Science.gov

Sample records for chemical oxygen demand

  1. Chemical Oxygen Demand. Training Module 5.107.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with standard method procedures for determining the Chemical Oxygen Demand (COD) of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers analytical procedures,…

  2. Incomplete oxidation of ethylenediaminetetraacetic acid in chemical oxygen demand analysis.

    PubMed

    Anderson, James E; Mueller, Sherry A; Kim, Byung R

    2007-09-01

    Ethylenediaminetetraacetic acid (EDTA) was found to incompletely oxidize in chemical oxygen demand (COD) analysis, leading to incorrect COD values for water samples containing relatively large amounts of EDTA. The degree of oxidation depended on the oxidant used, its concentration, and the length of digestion. The COD concentrations measured using COD vials with a potassium dichromate concentration of 0.10 N (after dilution by sample and sulfuric acid) were near theoretical oxygen demand values. However, COD measured with dichromate concentrations of 0.010 N and 0.0022 N were 30 to 40% lower than theoretical oxygen demand values. Similarly, lower COD values were observed with manganic sulfate as oxidant at 0.011 N. Extended digestion yielded somewhat higher COD values, suggesting incomplete and slower oxidation of EDTA, as a result of lower oxidant concentrations. For wastewater in which EDTA is a large fraction of COD, accurate COD measurement may not be achieved with methods using dichromate concentrations less than 0.1 N. PMID:17910374

  3. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode.

    PubMed

    Kim, Y C; Lee, K H; Sasaki, S; Hashimoto, K; Ikebukuro, K; Karube, I

    2000-07-15

    The construction and performance evaluation of a novel Chemical Oxygen Demand (COD) sensor is described. The sensor measures, using an oxygen electrode, a decrease of dissolved oxygen of a given sample resulting from photocatalytic oxidation of the organic compounds therein. As the photocatalyst, titanium dioxide (TiO2) fine particles adsorbed on a translucent poly(tetrafluoroethylene) (PTFE) membrane was used. The oxygen electrode with the membrane attached on its tip was used as the sensor probe. The operation characteristics of the sensor are demonstrated using an artificial wastewater and real water samples from lakes in Japan. This method is considered to be reliable, in that the observed parameter is close to the theoretical definition of chemical oxygen demand (COD), the amount of oxygen consumed for oxidation of organic compounds. PMID:10939416

  4. Spatial Autocorrelation Analysis of Chinese Inter-Provincial Industrial Chemical Oxygen Demand Discharge

    PubMed Central

    Zhao, Xiaofeng; Huang, Xianjin; Liu, Yibo

    2012-01-01

    A spatial autocorrelation analysis method is adopted to process the spatial dynamic change of industrial Chemical Oxygen Demand (COD) discharge in China over the past 15 years. Studies show that amount and intensity of industrial COD discharges are on a decrease, and the tendency is more remarkable for discharge intensity. There are large differences between inter-provincial discharge amount and intensity, and with different spatial differentiation features. Global spatial autocorrelation analysis reveals that Global Moran’s I of discharge amount and intensity is on the decrease. In space, there is an evolution from an agglomeration pattern to a discretization pattern. Local spatial autocorrelation analysis shows that the agglomeration area of industrial COD discharge amount and intensity varies greatly in space with time. Stringent environmental regulations and increased funding for environmental protections are the crucial factors to cut down industrial COD discharge amount and intensity. PMID:22829788

  5. High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds

    SciTech Connect

    Zitomer, D.H.; Shrout, J.D.

    2000-02-01

    Many industrial wastewaters have both high organic pollution and sulfate (SO{sub 4}{sup {minus}2}) concentrations. Although biological conversion of organics to methane may be an economical chemical oxygen demand (COD) removal option, significant inhibition of methane production results from reduction of SO{sub 4}{sup {minus}2} to hydrogen sulfide (H{sub 2}S), which is inhibitory to methanogenic microorganisms. Therefore, sulfate-containing wastewater is often not amenable to conventional anaerobic treatment. Recently, limited aeration of recycle flow to hybrid and baffled reactors has been used to treat this wastewater and has been shown to reduce aqueous H{sub 2}S concentrations by causing production of uninhibitory sulfur (S{degree}) and thiosulfate (S{sub 2}O{sub 3}{sup {minus}2}) as well as gas stripping volatile H{sub 2}S. In this study, directly aerated methanogenic fluidized bed reactors (FBRs) achieved increased methane production compared to strictly anaerobic FBRs treating high-sulfate wastewater. Oxygen transfer satisfying up to 28% of the COD load resulted in maximum specific oxygen utilization rates of 0.20 mg oxygen/g volatile solids{center{underscore}dot}min, with significant, concomitant methane production. Under typically inhibitory SO{sub 4}{sup {minus}2} loading, higher aeration caused increased effluent SO{sub 4}{sup {minus}2}, increased H{sub 2}S mass in the offgas, and lower reactor H{sub 2}S concentration. As a result, COD removal increased from 25% for a strictly anaerobic FBR to 87% for an aerated FBR. In addition, aerated systems required significantly less alkalinity supplementation to maintain a pH value of 7, ostensibly because of stripping of acidic carbon dioxide. The potential pH increase associated with aeration also shifts sulfide speciation to less toxic disulfide. Direct, limited aeration of methanogenic FBRs is described as a method for increased COD removal when treating high-COD, high-sulfate wastewater.

  6. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  7. WO₃/W nanopores sensor for chemical oxygen demand (COD) determination under visible light.

    PubMed

    Li, Xuejin; Bai, Jing; Liu, Qiang; Li, Jianyong; Zhou, Baoxue

    2014-01-01

    A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD) determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and the results showed that taking NaNO3 solution at the concentration of 2.5 mol·L(-1) as electrolyte under the light intensity of 214 μW·cm(-2) and applied bias of 2.5 V, the proposed method is accurate and well reproducible, even in a wide range of pH values. Furthermore, the COD values obtained by the WO3 sensor were fitted well with the theoretical COD value in the range of 3-60 mg·L(-1) with a limit value of 1 mg·L(-1), which reveals that the proposed sensor may be a practical device for monitoring and controlling surface water quality as well as slightly polluted water. PMID:24940868

  8. WO3/W Nanopores Sensor for Chemical Oxygen Demand (COD) Determination under Visible Light

    PubMed Central

    Li, Xuejin; Bai, Jing; Liu, Qiang; Li, Jianyong; Zhou, Baoxue

    2014-01-01

    A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD) determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and the results showed that taking NaNO3 solution at the concentration of 2.5 mol·L−1 as electrolyte under the light intensity of 214 μW·cm−2 and applied bias of 2.5 V, the proposed method is accurate and well reproducible, even in a wide range of pH values. Furthermore, the COD values obtained by the WO3 sensor were fitted well with the theoretical COD value in the range of 3–60 mg·L−1 with a limit value of 1 mg·L−1, which reveals that the proposed sensor may be a practical device for monitoring and controlling surface water quality as well as slightly polluted water. PMID:24940868

  9. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  10. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand.

    PubMed

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5-7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5-1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  11. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    PubMed

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice. PMID:24851327

  12. High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods.

    PubMed

    Retes-Pruneda, Jose Luis; Davila-Vazquez, Gustavo; Medina-Ramrez, Iliana; Chavez-Vela, Norma Angelica; Lozano-Alvarez, Juan Antonio; Alatriste-Mondragon, Felipe; Jauregui-Rincon, Juan

    2014-08-01

    The goal of this research is to find a more effective treatment for tequila vinasses (TVs) with potential industrial application in order to comply with the Mexican environmental regulations. TVs are characterized by their high content of solids, high values of biochemical oxygen demand (BODs), chemical oxygen demand (COD), low pH and intense colour; thus, disposal of untreated TVs severely impacts the environment. Physicochemical and biological treatments, and a combination of both, were probed on the remediation of TVs. The use of alginate for the physicochemical treatment of TVs reduced BOD5 and COD values by 70.6% and 14.2%, respectively. Twenty white-rot fungi (WRF) strains were tested in TV-based solid media. Pleurotus ostreatus 7992 and Trametes trogii 8154 were selected due to their ability to grow on TV-based solid media. Ligninolytic enzymes' production was observed in liquid cultures of both fungi. Using the selected WRF for TVs' bioremediation, both COD and BOD5 were reduced by 88.7% and 89.7%, respectively. Applying sequential physicochemical and biological treatments, BOD5 and COD were reduced by 91.6% and 93.1%, respectively. Results showed that alginate and selected WRF have potential for the industrial treatment of TVs. PMID:24956770

  13. Effects of chitosan on growth of an aquatic plant (Hydrilla verticillata) in polluted waters with different chemical oxygen demands.

    PubMed

    Xu, Qiu-jin; Nian, Yue-gang; Jin, Xiang-can; Yan, Chang-zhou; Liu, Jin; Jiang, Gao-ming

    2007-01-01

    Effects of chitosan on a submersed plant, Hydrilla verticillata, were investigated. Results indicated that H. verticillata could prevent ultrastructure phytotoxicities and oxidativereaction from polluted water with high chemical oxygen demand (COD). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in H. verticillata treated with 0.1% chitosan in wastewater increased with high COD (980 mg/L) and decreased with low COD (63 mg/L), respectively. Ultrastructural analysis showed that the stroma and grana of chloroplast basically remained normal. However, plant cells from the control experiment (untreated with chitosan) were vacuolated and the cell interval increased. The relict of protoplast moved to the center, with cells tending to disjoint. Our findings indicate that wastewater with high COD concentration can cause a substantial damage to submersed plant, nevertheless, chitosan probably could alleviate the membrane lipid peroxidization and ultrastructure phytotoxicities, and protect plant cells from stress of high COD concentration polluted water. PMID:17915732

  14. TiO2 nanotube sensor for online chemical oxygen demand determination in conjunction with flow injection technique.

    PubMed

    Li, Xuejin; Yin, Weiping; Li, Jianyong; Bai, Jing; Huang, Ke; Li, Jinhua; Zhou, Baoxue

    2014-06-01

    A simple, rapid and environmental friendly online chemical oxygen demand (COD) analytical method based on TiO2 nanotube sensor in conjunction with the flow injection technique was proposed to determine the COD of aqueous samples, especially for refractory organics, low-concentration wastewater, and surface water. The new method can overcome the drawbacks of the conventional COD determination methods. The results show that with the new method, each analysis takes only about 1 to 3 min, the linear range is up to 1 to 500 mg x L(-1) of the compound of interest, and the detection limit is 1 mg x L(-1). The COD values obtained by the proposed method are more accurate than those obtained by the conventional method. PMID:25109199

  15. Chemical oxygen demand and color removal from textile wastewater by UV/H2O2 using artificial neural networks.

    PubMed

    Yonar, T; Kilic, M Yalili

    2014-11-01

    The photooxidation of pollutants, especially chemical oxygen demand (COD) and color, in textile industrial wastewater was performed in the presence of hydrogen peroxide (H2O2), using 256 nm UV light (15 W), to model the discoloration and COD elimination processes and characterize the influence of process variables. Within this study, data were obtained through a NeuroSolutions 5.06 model and successfully tested. Each sample was characterized by three independent variables (i.e., pH, H2O2 concentration, and time of operation) and two dependent variables (i.e., color and COD). The results indicated that pH was the predominant variable, and the reaction mean time and H2O2 volume were the less influential variables. The neural model obtained presented coefficients of correlation of 99% for COD and 97% for color, indicating the prediction power of the model and its character of generalization. PMID:25509520

  16. Hybrid artificial neural network genetic algorithm technique for modeling chemical oxygen demand removal in anoxic/oxic process.

    PubMed

    Ma, Yongwen; Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Wang, Yan; Zhang, Huiping

    2011-01-01

    In this paper, a hybrid artificial neural network (ANN) - genetic algorithm (GA) numerical technique was successfully developed to deal with complicated problems that cannot be solved by conventional solutions. ANNs and Gas were used to model and simulate the process of removing chemical oxygen demand (COD) in an anoxic/oxic system. The minimization of the error function with respect to the network parameters (weights and biases) has been considered as training of the network. Real-coded genetic algorithm was used to train the network in an unsupervised manner. Meanwhile the important process parameters, such as the influent COD (COD(in)), reflux ratio (R(r)), carbon-nitrogen ratio (C/N) and the effluent COD (COD(out)) were considered. The result shows that compared with the performance of ANN model, the performance of the GA-ANN (genetic algorithm - artificial neural network) network was found to be more impressive. Using ANN, the mean absolute percentage error (MAPE), mean squared error (MSE) and correlation coefficient (R) were 9.3310(-4), 2.82 and 0.98596, respectively; while for the GA-ANN, they were converged to be 4.1810(-4), 1.12 and 0.99476, respectively. PMID:21500072

  17. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. PMID:26789200

  18. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30°C at pH 6.0 using 20g/L dose in 120min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20g/L dose, also in 120min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate. PMID:26919299

  19. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    PubMed

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads. PMID:25164570

  20. [Nitrogen and chemical oxygen demand burden of waste water caused by trout raising influenced by the protein content of the feed].

    PubMed

    Schuster, C; Stelz, H; Schmitz-Schlang, O

    1992-12-01

    A possibility was shown, how to quantify the water content of nitrogen and COD (Chemical Oxygen Demand) from intensive fish production, independent of flow rate and feeding time. The nitrogen excretion could be reduced 50% by feeding a protein reduced fish feed (A: 38.4% XP) compared with an fish feed B contending 47.9% protein (XP). The excretion-compartments were evaluated with the waste water parameter COD. Doing this, it could be shown that the COD input by feed A is reduced 20% in opposite to feed B. Further more the separation of fish faeces would achieve an COD reduction from about 50% to 70%. PMID:1289047

  1. Capacity of a newly isolated fungus Pleurotus eryngii from Tunceli, Ovacik for chemical oxygen demand reduction and biodecolorization of Azo-Dye Congo Red.

    PubMed

    Yildirim, N; Gonen, U

    2015-01-01

    Biodecolorization of Congo red dye in both agar—plate and agitated liquid culture mediums by newly isolated white rot fungus Pleurotus eryngii has been studied. This fungus isolated from Tunceli—Ovacik province of Turkey. We have also examined the chemical oxygen demand reduction after decolorization under agitated liquid culture medium. For agar plate screening the decolorization capacity of P. eryngii, growth and decolorization halos were determined on saboroud dextrose agar (SDA) plates containing 0.05, 0.1, 0.5, 1 and 2 g/l of Congo red. P. eryngii showed certain decolorization capacities and was able to decolorize all studied concentrations of Congo red, but not to the same extent. Our results indicated that the new isolate P. eryngii had maximum decolorization (87% at 100 mg/l initial dye concentration) and chemical oxygen demand reduction (82% at 25 mg/l initial dye concentration) activities after 7 days under agitated submerged culture conditions. This new isolate could be an effective bioremediation tool for treatment of Congo red containing textile wastewater. PMID:26068912

  2. ENHANCED COD (CHEMICAL OXYGEN DEMAND) REMOVAL FROM PHARMACEUTICAL WASTEWATER USING POWDERED ACTIVATED CARBON ADDITION TO AN ACTIVATED SLUDGE SYSTEM

    EPA Science Inventory

    Wastewater generated by the pharmaceutical manufacturing point source Sub-categories A (Fermentation Products) and C (Chemical Synthesis Products) are characterized by high COD concentrations (10,000 mg/l and higher). Plants in these subcategories typically employ secondary treat...

  3. An interlaboratory study as useful tool for proficiency testing of chemical oxygen demand measurements using solid substrates and liquid samples with high suspended solid content.

    PubMed

    Raposo, F; de la Rubia, M A; Borja, R; Alaiz, M; Beltrn, J; Cavinato, C; Clinckspoor, M; Demirer, G; Diamadopoulos, E; Helmreich, B; Jenicek, P; Mart, N; Mndez, R; Noguerol, J; Pereira, F; Picard, S; Torrijos, M

    2009-11-15

    In 2008, the first Proficiency Testing Scheme of Chemical Oxygen Demand (1(st)COD-PT(ADG)) was conducted to assess the results obtained for different research groups whose field work is mainly anaerobic digestion. This study was performed using four samples, two solid samples as raw materials and two solid samples to prepare high concentration suspended solid solutions. Invitations were sent to a large number of laboratories, mainly to anaerobic digestion research groups. Finally, thirty labs from sixteen countries agreed to participate, but for different reasons four participants could not send any data. In total, twenty-six results were reported to the COD-PT coordinator. This study showed the importance of continuous participation in proficiency testing (PT) schemes in order to compare the results obtained. Taking into account the lack of a general standard method and high quality certified reference materials (CRMs), the traceability of COD determination is not currently easy to check. In addition, the spread of participants' results obtained was high and pointed to the advisability of using consensus values due to their unreliability. Therefore, the theoretical oxygen demand (ThOD) values were considered as assigned values for all the samples analysed. On the other hand, in this PT the established standard deviation (ESD) has been determined by the Horwitz modified function. Participants of this 1(st)COD-PT(ADG) were asked to give a short report on the analytical method used. Although all the participants used potassium dichromate as their oxidant reagent, their experimental procedures were very different. With the purpose of comparing the results obtained, the different experimental conditions used were classified into five methods, corresponding to two main categories, open and closed reflux. The performance of laboratories was expressed by the z-score, whose value is considered satisfactory when z-score

  4. Implementation of an automatic and miniature on-line multi-parameter water quality monitoring system and experimental determination of chemical oxygen demand and ammonia-nitrogen.

    PubMed

    Xie, Yingke; Wen, Zhiyu; Mo, Zhihong; Yu, Zhiqiang; Wei, Kanglin

    2016-01-01

    An automatic, miniature and multi-parameter on-line water quality monitoring system based on a micro-spectrometer is designed and implemented. The system is integrated with the flow-batch analysis and spectrophotometric detection method. The effectiveness of the system is tested by measuring chemical oxygen demand (COD) and ammonia-nitrogen in water. The results show that the modified system provides a cost-effective, sensitive, reproducible and reliable way to measure COD and ammonia-nitrogen in water samples with automatic operation and low toxic chemical consumption. In addition, the experiment results show that the relative error of the system is less than 10%, the limit of detection is 2 mg/L COD and 0.032 mg/L ammonia-nitrogen, respectively, and the relative standard deviation was 6.6% at 15.0 mg/L COD (n = 7) and 5.0% at 0.300 mg/L ammonia-nitrogen (n = 7). Results from the newly designed system are consistent with the data collected through the Chinese national standard analysis methods. PMID:26877055

  5. Ozonation of sludge-press liquors: Determination of carbonyl compounds by the PFBOA method and the effect on the chemical oxygen demand

    SciTech Connect

    Boyle, L.L.; McCullough, N.H.; Poppelen, P. van

    1996-12-31

    The European Community Urban Waste Water Treatment Directive, May 1991, requires water service companies to provide sufficient wastewater treatment to meet a new limit set for the Chemical Oxygen Demand (COD) in final effluent and new legislation has placed limits on the levels of COD that can be discharged from wastewater treatment works using secondary treatment processes. The current permitted upper level for COD in the final effluent is 125 mg per litre. Ozone is a strong oxidant and disinfectant and in contrast to chlorine, does not produce chlorinated by-products from its reaction with natural organic matter in water. In spite of the successful use of ozone for the treatment of potable waters since the early part of the century very few studies have been undertaken into possible chemical by-products which might arise from ozonation. Since the amount of ozone applied is always lower than that required to oxidize all the organic matter to carbon dioxide and water, a number of semi-oxidation products such as aromatic, phenolic and aliphatic carboxylic acids, aldehydes and ketones can be expected to be formed. The ozonation of sludge-press liquors and the resultant effect on COD was investigated. The concentration of carbonyl compounds was analyzed using O-(pentafluorobenzyl) hydroxylamine (PFBOA) as a derivatising agent in Gas Chromatographic (GC) determination.

  6. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems. PMID:25698654

  7. Determination of chemical oxygen demand in fresh waters using flow injection with on-line UV-photocatalytic oxidation and spectrophotometric detection.

    PubMed

    Dan, Dezhong; Sandford, Richard C; Worsfold, Paul J

    2005-02-01

    A flow injection manifold incorporating UV-photocatalytic oxidation for the determination of chemical oxygen demand (COD) in freshwater is reported. The method utilises the UV-photocatalytic oxidation of organic compounds instead of conventional heating (used in the standard method), with acidified potassium permanganate as the oxidant. Sodium oxalate, d-glucose and potassium hydrogen phthalate were used as COD standards. A 100 microL sample solution was injected into a 0.3 mol L(-1) H2SO4 carrier stream containing 0.1 mol L(-1) (NH4)2SO4, merged with a permanganate solution (8 x 10(-4) mol L(-1)) and passed through a 250 cm FEP (fluoroethylene polymer) photo-reaction coil wound around a 15 W UV lamp. The sample throughput was 30 h(-1), with an LOD (blank plus 3sigma) of 0.5 mg COD L(-1) and a linear range of 0.5-50 mg COD L(-1) (D-glucose, r2 = 0.9966). The method had good precision with relative standard deviations of 2.7% at 5 mg COD L(-1) and 1.2% at 20 mg COD L(-1) (n = 12) for glucose. Results for a COD certified reference material (QC Demand Quality Control Standard) were in good agreement with the certified COD value. Recovery from Tamar River water samples for all three COD standards was 83.0-111.0% and the COD values determined were in good agreement with those of a permanganate index reference method. PMID:15665978

  8. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  9. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater. PMID:12794293

  10. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 C, and 170 rpm), 94.74 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control. PMID:25196098

  11. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Nez-Delgado, A; Lpez-Periago, E; Quiroga-Lago, F; Daz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC. PMID:11496670

  12. A pilot scale trickling filter with pebble gravel as media and its performance to remove chemical oxygen demand from synthetic brewery wastewater.

    PubMed

    Habte Lemji, Haimanot; Eckstädt, Hartmut

    2013-10-01

    Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of the trickling filter were generated under different experimental conditions. The trickling filter had an average efficiency of (86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m(3)/(m(2)∙d). Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m(3)∙d). An average COD removal efficiency of (85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m(3)/(m(2)∙d). The results lead to a design organic load of 1.5 kg COD/(m(3)∙d) to reach an effluent COD in the range of 50-120 mg/L. As can be concluded from the results of this study, organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter. PMID:24101209

  13. Coupling of anodic oxidation and adsorption by granular activated carbon for chemical oxygen demand removal from 4,4'-diaminostilbene-2,2'-disulfonic acid wastewater.

    PubMed

    Wang, Lizhang; Zhao, Yuemin

    2010-01-01

    Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L?. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg? COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity. PMID:21099056

  14. Recalcitrant organic compounds (chemical oxygen demand sources) in biologically treated pulp and paper mill effluents: Their fate and environmental impact in receiving waters

    SciTech Connect

    Archibald, F.; Roy-Arcand, L.; Methot, M.; Valeanu, L.

    1998-11-01

    Most North American pulp and paper mills now biologically treat (biotreat) their liquid effluent. However, treated water still contains effluent-derived recalcitrant organic material (EROM), measured as chemical oxygen demand (COD), for which emission limits exist in Europe and are being considered in the US. Production of microbially resistant, dissolved natural organic material (NOM) typically found in Canadian stream and lake waters occurs slowly under gentle conditions, while mill EROM is generated from lignocellulosics by faster and harsher processes. Similarity of the environmental effects of NOM and pulp and paper mill EROM are examined. Changes occurring over 4 months in biologically treated effluent from two modern Canadian mills and lake NOM when sealed in gas- and light-permeable bags and placed in a pristine Quebec lake are reported. Addition of microbial co-metabolites significantly improved the dark mineralization of organochlorines surviving mill biological treatment. Mill EROM was light sensitive, nonacutely toxic in the Microtox assay, and similar to NOM in the surrounding lake in most bulk properties. There was no evidence to suggest that placing specific limits on mill EROM (COD) emissions would be environmentally beneficial.

  15. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    PubMed

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants. PMID:23863442

  16. Chemical oxygen demand, total organic carbon and colour reduction in slaughterhouse wastewater by unmodified and iron-modified clinoptilolite-rich tuff.

    PubMed

    Torres-Prez, J; Solache-Ros, M; Martnez-Miranda, V

    2014-01-01

    In this study, reduction of chemical oxygen demand (COD), colour, and total organic carbon in effluents from a slaughterhouse in central Mexico was performed using clinoptilolite-rich tuff. The experimental parameters considered were initial concentration of the adsorbate, pH, adsorbent dosage, and contact time. Surface morphology of the materials was tested by using scanning electron microscopy. Specific surface area was analysed by using Brunauer-Emmett-Teller (BET) and phase composition was analysed by using X-ray diffraction. The experimental adsorption data were fitted to the first- and pseudo-second-order kinetic models. The highest COD removal was observed in slightly acidic pH conditions. The maximum reduction efficiency of COD was accomplished with unmodified clinoptilolite-rich tuff at a contact time of 1440 min. In these conditions, the adsorbent was efficient for treating wastewater from a slaughterhouse. Moreover, after several regeneration cycles with Fenton reagent or hydrogen peroxide, the regenerated zeolite with H2O2 (3%) showed the best reduction efficiencies. PMID:24701954

  17. A pilot scale trickling filter with pebble gravel as media and its performance to remove chemical oxygen demand from synthetic brewery wastewater*

    PubMed Central

    Habte Lemji, Haimanot; Eckstädt, Hartmut

    2013-01-01

    Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of the trickling filter were generated under different experimental conditions. The trickling filter had an average efficiency of (86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2∙d). Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3∙d). An average COD removal efficiency of (85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2∙d). The results lead to a design organic load of 1.5 kg COD/(m3∙d) to reach an effluent COD in the range of 50–120 mg/L. As can be concluded from the results of this study, organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter. PMID:24101209

  18. FLUX OF REDUCED CHEMICAL CONSTITUENTS (FE(2+), MN(2+), NH4(1+) AND CH4) AND SEDIMENT OXYGEN DEMAND IN LAKE ERIE

    EPA Science Inventory

    Sediment pore water concentrations of Fe(2+), Mn(2+), NH4(+), and CH4 were analyzed from both diver-collected cores and an in situ equilibration device (peeper) in Lake Erie's central basin. Sediment oxygen demand (SOD) was measured at the same station with a hemispheric chamber ...

  19. TRANSIENT BIOGEOCHEMICAL CYCLING AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Through this research, the effects of variable sediment accumulation and oxygen concentration on SOD and soluble chemical fluxes will be quantified. This study will enable correct estimates of diffuser-induced SOD to be made that will facilitate appropriate desig...

  20. TRANSIENT BIOGEOCHEMICAL CYCLING AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Through this research, the effects of variable sediment accumulation and oxygen concentration on SOD and soluble chemical fluxes will be quantified. This study will enable correct estimates of “diffuser-induced” SOD to be made that will facilitate appropriate desig...

  1. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    NASA Astrophysics Data System (ADS)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided. Comprehensive study of the natural waters (including biohydro-chemical parameters control) for large part of the inland waterway St. Petersburg White Sea (river Neva - Ladoga Lake river Svir - Onega Lake Petrozavodsk) was provided in frame the experimental voyage onboard the m/v St. Peterburg (J uly 1998 and June 1999). The results of organic matter charting for the different water masses for vast water basin in the northwestern of Russia were analyzed and classified. The arrangement of dissolved organic for the largest in Europe lakes Ladoga and Onega is analyzed in comparison with hydrological and meteorological processes and phenomena, including thermal regime modification. Spatial and temporal (seasonal and annual) transformation of organic matter for these water basins are studied. Aquatic environment conditions of the coastal zones, different bays and gulfs more pressed by livestock and agricultural farms, and industry are assessed also. According to the shipborne data more polluted water areas are the Svir Bay (Ladoga Lake) and Petrozavodskaya Guba (Onega Lake). These results are well correlated with in situ data and literature data. Thus, first time in practice is carried out the running control of a COD and spatial profile of the organic matter for different natural waters. Accuracy of measurements in comparison with traditional approaches and new technologies (including ideas and results practical application of sonoluminiscence of dissolved organic) are discussed also. The modification of CS COD was used for the cont rol of dissolved organic in different marine aquatic system. Sea water samples and preserved ice cores, gathered in the Barents, White and Kara Seas, were investigated. Probes of saltish and brackish-water (as ice cores) from the estuary of great Siberian rivers (Ob Bay and Yenisey Gulf) were analyzed in laboratory (biochemical analysis of these probes was fulfilled also). It was demonstrat ed that CS COD system can be used till range a salinity 25-33% ?, that opens to use this method for operative asse

  2. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  3. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. he methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic tec...

  4. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

  5. Scalable chemical oxygen - iodine laser

    SciTech Connect

    Adamenkov, A A; Bakshin, V V; Vyskubenko, B A; Efremov, V I; Il'in, S P; Ilyushin, Yurii N; Kolobyanin, Yu V; Kudryashov, E A; Troshkin, M V

    2011-12-31

    The problem of scaling chemical oxygen - iodine lasers (COILs) is discussed. The results of experimental study of a twisted-aerosol singlet oxygen generator meeting the COIL scalability requirements are presented. The energy characteristics of a supersonic COIL with singlet oxygen and iodine mixing in parallel flows are also experimentally studied. The output power of {approx}7.5 kW, corresponding to a specific power of 230 W cm{sup -2}, is achieved. The maximum chemical efficiency of the COIL is {approx}30%.

  6. Oxygen fluoride chemical kinetics

    SciTech Connect

    Lyman, J.L.; Holland, R.

    1988-12-29

    This paper reports the results of a study of the reactions of fluorine atoms with oxygen. The fluorine atoms are produced by photolysis of molecular fluorine with an excimer laser (KrF, 248 nm). Subsequent reactions produce (and consume) the species O/sub 2/F and O/sub 2/F/sub 2/. The reaction mechanism and rate constants for six reactions follow from the analysis of transient absorption signals. The signals were obtained with an ultraviolet lamp at 215 nm. Both of the oxygen fluorides absorb at that wavelength. The experiments also gave the absorption cross sections of the two species at the probe wavelength and an enthalpy of formation for O/sub 2/F. Some of the rate constants are different from those reported earlier. This is most likely due to their avoidance of assumptions made by authors. All experiments were at room temperature, but they estimated the temperature dependence of the set of reaction rates using the measured rate constants and published, measured, and calculated thermodynamic properties.

  7. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    USGS Publications Warehouse

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  8. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  9. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    USGS Publications Warehouse

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    Sediment samples were collected near each chamber and analyzed for percent water, percent sand, and percent organics. The sand content ranged from 0.1 to 6.2 percent and averaged 1.8 percent. The organic content ranged from 1.4 to 9.6 and averaged 5.6 percent. No statistically significant correlations were found between these sediment characteristics and sediment oxygen demand.

  10. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation. PMID:17990165

  11. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.

    PubMed

    Dogan, Emrah; Sengorur, Blent; Koklu, Rabia

    2009-02-01

    Artificial neural networks (ANNs) are being used increasingly to predict and forecast water resources' variables. The feed-forward neural network modeling technique is the most widely used ANN type in water resources applications. The main purpose of the study is to investigate the abilities of an artificial neural networks' (ANNs) model to improve the accuracy of the biological oxygen demand (BOD) estimation. Many of the water quality variables (chemical oxygen demand, temperature, dissolved oxygen, water flow, chlorophyll a and nutrients, ammonia, nitrite, nitrate) that affect biological oxygen demand concentrations were collected at 11 sampling sites in the Melen River Basin during 2001-2002. To develop an ANN model for estimating BOD, the available data set was partitioned into a training set and a test set according to station. In order to reach an optimum amount of hidden layer nodes, nodes 2, 3, 5, 10 were tested. Within this range, the ANN architecture having 8 inputs and 1 hidden layer with 3 nodes gives the best choice. Comparison of results reveals that the ANN model gives reasonable estimates for the BOD prediction. PMID:18691805

  12. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Chemical oxygen generators. 23.1450...

  13. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 23.1450...

  14. OVERVIEW OF USEPA/CLEAR LAKE ERIE - SEDIMENT OXYGEN DEMAND INVESTIGATIONS DURING 1979

    EPA Science Inventory

    In situ hypolimnetic oxygen depletion measurements were conducted during four summer cruises in 1979 at two central basin stations in Lake Erie to evaluate the relative contribution of the sediments to the oxygen demand. ediment oxygen demand (SOD) rates were determined by measur...

  15. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies. PMID:25898071

  16. Oxygen Demand of Fresh and Stored Sulfide Solutions and Sulfide-Rich Constructed Wetland Effluent.

    PubMed

    Chan, Carolyn; Farahbakhsh, Khosrow

    2015-08-01

    This study investigated the contribution of hydrogen sulfide to biological oxygen demand (BOD5) and chemical oxygen demand (COD) in wastewater effluents, and documented the effect of storage times and conditions on the BOD5 and COD of pH-adjusted sodium sulfide solutions as well as graywater wetland effluent. Initial COD measurements of sulfide solutions were 84-89% of the theoretical oxygen demand (ThOD), 1.996 mg O2/mg S, whereas unseeded BOD5 measurements were 55-77%. For sulfide solutions, all storage conditions led to declines of >15% (COD, BOD5), and >31% (sulfide). For wetland effluent, storage without headspace was effective in reducing COD losses (3.7%), compared to storage with headspace (17%), and affected changes in turbidity, UVA-254 and pH. The results suggest that storage times and conditions should be controlled and reported when reporting BOD5 and COD of sulfide-rich samples. Wetland models representing sulfate reduction as a method of COD removal may need to be reconsidered. PMID:26237688

  17. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be...

  18. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be...

  19. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be...

