chemical characterization of odors due to some industrial and urban facilities in Izmir, Turkey

    NASA Astrophysics Data System (ADS)

    Dincer, Faruk; Muezzinoglu, Aysen

    The relationship between odor concentrations (olfactometry) and chemical concentrations (gas chromatography-mass spectrometry, GC-MS) was studied for the odorous air compositions of a rendering plant, a sanitary landfill and an industrial area with large petroleum and petrochemical industries. Samples taken from the university campus located in a non-industrial and non-urban area were also studied for several organic components for comparison. Ambient air samples were taken into special bags by using an odor sampling device designed for field sampling of odors. In the laboratory odorous chemicals in the samples were transferred into adsorbent tubes and analyzed using a combination of thermal desorption and GC-MS. Results point to different characteristics of the odorous gases and air in and around the urban and industrial sources. Among the 64 specific compounds studied, 49 volatile organic compounds (VOCs) were detected in rendering plant, 53 VOCs were detected in sanitary landfill and 44 VOCs were detected in petroleum and petrochemical industries. The compounds measured in the odorous gas composition are the alkanes, alkenes, carbonyls, arenes, chlorinated and other halogenated compounds and organic chlorides as well as the volatile fatty acids.

  8. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  9. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. 78 FR 68461 - Guidance for Industry: Studies To Evaluate the Utility of Anti-Salmonella Chemical Food Additives...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Guidance for Industry: Studies to Evaluate the Utility of Anti-Salmonella Chemical Food Additives in Feeds... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Studies To Evaluate the Utility of Anti- Salmonella Chemical Food Additives in Feeds; Request for Comments AGENCY: Food and...

  11. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    PubMed

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. PMID:21724330

  12. Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.

    2010-04-01

    An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

  13. [Comparative evaluation of health hazards associated with industrial chemicals and their derivates forming during water chlorination].

    PubMed

    Zholdakova, Z I; Poliakova, E E; Lebedev, A T

    2006-01-01

    Many industrial chemicals found in waste waters are able to form organochlorine by-products during water disinfection. The transformation of seven model compounds, cyclohexene, n-butanol, diphenylmethane, acetophenone, aniline, 1-methylnaphthalene, and phenylxylylethane during a reaction with active chlorine was studied. Aqueous chlorine and sodium hypochlorite were used as chlorinating agents. The products of the reaction were analyzed by means of chromatomass-spectrometry. A schematic model of diphenylmethane transformation was proposed. Comparative evaluation of hazards associated with the model chemicals and their derivates confirmed that chlorination products can be more toxic and dangerous than the initial compounds, and may possess mutagenic and cancerigenic properties. PMID:16889350

  14. Applications for Solid-State Joints in the chemical process industry

    NASA Astrophysics Data System (ADS)

    Goin, R. David

    2008-11-01

    Two forms of solid-state joining of tubing are explored here for use in the chemical process industry and other applications. Extrusion bonding consists of diffusion bonding an inner seamless tube of one material to an outer seamless tube of another material. Inertia welding consists of rotating one tube while pressing a second stationary tube into the first. In both cases, a very strong and robust metallurgical bond can result. This paper explores the testing and properties of such metallurgical bonds.

  15. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  16. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    PubMed Central

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-01-01

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on. PMID:23603866

  17. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE PAGESBeta

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  18. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  19. Risk Assessment and Hierarchical Risk Management of Enterprises in Chemical Industrial Parks Based on Catastrophe Theory

    PubMed Central

    Chen, Yu; Song, Guobao; Yang, Fenglin; Zhang, Shushen; Zhang, Yun; Liu, Zhenyu

    2012-01-01

    According to risk systems theory and the characteristics of the chemical industry, an index system was established for risk assessment of enterprises in chemical industrial parks (CIPs) based on the inherent risk of the source, effectiveness of the prevention and control mechanism, and vulnerability of the receptor. A comprehensive risk assessment method based on catastrophe theory was then proposed and used to analyze the risk levels of ten major chemical enterprises in the Songmu Island CIP, China. According to the principle of equal distribution function, the chemical enterprise risk level was divided into the following five levels: 1.0 (very safe), 0.8 (safe), 0.6 (generally recognized as safe, GRAS), 0.4 (unsafe), 0.2 (very unsafe). The results revealed five enterprises (50%) with an unsafe risk level, and another five enterprises (50%) at the generally recognized as safe risk level. This method solves the multi-objective evaluation and decision-making problem. Additionally, this method involves simple calculations and provides an effective technique for risk assessment and hierarchical risk management of enterprises in CIPs. PMID:23208298

  20. Analysis of the comprehensibility of chemical hazard communication tools at the industrial workplace.

    PubMed

    Ta, Goh Choo; Mokhtar, Mazlin Bin; Mohd Mokhtar, Hj Anuar Bin; Ismail, Azmir Bin; Abu Yazid, Mohd Fadhil Bin Hj

    2010-01-01

    Chemical classification and labelling systems may be roughly similar from one country to another but there are significant differences too. In order to harmonize various chemical classification systems and ultimately provide consistent chemical hazard communication tools worldwide, the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) was endorsed by the United Nations Economic and Social Council (ECOSOC). Several countries, including Japan, Taiwan, Korea and Malaysia, are now in the process of implementing GHS. It is essential to ascertain the comprehensibility of chemical hazard communication tools that are described in the GHS documents, namely the chemical labels and Safety Data Sheets (SDS). Comprehensibility Testing (CT) was carried out with a mixed group of industrial workers in Malaysia (n=150) and factors that influence the comprehensibility were analysed using one-way ANOVA. The ability of the respondents to retrieve information from the SDS was also tested in this study. The findings show that almost all the GHS pictograms meet the ISO comprehension criteria and it is concluded that the underlying core elements that enhance comprehension of GHS pictograms and which are also essential in developing competent persons in the use of SDS are training and education. PMID:20616463

  1. Industry/Department of Energy workshop on chemical safety: Summary and highlights

    SciTech Connect

    Not Available

    1993-05-01

    As part of the US Department of Energy (DOE) Office of Environment, Safety and Health (EH) oversight responsibilities under Secretary of Energy Notice 6D, the Office of Safety and Quality Assurance (EH-30) routinely evaluates the adequacy and effectiveness of line organization nonnuclear safety programs and processes, particularly where occupational safety can be affected. As a result of safety concerns raised in several forums, including Tiger Team Assessments and Technical Safety Appraisals, reviews of chemical incidents at DOE facilities, identification of safety issues by external DOE oversight organizations, and the EH oversight evaluation of Program Secretarial Officers` safety analysis programs, EH has determined that chemical safety is a key area requiring further evaluation. This workshop summary provides insight into the safety culture and management policies of leading US chemical companies. This summary also suggests some actions by the Department of Energy for improving its own safety activities. As part of the workshop, representatives of the chemical industry discussed the programs their companies have carried out to reduce or eliminate the use of highly hazardous chemicals as much as possible. The chemicals focused on for elimination or risk reduction included chlorine, ammonia, hydrogen fluoride, and sulfur dioxide.

  2. Industry/Department of Energy workshop on chemical safety: Summary and highlights

    SciTech Connect

    Not Available

    1993-05-01

    As part of the US Department of Energy (DOE) Office of Environment, Safety and Health (EH) oversight responsibilities under Secretary of Energy Notice 6D, the Office of Safety and Quality Assurance (EH-30) routinely evaluates the adequacy and effectiveness of line organization nonnuclear safety programs and processes, particularly where occupational safety can be affected. As a result of safety concerns raised in several forums, including Tiger Team Assessments and Technical Safety Appraisals, reviews of chemical incidents at DOE facilities, identification of safety issues by external DOE oversight organizations, and the EH oversight evaluation of Program Secretarial Officers' safety analysis programs, EH has determined that chemical safety is a key area requiring further evaluation. This workshop summary provides insight into the safety culture and management policies of leading US chemical companies. This summary also suggests some actions by the Department of Energy for improving its own safety activities. As part of the workshop, representatives of the chemical industry discussed the programs their companies have carried out to reduce or eliminate the use of highly hazardous chemicals as much as possible. The chemicals focused on for elimination or risk reduction included chlorine, ammonia, hydrogen fluoride, and sulfur dioxide.

  3. Industrial Raman: providing easy, immediate, cost-effective chemical analysis anywhere

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Carangelo, Robert M.; Brouillette, Carl R.