  20. Biochemical oxygen demand measurement by mediator method in flow system.

    PubMed

    Liu, Ling; Bai, Lu; Yu, Dengbin; Zhai, Junfeng; Dong, Shaojun

    2015-06-01

    Using mediator as electron acceptor for biochemical oxygen demand (BOD) measurement was developed in the last decade (BODMed). However, until now, no BOD(Med) in a flow system has been reported. This work for the first time describes a flow system of BOD(Med) method (BOD(Med)-FS) by using potassium ferricyanide as mediator and carbon fiber felt as substrate material for microbial immobilization. The system can determine the BOD value within 30 min and possesses a wider analytical linear range for measuring glucose-glutamic acid (GGA) standard solution from 2 up to 200 mg L(-1) without the need of dilution. The analytical performance of the BOD(Med)-FS is comparable or better than that of the previously reported BOD(Med) method, especially its superior long-term stability up to 2 months under continuous operation. Moreover, the BOD(Med)-FS has same determination accuracy with the conventional BOD5 method by measuring real samples from a local wastewater treatment plant (WWTP). PMID:25863368

  1. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical...

  2. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical...

  3. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical...

  4. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  5. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  6. 49 CFR 173.168 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chemical oxygen generators. 173.168 Section 173... Class 7 § 173.168 Chemical oxygen generators. An oxygen generator, chemical (defined in § 171.8 of this subchapter) may be transported only under the following conditions: (a) Approval. A chemical oxygen...

  7. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds. PMID:17193303

  8. Singlet oxygen generator for a supersonic chemical oxygen iodine laser: parametric study and recovery of chemicals

    NASA Astrophysics Data System (ADS)

    Spalek, Otomar; Kodymova, Jarmila

    1997-04-01

    A jet singlet oxygen generator for a supersonic chemical oxygen-iodine laser was studied including singlet delta oxygen, O2(1(Delta) g), and residual chlorine concentration measurements. The investigation was intended mainly for a water vapor measurement in gas effluent of generator in dependence on properties of liquid jets: a chemical composition and temperature of the input liquid (alkaline solution of hydrogen peroxide), a liquid jets diameter and their geometrical arrangement. Effects of these parameters on output power of a small-scale supersonic laser were studied as well. Possible approaches to a chemical fuels management in a chemical oxygen-iodine laser for industrial applications are considered. An 'open loop' cycle with a possible use of sodium hydroxide, and a 'closed loop' cycle with a regeneration of both potassium hydroxide and hydrogen peroxide are discussed.

  9. New singlet oxygen generator for chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Saito, H.; Fujioka, T.; Yamakoshi, H.; Uchiyama, T.

    1986-11-01

    Experiments have been carried out to investigate a new method for generating O2(1Delta) with long-time operation of an efficient chemical oxygen-iodine laser system in mind. An impinging-jet nozzle was utilized to atomize a H2O2-KOH solution so that the alkaline H2O2/Cl2 reaction might occur in droplet-gas phase with high excitation efficiency. Experimental results indicate that the present generator can yield as high as 80 percent of O2(1Delta) with reasonable O2 flow rate.

  10. Oxygen mass-transfer coefficients for different sample containers used in the headspace biochemical oxygen demand test.

    PubMed

    Logan, B E; Kohler, D

    2001-01-01

    To accurately measure the oxygen demand of a wastewater sample in a headspace biochemical oxygen demand (HBOD) or other respirometric test, the rate of oxygen transfer to the aqueous phase must be greater than the oxygen exertion rate by the sample. Oxygen mass-transfer coefficients (Kawa) measured for 28-, 55-, and 160-mL, partially full (18 to 89%) containers placed on their sides on a shaker table and mixed at 200 r/min averaged 8.0 h-1 (range 5.4 to 9.9 h-1). For this mass-transfer coefficient, HBOD values as great as 1340 mg/L.d are possible at the start of an HBOD test, although the maximum daily HBOD declines to 192 mg/L.d at the end of the test because of oxygen depletion in the sample headspace. Mass-transfer coefficients for shaken samples decreased only at low shaking speeds (< 50 r/min). Oxygen mass-transfer coefficients for shaken samples were always larger than those (average of 1.8 h-1) measured for samples in a 250-mL bottle mixed with a stir bar on a stir plate. These mass-transfer coefficients indicate that the oxygen demand of typical full-strength municipal wastewaters can be measured in HBOD tests without oxygen transfer limiting the reaction rate. PMID:11558304

  11. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  12. Demand and supply of hydrogen as chemical feedstock in USA

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  13. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450...

  14. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450...

  15. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,

  16. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  17. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  18. In situ global method for measurement of oxygen demand and mass transfer

    SciTech Connect

    Klasson, K.T.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L.

    1997-05-01

    Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

  19. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates

    PubMed Central

    Hatay, M; Haas, AF; Robinett, NL; Barott, K; Vermeij, MJA; Marhaver, KL; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  20. The diluter-demand oxygen system used during the international Himalayan expedition to Mount Everest.

    NASA Technical Reports Server (NTRS)

    Blume, F. D.; Pace, N.

    1972-01-01

    The diluter-demand regulators are designed in such a way that as the individual inspires he simultaneously draws ambient air and pure oxygen from a tank into his mask. The size of the ambient air orifice is made directly proportional to the barometric pressure by use of a passive aneroid valve. As altitude increases the ambient air orifice is automatically made smaller and the individual inspires a greater proportion of oxygen.

  1. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  2. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.

    1985-01-01

    As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

  3. Rate of Biochemical oxygen demand during formation of hypoxia in Amur Bay, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Tishchenko, P. P.; Tishchenko, P. Ya.; Zvalinskii, V. I.; Semkin, P. Yu.

    2014-12-01

    In May 2011, a Water Quality Monitor (WQM) hydrological station was maintained in the hypoxia area of Amur Bay one meter above the bottom, at the depth of 19 m. The temperature, electric conductivity, pressure, and content of dissolved oxygen were registered every four hours for more than three months. On the basis of these data, it was found that the period of hypoxia at the observation point lasted 93 days and a model of calculation of the rate of biochemical oxygen demand and the velocity of ventilation of the bottom waters is suggested.

  4. Temperature effects on tubificid worms and their relation to sediment oxygen demand.

    PubMed

    Otubu, John E; Hunter, Joseph V; Francisco, Kelly L; Uchrin, Christopher G

    2006-01-01

    Sediment samples were collected from the Dead River in New Jersey and tested in the laboratory under two temperature conditions, 4 degrees C and 20 degrees C. The study was conducted to determine the effect of worm density on the sediment oxygen demand (SOD) rate and if temperature affects the ability for tubificid worms to deplete dissolved oxygen (DO) from the overlying stream water. The study showed that the DO concentration was affected by tubificid worm density and that higher temperature increased the metabolic activity of the worms. PMID:16835114

  5. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  6. Geostatistical modeling of the spatial distribution of sediment oxygen demand within a Coastal Plain blackwater watershed

    PubMed Central

    Todd, M. Jason; Lowrance, R. Richard; Goovaerts, Pierre; Vellidis, George; Pringle, Catherine M.

    2010-01-01

    Blackwater streams are found throughout the Coastal Plain of the southeastern United States and are characterized by a series of instream floodplain swamps that play a critical role in determining the water quality of these systems. Within the state of Georgia, many of these streams are listed in violation of the states dissolved oxygen (DO) standard. Previous work has shown that sediment oxygen demand (SOD) is elevated in instream floodplain swamps and due to these areas of intense oxygen demand, these locations play a major role in determining the oxygen balance of the watershed as a whole. This work also showed SOD rates to be positively correlated with the concentration of total organic carbon. This study builds on previous work by using geostatistics and Sequential Gaussian Simulation to investigate the patchiness and distribution of total organic carbon (TOC) at the reach scale. This was achieved by interpolating TOC observations and simulated SOD rates based on a linear regression. Additionally, this study identifies areas within the stream system prone to high SOD at representative 3rd and 5th order locations. Results show that SOD was spatially correlated with the differences in distribution of TOC at both locations and that these differences in distribution are likely a result of the differing hydrologic regime and watershed position. Mapping of floodplain soils at the watershed scale shows that areas of organic sediment are widespread and become more prevalent in higher order streams. DO dynamics within blackwater systems are a complicated mix of natural and anthropogenic influences, but this paper illustrates the importance of instream swamps in enhancing SOD at the watershed scale. Moreover, our study illustrates the influence of instream swamps on oxygen demand while providing support that many of these systems are naturally low in DO. PMID:20938491

  7. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake.

    PubMed

    Bianchini Jr, I; Cunha-Santino, M B; Peret, A M

    2008-02-01

    This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Oleo Lagoon situated in the Mogi-Guau river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L(-1) (DM), respectively) were maintained during 45 to 80 days at 20 degrees C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction. PMID:18470379

  8. Measurement and modeling of oxygen content in a demand constant mass ratio injection rebreather.

    PubMed

    Frnberg, Oskar; Gennser, Mikael

    2015-01-01

    Mechanical semi-closed rebreathers do not need oxygen sensors for their functions, thereby reducing the complexity of the system. However, testing and modeling are necessary in order to determine operational limits as well as the decompression obligation and to avoid hyperoxia and hypoxia. Two models for predicting the oxygen fraction in a demand constant mass ratio injection (DCMRI) rebreather for underwater use were compiled and compared. The model validity was tested with an IS-MIX, Interspiro AB rebreather using a metabolic simulator connected to a breathing machine inside a water-filled pressure chamber. The testing schedule ranged from 0.5-liter (L) to 3-liter tidal volumes, breathing frequencies from five to 25 breaths/minute and oxygen consumptions from 0.5 L/minute to 4 L/minute. Tests were carried out at surface and pressure profiles ranging to 920 kPa(a) (81 meters of sea water, 266 feet of sea water). The root mean squared error (RMSE) of the single-compartment model was 2.4 percent-units of oxygen for the surface test with the 30% dosage setting but was otherwise below 1% unit. For the multicompartment model the RMSE was below 1% unit of oxygen for all tests. It is believed that these models will aid divers in operational settings and may constitute a helpful tool when developing semi-closed rebreathing apparatuses. PMID:26742257

  9. Biochemical oxygen demand and algae: Fractionation of phytoplankton and nonphytoplankton respiration in a large river

    SciTech Connect

    Cohen, R.R.H. )

    1990-04-01

    Mass balance equations for dissolved oxygen in streams are formulated to account for, among other variables, algal respiration (R), and biochemical oxygen demand (BOD). The oxygen consumption measured in primary productivity-respiration analyses is not R but is total community oxygen consumption (TCOC), and BOD measurements are complicated by undefined algal components. Ultimate BOD was found to be 0.24 mg of O{sub 2} consumed per {mu}g chlorophyll a and carbonaceous BOD was 0.20 per {mu}g chlorophyll a in excess of background BOD. The results were similar for live and dead algae. Phytoplankton respiration was fractionated from nonphytoplankton oxygen consumption (NPOC) by the regression of respiration against chlorophyll a to obtain a y intercept of zero chlorophyll. The intercepts, NPOC, closely matched O{sub 2} consumption measured when phytoplankton biomass was very low. Phytoplankton respiration, calculated as the residual of the difference between TCOC and NPOC,ranged from 0.2 to 1.5 (mean = 0.88) mg O{sub 2} per mg chlorophyll a per hour, close to the literature value of 1 (in cultures). Depth-integrated (DI) phytoplankton respiration was 1/4 to 1/3 of DI gross primary productivity and 1-3% of maximum primary productivity. The separation of phytoplankton R and NPOC permitted the demonstration that R probably is not a simple function of productivity.

  10. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.; Guimaraes, Wladmir B.; Sanders, Curtis L., Jr.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3) fully loaded (in accordance with South Carolina Department of Health and Environmental Control National Discharge Elimination System permits). Results indicate that the 24-hour mean and minimum dissolved-oxygen concentrations for August 24, 1996, changed from the no-load condition within a range of - 0.33 to 0.02 milligram per liter and - 0.48 to 0.00 milligram per liter, respectively. Fully permitted loading conditions changed the 24-hour mean and minimum dissolved-oxygen concentrations from - 0.88 to 0.04 milligram per liter and - 1.04 to 0.00 milligram per liter, respectively. A second scenario included the addition of a point-source discharge of 25 million gallons per day to the August 1996 calibration conditions. The discharge was added at S.C. Highway 5 or at a location near Culp Island (about 4 miles downstream from S.C. Highway 5) and had no significant effect on the daily mean and minimum dissolved-oxygen concentration. A third scenario evaluated the phosphorus loading into Fishing Creek Reservoir; four loading conditions of phosphorus into Catawba River were simulated. The four conditions included fully permitted and actual loading conditions, removal of all point sources from the Catawba River, and removal of all point and nonpoint sources from Sugar Creek. Removing the point-source inputs on the Catawba River and the point and nonpoint sources in Sugar Creek reduced the organic phosphorus and orthophosphate loadings to Fishing Creek Reservoir by 78 and 85 percent, respectively.

  11. Chemical Sensors Based On Oxygen Detection By Optical Methods

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer W.; Cox, M. E.; Dunn, Bruce S.

    1986-08-01

    Fluorescence quenching is shown to be a viable method of measuring oxygen concentration. Two oxygen/optical transducers based on fluorescence quenching have been developed and characterized: one is hydrophobic and the other is hydrophilic. The development of both transducers provides great flexibility in the application of fluorescence to oxygen measurement. One transducer is produced by entrapping a fluorophor, 9,10-diphenyl anthracene, in poly(dimethyl siloxane) to yield a homogeneous composite polymer matrix. The resulting matrix is hydrophobic. This transducer is extremely sensitive to PO2 as a result of oxygen quenching the fluorescence of 9,10-diphenyl anthracene. This quenching is utilized in the novel method employed to measure the transport properties of oxygen within Ulf 2matrix. Results show large values for the diffusion coefficient at 25C, D = 3.5 x 10-5 cm /s. The fluorescence intensity varies inversely with P02. The second oxygen transducer is fabricated by entrapping 9,10-diphenyl anthracene in poly(hydroxy ethyl methacrylate). Free radical, room temperature polymerization is employed. This transducer is hydrophilic, and contains 37% water. The transport properties of oxygen within this transducer are compared with those of the hydrophobic transducer. The feasibility of generalizing the oxygen transducers to a wider class of chemical sensors through coupling to other chemistries is proposed. An example of such coupling is given in a glucose/oxygen transducer. The glucose transducer is produced by entrapping an enzyme, glucose oxidase, in the composite matrix of the hydrophilic oxygen transducer. Glucose oxidase catalyzes a reaction between glucose and oxygen, thereby lowering the local oxygen concentration. This transducer yields a glucose modified optical oxygen signal. The operation of this transducer and preliminary results of its characterization are presented.

  12. Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara

    2009-01-01

    Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).

  13. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  14. Yeast-based Biochemical Oxygen Demand Sensors Using Gold-modified Boron-doped Diamond Electrodes.

    PubMed

    Ivandini, Tribidasari A; Harmesa; Saepudin, Endang; Einaga, Yasuaki

    2015-01-01

    A gold nanoparticle modified boron-doped diamond electrode was developed as a transducer for biochemical oxygen demand (BOD) measurements. Rhodotorula mucilaginosa UICC Y-181 was immobilized in a sodium alginate matrix, and used as a biosensing agent. Cyclic voltammetry was applied to study the oxygen reduction reaction at the electrode, while amperometry was employed to detect oxygen, which was not consumed by the microorganisms. The optimum waiting time of 25 min was observed using 1-mm thickness of yeast film. A comparison against the system with free yeast cells shows less sensitivity of the current responses with a linear dynamic range (R(2) = 0.99) of from 0.10 mM to 0.90 mM glucose (equivalent to 10 - 90 mg/L BOD) with an estimated limit of detection of 1.90 mg/L BOD. However, a better stability of the current responses could be achieved with an RSD of 3.35%. Moreover, less influence from the presence of copper ions was observed. The results indicate that the yeast-immobilized BOD sensors is more suitable to be applied in a real condition. PMID:26179128

  15. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    PubMed

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more idiosyncratically, with different parameters responding to different treatments. These results show that partial submergence and soil flooding are two very different stressors to which species respond in different ways, and that their effects on physiology, survival, and growth are interactive. Understanding species zonation with water regimes can be improved by a better appreciation of how these factors affect plant metabolism independently and interactively. PMID:18376561

  16. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  17. Comparison of a novel profile method to standard chamber methods for measurement of sediment oxygen demand.

    PubMed

    Miskewitz, Robert J; Francisco, Kelly L; Uchrin, Christopher G

    2010-01-01

    A methodology is presented to determine the impact of flow rate upon sediment oxygen demand (SOD) based upon dissolved oxygen transport through the logarithmic boundary layer in stream systems. Previous work has used profile methodology to estimate atmospheric fluxes of pollutants from sediment, and similar principles are applied in this study. Chamber and profile SOD measurements were collected on July 21, 2009 in the Millstone River in Hillsborough, NJ and on July 22 and 28, 2009 in the Lawrence Brook in Milltown, NJ. The two systems were installed 2 meters apart laterally across the stream to measure SOD simultaneously. A total of 7 chamber measurements and 50 profile measurements were collected over 3 days. Chamber SOD measurements in the Lawrence Brook varied from 3.6 to 13.0 g/m(2)/day and had a mean of 5.0 g/m(2)/day. Concurrent profile SOD measurements varied from 1.3 to 13.5 g/m(2)/day and had a mean of 7.16 g/m(2)/day. In the Millstone River, the single chamber measurement was 4.6 g/m(2)/day while the profile measurements varied from 0.5 to 2.2 g/m(2)/day with a mean of 1.32 g/m(2)/day. The measurements made via the profile and chamber methods were found to be in relative agreement. A linear relationship between friction velocity and stream SOD was observed. PMID:20397086

  18. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-01-01

    Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation. PMID:25446719

  19. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.

    PubMed

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurement was performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19-1.41 g/(md) with an average of 0.62 g/(md) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15-1.38 g/(md) with an average of 0.51 g/(md) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  20. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements

    PubMed Central

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  1. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  2. The chemical effects of auroral oxygen precipitation at Jupiter

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Eisenhower, G. M.

    1992-01-01

    A numerical model of the auroral ionosphere and thermosphere of Jupiter, which includes odd oxygen species, is presented. Density profiles of neutral species O, OH, and H2O and the ion species H2(+), H3(+), H(+), H2O(+), H3O(+), O(+), and OH(+) are calculated. The total neutral odd oxygen density is found to be about 10 exp 5/cu cm near the auroral ionosphere peak. The major ionospheric ion, H(+) reacts rapidly with both O and H2O and the presence of these species in the model calculations significantly reduces the H(+) density and thus the electron density. The chemical lifetime against reaction of H(+) with odd oxygen is about 1000 s near the peak, whereas the radiative recombination lifetime is roughly 10,000 s.

  3. Applying Kohonen self-organizing map as a software sensor to predict biochemical oxygen demand.

    PubMed

    Rustum, Rabee; Adeloye, Adebayo J; Scholz, Miklas

    2008-01-01

    The 5 days at 20 degrees C biochemical oxygen demand (BOD5) is an important parameter for monitoring organic pollution in water and assessing the biotreatability of wastewater. Moreover, BOD5 is used for wastewater treatment plant discharge consents and other water pollution control purposes. However, the traditional bioassay method for estimating the BOD5 involves the incubation of sample water for 5 days. It follows that BOD5 is not available for real-time decisionmaking and process control purposes. On the other hand, previous efforts to solve this problem by developing more rapid biosensors had limited success. This paper reports on the development of Kohonen self-organizing map (KSOM)-based software sensors for the rapid prediction of BOD5. The findings indicate that the KSOM-based BOD5 estimates were in good agreement with those measured using the conventional bioassay method. This offers significant potential for more timely intervention and cost savings during problem diagnosis in water and wastewater treatment processes. PMID:18254396

  4. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortn, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. PMID:24856922

  5. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  6. PROPOSED MODIFICATIONS OF K2-TEMPERATURE RELATION AND LEAST SQUARES ESTIMATES OF BOD (BIOCHEMICAL OXYGEN DEMAND) PARAMETERS

    EPA Science Inventory

    A technique is presented for finding the least squares estimates for the ultimate biochemical oxygen demand (BOD) and rate coefficient for the BOD reaction without resorting to complicated computer algorithms or subjective graphical methods. This may be used in stream water quali...

  7. Exercise Training Reduces Peripheral Arterial Stiffness and Myocardial Oxygen Demand in Young Prehypertensive Subjects

    PubMed Central

    2013-01-01

    BACKGROUND Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. METHODS Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120139mm Hg or diastolic blood pressure (DBP) = 8089mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 1835 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. RESULTS PHRT and PHET reduced resting SBP by 9.63.6mm Hg and 11.93.4mm Hg, respectively, and DBP by 8.05.1mm Hg and 7.23.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% 2.8% and 8.1% 3.2% (P < 0.05), AIx@75 by 8.0% 3.2% and 9.2% 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573161 dynes s/cm2 and 612167 dynes s/cm2 (P < 0.05), respectively. PHRT and PHET reduced carotidradial PWV by 1.020.32 m/sec and 0.920.36 m/sec (P < 0.05) and femoraldistal PWV by 1.040.31 m/sec and 1.340.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. CONCLUSIONS This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects. PMID:23736111

  8. Repetitively pulsed q-switched chemical oxygen-iodine laser

    SciTech Connect

    Hager, G.D.

    1985-10-07

    This invention overcomes the problems of severe flux-induced density gradients in a continuous-wave subsonic cavity of a chemical oxygen-iodine laser by operating the laser in a repetitively pulsed mode through the incorporation therein of a scaleable intracavity gas-phase Q-switch. This abstract discloses a repetitively cavity containing a lasing medium in the form of a flowing mixture of excited oxygen and iodine atoms and an iodine absorption region within the resonant cavity. The iodine absorption region includes a source of iodine atoms and a magnetic field associated therewith. Selectively altering the magnetic field results in changing the absorption characteristics of the iodine atoms and, therefore, effectively pulses the output of the laser.

  9. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  10. Interfacial tension controlled fusion of individual femtoliter droplets and triggering of confined chemical reactions on demand

    SciTech Connect

    Collier, Pat; Jung, Seung-Yong; Retterer, Scott T

    2010-01-01

    This paper describes stepwise, on-demand generation and fusion of femtoliter aqueous droplets based on interfacial tension. Sub-millisecond mixing times from droplet fusion were demonstrated, as well as a reversible chemical toggle switch based on alternating fusion of droplets containing acidic or basic solution, monitored with the pH-dependent emission of fluorescein.

  11. Respiratory demand during rigorous physical work in a chemical protective ensemble.

    PubMed

    Kaufman, Jonathan; Hastings, Sherri

    2005-02-01

    Protection afforded by a respirator filter depends on many factors, among them chemical or biological agent and flow rate. Filtration mechanisms, such as chemical adsorption, depend on sufficient residence time for the filter media to extract noxious agents from the airstream. Consequently, filter efficiency depends on inspiratory air velocities, among other factors. Filter designs account for this by adjusting bed depth and cross-sectional area to anticipated flow rates. Many military and commercial filters are designed and tested at 32-40 L/min. The present study investigated respiratory demand while U.S. Marines (n=32) completed operationally relevant tasks in chemical protective ensembles, including M-40 masks and C2A1 filters. Respiratory demand greatly exceeded current test conditions during the most arduous tasks: minute ventilation=96.4+/-18.9 L/min (mean+/-SD) with a maximum of 131.7 L/min observed in one subject. Mean peak inspiratory flow rate (PIF) reached 238.7+/-34.0 L/min with maximum PIF often exceeding 300 L/min (maximum observed value=356.3 L/min). The observed respiratory demand was consistent with data reported in previous laboratory studies of very heavy workloads. This study is among the few to report on respiratory demand while subjects perform operationally relevant tasking in chemical protective ensembles. The results indicate that military and industrial filters will probably encounter higher flow rates than previously anticipated during heavy exertion. PMID:15764530

  12. New concepts of realizing a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2014-10-01

    New concepts are presented to realize a chemical oxygen laser (COL) based on the transition from O2(1?g) to O2 (3?g). The chemical oxygen iodine laser (COIL) utilizes the energy transfer from the chemically generated O2(1?g) to iodine I (2P3/2) because the stimulated emission cross section of O2(1?g) is too small to give a direct oscillation. But since extractable laser energy has no relation to the stimulated emission cross section, a COL has a potential to produce a high energy laser output if it has a long enough active medium to give a positive gain. The intrinsically long upper-state life time enables the storage of large energy, which has a potential give a giant pulsed laser. Since the previous report elucidated the problems 1), the proposed concepts are based on the consideration of them. Also a Q switched COL oscillator is simulated with a rate equation. The simulation results show that a giant pulse of ~0.05ms width can be obtained with the extraction efficiency of 10-20%.

  13. Proposal of a defense application for a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-05-01

    Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.

  14. Time series of oxygen demand in deltaic sediments obtained by a new benthic station: the Rhne delta (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Toussaint, Flora; Rabouille, Christophe; Bombled, Bruno; Cathalot, Ccile; Lansard, Bruno; Abchiche, Abdel; Aouji, Oualid; Buschholz, Gilles

    2013-04-01

    Deltas are critical interfaces between the land and sea, buffering organic matter (OM) fluxes which constitute an important link between continent and ocean carbon cycles. Due to the extreme variability of estuaries and coastal areas, on both spatial and temporal scales (hydrology, production-respiration balance, coastal circulation...), the balance between deposition and consumption of OM by the benthic ecosystem is largely unknown. Based on a combination of two in situ techniques, we studied the biogeochemical transformations of particulate inputs in the Rhne River delta and its temporal variability. The Rhne River is the main source of freshwater, sediments and organic matter to the Gulf of Lions. Oxygen micro-electrodes have long been used in the deep-ocean and the coastal sea in order to study oxygen cycling in sediments and to estimate diffusive oxygen uptake (DOU). This technique has seldom been used for performing time-series measurements of DOU because of several drawbacks linked to the fragile nature of oxygen micro-electrodes, their changing calibration with time, the expected small amplitude of DOU variation over short time-scales and the large natural heterogeneity of the sediment DOU which would prevent small temporal variations of DOU to be distinguished from the "spatial noise". Here, we present results obtained by two in situ techniques: i) an in situ oxygen micro-profiler ii) a new benthic station equipped with oxygen micro-electrodes and environmental sensors. This new device performs daily measurements of oxygen microprofiles, with a potential for high frequency measurements (4 per day) and uses continuous re-calibration by moored oxygen optodes carried by the benthic station together with turbidity, temperature and salinity sensors. Time series typically encompasses periods of 2-3 months. The lateral heterogeneity of the DOU is assessed by performing a 2D map of oxygen demands at the initial stage of the deployment. We deployed this benthic station in a deltaic environment at the mouth of the Rhone River together with the oxygen micro-profiler in order to study the fate of particulate organic matter delivered during floods from this Mediterranean River. First results measured during low flow condition and small turbidity showed that the measurement system is stable over time and records a limited lateral heterogeneity allowing temporal variation and floods to be recorded. During the turbidity events of spring 2012, oxygen demand rises by a factor of 3-4. We discuss the importance of flood events in controlling the variability of DOU in this system. Keywords: oxygen microelectrodes, marine biogeochemistry, coastal zone, River deltas, benthic observatory, mineralization

  15. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    SciTech Connect

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    Emission standards for diesel engines in vehicles have been steadily reduced in recent years, and a great deal of research and development effort has been focused on reducing particulate and nitrogen oxide emissions. One promising approach to reducing emissions involves the addition of oxygen to the fuel, generally by adding an oxygenated compound to the normal diesel fuel. Miyamoto et al. [1] showed experimentally that particulate levels can be significantly reduced by adding oxygenated species to the fuel. They found the Bosch smoke number (a measure of the particulate or soot levels in diesel exhaust) falls from about 55% for conventional diesel fuel to less than 1% when the oxygen content of the fuel is above about 25% by mass, as shown in Figure 1. It has been well established that addition of oxygenates to automotive fuel, including both diesel fuel as well as gasoline, reduces NOx and CO emissions by reducing flame temperatures. This is the basis for addition of oxygenates to produce reformulated gasoline in selected portions of the country. Of course, this is also accompanied by a slight reduction in fuel economy. A new overall picture of diesel combustion has been developed by Dec [2], in which laser diagnostic studies identified stages in diesel combustion that had not previously been recognized. These stages are summarized in Figure 2. The evolution of the diesel spray is shown, starting as a liquid jet that vaporizes and entrains hot air from the combustion chamber. This relatively steady process continues as long as fuel is being injected. In particular, Dec showed that the fuel spray vaporizes and mixes with air and products of earlier combustion to provide a region in which a gas phase, premixed fuel-rich ignition and burn occurs. The products of this ignition are then observed experimentally to lead rapidly to formation of soot particles, which subsequently are consumed in a diffusion flame. Recently, Flynn et al. [3] used a chemical kinetic and mixing model to study the premixed, rich ignition process. Using n-heptane as a representative diesel fuel, they showed that addition of an oxygenated additive, methanol, to the fuel reduced the concentrations of a number of hydrocarbon species in the products of the rich ignition. Specifically, methanol addition reduced the total concentrations of acetylene, ethylene and 1,3-butadiene, as well as propargyl and vinyl radicals, in the ignition products. These are the same species shown in a number of studies [4-6] to be responsible for formation of aromatic and polycyclic aromatic species in flames, species which lead eventually to production of soot. Flynn et al. did not, however, examine the kinetic processes responsible for the computed reduction in production of soot precursor species. At least two hypotheses have been advanced to explain the role that oxygenated species play in diesel ignition and the reduction in the concentrations of these species. The first is that the additive, methanol in the case of Flynn et al., does not contain any C-C bonds and cannot then produce significant levels of the species such as acetylene, ethylene or the unsaturated radicals which are known to lead to aromatic species. The second hypothesis is that the product distribution changes very naturally as oxygen is added and the overall equivalence ratio is reduced. In the present study, we repeat the ignition calculations of Flynn et al. and include a number of other oxygenated species to determine which of these theories is more applicable to this model.

  16. Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida

    USGS Publications Warehouse

    Russo, Thomas N.; McQuivey, Raul S.

    1975-01-01

    A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

  17. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    PubMed

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria. PMID:24626398

  18. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t

  19. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  20. [Oxygen demand of an Actinomyces rimosus culture dependent on the composition of the medium].

    PubMed

    Oblozhko, L S; Orlova, N V; Borisova, T G

    1977-01-01

    Consumption of oxygen by Act. rimosus depending on the medium composition was studied. It was shown that the level of dissolved oxygen in the fermentation broth decreased as the level of carbohydrates in the fermentor increased from 6 to 7.5 per cent. Under such conditions oxytetracycline biosynthesis appeared to be limited by oxygen and the maximum level of the antibiotic was not attained. A 2-fold increase in the concentration of the medium components resulted in an almost 2-fold increase of the biomass, while the potency level increased only by 54 per cent. The oxygen deficiency lowered the mycelium productivity with respect to the antibiotic biosynthesis to a greater extent that the rate of the culture growth. PMID:843068

  1. XPS chemical analysis of tholins: the oxygen contamination

    NASA Astrophysics Data System (ADS)

    Carrasco, N.; Jomard, F.; Vigneron, J.; Cernogora, G.

    2013-12-01

    In Titan's atmosphere, solid organic aerosols are initiated in the upper atmosphere by the photo-dissociation and photo-ionization of N2 and CH4. In order to simulate this complex chemistry several experimental setups have been built, among them plasma experiments. The aerosol analogues produced in such plasma discharges contain oxygen, as a few percents of the elemental composition, despite the absence of oxygen source in the reactive medium [1]. The present study aims at studying the origin of such systematic oxygen incorporation in tholins. A low pressure (0.9mbar) RF CCP discharge is used described in [2]. Gas mixtures of N2 and CH4 (from 1 to 10% of CH4) are injected continuously. The plasma discharge leads to the production of analogues of Titan's atmospheric aerosols: both as grains in the volume [1] and as thin films on the surface of the reactor [3]. SiO2 substrates of 1cm diameter and 1mm thickness are placed on the grounded electrode of the discharge. Organic films are deposited during 2 hours in order to have films thickness less than 1μm. After the two hours, samples are recovered at ambient air for ex-situ analysis. Two complementary analyses are performed to analyse the thin film chemical composition: XPS and SIMS, in order to probe both the surface and depth profile. References [1] Sciamma-O'brien E., Carrasco N., Szopa C., Buch A., Cernogora G. Icarus 209, 2 (2010) 704-714 [2] Alcouffe G., Cavarroc M., Cernogora G., Ouni F., Jolly A., Boufendi L., Szopa C. Plasma Sources Science and Technology 19, 1 (2010) 015008 (11pp) [3] Mahjoub A., Carrasco N., Dahoo P.-R., Gautier T., Szopa C., Cernogora G. Icarus 221, 2 (2012) 670-677.

  2. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  3. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3?mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5?mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1?mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  4. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment.

    PubMed

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-01-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in M(II)-M(III) cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3?mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5?mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1?mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates. PMID:26456850

  5. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  6. Respirometric oxygen demand determinations of laboratory- and field-scale biofilters

    SciTech Connect

    Rho, D.; Mercier, P.; Jette, J.F.; Samson, R.; Lei, J.; Cyr, B.

    1995-12-31

    A biofiltration experiment operated at three inlet concentrations (425, 830, and 1,450 mg m{sup {minus}3}), showed that the specific oxygen consumption rate was highly correlated (R = 0.938, n = 23) with the toluene elimination capacity. A radiorespirometric test was found to be more sensitive and appropriate for the field-scale biofilter treating gasoline vapors.

  7. FACTORS AFFECTING SEDIMENT OXYGEN DEMAND DYNAMICS IN BLACKWATER STREAMS OF GEORGIA'S COASTAL PLAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many coastal plain streams have impaired water quality because of low dissolved oxygen (DO) levels at certain times of the year. These streams are required to have Total Maximum Daily Load (TMDL) plans that often include reduction of nutrient loads. This approach assumes that low DO is due to exce...

  8. Perioperative beta blockade with propranolol: reduction in myocardial oxygen demands and incidence of atrial and ventricular arrhythmias.