    1999-12-01

    During the past decade Raman spectroscopy has moved out of the shadow if IR spectroscopy and has become a routine laboratory tool for chemical analysis. This is largely due to the development of stable diode lasers, fiber optic samples probes, compact optical designs, high quantum efficiency detectors, and personal computers with fast electronics, and associated data acquisition and analysis. These developments allow real-time, multi-component chemical analysis, and suggest the use of Raman spectroscopy for process monitoring and control. Single-ended fiber optic proves simplify coupling into process streams, allow remote placement of the Raman instrument from the sample point, and give Raman spectroscopy a decided advantage over IR spectroscopy in industrial liquid and solid process applications. Indeed, more than a dozen new Raman instrument companies offering fiber optic based systems have been launched in the past five years. Notably, all of these systems employ charge coupled device detectors. And yet, only one company has successfully penetrated the industrial market. Instrument limitations cited include fluorescence interference, incomplete spectral coverage, wavelength reproducibility, and long-term instrument stability. To address these limitations, Real-Time Analyzers has developed a Fourier transform Raman instrument. It employs a diode pumped Nd:YAG laser with excitation at 1064 nm and a single element, uncooled InGaAs detector, that are integrated into On-Line Technologies' proven rugged, vibration and temperature immune interferometer. Instrument design and industrial applications will be presented.

  4. In vitro methods for hazard assessment of industrial chemicals - opportunities and challenges.

    PubMed

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the 'method of choice' for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals. PMID:25999858

  5. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    PubMed Central

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T.; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals. PMID:25999858

  6. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  7. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  8. Estimated Energy Savings and Financial Impacts of Nanomaterials by Design on Selected Applications in the Chemical Industry

    SciTech Connect

    Thayer, Gary R.; Roach, J. Fred; Dauelsberg, Lori

    2006-03-01

    This study provides a preliminary analysis of the potential impact that nanotechnology could have on energy efficiency, economic competitiveness, waste reduction, and productivity, in the chemical and related industries.

  9. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  10. MODIFICATION AND EVALUATION OF A HIGH-VOLUME AIR SAMPLER FOR PESTICIDES AND SEMIVOLATILE INDUSTRIAL ORGANIC CHEMICALS

    EPA Science Inventory

    Previously we reported the development and evaluation of a high-volume air sampler for pesticides and other semivolatile industrial organic chemicals (1). This sampler has proved useful for monitoring airborne pesticides associated with agricultural applications (2) and polychlor...

  11. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-11-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  12. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  13. Filtration techniques used by the textile industry for recovery of dyes, chemicals and energy

    SciTech Connect

    Porter, J.J.

    1995-09-01

    The continued increase in the cost of chemicals energy and water makes their recovery more important today than it was 20 years ago when ultrafiltration and hyperfiltration were first introduced to the textile industry. While the filtration techniques have only been used at a few installations, these plants have been able to save enough to pay for the recovery process in one to two years. One key to having a successful recovery operation is to have good automatic control of the process. This can drastically improve the economics of the textile process as well as minimizing the cost of the recovery system. The recovery of PVA, indigo, caustic and preparation chemicals will be presented.

  14. Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

    PubMed Central

    Jang, Jae-Kil; Shin, Jung-Ah

    2011-01-01

    Objectives This study was designed to evaluate exposure levels of various chemicals used in wafer fabrication product lines in the semiconductor industry where work-related leukemia has occurred. Methods The research focused on 9 representative wafer fabrication bays among a total of 25 bays in a semiconductor product line. We monitored the chemical substances categorized as human carcinogens with respect to leukemia as well as harmful chemicals used in the bays and substances with hematologic and reproductive toxicities to evaluate the overall health effect for semiconductor industry workers. With respect to monitoring, active and passive sampling techniques were introduced. Eight-hour long-term and 15-minute short-term sampling was conducted for the area as well as on personal samples. Results The results of the measurements for each substance showed that benzene, toluene, xylene, n-butyl acetate, 2-methoxyethanol, 2-heptanone, ethylene glycol, sulfuric acid, and phosphoric acid were non-detectable (ND) in all samples. Arsine was either "ND" or it existed only in trace form in the bay air. The maximum exposure concentration of fluorides was approximately 0.17% of the Korea occupational exposure limits, with hydrofluoric acid at about 0.2%, hydrochloric acid 0.06%, nitric acid 0.05%, isopropyl alcohol 0.4%, and phosphine at about 2%. The maximum exposure concentration of propylene glycol monomethyl ether acetate (PGMEA) was 0.0870 ppm, representing only 0.1% or less than the American Industrial Hygiene Association recommended standard (100 ppm). Conclusion Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during

  15. Application of pulsed corona induced plasma chemical process to an industrial incinerator.

    PubMed

    Lee, Yong-Hwan; Jung, Won-Suk; Choi, Yu-Ri; Oh, Jong-Seok; Jang, Sung-Duck; Son, Yoon-Gyu; Cho, Moo-Hyun; Namkung, Won; Koh, Dong-Jun; Mok, Young-Sun; Chung, Jae-Woo

    2003-06-01

    Pulsed corona induced plasma chemical process (PPCP) has been investigated for the simultaneous removal of NO(x) (nitrogen oxides) and SO2 (sulfur dioxide) from the flue gas emission. It is one of the world's largest scales of PPCP for treating NO(x) and SO2 simultaneously. A PPCP unit equipped with an average 120 kW modulator has been installed and tested at an industrial incinerator with the gas flow rate of 42 000 m3/h. To improve the removal efficiency of SO2 and NO(x), ammonia (NH3) and propylene (C3H6) were used as chemical additives. It was observed that the pulsed corona induced plasma chemical process made significant NO(x) and SO2 conversion with reasonable electric power consumption. The ammonia injection was very effective in the enhancement of SO2 removal. NO removal efficiency was significantly improved by injecting a C3H6 additive. In the experiments, the removal efficiencies of SO2 and NO(x) were approximately 99 and 70%, respectively. The specific energy consumption during the normal operation was approximately 1.4 Wh/m3, and the nanopulse conversion efficiency of 64.3% was achieved with the pulsed corona induced plasma chemical process. PMID:12831044

  16. Occupational and Qualification Structures in the Field of Environmental Protection in the Metal and Chemical Industries in Italy.

    ERIC Educational Resources Information Center

    Stanzani, Claudio

    This report provides an initial analysis of the occupational and qualification structures in the field of environmental protection in the Italian metal and chemical industries. The first two chapters review the legislative background, situation in industry, and provision of environmental education and training. The third chapter presents results…

  17. Mobility in the European Chemicals Industry Sector: The Role of Transparency and Recognition of Vocational Qualifications. CEDEFOP Panorama Series.

    ERIC Educational Resources Information Center

    Rolfe, Heather

    Research was conducted in Europe to determine the following: (1) the current situation in the chemicals industry in regard to transparency, recognition, and transfer of qualifications; (2) the obstacles to transparency and recognition of qualifications in the industry; and (3) the key areas for future action and possible measures to promote…

  18. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    PubMed

    Duan, Weili; He, Bin

    2015-07-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency. PMID:26184260

  19. [Technology upgrades and exposure to chemical agents: results of the PPTP study in the footwear industry].

    PubMed

    Gianoli, Enrica; Brusoni, Daniela; Cornaggia, Nicoletta; Saretto, Gianni

    2012-01-01

    In the present work the chemical compositions of the products used in shoes manufacturing are reported. The data were collected over the period 2004-2007 in 156 shoe factories in Vigevano area during a study aiming the evaluation of safety conditions and occupational exposure to hazardous chemicals of the employees. The study was part of a regional project for "Occupational cancer prevention in the footwear industry". In the first phase of the study an information form on production cycle, products used and their composition was filled during preliminary audit. In the second phase of the study an in depth qualitative/quantitative evaluation of professional exposure was conducted in 13 selected shoe factories. Data analysis showed the increase in use of water-based adhesives at expense of solvent-based adhesives, the reduction to less than 3.5 weight %, and up to 1 weight %, of n-hexane concentration in solvent mixtures, the increase in use of products containing less hazardous ketones, esters, cyclohexane and heptane. Only in very few cases, products containing from 4 to 12 weight% of toluene were used. These data attest a positive trend in workers risks prevention in shoes industry. PMID:22697030

  20. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail. PMID:21977648

  1. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    PubMed Central

    Duan, Weili; He, Bin

    2015-01-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency. PMID:26184260

  2. Occupational and Qualification Structures in the Field of Environmental Protection in the Metal and Chemical Industries in the United Kingdom.

    ERIC Educational Resources Information Center

    European Centre for the Development of Vocational Training, Berlin (Germany).

    A study analyzed the occupational structure and qualifications associated with the field of environmental protection in the metal and chemical industries in the United Kingdom. The analysis included nine case studies based on interviews with firms in the chemicals and metals sectors. Information was gathered within an analytical framework that…

  3. Chemical Manufacturing and Refining Industry Legitimacy: Reflective Management, Trust, Precrisis Communication to Achieve Community Efficacy.