    PubMed

    Hammon, J W; Wood, A J; Prager, R L; Wood, M; Muirhead, J; Bender, H W

    1984-10-01

    To determine the effect of beta blockade with propranolol on myocardial oxygen demands and postoperative arrhythmias in patients having coronary bypass operations, 50 patients with chronic stable angina undergoing operation were randomized in a double-blind fashion to receive either propranolol (60 mg every 6 hours) or a placebo. Drug administration began 24 to 48 hours prior to operation and continued through the operative period and for one month after operation. There were no deaths. Two perioperative myocardial infarctions occurred, both in patients receiving a placebo. Myocardial oxygen demand as measured by the rate-pressure product (heart rate X mean arterial pressure) was significantly reduced during induction of anesthesia (7,658 +/- 451 versus 5,786 +/- 340; p less than 0.002) and during sternotomy (8,400 +/- 550 versus 6,756 +/- 384; p less than 0.02) in propranolol-treated patients. In the first two postoperative days, nitroprusside was required for control of hypertension of 10 patients in the placebo group but in only 3 patients given propranolol (p less than 0.05). Postoperatively, 15 of the 26 patients who received a placebo had 45 episodes of arrhythmia. Seven of the 24 propranolol-treated patients had 17 episodes (p less than 0.04). We conclude that propranolol given perioperatively in doses large enough to induce beta blockade significantly reduces myocardial oxygen demands in the vulnerable period during induction of anesthesia and sternotomy, reduces the need for antihypertensive therapy in the immediate postoperative period, and causes a marked reduction in the incidence and frequency of both supraventricular and ventricular arrhythmias in the postoperative period. PMID:6385890

  9. Using electrochemistry - total internal refection imaging ellipsometry to monitor biochemical oxygen demand on the surface tethered polyelectrolyte modified electrode

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Meng; Lv, Bei'er; Chen, YanYan; Ma, Hongwei; Jin, Gang

    2015-03-01

    Our previous work has proposed an electrochemistry - total internal reflection imaging ellipsometry (EC-TIRIE) technique to observe the dissolved oxygen (DO) reduction on Clark electrode since high interface sensitivity makes TIRIE a useful tool to study redox reactions on the electrode surface. To amplify the optical signal noise ratio (OSNR), a surface tethered weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random- 2-hydroxyethylmethacrylate) (abbreviated as carboxylated poly(OEGMA-r-HEMA)), has been introduced on the electrode surface. Since Clark electrode is widely used in biochemical oxygen demand (BOD) detection, we use this technique to measure BOD in the sample. The dynamic range of the system is from 0 25 mg/L. Two samples have been measured. Compared with the conventional method, the deviation of both optical and electrical signals are less than 10%.

  10. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated and the seasonal oxygen demand loading pattern remains unexplained. An expanded investigation of the Salt Slough watershed is warranted, because of the importance of this watershed to the oxygen demand load entering the SJR.

  11. Postischemic [Ca2+] repletion improves cardiac performance without altering oxygen demands.

    PubMed

    Yokoyama, H; Julian, J S; Vinten-Johansen, J; Johnston, W E; Smith, T D; McGee, D S; Cordell, A R

    1990-06-01

    The positive inotropism expected with correction of postischemic hypocalcemia might be counterbalanced by potential aggravation of reperfusion injury, in particular by calcium overload. We evaluated the effect of normalizing blood calcium concentration ([Ca2+]) on postischemic left ventricular systolic and diastolic mechanics using oxygen consumption and indices derived from pressure-diameter relations. In 10 open-chest dogs on cardiopulmonary bypass, the hearts underwent 30 minutes of normothermic global ischemia followed by one hour of multidose hypothermic (4 degrees C), hypocalcemic (0.3 mmol/L) blood cardioplegia. After reperfusion, systemic [Ca2+] had decreased to 70% of control (p = 0.017). The left ventricular inotropic state was significantly depressed from baseline (control) values, but was restored to baseline levels by resumption of normocalcemia after one hour of reperfusion. Chamber stiffness increased by 308% (p = 0.006) after hypocalcemic reperfusion but decreased significantly after [Ca2+] correction. Recovery of left ventricular performance with [Ca2+] correction did not augment myocardial oxygen consumption from the postischemic uncorrected state (5.0 +/- 0.3 mL O2/min/100 g versus 5.3 +/- 0.3 mL O2/min/100 g). We conclude that normalizing [Ca2+] after blood cardioplegia improves postischemic left ventricular performance without adversely affecting compliance or oxygen consumption. PMID:2369187

  12. Chemical oxygen iodine laser (COIL) technology and development

    NASA Astrophysics Data System (ADS)

    Duff, Edward A.; Truesdell, Keith A.

    2004-09-01

    In the late 1960's researchers realized that producing a population inversion in a moving medium could be used to generate high-energy laser beams. The first lasers to scale to the 10 kW size with good beam quality were supersonic flows of N2 - CO2, emitting radiation from the CO2 at 10.6 microns. In the 1970's gas dynamic CO2 lasers were scaled to hundreds of kilowatts and engineered into a KC-135 aircraft. This aircraft (The Airborne Laser Laboratory) was used to shoot down Sidewinder AIM-9B missiles in the early 1980"s. During this same time period (1970-1990) hydrogen fluoride and deuterium fluoride lasers were scaled to the MW scale in ground-based facilities. In 1978, the Iodine laser was invented at the Air Force Research Laboratory and scaled to the 100 kW level by the early 1990"s. Since the 60s, the DOD Chemical Laser development efforts have included CO2, CO, DF, HF, and Iodine. Currently, the DOD is developing DF, HF, and Iodine lasers, since CO2 and CO have wavelengths and diffraction limitations which make them less attractive for high energy weapons applications. The current military vision is to use chemical lasers to prove the principles and field ground and air mounted laser systems while attempting to develop weight efficient solid-state lasers at the high power levels for use in future Strategic and Tactical situations. This paper describes the evolution of Chemical Oxygen Iodine Lasers, their selection for use in the Airborne Laser (ABL), and the Advanced Tactical Laser (ATL). COIL was selected for these early applications because of its power scalability, its short wavelength, its atmospheric transmittance, and its excellent beam quality. The advantages and challenges are described, as well as some of the activities to improve magazine depth and logistics supportability. COIL lasers are also potentially applicable to mobile ground based applications, and future space based applications, but challenges exist. In addition, COIL is being considered for civil commercial applications in the US and overseas.

  13. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  14. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    SciTech Connect

    Kasinski, Slawomir Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  15. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors.

    PubMed

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-02-01

    Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m(3)/h. Using Darcy's equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7-2.88-fold. PMID:24268917

  16. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom sediments had accumulated and lower dissolved oxygen concentration conditions existed in the water column. Dissolved oxygen concentrations in the center channel test chamber showed a constant slow decrease over the entire test period. Oxygen consumption in the test chamber at the near-shore location began rapidly and then slowed over time as oxygen became depleted in the chamber. Depending on the portion of the near-shore dissolved oxygen depletion curve used, calculated sediment oxygen demand rates ranged from as low as -0.03 g/m2/d to as high as -10 g/m2/d. The wide range of sediment oxygen demand rates indicates that care must be taken when extrapolating sediment oxygen demand rates between stream sites that have different bottom sediment types and different flow regimes.

  17. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips

    PubMed Central

    Ding, Huijiang; Sadeghi, Saman; Shah, Gaurav J.; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin CJ; van Dam, R. Michael

    2015-01-01

    Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e. have contact angles of < 90 even on the highly hydrophobic surfaces (e.g., Teflon or Cytop) typically used on digital microfluidic chips. Furthermore, often the applications dictate that the processes are performed in a gas environment, not allowing the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes of liquid to the chip. An automated, simple, accurate and reliable method of delivering reagents from sealed, off-chip reservoirs is presented here. This platform overcomes the issues of evaporative losses of volatile solvents, cross-contamination, and flooding of the chip by combining a syringe pump, a simple on-chip liquid detector and a robust interface design. The impedance-based liquid detection requires only minimal added hardware to provide a feedback signal to ensure accurate volumes of volatile solvents are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing of multiple droplets of acetonitrile, a frequently used but difficult to handle solvent due to its wetting properties and volatility, was demonstrated and used to synthesize the positron emission tomography (PET) probe [18F]FDG reliably. PMID:22825699

  18. Power optimization of small-scale chemical oxygen-iodine laser with jet-type singlet oxygen generator

    SciTech Connect

    Blayvas, I.; Barmashenko, B.D.; Furman, D.; Rosenwaks, S.; Zagidullin, M.V.

    1996-12-01

    Studies of power optimization of a 5-cm gain length chemical oxygen-iodine laser (COIL) energized by a jet-type singlet oxygen generator (JSOG) are presented. For 10 mmol/s of Cl{sub 2} flow rate, output power of 132 W with chemical efficiency of 14.5% was obtained without a water vapor trap. 163 W and 18% were achieved when coholed (173 K) He was introduced downstream of the JSOG; under these conditions, the small-signal gain was estimated to be 0.32% cm{sup {minus}1}. 190 W and 10.5% were obtained for 20 mmol/s of Cl{sub 2} flow rate. Replacing He by N{sub 2} as a buffer gas resulted in a 13% power decrease only. The main key for increasing the chemical efficiency of a COIL without a water vapor trap for a given iodine-oxygen mixing system is found to be high oxygen pressure and low water vapor pressure inside the reaction zone of the JSOG. The last goal was achieved by optimizing the composition and temperature of the basic hydrogen-peroxide solution (BHP). The experimental results are discussed and related to the composition and flow conditions of the gaseous reactants and of the BHP.

  19. Chemical treatment makes aromatic polyamide fabric fireproof in oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Cardwell, R. O.; Holsten, J. R.; Rives, J. W.

    1970-01-01

    Organic fabric is reacted first with vapors of a phosphorus oxychloride, phosphorus oxybromide solution and then with bromine vapor, after neutralization it is flameproof in pure oxygen atmosphere. Soaking the fabric with mixture of ammonium polyphosphates increases flame resistance, but the polyphosphates are leached out during laundering.

  20. Mass spectral characterization of oxygen-containing aromatics with methanol chemical ionization

    SciTech Connect

    Buchanan, M.V.

    1984-03-01

    Chemical ionization mass spectrometry with methanol and deuterated methanol as ionization reagents is used to differentiate oxygen-containing aromatics, including phenols, aromatic ethers, and aromatic substituted alcohols, as well as compounds containing more than one oxygen atom. The analogous sulfur-containing aromatics may be similarly differentiated. Methanol chemical ionization is used to characterize a neutral aromatic polar subfraction of a coal-derived liquid by combined gas chromatography/mass spectrometry. 16 references, 2 tables, 1 figure.

  1. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines.

    PubMed

    Westbrook, Charles K; Pitz, William J; Curran, Henry J

    2006-06-01

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by the addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in the molecular structure of the oxygenated species. PMID:16722706

  2. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor

    PubMed Central

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-01-01

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN− in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD. PMID:26729113

  3. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-01-01

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD. PMID:26729113

  4. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor.

    PubMed

    Hsieh, Min-Chi; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) have attracted considerable attention as potential biosensors. A MFC biosensor for rapid measurement of biochemical oxygen demand (BOD) has been recently studied. However, a standardized bacterial mixture inoculated in the MFC biosensor for BOD measurement is unavailable. Thus, the commercial application of a MFC biosensor is limited. In this study, a mediator-less MFC biosensor inoculated with known mixed cultures to quickly determine BOD concentration was tested. Optimal external resistance, operating temperature and measurement time for the MFC biosensor were determined to be 5000 omega, 35 degrees C and 12h, respectively. A good relationship between BOD concentration and voltage output, high reproducibility and long-term stability for the MFC biosensor was observed. The newly developed MFC biosensor was inoculated with a mixture of six bacterial strains (Thermincola carboxydiphila, Pseudomonas aeruginosa, Ochrobactrum intermedium, Shewanella frigidimarina, Citrobacter freundii and Clostridium acetobutylicum) capable of degrading complex organic compounds and surviving toxic conditions. The described MFC biosensor was able to successfully measure BOD concentrations below 240 mg L(-1) in real wastewater samples. PMID:25145173

  5. A STUDY OF NEW CATALYTIC AGENTS TO DETERMINE CHEMICAL OXYGEN DEMAND

    EPA Science Inventory

    This study was made to find a catalyst to replace silver sulfate in the COD method in order to reduce the cost of the determination. The results show that comparable results to the standard method for concentration of 50-500 mg/l could be obtained using a reduced amount of silver...

  6. IMPROVED MICROBIAL, VOLATILE SOLIDS, AND COD (CHEMICAL OXYGEN DEMAND) REDUCTIONS IN AN AUTOHEATED AEROBIC DIGESTER

    EPA Science Inventory

    The report is a summary of some of the work performed by Cornell University in which modifications to an aerobic digester permitted the digester to comply with PSRP requirements in cold climates. The modifications included addition of an insulated cover to prevent escape of the h...

  7. Hydrogen plasma and atomic oxygen treatments of diamond: Chemical versus morphological effects

    SciTech Connect

    Shpilman, Z.; Gouzman, I.; Grossman, E.; Akhvlediani, R.; Hoffman, A.

    2008-06-09

    Chemical bonding and morphology of chemical vapor deposited diamond films were studied using high resolution electron energy loss spectroscopy and atomic force microscopy, following hydrogen plasma and atomic oxygen exposures. The hydrogen plasma exposure resulted in preferential etching of nondiamond carbon phases, selective etching of diamond facets, and termination of the diamond surfaces by sp{sup 3}-C-H species. Exposure to atomic oxygen, on the other hand, produced significant chemical changes resulting in oxidized hydrocarbon ill defined top layer, while the morphology of the surface remained almost unchanged.

  8. Online biochemical oxygen demand monitoring for wastewater process control--full-scale studies at Los Angeles Glendale wastewater plant, California.

    PubMed

    Iranpour, Reza; Zermeno, Miguel

    2008-04-01

    The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow diversion and temporary storage to prevent process upsets. PMID:18536480

  9. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    PubMed

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD? L?) very similar to that of the standard 5-day BOD? method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD? and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD? assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD? analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed. PMID:23200506

  10. Air-activated chemical warming devices: effects of oxygen and pressure.

    PubMed

    Raleigh, G; Rivard, R; Fabus, S

    2005-01-01

    Air-activated chemical warming devices use an exothermic chemical reaction of rapidly oxidizing iron to generate heat for therapeutic purposes. Placing these products in a hyperbaric oxygen environment greatly increases the supply of oxidant and thus increases the rate of reaction and maximum temperature. Testing for auto-ignition and maximum temperatures attained by ThermaCare Heat Wraps, Playtex Heat Therapy, and Heat Factory disposable warm packs under ambient conditions and under conditions similar to those encountered during hyperbaric oxygen treatments in monoplace and multiplace hyperbaric chambers (3 atm abs and > 95% oxygen) revealed a maximum temperature of 269 degrees F (132 degrees C) with no spontaneous ignition. The risk of thermal burn injury to adjacent skin may be increased significantly if these devices are used under conditions of hyperbaric oxygen. PMID:16509287

  11. Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Deming, Christopher P.; Song, Yang; Kang, Xiongwu; Zhou, Zhi-You; Chen, Shaowei

    2012-01-01

    Water-soluble carbon nanoparticles were prepared by refluxing natural gas soot in concentrated nitric acid. The surface of the resulting nanoparticles was found to be decorated with a variety of oxygenated species, as suggested by spectroscopic measurements. Back potentiometric titration of the nanoparticles was employed to quantify the coverage of carboxylic, lactonic, and phenolic moieties on the particle surface by taking advantage of their vast difference of acidity (pKa). The results were largely consistent with those reported in previous studies with other carbonaceous (nano)materials. Additionally, the presence of ortho- and para-quinone moieties on the nanoparticle surface was confirmed by selective labelling with o-phenylenediamine, as manifested in X-ray photoelectron spectroscopy, photoluminescence, and electrochemical measurements. The results further supported the arguments that the surface functional moieties that were analogous to 9,10-phenanthrenequinone were responsible for the unique photoluminescence of the nanoparticles and the emission might be regulated by surface charge state, as facilitated by the conjugated graphitic core matrix.

  12. A pulsed oxygen - iodine chemical laser excited by a longitudinal electric discharge

    SciTech Connect

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2002-07-31

    The dependence of the energy parameters of an oxygen - iodine chemical laser with a bulk generation of iodine atoms in a longitudinal electric discharge on the length of the discharge gap is studied for various discharge energies and voltages and various working mixture compositions (at constant oxygen and iodine pressures). Analyses of the results suggests that temperature effects account for a twofold decrease in the specific energy yield for the lasing initiated by a longitudinal electric discharge compared to the photolytic initiation. (lasers)

  13. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  14. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    SciTech Connect

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.

  15. Probing Chemical Evolution and Cool Dwarf Atmospheres with Oxygen in M67

    NASA Astrophysics Data System (ADS)

    Maderak, Ryan M.; Deliyannis, Constantine P.; Szentgyorgyi, Andrew

    2010-08-01

    The chemical evolution of oxygen is of great importance for our understanding of Galactic chemical evolution. Furthermore, oxygen may at the same time provide a novel probe of cool dwarf atmospheres. Open clusters have been found to exhibit a strong [O/H] vs. age relationship, suggesting that oxygen is a superior chronometer for Galactic chemical evolution, but surprisingly have not yet been robustly shown to exhibit the [O/Fe] vs. [Fe/H] observed in field stars. In addition, the discovery of an overabundance trend for the near infrared oxygen triplet in cool open cluster dwarfs is an unresolved mystery. Open clusters are unique in providing both knowable ages and accurate abundances, a combination not possible for field stars. Our ongoing WIYN/Hydra and MMT/Hectochelle study of open cluster dwarf oxygen abundances seeks to define the [O/H] vs. age relationship, resolve the apparent [O/Fe] vs. [Fe/H] discrepancy between open clusters and field stars, and explore the nature of the cool star overabundance trend. The [Fe/H] and age ranges of our sample will allow us to address all of these questions simultaneously. However, anchoring our sample and analysis to solar age and metallicity is essential. We propose to observe M67 with MMT/Hectochelle, uniquely providing both of these points in parameter space, and providing the sampling density in T_eff neccesary to deliver a precise determination of its cool star overabundance trend.

  16. The Effects of Dissolved Oxygen upon Amide Proton Relaxation and Chemical Shift in a Perdeuterated Protein

    NASA Astrophysics Data System (ADS)

    Ulmer, Tobias S.; Campbell, Iain D.; Boyd, Jonathan

    2002-08-01

    The effects of dissolved molecular oxygen upon amide proton ( 1H N) longitudinal and transverse relaxation rates and chemical shifts were studied for a small protein domain, the second type 2 module of fibronectin ( 2F2)isotopically enriched to 99% 2H, 98% 15N. Longitudinal relaxation rate enhancements, R O 2( 1H N), of individual backbone 1H N nuclei varied up to 14 fold between a degassed and oxygenated (1 bar) solution, indicating that the oxygen distribution within the protein is inhomogeneous. On average, smaller relaxation rate enhancements were observed for 1H N nuclei associated with the core of the protein compared to 1H N nuclei closer to the surface, suggesting restricted oxygen accessibility to some regions. In agreement with an O 2- 1H N hyperfine interaction in the extreme narrowing limit, the 1H N transverse relaxation rates showed no significant change, up to an oxygen pressure of 9.5 bar (the maximum pressure used in this study). For most 1H N resonances, small ?? O 2( 1H N) hyperfine chemical shifts could be detected between oxygen pressures of 1 bar and 9.5 bar.

  17. Reduction Kinetics of a CasO4 Based Oxygen Carrier for Chemical-Looping Combustion

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Song, Q. L.; Zheng, W. G.; Deng, Z. Y.; Shen, L. H.; Zhang, M. Y.

    The CaSO4 based oxygen carrier has been proposed as an alternative low cost oxygen carrier for Chemical-looping combustion (CLC) of coal. The reduction of CaSO4 to CaS is an important step for the cyclic process of reduction/oxidation in CLC of coal with CaSO4 based oxygen carrier. Thermodynamic analysis of CaSO4 oxygen carrier with CO based on the principle of Gibbs free energy minimization show that the essentially high purity of CO2 can be obtained, while the solid product is CaS instead of CaO. The intrinsic reduction kinetics of a CaSO4 based oxygen carrier with CO was investigated in a differential fixed bed reactor. The effects of gas partial pressure (20%-70%) and temperature (880-950°C) on the reduction were investigated. The reduction was described with shrinking unreacted core model. Experimental results of CO partial pressure on the solid conversion show that the reduction of fresh oxygen carriers is of first order with respect to the CO partial pressure. Both chemical reaction control and product layer diffusion control determine the reduction rate. The dependences of reaction rate constant and effective diffusivity with temperature were both obtained. The kinetic equation well predicted the experimental data.

  18. Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen.

    PubMed

    Johns, James E; Alaboson, Justice M P; Patwardhan, Sameer; Ryder, Christopher R; Schatz, George C; Hersam, Mark C

    2013-12-01

    Chemically interfacing the inert basal plane of graphene with other materials has limited the development of graphene-based catalysts, composite materials, and devices. Here, we overcome this limitation by chemically activating epitaxial graphene on SiC(0001) using atomic oxygen. Atomic oxygen produces epoxide groups on graphene, which act as reactive nucleation sites for zinc oxide nanoparticle growth using the atomic layer deposition precursor diethyl zinc. In particular, exposure of epoxidized graphene to diethyl zinc abstracts oxygen, creating mobile species that diffuse on the surface to form metal oxide clusters. This mechanism is corroborated with a combination of scanning probe microscopy, Raman spectroscopy, and density functional theory and can likely be generalized to a wide variety of related surface reactions on graphene. PMID:24206242

  19. Test bed for a high throughput supersonic chemical oxygen - iodine laser

    SciTech Connect

    Singhal, Gaurav; Mainuddin; Rajesh, R; Varshney, A K; Dohare, R K; Kumar, Sanjeev; Singh, V K; Kumar, Ashwani; Verma, Avinash C; Arora, B S; Chaturvedi, M K; Tyagi, R K; Dawar, A L

    2011-05-31

    The paper reports the development of a test bed for a chemical oxygen - iodine laser based on a high throughput jet flow singlet oxygen generator (JSOG). The system provides vertical singlet oxygen extraction followed by horizontal orientation of subsequent subsystems. This design enables the study of flow complexities and engineering aspects of a distributed weight system as an input for mobile and other platform-mounted systems developed for large scale power levels. The system under consideration is modular and consists of twin SOGs, plenum and supersonic nozzle modules, with the active medium produced in the laser cavity. The maximal chlorine flow rate for the laser is {approx}1.5 mole s{sup -1} achieving a typical chemical efficiency of about 18%. (lasers)

  20. Singlet oxygen generator for a solar powered chemically pumped iodine laser. Final Report

    SciTech Connect

    Busch, G.E.

    1984-04-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  1. Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier

    SciTech Connect

    Gao, Z.P.; Shen, L.H.; Xiao, J.; Qing, C.J.; Song, Q.L.

    2008-12-15

    Chemical-looping combustion is an indirect combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The feasibility of using NiO as an oxygen carrier during chemical-looping combustion of coal has been investigated experimentally at 800-960{degree}C in the present work. The experiments were carried out in a fluidized bed, where the steam acted as the gasification-fluidization medium. Coal gasification and the reaction of oxygen carrier with the water gas take place simultaneously in the reactor. The oxygen carrier particles exhibit high reactivity above 900{degree}C, and the dry basis concentration of CO{sub 2} in the exit gas of the reactor is nearly 95%. The flue gas composition as a function of the reactor temperature and cyclic reduction number is discussed. At 800-960{degree}C, the dry basis concentration of CO{sub 2} in the flue gas presents a monotonously increasing trend, whereas the dry basis concentration of CO, H{sub 2}, and CH{sub 4} decreases monotonously. The concentrations of CO{sub 2}, CO, H{sub 2}, and CH{sub 4} in the flue gas as a function of cyclic reduction number present a para-curve characteristic at 900{degree}C. With the increase of cyclic reduction number, the dry basis concentration of CO{sub 2} decreases remarkably, while the dry basis concentrations of CO, H{sub 2}, and CH{sub 4} increase rapidly. Moreover, the peak value of H{sub 2} concentration is less than that of CO. The performance of the NiO-based oxygen carriers was also evaluated using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues of oxygen carrier. The results indicate that NiO is one of the suitable oxygen carriers for chemical-looping combustion of coal.

  2. Oxygen and hydrogen effects on the chemical vapor deposition of aluminum nitride films

    SciTech Connect

    Aspar, B.; Armas, B.; Combescure, C. ); Figueras, A.; Rodriguez-Clemente, R. ); Mazel, A.; Kihn, Y.; Sevely, J. )

    1993-06-01

    Aluminum nitride has been obtained by chemical vapor deposition using AlCl[sub 3] and NH[sub 3] as precursors. Progressive introduction of N[sub 2]0 in the gas mixture has shown the possibility of inserting oxygen in the AlN lattice. This involves strong changes of surface morphology of the deposit and the formation of less-crystallized materials. When hydrogen is added to the gas mixture, these effects are reduced, Electron energy loss spectroscopy has shown that, in this case, oxygen is mainly concentrated on the external parts of AlN crystals, the structure of which has been found consistent with the wurtzite structure.

  3. Impact of hydration state and molecular oxygen on the chemical stability of levothyroxine sodium.

    PubMed

    Hamad, Mazen Lee; Engen, William; Morris, Kenneth R

    2015-05-01

    Levothyroxine sodium is an important medication used primarily for treating patients with hypothyroidism. Levothyroxine sodium tablets have been recalled many times since their 1955 introduction to the US market. These recalls resulted from the failure of lots to meet their content uniformity and potency specifications. The purpose of this study is to test the hypothesis that the chemical stability of levothyroxine sodium pentahydrate is compromised upon exposing the dehydrated substance to molecular oxygen. The impact of temperature, oxygen and humidity storage conditions on the stability of solid-state levothyroxine sodium was examined. After exposure to these storage conditions for selected periods of time, high performance liquid chromatography (HPLC) was used to quantify the formation of impurities. The results showed that levothyroxine sodium samples degraded significantly over a 32-day test period when subjected to dry conditions in the presence of molecular oxygen. However, dehydrated samples remained stable when oxygen was removed from the storage chamber. Furthermore, hydrated samples were stable in the presence of oxygen and in the absence of oxygen. These results reveal conditions that will degrade levothyroxine sodium pentahydrate and elucidate measures that can be taken to stabilize the drug substance. PMID:24295156

  4. Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Francisco Garcia-Labiano; Juan Adanez; Luis F. de Diego; Pilar Gayan; Alberto Abad

    2006-02-01

    This work analyzes the main characteristics related to the chemical looping combustion (CLC) process necessary to use the syngas obtained in an integrated gasification combined cycle (IGCC) power plant. The kinetics of reduction with H{sub 2} and CO and oxidation with O{sub 2} of three high-reactivity oxygen carriers used in the CLC system have been determined in a thermogravimetric analyzer at atmospheric pressure. The iron- and nickel-based oxygen carriers were prepared by freeze-granulation, and the copper-based oxygen carrier was prepared by impregnation. The changing grain size model (CGSM) was used for the kinetic determination, assuming spherical grains for the freeze-granulated particles containing iron and nickel and a platelike geometry for the reacting surface of the copper-based impregnated particles. The dependence of the reaction rates on temperature was low, with the activation energy values varying from 14 to 33 kJ mol{sup -1} for the reduction and 7 to 15 kJ mol{sup -1} for the oxidation. The reaction order depended on the reacting gas and oxygen carrier, with values ranging from 0.25 to 1. However, an increase in the operating pressure for the IGCC + CLC system increases the thermal efficiency of the process, and the CO{sub 2} is recovered as a high pressure gas, decreasing the energy demand for further compression. The effect of pressure on the behavior of the oxygen carriers has been analyzed in a pressurized thermogravimetric analyzer at 1073 K and pressures up to 30 atm. It has been found that an increase in total pressure has a negative effect on the reaction rates of all the oxygen carriers. Moreover, the use of the CGSM with the kinetic parameters obtained at atmospheric pressure predicted higher reaction rates than those experimentally obtained at higher pressures, and therefore, the kinetic parameters necessary to design pressurized CLC plants must be determined at the operating pressure. 34 refs., 8 figs., 2 tabs.

  5. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  6. Oxygen abundances in the Galactic bulge: evidence for fast chemical enrichment

    NASA Astrophysics Data System (ADS)

    Zoccali, M.; Lecureur, A.; Barbuy, B.; Hill, V.; Renzini, A.; Minniti, D.; Momany, Y.; Gmez, A.; Ortolani, S.

    2006-10-01

    Aims.We spectroscopically characterize the Galactic Bulge to infer its star formation timescale, compared to the other Galactic components, through the chemical signature on its individual stars. Methods: .We derived iron and oxygen abundances for 50 K giants in four fields towards the Galactic bulge. High resolution (R=45 000) spectra for the target stars were collected with FLAMES-UVES at the VLT. Results: .Oxygen, as measured from the forbidden line at 6300 , shows a well-defined trend with [Fe/H], with [O/Fe] higher in bulge stars than in thick disk ones, which were known to be more oxygen enhanced than thin disk stars. Conclusions: .These results support a scenario in which the bulge formed before and more rapidly than the disk, and therefore the MW bulge can be regarded as a prototypical old spheroid, with a formation history similar to that of early-type (elliptical) galaxies.

  7. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the reduction of Fe{sub 2}O{sub 3} are discussed.

  8. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion

    SciTech Connect

    Shen, Laihong; Zheng, Min; Xiao, Jun; Xiao, Rui

    2008-08-15

    Chemical looping combustion (CLC) has been suggested as an energy-efficient method for the capture of carbon dioxide from combustion. It is indirect combustion by the use of an oxygen carrier, which can be used for CO{sub 2} capture in power-generating processes. The possibility of CLC using a calcium-based oxygen carrier is investigated in this paper. In the air reactor air is supplied to oxidize CaS to CaSO{sub 4}, where oxygen is transferred from air to the oxygen carrier; the reduction of CaSO{sub 4} to CaS takes place in the fuel reactor. The exit gas from the fuel reactor is CO{sub 2} and H{sub 2}O. After condensation of water, almost pure CO{sub 2} could be obtained. The thermodynamic and kinetic problem of the reduction reactions of CaSO{sub 4} with CO and H{sub 2} and the oxidization reactions of CaS with O{sub 2} is discussed in the paper to investigate the technique possibility. To prevent SO{sub 2} release from the process of chemical looping combustion using a calcium-based oxygen carrier, thermochemical CaSO{sub 4} reduction and CaS oxidation are discussed. Thermal simulation experiments are carried out using a thermogravimetric analyzer (TGA). The properties of the products are characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometry (XRD), and the optimal reaction parameters are evaluated. The effects of reaction temperature, reductive gas mixture, and oxygen partial pressure on the composition of flue gas are discussed. The suitable temperature of the air reactor is between 1050 and 1150 C and the optimal temperature of the fuel reactor between 900 and 950 C. (author)

  9. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  10. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe

    2014-09-01

    Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.

  11. Renal Doppler Resistive Index as a Marker of Oxygen Supply and Demand Mismatch in Postoperative Cardiac Surgery Patients

    PubMed Central

    Corradi, Francesco; Brusasco, Claudia; Paparo, Francesco; Manca, Tullio; Santori, Gregorio; Benassi, Filippo; Molardi, Alberto; Gallingani, Alan; Ramelli, Andrea; Gherli, Tiziano; Vezzani, Antonella

    2015-01-01

    Background and Objective. Renal Doppler resistive index (RDRI) is a noninvasive index considered to reflect renal vascular perfusion. The aim of this study was to identify the independent hemodynamic determinants of RDRI in mechanically ventilated patients after cardiac surgery. Methods. RDRI was determined in 61 patients by color and pulse Doppler ultrasonography of the interlobar renal arteries. Intermittent thermodilution cardiac output measurements were obtained and blood samples taken from the tip of pulmonary artery catheter to measure hemodynamics and mixed venous oxygen saturation (SvO2). Results. By univariate analysis, RDRI was significantly correlated with SvO2, oxygen extraction ratio, left ventricular stroke work index, and cardiac index, but not heart rate, central venous pressure, mean artery pressure, pulmonary capillary wedge pressure, systemic vascular resistance index, oxygen delivery index, oxygen consumption index, arterial lactate concentration, and age. However, by multivariate analysis RDRI was significantly correlated with SvO2 only. Conclusions. The present data suggests that, in mechanically ventilated patients after cardiac surgery, RDRI increases proportionally to the decrease in SvO2, thus reflecting an early vascular response to tissue hypoxia. PMID:26605339

  12. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.

    PubMed

    Choi, Yongsuk; Sun, Qijun; Hwang, Euyheon; Lee, Youngbin; Lee, Seungwoo; Cho, Jeong Ho

    2015-04-28

    A customized graphene doping method was developed involving stamping using a chemically functionalized rubber lens as a novel design strategy for fabricating advanced two-dimensional (2D) materials-based electronic devices. Our stamping strategy enables deterministic control over the doping level and the spatial pattern of the doping on graphene. The dopants introduced onto graphene were locally and continuously controlled by directly stamping dopants using a chemically functionalized hemispherical rubber lens onto the graphene. The rubber lens was functionalized using two different dopants: poly(ethylene imine) to achieve n-type doping and bis(trifluoromethanesulfonyl)amine to achieve p-type doping. The graphene doping was systematically controlled by varying both the contact area (between the rubber lens and the graphene) and the contact time. Graphene doping using a stamp with a chemically functionalized rubber lens was confirmed by both Raman spectroscopy and charge transport measurements. We theoretically modeled the conductance properties of the spatially doped graphene using the effective medium theory and found excellent agreement with the experimental results. Finally, complementary inverters were successfully demonstrated by connecting n-type and p-type graphene transistors fabricated using the stamping doping method. We believe that this versatile doping method for controlling charge transport in graphene will further promote graphene electronic device applications. The doping method introduced in this paper may also be applied to other emergent 2D materials to tightly modulate the electrical properties in advanced electronic devices. PMID:25817481

  13. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier.

    PubMed

    Huang, Zhen; He, Fang; Feng, Yipeng; Zhao, Kun; Zheng, Anqing; Chang, Sheng; Li, Haibin

    2013-07-01

    Biomass direct chemical looping (BDCL) conversion with natural hematite as an oxygen carrier was conducted in a fluidized bed reactor under argon atmosphere focusing on investigation the cyclic performance of oxygen carrier. The presence of oxygen carrier can evidently promote the biomass conversion. The gas yield and carbon conversion increased from 0.75 Nm(3)/kg and 62.23% of biomass pyrolysis to 1.06 Nm(3)/kg and 87.63% of BDCL, respectively. The components of the gas product in BDCL were close to those in biomass pyrolysis as the cyclic number increased. The gas yield and carbon conversion decreased from 1.06 Nm(3)/kg and 87.63% at 1st cycle to 0.93 Nm(3)/kg and 77.18% at 20th cycle, respectively, due to the attrition and structural changes of oxygen carrier. X-ray diffraction (XRD) analysis showed that the reduction extent of oxygen carrier increased with the cycles. Scanning electron microscope (SEM) and pore structural analysis displayed that agglomeration was observed with the cycles. PMID:23707909

  14. Impact of hydrogen and oxygen defects on the lattice parameter of chemical vapor deposited zinc sulfide

    NASA Astrophysics Data System (ADS)

    McCloy, J. S.; Wolf, W.; Wimmer, E.; Zelinski, B. J.

    2013-01-01

    The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations <0.6 at. % and hydrogen impurities of <0.015 at. % has been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 ) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on S sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n = 1,,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e., Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.

  15. Impact of hydrogen and oxygen defects on the lattice parameter of chemical vapor deposited zinc sulfide

    SciTech Connect

    McCloy, John S.; Wolf, Walter; Wimmer, Erich; Zelinski, Brian

    2013-01-09

    The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 ) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on S sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.

  16. Performance and Apparent Redox Kinetic of a Cu-Based Oxygen Carrier for Chemical Looping Oxygen Production

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yu, Qingbo; Xie, Huaqing; Qin, Qin

    2013-04-01

    The reactivity of Cu-based oxygen carrier prepared by mechanical mixing for producing oxygen was investigated in a thermogravimetric analyzer. The results show that the oxygen carrier has excellent stability during reduction-oxidation cycles. This oxygen carrier showed a maximum oxygen transport capacity of 0.059 g/g during cycle experiments and the time for one cycle is less than 16 min. Phases and surface morphology of oxygen carriers were measured by X-ray diffraction and scanning electron microscope before and after experiments. The phases of reduced oxygen carrier are only Cu2O and TiO2 and of fresh or oxidized samples are only CuO and TiO2. These reveal that the oxygen carrier is stable using the preparation process and under the operation conditions. SEM images show that the fresh and reacted oxygen carrier particles did not appear to disintegrate after 23 cycles.

  17. Toxicological profiling of chemical and environmental samples using panels of test organisms and optical oxygen respirometry.

    PubMed

    Zitova, Alice; O'Mahony, Fiach C; Cross, Maud; Davenport, John; Papkovsky, Dmitri B

    2009-04-01

    A simple and versatile methodology for high throughput toxicological assessment of chemical and environmental samples is presented. It uses panels of test organisms ranging from prokaryotic (E. coli, V. fischeri) and eukaryotic (Jurkat) cells to invertebrate (Artemia salina) and vertebrate (Danio rerio) organisms, to analyze alterations in their oxygen consumption by optical oxygen respirometry. All the assays are carried out in a convenient microtiter plate format using commercial reagents (phosphorescent oxygen probe, microplates) and detection on a standard fluorescent plate reader. Simple experimental set-up and mix-and-measure procedure allow parallel assessment of up to 96 samples (or assay points) in 2 h, easy generation of dose- and time-dependent responses, and EC(50) values. The methodology was demonstrated with several different classes of chemicals including heavy metal ions, PAHs, pesticides, their mixtures, and also validated with complex environmental samples such as wastewater from a wastewater treatment plant. It has been shown to provide high sensitivity, sample throughput and information content, flexibility and general robustness. It allows ranking and profiling of samples, compares favorably with alternative methods such as MicroTox and mortality tests with animal models, and is well suited for large-scale monitoring programs such as CWA and WFD. PMID:18442072

  18. Semi-gas kinetics model for performance modeling of flowing chemical oxygen-iodine lasers (COIL)

    NASA Astrophysics Data System (ADS)

    Gao, Zhi; Hu, Limin; Shen, Yiqing

    2004-05-01

    A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation, models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.

  19. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    NASA Astrophysics Data System (ADS)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  20. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers.

    PubMed

    Huang, H B; Aisyah, L; Ashman, P J; Leung, Y C; Kwong, C W

    2013-07-01

    Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800°C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800°C. A reaction temperature of 950°C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis. PMID:23711944

  1. Chemical oxygen-iodine laser with a cryosorption vacuum pump with different buffer gases

    NASA Astrophysics Data System (ADS)

    Xu, Mingxiu; Fang, Benjie; Sang, Fengting; Geng, Zicai; Li, Yongzhao; JIn, Yuqi

    2015-02-01

    A traditional pressure recovery system is the major obstacle to mobile chemical oxygen-iodine laser (COIL) for its huge volume. A cryosorption vacuum pump was used as the pressure recovery system for different buffer gases. It made COIL become a flexible, quiet and pressure-tight. Experiments were carried out on a verti- COIL, which was designed for N2 and energized by a square-pipe jet singlet oxygen generator (JSOG). The output power with CO2 was 27.3% lower than that with N2, but the zeolite bed showed an adsorption capacity threefold higher for CO2 than for N2 in the continuous operation. The great volume efficiency interested researchers.

  2. Unveiling the Nature of the "Green Pea" Galaxies: Oxygen and Nitrogen Chemical Abundances

    NASA Astrophysics Data System (ADS)

    Amorín, R. O.; Pérez-Montero, E.; Vílchez, J. M.

    2011-07-01

    We present recent results on the oxygen and nitrogen chemical abundances in the extremely compact, low-mass starburst galaxies at redshifts 0.1-0.3 usually referred to as "green pea" galaxies. We show that they are metal-poor galaxies (~1/5 solar) with lower oxygen abundances than star-forming galaxies of similar mass and N/O ratios unusually high for galaxies of the same metallicity. Recent, rapid, and massive inflows of cold gas, possibly coupled with enriched outflows from supernova winds, are used to explain the results. This is consistent with the known "pea" galaxy properties and suggest that these rare objects are experiencing a short and extreme phase in their evolution.

  3. Oxygen carrier development for chemical looping combustion of coal derived synthesis gas

    SciTech Connect

    Siriwardane, R.V.; Chaudhari, K.; Zinn, A.N.; Simonyi, T.; Robinson, Clark; Poston, J.A.

    2006-09-01

    In the present work, NETL researchers have studied chemical looping combustion (CLC) with an oxygen carrier NiO/bentonite (60 wt.% NiO) for the IGCC systems utilizing simulated synthesis gas. Multi cycle CLC was conducted with NiO/Bentonite in TGA at atmospheric pressure and in a high pressure reactor in a temperature range between 700-900°C. Global reaction rates of reduction and oxidation as a function of conversion were calculated for all oxidation-reduction cycles utilizing the TGA data. The effect of particle size of the oxygen carrier on CLC was studied for the size between 20-200 mesh. The multi cycle CLC tests conducted in a high pressure packed bed flow reactor indicated constant total production of CO2 from fuel gas at 800°C and 900°C and full consumption of hydrogen during the reaction.

  4. Syngas chemical looping gasification process: oxygen carrier particle selection and performance

    SciTech Connect

    Fanxing Li; Hyung Ray Kim; Deepak Sridhar; Fei Wang; Liang Zeng; Joseph Chen; L.-S. Fan

    2009-08-15

    The syngas chemical looping (SCL) process coproduces hydrogen and electricity. The process involves reducing metal oxides with syngas followed by regeneration of reduced metal oxides with steam and air in a cyclic manner. Iron oxide is determined to be a desired oxygen carrier for hydrogen production considering overall properties including oxygen carrying capacity, thermodynamic properties, reaction kinetics, physical strength, melting points, and environmental effects. An iron oxide based particle can maintain good reactivity for more than 100 reduction-oxidation (redox) cycles in a thermogravimetric analyzer (TGA). The particle exhibits a good crushing strength (>20 MPa) and low attrition rate. Fixed bed experiments are carried out which reaffirm its reactivity. More than 99.75% of syngas is converted during the reduction stage. During the regeneration stage, hydrogen with an average purity of 99.8% is produced. 23 refs., 6 figs., 10 tabs.

  5. Maternal Hypoxia Decreases Capillary Supply and Increases Metabolic Inefficiency Leading to Divergence in Myocardial Oxygen Supply and Demand

    PubMed Central

    Hauton, David; Al-Shammari, Abdullah; Gaffney, Eamonn A.; Egginton, Stuart

    2015-01-01

    Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia. PMID:26030353

  6. How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf?

    NASA Astrophysics Data System (ADS)

    Hetland, Robert D.; DiMarco, Steven F.

    A realistic hydrodynamic model of the Texas-Louisiana shelf is configured with various simple oxygen respiration models to isolate the effects of stratification and circulation on the formation and maintenance of hypoxia. Biological activity is parameterized through various forms of respiration rather than using a complex biogeochemical model. The model domain covers the region that has historically been observed to be affected by seasonal hypoxia, and is forced with observed fresh water fluxes from the Mississippi and Atchafalaya Rivers and winds. Three simple parameterizations of biological respiration are compared. Results of the numerical simulations indicate that water column respiration (dependent on the position of the two regional fresh water plumes) reproduces observed temporal and spatial structures of seasonal hypoxia in Louisiana Bight, whereas benthic respiration (dependent on local temperature and oxygen concentrations) reproduces the temporal and spatial structure of hypoxia west of Terrebonne Bay. The differences in the structure of hypoxia are related to the differences in vertical stratification east and west of Terrebonne Bay, which are controlled by the outflow characteristics from the two major river plumes. The model shows two dynamically distinct plumes. The Mississippi River plume enters the shelf near the shelf edge, forms a recirculating gyre in Louisiana Bight, and typically does not interact directly with topography. Conversely, the Atchafalaya River plume enters a broad shelf at the coast, is more diffuse, and interacts more with the shallow coastal topography. Both plumes are strongly affected by winds, and tend offshore during the mean summer conditions of upwelling winds. The principle conclusion of this study is that the biological processes responsible for producing hypoxia change from east to west, with the shelf region south of Terrebone Bay being the approximate dividing line between water column respiration (predominantly causing hypoxia to the east) and benthic respiration (causing hypoxia to the west). Also, the formation and destruction of hypoxia is a primarily vertical process; hypoxia formed in one region is not advected laterally to different shelf regions.

  7. Unstable resonators of high-power chemical oxygen-iodine lasers

    SciTech Connect

    Savin, A V; Strakhov, S Yu; Druzhinin, S L

    2006-09-30

    Configurations of unstable resonators are considered depending on the basic parameters of a high-power chemical oxygen-iodine laser and the design of an unstable resonator is proposed which provides the compensation of the inhomogeneity of the small-signal gain downstream of the active medium, a high energy efficiency, and stability to intracavity aberrations. The optical scheme of this resonator is presented and its properties are analysed by simulating numerically the kinetics of the active medium and resonator itself in the diffraction approximation. (laser beams and resonators)

  8. Direct spectroscopic observation of singlet oxygen quenching and kinetic studies of physical and chemical singlet oxygen quenching rate constants of synthetic antioxidants (BHA, BHT, and TBHQ) in methanol.

    PubMed

    Lee, Jun Hyun; Jung, Mun Yhung

    2010-08-01

    Singlet oxygen quenching by synthetic antioxidants (BHA, BHT, and TBHQ) was directly observed by spectroscopic monitoring of luminescence at 1268 nm. The luminescence data showed unambiguous evidence of singlet oxygen quenching by synthetic phenolic antioxidants with the highest activity for TBHQ, followed by BHA and BHT. The protective activities of these synthetic antioxidants on alpha-terpinene oxidation with chemically-induced singlet oxygen under dark further confirmed their singlet oxygen quenching abilities. Total singlet oxygen quenching rate constants (k(r) + k(q)) of BHA, BHT, and TBHQ were determined in a system containing alpha-terpinene (as a singlet oxygen trap) and methylene blue (as a sensitizer) during light irradiation, and the values were 5.14 x 10(7), 3.41 x 10(6), and 1.99 x 10(8) M(-1)s(-1), respectively. After the k(r) value of alpha-terpinene was first determined, the k(r) values of the synthetic antioxidants were calculated by measuring their relative reaction rates with singlet oxygen to that of alpha-terpinene under the identical conditions. The k(r) values of the BHA, BHT, and TBHQ were 3.90 x 10(5), 1.23 x 10(5), and 2.93 x 10(6), M(-1)s(-1). The percent partition of chemical quenching over total singlet oxygen quenching (k(r) x 100)/(k(r) + k(q)) for BHA, BHT, and TBHQ were 0.76%, 3.61%, and 1.47%, respectively. The results showed that the synthetic antioxidants quench singlet oxygen almost exclusively through the mechanism of physical quenching. This represents the first report on the singlet oxygen quenching mechanism of these synthetic antioxidants. Practical Application: The synthetic antioxidants, especially TBHQ, have been found to have a strong singlet oxygen quenching ability. This article also clearly showed that singlet oxygen quenching by synthetic antioxidants was mainly by the physical quenching mechanism. The results suggested that these synthetic antioxidants, especially TBHQ, could be used practically for the protection of the food components such as edible oils and vitamins against singlet oxygen induced oxidations without significant losses of antioxidant activity during storage under light. PMID:20722904

  9. Oxygen reduction reaction over silver particles with various morphologies and surface chemical states

    NASA Astrophysics Data System (ADS)

    Ohyama, Junya; Okata, Yui; Watabe, Noriyuki; Katagiri, Makoto; Nakamura, Ayaka; Arikawa, Hidekazu; Shimizu, Ken-ichi; Takeguchi, Tatsuya; Ueda, Wataru; Satsuma, Atsushi

    2014-01-01

    The oxygen reduction reaction (ORR) in an alkaline solution was carried out using Ag powders having various particle morphologies and surface chemical states (Size: ca. 40-110 nm in crystalline size. Shape: spherical, worm like, and angular. Surface: smooth with easily reduced AgOx, defective with AgOx, and Ag2CO3 surface layer). The various Ag powders were well characterized by X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and stripping voltammetry of underpotential-deposited lead. Defective and oxidized surfaces enhanced the Ag active surface area during the ORR. The ORR activity was affected by the morphology and surface chemical state: Ag particles with defective and angular surfaces showed smaller electron exchange number between three and four but showed higher specific activity compared to Ag particles with smooth surfaces.

  10. Gill morphometrics of the thresher sharks (Genus Alopias): Correlation of gill dimensions with aerobic demand and environmental oxygen.

    PubMed

    Wootton, Thomas P; Sepulveda, Chugey A; Wegner, Nicholas C

    2015-05-01

    Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water-blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm-water epi-pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water-blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well-oxygenated habitat relative to the two other Alopias species. In fast-swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia-dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills. PMID:25703507

  11. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    SciTech Connect

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-02-28

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 {mu}s were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10{sup 15} cm{sup -3}. This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre{sup -1} and a specific power of 75 kW litre{sup -1} were obtained. The ways of increasing these parameters were indicated. It was found that SF{sub 6} is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  12. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Wang, Shuzhong; Wang, Longfei; Lv, Mingming

    2014-12-01

    The performance of three iron-based oxygen carriers (pure Fe2O3, synthetic Fe2O3/MgAl2O4 and iron ore) in reduction process using methane as fuel is investigated in thermo-gravimetric analyzer (TGA). The reaction rate and mechanism between three oxygen carriers and methane are investigated. On the basis of reactivity in reduction process, it may be concluded that Fe2O3/MgAl2O4 has the best reactivity with methane. The reaction rate constant is found to be in the following order: Fe2O3/MgAl2O4 > pure Fe2O3 > iron ore and the activation energy varies between 49 and 184 kJ mol-1. Reduction reactions for the pure Fe2O3 and synthetic Fe2O3/MgAl2O4 are well represented by the reaction controlling mechanism, and for the iron ore the phase-boundary controlled (contracting cylinder) model dominates. The particles of iron ore and synthetic Fe2O3/MgAl2O4 have better stability than that of pure Fe2O3 when the reaction temperature is limited to lower than 1223 K. These preliminary results suggest that iron-based mixed oxygen carrier particles are potential to be used in methane chemical looping process, but the reactivity of the iron ore needs to be increased.

  13. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    SciTech Connect

    Rahul D. Solunke; Goetz Veser

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  14. Surface Chemical Conversion of Organosilane Self-Assembled Monolayers with Active Oxygen Species Generated by Vacuum Ultraviolet Irradiation of Atmospheric Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jong; Lee, Kyung-Hwang; Sano, Hikaru; Han, Jiwon; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki

    2008-01-01

    The chemical conversion of the top surface of n-octadecyltrimethoxy silane self-assembled monolayers (ODS-SAMs) on oxide-covered Si substrates using active oxygen species generated from atmospheric oxygen molecules irradiated with vacuum ultraviolet (VUV) light at 172 nm in wavelength has been studied on the basis of water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy. An ODS-SAM whose water contact angle was 104 on average was prepared using chemical vapor deposition with substrate and vapor temperatures of 150 C. The VUV treatment of an ODS-SAM sample was carried out by placing the sample in air and then irradiating the sample surface with a Xe-excimer lamp. The distance between the lamp and the sample was regulated so that the VUV light emitted from the lamp was almost entirely absorbed by atmospheric oxygen molecules to generate active oxygen species, such as ozone and atomic oxygen before reaching the sample surface. Hence, the surface chemical conversion of the ODS-SAM was primarily promoted through chemical reactions with the active oxygen species. Photochemical changes in the ODS-SAM were found to be the generation of polar functional groups, such as -COOH, -CHO, and -OH, on the surface and the subsequent etching of the monolayer. Irradiation parameters, such as irradiation time, were optimized to achieve a better functionalization of the SAM top surface while minimizing the etching depth of the ODS-SAM. The ability to graft another SAM onto the modified ODS-SAM bearing polar functional groups was demonstrated by the formation of alkylsilane bilayers.

  15. ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE 'GREEN PEA' GALAXIES

    SciTech Connect

    Amorin, Ricardo O.; Perez-Montero, Enrique; Vilchez, J. M. E-mail: epm@iaa.e

    2010-06-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies (SFGs) with redshifts between {approx}0.11 and 0.35, popularly referred to as 'green peas'. Direct and strong-line methods sensitive to the N/O ratio applied to their Sloan Digital Sky Survey (SDSS) spectra reveal that these systems are genuine metal-poor galaxies, with mean oxygen abundances {approx}20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local SFGs in the SDSS, we find that the mass-metallicity relation of the 'green peas' is offset {approx_gt}0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The 'green pea' galaxy properties seem to be uncommon in the nearby universe, suggesting a short and extreme stage of their evolution. Therefore, these galaxies may allow us to study in great detail many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts.

  16. Optical resonator with nonuniform magnification for improving beam uniformity of chemical oxygen iodine lasers

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Sun, Yang; Huai, Ying; Jia, Shuqin; Chen, Xi; Jin, Yuqi

    2015-02-01

    Unstable resonator with nonuniform magnification for improving the beam uniformity of chemical oxygen iodine lasers is explored for the first time. The magnification of the resonator is a function of the radial coordinate of the polar coordinate system on the front mirror surface. A resonator was designed to have a lower magnification at the center of the resonator than at the edge. The resonator consists of two aspherical mirrors. Method for designing the resonator is given. The energy conservation law and the aplanatic condition were used to derive the designing principle of the two aspherical mirrors. The design result was fitted to polynomial form which is suitable for manufacturing. Numerical experiment was carried out to evaluate the performance of the resonator. The computation was based on coupled simulation of wave optics model and computational fluid mechanics model. Results proved the effectiveness of the design method. The design tends to enhance the intensity near the center of the output beam and cripple that near the edge. Further analysis revealed that this effect is induced because rays of light are reflected more densely at the center of the pupil than at the edge. Therefore, this design affords for a potential approach for improving the near field uniformity of chemical oxygen iodine lasers.

  17. Biological and chemical interaction of oxygen on the reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system.

    PubMed

    Zhang, Shi-Han; Shi, Yao; Li, Wei

    2012-03-01

    A promising chemical absorption-biological reduction integrated process has been proposed. A major problem of the process is oxidation of the active absorbent, ferrous ethylenediaminetetraacetate (Fe(II)EDTA), to the ferric species, leading to a significant decrease in NO removal efficiency. Thus the biological reduction of Fe(III)EDTA is vitally important for the continuous NO removal. Oxygen, an oxidizing agent and biological inhibitor, is typically present in the flue gas. It can significantly retard the application of the integrated process. This study investigated the influence mechanism of oxygen on the regeneration of Fe(II)EDTA in order to provide insight on how to eliminate or decrease the oxygen influence. The experimental results revealed that the dissolved oxygen and Fe(III)EDTA simultaneously served as electron acceptor for the microorganism. The Fe(III)EDTA reduction activity were directly inhibited by the dissolved oxygen. When the bioreactor was supplied with 3% and 8% oxygen in the gas phase, the concentration of initial dissolved oxygen in the liquid phase was 0.28 and 0.68 mg l(-1). Correspondingly, the instinct Fe(III)EDTA reduction activity of the microorganism determined under anoxic condition in a rotation shaker decreased from 1.09 to 0.84 and 0.49 mM h(-1). The oxidation of Fe(II)EDTA with dissolved oxygen prevented more dissolved oxygen access to the microorganism and eased the inhibition of dissolved oxygen on the microorganisms. PMID:21931973

  18. LIFE Chamber Chemical Equilibrium Simulations with Additive Hydrogen, Oxygen, and Nitrogen

    SciTech Connect

    DeMuth, J A; Simon, A J

    2009-09-03

    In order to enable continuous operation of a Laser Inertial confinement Fusion Energy (LIFE) engine, the material (fill-gas and debris) in the fusion chamber must be carefully managed. The chamber chemical equilibrium compositions for post-shot mixtures are evaluated to determine what compounds will be formed at temperatures 300-5000K. It is desired to know if carbon and or lead will deposit on the walls of the chamber, and if so: at what temperature, and what elements can be added to prevent this from happening. The simulation was conducted using the chemical equilibrium solver Cantera with a Matlab front-end. Solutions were obtained by running equilibrations at constant temperature and constant specific volume over the specified range of temperatures. It was found that if nothing is done, carbon will deposit on the walls once it cools to below 2138K, and lead below 838K. Three solutions to capture the carbon were found: adding pure oxygen, hydrogen/nitrogen combo, and adding pure nitrogen. The best of these was the addition of oxygen which would readily form CO at around 4000K. To determine the temperature at which carbon would deposit on the walls, temperature solutions to evaporation rate equations needed to be found. To determine how much carbon or any species was in the chamber at a given time, chamber flushing equations needed to be developed. Major concerns are deposition of carbon and/or oxygen on the tungsten walls forming tungsten oxides or tungsten carbide which could cause embrittlement and cause failure of the first wall. Further research is needed.

  19. Development and performance of Cu-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    2008-07-15

    Chemical-looping combustion (CLC) has the inherent property of separating the product CO{sub 2} from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. This paper focuses on the development and performance of a suitable Cu-based oxygen carrier for burning solid fuels using CLC. Carriers were made from CuO and Al{sub 2}O{sub 3} (as a support) in three different ways: mechanical mixing, wet impregnation, and co-precipitation. The reactivity of these solids was assessed by measuring their ability to oxidize CO, when in a hot bed of sand fluidized by a mixture of CO and N{sub 2}. After that, the Cu in the carrier was oxidized back to CuO by fluidizing the hot bed with air. These oxygen carriers were tested over many such cycles of reduction and oxidation. This work confirms that supporting CuO on Al{sub 2}O{sub 3} enhances the ability of the resulting particles to withstand mechanical and thermal stresses in a fluidized bed. Also, only co-precipitation produces particles that have a high loading of copper and do not agglomerate at 800-900 C. The performance of co-precipitated particles of CuO/Al{sub 2}O{sub 3} at oxidizing CO to CO{sub 2} was significantly affected by the pH of the solution in which precipitation occurred: a high pH (9.7) gave particles that reacted completely and rapidly. After 18 cycles, such a co-precipitated carrier with 82.5 wt% CuO yielded all its oxygen when oxidizing CO. X-ray analysis showed that when heated, CuO reacted with Al{sub 2}O{sub 3} to form CuAl{sub 2}O{sub 4}, which was fully reducible, so CuO experienced no loss in extent of reaction after forming this mixed oxide. An increase in operating temperature from 800 to 900 C led to the CuO providing slightly less oxygen; this was because a little of the CuO decomposed to Cu{sub 2}O between its reduction and oxidation, when the bed was fluidized by pure N{sub 2}. (author)

  20. Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carrier supported on bentonite

    SciTech Connect

    Siriwardane, R.V.; Chaudhari, K.; Poston, J.A.; Zinn, A.; Simonyi, T.; Robinson, C.

    2007-05-01

    Chemical-looping combustion (CLC) is a combustion technology for clean and efficient utilization of fossil fuels for energy production. This process which produces sequestration ready CO2 systems is a promising technology to be utilized with coal gasification systems. In the present work, chemical-looping combustion has been studied with an oxygen carrier, NiO/bentonite (60 wt % NiO) for the gasification systems utilizing simulated synthesis gas. Global reaction rates of reduction and oxidation as a function of conversion were calculated for oxidation-reduction cycles utilizing the thermogravimetric analysis (TGA) data on multicycle tests conducted with NiO/bentonite at atmospheric pressure between 700 and 900 °C. The rate of reduction increased slightly with an increase in temperature, while the rate of oxidation decreased at 900 °C. The effect of particle size of the oxygen carrier on CLC was studied for the particle size between 20 and 200 mesh. The rates of reactions depended on the particle size of the oxygen carrier. The smaller the particle size, the higher the reaction rates. The multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for the production of CO2 from fuel gas at 800 and 900 °C and full consumption of hydrogen during the reaction. The data from a one cycle test on the effect of the pressure on the performance with NiO/bentonite utilizing the tapered element oscillating microbalance (TEOM) showed a positive effect of the pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. The X-ray diffraction (XRD) analysis confirmed the presence of the NiO phase in NiO/bentonite with the oxidized sample in the highpressure reactor and Ni phase with the reduced sample. The presence of a small amount of NiO in the reduced sample detected by X-ray photoelectron spectroscopy (XPS) may be due to its exposure to air during sample transfer from the reactor to XPS. Scanning electron microscopy (SEM) analysis showed no significant changes in morphology of NiO/bentonite reacted in the temperature range 700-800 °C in an atmospheric TGA for 10 oxidation-reduction cycles, but some loss of surface area and porosity was observed at 900 °C. This effect was found to be greater with increase in the particle size of the oxygen carrier.

  1. Simple Chemical Solution Deposition of Co₃O₄ Thin Film Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Jeon, Hyo Sang; Jee, Michael Shincheon; Kim, Haeri; Ahn, Su Jin; Hwang, Yun Jeong; Min, Byoung Koun

    2015-11-11

    Oxygen evolution reaction (OER) is the key reaction in electrochemical processes, such as water splitting, metal-air batteries, and solar fuel production. Herein, we developed a facile chemical solution deposition method to prepare a highly active Co3O4 thin film electrode for OER, showing a low overpotential of 377 mV at 10 mA/cm(2) with good stability. An optimal loading of ethyl cellulose additive in a precursor solution was found to be essential for the morphology control and thus its electrocatalytic activity. Our results also show that the distribution of Co3O4 nanoparticle catalysts on the substrate is crucial in enhancing the inherent OER catalytic performance. PMID:26489005

  2. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  3. A computational fluid dynamics simulation of a supersonic chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Rybalkin, V.; Katz, A.; Dahan, Z.; Barmashenko, B. D.; Rosenwaks, S.

    2007-05-01

    The dissociation of I II molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three dimensional computational fluid dynamics calculations. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results. The gain, I II dissociation fraction and temperature at the optical axis, calculated using Heidner's model (R.F. Heidner III et al., J. Phys. Chem. 87, 2348 (1983)), are much lower than those measured experimentally. Agreement with the experimental results was reached by using Heidner's model supplemented by Azyazov-Heaven's model (V.N. Azyazov and M.C. Heaven, AIAA J. 44, 1593 (2006)) where I II(A') and vibrationally excited O II(a1Δ) are significant dissociation intermediates.

  4. A pressure recovery system for chemical oxygen-iodine laser based on an active diffuser

    NASA Astrophysics Data System (ADS)

    Malkov, V. M.; Kiselev, I. A.; Orlov, A. E.; Shatalov, I. V.

    2011-09-01

    An open-type pressure recovery system (PRS) for chemical oxygen-iodine laser was designed and fabricated. As a first stage, an active diffuser was used in which the ejecting gas supply was organized through nozzles disposed around the channel periphery. The second stage was a supersonic ejector. Numerical simulation data for the viscous turbulent flow with heat release through the diffuser gas-dynamic channel, and also data obtained by testing the active diffuser in operation on a model facility equipped with a vacuum chamber, are reported. The obtained data were used to develop a full-scale setup with exhaust of laser gas into the atmosphere; this has allowed us to optimize the performance characteristics of the setup and substantially improve its mass-dimensional characteristics. Special attention was paid to parameter matching and synchronization of laser start with the operation of PRS components.

  5. Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.

    PubMed

    García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R

    2007-08-15

    Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes. PMID:17874801

  6. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  7. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. PMID:25916240

  8. Upgrading oxygenated Fischer-Tropsch derivatives and one-step direct synthesis of ethyl acetate from ethanol - examples of the desirability of research on simple chemical compounds transformations.

    PubMed

    Klimkiewicz, Roman

    2014-01-01

    Oxygenates formed as by-products of Fischer-Tropsch syntheses can be transformed into other Fischer-Tropsch derived oxygenates instead of treating them as unwanted chemicals. One-step direct synthesis of ethyl acetate from ethanol is feasible with the use of some heterogeneous catalysts. Despite their apparent simplicity, both transformations are discussed as targeted fields of research. Furthermore, the two concepts are justified due to the environmental protection. Arguments regarding the Fischer-Tropsch process are focused on the opportunities of the utilization of undesirable by-products. The effective striving for their utilization can make the oxygenates the targeted products of this process. Arguments regarding the one-step direct synthesis of ethyl acetate underline the environmental protection and sustainability as a less waste-generating method but, above all, highlight the possibility of reducing the glycerol overproduction problem. The production of ethyl acetate from bioethanol and then transesterification of fats and oils with the use of ethyl acetate allows managing all the renewable raw materials. Thus, the process enables the biosynthesis of biodiesel without glycerine by-product and potentially would result in the increase in the demand for ethyl acetate. Graphical Abstract. PMID:25648719

  9. Chemicals and energy co-generation from direct hydrocarbons/oxygen proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, W. S.; Lu, D. S.; Luo, J. L.; Chuang, K. T.

    A proton exchange membrane fuel cell for chemicals and energy co-generation was set up with hydrocarbons ethane, propane and butane as fuels, and the electrochemical performance of the cell was studied by using linear potential sweep, alternating current impedance and gas chromatography. The cell performance can be improved to a great extent by increasing the platinum load in the catalyst, by treating the membrane with phosphoric acid and by elevating temperature. The improvement of cell performance by the increase of platinum load is ascribed to the increase of reaction sites for hydrocarbon oxidation, that by phosphoric acid treatment to the increase of proton conductivity in Nafion membrane, and that by elevating temperature to the improvement in thermodynamic as well as kinetic aspects. Only a small fraction of the hydrocarbon is converted to carbon dioxide in this cell during its power generation. The current efficiency is 5% for the conversion of ethane to carbon dioxide in the ethane/oxygen fuel cell with 20% carbon-supported platinum as catalyst and phosphoric acid-treated membrane as proton exchange membrane at 0.2 V, 80 °C and ambient pressure. The reaction activity of hydrocarbons at the anode is in the order of propane, butane and ethane. The possible chemicals produced from the cell were hydrocarbons with more than six carbons, which are inactive at the anode under cell conditions.

  10. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Xiao, Jun

    2009-03-15

    A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO{sub 2} is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO{sub 2} capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH{sub 4} concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO{sub 2} capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 C. The inherent loss of CO{sub 2} capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor. (author)

  11. Changes in the biochemical oxygen demand procedure in the 21st edition of Standard Methods for the Examination of Water and Wastewater.

    PubMed

    Young, James C; Clesceri, Lenore S; Kamhawy, Sabry M

    2005-01-01

    The dilution biochemical oxygen demand (BOD) test has widespread application for design and operation of wastewater treatment processes, evaluating the quality of natural waters, and assessing the effect of wastewater discharges on these waters. While standardization of the BOD-measuring method has become of prime importance in maintaining dependable data acquisition, changes are made as needed in response to questions raised by analysts and to accommodate new applications. The purpose of this article is to describe changes that have been incorporated in the 20th and 21st editions of Standard Methods for the Examination of Water and Wastewater (APHA et al., 1998 and 2004). These changes include changes in text format to clarify the procedural steps, allowance for use of bottle sizes ranging from 60 mL or larger, improvements in quality-control procedures, and improvements in the method of calculating BOD. Other changes include allowance for the use of allylthiourea for nitrification inhibition and broadening the source of seed that can be used for inoculation of BOD samples. PMID:16121508

  12. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed. PMID:26320879

  13. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    PubMed

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1). PMID:18515004

  14. [The turbidity and pH impact analysis of low concentration water chemical oxygen demand ultraviolet absorption detection].