    PubMed

    Heath, Robert L; Lee, Jaesub

    2016-06-01

    Calls for emergency right-to-know in the 1980s, and, in the 1990s, risk management planning, motivated U.S. chemical manufacturing and refining industries to operationalize a three-pronged approach to risk minimization and communication: reflective management to increase legitimacy, operational safety programs to raise trust, and community engagement designed to facilitate citizens' emergency response efficacy. To assess these management, operational, and communication initiatives, communities (often through Local Emergency Planning Committees) monitored the impact of such programs. In 2012, the fourth phase of a quasi-longitudinal study was conducted to assess the effectiveness of operational change and community outreach in one bellwether community. This study focuses on legitimacy, trust, and response efficacy to suggest that an industry can earn legitimacy credits by raising its safety and environmental impact standards, by building trust via that change, and by communicating emergency response messages to near residents to raise their response efficacy. As part of its campaign to demonstrate its concern for community safety through research, planning, and implementation of safe operations and viable emergency response systems, this industry uses a simple narrative of risk/emergency response-shelter-in-place-communicated by a spokes-character: Wally Wise Guy. PMID:26503696

  4. Inhable particulate matter from lime industries: Chemical composition and deposition in human respiratory tract

    NASA Astrophysics Data System (ADS)

    Godoi, Ricardo H. M.; Braga, Darci M.; Makarovska, Yaroslava; Alfoldy, Balint; Carvalho Filho, Marco A. S.; Van Grieken, Réne; Godoi, Ana Flavia L.

    Air pollution caused by the lime production industry has become a serious problem with potential effects to human health, especially in developing countries. Colombo is a city included in the Metropolitan Region of Curitiba (capital of Paraná State) in South Brazil. In Colombo city, a correlation has been shown between the lime production and the number of persons who need respiratory treatment in a local hospital, indicating that the lime industry can cause deleterious health effects in the exposed workers and population. This research was conducted to deal firstly with the characterization of the size distribution and chemical compositions of particles emitted from lime manufacturing and subsequently to assess the deposition rate of inhaled dolomitic lime aerosol particles in the human respiratory tract. The elemental chemical composition and particle size of individual atmospheric particles was quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis. Information concerning the bulk composition is provided by energy-dispersive X-ray detection. The majority of the respirable particulate matter identified was composed of aluminosilicates, Ca-Mg oxides, carbon-rich particles, mixtures of organic particles and Ca-Mg carbonates, soot and biogenic particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated, revealing the deposition of CaO·MgO at extrathoracic, tracheobronchial and pulmonary levels. The results of this study offer evidence to the threat of the fine and coarse particles emitted from dolomite lime manufacturing, allowing policy-makers to better focus their mitigation strategies in an effective way, as well as to the dolomite producers for the purpose of designing and/or implementing improved emission controls.

  5. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.

    PubMed

    Harriman, Anthony

    2013-08-13

    There is, at present, no solar fuels industry anywhere in the world despite the well-publicized needs to replace our depleting stock of fossil fuels with renewable energy sources. Many obstacles have to be overcome in order to store sunlight in the form of chemical potential, and there are severe barriers to surmount in order to produce energy on a massive scale, at a modest price and in a convenient form. It is also essential to allow for the intermittent nature of sunlight, its diffusiveness and variability and to cope with the obvious need to use large surface areas for light collection. Nonetheless, we have no alternative but to devise viable strategies for storage of sunlight as biomass or chemical feedstock. Simple alternatives, such as solar heating, are attractive in terms of quick demonstrations but are not the answer. Photo-electrochemical devices might serve as the necessary machinery by which to generate electronic charge but the main problem is to couple these charges to the multi-electron catalysis needed to drive energy-storing chemical reactions. Several potential fuels (CO, H₂, HCOOH, NH₃, O₂, speciality organics, etc.) are possible, but the photochemical reduction of CO₂ deserves particular mention because of ever-growing concerns about overproduction of greenhouse gases. The prospects for achieving these reactions under ambient conditions are considered herein. PMID:23816906

  6. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China.

    PubMed

    Zhao, Long; Xu, Yafei; Hou, Hong; Shangguan, Yuxian; Li, Fasheng

    2014-01-15

    We conducted an investigation to identify the sources of metals in urban surface soils, and to assess the associated human health risks, around the Tanggu chemical industrial district, Tianjin, China. The metal concentrations and spatial distributions in 70 soil samples from the study area were determined. Pollution sources were identified using multivariate statistical analysis. They mainly attributed Cu, Pb, and Zn pollution to vehicular traffic and industrial discharges, Cd pollution to industrial activities and anthropogenic waste including industrial discharges, sewage sludge, and municipal solid waste, As and Hg pollution to coal combustion and point source emissions from the chemical industry, and Cr and Ni pollution to the soil parent material. Soil properties, particularly the organic matter content, were found to be important factors in the distribution and composition of metals. A health risk assessment showed that samples from the northwestern and southeastern parts of the study area may pose significant health risks to the population. PMID:24061056

  7. Nonclinical reproductive toxicity testing requirements for drugs, pesticides, and industrial chemicals in India and China.

    PubMed

    Rao, K S; Dong, Jing

    2013-01-01

    India and China have booming chemical, agrochemical, and pharmaceutical industries. Both countries also represent expanding markets for foreign chemical and healthcare companies. All such products require reproductive toxicity testing before marketing. The ICH testing guidelines for medicinal products are not applicable in China and India. Nonetheless, reproductive toxicity studies designed and run to ICH principles are generally acceptable for submission. The Chinese guidelines take into consideration traditional Chinese medicines, which are usually mixtures. Likewise, the specific recommendations of India and China for the reproductive toxicity testing of chemicals and pesticides differ from those of the OECD and the USEPA. Again, studies performed in accordance with internationally recognized principles are usually acceptable for submission in both countries. The Chinese guideline for the reproductive toxicity testing of agrochemicals is currently under revision; the new version is expected to resemble more closely the requirements of the OECD and the USEPA. As a member of the OECD, India has conducted Good Laboratory Practice (GLP) inspection, accreditation, and monitoring activities since 2004. China has made several attempts to join the Council Decisions on Mutual Acceptance of Data in the Assessment of Chemicals since 2005. Currently 47 laboratories in China have been certified by the national GLP authorities. Several laboratories in China have also been recently been certified by OECD member countries as GLP compliant. In India, there are currently 23 GLP-Certified laboratories; about six of these are also AALAC accredited. The specific study designs specified in the guidelines of China and India for reproductive toxicity studies are described in detail in this chapter. PMID:23138892

  8. The OSHA and EPA programs on preventing chemical accidents and potential applications in the photovoltaic industry

    SciTech Connect

    Fthenakis, V.M.

    1996-08-01

    OSHA issued in 1992, the Process Safety Management (PSM) of Highly Hazardous Substances. This rule requires owners/operators of facilities that handle hazardous chemicals in quantities greater than the listed thresholds to establish all the elements of a PSM. EPA has issued in June 1996, the rules for a Risk Management Program which also refers to specific substances and threshold quantities. These rules are applicable to all the facilities that use or store any of 139 regulated substances at quantities ranging from 100 lb to 10,000 lb. The RMP rule covers off-site hazards, while the OSHA Process Safety Management (PSM) rule covers worker safety issues within the plant boundary. Some of the listed substances may be found in photovoltaic manufacturing facilities. This brief report presents the basic elements of these two rules and discusses their potential applicability in the photovoltaic industry.

  9. Long-term-high temperature stability of alloy 803 in the chemical process industry

    SciTech Connect

    Sizek, H.W.; Baker, B.A.; Smith, G.D.

    1999-11-01

    Alloy 803 is used in the chemical process industry for its high temperature strength and corrosion resistance. Knowledge of the microstructural characteristics as a function of time and temperature are essential for accurate rationalization of mechanical property performance under actual service conditions. This paper seeks to determine the microstructure of alloy 803 as a function of time and temperature for times up to 34,000 hours and temperatures ranging from 595 C to 1095 C. Post-exposure room temperature tensile data are also presented as an indication of the alloy`s tolerance to downtime strains. Intermediate temperature mechanical strength can be attributed primarily to gamma prime ({gamma}{prime}) and higher temperature strength to M{sub 23}C{sub 6} content.

  10. Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Alam, Mohammed S.; West, Charles E.; Scarlett, Alan G.; Rowland, Steven J.; Harrison, Roy M.

    2013-02-01

    Samples of airborne particulate matter (PM2.5) have been collected in Birmingham, UK and extracted with dichloromethane prior to analysis by two-dimensional GC separation and TOFMS analysis. Identification of compounds using the NIST spectral library has revealed a remarkable diversity of compounds, some of which have not been previously reported in airborne analyses. Groups of compounds identified in this study include a large number of oxygenated VOC including linear and branched compounds, substituted aromatic compounds and alicyclic compounds, oxygenated polycyclic aromatic and alicyclic compounds, organic nitrogen compounds, branched chain VOC and substituted aromatic VOC, phthalates, organo-phosphates and organo-sulphate compounds. Many of the compounds identified are mass production chemicals, which due to their semi-volatility enter the atmosphere and subsequently partition onto pre-existing aerosol. Their contribution to the toxicity of airborne particulate matter is currently unknown but might be significant. The diverse industrial uses and potential sources of the identified compounds are reported.