    PubMed

    Wu, Guo-Qing; Bi, Wei-Hong; Fu, Guang-Wei; Li, Jian-Guo; Ji, Hong-Yue

    2013-11-01

    Configuration standard solution in the concentration range of 1 - 25 mg x L(-1) of potassium hydrogen phthalate was used as experimental subject, Ultraviolet absorption spectra was collected, the COD quantitative analysis model was established by partial least squares with different pretreatment methods and the turbidity of the compensation effect analysis was given. The results show the model uses smoothing first derivative pretreatment method, internal cross validation RMSECV root mean square value of 0.122 27, principal component number 4, the square of the prediction model correlation coefficient is 0.999 8, and the relative prediction error is in the range of 0.03%-1.7%; for 0-100 NTU's turbidity solution, the relative standard deviation RSD is 2.3% after compensation; with pH in the range of 3-10, influence can be ignored. PMID:24555385

  15. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    SciTech Connect

    Lugaro, Maria; Liffman, Kurt; Maddison, Sarah T.

    2012-11-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced {sup 16}O-rich CO and {sup 16}O-poor H{sub 2}O, where the H{sub 2}O subsequently combined with interstellar dust to form relatively {sup 16}O-poor solids within the solar nebula. Another model for creating the different reservoirs of {sup 16}O-rich gas and {sup 16}O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the {sup 18}O/{sup 17}O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  16. Investigation of Coal Fueled Chemical Looping Combustion Using Fe3O4 as Oxygen Carrier

    NASA Astrophysics Data System (ADS)

    Xlang, Wenguo; Sun, Xiaoyan; Wangt, Sha; Tian, Wendong; Xu, Xiang; Xu, Yanji; Xiao, Yunhan

    Chemical-looping combustion (CLC) is a novel combustion technique with CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier and Shenhua coal (Inner Mongolia, China) as the fuel for this study. The influences of operation temperatures, and coal to Fe3O4 mass ratios on the reduction characteristics of the oxygen carrier were investigated using an atmosphere TGA. The sample, comprised of 2.25mg coal and 12.75mg Fe3O4, was heated to 1000°C. Experimental results show that the reaction between the coal volatile and Fe3O4 began at 700°C while the reaction between the coal char and Fe3O4 occurred at 800°C and reached a peak at 900°C. Fe3O4 was fully reduced into FeO, while some FeO was further reduced to Fe. As the operation temperature rises, the reduction conversion rate increases. At the temperatures of 850°C, 900°C, and 950°C, the reduction conversion rates were 37.1%, 46.5%, and 54.1% respectively. When the mass ratios of coal to Fe3O4 were 5/95, 10/90, 15/85, and 20/80, the reduction conversion rates were 29.5%,40.8%,46.5%, and 46.6% respectively. With the increase of coal to Fe3O4 mass ratio, the conversion rate increases first and then changes no more. There exists an optimal coal to Fe3O4 mass ratio.

  17. Chemical-looping combustion of coal with metal oxide oxygen carriers

    SciTech Connect

    Ranjani Siriwardane; Hanjing Tian; George Richards; Thomas Simonyi; James Poston

    2009-08-15

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe{sub 2}O{sub 3}, CO{sub 3}O{sub 4}, NiO, and Mn{sub 2}O{sub 3} were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO{sub 2}), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500{sup o}C and complete the full combustion at 700{sup o}C. In addition, the reduced copper can be fully reoxidized by air at 700{sup o}C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO{sub 2} and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 {sup o}C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers. 22 refs., 12 figs., 2 tabs.

  18. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    SciTech Connect

    Xiao, Rui; Song, Min; Zhang, Shuai; Shen, Laihong; Song, Qilei; Lu, Zuoji

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)

  19. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    NASA Astrophysics Data System (ADS)

    Dez, Ernesto; Fabin, Jess San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, Jos-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22?*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48?, than for the formamides NMF and DMF, i.e., -42?. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9?. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  20. The Galactic chemical evolution of oxygen inferred from 3D non-LTE spectral-line-formation calculations

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Asplund, M.; Collet, R.; Leenaarts, J.

    2015-11-01

    We revisit the Galactic chemical evolution of oxygen, addressing the systematic errors inherent in classical determinations of the oxygen abundance that arise from the use of one-dimensional (1D) hydrostatic model atmospheres and from the assumption of local thermodynamic equilibrium (LTE). We perform detailed 3D non-LTE radiative-transfer calculations for atomic oxygen lines across a grid of 3D hydrodynamic STAGGER model atmospheres for dwarfs and subgiants. We apply our grid of predicted line strengths of the [O I] 630 nm and O I 777 nm lines using accurate stellar parameters from the literature. We infer a steep decay in [O/Fe] for [Fe/H] ? -1.0, a plateau [O/Fe] ? 0.5 down to [Fe/H] ? -2.5, and an increasing trend for [Fe/H] ? -2.5. Our 3D non-LTE calculations yield overall concordant results from the two oxygen abundance diagnostics.

  1. Effects of translational nonequilibrium on the performance of a flowing chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Gao, Zhi; Yan, Hai-Xing; Hu, Li-Min

    2003-11-01

    The effect of the translational nonequilibrium on performance modeling of flowing chemical oxygen-iodine lasers (COIL) is emphasized in this paper. The spectral line broadening (SLB) model is a basic factor for predicting the performances of flowing COIL. The Voigt profile function is a well-known SLB model and is usually utilized. In the case of gas pressure in laser cavity less than 5 torr, a low pressure limit expression of the Voigt profile function is used. These two SLB models imply that all lasing particles can interact with monochromatic laser radiation. Basically, the inhomogeneous broadening effects are not considered in these two SLB models and they cannot predict the spectral content. The latter requires consideration of finite translational relaxation rate. Unfortunately, it is rather difficult to solve simultaneously the Navier-Stokes (NS) equations and the conservation equations of the number of lasing particles per unit volume and per unit frequency interval. In the operating condition of flowing COIL, it is possible to obtain a perturbational solution of the conservational equations for lasing particles and deduce a new relation between the gain and the optical intensity, i.e., a new gain-saturation relation. By coupling the gain-saturation relation with other governing equations (such as the NS equations, chemical reaction equations and the optical model of gain-equal-loss), we have numerically calculated the performances of flowing COIL. The present results are compared with those obtained by the common rate-equation (RE) model, in which the Voigt profile function and its low pressure limit expression are used. The difference of different model"s results is great. For instance, in the case of lasing frequency coinciding with the central frequency of line profile and very low gas pressure, the gain saturation relation of the present model is quite different with that of the RE model.

  2. Impacts of increasing dissolved inorganic nitrogen discharged from Changjiang on primary production and seafloor oxygen demand in the East China Sea from 1970 to 2002

    NASA Astrophysics Data System (ADS)

    Liu, Kon-Kee; Yan, Weijin; Lee, Hung-Jen; Chao, Shenn-Yu; Gong, Gwo-Ching; Yeh, Tzu-Ying

    2015-01-01

    In recent years, benthic hypoxia has been observed in the outflow region of the Changjiang River in the East China Sea. Because the nitrogen input to the Changjiang watershed, mainly from human activities, has increased by 3 fold in the last four decades and the nitrogen load had grown exponentially, it is speculated that anthropogenic nutrients may be responsible for the hypoxia in the East China Sea shelf. We employ a coupled 3-D physical-biogeochemical model of the East China Sea to investigate how the changing Changjiang nutrient loads from 1970 to the end of 2002 may have impacted on primary production in the water column and the seafloor oxygen demand (SOD) on the seafloor. The model predicts an average value of 437 mgC m- 2 d- 1 for primary production and 10.0 mmol O2 m- 2 d- 1 for SOD for the ECS shelf over the entire modeling period. The model results compare reasonably with observations during the period from December 1997 to October 1998. Responding to the increase of the Changjiang DIN loading by a factor of ~ 2.4, the modeled primary production in the East China Sea shelf has increased by 17%, and the modeled SOD by 22%. In the inner shelf, where the impact is the strongest, the SOD increases by 30%. We are able to identify areas of potential hypoxia using two criteria: SOD > 30 mmol O2 m- 2 d- 1 and water depth > 25 m. The maximum area of potential hypoxic region in any month of a year has increased dramatically after 1991; the change appears related to the Changjiang DIN loads from May to July that showed a sudden increase after 1990. The responses in potential hypoxic area are more pronounced than the increases in DIN (dissolved inorganic nitrogen) loads, suggesting strong nonlinear effect in the development of hypoxia, which warrants further investigation. It is cautioned that the SOD calculation was based on the Redfield C/N ratio, but the actual C/N ratio may deviate from it. Direct observations of the sediment oxygen consumption are needed to validate our modeling approach. We also assessed the potential impacts of particulate organic matter from Changjiang by introducing a load of reactive particulate nitrogen (PN), which was assumed proportional to DIN based on estimated yields in the watershed. The modeled impacts on primary productivity and SOD are significant, but more accurate quantification of the monthly PN load and better characterization of its reactivity are required for better assessment.

  3. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants1[C][W

    PubMed Central

    Ramel, Fanny; Birtic, Simona; Cuin, Stphan; Triantaphylids, Christian; Ravanat, Jean-Luc; Havaux, Michel

    2012-01-01

    Carotenoids are considered to be the first line of defense of plants against singlet oxygen (1O2) toxicity because of their capacity to quench 1O2 as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench 1O2 by a chemical mechanism involving their oxidation. In vitro oxidation of ?-carotene, lutein, and zeaxanthin by 1O2 generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of 1O2-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by 1O2. ?-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various 1O2 marker genes. The selective accumulation of ?-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of 1O2 accumulation in plants under high-light stress. ?-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of 1O2 production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products. PMID:22234998

  4. Chemical bonding-induced rich electronic properties of oxygen adsorbed few-layer graphenes.

    PubMed

    Thuy Tran, Ngoc Thanh; Lin, Shih-Yang; Lin, Yu-Tsung; Lin, Ming-Fa

    2016-01-27

    The electronic properties of graphene oxides enriched by strong chemical bonding are investigated using first-principles calculations. They are very sensitive to the changes in the number of graphene layers, stacking configuration, and distribution of oxygen. The feature-rich electronic structures exhibit destruction or distortion of the Dirac cone, opening of a band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones. For the former, the distorted Dirac-cone structures and the O-dominated energy bands near the Fermi level are revealed simultaneously. The orbital-projected density of states (DOS) has many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. PMID:26778831

  5. Chemical oxygen-iodine laser (COIL) for the dismantlement of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Hallada, Marc R.; Seiffert, Stephan L.; Walter, Robert F.; Vetrovec, John

    2000-05-01

    The dismantlement of obsolete nuclear facilities is a major challenge for both the US Department of Energy and nuclear power utilities. Recent demonstrations have shown that lasers can be highly effective for size reduction cutting, especially for the efficient storage and recycling of materials. However, the full benefits of lasers can only be realized with high average power beams that can be conveniently delivered, via fiber optics, to remote and/or confined areas. Industrial lasers that can meet these requirements are not available now or for the foreseeable future. However, a military weapon laser, a Chemical Oxygen Iodine Laser (COIL), which has been demonstrated at over a hundred kilo Watts, could be adapted to meet these needs and enable entirely new industrial applications. An 'industrialized' COIL would enable rapid sectioning of thick and complex structures, such as glove boxes, reactor vessels, and steam generators, accelerating dismantlement schedules and reducing worker hazards. The full advantages of lasers in dismantlement could finally be realized with a portable COIL which is integrated with sophisticated robotics. It could be built and deployed in less than two years, breaking the paradigm of labor-intensive dismantlement operations and cutting processing times and costs dramatically.

  6. Optical saturation and extraction from the chemical oxygen-iodine laser medium

    SciTech Connect

    Copeland, D.A.; Bauer, A.H. . Rocketdyne Div.)

    1993-09-01

    A rate equation model for the loaded gain of a flowing chemical oxygen-iodine laser is described. The solution of the model is obtained for the loaded gain when the medium is stimulated by a multimode field. It is shown that optical saturation of the COIL medium is governed by three parameters: the ratio of the collision to Doppler linewidth measuring how much of the total linewidth is accessed; a saturation parameter measuring the field strength required to overcome medium quenching; and a cross-relaxation parameter measuring the ability of the velocity and hyper-fine relaxation to restore homogeneity to the transition. Criteria for the saturation character, homogeneous, inhomogeneous, or mixed, are established. This gain model is used to parametrically examine the sensitivity of the loaded gain and optical extraction efficiency to cavity pressure and to the uncertainty in the magnitude of the velocity cross-relaxation rates. It is shown, under single-mode operating conditions, that the extraction efficiency increases as the rate of velocity cross-relaxation increases and that the saturation behavior of the medium can be totally changed by only modes changes in the cavity operating conditions. The implication when interpreting experimental data and scaling from low to high power operation are briefly discussed and it is shown that interpreting test data without consideration of the factors presented here can lead to substantial error in estimating the power available from the flow.

  7. Chemical oxygen-iodine laser for decommissioning and dismantlement of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Tei, Kazuyoku; Sugimoto, Daichi; Endo, Masamori; Takeda, Shuzaburo; Fujioka, Tomoo

    2000-01-01

    Conceptual designs of a chemical oxygen-iodine laser (COIL) facility for decommissioning and dismantlement (DD) of nuclear facility is proposed. The requisite output power and beam quality was determined base don our preliminary experiments of nonmetal material processing. Assuming the laser power of 30kW, it is derived that the beam quality of M2 equals 36 required to cut a biological shield wall of a nuclear power plant at a cutting speed of 10mm/min. Then the requisite specification of an optical fiber to deliver the laser is calculated. It turned to be quite extreme, core diameter of 1.7mm and NA equals 0.018. The mass flow and heat balance of proposed facility is calculated based on our recent COIL studies. With the high-pressure subsonic mode, the vacuum pump size is minimized compared to the supersonic operation. Finally, the size of the facility is estimated assuming tow-hour continuous operation. It is revealed that such a system can be packed in five railway containers.

  8. Electrochemical methods for autonomous chemical (phosphate and oxygen) monitoring in the ocean in the Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Jonca, J.; Thouron, D.; Comtat, C.; Revsbech, N. P.; Garçon, V.

    2012-04-01

    Oxygen Minimum Zones (OMZ), mainly localized in the EBUS, are known to play a crucial role on climate evolution via greenhouse gases budgets and on marine ecosystems (respiratory barrier, modifications of the nitrogen cycle). Deoxygenation will have widespread consequences due to the role oxygen plays in the biogeochemical cycling of carbon, nitrogen, phosphorus and other important elements such as Fe, S. Developing new sensors for improving our understanding of the coupled biogeochemical cycles (P-O-C-N) in these regions constitutes an immense challenge. Electrochemistry provides promising liquid reagentless methods by going further in miniaturization, decreasing the response time and energy requirements and thus increasing our observing capacities in the ocean. We present an electrochemical method for phosphate determination in seawater based on the anodic oxidation of molybdenum in seawater in order to create molybdophosphate complexes amperometrically detected on a gold electrode by means of amperometry or square-wave voltammetry. We propose a solution to address the silicate interference issue based on an appropriate ratio of proton/molybdate within an electrochemical cell using specialized membrane technology. The detection limit can be as low as 180 nM. An application of this method is presented in the OMZ offshore Peru. The results show excellent agreement when compared to colorimetry with an average deviation of 5.1%. This work is a first step to develop an autonomous in situ sensor for electrochemical detection of phosphate in seawater. The STOX sensor for the measurements of ultra-low oxygen concentrations was improved by decreasing the distance between the sensing and guard cathodes. The modification of the sensor tip was done by development of a method for gold plating on the front silicone rubber membrane in order to form a guard cathode. Then, the traditional and modified STOX sensors were compared and the preliminary studies showed a great potential in STOX sensors with the modified guard cathode. The results show higher sensitivity and faster response time (t90 = 7.3 s) for the modified sensor. The temperature calibrations show an increasing signal with temperature (2.36 %/°C) similar for both sensor types. The improvement makes the sensor particularly suitable for use with CTD (Conductivity, Temperature, Depth) type instruments.

  9. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds.

    PubMed

    Rorick, Amber; Michael, Matthew A; Yang, Liu; Zhang, Yong

    2015-09-01

    Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins. PMID:26274812

  10. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    PubMed

    ilji?, Aleksandra; Antanasijevi?, Davor; Peri?-Gruji?, Aleksandra; Risti?, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level. PMID:25280507

  11. Defining Nutrient and Biochemical Oxygen Demand Baselines for Tropical Rivers and Streams in São Paulo State (Brazil): A Comparison Between Reference and Impacted Sites

    NASA Astrophysics Data System (ADS)

    Cunha, Davi G. F.; Dodds, Walter K.; Carmo Calijuri, Maria Do

    2011-11-01

    Determining reference concentrations in rivers and streams is an important tool for environmental management. Reference conditions for eutrophication-related water variables are unavailable for Brazilian freshwaters. We aimed to establish reference baselines for São Paulo State tropical rivers and streams for total phosphorus (TP) and nitrogen (TN), nitrogen-ammonia (NH4 +) and Biochemical Oxygen Demand (BOD) through the best professional judgment and the trisection methods. Data from 319 sites monitored by the São Paulo State Environmental Company (2005 to 2009) and from the 22 Water Resources Management Units in São Paulo State were assessed ( N = 27,131). We verified that data from different management units dominated by similar land cover could be analyzed together (Analysis of Variance, P = 0.504). Cumulative frequency diagrams showed that industrialized management units were characterized by the worst water quality (e.g. average TP of 0.51 mg/L), followed by agricultural watersheds. TN and NH4 + were associated with urban percentages and population density (Spearman Rank Correlation Test, P < 0.05). Best professional judgment and trisection (median of lower third of all sites) methods for determining reference concentrations showed agreement: 0.03 & 0.04 mg/L (TP), 0.31 & 0.34 mg/L (TN), 0.06 & 0.10 mg-N/L (NH4 +) and 2 & 2 mg/L (BOD), respectively. Our reference concentrations were similar to TP and TN reference values proposed for temperate water bodies. These baselines can help with water management in São Paulo State, as well as providing some of the first such information for tropical ecosystems.

  12. Sulfur behavior in chemical looping combustion with NiO/Al{sub 2}O{sub 3} oxygen carrier

    SciTech Connect

    Shen, Laihong; Gao, Zhengping; Wu, Jiahua; Xiao, Jun

    2010-05-15

    Chemical looping combustion (CLC) is a novel technology where CO{sub 2} is inherently separated during combustion. Due to the existence of sulfur contaminants in the fossil fuels, the gaseous products of sulfur species and the interaction of sulfur contaminants with oxygen carrier are a big concern in the CLC practice. The reactivity of NiO/Al{sub 2}O{sub 3} oxygen carrier reduction with a gas mixture of CO/H{sub 2} and H{sub 2}S is investigated by means of a thermogravimetric analyzer (TGA) and Fourier Transform Infrared spectrum analyzer in this study. An X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to evaluate the phase characterization of reacted oxygen carrier, and the formation mechanisms of the gaseous products of sulfur species are elucidated in the process of chemical looping combustion with a gaseous fuel containing hydrogen sulfide. The results show that the rate of NiO reduction with H{sub 2}S is higher than the one with CO. There are only Ni and Ni{sub 3}S{sub 2} phases of nickel species in the fully reduced oxygen carrier, and no evidence for the existence of NiS or NiS{sub 2}. The formation of Ni{sub 3}S{sub 2} is completely reversible during the process of oxygen carrier redox. A liquid phase sintering on the external surface of reduced oxygen carriers is mainly attributed to the production of the low melting of Ni{sub 3}S{sub 2} in the nickel-based oxygen carrier reduction with a gaseous fuel containing H{sub 2}S. Due to the sintering of metallic nickel grains on the external surface of the reduced oxygen carrier, further reaction of the oxygen carrier with H{sub 2}S is constrained, and there is no increase of the sulfidation index of the reduced oxygen carrier with the cyclical reduction number. Also, a continuous operation with a syngas of carbon monoxide and hydrogen containing H{sub 2}S is carried out in a 1 kW{sub th} CLC prototype based on the nickel-based oxygen carrier, and the effect of the fuel reactor temperature on the release of gaseous products of sulfur species is investigated. (author)

  13. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for hydrolysis of SO42- (48.94 kcal/mol). Modeling also indicates that APS dissociation via hydrolysis is achieved through cleavage of the P-O bond instead of S-O bond, further supporting the lack of APS-H2O-oxygen exchange. The formation of APS in our in vitro experiments was verified by HPLC fluorescence spectroscopy, and triple-oxygen isotope data of the APS-sulfate indicate no oxygen isotope exchange occurred between APS-sulfate and water at 30 °C for an experimental duration ranging from 2 to 120 h. The study excludes APS formation as one of the causes for sulfate-oxygen isotope exchange with water during MDSR.

  14. Chemical Oxygen-Iodine Laser Diluted by CO2/N2 Buffer Gases with a Cryosorption Vacuum Pump

    NASA Astrophysics Data System (ADS)

    Xu, Mingxiu; Sang, Fengting; Jin, Yuqi; Fang, Benjie; Chen, Fang; Geng, Zicai; Li, Yongzhao

    2008-11-01

    Experiments were carried out on a verti-chemical oxygen-iodine laser (COIL), which was designed for N2 and energized by a square-pipe jet singlet oxygen generator (JSOG). A cryosorption vacuum pump was used as the pressure recovery system for CO2 and N2 buffer gases. The output power with CO2 was 27.3% lower than that with N2, but the zeolite bed showed an adsorption capacity threefold higher for CO2 than for N2 in the continuous operation with a Cl2 flow rate of 155 mmol/s and a total flow rate of 430±3 mmol/s.

  15. Surface modification layer deposition on flexible substrates by plasma-enhanced chemical vapour deposition using tetramethylsilane oxygen gas mixture

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yang; Chen, Wen-Cheng; Liu, Day-Shan

    2008-11-01

    Silicon-containing thin films were synthesized from a tetramethylsilane (TMS)-oxygen gas mixture by plasma-enhanced chemical vapour deposition to modify the surface properties of a flexible plastic substrate. The surface wettability was strongly correlated with the presence of hydrocarbon- and hydroxyl-related bonds in the films. The presence of inorganic Si-O-Si networks in the deposited film, originating from an additional oxygen reactant in the glow discharge, significantly increased plastic substrate hardness. Surface uniformity of the inorganic SiOx film varied with mechanical hardness. All such properties were degraded by increased oxygen ion bombardment during the deposition. Additionally, the atomic ratios of O to Si in the deposited films increased at a rate proportional to the oxygen reactant in the gas mixture and brought about a reduction in the optical refractive index. The hard coatings prepared using the TMS-oxygen gas mixture effectively reduced the permeability of the plastic substrate to water vapour. A low water vapour transmission rate was achieved using the film with a high packing density under adequate oxygen ion bombardment.

  16. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    NASA Astrophysics Data System (ADS)

    Sallis, S.; Butler, K. T.; Quackenbush, N. F.; Williams, D. S.; Junda, M.; Fischer, D. A.; Woicik, J. C.; Podraza, N. J.; White, B. E.; Walsh, A.; Piper, L. F. J.

    2014-06-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  17. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  18. Influence of Matrices on Oxygen Sensing of Three Sensing Films with Chemically Conjugated Platinum Porphyrin Probes and Preliminary Application for Monitoring of Oxygen Consumption of Escherichia coli (E. coli)

    PubMed Central

    Tian, Yanqing; Shumway, Bradley R.; Gao, Weimin; Youngbull, Cody; Holl, Mark R.; Johnson, Roger H.; Meldrum, Deirdre R.

    2010-01-01

    Oxygen sensing films were synthesized by a chemical conjugation of functional platinum porphyrin probes in silica gel, polystyrene (PS), and poly(2-hydroxyethyl methacrylate) (PHEMA) matrices. Responses of the sensing films to gaseous oxygen and dissolved oxygen were studied and the influence of the matrices on the sensing behaviors was investigated. Silica gel films had the highest fluorescence intensity ratio from deoxygenated to oxygenated environments and the fastest response time to oxygen. PHEMA films had no response to gaseous oxygen, but had greater sensitivity and a faster response time for dissolved oxygen than those of PS films. The influence of matrices on oxygen response, sensitivity and response time was discussed. The influence is most likely attributed to the oxygen diffusion abilities of the matrices. Since the probes were chemically immobilized in the matrices, no leaching of the probes was observed from the sensing films when applied in aqueous environment. One sensing film made from the PHEMA matrix was used to preliminarily monitor the oxygen consumption of Escherichia coli (E. coli) bacteria. E. coli cell density and antibiotics ampicillin concentration dependent oxygen consumption was observed, indicating the potential application of the oxygen sensing film for biological application. PMID:21076638

  19. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2001-10-26

    There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx}1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

  20. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2000-11-17

    There are a number of exothermic chemical reactions which might benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. A particularly promising area is production of oxygenated chemicals, such as alcohols and ethers, from synthesis gas, which can be economically produced from coal or biomass. The ebullated bed operation requires that the small-diameter ({approx} 1/32 inch) catalyst particles have enough mechanical strength to avoid loss by attrition. However, all of the State Of The Art (SOTA) catalysts and advanced catalysts for the purpose are low in mechanical strength. The patented carbon-coated catalyst technology developed in our laboratory converts catalyst particles with low mechanical strength to strong catalysts suitable for ebullated bed application. This R&D program is concerned with the modification on the mechanical strength of the SOTA and advanced catalysts so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. The objective of this R&D program is to study the technical and economic feasibility of selective production of high-value oxygenated chemicals from synthesis gas and CO{sub 2} mixed feed in an ebullated bed reactor using carbon-coated catalyst particles.

  1. Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation.

    PubMed

    Onoue, Satomi; Hosoi, Kazuhiro; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Matsuoka, Naoko; Nakamura, Kazuichi; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Ohno, Yasuo; Kojima, Hajime

    2013-11-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety evaluation of pharmaceuticals, and the present multi-center study aimed to establish and validate a standard protocol for ROS assay. In three participating laboratories, two standards and 42 coded chemicals, including 23 phototoxins and 19 nonphototoxic drugs/chemicals, were assessed by the ROS assay according to the standardized protocol. Most phototoxins tended to generate singlet oxygen and/or superoxide under UV-vis exposure, but nonphototoxic chemicals were less photoreactive. In the ROS assay on quinine (200?m), a typical phototoxic drug, the intra- and inter-day precisions (coefficient of variation; CV) were found to be 1.5-7.4% and 1.7-9.3%, respectively. The inter-laboratory CV for quinine averaged 15.4% for singlet oxygen and 17.0% for superoxide. The ROS assay on 42 coded chemicals (200?m) provided no false negative predictions upon previously defined criteria as compared with the in vitro/in vivo phototoxicity, although several false positives appeared. Outcomes from the validation study were indicative of satisfactory transferability, intra- and inter-laboratory variability, and predictive capacity of the ROS assay. PMID:22696462

  2. Thermal, Mechanical and Chemical Analysis for VELOX -Verification Experiments for Lunar Oxygen Production

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Ksenik, Eugen; Braukhane, Andy; Richter, Lutz

    One major aspect for the development of a long-term human presence on the moon will be sustainability and autonomy of any kind of a permanent base. Important resources, such as breathable air and water for the survival of the crew on the lunar surface will have to be extracted in-situ from the lunar regolith, the major resource on the Moon, which covers the first meter of the lunar surface and contains about 45 At the DLR Bremen we are interested in a compact and flexible lab experimenting facility, which shall demonstrate the feasibility of this process by extracting oxygen out of lunar Regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, we have investigated important boundary conditions such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility and established basic requirements which shall be analyzed within this paper. These requirements have been used for the concept development and outline of the facility, which is currently under construction and will be subject to initial tests in the near future. This paper will focus mainly on the theoretical aspects of the facility development. Great effort has been put into the thermal and mechanical outline and pre-analysis of components and the system in a whole. Basic aspects that have been investigated are: 1. Selection of suitable materials for the furnace chamber configuration to provide a high-temperature capable operating mode. 2. Theoretical heat transfer analysis of the designed furnace chamber assembly with subsequent validation with the aid of measured values of the constructed demonstration plant. 3. Description of chemical conversion processes for Hydrogen reduction of Lunar Regolith with corresponding analysis of thermal and reaction times under different boundary conditions. 4. Investigation of the high-temperature mechanical behavior of the constructed furnace chamber with regard to thermal stability and especially to the hermetically sealed reactor due to internal Hydrogen atmosphere. In the end, we will give a first glimpse into the development of the test setup and first test results on the way to a superior test set-up and infrastructure with pre-and post-processing units such as feeding and extraction units and analysis of reaction products.

  3. Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers

    SciTech Connect

    Tian, H.; Chaudhari, K.; Simonyi, T.; Poston, J.; Liu, T.; Sanders, T.; Veser, G.; Siriwardane, R.

    2008-01-01

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 °C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 °C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 °C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 °C.

  4. Chemical-looping Combustion of Coal-derived Synthesis Gas Over Copper Oxide Oxygen Carriers

    SciTech Connect

    Tian, Hanjing; Chaudhari, K P; Simonyi, Thomas; Poston, J A; Liu, Tengfei; Sanders, Tom; Veser, Goetz; Siriwardane, R V

    2008-11-01

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900 °C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO2 from fuel gas at 800 and 900 °C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700 °C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900 °C.

  5. Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers

    SciTech Connect

    Hanjing Tian; Karuna Chaudhari; Thomas Simonyi; James Poston; Tengfei Liu; Tom Sanders; Goetz Veser; Ranjani Siriwardane

    2008-11-15

    CuO/bentonite and CuO-BHA nanocomposites were studied as oxygen carriers in chemical-looping combustion (CLC) of simulated synthesis gas. Global reaction rates of reduction and oxidation, as the function of reaction conversion, were calculated from 10-cycle oxidation/reduction tests utilizing thermogravimetric analysis at atmospheric pressure between 700 and 900{degree}C. It was found that the reduction reactions are always faster than oxidation reactions; reaction temperature and particle size do not significantly affect the reaction performance of CuO/bentonite. Multicycle CLC tests conducted in a high-pressure flow reactor showed stable reactivity for production of CO{sub 2} from fuel gas at 800 and 900{degree}C and full consumption of hydrogen during the reaction. Results of the tapered element oscillating microbalance showed a negative effect of pressure on the global rates of reduction-oxidation reactions at higher fractional conversions. X-ray diffraction patterns confirmed the presence of CuO in the bulk phase of the oxidized sample. Electron microanalysis showed significant morphology changes of reacted CuO/bentonite samples after the 10 oxidation-reduction cycles above 700{degree}C in an atmospheric thermogravimetric analyzer. The nanostructured CuO-BHA carrier also showed excellent stability and, in comparison to the CuO/bentonite system, slightly accelerated redox kinetics albeit at the expense of significantly increased complexity of manufacturing. Overall, both types of CuO carriers exhibited excellent reaction performance and thermal stability for the CLC process at 700-900{degree}C. 48 refs., 12 figs., 8 tabs.

  6. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  7. OVOC (Oxygenated Volatile Organic Chemicals) in the Global Atmosphere: Atmospheric Budgets, Oceanic Concentrations, and Uncertainties

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.

    2004-01-01

    Airborne measurements of oxygenated volatile organic chemicals (OVOC), OH free radicals, and tracers of pollution were performed over the Pacific during Winter/Spring of 2001. Large concentrations of OVOC are present in the global troposphere and are expected to play an important role in atmospheric chemistry. Their total abundance (SIGMAOVOC) was nearly twice that of non-methane hydrocarbons (SIGMAC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NHMC. A comparison of these data with western Pacific observations collected some seven years earlier (Feb.-March, 1994) did not reveal significant differences. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in twelve plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. These data are combined with other observations and interpreted with the help of a global 3-D model to assess OVOC global sources and sinks. We further interpret atmospheric observations with the help of an air-sea exchange model io show that oceans can be both net sorces and sinks. An extremely large oceanic reservoir of OVOC, that exceeds the atmospheric reservoir by more than an order of magnitude, can be inferred to be present. We conclude that OVOC sources are extremely large (150-500 TgC y-1) but remain poorly quantified. In many cases, measured concentrations are uncertain and incompatible with our present knowledge of atmospheric chemistry. Results based on observations from several field studies and critical gaps will be discussed.

  8. The effect of the structure and conformational dynamics on quenching of triplet states of porphyrins and their chemical dimers by molecular oxygen and on singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Ivashin, N. V.; Shchupak, E. E.; Sagun, E. I.

    2015-01-01

    Quantum-chemical calculations are performed to analyze the factors affecting rate constant k T of quenching of the lowest triplet state by molecular oxygen and quantum yield ?? of singlet oxygen generation in chemical dimers of porphyrins bound by phenyl spacers at one of the meso positions (OEP)2-Ph, (TPP)2, and their Zn complexes. It is established that, for both types of dimers, the triplet excitation is localized on one of the macrocycles. The steric hindrance of macrocycles at the site of the phenyl ring of (OEP)2-Ph, (ZnOEP)2-Ph, and their monomeric analogues OEP-Ph and ZnOEP-Ph facilitates its rotation by 90 in the triplet state. The lowest triplet state energy in this ( U) conformation is lower than 7800 cm-1, which makes impossible electronic excitation energy transfer to molecular oxygen. The potential barrier of transformation to the U conformation is considerably lower for dimers than for monomers. Because of this, the rate of conformational transformations for dimers is higher and some of the (OEP)2-Ph and (ZnOEP)2-Ph molecules have time to transform into the new U conformation before diffusion collision with O2 molecules in solution. This leads to a noticeable decrease in ?? in accordance with experimental data. It is shown that the behavior of k T in the series of the studied dimers, their monomeric analogues, and relative compounds corresponds to the model of dipole-dipole electronic excitation energy transfer 1(3M⋯3?{g/-}) ? 1(1M0⋯1?g) in collisional complexes.

  9. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  10. Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19

    SciTech Connect

    Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song

    2009-07-01

    To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

  11. Influence of chemically produced singlet delta oxygen molecules on thermal ignition of O2–H2 mixtures

    NASA Astrophysics Data System (ADS)

    Vagin, N. P.; Kochetov, I. V.; Napartovich, A. P.; Yuryshev, N. N.