  11. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  12. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    SciTech Connect

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  13. Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future

    SciTech Connect

    Thomas D. Briselden

    2007-10-31

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this

  14. Pesticides, chemical and industrial exposures in relation to systemic lupus erythematosus

    PubMed Central

    Parks, Christine G.; De Roos, Anneclaire J.

    2013-01-01

    Growing evidence suggests exposure to chemicals and industrial pollutants may increase risk of SLE. Here we review research on SLE associations with occupational and industrial exposures, primarily drawing on studies in human populations and summarizing epidemiologic research published in the past decade. The association of occupational silica exposure with SLE is well established, but key questions remain, including the required dose and susceptibility factors, and SLE risk due to other silicate exposures. Research on SLE and other exposures is less well developed, though several potential associations merit further consideration due to the consistency of preliminary human findings, experimental animal research, and biologic plausibility. These include pesticides and solvents, for which experimental findings also support investigation of specific agents, including organochlorines and trichloroethylene. Experimental findings and biologic plausibility suggest research on SLE and occupational exposure to hydrocarbons (i.e., mineral oils) is warranted, especially given the widespread exposures in the population. Experimental and limited human findings support further investigation of SLE related to mercury exposure, especially in dental occupations. Research on environmental risk factors in risk-enriched cohorts (family based) is recommended, as is further investigation of exposures in relation to intermediate markers of effect (e.g., antinuclear antibodies), clinical features (e.g., nephritis) and outcomes. PMID:24763537

  15. The effect of Rosmarinus herbal tea on occupational burnout in Iran Chemical Industry Investment company employees

    PubMed Central

    Mehrabi, Tayebe; Gorji, Somayeh; Zolfaghari, Behzad; Razmjoo, Rasool

    2015-01-01

    Background: Burnout is one of the most important problems that the employees encounter. Many health problems arise due to burnout which is to be dealt with by the employees and the owners in the industry. Among many different ways of dealing with this problem, herbal therapy seems to be a promising solution. The present study intended to investigate the effect of Rosmarinus officinalis (RO) on burnout in employees who work in industrial environments. Materials and Methods: An experimental study was performed to see whether RO has an effect on burnout or not. A total of 66 employees, aged between 20 and 60 years, who had worked for at least 1 year in the technical wards of Iran Chemical Industry Investment Company took part in the study. The participants were randomly assigned to two groups of control (n = 33) and RO (n = 33). The RO group received 4 g of Rosemary in 150 cc water per day for 2 months. The control group, on the other hand, did not receive anything. The data were collected via Geldard (1989) Burnout Inventory before and after the treatment. A t-test was performed to analyze the collected data. Results: The results of statistical tests showed that after intervention, the score of occupational burnout in RO group was better, and a significant difference was found between the control and experimental groups (P = 0.03), in favor of the experimental group. Conclusions: The results of the study revealed that Rosmarinus had a positive effect on burnout in employees in this study. Further studies in this field are suggested. PMID:26257801

  16. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  17. Glymes as Versatile Solvents for Chemical Reactions and Processes: from the Laboratory to Industry

    PubMed Central

    Tang, Shaokun; Zhao, Hua

    2014-01-01

    Glymes, also known as glycol diethers, are saturated non-cyclic polyethers containing no other functional groups. Most glymes are usually less volatile and less toxic than common laboratory organic solvents; in this context, they are more environmentally benign solvents. However, it is also important to point out that some glymes could cause long-term reproductive and developmental damages despite their low acute toxicities. Glymes have both hydrophilic and hydrophobic characters that common organic solvents are lack of. In addition, they are usually thermally and chemically stable, and can even form complexes with ions. Therefore, glymes are found in a broad range of laboratory applications including organic synthesis, electrochemistry, biocatalysis, materials, and Chemical Vapor Deposition (CVD), etc. In addition, glyme are used in numerous industrial applications, such as cleaning products, inks, adhesives and coatings, batteries and electronics, absorption refrigeration and heat pumps, as well as pharmaceutical formulations, etc. However, there is a lack of comprehensive and critical review on this attractive subject. This review aims to accomplish this task by providing an in-depth understanding of glymes’ physicochemical properties, toxicity and major applications. PMID:24729866

  18. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater.

    PubMed

    Sklyar, Vladimir; Epov, Andrey; Gladchenko, Marina; Danilovich, Dmitrii; Kalyuzhnyi, Sergey

    2003-01-01

    A combined biologic and chemical treatment of high-strength (total chemical oxygen demand [CODtot] up to 20 g/L), strong nitrogenous (total N up to 1 g/L), and phosphoric (total P up to 0.4 g/L) starch industry wastewater was investigated at laboratory-scale level. As a principal step for COD elimination, upflow anaerobic sludge bed reactor performance was investigated at 30 degrees C. Under hydraulic retention times (HRTs) of about 1 d, when the organic loading rates were higher than 15 g of COD/(L.d), the CODtot removal varied between 77 and 93%, giving effluents with a COD/N ratio of 4-5:1, approaching the requirements of subsequent denitrification. The activated sludge reactor operating in aerobic-anoxic regime (HRT of about 4 d, duration of aerobic and anoxic phases of 30 min each) was able to remove up to 90% of total nitrogen and up to 64% of COD tot from the anaerobic effluents under 17-20 degrees C. The coagulation experiments with Fe(III) showed that 1.4 mg of resting hardly biodegradable COD and 0.5 mg of phosphate (as P) could be removed from the aerobic effluents by each milligram of iron added. PMID:12794298

  19. Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries

    PubMed Central

    Kamal-Eldin, Afaf; Lærke, Helle Nygaard; Knudsen, Knud-Erik Bach; Lampi, Anna-Maija; Piironen, Vieno; Adlercreutz, Herman; Katina, Kati; Poutanen, Kaisa; Ɨman, Per

    2009-01-01

    Background Epidemiological studies show inverse relationship between intake of wholegrain cereals and several chronic diseases. Components and mechanisms behind possible protective effects of wholegrain cereals are poorly understood. Objective To characterise commercial rye bran preparations, compared to wheat bran, regarding structure and content of nutrients as well as a number of presumably bioactive compounds. Design Six different rye brans from Sweden, Denmark and Finland were analysed and compared with two wheat brans regarding colour, particle size distribution, microscopic structures and chemical composition including proximal components, vitamins, minerals and bioactive compounds. Results Rye brans were generally greener in colour and smaller in particle size than wheat brans. The rye brans varied considerably in their starch content (13.2–;28.3%), which reflected variable inclusion of the starchy endosperm. Although rye and wheat brans contained comparable levels of total dietary fibre, they differed in the relative proportions of fibre components (i.e. arabinoxylan, β-glucan, cellulose, fructan and Klason lignin). Generally, rye brans contained less cellulose and more β-glucan and fructan than wheat brans. Within small variations, the rye and wheat brans were comparable regarding the contents of tocopherols/tocotrienols, total folate, sterols/stanols, phenolic acids and lignans. Rye bran had less glycine betaine and more alkylresorcinols than wheat brans. Conclusions The observed variation in the chemical composition of industrially produced rye brans calls for the need of standardisation of this commodity, especially when used as a functional ingredient in foods. PMID:19412350

  20. Impact of the 11 March, 2011, Tohoku earthquake and tsunami on the chemical industry

    NASA Astrophysics Data System (ADS)

    Krausmann, E.; Cruz, A. M.

    2012-04-01

    An earthquake of magnitude 9.0 occurred off the Pacific coast of Tohoku, Japan, on March 11, 2011, at 14:46:23 Japan Standard Time (5:46:23 UTC). It generated a tsunami 130 km off the coast of Miyagi Prefecture in northeast Japan, which inundated over 400 km2 of land. The death toll has reached >15,800 according to the Japan National Policy Agency with over 3,700 still missing as of 26 October 2011. Significant damage to or complete collapse of houses also resulted. The earthquake generated strong ground motion; nevertheless most damage was caused by the tsunami, which is a tribute to the effectiveness of Japan's earthquake damage reduction measures in saving lives and property. Nonetheless, the direct losses amount to more than 200 billion US dollars (not counting the costs of the accident at the Fukushima nuclear power plant). The earthquake and tsunami had a significant impact on all types of industry, and in particular on the petrochemical and chemical industry in the affected areas, resulting in hazardous-materials releases, fires and explosions and forcing businesses to interrupt production. These so-called Natech accidents pose an immediate or even long-term threat to the population and the environment, and can also interrupt the supply chain. Overall, the earthquake and tsunami took over 30% of Japan's oil production offline, and two refineries are still not or only partially in operation to repair the damage caused by the fires and explosions. The fire-fighting efforts could only be started 4 days after the disaster due to the absence of personnel that had been evacuated and because of the continuing tsunami alerts. In one of the affected refineries the fires could only be extinguished 10 days after the disasters. Many petrochemical and chemical companies reported problems either due to damage to facilities or because of power outages. In fact, in facilities that suffered no or only minor damage the resuming of operations was hampered by continuous

  1. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide

    SciTech Connect

    Keller, MW; Schut, GJ; Lipscomb, GL; Menon, AL; Iwuchukwu, IJ; Leuko, TT; Thorgersen, MP; Nixon, WJ; Hawkins, AS; Kelly, RM; Adams, MWW

    2013-04-09

    Microorganisms can be engineered to produce useful. products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on carbohydrates at 100 degrees C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophically at 73 degrees C. The engineered P. furiosus strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant P. furiosus strain. Moreover, it is carried out some 30 degrees C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.

  2. Chemical and Physical Characteristics of Soy Proteins for New Industrial Applications

    NASA Astrophysics Data System (ADS)

    Arboleda Fernandez, Julio Cesar

    Despite of being environmentally friendly, biocompatible, rich in chemical functionality and abundant as residual materials, soy proteins (SPs) are used for low added value applications. In this work, SPs were studied and used as potentially useful biomacromolecules for different industrial applications with high added value. Initially the effect of acid hydrolysis of soy proteins as a potential route for subsequent surface modification was studied, finding that SP hydrolysates tend to form less aggregates and to adsorb at faster rates compared with unmodified SP; nevertheless, it was also found that the amount of protein adsorbed and water contact angle of the treated surface does not change significantly. Secondly, the gel forming properties of SPs were used to produce aerogels with densities in the order of 0.1 g/cm3. To improve their mechanical properties, the reinforcement of these materials with cellulose nanofibers was studied, obtaining composite aerogels with SP loadings as high as ca. 70% that display a compression modulus of 4.4 MPa, very close to the value obtained from the pure nanofibers aerogels. The composite materials gain moisture (up to 5%) in equilibrium with 50% RH air. Futhermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents, exhibiting sorption rates dependent on the aerogel composition, morphology and swelling abilities. Finally, different soy protein based products and derivatives were used to enhance the dry strength properties of wood fibers in paper production. Experiments using soy flour, soy protein isolate, soy protein isolate hydrolysates, cationized soy flour, and soy flour combined with cationic starch and chitosan were done, obtaining satisfactory results when soy protein flour was utilized in combination with conventional treatments involving cationic polymers. The current results confirm the opportunity to valorize residual soy products that are underutilized today as alternatives to oil

  3. [AOX Pollution in Wastewater Treatment Process of Dyeing and Dyestuff Chemical Industries].

    PubMed

    Shen, Yang-yang; Liu, Rui; Xu, Can-can; Shu, Xiao-ming; Xu, Jiang-jun; Lan, Ya-qiong; Chen, Lü-jun

    2015-09-01

    Selecting six large-scale dyeing factories and four large-scale dyestuff chemical factories in the well-developed Yangtze River Delta region, this study aimed to investigate the AOX pollution status in the raw wastewater as well as in the activated sludge treatment system. The components of AOX were characterized by GC-MS. Results showed that AOX concentration was low in wastewater from the six dyeing enterprises, ranging 0. 15-1. 62 mg.L-1 in the raw wastewater and 0. 06-1. 30 mg.L-1 in the biologically treated effluent. All the biologically treated effluent met the emission limits of 8 mg.L-1 in the Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry. Sludge in five factories with AOX was below 621 mg.kg-1, only one factory was with high AOX concentration of 3 280 mg.kg-1. By comparison, AOX concentration greatly varied between the wastewater from dyestuff chemical factories, was 1. 70 mg.L-1 to 78. 72 mg.L-1 in the raw wastewater and was 1. 88 mg.L-1 to 33. 11 mg.L-1 in the biologically treated effluent. AOX concentration in the activated sludge was as high as 960-2,297 mg.kg-1. Chlorobenzenes, chloronitrobenzenes, chloroanilines, chlorine nitroanilines and halophenols were typical TOX components detectable in the dyestuff chemical wastewater. Halophenols and chlorine nitroanilines could be efficiently removed. Single chloroanilines and single chloronitrobenzenes seemed to be easier removable than polychlorinated anilines and polychlorinated nitrobenzenes. Polychlorinated benzenes were also easily removal but the products chlorobenzene was hard to remove. PMID:26717692

  4. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, January 1--April 1, 1998

    SciTech Connect

    Arnold, F.H.

    1998-04-20

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The research is focused on the following areas: (1) Random mutagenesis of pNB esterase: improved activity and stability; (2) Directed evolution of subtilisin E to enhance thermostability; and (3) Methods for in vitro recombination.

  5. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--July 1, 1998

    SciTech Connect

    Arnold, F.H.

    1998-07-08

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. Progress on three tasks are described: Random mutagenesis of pNB esterase--improved activity and stability; Directed evolution of subtilisin E to enhance thermostability; and Methods for invitro recombination.

  6. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--June 28, 1996

    SciTech Connect

    Arnold, F.H.

    1996-07-22

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempted to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The paper describes the progress in two projects: (a) Random mutagenesis of pNB esterase: Improved activity and stability; and (2) Subtilisin mutants exhibiting improved ligase activity in organic solvents.

  7. Reaction Engineering International and Pacific Northwest Laboratory staff exchange: Addressing computational fluid dynamics needs of the chemical process industry

    SciTech Connect

    Fort, J.A.

    1995-07-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communications and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective to industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms. Information in this report on the staff exchange of the Pacific Northwest Laboratory (PNL) staff with Reaction Engineering International (REI) includes the significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefit of that work. The objectives of this project were as follows: Work with REI to develop an understanding of the computational fluid dynamics (CFD) needs of the chemical process industry; assess the combined capabilities of the PNL and REI software analysis tools to address these needs; and establish a strategy for a future programmatically funded, joint effort to develop a new CFD tool for the chemical process industry.

  8. Fate and control of blistering chemical warfare agents in Kuwait`s desalination industry

    SciTech Connect

    Khordagui, H.K.

    1997-01-01

    Kuwait, as most of the other states located along the Western shores of the Arabian Gulf, relies upon the Gulf as its main drinking water resource via desalination. In case of seawater contamination with blistering chemical warfare agents, traces of the agents and/or degradation products in the finished water might pose a serious health hazard. The objective of the present review is to study the potential contamination, transport, fate, effect and control of blistering chemical warfare agents (CWAs), in the Kuwaiti desalination industry. In general, all the environmental factors involved in the aquatic degradation of CWAs in Kuwait marine environment except for the high salinity in case of blistering agents such as sulphur mustard, and in favor of a fast degradation process. In case of massive releases of CWAs near the Kuwaiti shorelines, turbulence resulting from tidal cycles and high temperature will affect the dissolution process and extend the toxicity of the insoluble agent. Post- and pre-chlorination during the course of seawater desalination will catalyze and significantly accelerate the hydrolysis processes of the CWAs. The heat exerted on CWAs during the power generation-desalination processes is not expected to thermally decompose them. However, the steam heat will augment the agent`s rate of hydrolysis with subsequent acceleration in their rate of detoxification. Conventional pretreatment of feed seawater for reverse-osmosis desalination is theoretically capable of reducing the concentration of CWAs by coprecipitation and adsorption on flocs formed during coagulation. Prechlorination and prolonged detention in time in pretreatment units will simultaneously promote hydrolysis reactions. 50 refs.

  9. Bioflocculation: chemical free, pre-treatment technology for the desalination industry.

    PubMed

    Bar-Zeev, Edo; Belkin, Natalia; Liberman, Boris; Berman-Frank, Ilana; Berman, Tom

    2013-06-01

    Rapid sand filtration (RSF), proceeded by chemical coagulation and flocculation, is a commonly used, effective pretreatment in the desalination industry. We designed and tested a novel, large pilot-scale, two-stage granular Rapid Bioflocculation Filter (RBF) based on a first-stage Bioflocculator (BF) unit followed by a mixed-media bed filter (MBF). The BF filter bed consisted of an extremely porous volcanic Tuff granular medium which provided an enlarged surface area for microbial development and biofilm proliferation. We compared the efficiency of the pilot RBF to that of a full-scale RSF, operating with upstream chemical coagulation, by measuring the removal from the same untreated seawater feed of key factors related to membrane clogging: SDI, turbidity, chlorophyll a (Chl a) and transparent exopolymer particles (TEP). After 2 weeks of operation, the Tuff grains were colonized extensively by coccoid bacteria that formed biofilm along the entire BF. With bacterial colonization and biofilm development, numerous aggregates of bacteria and some algal cells embedded in an amorphous organic matrix were formed on and within the Tuff grains. By 1-3 months, the biotic diversity within the Tuff filter bed had increased to include filamentous bacteria, cyanobacteria, fungi, protista and even crustaceans and marine worms. During and for ≈ 24 h after each cleaning cycle (carried out every 5 to 7 days by upward flushing with air and water), large numbers of floc-like particles, from ≈ 15 μm to ≈ 2 mm in size were observed in the filtrate of the BF unit. Microscopic examination of these flocs (stained with Alcian Blue and SYTO(R) 9) showed that they were aggregates of many smaller particles with associated bacteria and algae within a polysaccharide gel-like matrix. These biogenic flocs (bioflocs) were observed to form during normal operation of the RBF, accumulating as aggregates of inorganic and organic material on the Tuff surfaces. With each flush cleaning cycle

  10. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry.