    2016-02-01

    Thermal ignition of the H2–O2 mixture with O2(a 1Δ g ) addition is studied experimentally and theoretically. The singlet delta oxygen was produced in a chemical generator. In this way, the competing chemical processes involving plasma produced chemically active O atoms and оzone (O3) were excluded. A satisfactory agreement is achieved between experimentally observed and numerically predicted values of the ignition time at the initial gas temperature (900–950) K and gas pressure (9–10) Torr. The percentage of the reactive channel in the binary collisions O2(a 1Δ g )  +  H is evaluated on the level (10–20)% for the H2–O2 mixture.

  12. Characterization of chemical looping combustion of coal in a 1 kW{sub th} reactor with a nickel-based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2010-05-15

    Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO{sub 2} emission. To improve CO{sub 2} capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al{sub 2}O{sub 3} oxygen carrier in a 1 kW{sub th} prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO{sub 2} capture efficiency at a fuel reactor temperature of 985 C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO{sub 2} formation, and H{sub 2}S abatement in the fuel reactor. The increase of SO{sub 2} in the fuel reactor accelerates the reaction of SO{sub 2} with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO{sub 2} in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the decrease of residual char entering the air reactor from the fuel reactor, and the decrease of SO{sub 2} from sulfur in the residual char burnt with air in the air reactor. (author)

  13. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    PubMed

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  14. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media

    PubMed Central

    Meunier, Sarah M.; Todorovic, Biljana; Dare, Emma V.; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J. Larry; Sasges, Michael; Aucoin, Marc G.

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media. PMID:26975046

  15. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte.

    PubMed

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson's model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76?W/cm(2) at 700?(o)C with 10??m thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained??0.21 and 10(-22) atm. PMID:26725369

  16. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  17. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur

    SciTech Connect

    Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C.

    2009-03-15

    Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

  18. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10‑22 atm.

  19. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    PubMed Central

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10−22 atm. PMID:26725369

  20. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure.

    PubMed

    Grate, Jay W; Kelly, Ryan T; Suter, Jonathan; Anheier, Norm C

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water-wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen-sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges of oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain defined spatial structure in the sensor image. PMID:22995983

  1. Chemical kinetics of the reaction of methoxy with molecular oxygen for various temperatures, pressures and buffer gases

    SciTech Connect

    Misra, P.; Nur, A.H.; Zhu, X.

    1995-12-31

    The methoxy radical is produced in the troposphere as a chemical intermediate in the breakdown of methane by the hydroxyl radical. It reacts with molecular oxygen to form formaldehyde as a stable product. Various buffer gases, namely helium, argon and nitrogen, were used as carriers to transport the methylnitrite precursor to the photolysis zone. Following excimer laser-induced photodissociation of the precursor, the methoxy radical was excited with a frequency-doubled Nd:YAG-pumped dye laser. Laser-induced fluorescence (LIF) signals were closely monitored under different conditions of temperature (22-150 {degrees}C) and oxygen pressures (0-40 torr). Temporal histories of the methoxy fluorescence decay were obtained by recording the LIF signal intensity as a function of increasing time delay between the photolysis and probe laser pulses. Stern-Volmer plots of the inverse first-order decay constant ({tau}{sup {minus}1}) versus oxygen pressure at different temperatures allowed determination of the rate constants for the reaction of methoxy with oxygen and the derivation of an appropriate Arrhenius expression over the temperature range 22-150 {degrees}C. Helium as buffer gas was able to quench the fluorescence from the methoxy radical more rapidly then either nitrogen or argon.

  2. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  3. Oxygen chemical diffusion in three basaltic liquids at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Dunn, Todd

    1983-11-01

    The diffusivity of oxygen has been measured in three basaltic liquids from 1280 to 1450C and 4 to 21 kilobars using a solid media piston-cylinder apparatus. The measurements were done by monitoring the reduction of ferric iron in previously oxidized spheres of basalt melt. The compositions studied were olivine nephelinite, alkali basalt, and 1921 Kilauea tholeiite. The isobaric temperature dependence of oxygen diffusivity is adequately described by Arrhenius relationships for the three liquids studied. Arrhenius activation energies were determined at 12 kilobars for olivine nephelinite (62 6 kcal/mole) and tholeiite (51 4 kcal/mole) and at 4, 12, and 20 kilobars for alkali basalt (70 7, 86 6, and 71 14 kcal/mole, respectively). The Arrhenius parameters for the three compositions define a compensation law which is indistinguishable from those for oxygen diffusion in simple silicate melts (DUNN, 1982) and for divalent cation diffusion in basaltic melts ( HOFMANN, 1980). These results suggest that the principal species contributing to the total diffusivity of oxygen is the oxide anion (O 2-). The isothermal pressure dependence of oxygen diffusion is complex and quite different from that observed for cationic diffusion in silicate melts. All three compositions show a sharp decrease in oxygen diffusivity at approximately the same pressure as the change in the liquidus phase from olivine to pyroxene, but otherwise the pressure dependence can be described by Arrhenius type equations. The equations yield negative activation volumes for the olivine nehpelinite and the alkali basalt. The activation volumes determined for the tholeiite are near zero at low pressure and positive at high pressure. A negative activation volume represents a decrease in the average size of the principal diffusing species. The results of this study are consistent with a melt model which includes both continuous changes in the relative proportions of the various anionic species in the melt with pressure and the occurrence of anionic disproportionation reactions within narrow pressure ranges.

  4. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.

    PubMed

    Carrascon, Vanesa; Fernandez-Zurbano, Purificacin; Bueno, Mnica; Ferreira, Vicente

    2015-12-30

    Chemical changes caused by oxidation of red wines during 5 consecutive air-saturation cycles have been assessed. In order to investigate the existing relationship between the effects caused by O2 and the levels and consumption rates of wine SO2, the total oxygen consumed by the wines (16-25 mg/L) was subdivided into different nonmutually exclusive categories. The ones found most influential on chemical changes were the O2 consumed in the first saturation without equivalent SO2 consumption (O2preSO2) and the O2 consumed when levels of free SO2 were below 5 mg/L (radical forming O2). Chromatic changes were strongly related to both O2 categories, even though anthocyanidin degradation was not related to any O2 category. Radical forming O2 prevented both formation of red pigments and reduction of epigallocatechin and other proanthocyanidins, induced accumulation of phenolic acids, and caused losses of ?-damascenone and whiskylactone without evidence of acetaldehyde formation. O2preSO2 seemed to play a key role in the formation of blue pigments and in the decrease of Folin index and of many important aroma compounds. PMID:26646423

  5. Oxygen atoms on the (1 1 1) surface of coinage metals: On the chemical state of the adsorbate

    NASA Astrophysics Data System (ADS)

    Torres, Daniel; Neyman, Konstantin M.; Illas, Francesc

    2006-09-01

    We employed periodic slab model calculations to examine the charge state of atomic oxygen species adsorbed on Cu(1 1 1), Ag(1 1 1) and Au(1 1 1) surfaces. Threefold sites are computed to be preferred on all three substrates. Similarities and differences in the ionicity of adsorbed O are analysed using charge density difference plots, work function changes, dipole moment curves and topological charge analysis. Performance of these methods to characterise chemical bonding is discussed. In agreement with the metal electronegativity values, large negative charge of similar size is found on oxygen in the O/Cu(1 1 1) and O/Ag(1 1 1) systems, whereas O on Au(1 1 1) is significantly less ionic.

  6. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions.

    PubMed

    Rosa, Ins C; Garrido, Rita; R, Ana; Gomes, Joo; Pereira, Joana L; Gonalves, Fernando; Costa, Raquel

    2015-12-01

    The freshwater Corbicula fluminea is a major aquatic nuisance worldwide. Current pest control methods raise cost-effectiveness and environmental concerns, which motivate research into improved mitigation approaches. In this context, the susceptibility of the clams to chemicals under reduced oxygen conditions was examined. Biocides with different mechanisms of toxicity (niclosamide, polyDADMAC, ammonium nitrate, potassium chloride and dimethoate) were tested under normoxic (>7 mg L(-1) dissolved O2) and hypoxic (<2 mg L(-1) dissolved O2) conditions. Hypoxia was observed to potentiate chemical treatment, particularly when combined with non-overwhelming doses that would produce only intermediate responses by themselves. For niclosamide, ammonium nitrate and dimethoate, clam mortality enhancements up to 400% were observed under hypoxia as compared to dosing upon normal dissolved oxygen conditions. For polyDADMAC and potassium chloride, substantially lower mortality enhancements were found. The differences in the clams' sensitivity to the chemicals under hypoxia could be linked to the expected mechanisms of action. This suggests that judicious selection of the biocide is essential if optimized combined control treatments are to be designed and provides an insight into the interference of frequent hypoxia events in the response of natural clam populations to contaminant loads. PMID:26254082

  7. 78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as..., Security Considerations for Lavatory Oxygen Systems (76 FR 12550, March 8, 2011), Docket No. FAA-2011-0186... Airplanes (77 FR 38000, June 26, 2012). Several years ago in an unrelated initiative, the FAA tasked...

  8. Safety in the Chemical Laboratory: Handling of Oxygen in Research Experiments.

    ERIC Educational Resources Information Center

    Burnett, R. J.; Cole, J. E., Jr.

    1985-01-01

    Examines some of the considerations involved in setting up a typical oxygen/organic reaction. These considerations (including protection for personnel/equipment, adequate ventilation, reactor design, maximum reactor charge, operating procedures, and others) influence how the reaction is to be conducted and what compromises the scientist must

  9. Chemical Technology at the Community College of Rhode Island: Curricular Approaches Designed To Reflect the Demands of a Diverse Population Entering Chemical Technology Programs.

    ERIC Educational Resources Information Center

    Hajian, Harry

    In an effort to provide nontraditional students with the same opportunity as traditional students to reach the highest level of skills and competencies associated with hi-tech, high-wage employment, the Community College of Rhode Island (CCRI) offers alternatives to its historically successful full-time day program in chemical technology.…

  10. Imaging of oxygen in microreactors and microfluidic systems

    NASA Astrophysics Data System (ADS)

    Sun, Shiwen; Ungerbck, Birgit; Mayr, Torsten

    2015-09-01

    This review gives an overview on the state-of-the-art of oxygen imaging in microfluidics. Oxygen imaging using optical oxygen sensors based on luminescence is a versatile and powerful tool for obtaining profoundly space-resolved information of oxygen in microreactors and microfluidic systems. We briefly introduce the principle of oxygen imaging and present techniques of oxygen imaging applied in microreactors and microfluidic devices, including selection criteria and demands of sensing material and basic set-up for a 2D oxygen sensing system. A detailed review of oxygen imaging in microreactors and microfluidic systems is given on different applications in oxygen gradient monitoring, cell culturing, single-cell analysis and chemical reactions. Finally, we discuss challenges and trends of oxygen imaging in microfluidic systems.

  11. Influence of the chemical bond on the K emission spectrum of oxygen and fluorine.

    NASA Technical Reports Server (NTRS)

    Koster, A. S.

    1971-01-01

    The K emission spectrum of oxygen and fluorine from a number of simple oxides and fluorides is divided into three to six sub-peaks. The spectra of many of these oxides and fluorides resemble one another owing to their basically ionic bonding. Certain sub-peaks, however, are ascribed to cross-over transitions and partially covalent energy levels. The different fluorine spectrum of Teflon is due to the hybrid nature of its covalent bonds.

  12. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    SciTech Connect

    Peizheng Zhou

    2002-12-30

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R&D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates.

  13. Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth : Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers.

    PubMed

    Wollrab, Eva; Scherer, Sabrina; Aubriet, Frédéric; Carré, Vincent; Carlomagno, Teresa; Codutti, Luca; Ott, Albrecht

    2016-06-01

    In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528-529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life's molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351-2361, 1955; Oró Nature 197:862-867, 1963; Schlesinger and Miller, J Mol Evol 19:376-382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628-14,631, 2002). Recently some of Miller's remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404-404, 2008; Parker et al. Proc Natl Acad Sci 108:5526-5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a "Miller type" experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity. PMID:26508401

  14. Chemical Analysis of a "Miller-Type" Complex Prebiotic Broth - Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers

    NASA Astrophysics Data System (ADS)

    Wollrab, Eva; Scherer, Sabrina; Aubriet, Frdric; Carr, Vincent; Carlomagno, Teresa; Codutti, Luca; Ott, Albrecht

    2015-10-01

    In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528-529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life's molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351-2361, 1955; Or Nature 197:862-867, 1963; Schlesinger and Miller, J Mol Evol 19:376-382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628-14,631, 2002). Recently some of Miller's remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404-404, 2008; Parker et al. Proc Natl Acad Sci 108:5526-5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a "Miller type" experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.

  15. The Effects of Oxygen Plasma on the Chemical Composition and Morphology of the Ru Capping Layer of the Extreme Ultraviolet (EUV) Mask Blanks

    SciTech Connect

    Belau, Leonid; Park, Jeong Y.; Liang, Ted; Somorjai, Gabor A.

    2008-06-07

    Contamination removal from extreme ultraviolet (EUV) mask surfaces is one of the most important aspects to improve reliability for the next generation of EUV lithography. We report chemical and morphological changes of the ruthenium (Ru) mask surface after oxygen plasma treatment using surface sensitive analytical methods: X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Chemical analysis of the EUV masks shows an increase in the subsurface oxygen concentration, Ru oxidation and surface roughness. XPS spectra at various photoelectron takeoff angles suggest that the EUV mask surface was covered with chemisorbed oxygen after oxygen plasma treatment. It is proposed that the Kirkendall effect is the most plausible mechanism that explains the Ru surface oxidation. The etching rate of the Ru capping layer by oxygen plasma was estimated to be 1.5 {+-} 0.2 {angstrom}/min, based on TEM cross sectional analysis.

  16. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    PubMed

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falco, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de ndio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change. PMID:24892495

  17. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  18. Investigation of coal fueled chemical looping combustion using Fe3O4 as oxygen carrier: Influence of variables

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyan; Xiang, Wenguo; Wang, Sha; Tian, Wendong; Xu, Xiang; Xu, Yanji; Xiao, Yunhan

    2010-06-01

    Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier. Shenhua coal (Inner Mongolia, China), straw coke and natural coke were used as fuels for this study. Influences of operation temperatures, coal to Fe3O4 mass ratios, and different kinds of fuels on the reduction characteristics of the oxygen carrier were investigated using an atmosphere thermogravimetric analyzer (TGA). Scanning electron microscopy (SEM) was used to analyse the characteristic of the solid residues. Experimental results shown that the reaction between the coal and the oxygen carrier become strong at a temperature of higher than 800°C. As the operation temperature rises, the reduction conversion rate increases. At the temperatures of 850°C, 900°C, and 950°C, the reduction conversion rates were 37.1%, 46.5%, and 54.1% respectively. However, SEM images show that at the temperature of higher than 950°C, the iron oxides become melted and sintered. The possible operation temperature should be kept around 900°C. When the mass ratios of coal to Fe3O4 were 5/95, 10/90, 15/85, and 20/80, the reduction conversion rates were 29.5%, 40.8%, 46.5%, and 46.6% respectively. With the increase of coal, the conversion rate goes up. But there exist an optimal ratio around 15/85. Comparisons based on different kinds of fuels show that the solid fuel with a higher volatile and a more developed pore structure is conducive to the reduction reactivity of the oxygen carrier.

  19. The effects of oxygen on controlling the number of carbon layers in the chemical vapor deposition of graphene on a nickel substrate

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Dong; Yang, Qingdan; Lee, Chun-Sing

    2013-05-01

    While oxygen is typically considered undesirable during the chemical vapor deposition (CVD) of graphene on metal substrates, we demonstrate that suitable amounts of oxygen in the CVD system can in fact improve the uniformity and thickness control of the graphene film. The role of oxygen on the CVD of graphene on a nickel substrate using a propylene precursor was investigated with various surface analytical techniques. It was found that the number of carbon layers in the deposited graphene sample decreases as the concentration of oxygen increases. In particular, single-layer graphene can be easily obtained with an oxygen/propylene ratio of 1/9. In the presence of oxygen, a thin layer of nickel oxide will form on the substrate. The oxide layer decreases the concentration of carbon atoms dissolved in the nickel substrate and results in graphene samples with a decreasing number of carbon layers.

  20. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    NASA Technical Reports Server (NTRS)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  1. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    SciTech Connect

    Dutta, Indrajit; Carpenter, Michael K.; Balogh, Michael P.; Ziegelbauer, Joseph M.; Moylan, Thomas E.; Atwan, Mohammed H.; Irish, Nicholas P.

    2010-10-22

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multistep synthetic procedure. Material produced at each step was characterized using high-angle annular dark-field scanning transmission electron microscopy, electron energy loss spectroscopy mapping, X-ray absorption spectroscopy, X-ray diffraction, and cyclic voltammetry, and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode technique. The initial synthetic step, a coreduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. Transmission electron microscopy shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12-25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete core-shell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a 'Swiss cheese' type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report.

  2. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    PubMed Central

    Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P

    2013-01-01

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (1225 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a Swiss cheese type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900

  3. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst.

    PubMed

    Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P

    2010-10-01

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12-25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a "Swiss cheese" type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900

  4. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier

    SciTech Connect

    Abad, Alberto; Adanez, Juan; Garcia-Labiano, Francisco; de Diego, Luis F.; Gayan, Pilar

    2010-03-15

    A mathematical model for a bubbling fluidized bed has been developed to simulate the performance of the fuel-reactor in chemical-looping combustion (CLC) systems. This model considers both the fluid dynamic of the fluidized bed and freeboard and the kinetics of reduction of the oxygen-carrier, here CuO impregnated on alumina. The main outputs of the model are the conversion of the carrier and the gas composition at the reactor exit, the axial profiles of gas concentrations and the fluid dynamical structure of the reactor. The model was validated using measurements when burning CH{sub 4} in a 10 kW{sub th} prototype using a Cu-based oxygen-carrier. The influence of the circulation rate of solids, the load of fuel gas, the reactor temperature and size of the oxygen-carrier particles were analyzed. Combustion efficiencies predicted by the model showed a good agreement with measurements. Having validated the model, the implications for designing and optimizing a fuel-reactor were as follows. The inventory of solids for a high conversion of the fuel was sensitive to the reactor's temperature, the solids' circulation rate and the extent to which the solids entering to the reactor had been regenerated. The optimal ratio of oxygen-carrier to fuel was found to be 1.7-4 for the Cu-based oxygen-carrier used here. In this range, the inventory of solids to obtain a combustion efficiency of 99.9% at 1073 K was less than 130 kg/MW{sub th}. In addition, the model's results were very sensitive to the resistance to gas diffusing between the emulsion and bubble phases in the bed, to the decay of solids' concentration in the freeboard and to the efficiency contact between gas and solids in the freeboard. Thus, a simplified model, ignoring any restriction to gas and solids contacting each other, will under-predict the inventory of solids by a factor of 2-10. (author)

  5. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  6. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  7. Hyperbaric oxygen and chemical oxidants stimulate CO2/H+-sensitive neurons in rat brain stem slices.

    PubMed

    Mulkey, Daniel K; Henderson, Richard A; Putnam, Robert W; Dean, Jay B

    2003-09-01

    Hyperoxia, a model of oxidative stress, can disrupt brain stem function, presumably by an increase in O2 free radicals. Breathing hyperbaric oxygen (HBO2) initially causes hyperoxic hyperventilation, whereas extended exposure to HBO2 disrupts cardiorespiratory control. Presently, it is unknown how hyperoxia affects brain stem neurons. We have tested the hypothesis that hyperoxia increases excitability of neurons of the solitary complex neurons, which is an important region for cardiorespiratory control and central CO2/H+ chemoreception. Intracellular recordings were made in rat medullary slices during exposure to 2-3 atm of HBO2, HBO2 plus antioxidant (Trolox C), and chemical oxidants (N-chlorosuccinimide, chloramine-T). HBO2 increased input resistance and stimulated firing rate in 38% of neurons; both effects of HBO2 were blocked by antioxidant and mimicked by chemical oxidants. Hypercapnia stimulated 32 of 60 (53%) neurons. Remarkably, these CO2/H+-chemosensitive neurons were preferentially sensitive to HBO2; 90% of neurons sensitive to HBO2 and/or chemical oxidants were also CO2/H+ chemosensitive. Conversely, only 19% of HBO2-insensitive neurons were CO2/H+ chemosensitive. We conclude that hyperoxia decreases membrane conductance and stimulates firing of putative central CO2/H+-chemoreceptor neurons by an O2 free radical mechanism. These findings may explain why hyperoxia, paradoxically, stimulates ventilation. PMID:12704094

  8. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  9. Practical use of chemical probes for reactive oxygen species produced in biological systems by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Kang-Soo; Cho, Jae-Young; Kim, Jin-Hong

    2009-05-01

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during γ-irradiation. The ethanol/α-(4-pyridyl-1-oxide)- N- tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect rad OH and H 2O 2, increasingly generated by γ-irradiation up to 1000 Gy. Interestingly, the production rate of H 2O 2, but not rad OH, during γ-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify rad OH and H 2O 2, produced by γ-irradiation up to 1000 Gy.

  10. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    PubMed

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light. PMID:24060426

  11. Analytical chemical kinetic investigation of the effects of oxygen, hydrogen, and hydroxyl radicals on hydrogen-air combustion

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.

    1974-01-01

    Quantitative values were computed which show the effects of the presence of small amounts of oxygen, hydrogen, and hydroxyl radicals on the finite-rate chemical kinetics of premixed hydrogen-air mixtures undergoing isobaric autoignition and combustion. The free radicals were considered to be initially present in hydrogen-air mixtures at equivalence ratios of 0.2, 0.6, 1.0, and 1.2. Initial mixture temperatures were 1100 K, 1200 K, and 1500 K, and pressures were 0.5, 1.0, 2.0, and 4.0 atm. Of the radicals investigated, atomic oxygen was found to be the most effective for reducing induction time, defined as the time to 5 percent of the total combustion temperature rise. The reaction time, the time between 5 percent and 95 percent of the temperature rise, is not decreased by the presence of free radicals in the initial hydrogen-air mixture. Fuel additives which yield free radicals might be used to effect a compact supersonic combustor design for efficient operation in an otherwise reaction-limited combustion regime.

  12. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed. PMID:26717045

  13. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Steinberg, M.; Schofield, K.

    1984-01-01

    Results are presented which, it is claimed, lead to a correction of previous misconceptions over the relative importance and kinetics of NaO2. It is shown that its rapid conversion to NaO and NaOH is such that it can severely perturb the NaOH/Na ratio and produce significant concentration overshoots over that predicted from the balance of the reaction of Na with H2O. This becomes increasingly the case in flames of large O2 concentrations and temperatures below 2500 K; and the corresponding large rate constants for the termolecular formation of the other alkali peroxides imply that similar considerations will be necessary for them. Depending on the rate constants for the exothermic conversions of MO2 to MO or MOH, the steady-state concentrations of MO2 could be more or less significant than for sodium. Owing to numerous reactions that produce these conversions, the MOH species will probably be the dominant species in all cases in oxygen-rich hydrogen or hydrocarbon flames, with MO concentrations at not greater than 1 percent of the bound metal.

  14. Chemical equilibria involved in the oxygen-releasing step of manganese ferrite water-splitting thermochemical cycle

    SciTech Connect

    Seralessandri, L.; Bellusci, M.; Alvani, C.; La Barbera, A.; Padella, F.; Varsano, F.

    2008-08-15

    Sodium ferrimanganite carbonatation reaction was investigated at different temperatures/carbon dioxide partial pressures to evaluate the feasibility of the thermochemical water-splitting cycle based on the MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3}/Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} system. After thermal treatments in selected experimental conditions, the obtained powder samples were investigated by using the X-ray diffraction (XRD) technique and Rietveld analysis. Two different lamellar Na{sub 1-x}Mn{sub 1/3}Fe{sub 2/3}O{sub 2-{delta}} phases were observed together with the expected MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3} mixture. Different equilibrium regions among sodium-depleted lamellar phases, manganese ferrite and sodium carbonate were found as a function of the different reaction conditions. A hypothesis concerning the regeneration mechanism of the initial compounds is proposed. Chemical equilibrium between stoichiometric and sub-stoichiometric forms of sodium ferrimanganite and sodium carbonate formation/dissociation appears to be essential factors governing the oxygen-releasing step of the manganese ferrite thermochemical cycle. - Graphical abstract: Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} disproportion reaction in the presence of CO{sub 2} was studied. Chemical equilibria among Na{sub 1-x}(Mn{sub 1/3}Fe{sub 2/3})O{sub 2}, MnFe{sub 2}O{sub 4} and Na{sub 2}CO{sub 3} compounds were evidenced and studied by means of Rietveld analysis performed on XRD patterns. Two different sodium-depleted lamellar structures were identified. The role of sodium carbonate formation/dissociation equilibrium in the oxygen-releasing step of the manganese ferrite thermochemical cycle has been highlighted.

  15. Oxygen isotopic and chemical zoning of melilite crystals in a type A Ca-Al-rich inclusion of Efremovka CV3 chondrite

    NASA Astrophysics Data System (ADS)

    Kawasaki, Noriyuki; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2012-12-01

    Different oxygen isotopic reservoirs have been recognized in the early solar system. Fluffy type A Ca-Al-rich inclusions (CAIs) are believed to be direct condensates from a solar nebular gas, and therefore, have acquired oxygen from the solar nebula. Oxygen isotopic and chemical compositions of melilite crystals in a type A CAI from Efremovka CV3 chondrite were measured to reveal the temporal variation in oxygen isotopic composition of surrounding nebular gas during CAI formation. The CAI is constructed of two domains, each of which has a core-mantle structure. Reversely zoned melilite crystals were observed in both domains. Melilite crystals in one domain have a homogeneous 16O-poor composition on the carbonaceous chondrite anhydrous mineral (CCAM) line of ?18O = 5-10, which suggests that the domain was formed in a 16O-poor oxygen isotope reservoir of the solar nebula. In contrast, melilite crystals in the other domain have continuous variations in oxygen isotopic composition from 16O-rich (?18O = -40) to 16O-poor (?18O = 0) along the CCAM line. The oxygen isotopic composition tends to be more 16O-rich toward the domain rim, which suggests that the domain was formed in a variable oxygen isotope reservoir of the solar nebula. Each domain of the type A CAI has grown in distinct oxygen isotope reservoir of the solar nebula. After the domain formation, domains were accumulated together in the solar nebula to form a type A CAI.

  16. Chemical role of oxygen plasma in wafer bonding using borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hansen, D. M.; Albaugh, C. E.; Moran, P. D.; Kuech, T. F.

    2001-11-01

    Plasma-treated oxide layers are commonly used in wafer bonding applications. Borosilicate glass (BSG) layers deposited by low-pressure chemical vapor deposition treated with an O2 plasma in reactive ion etching mode for 5 min at 0.6 W/cm2 and rinsed with DI H2O readily bond to GaAs and Si. The chemical role of this prebonding treatment was investigated using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The peak intensities for both the Si-O and B-O absorbance bands decreased in intensity as a result of the plasma treatment is consistent with the uniform sputtering of 9.8 nm±0.8 nm of BSG. Polarization dependent ATR-FTIR revealed that the H2O/OH absorbance bands decreased in peak intensity with the OH groups being preferentially oriented perpendicular to the sample surface after the plasma treatment. The subsequent DI H2O rinse restores the water to the surface while removing B2O3 from the BSG layer. This prebonding treatment, therefore, results in a hydrophilic bond, but alters the composition of the BSG film at the bonded interface.

  17. The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition.

    PubMed

    Paul, Rajat K; Badhulika, Sushmee; Niyogi, Sandip; Haddon, Robert C; Boddu, Veera M; Costales-Nieves, Carmen; Bozhilov, Krassimir N; Mulchandani, Ashok

    2011-10-01

    Large-area mono- and bilayer graphene films were synthesized on Cu foil (~ 1 inch(2)) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2-5 nm individual crystallite size which is a function of temperature up to 1000C. X-ray photoelectron spectroscopy investigations showed about 3 atomic% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (L(c)=10 ?m; W(c)=50 ?m) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ~35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices. PMID:22408276

  18. Chemical compatibility of a TiAl-Nb melt with oxygen-free crucible ceramics made of aluminum nitride

    NASA Astrophysics Data System (ADS)

    Kartavykh, A. V.; Cherdyntsev, V. V.

    2008-12-01

    The problem of uncontrolled oxygen contamination of intermetallic TiAl ingots is considered for the application of crucibles and molds based on traditional oxide ceramics. A synthesized Ti-45.9Al-8Nb (at %) alloy is solidified in alternative oxygen-free crucibles made of high-purity aluminum nitride (99.99% AlN) upon holding at 1670C for 5, 12, and 25 min and subsequent quenching in a high-purity argon atmosphere. The initial material and the solidified ingots are studied by scanning electron microscopy, optical microscopy, X-ray diffraction, electron-probe microanalysis, and gas-content chemical analysis. The key features of the interaction of the TiAl-Nb melt with AlN ceramics are revealed. Partial thermal dissociation of the crucible material according to the reaction AlN ? Al + N and the reaction of atomic nitrogen with the melt lead to the formation of a solid 6.4-?m-thick TiN coating on the ingot surface and provide perfect wettability of the crucible by the melt and easy removal of solidified casting items from the mold. The TiN coating serves as a diffusion barrier that hinders the diffusion of nitrogen and residual oxygen from the pores in the crucible toward the melt. As a result, no oxide particles are detected in the ingots. However, few single microprecipitates of two nitride phases ((Ti,Al) x N y , NbN) are detected in the near-bottom region, 300 ?m thick, in the alloy after holding at 1670C for 25 min. The total oxygen contamination in a two-phase ?2 + ? ingot does not exceed 1100 wt ppm, which is 1.5-2 times lower than that obtained in the experiments performed with modern advanced oxide crucibles made of yttrium ceramics Y2O3. AlN is shown to be a promising crucible material that can be considered as an alternative to oxide ceramics in the metallurgy of TiAl intermetallics.

  19. Theory of chemical bonds in metalloenzymes - Manganese oxides clusters in the oxygen evolution center -

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K.; Shoji, M.; Saito, T.; Isobe, H.; Yamada, S.; Nishihara, S.; Kawakami, T.; Kitagawa, Y.; Yamanaka, S.; Okumura, M.

    2012-12-01

    In early 1980 we have initiated broken-symmetry (BS) MO theoretical calculations of transition-metal oxo species M = O (M = Ti,V,Cr,Mn,Fe,Ni,Cu) to elucidate the nature of d?-p? and d?-p? bonds. It has been concluded that high-valent M = O species such as [Mn(IV) = O]2+ and [Fe(IV) = O]2+ exhibit electrophilic property in a sharp contrast with nucleophilic character of low-valent M = O bonds: [M(II)O2-]0, and closed-shell d?-p? bonds of high-valent M = O species often suffer the triplet-instability, giving rise to open-shell (BS) configurations with significant metal-diradical (MDR) character: M-O: note that these bonds are therefore regarded as typical examples of strongly correlated electron systems. Because of the MDR character, 1,4-metal diradical mechanism was indeed preferable to four-centered mechanism in the case of addition reaction of naked Mn(IV) = O to ethylene. Recently the manganese-oxo species have been receiving renewed interest in relation to catalytic cycle of oxygen evolution from water molecules in the photosynthesis II (PSII) system. Accumulated experimental results indicate that this process is catalyzed with four manganese oxide clusters coordinated with calcium ion (CaMn4O4). Past decade we have performed BS MO theoretical investigations of manganese oxide clusters related to CaMn4O4. These calculations have elucidated that high-valent Mn(X) = O (X = IV,V) bonds exhibit intermediate MDR character (y=40-60%) in the case of total low-spin (LS) configuration but the MDR character decreases with coordination of Ca2+ and water molecules. While the MDR character of the Mn-oxo bonds becomes very high at the high-spin (HS) configuration. Our computational results enabled us to propose two possible mechanisms on the theoretical ground: (A) electrophilic (EP) mechanism and (B) radical coupling (RC) mechanism. The theoretical results indicate that the EP mechanism is preferable for the low-spin (LS) state in polar media like in the protein environments (native OEC), whereas the RC mechanism is feasible at the state without such environmental stabilization: local singlet and local triplet diradical mechanisms are proposed for the OO coupling process. Possibilities of EP and RC mechanisms are examined in comparison with a lot of experimental results accumulated and theoretical results with several groups.

  20. Thermo-chemical fuel removal from porous materials by oxygen and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Möller, S.; Alegre, D.; Kreter, A.; Petersson, P.; Esser, H. G.; Samm, U.

    2014-04-01

    Thermo-chemical removal (TCR), or baking in reactive gases, is a candidate method to control the co-deposit related tritium inventory in fusion devices. TCR can be understood as reaction-diffusion processes in a porous material. O2-TCR was applied to 150-550 nm thick a-C:D layers with similar textures. A linear relation between the integral TCR rate and the layer thickness, as predicted by the understanding, was observed in the experiment, i.e. the time to remove the hydrogen inventory is independent of its initial amount. TCR with nitrogen dioxide (NO2) at temperatures of 200-350 °C was conducted with a set of a-C:D and W-C-H layers. At 350 °C NO2 removed ˜ 15% porosity a-C:D within 3 min. The O retention in remaining a-C:D was ≈ 1017 O cm-2. An activation energy of ≈ 0.78 eV for reactions of NO2 with D and C was determined. The results were applied for predictions of the TCR effectivity in ITER. The treatment of W-C-H led to O uptake (O/W ≈ 2-3), while W and C contents remained unchanged.