    PubMed

    Almeida, S M; Lage, J; Fernández, B; Garcia, S; Reis, M A; Chaves, P C

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM2.5 and PM2.5-10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM10. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH4(+), K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). PMID:25864153

  11. Heavy metal pollution in soils from abandoned Taizhou Chemical Industry Zone in Zhejiang province.

    PubMed

    Yu, Binbin; Zhang, Huimin; Chen, Tao; Mou, Yijun; Wu, Zucheng

    2015-01-01

    Heavy metal (HM) pollution in soils from an abandoned Taizhou Chemical Industry Zone (TCIZ) was investigated. By analysing soils, including sediments, collected from the study zone, the main pollutants were quantitatively identified and their spatial distribution patterns were clearly displayed. Eleven types of HM pollutants were obtained and the results indicated a significant correlation in most of the elements of the soil and sediment. A pollution index Pi was employed to classify the degree of contamination and characterize the main pollutant, which was controlled with the evaluation standard value instead of background one. As was characterized to be one of the main pollutants with the mean concentrations at the pollution source, in the surrounding area, and in the sediment of 603, 20.4, and 22.5 mg/kg, respectively. Our study suggested that the contaminated area of TCIZ may necessitate remediation before it can be considered for reuse. Pollution index method could be a useful tool for assessing soils quality to provide comparable criteria. PMID:26510612

  12. Industrial hygiene walk-through survey report of Colorado Chemical Specialties, Golden, Colorado

    SciTech Connect

    Fajen, J.M.; Ungers, L.J.

    1986-03-01

    A walk-through survey was conducted at Colorado Chemical Specialties, Golden, Colorado in August, 1985. The purpose of the survey was to evaluate exposure to 1,3-butadiene during the manufacture of homopolymer and copolymer liquid polybutadiene resins. Bulk samples of styrene/butadiene and polybutadiene resins were analyzed for residual 1,3-butadiene. The resin was produced by solution polymerization. Engineering controls consisted of equipping all pumps handling 1,3-butadiene with single or dual mechanical seals. The quality control laboratory was equipped with exhaust hoods. Quality-control sampling was performed using vapor-phase gas chromatography. Personal monitoring for 1,3-butadiene was limited to a single survey conducted by OSHA in the mid 1970s. No detectable concentrations of 1,3-butadiene were reported. No 1,3-butadiene was detected in bulk samples of styrene/butadiene and polybutadiene resins. Employees received periodical physical examinations; however, pre-employment physicals were not required. Employees received on-the-job safety training only. There was no established formalized respirator program. The company did not have an organized industrial-hygiene program. The authors conclude that the facility is not suitable for an in-depth study.

  13. Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins.

    PubMed

    Rose, Keith; Bougueleret, Lydie; Baussant, Thierry; Böhm, Günter; Botti, Paolo; Colinge, Jacques; Cusin, Isabelle; Gaertner, Hubert; Gleizes, Anne; Heller, Manfred; Jimenez, Silvia; Johnson, Andrew; Kussmann, Martin; Menin, Laure; Menzel, Christoph; Ranno, Frederic; Rodriguez-Tomé, Patricia; Rogers, John; Saudrais, Cedric; Villain, Matteo; Wetmore, Diana; Bairoch, Amos; Hochstrasser, Denis

    2004-07-01

    Human blood plasma is a useful source of proteins associated with both health and disease. Analysis of human blood plasma is a challenge due to the large number of peptides and proteins present and the very wide range of concentrations. In order to identify as many proteins as possible for subsequent comparative studies, we developed an industrial-scale (2.5 liter) approach involving sample pooling for the analysis of smaller proteins (M(r) generally < ca. 40 000 and some fragments of very large proteins). Plasma from healthy males was depleted of abundant proteins (albumin and IgG), then smaller proteins and polypeptides were separated into 12 960 fractions by chromatographic techniques. Analysis of proteins and polypeptides was performed by mass spectrometry prior to and after enzymatic digestion. Thousands of peptide identifications were made, permitting the identification of 502 different proteins and polypeptides from a single pool, 405 of which are listed here. The numbers refer to chromatographically separable polypeptide entities present prior to digestion. Combining results from studies with other plasma pools we have identified over 700 different proteins and polypeptides in plasma. Relatively low abundance proteins such as leptin and ghrelin and peptides such as bradykinin, all invisible to two-dimensional gel technology, were clearly identified. Proteins of interest were synthesized by chemical methods for bioassays. We believe that this is the first time that the small proteins in human blood plasma have been separated and analyzed so extensively. PMID:15221774

  14. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  15. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    PubMed

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources. PMID:24218858

  16. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    SciTech Connect

    John, Randy C.; Young, Arthur L.; Pelton, Arthur D.; Thompson, William T.; Wright, Ian G.

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  17. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  18. A biological and chemical characterization strategy for small and medium-sized industries connected to municipal sewage treatment plants

    SciTech Connect

    Tarkpea, M.; Eklund, B.; Andren, C.; Gravenfors, E.; Kukulska, Z.

    1998-02-01

    A cost-effective strategy for the characterization of wastewater from small and medium-sized industries is described. A mobile laboratory, equipped for performing on-site biological tests, was established near wastewater treatment facilities in two cities in Sweden for 1 week each in November 1992 and November 1993. The biological and chemical characterization was done on 24-h samples from 29 industries representing 12 types of activity with a bias toward the surface treatment and graphics industries. The biological testing program included a modified nitrification test, the Microtox test, and a modified growth inhibition test using Selenastrum capricornutum (an alga test). A Ceriodaphnia dubia (crustacean) test was also used for some industries. Different chemical assessments, aimed at indicating toxic, persistent, and bioaccumulating substances, were chosen for each industry on the basis of information they provided. Results show that sampling period and time are important factors to consider when designing a characterization strategy. Twenty-four-hour sampling is preferred to weekly sampling because highly toxic emissions of short duration that are detrimental to the biological treatment plant may occur. Variability in emissions was shown in this study but would not have been detected by a study based on weekly sampling. The strategy developed in this study was shown to be both a cost-effective and efficient tool for characterizing effluents from small and medium-sized industries.

  19. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing.

    PubMed

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-03-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process. PMID:25836969

  20. Predicting the Future: Opportunities and Challenges for the Chemical Industry to Apply 21st-Century Toxicity Testing

    PubMed Central

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-01-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process. PMID:25836969

  1. A cohort study of workers exposed to formaldehyde in the British chemical industry: an update.

    PubMed

    Gardner, M J; Pannett, B; Winter, P D; Cruddas, A M

    1993-09-01

    A cohort study of workers exposed to formaldehyde in the British chemical industry in any one of six factories has been extended after the earlier published report in 1984. A further eight years of follow up to the end of 1989 have been included for the originally reported 7660 workers first employed before 1965, and a first follow up to the same date has been carried out for 6357 workers first employed since 1964. Extensive checking of the database has taken place including records at the factories, the MRC Environmental Epidemiology Unit, and the National Health Service Central Register. The updated findings include one death from nasal cancer compared with 1.7 expected in this number of men during the follow up period--which gives no support to the original hypothesis based on animal experimental data that formaldehyde may be a nasal carcinogen in humans. There have been no cases of nasopharyngeal cancer in the cohort compared with an estimated 1.3 expected--which gives no support to the findings in a similarly designed study in the United States of an excess of cancers of the nasopharynx associated with exposure to formaldehyde. There has been a slight excess of about 12% for lung cancer with 402 deaths compared with about 359 expected. This is similar to that found in the United States study, but higher than we reported earlier before the checking procedures and extended follow up. Further analysis gives no definitive indication of this excess of lung cancer being clearly related to formaldehyde exposure, and the increase is within that generally thought consistent with possible confounding effects of cigarette smoking (although no data are available on this point). PMID:8398877

  2. Toxic industrial chemical (TIC) source emissions modeling for pressurized liquefied gases

    NASA Astrophysics Data System (ADS)

    Britter, Rex; Weil, Jeffrey; Leung, Joseph; Hanna, Steven

    2011-01-01

    The objective of this article is to report current toxic industrial chemical (TIC) source emissions formulas appropriate for use in atmospheric comprehensive risk assessment models so as to represent state-of-the-art knowledge. The focus is on high-priority scenarios, including two-phase releases of pressurized liquefied gases such as chlorine from rail cars. The total mass released and the release duration are major parameters, as well as the velocity, thermodynamic state, and amount and droplet sizes of imbedded aerosols of the material at the exit of the rupture, which are required as inputs to the subsequent jet and dispersion modeling. Because of the many possible release scenarios that could develop, a suite of model equations has been described. These allow for gas, two-phase or liquid storage and release through ruptures of various types including sharp-edged and "pipe-like" ruptures. Model equations for jet depressurization and phase change due to flashing are available. Consideration of the importance of vessel response to a rupture is introduced. The breakup of the jet into fine droplets and their subsequent suspension and evaporation, or rainout is still a significant uncertainty in the overall modeling process. The recommended models are evaluated with data from various TIC field experiments, in particular recent experiments with pressurized liquefied gases. It is found that there is typically a factor of two error in models compared with research-grade observations of mass flow rates. However, biases are present in models' estimates of the droplet size distributions resulting from flashing releases.