  1. Demanding healthcare.

    PubMed

    Mark, A; Pencheon, D; Elliott, R

    2000-01-01

    This paper describes and compares the development of strategies to manage demand in healthcare in the UK and the USA. It suggests that the development is revealing the need to include disciplines other than the traditional ones of economics and public health if its effects are to be understood. Using as an example the growth of telephone help lines and telephone triage, based on computer based decision support systems, it explores the idea of increasing choice and alleviating fear as a way of reducing demand. Organizational behaviour and consumer behaviour can provide wider understanding of these issues, particularly as they relate to the emotional aspects of this activity. Some convergence of the UK and USA approaches and outcomes are identified but demand is revealed as a relatively unexplored territory in the management of health care in both countries. PMID:11184656

  2. The KC Channel in the cbb3-Type Respiratory Oxygen Reductase from Rhodobacter capsulatus Is Required for Both Chemical and Pumped Protons

    PubMed Central

    Y?ld?z, Glgez Gke; Gennis, Robert B.; Daldal, Fevzi

    2014-01-01

    The heme-copper superfamily of proton-pumping respiratory oxygen reductases are classified into three families (A, B, and C families) based on structural and phylogenetic analyses. Most studies have focused on the A family, which includes the eukaryotic mitochondrial cytochrome c oxidase as well as many bacterial homologues. Members of the C family, also called the cbb3-type oxygen reductases, are found only in prokaryotes and are of particular interest because of their presence in a number of human pathogens. All of the heme-copper oxygen reductases require proton-conducting channels to convey chemical protons to the active site for water formation and to convey pumped protons across the membrane. Previous work indicated that there is only one proton-conducting input channel (the KC channel) present in the cbb3-type oxygen reductases, which, if correct, must be utilized by both chemical protons and pumped protons. In this work, the effects of mutations in the KC channel of the cbb3-type oxygen reductase from Rhodobacter capsulatus were investigated by expressing the mutants in a strain lacking other respiratory oxygen reductases. Proton pumping was evaluated by using intact cells, and catalytic oxygen reductase activity was measured in isolated membranes. Two mutations, N346M and Y374F, severely reduced catalytic activity, presumably by blocking the chemical protons required at the active site. One mutation, T272A, resulted in a substantially lower proton-pumping stoichiometry but did not inhibit oxygen reductase activity. These are the first experimental data in support of the postulate that pumped protons are taken up from the bacterial cytoplasm through the KC channel. PMID:24563037

  3. Reversible control of magnetism in La0.67Sr0.33MnO3 through chemically-induced oxygen migration

    NASA Astrophysics Data System (ADS)

    Grutter, A. J.; Gilbert, D. A.; Alaan, U. S.; Arenholz, E.; Maranville, B. B.; Borchers, J. A.; Suzuki, Y.; Liu, Kai; Kirby, B. J.

    2016-02-01

    We demonstrate reversible control of magnetization and anisotropy in La0.67Sr0.33MnO3 films through interfacial oxygen migration. Gd metal capping layers deposited onto La0.67Sr0.33MnO3 leach oxygen from the film through a solid-state redox reaction to form porous Gd2O3. X-ray absorption and polarized neutron reflectometry measurements show Mn valence alterations consistent with high oxygen vacancy concentrations, resulting in suppressed magnetization and increased coercive fields. Effects of the oxygen migration are observed both at the interface and also throughout the majority of a 40 nm thick film, suggesting extensive diffusion of oxygen vacancies. After Gd-capped La0.67Sr0.33MnO3 is exposed to atmospheric oxygen for a prolonged period of time, oxygen diffuses through the Gd2O3 layer and the magnetization of the La0.67Sr0.33MnO3 returns to the uncapped value. These findings showcase perovskite heterostructures as ideal candidates for developing functional interfaces through chemically-induced oxygen migration.

  4. Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor

    SciTech Connect

    Song, Q.L.; Xiao, R.; Deng, Z.Y.; Shen, L.H.; Xiao, J.; Zhang, M.Y.

    2008-12-15

    Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. The sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.

  5. Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen

    SciTech Connect

    Li, D.; Alic, M.; Brown, J.A.; Gold, M.H.

    1995-01-01

    The expression of manganese peroxidase (MnP) in nitrogen-limited cultures of the lignin-degrading fungus Phanerochaete chrysosporium is regulated at the level of gene transcription by H{sub 2}O{sub 2} and various chemicals, including ethanol, sodium arsenite, and 2,4-dichlorophenol, as well as by Mn(II) and heat shock. Northern (RNA) blot analysis demonstrates that the addition of 1.0 mM H{sub 2}O{sub 2} to 5-day-old cultures grown in the absence of Mn results in the appearance of mnp mRNA within 15 min. Higher levels of mnp mRNA are obtained with simultaneous induction by Mn and H{sub 2}O{sub 2} than with H{sub 2}O{sub 2} alone. Although neither MnP activity nor associated protein is detectable in H{sub 2}O{sub 2}-induced cultures grown in the absence of Mn, simultaneous induction with Mn and H{sub 2}O{sub 2} results in a 1.6-fold increase in MnP activity compared with the MnP activity resulting resulting from Mn induction alone. In the presence of Mn, purging of low-nitrogen cultures with 100% O{sub 2}, in contrast to incubation under air, results in an increase in the accumulation of mnp mRNA and a 13-fold increase in MnP activity on day 5. However, in contrast to the effects of H{sub 2}O{sub 2} and heat shock, O{sub 2} purging of Mn-deficient cultures results in negligible accumulation of mnp mRNA. 48 refs., 6 figs.

  6. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater.

    PubMed

    Zhang, Lehua; Mao, Yanping; Ma, Jingxing; Li, Dongmei; Shi, Haifeng; Liu, Yongdi; Cai, Lankun

    2013-01-01

    This work focused on studying the effect of the chemical oxidation demand to sulfide ratio (COD/S) on power generation and sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater containing organic contaminants. The maximum power density achieved was 20 +/- 1 W m(-3) V(Anode) and the C(oulombic) yield was 20 +/- 2%. The COD/S ofinfluent played an important role in elemental sulfur and sulfate production because of competition between acetate oxidation and element sulfur oxidation to sulfate in the anode. When the COD/S was 12.50/1, more than 74.0% of sulfide was converted into elemental sulfur after 24 hours of operation. The effect of the COD/S on power generation was negligible when the COD/S ranged between 4.85/l and 18.53/l. After 24 hours, the COD removals were 110 +/- 6, 213 +/- 9, 375 +/- 8 and 410 +/- 10 mgl(-1) when the COD/S was 4.85/1, 8.9/1, 12.5/1 and 18.53/1, respectively. The COD removal increased with the increasing COD of the influent, which fitted to the model of first-order reaction kinetics. PMID:23530340

  7. Different Methods of Manufacturing Fe-Based Oxygen Carrier Particles for Reforming Via Chemical Looping, and Their Effect on Performance

    NASA Astrophysics Data System (ADS)

    Cleeton, J. P. E.; Bonn, C. D.; Müller, C. R.; Dennis, J. S.; Scott, S. A.

    Chemical looping combustion (CLC) is a means of combusting carbonaceous fuels, which inherently separates the greenhouse gas carbon dioxide from the remaining combustion products, and has the potential to be used for the production of high-purity hydrogen. Iron-based oxygen carriers for CLC have been subject to considerable work; however, there are issues regarding the lifespan of iron-based oxygen carriers over repeated cycles. In this work, haematite (Fe2O3) was reduced in an N2+CO+CO2 mixture within a fluidised bed at 850°C, and oxidised back to magnetite (Fe3O4) in a H2O+N2 mixture, with the subsequent yield of hydrogen during oxidation being of interest. Subsequent cycles started from Fe3O4 and two transition regimes were studied; Fe3O4↔Fe0.947O and Fe3O4↔Fe. Particles were produced by mechanical mixing and co-precipitation. In the case of co-precipitated particles, Al was added such that the ratio of Fe:Al by weight was 9:1, and the final pH of the particles during precipitation was investigated for its subsequent effect on reactivity. This paper shows that co-precipitated particles containing additives such as Al may be able to achieve consistently high H2 yields when cycling between Fe3O4 and Fe, and that these yields are a function of the ratio of [CO2] to [CO] during reduction, where thermodynamic arguments suggest that the yield should be independent of this ratio. A striking feature with our materials was that particles made by mechanical mixing performed much better than those made by co-precipitation when cycling between Fe3O4 and Fe0.947O, but much worse than co-precipitated particles when cycling between Fe3O4 and Fe.

  8. Self-initiating volume discharge in iodides used for producing atomic iodine in pulsed chemical oxygen - iodine lasers

    SciTech Connect

    Belevtsev, A A; Kazantsev, S Yu; Saifulin, A V; Firsov, K N

    2003-06-30

    A volume self-sustained discharge (VSD) in iodides (C{sub 3}H{sub 7}I, C{sub 4}H{sub 9}I) and in their mixtures with SF{sub 6}, N{sub 2}, and O{sub 2} in the presence of small-scale inhomogeneities on the cathode surface is shown to develop in the form of a self-initiating volume discharge (SIVD), i.e., a volume discharge without any preionisation including discharge gaps with a strong edge enhancement of the electric field. Additions of SF{sub 6} or N{sub 2} to the iodides improves the stability and homogeneity of the SIVD, while adding up to 300 % (relative to the partial iodide pressure) of O{sub 2} to these mixtures has only an insignificant effect on the discharge stability. The possibility of SIVD initiation was modelled experimentally in a 1.5-L discharge volume. For the C{sub 4}H{sub 9}I:O{sub 2}:SF{sub 6}=0.083:0.25:0.67 mixture at a pressure of 72 Torr, the specific energy input into the discharge plasma ranged up to 130 J L{sup -1} in this geometry. A conclusion was drawn that the SIVD is promising for the production of atomic iodine in the pulsed and repetitively pulsed operating regimes of a chemical oxygen - iodine laser. (lasers)

  9. Dissociation of I II in chemical oxygen-iodine lasers: experiment, modeling, and pre-dissociation by electrical discharge

    NASA Astrophysics Data System (ADS)

    Katz, A.; Waichman, K.; Dahan, Z.; Rybalkin, V.; Barmashenko, B. D.; Rosenwaks, S.

    2007-06-01

    The dissociation of I II molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three dimensional computational fluid dynamics calculations. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature and I II dissociation fraction at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven (AIAA J. 44, 1593 (2006)), where I II(A' 3Π 2u), I II(A 3Π 1u) and O II(a1Δ g, v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner et al. (J. Phys. Chem. 87, 2348 (1983)), involving I(2P 1/2) and I II(X1Σ + g, v). In addition, we examined a new method for enhancement of the gain and power in a COIL by applying DC corona/glow discharge in the transonic section of the secondary flow in the supersonic nozzle, dissociating I II prior to its mixing with O II(1Δ). The loss of O II(1Δ) consumed for dissociation was thus reduced and the consequent dissociation rate downstream of the discharge increased, resulting in up to 80% power enhancement. The implication of this method for COILs operating beyond the specific conditions reported here is assessed.

  10. Toward understanding the dissociation of I2 in chemical oxygen-iodine lasers: Combined experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Waichman, K.; Rybalkin, V.; Katz, A.; Dahan, Z.; Barmashenko, B. D.; Rosenwaks, S.

    2007-07-01

    The dissociation of I2 molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three-dimensional computational fluid dynamics calculations. The measurements, briefly reported in a recent paper [Rybalkin et al., Appl. Phys. Lett. 89, 021115 (2006)] and reanalyzed in detail here, revealed that the number N of consumed O2(aΔg1) molecules per dissociated I2 molecule depends on the experimental conditions: it is 4.5±0.4 for typical conditions and I2 densities applied for optimal operation of the COIL but increases at lower I2 densities. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature, I2 dissociation fraction, and N at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven [AIAA J. 44, 1593 (2006)], where I2(A'Π2u3), I2(AΠ1u3), and O2(aΔg1,v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner III et al. [J. Phys. Chem. 87, 2348 (1983)], involving I(P1/22) and I2(XΣg +1,v).

  11. The subsonic chemical oxygen-iodine laser : comparison of a theoretical model to experiments in the 30 W range

    NASA Astrophysics Data System (ADS)

    Churassy, S.; Bouvier, A. J.; Bouvier, A.; Erba, B.; Setra, M.

    1994-10-01

    The performances of a small scale subsonic chemical oxygen-iodine laser have been improved, the output laser power being increased from 5 to 34 W, with the same gas pumping system. At this power range, we have shown that the modeling of the laser must include the temperature effects on the reaction kinetics. Our model shows also that the addition of a buffer gas such as SF6 achieves a significant cooling of the active medium, which in turn allows a better laser power extraction. Les performances d'un laser subsonique iode-oxygne chimique petite chelle ont t amliores, la puissance laser tant augmente de 5 W 34 W avec le mme ensemble de pompage. Nous avons montr que, dans ce domaine de puissance, la modlisation du laser doit inclure les effets de temprature sur les cintiques des ractions. Notre modle montre galement que l'adjonction d'un gaz tampon tel que SF6 conduit un refroidissement important du milieu actif, permettant alors une meilleure extraction de la puissance laser.

  12. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma.

    PubMed

    Kim, So Hyun; Cui, Yidan; Lee, Min Jung; Nam, Seong-Won; Oh, Doori; Kang, Seong Ho; Kim, Youn Sang; Park, Sungsu

    2011-01-21

    This study describes a simple and low cost method for fabricating enclosed transparent hydrophilic nanochannels by coating low-viscosity PDMS (monoglycidyl ether-terminated polydimethylsiloxane) as an adhesion layer onto the surface of the nanotrenches that are molded with a urethane-based UV-curable polymer, Norland Optical Adhesive (NOA 63). In detail, the nanotrenches made of NOA 63 were replicated from a Si master mold and coated with 6 nm thick layer of PDMS. These nanotrenches underwent an oxygen plasma treatment and finally were bound to a cover glass by chemical bonding between silanol and hydroxyl groups. Hydrophobic recovery that is observed in the bulk PDMS was not observed in the thin film of PDMS on the mold and the PDMS-coated nanochannel maintained its surface hydrophilicity for at least one month. The potentials of the nanochannels for bioapplications were demonstrated by stretching ?-DNA (48,502 bp) in the channels. Therefore, this fabrication approach provides a practical solution for the simple fabrication of the nanochannels for bioapplications. PMID:20957251

  13. Gain and temperature in a slit nozzle supersonic chemical oxygen-iodine laser with transonic and supersonic injection of iodine

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje

    2002-05-01

    Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.

  14. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  15. Diffusion and interactions of carbon dioxide and oxygen in the vicinity of the active site of Rubisco: Molecular dynamics and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    El-Hendawy, Morad M.; Garate, Jos-Antonio; English, Niall J.; O'Reilly, Stephen; Mooney, Damian A.

    2012-10-01

    Molecular dynamics (MD) at the molecular mechanical level and geometry optimisation at the quantum mechanical level have been performed to investigate the transport and fixation of oxygen and carbon dioxide in the cavity of ribulose-1,5-bisphosphate carboxylase/oxygenase, or Rubisco. Multiple MD simulations have been carried out to study the diffusive behaviour of O2 and CO2 molecules from the Mg2+ cation in Rubisco at 298 K and 1 bar, being one step in the overall process of carboxylation/oxygenation in Rubisco. In addition to this work, in order to gain additional perspective on the role of chemical reaction rates and thermodynamics, oxygen, and carbon dioxide uptake mechanisms have also been investigated by the aid of quantum chemical calculations. The results indicate that the activation barrier for carboxylation is slightly lower than that of oxygenation. This agrees qualitatively with experimental findings, and rationalises the observed competition between both catalytic processes in nature. Finally, the longer-lived persistence of CO2 in the vicinity of the active centre (i.e., slower self-diffusion) may serve to explain, in part, why carboxylation is the more kinetically favoured on an overall basis compared to oxygenation.

  16. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.

    PubMed

    Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang

    2014-05-01

    Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. PMID:25079636

  17. Effect of oxygen inhibition in two-step self-etch systems on surface free energy and dentin bond strength with a chemically cured resin composite.

    PubMed

    Yamaji, Ayumi; Tsujimoto, Akimasa; Asaoka, Tetsui; Matsuyoshi, Saki; Tsuchiya, Kenji; Takamizawa, Toshiki; Miyazaki, Masashi

    2014-09-01

    We compared the surface free energies and dentin bond strengths of two-step self-etch systems with and without an oxygen-inhibited layer. The adhesives were applied to self-etching primer-treated dentin surfaces of bovine incisors, after which the teeth were light-irradiated and the oxygen-inhibited layer was left intact or removed with ethanol. We determined surface free energies (?S) and their components by measuring the contact angles of three test liquids placed on the cured adhesives. We also measured the dentin bond strengths of chemically cured resin composite to the adhesives, with and without the oxygen-inhibited layer. For all surfaces, the estimated surface tension component, ?S(LW), was relatively constant. The Lewis base (?S(-)) component decreased significantly when the oxygen-inhibited layer was removed, whereas the Lewis acid (?S(+)) component slightly increased. The dentin bond strengths of the two-step self-etch systems did not significantly differ in relation to the presence of the oxygen-inhibited layer. Although the surface free energy of the adhesive was affected by the presence of the oxygen-inhibited layer, no changes in dentin bond strength were detected. PMID:25231146

  18. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms

    NASA Astrophysics Data System (ADS)

    Druschel, Gregory K.; Emerson, David; Sutka, R.; Suchecki, P.; Luther, George W., III

    2008-07-01

    Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O 2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O 2, and FeS (aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 ?M. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O 2 concentrations of approximately 50 ?M, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O 2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, P O2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS (aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.

  19. Particle formation during low-pressure chemical vapor deposition from silane and oxygen: Measurement, modeling, and film properties

    NASA Astrophysics Data System (ADS)

    Kim, T.; Suh, S.-M.; Girshick, S. L.; Zachariah, M. R.; McMurry, P. H.; Rassel, R. M.; Shen, Z.; Campbell, S. A.

    2002-03-01

    Particle generation in thermal chemical vapor deposition (CVD) processes can lead to the formation of contaminant particles that affect film properties and eventually device performance. This article reports on measurements of particle formation during low-pressure CVD of SiO2 from silane and oxygen. Measurements of aerosol size distributions were made using a particle beam mass spectrometer (PBMS) and were carried out at pressures and temperatures ranging from 0.5 to 2.0 Torr (67-267 Pa) and 200-800 C, using an O2/SiH4 ratio of 20. We found that within this parameter space, there are three different particle formation regions and a particle-free region. The particle formation regions include an explosion region [200-300 C, P>~1.0 Torr (~80 Pa)], an unsteady region [400-600 C, P>~0.8 Torr (~107 Pa)], and a steady region [700-800 C, P>~0.6 Torr (~67 Pa)]. PBMS size analysis in the steady region shows that the size distributions are bimodal with one mode around 7 nm in diameter and the other around 20 nm, which is in reasonable agreement with transmission electron microscopy measurements. A numerical model was developed to simulate particle nucleation and growth in this system. The model predicts that for a given temperature, there exists a critical pressure above which abundant particle formation occurs and below which particle production is insignificant. The pressures for which particle formation was measured with the PBMS are in good agreement with model predictions, and measured and calculated particle sizes are in reasonable agreement. It is also found that there is a correlation between particle concentration and film surface morphology, dielectric constant, and current-voltage characteristics of the film.

  20. The effect of silver coating on magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by chemical reduction

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; Srinivas, V.; Ram, S.; Chandrasekhar Rao, T. V.

    2007-08-01

    Ni-nickel oxide and Ni-Ag nanoparticles with core-shell morphology have been synthesized by a simple two-step chemical route. It involves the reduction of Ni2+ cations to Ni particles with sodium borohydride (NaBH4) in aqueous solution, followed by coating part of the sample with a surface layer of silver. The coating was accomplished via a simple transmetallation reaction, \\mathrm {Ni+ 2Ag^{+} \\to 2Ag+Ni^{2+}} , in aqueous AgNO3 solution at room temperature. Particles left uncoated have a thin spontaneous surface oxide layer of nickel oxide, presumably non-stoichiometric, as a passivating layer. From x-ray diffraction patterns, the Ni in as-prepared samples, both coated and uncoated, has been identified as being in a tetragonal crystal structure, different from its usual fcc form. This structural modification is due to the presence of interstitial oxygen atoms in the Ni lattice, and results in appreciably modified magnetic properties in this new phase of Ni, for example a linear non-hysteretic magnetization response with applied field at room temperature. A comparative magnetic study of the uncoated and silver coated Ni particles exemplifies the role played by the Ag shell in modifying the magnetic properties of the coated sample. This is evident from the smaller coercivity and remnant magnetization in the hysteresis loop at 5 K in the case of the Ag coated as-prepared sample, larger magnetic moment but smaller saturation magnetization and susceptibility of the Ag coated air annealed sample, and higher blocking temperature for this sample in comparison to the uncoated counterparts. These features have been coherently explained on the basis of the structural modifications induced in these samples by Ag coating.

  1. OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO

    SciTech Connect

    Ramirez, I.; Lambert, D. L.; Allende Prieto, C.

    2013-02-10

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P {sub 1}), thick-disk (P {sub 2}), and halo (P {sub 3}) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P {sub 2} > 0.5) relative to thin-disk (P {sub 1} > 0.5) stars with [Fe/H] {approx}< -0.2, as well as a 'knee' that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] {approx}> -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with 'intermediate' kinematics (P {sub 1} < 0.7, P {sub 2} < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P {sub 3} > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s{sup -1}; halo stars with V > -200 km s{sup -1} follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with 'ambiguous' kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  2. Kinetic-fluid dynamics modeling of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Waichman, K.; Barmashenko, B. D.; Rosenwaks, S.

    2009-09-15

    The mechanism of I{sub 2} dissociation in supersonic chemical oxygen-iodine lasers (COILs) is studied applying kinetic-fluid dynamics modeling, where pathways involving the excited species I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},10<=v<25), I{sub 2}(X {sup 1}SIGMA{sub g}{sup +},25<=v<=47), I{sub 2}(A{sup '} {sup 3}PI{sub 2u}), I{sub 2}(A {sup 3}PI{sub 1u}), O{sub 2}(X {sup 3}SIGMA{sub g}{sup -},v), O{sub 2}(a {sup 1}DELTA{sub g},v), O{sub 2}(b {sup 1}SIGMA{sub g}{sup +},v), and I({sup 2}P{sub 1/2}) as intermediate reactants are included. The gist of the model is adding the first reactant and reducing the contribution of the second as compared to previous models. These changes, recently suggested by Azyazov, et al. [J. Chem. Phys. 130, 104306 (2009)], significantly improve the agreement with the measurements of the gain in a low pressure supersonic COIL for all I{sub 2} flow rates that have been tested in the experiments. In particular, the lack of agreement for high I{sub 2} flow rates, which was encountered in previous models, has been eliminated in the present model. It is suggested that future modeling of the COIL operation should take into account the proposed contribution of the above mentioned reactants.

  3. Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water.

    PubMed

    Bonf, Maricy R L; Grossman, Matthew J; Mellado, Encarnacion; Durrant, Lucia R

    2011-09-01

    Ten halophilic Archaea (Haloarchaea) strains able to degrade aromatic compounds were isolated from five hypersaline locations; salt marshes in the Uyuni salt flats in Bolivia, crystallizer ponds in Chile and Cabo Rojo (Puerto Rico), and sabkhas (salt flats) in the Persian Gulf (Saudi Arabia) and the Dead Sea (Israel and Jordan). Phylogenetic identification of the isolates was determined by 16S rRNA gene sequence analysis. The isolated Haloarchaea strains were able to grow on a mixture of benzoic acid, p-hydroxybenzoic acid, and salicylic acid (1.5mM each) and a mixture of the polycyclic aromatic hydrocarbons, naphthalene, anthracene, phenanthrene, pyrene and benzo[a]anthracene (0.3mM each). Evaluation of the extent of degradation of the mixed aromatic hydrocarbons demonstrated that the isolates could degrade these compounds in hypersaline media containing 20% NaCl. The strains were shown to reduce the COD of hypersaline crude oil reservoir produced waters significantly beyond that achieved using standard hydrogen peroxide treatment alone. PMID:21621813

  4. Evaluation and use of a diffusion-controlled sampler for determining chemical and dissolved oxygen gradients at the sediment-water interface

    USGS Publications Warehouse

    Simon, N.S.; Kennedy, M.M.; Massoni, C.S.

    1985-01-01

    Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.

  5. Comparative investigation on chemical looping combustion of coal-derived synthesis gas containing H2S over supported NiO oxygen carriers

    SciTech Connect

    Ksepko, E.; Siriwardane, R.; Tian, H.; Simonyi, T.; Sciazko, M.

    2010-01-01

    Chemical looping combustion (CLC) of simulated coal-derived synthesis gas was conducted with NiO oxygen carriers supported on SiO2, ZrO2, TiO2, and sepiolite. The effect of H2S on the performance of these samples for the CLC process was also evaluated. Five-cycle thermogravimetric analysis (TGA) tests at 800 #1;C indicated that all oxygen carriers had a stable performance at 800 #1;C, except NiO/SiO2. Full reduction/oxidation reactions of the oxygen carrier were obtained during the five-cycle test. It was found that support had a significant effect on reaction performance of NiO both in reduction and oxidation rates. The reduction reaction was significantly faster than the oxidation reaction for all oxygen carriers, while the oxidation reaction is fairly slow due to oxygen diffusion on NiO layers. The reaction profile was greatly affected by the presence of H2S, but there was no effect on the capacity due to the presence of H2S in synthesis gas. The presence of H2S decreased reduction reaction rates significantly, but oxidation rates of reduced samples increased. X-ray diffraction (XRD) data of the oxidized samples after a five-cycle test showed stable crystalline phases without any formation of sulfides or sulfites/sulfates. Increase in reaction temperature to 900 #1;C had a positive effect on the performance.

  6. Identification, design and synthesis of oxygenated hydrocarbon-based carbon dioxide-soluble polymers for chemical and petroleum engineering applications

    NASA Astrophysics Data System (ADS)

    Hong, Lei

    Over the past two decades the use of sub/supercritical CO2 has received much attention as a green alternative to organic solvents for chemical processes because of its pressure-tunable physicochemical properties and economic advantages. However the advantages are diminished because of a relative narrow range of CO2-soluble materials. The goal of this work is to identify, design and synthesize oxygenated hydrocarbon-based CO 2-soluble polymers that are able to serve as construction blocks for copolymers, dispersants, surfactants, and thickeners. Without concerning on the cost and the environmental persistence like fluorinated materials, the inexpensive and environmentally benign materials would significantly enhance the viability of sub/supercritical CO2-based technology. Based on both experimental heuristics and ab initio simulation of molecular modeling (performed by Dr. Johnson's group), we proposed specific new polymer structures: poly (3-acetoxy oxetane) (PAO), poly (vinyl methoxymethyl ether) (PVMME), poly (vinyl 1-methoxyethyl ether) (PVMEE), and cellulose triacetate (CTA) oligomers. Phase behavior studies were also performed with novel CO 2-philic compounds containing vinyl acetate, propylene glycol, or multiple tert-butyl groups. PAO, PVMME and PVMME were soluble in CO2, but not as soluble as poly (vinyl acetate). Oligomers of cellulose triacetate with as many as four repeat units solubilized into dense CO2 less than 14 MPa in the concentration range of 1-5 wt%. Phase behaviors of more than twenty compounds in dense CO2 were studied in this project. A new type of phase behavior for solid CO2-philes that melt and dissolve in CO 2 was detailed using a model binary mixture of beta-D-maltose octaacetate and CO2. Copolymers of tetrafluoroethylene (TFE) and vinyl acetate (VAc) exhibited lower miscibility pressures than either of the homopolymers, probably due to quadradentate binding configurations with CO 2. Phase behavior investigation of poly (propylene glycol) (PPG) monobutyl ether in CO2 demonstrated ether-CO2 interactions should receive as much attention as carbonyl-CO2 interactions when designing CO2-philic functional groups. 1,3,5-tri-tert-butylbenzene and 2,4,6-tri-tert-butylphenol were both extraordinarily soluble in CO2, and are excellent candidates for CO2-soluble sand binders. In summary, although a new CO2 thickener was not identified, new non-fluorous CO2-soluble materials were identified, which were, in general, acetate-rich with flexible chains, weak self-interactions, and multidentate interaction between CO2 and solute functional groups.

  7. Sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers for chemical-looping combustion by coal char

    SciTech Connect

    Haibo Zhao; Liming Liu; Baowen Wang; Di Xu; Linlin Jiang; Chuguang Zheng

    2008-03-15

    This paper focuses on the investigation of Ni-based oxygen carriers for CLC by coal char. First, Al(OC{sub 3}H{sub 7}){sub 3} and Ni(NO{sub 3}){sub 2} are selected as the main raw materials to prepare sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The oxygen carrier with a mass content of 60% NiO, a sintering temperature of 1300{sup o}C, and a sintering time of 6 h performs comparatively well. Second, the reduction reaction of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char and the circular reduction/oxidation reactions of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char/air or hydrogen/air are carried out in a thermogravimetric analysis (TGA) instrument to investigate the reactivities and chemical life of the prepared NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The experimental results show that (a) when the TGA temperature is higher than 850{sup o}C, NiO/NiAl{sub 2}O{sub 4} starts to react with coal char rapidly, which indicates that CLC of coal char using NiO/NiAl{sub 2}O{sub 4} as oxygen carriers is a feasible technology of energy utilization in principle; (b) NiO/NiAl{sub 2}O{sub 4}, which maintains its activity over single-cycle reduction/oxidation reactions with char/air or multiple-cycle reduction/oxidation reactions with hydrogen/air, exhibits extremely good recyclablity; (c) the porous beehive structure of the NiO/NiAl{sub 2}O{sub 4} particle is maintained, and the sintering behavior between different particles is not observed during cyclic studies. Those experimental results prove the sol-gel-derived oxygen carrier NiO/NiAl{sub 2}O{sub 4} is capable of being used in chemical-looping combustion fueled by coal char or H{sub 2}. 51 refs., 5 figs., 5 tabs.

  8. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  9. Chemical bonding, interface strength, and oxygen K electron-energy-loss near-edge structure of the Cu/Al{sub 2}O{sub 3} interface

    SciTech Connect

    Mizoguchi, Teruyasu; Sasaki, Takeo; Matsunaga, Katsuyuki; Ikuhara, Yuichi; Tanaka, Shingo; Kohyama, Masanori; Yamamoto, Takahisa

    2006-12-15

    Chemical bondings and oxygen K electron-energy-loss near-edge structures (ELNES) of oxygen terminated Cu/Al{sub 2}O{sub 3} heterointerfaces with hollow and on-top configurations were theoretically investigated by using a first principles orthogonalized linear combination of atomic orbitals method. From the chemical bonding analysis, it was found that the hollow configuration has stronger ionic and covalent bondings as compared with the on-top configuration, and the weakness of the on-top configuration originates from the strong antibonding interactions between an interfacial oxygen and the second near neighbor Cu. Detailed analysis using overlap population diagrams revealed the formation mechanism of the strong antibonding interactions in the on-top configuration. In the oxygen K ELNES calculation, a prepeak feature appears in both configurations and it was predicted that the prepeak for the on-top configuration is larger than that for the hollow configuration. The overlap population diagrams elucidated that the prepeak is mainly composed of the O-Cu antibonding interactions, and the larger prepeak of the on-top configuration originates from the larger O-Cu interactions. The dependence of O-K ELNES on the direction of the momentum transfer vector was also discussed. Knowledge of the responsible direction of the momentum transfer vector in relation to the interface orientation was concluded to be indispensable in order to discuss detailed profiles of the ELNES from metal/ceramic heterointerfaces. This study reveals the effect of the atomic configuration of the interface to the chemical bondings, interface strength, and ELNES.

  10. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H{sub 2}) for chemical-looping combustion

    SciTech Connect

    Alberto Abad; Francisco Garcia-Labiano; Luis F. de Diego; Pilar Gayn; Juan Adnez

    2007-08-15

    The reactivity of three Cu-, Fe-, and Ni-based oxygen carriers to be used in a chemical-looping combustion (CLC) system using syngas as fuel has been analyzed. The oxygen carriers exhibited high reactivity during reduction with fuel gases present in syngas (H{sub 2} and CO), with average values in the range 8-30% min{sup -1}. No effect of the gas products (H{sub 2}O, CO{sub 2}) on the reduction reaction rate was detected. The kinetic parameters of reaction with H{sub 2} and CO have been determined by thermogravimetric analysis. The grain model with spherical or platelike geometry in the grain was used for the kinetic determination, in which the chemical reaction controlled the global reaction rate. The activation energies determined for these reactions were low, with values ranging from 14 to 33 kJ mol{sup -1}. The reaction order depended on the reacting gas, and values from 0.5 to 1 were found. Moreover, the reactivity of the oxygen carriers when both H{sub 2} and CO are simultaneously present in the reacting gases has been analyzed, both at atmospheric and pressurized conditions. For the Cu- and Fe-based oxygen carriers, the reaction rate of the oxygen carrier with syngas corresponded to the addition of the reaction rates for the individual fuel gases, H{sub 2} and CO. For the Ni-based oxygen carrier, the reaction rate was that corresponding to the fuel gas that reacted faster with the oxygen carrier at the reacting conditions (fuel concentration, temperature, and pressure). The consequences of the behavior of the reaction of syngas and the water-gas shift (WGS) equilibrium on the design of the fuel reactor of a CLC system have been analyzed. A preliminary estimation of the solids inventory for the use of syngas in the fuel reactor of a CLC system gave values in the range of 19-34 kg MW{sup -1} when the WGS equilibrium was considered to be instantaneous. 8 figs., 4 tabs.

  11. Carbon-13, nitrogen-15 and oxygen-17 NMR chemical shifts of 1-ethyl-2-pyrrolidinone and 1-methyl-2-pyrrolidinone in some solvents

    NASA Astrophysics Data System (ADS)

    Ruostesuo, P.; Hkkinen, A.-M.; Peltola, K.