  3. Factors affecting the chemical durability of glass used in the pharmaceutical industry.

    PubMed

    Iacocca, Ronald G; Toltl, Nick; Allgeier, M; Bustard, B; Dong, Xia; Foubert, M; Hofer, J; Peoples, S; Shelbourn, T

    2010-09-01

    Delamination, or the generation of glass flakes in vials used to contain parenteral drug products, continues to be a persistent problem in the pharmaceutical industry. To understand all of the factors that might contribute to delamination, a statistical design of experiments was implemented to describe this loss of chemical integrity for glass vials. Phase I of this study focused on the effects of thermal exposure (prior to product filling) on the surface chemistry of glass vials. Even though such temperatures are below the glass transition temperature for the glass, and parenteral compounds are injected directly into the body, data must be collected to show that the glass was not phase separating. Phase II of these studies examined the combined effects of thermal exposure, glass chemistry, and exposure to pharmaceutically relevant molecules on glass delamination. A variety of tools was used to examine the glass and the solution contained in the vial including: scanning electron microscopy and dynamic secondary ion mass spectroscopy for the glass; and visual examination, pH measurements, laser particle counting, and inductively coupled plasma-optical emission spectrometry for the analysis of the solution. The combined results of phase I and II showed depyrogenation does not play a significant role in delamination. Terminal sterilization, glass chemistry, and solution chemistry are the key factors in the generation of glass flakes. Dissolution of silica may be an effective indicator that delamination will occur with a given liquid stored in glass. Finally, delamination should not be defined by the appearance of visible glass particulates. There is a mechanical component in the delamination process whereby the flakes must break away from the interior vial surface. Delamination should be defined by the observation of flakes on the interior surface of the vial, which can be detected by several other analytical techniques. PMID:20740334

  4. Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments

    NASA Astrophysics Data System (ADS)

    Guéguen, Florence; Stille, Peter; Dietze, Volke; Gieré, Reto

    2012-12-01

    Passive air samplers have been installed in industrial, urban, rural and remote forested environments in order to collect coarse airborne particles for subsequent chemical characterization. To identify principal polluting sources, isotopic tracers, such as Sr, Nd and Pb isotopic ratios, have been used. The mass deposition rates (MDRs) of trace metals, determined for each of the studied environments, clearly indicate that industrial and traffic sites are especially affected by air pollution. Elements such as V, Pb, Fe, Cr, Co, Mo, Cd, Ni, As, Sb and Zn are notably enriched in samples from industrial zones, whereas V, Mn, Ba, Sr, Al, U, Th, rare earth elements (REE), Zr, Y, Cs, Rb, Sb, Sn and Cu are principal components of the airborne particles collected close to areas influenced by heavy traffic. The chemical/isotopic baseline composition derived from the airborne particles is the result of mixing of particles from different industrial sources, traffic and fertilizers. The monthly analysis of trace-metal MDRs of the collected airborne particle samples from different stations around the industrial zone allows for the detection of distinct atmospheric dust-deposition events during the year, characterized by high MDRs. "Natural" dusts from regional soil re-suspension, including from more distant regions like the Sahara desert, might overprint the regional atmospheric baseline composition, as suggested by trace metal trajectories in ternary diagrams and by Sr, Nd and Pb isotope data.

  5. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    NASA Astrophysics Data System (ADS)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  6. Biological alternatives to chemical identification for the ecotoxicological assessment of industrial effluents: The RTG-2 in vitro cytotoxicity test

    SciTech Connect

    Castano, A. . Centro de Sanidad Ambiental); Vega, M.; Blazquez, T.; Tarazona, J.V. )

    1994-10-01

    Ecotoxicology is concerned with the effects of chemicals on biological systems. Identifying components of complex aqueous effluents poses special problems, and can be useless if there is a lack of information on the biological effects of the identified chemicals. Toxicity-based (bioassay-directed) sample fractionation can be very useful, but the small amount of fractioned material is a constraint that can be solved by using in vitro tests. The RTG-2 in vitro cytotoxicity test has been used to assess (a) the efficacy of a treatment plant in the aeronautics industry and (b) the exposure of fish and molluscs cultured in Esteiro Bay to the effluent of a fish-processing factory. Ecotoxicological assessments could be done without identifying the responsible chemicals. The RTG-2 test was used in combination with concentration/fractionation procedures. It proved that the toxicity of the liquid wastes from the aeronautics industry was eliminated by the treatment, and that molluscs and fish reared in Esteiro Bay had accumulated toxic chemicals dumped by the fish-processing factory. A combination of the RTG-2 cytotoxicity test and HPLC proved to give useful information even for chemicals not identified by GC-MS.

  7. Chemistry, Society, and Environment. A New History of the British Chemical Industry (edited by Colin A. Russell)

    NASA Astrophysics Data System (ADS)

    Stanitski, Conrad L.

    2002-05-01

    There is a downside to the book, although not much of one. As might be expected of a book involving several authors, there is an unevenness due to somewhat differing writing styles and approaches to subjects. The writing is livelier in some chapters than others. These drawbacks are, however, not sufficient to be onerous or distracting. Indeed, this book represents a major work, one that tells the story of the British chemical industry's development and progress in a fresh, new, intelligent manner. The documentation and the treatment of topics make it a particularly functional reference work for those whose interests are with the British chemical industry. It will also prove useful for those desiring to compare such developments in Britain with their analogs "across the pond" here in America.

  8. Skills Conversion Project: Chapter 14, Petroleum/Chemical Industries. Final Report.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    Potential employment opportunities for displaced aerospace and defense technical personnel in the petroleum industry were studied for the U.S. Department of Labor. A relatively small, but increasing number of ex-aerospace and defense personnel can be absorbed by the industry, beginning with from 40 to 100 jobs in 1972 and increasing each year to…

  9. Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity.

    PubMed

    Sancey, Bertrand; Trunfio, Giuseppe; Charles, Jérémie; Minary, Jean-François; Gavoille, Sophie; Badot, Pierre-Marie; Crini, Grégorio

    2011-03-01

    Batch sorption experiments using a starch-based sorbent were carried out for the removal of heavy metals present in industrial water discharges. The influence of contact time, mass of sorbent and pollutant load was investigated. Pollutant removal was dependent on the mass of sorbent and contact time, but independent of the contaminant load. The process was uniform, rapid and efficient. Sorption reached equilibrium in 60 min irrespective of the metal considered (e.g. Zn, Pb, Cu, Ni, Fe and Cd), reducing concentrations below those permitted by law. The material also removed residual turbidity and led to a significant decrease in the residual chemical oxygen demand (COD) present in the industrial water discharge. The germination success of lettuce (Lactuca sativa) was used as a laboratory indicator of phytotoxicity. The results show that the sorption using a starch-based sorbent as non-conventional material, is a viable alternative for treating industrial wastewaters. PMID:21067859

  10. [Gene polymorphism of xenobiotics in workers of petroleum and chemical industry].

    PubMed

    Makarova, O V; Karimova, L K; Gimranova, G G; Churmantaeva, S Kh; Viktorova, T V

    2004-01-01

    Increasing use of aromatic hydrocarbons and their derivatives, known mutagens and carcinogens, in petrochemistry leads to higher number of workers having occupational contact with those chemicals. Most alien chemicals (xenobiotics) incorporated into human body do not demonstrate direct biological effects but undergo various biologic transformations. Humans proved to have genetic control over metabolism of xenobiotics entering the body, so various individuals depending on genetic features could be resistant or otherwise be extremely sensitive to chemical agents. PMID:15152552

  11. Contribution of the industrial chemical processing of pitchblende in Jáchymov to the first isolation of radium

    NASA Astrophysics Data System (ADS)

    Vobecký, M.

    1999-01-01

    The uranium ore chemical processing plant in Jáchymov (St. Joachimstal) started the industrial production of uranium yellow (sodium diuranate) in 1853. This technology was developed by a talented metallurgical chemist Adolf Patera. The insoluble residue from uranium leaching was enriched by radium226Ra. During more than forty years before discovery of radioactivity, a worthless waste was accumulated in this uranium plant. This waste as radium preconcentrate was present in a suitable chemical form for the subsequent separation of radium. The occurence of this material significantly facilitated the separation and isolation of the first pure weighable amount of radium, necessary to prove the existence of a new chemical element, discovered in 1898 by M. and P. Curie and G. Bémont.

  12. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  13. USE OF IN VITRO ASSAYS TO INTERPRET INDUSTRIAL CHEMICALS' POTENTIAL ESTROGENICITY

    EPA Science Inventory

    The goal of this project is to study estrogen receptor binding and gene expression in fish through the development of in vitro approaches and QSAR models applicable to untested chemicals on EPA inventories. This will facilitate prioritization of chemicals to undergo Tier 1 screen...

  14. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  15. Final Report: Technical Support for Innovative Energy Systems the U.S. Chemical Industry -- Innovative Energy Systems Pilot Project - Chemicals Project Integrator

    SciTech Connect

    John Cuttica - Principal Investigator; Dr Steffen Mueller - Lead Engineer

    2008-10-30

    The University of Illinois at Chicago Energy Resources Center (UIC/ERC) was originally selected to carry out the role of project integrator for a planned solicitation calling for proposals for innovative concepts for energy efficient systems in the chemical industry. The selection was made as a result of a DOE Announcement of Funding Opportunity issued by the DOE Golden Field Office. The U.S. DOE, due to funding constraints, decided to change the role of project integrator into one of technical support to DOE and the Vision 2020 Steering Committee in carrying out the oversight and management of the projects selected from the planned innovative concepts solicitation. This project, initiated in April, 2005, was established to provide that technical support to the U.S. DOE Innovative Energy Systems Pilot Project for the US Chemical Industry. In the late summer of 2006, and as a continuation of the baseline technology analysis conducted by UIC/ERC under this project, DOE requested that UIC/ERC assist in the development of “technology briefs” in support of the DOE Save Energy Now program. The 100 technology briefs developed under this contract were utilized by the Energy Experts as part of their Energy Saving Assessments (ESA).

  16. Advanced technologies in chemical oxygen-iodine lasers for industrial applications

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagatomo, Syoji; Takeda, Shuzaburo; Wani, Fumio; Nanri, Kenzo; Fujioka, Tomoo

    1998-05-01

    A new concept of energy network system, `optical power system', was proposed. In this system, optical power is generated at a laser facility and it is distributed to users through optical fiber such as electric power system. The authors have started a feasibility study of this concept based on the latest chemical oxygen-iodine laser technology. 23.4% of chemical efficiency was obtained using nitrogen as buffer gas. Buffer gas cooling remarkably increased chemical efficiency. Liquid-jet type singlet oxygen generator (SOG) and twisted aerosol SOG (TA-SOG) were compared with the same setup. TA-SOG showed good performance especially in the high gas flow velocity range.

  17. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    PubMed

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals. PMID:25431012

  18. Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain.

    PubMed

    Lage, J; Almeida, S M; Reis, M A; Chaves, P C; Ribeiro, T; Garcia, S; Faria, J P; Fernández, B G; Wolterbeek, H T

    2014-01-01

    The adverse health effects of airborne particles have been subjected to intense investigation in recent years; however, more studies on the chemical characterization of particles from pollution emissions are needed to (1) identify emission sources, (2) better understand the relative toxicity of particles, and (3) pinpoint more targeted emission control strategies and regulations. The main objective of this study was to assess the levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. Instrumental and biomonitoring techniques were integrated and analytical methods for k0 instrumental neutron activation analysis and particle-induced x-ray emission were used to determine element content in aerosol filters and lichens. Results indicated that in general local industry contributed to the emissions of As, Sb, Cu, V, and Ni, which are associated with combustion processes. In addition, the steelwork emitted significant quantities of Fe and Mn and the cement factory was associated with Ca emissions. The spatial distribution of Zn and Al also indicated an important contribution of two industries located outside the studied area. PMID:25072718

  19. SOURCE ASSESSMENT: CHEMICAL AND FERTILIZER MINERAL INDUSTRY, STATE-OF-THE-ART

    EPA Science Inventory

    Air and water pollutants are generated during the conversion of naturally occurring minerals into suitable forms for use in chemical and fertilizer production. These minerals are barite, borates, fluorspar, lithium minerals, mineral pigments, phosphate rock, potash, salt, sodium ...

  20. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    PubMed

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms. PMID:26567526

  1. Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes.

    PubMed

    Marris, Hélène; Deboudt, Karine; Augustin, Patrick; Flament, Pascal; Blond, François; Fiani, Emmanuel; Fourmentin, Marc; Delbarre, Hervé

    2012-06-15

    Aerosol sampling was performed inside the chimneys and in the close environment of a FeMn alloys manufacturing plant. The number size distributions show a higher abundance of ultrafine aerosols (10-100 nm) inside the plume than upwind of the plant, indicating the emissions of nanoparticles by the industrial process. Individual analysis of particles collected inside the plume shows a high proportion of metal bearing particles (Mn-/Fe-) consisting essentially of internally mixed aluminosilicate and metallic compounds. These particles evolve rapidly (in a few minutes) after emission by adsorption of VOC gas and sulfuric acid emitted by the plant but also by agglomeration with pre-existing particles. At the moment, municipalities require a monitoring of industrial emissions inside the chimneys from manufacturers. However those measures are insufficient to report such rapid changes in chemical composition and thus to evaluate the real impact of industrial plumes in the close environment of plants (when those particles leave the industrial site). Consequently, environmental authorities will have to consider such fast evolutions and then to adapt future regulations on air pollution sources. PMID:22542297

  2. Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters.

    PubMed

    Barbosa, Rui; Lapa, Nuno; Lopes, Helena; Günther, Annika; Dias, Diogo; Mendes, Benilde

    2014-06-15

    The main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb(2+) were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation-flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid - S/L - ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation-flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation-flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb. PMID:24767494

  3. Industrial Mineral Aggregate Amendment Affects Physical and Chemical Properties of Pine Bark Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonpoint source effluent containing nitrate N (NO3-N) and phosphorus (P) from containerized nursery production has garnered local, regional, and national concern. Industrial minerals have long been used as absorbents, agrochemical carriers, and barriers to retain heavy metals. Our objective was to d...

  4. Plant seeds as sources of potential industrial chemicals, pharmaceuticals and pest control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of natural products isolated from seeds have resulted in a remarkable variety of compounds having unusual structures and properties. Seeds of many species contained uncommon fatty acids and lipids, some of which have found uses in the cosmetic industry or as renewable (non-petroleum ...

  5. CHEMICAL SUBSTITUTION FOR 1,1,1-TRICHLOROETHANE AND METHANOL IN AN INDUSTRIAL CLEANING OPERATION

    EPA Science Inventory

    Hazardous wastes are generated from cold solvent degreasing operations used in many industrial processes. he spent solvents are managed under Subtitle C of the Resource Conservation and Recovery Act (RCRA). ith the land ban of spent solvents, disposal has become increasingly diff...

  6. Waste water treatment: Chemical industry. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  7. CHEMICAL SUBSTITUTION FOR 1,1,1-TRICHLOROETHANE AND METHANOL IN AN INDUSTRIAL CLEANING OPERATION

    EPA Science Inventory

    Hazardous wastes are generated from cold solvent degreasing operations used in many industrial processes. The spent solvents are managed under Subtitle C of the Resource Conservation and Recovery Act (RCRA). With the land ban of spent solvents, disposal has become increasingly di...

  8. Eco-Driven Chemical Research in the Boundary between Academia and Industry

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2013-01-01

    This paper examines and discusses the views on science and society held among PhD students working in two different industrially and environmentally driven research programmes in the broad area of green chemistry. It is based on thirteen in-depth interviews. The analysis shows three main ways of handling the situation as "post-academic"…

  9. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  10. PROCESS MODIFICATIONS TOWARDS MINIMIZATION OF ENVIRONMENTAL POLLUTANTS IN THE CHEMICAL PROCESSING INDUSTRY

    EPA Science Inventory

    The report covers the development of a matrix of significant pollution problems and attendant process modifications which would have impact on the reduction or elimination of pollutants inherent in these processes. Industries covered are: (1) Refining of Nonferrous Metals; (2) Th...