    13C, 15N and 17O NMR chemical shifts have been determined for 1-ethyl-2-pyrrolidinone neat and in some hydrogen bonding and non-hydrogen bonding solvents. Since hydrogen bond formation occurs with the oxygen atom of the carbamoyl group of 1-ethyl-2-pyrrolidinone, the sensitivity of the chemical shifts to the solvent decreases for these nuclei in the order 17O > 15N > 13C. Hydrogen bond forming solvents change the NMR chemical shifts to lower frequencies for the 17O nucleus and to higher frequencies for the 15N and 13C nuclei, reflecting the change in the double bond character between the nitrogen and carbon atoms of the amide. The changes observed in the chemical shifts seem primarily to depend on the hydrogen bond interactions of 1-ethyl-2-pyrrolidinone with the solvents; for the effect of the solvent on the chemical shifts of the nuclei of 1-ethyl-2-pyrrolidinone accords with the order of the hydrogen bonding and the polarity parameters of the solvents. The NMR chemical shift data for some 1-methyl-2-pyrrolidinonesolvent systems are also presented.

  12. Reactivity deterioration of NiO/Al{sub 2}O{sub 3} oxygen carrier for chemical looping combustion of coal in a 10 kW{sub th} reactor

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2009-07-15

    A relatively long-term experiment for chemical looping combustion of coal with NiO/Al{sub 2}O{sub 3} oxygen carrier was carried out in a 10 kW{sub th} continuous reactor of interconnected fluidized beds, and 100 h of operation was reached with the same batch of the oxygen carrier. The reactivity deterioration of the oxygen carriers was present during the experimental period. The reactivity deterioration of reacted oxygen carriers at different experimental stages was evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray fluorescence spectrometer. SEM analysis showed no significant change in the morphology of the nickel-based oxygen carrier at the fuel reactor temperature {<=}940 C, but loss of surface area and porosity of reacted oxygen carriers was observed when the fuel reactor temperature exceeded 960 C. The results show that the sintering effect have mainly contributed to the reactivity deterioration of reacted oxygen carriers in the CLC process for coal, while the effects of coal ash and sulfur can be ignored. The oxidization of reduced oxygen carrier with air was an intensive exothermic process, and the high temperature of oxygen carrier particles led to sintering on the surface of oxygen carrier particles in the air reactor. Attention must be paid to control the external circulation of oxygen carrier particles in the interconnected fluidized beds in order to efficiently transport heat from the air reactor to the fuel reactor, and reduce the temperature of oxygen carrier particles in the air reactor. Improvement of reactivity deterioration of reacted oxygen carriers was achieved by the supplement of steam into the fuel reactor. Nevertheless, NiO/Al{sub 2}O{sub 3} is still one of the optimal oxygen carriers for chemical looping combustion of coal if the sintering of oxygen carrier is minimized at the suitable reactor temperature. (author)

  13. Chemical bonding in the outer core: high-pressure electronic structures of oxygen and sulfur in metallic iron

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structures of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. -from Authors

  14. Effect of an oxygen plasma on the physical and chemical properties of several fluids for the Liquid Droplet Radiator

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Coles, Carolyn E.

    1987-01-01

    The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethylsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed depolymerization of the fluid molecule.

  15. Effect of an oxygen plasma on the physical and chemical properties of several fluids for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.; Coles, C. E.

    1986-01-01

    The Liquid Droplet Radiator is one of several radiator systems currently under investigation by NASA Lewis Research Center. It involves the direct exposure of the radiator working fluid to the space environment. An area of concern is the potential harmful effects of the low-Earth-orbit atomic oxygen environment on the radiator working fluid. To address this issue, seven candidate fluids were exposed to an oxygen plasma environment in a laboratory plasma asher. The fluids studied included Dow Corning 705 Diffusion Pump Fluid, polymethylphenylsiloxane and polydimethlsiloxane, both of which are experimental fluids made by Dow Corning, Fomblin Z25, made by Montedison, and three fluids from the Krytox family of fluids, Krytox 143AB, 1502, and 16256, which are made by DuPont. The fluids were characterized by noting changes in visual appearance, physical state, mass, and infrared spectra. Of the fluids tested, the Fomblin and the three Krytoxes were the least affected by the oxygen plasma. The only effect noted was a change in mass, which was most likely due to an oxygen-catalyzed deploymerization of the fluid molecule.

  16. Chemical structure and oxygen dynamics in Ba[sub 2]In[sub 2]O[sub 5

    SciTech Connect

    Adler, S.B.; Reimer, J.A.; Baltisberger, J.; Werner, U. )

    1994-01-26

    Oxygen-17 magnetic resonance, in conjunction with high-temperature X-ray diffraction (XRD) and differential thermal analysis (DTA), were used to investigate the structure of Ba[sub 2]In[sub 2]O[sub 5] and the dynamics of oxygen ion motion between room temperature and 1200[degrees]C. NMR and thermal analysis demonstrate that at 925[degrees]C there is an order-disorder transition which involves oxygen atoms between layers of octahedrally coordinated indium atoms. Both NMR and X-ray diffraction show that the material retains an orthorhombic (layered) structure until approximately 1075[degrees]C, at which point the material becomes cubic. The number of mobile oxygen atoms in the structure increases continuously between 925 and 1075[degrees]C, and only above 1075[degrees]C does the full population of anions become mobile. These results imply that vacancies contribute to transport two-dimensionally within the tetrahedral layers at the order-disorder transition. 26 refs., 13 figs.

  17. Deactivation rate of I{sub 2} molecules (X, v {>=} 30) in the medium of a chemical oxygen-iodine laser

    SciTech Connect

    Pichugin, S Yu

    2008-08-31

    The effective deactivation rate constants are calculated for I{sub 2}(X) molecules at vibrational levels with v {>=} 30 colliding with N{sub 2} and O{sub 2} molecules in the medium of a chemical oxygen-iodine laser. The calculated constants (4x10{sup -12} cm{sup 3} s{sup -1} and 3x10{sup -12} cm{sup 3} s{sup -1}) are less by half plus than the corresponding constants found earlier in the paper of Lawrence et al., where the dissociation of I{sub 2} was neglected in calculations. (lasers, active media)

  18. Chemical analysis at atomic resolution of isolated extended defects in an oxygen-deficient, complex manganese perovskite.

    PubMed

    Ruiz-Gonzlez, M Luisa; Corts-Gil, Raquel; Torres-Pardo, Almudena; Gonzlez-Merchante, Daniel; Alonso, Jos M; Gonzlez-Calbet, Jos M

    2014-01-27

    A general approach to the structural and analytical characterization of complex bulk oxides that exploits the advantage of the atomic spatial resolution and the analytical capability of aberration-corrected microscopy is described. The combined use of imaging and spectroscopic techniques becomes necessary to the complete characterization of the oxygen-deficient colossal magnetoresistant La(0.56)Sr(0.44)MnO(2.5)-related perovskite. In this compound, the formation of isolated (La/Sr)O and MnO rock-salt-type planar defects are identified from atomically resolved High Angle Annular Dark Field (HAADF) images. The location of the oxygen atomic columns from Annular Bright Field (ABF) images indicates edge-sharing MnO6 octahedra in the MnO planes and the study performed by Electron Energy Loss Spectroscopy (EELS) reveals different Mn oxidation states derived from the corner- or edge-sharing MnO6 octahedra environment. PMID:24375704

  19. Radiochemical ageing of EPDM elastomers.. 2. Identification and quantification of chemical changes in EPDM and EPR films γ-irradiated under oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Rivaton, A.; Cambon, S.; Gardette, J.-L.

    2005-01-01

    This paper is devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing under oxygen atmosphere of ethylene-propylene-diene monomer (EPDM) and ethylene-propylene rubber (EPR) films containing the same molar ratio of ethylene/propylene. IR and UV-Vis analysis showed that radiooxidation produces a complex mixture of different products and provokes the consumption of the diene double bond. The radiochemical yields of formation of ketones, carboxylic acids, hydroperoxides and alcohols were determined by combining IR analysis with derivatisation reactions and chemical titration. The contributions of secondary and tertiary structures of these two types of -OH groups were separated. Esters and γ-lactones were formed in low concentration. The oxidation products distribution in irradiated films was determined by micro-FTIR spectroscopy. Crosslinking was evaluated by gel fraction methods. In complement, the gas phase composition was analysed by mass spectrometry.

  20. The Interconversion of Electrical and Chemical Energy: The Electrolysis of Water and the Hydrogen-Oxygen Fuel Cell.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Discusses some of the drawbacks of using a demonstration of the electrolysis of water to illustrate the interconversion between electrical and chemical energy. Illustrates a simple apparatus allowing demonstration of this concept while overcoming these drawbacks. (CW)

  1. The Rate of Oxygen Utilization by Cells

    PubMed Central

    Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.

    2011-01-01

    The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270

  2. Kinetics of Oxidation of a Reduced Form of the Cu-Based Oxygen-Carrier for Use in Chemical-Looping Combustion

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Dennis, J. S.; Hayhurst, A. N.; Scott, S. A.

    A co-precipitated mixture of CuO and Al2O3 is a good oxygen-carrier for chemical-looping combustion. The kinetics of regeneration of this reduced oxygen-carrier (355 - 500 urn) were measured from 300 to 750°C when reacting it with O2. Care was taken to ensure these measurements were not affected by interphase mass transfer. Efforts were also made to minimise sampling problems by using a rapid-response mass spectrometer for reactions lasting for 45 s or less; otherwise, a paramagnetic analyser for O2 was used, since the mass spectrometer drifted with time. The order of reaction with respect to O2 was found to be ˜ unity at 300 to 750°C. Below 600°C, the reduced oxygen-carrier was incompletely oxidised to a mixture of CU2O and Al2O3. Above 600°C, regeneration was completely to CuO and Al2O3 and was controlled to a considerable extent by external mass transfer. At these higher temperatures, regeneration involved a shrinking core mechanism and the two consecutive steps: 2Cu + 1/2O_2 to Cu_2 O, Cu_2 O + 1/2O_2 to 2CuO. The activation energies and pre-exponential factors for both reactions were measured from initial rates. The kinetics in the first cycle of operations were found to be similar to those in the subsequent cycles.

  3. Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2.

    PubMed

    Chen, Wei; Zhao, Jing; Zhang, Jing; Gu, Lin; Yang, Zhenzhong; Li, Xiaomin; Yu, Hua; Zhu, Xuetao; Yang, Rong; Shi, Dongxia; Lin, Xuechun; Guo, Jiandong; Bai, Xuedong; Zhang, Guangyu

    2015-12-23

    Monolayer molybdenum disulfide (MoS2) has attracted great interest due to its potential applications in electronics and optoelectronics. Ideally, single-crystal growth over a large area is necessary to preserve its intrinsic figure of merit but is very challenging to achieve. Here, we report an oxygen-assisted chemical vapor deposition method for growth of single-crystal monolayer MoS2. We found that the growth of MoS2 domains can be greatly improved by introducing a small amount of oxygen into the growth environment. Triangular monolayer MoS2 domains can be achieved with sizes up to ?350 ?m and a room-temperature mobility up to ?90 cm(2)/(Vs) on SiO2. The role of oxygen is not only to effectively prevent the poisoning of precursors but also to eliminate defects during the growth. Our work provides an advanced method for high-quality single-crystal monolayer MoS2 growth. PMID:26623946

  4. Oxygen nonstoichiometry and thermo-chemical stability of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}

    SciTech Connect

    Kuhn, M.; Hashimoto, S.; Sato, K.; Yashiro, K.; Mizusaki, J.

    2013-01-15

    The oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO{sub 2}, and/or elevated temperatures. For applications of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}, such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO{sub 2} is crucial, as localized low pO{sub 2} could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} was measured at high and intermediate pO{sub 2} until the material decomposed (at log(pO{sub 2}/bar) Almost-Equal-To -4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} forms a 'super-reduced' solid solution before decomposing. When the sample underwent alternate reduction-oxidation, a hysteresis-like pO{sub 2} dependence of the oxygen content in the decomposition pO{sub 2} range was attributed to the reversible formation of ABO{sub 3} and A{sub 2}BO{sub 4} phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3-{delta}) of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} as a function of pO{sub 2} at 773-1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a 'two-step-forward one-step-back' reduction-oxidation (CT2) procedure). D1 and D2 denote the decomposition pO{sub 2}. The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: Black-Right-Pointing-Pointer Oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} at intermediate temperatures and p(O2). Black-Right-Pointing-Pointer Experimental confirmation of previously interpolated reduction enthalpy. Black-Right-Pointing-Pointer Decomposition p(O2) assessed by coulometric titration. Black-Right-Pointing-Pointer Hysteresis-like p(O2) dependence of oxygen content at decomposition p(O2).

  5. H2S Reactivity on Oxygen-Deficient Heterotrimetallic Cores: Cluster Fluxionality Simulates Dynamic Aspects of Surface Chemical Reactions.

    PubMed

    Adhikari, Debashis; Raghavachari, Krishnan

    2016-01-28

    Understanding the mechanistic aspects of heterogeneous reactions on supported metal catalysts is challenging due to several disparate factors, among which the dynamic nature of the surface is a major contributor. In this study, the dynamic aspect of a surface has been probed by choosing small metal clusters as illustrative models. Two anionic hetero-trimetallic clusters, namely, W2TcO6(-) and W2OsO6(-), were reacted with H2S gas to exhibit splitting of the gas molecule and complete oxygen-sulfur exchange in the metal core. During this atom-exchange process, the core exhibits remarkable fluxionality to augment a thiol proton migration from one metal center to another, as well as a rapid interchange of the terminal and bridging oxygens. The fluxional nature of the core is further evidenced by two oppositely oriented oxo groups working in concert to accomplish the proton transfer, upon introduction of sulfur inside the core. These fluxional processes in the small hetero-trimetallic cores closely resemble the dynamic nature of the surface in a heterogeneous reaction. Throughout the fluxional processes investigated in this study, two-state reactivity and multiple instances of spin crossover are observed in our computational studies. Interestingly, the neutral hetero-trimetallic cores can also undergo complete oxygen-sulfur exchange reaction with H2S. The investigated metal clusters are promising materials, since they not only can liberate dihydrogen from water (reported in J. Phys. Chem. A, 2014, 118, 11047) but also can completely strip the sulfur from environmentally hazardous H2S gas. PMID:26730799

  6. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor.

    PubMed

    Ycel, Mustafa; Beaton, Alexander D; Dengler, Marcus; Mowlem, Matthew C; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (?NOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ?NOx concentration, with 15.2 to 23.4 ?M (median=18.3 ?M); while at the 100 site ?NOx varied between 21.0 and 30.1 ?M over 40 hours (median = 25.1 ?M). The 170 m site had the highest median ?NOx level (25.8 ?M) with less variability (22.8 to 27.7 ?M). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 ?M in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  7. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  8. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention.

    PubMed

    Deng, Shuang; Shu, Yun; Li, Songgeng; Tian, Gang; Huang, Jiayu; Zhang, Fan

    2016-01-15

    Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon-oxygen functional groups indicate that the C=O, OH/C-O and (O-C=O)-O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed. PMID:26410268

  9. Chemical Reactivity of Reduced TiO2(110): The dominant role of surface defects in oxygen chemisorption

    SciTech Connect

    Petrik, Nikolay G.; Zhang, Zhenrong; Du, Yingge; Dohnalek, Zdenek; Lyubinetsky, Igor; Kimmel, Gregory A.

    2009-07-16

    O2 chemisorption on reduced, rutile TiO2(110) with various concentrations of oxygen vacancies (Ov) and bridging hydroxyls (OHb) is investigated with scanning tunneling microscopy, temperature programmed desorption and electron-stimulated desorption. On the annealed surface, 2 oxygen molecules can be chemisorbed per Ov. The same amount of O2 chemisorbs on surfaces where each Ov is converted to two OHb’s by exposure to water (i.e. 1 O2 per OHb). Surfaces with few or no Ov’s or OHb’s can be created by exposing the hydroxylated surface to O2 at room temperature, and the amount of O2 that chemisorbs on these surfaces at low temperatures is only ~20% of the amount on the annealed (reduced) surface. In contrast, the amount of chemisorbed O2 increases by more than a factor of two when the OHb concentration is enhanced – without changing the concentration of sub-surface Ti interstitials. The results indicate that the reactivity of TiO2(110) is primarily controlled by the amount of electron-donating surface species such as Ov’s and/or OHb’s, and not Ti3+ interstitials.

  10. Oxygen safety margins set thermal limits in an insect model system.

    PubMed

    Boardman, Leigh; Terblanche, John S

    2015-06-01

    A mismatch between oxygen availability and metabolic demand may constrain thermal tolerance. While considerable support for this idea has been found in marine organisms, results from insects are equivocal and raise the possibility that mode of gas exchange, oxygen safety margins and the physico-chemical properties of the gas medium influence heat tolerance estimates. Here, we examined critical thermal maximum (CTmax) and aerobic scope under altered oxygen supply and in two life stages that varied in metabolic demand in Bombyx mori (Lepidoptera: Bombycidae). We also systematically examined the influence of changes in gas properties on CTmax. Larvae have a lower oxygen safety margin (higher critical oxygen partial pressure at which metabolism is suppressed relative to metabolic demand) and significantly higher CTmax under normoxia than pupae (53C vs 50C). Larvae, but not pupae, were oxygen limited with hypoxia (2.5?kPa) decreasing CTmax significantly from 53 to 51C. Humidifying hypoxic air relieved the oxygen limitation effect on CTmax in larvae, whereas variation in other gas properties did not affect CTmax. Our data suggest that oxygen safety margins set thermal limits in air-breathing invertebrates and the magnitude of this effect potentially reconciles differences in oxygen limitation effects on thermal tolerance found among diverse taxa to date. PMID:26041031

  11. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures.

    PubMed

    Chen, Zaiming; Xiao, Xin; Chen, Baoliang; Zhu, Lizhong

    2015-01-01

    Surface functional groups such as carboxyl play a vital role in the environmental applications of biochar as a soil amendment. However, the quantification of oxygen-containing groups on a biochar surface still lacks systematical investigation. In this paper, we report an integrated method combining chemical and spectroscopic techniques that were established to quantitatively identify the chemical states, dissociation constants (pK(a)), and contents of oxygen-containing groups on dairy manure-derived biochars prepared at 100-700 C. Unexpectedly, the dissociation pH of carboxyl groups on the biochar surface covered a wide range of pH values (pH 2-11), due to the varied structural microenvironments and chemical states. For low temperature biochars (? 350 C), carboxyl existed not only as hydrogen-bonded carboxyl and unbonded carboxyl groups but also formed esters at the surface of biochars. The esters consumed OH(-) via saponification in the alkaline pH region and enhanced the dissolution of organic matter from biochars. For high temperature biochars (? 500 C), esters came from carboxyl were almost eliminated via carbonization (ester pyrolysis), while lactones were developed. The surface density of carboxyl groups on biochars decreased sharply with the increase of the biochar-producing temperature, but the total contents of the surface carboxyls for different biochars were comparable (with a difference <3-fold) as a result of the expanded surface area at high pyrolytic temperatures. Understanding the wide pKa ranges and the abundant contents of carboxyl groups on biochars is a prerequisite to recognition of the multifunctional applications and biogeochemical cycling of biochars. PMID:25453912

  12. Parameters of an electric-discharge generator of iodine atoms for a chemical oxygen-iodine laser

    SciTech Connect

    Azyazov, V N; Vorob'ev, M V; Voronov, A I; Kupryaev, Nikolai V; Mikheev, P A; Ufimtsev, N I

    2009-01-31

    Laser-induced fluorescence is used for measuring the concentration of iodine molecules at the output of an electric-discharge generator of atomic iodine. Methyl iodide CH{sub 3}I is used as the donor of atomic iodine. The fraction of iodine extracted from CH{sub 3}I in the generator is {approx}50%. The optimal operation regimes are found in which 80%-90% of iodine contained in the output flow of the generator was in the atomic state. This fraction decreased during the iodine transport due to recombination and was 20%-30% at the place where iodine was injected into the oxygen flow. The fraction of the discharge power spent for dissociation was {approx}3%. (elements of laser setups)

  13. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  14. Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems.

    PubMed

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2(-)), hydroxyl radical (HO), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  15. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  16. Oxygen isotope and chemical compositions of magnetite and olivine in the anomalous CK3 Watson 002 and ungrouped Asuka-881595 carbonaceous chondrites: Effects of parent body metamorphism

    NASA Astrophysics Data System (ADS)

    Davidson, Jemma; Krot, Alexander N.; Nagashima, Kazuhide; Hellebrand, Eric; Lauretta, Dante S.

    2014-08-01

    We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson-002 (anomalous CK3) and Asuka (A)-881595 (ungrouped C3). Magnetite in Watson-002 occurs as inclusion-free subhedral grains and rounded inclusion-bearing porous grains replacing Fe,Ni-metal. In A-881595, magnetite is almost entirely inclusion-free and coexists with Ni-rich sulfide and less abundant Ni-poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of ?17O values (from approximately -3 to -6). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A-881595 plot along a mass-dependent fractionation line with a slope of 0.5 and show a range of ?17O values from -2.4 to -1.1. Oxygen isotope compositions of magnetite in Watson-002 cluster near the CCAM line and a ?17O value of -4.0 to -2.9. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre-existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in ?17O values of magnetite between Watson-002 and A-881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.

  17. Enhanced indirect ferromagnetic p-d exchange coupling of Mn in oxygen rich ZnO:Mn nanoparticles synthesized by wet chemical method

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.; Lee, P.; Chen, R.; Sun, H. D.; Fengji, Li; Zhang, Sam

    2012-02-01

    This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural defects towards the ferromagnetic signal. The narrow-size-distributed ZnO:Mn nanoparticles based powders with oxygen rich stoichiometery were synthesized by wet chemical method using zinc acetate dihydrate and manganese acetate tetrahydrate as precursors. A consistent increase in the lattice cell volume, estimated from x-ray diffraction spectra and the presence of Mn 2p3/2 peak at 640.9 eV, in x-ray photoelectron spectroscopic spectra, confirmed a successful incorporation of manganese in its Mn2+ oxidation state in ZnO host matrix. Extended deep level emission spectra in Mn doped ZnO powders exhibited the signatures of oxygen interstitials and zinc vacancies except for the sample with 5 at. % Mn doping. The nanocrystalline powders with 2 and 5 at. % Mn doping concentration were ferromagnetic at room temperature while the 10 at. % Mn doped sample exhibited paramagnetic behavior. The maximum saturation magnetization of 0.05 emu/g in the nanocrystalline powder with 5 at. % Mn doping having minimum defects validated the ferromagnetic signal to be due to strong p-d hybridization of Mn ions.

  18. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls.

    PubMed

    Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D; Hocart, Charles H

    2010-06-01

    Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted "standard" three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO(2), respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO(2) reagent in aqueous media of contrasting (18)O/(16)O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the "standard" method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal. Cellulose samples isolated from processing plant-derived cellulose-lignin mixtures in media of contrasting (18)O/(16)O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained. PMID:20362306

  19. STRUCTURAL FEATURES ASSOCIATED WITH DEGRADABLE AND PERSISTENT CHEMICALS

    EPA Science Inventory

    A multivariate statistical method and a heuristic method were employed to examine the structural features associated with the persistence of degradation of 287 chemicals tested with the standard biochemical oxygen demand(BOD) procedure. The data base consisted of 196 'degradable'...

  20. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L., III; Olson, J. S.; Cantrell, C. A.

    2011-04-01

    An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2, and frequent measurement capability with observations of both HO2 and HO2 + RO2 amounts each minute. These improvements allow for analyses of measured [HO2]/[HO2 + RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53 × 10-5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with low efficiency, approximately 15% (high [NO]/[O2] = 6.80 × 10-4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the new measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model indicates good agreement under tropospheric conditions where NOx (NO + NO2) concentrations are lower than 0.5 ppbV (parts per billion by volume).

  1. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L., III; Olson, J. S.; Cantrell, C. A.

    2010-09-01

    An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2 and frequent measurement capability with observations of both HO2 and HO2 + RO2 amounts each minute. This allows for analyses of measured [HO2]/[HO2 + RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53 × 10-5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with approximately 15% efficiency (high [NO]/[O2] = 6.80 × 10-4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the current measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model confirms that the PeRCIMS is able to successfully separate and measure HO2 and RO2 under the majority of tropospheric conditions.

  2. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L., III; Olson, J. S.; Cantrell, C. A.

    2011-01-01

    An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2 and frequent measurement capability with observations of both HO2 and HO2+RO2 amounts each minute. This allows for analyses of measured [HO2]/[HO2+RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53×10-5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with low efficiency, approximately 15% (high [NO]/[O2] = 6.80×10-4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the new measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model indicates good agreement under tropospheric conditions where NOx (NO+NO2) concentrations are lower than 0.5 ppbV (parts per billion by volume).

  3. On the mechanism of the chemical and enzymic oxygenations of alpha-oxyprotohemin IX to Fe.biliverdin IX alpha.

    PubMed Central

    Sano, S; Sano, T; Morishima, I; Shiro, Y; Maeda, Y

    1986-01-01

    alpha-Oxyprotohemin IX, an early intermediate in heme catabolism, was synthesized and its autoxidation to biliverdin IX alpha was studied. In anaerobic aqueous pyridine, alpha-oxyprotohemin (hexacoordinated) underwent autoreduction to yield an Fe(II) alpha-oxyprotoporphyrin pi-neutral radical bis(pyridine) complex, which reacted with an equimolar amount of dioxygen to give pyridine.verdohemochrome IX alpha and CO in 75-80% yield via an intermediate with an absorption maximum at 893 nm. Verdohemochrome IX alpha did not react with further dioxygen. Reconstituted apomyoglobin.alpha-oxyprotohemin IX complex (pentacoordinated) reacted with an equimolar amount of dioxygen to form an Fe(II) oxyporphyrin pi-neutral radical intermediate, which rearranged to a green compound (lambda max 660 and 704 nm) with elision of CO. The green product, which is probably an apomyoglobin.verdoheme pi-radical complex, reacted with another equimolar amount of dioxygen to give Fe(III).biliverdin IX alpha. Demetallation of this gave biliverdin IX alpha in overall yield of 70-75%. These results indicate that the sequence of oxyheme autoxidation in the presence of apomyoglobin is alpha-oxyprotoheme IX O2----CO----verdohemochrome IX alpha pi-radical O2----Fe(III).biliverdin IX alpha. A similar mechanism may prevail in vivo. The hexa- and pentacoordinated Fe(II) pi-radical form of the oxyporphyrin is crucial in triggering the autoxidation of the complex to verdohemochrome IX alpha. Further oxygenation of verdohemochrome IX alpha to Fe(III).biliverdin IX alpha occurred only in the pentacoordinated apomyoglobin.verdoheme Fe(II) complex. PMID:3456152

  4. Sensory and chemical quality of UHT-milk stored in paperboard cartons with different oxygen and light barriers.

    PubMed

    Rysstad, G; Ebbesen, A; Eggestad, J

    1998-01-01

    The sensory and chemical shelf-life of UHT-milk stored at room temperature and at 6 degrees C in aluminium-foil, non-foil barrier (X-board) and PE cartons were investigated. UHT milk in aluminium-foil stored in the dark has a minimum shelf-life of 6 months, while the shelf-life is 4-5 months in X-board and PE cartons. When PE cartons and X-board cartons are stored with strong light exposure at 6 degrees C, a development of light-induced off-flavour is detected after 2 and 8 weeks, respectively. The light-induced off-flavour effect is more pronounced than the effect of non-light induced oxidation of unsaturated lipids. PMID:9534878

  5. Frequency-doubled pulsed chemical oxygen-iodine laser as an efficient pump source for high-power solid state lasers

    NASA Astrophysics Data System (ADS)

    Kryukov, P. G.

    1995-12-01

    Output laser parameters are enhanced significantly by using laser pumping. An excellent example is usage of laser diodes for solid-state laser pumping. Although there are permanent advances towards development of this technique, its application for laser systems of more than 100 J output requires time, significant effort and expense. I propose another pumping source based on a rather simple and inexpensive technique and admitted scaling up to energy values which are beyond the reach now with the diodes. This is a pulsed chemical oxygen-iodine laser (COIL) with intracavity frequency doubling. The COIL operates on a laser transition of atomic iodine (1.315 micrometer). The upper laser level populates via energy transfer from metastable oxygen molecules (O2(1(Delta) )-singlet oxygen) which formed in a rather simple chemical reaction between an alkaline solution of hydrogen peroxide and gaseous chlorine. The COIL is a gas laser of low pressure (not more than several torrs), having high output parameters and efficiency. A peculiar mechanism of inversion formation makes it difficult to realize a pulsed mode operation by conventional techniques. In particular, there is a limitation of energy stored in large volume. This problem has been solved in our laboratory by forming of atomic iodine with external exposure on some iodides. As a result a pulsed COIL system with an external initiation arose. High optical quality of an active medium and rather high intensity permit us to get 100% intracavity frequency doubling. The wavelength (657.5 nm) is suitable for pumping of some efficient laser materials such as Cr:LiSAF, and garnets codoped with Cr3+ and TR3+ ions. The proposed laser system has the following advantages: (1) scaling by merely increasing the size of the laser, (2) regulated pulse duration from 20 microseconds, (3) well-collimated beam, and (4) repetition rate of about tens Hz. There is a possibility to use the proposed laser system to pump large-size laser elements of laser-drivers for ICF. It is especially interesting to use the proposed pumping source for chirped pulse amplification. Energy of 100 - 200 J can be obtained with currently available pulsed COILs. Thereby a real ability opens for generation of ultrashort pulses of petawatt level output power.

  6. Nitrate and Nitrite Variability at the Seafloor of an Oxygen Minimum Zone Revealed by a Novel Microfluidic In-Situ Chemical Sensor

    PubMed Central

    Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan

    2015-01-01

    Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958

  7. Preparation of atomic oxygen resistant polymeric materials

    NASA Technical Reports Server (NTRS)

    Tortorelli, Victor J.; Hergenrother, P. M.; Connell, J. W.

    1991-01-01

    Polyphenyl quinoxalines (PPQs) are an important family of high performance polymers that offer good chemical and thermal stability coupled with excellent mechanical properties. These aromatic heterocyclic polymers are potentially useful as films, coatings, adhesives, and composite materials that demand stability in harsh environments. Our approach was to prepare PPQs with pendent siloxane groups using the appropriate chemistry and then evaluate these polymers before and after exposure to simulated atomic oxygen. Either monomer, the bis(o-diamine)s or the bis(alpha-diketone)s can be synthesized with a hydroxy group to which the siloxane chain will be attached. Several novel materials were prepared.

  8. Oxygen Therapy

    MedlinePLUS

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  9. Growth patterns, chemical composition and oxygen consumption in early juvenile Hyas araneus (Decapoda: Majidae) reared in the laboratory

    NASA Astrophysics Data System (ADS)

    Anger, K.; Harms, J.; Christiansen, M. E.; Ssens, U.; Wilmes, B.

    1992-03-01

    Early (instar I and II) juveniles of the spider crab Hyas araneus were reared under constant conditions (12 C, 32S) in the laboratory, and their growth, biochemical composition, and respiration were studied. Every second day, dry weight (W), ash-free dry weight (AFW), and contents of ash, organic and inorganic carbon (C), nitrogen (N), hydrogen (H), protein, chitin, lipid, and carbohydrates were measured, as well as oxygen consumption. Changes in the absolute amounts of W. AFW, and C, N, and H during the moulting cycle are described with various regression equations as functions of age within a given instar. These patterns of growth differ in part from those that have been observed during previous studies in larval stages of the same and some other decapod species, possibly indicating different growth strategies in larvae and juveniles. There were clear periodic changes in ash (% of W) and inorganic C (as % of total C), with initially very low and then steeply increasing values in postmoult, a maximum in intermoult, and decreasing figures during the premoult phase of each moulting cycle. Similar patterns were observed in the chitin fraction, reaching a maximum of 16% of W (31% of AFW). Ash, inorganic C, and chitin represent the major components of the exoskeleton and hence, changes in their amounts are associated with the formation and loss of cuticle material. Consequently, a high percentage of mineral matter was lost with the exuvia (76% of the late premoult [LPM] ash content, 74% of inorganic C), but relatively small fractions of LPM organic matter (15% of AFW, 11% of organic C, 5 6% of N and H). These cyclic changes in the cuticle caused an inverse pattern of variation in the percentage values (% of W) of AFW, organic C, N, H, and biochemical constituents other than chitin. When these measures of living biomass were related to, exclusively, the organic body fraction (AFM), much less variation was found during individual moulting cycles, with values of about 43 52% in organic C, 9 10% in N, 6 9% H, 31 49% of AFW in protein, 3 10% in lipid, and <1% in carbohydrates. All these constituents showed, on the average, a decreasing tendency during the first two crab instars, whereas N remained fairly constant. It cannot be explained at present, what other elements and biochemical compounds, respectively, might replace these decreasing components of AFW. Decreasing tendencies during juvenile growth were observed also in the organic C/N and in the lipid/protein weight ratios, both indicating that the proportion of lipid decreased at a higher rate than that of protein. Changes were observed also in the composition of inorganic matter, with significantly lower inorganic C in early postmoult (2 4% of ash) than in later stages of the moult cycle (about 9%). This reflected probably an increase in the degree of calcification, i.e. in the calcium carbonate content of the exoskeleton. As a fraction of total C, inorganic C reached maximum values of 17 and 20% in the crab I and II instars, respectively. The energy content of juvenile spider crabs was estimated independently from organic C and biochemical constituents, with a significant correlation between these values. However, the former estimates of energy were, on the average, significantly lower than the latter (slope of the regression ?1). Since organic C should be a reliable integrator of organic substances, but the sum of protein, lipid, chitin, and carbohydrates amounted to only 60 91% of AFW, it is concluded that the observed discrepancy between these two estimates of energy was caused by energy from biochemical constituents that had not been determined in our analyses. Thus, energy values obtained from these biochemical fractions alone may underestimate the actual amount of organic matter and energy. Respiration per individual in juvenile spider crabs was higher than that in larval stages of the same species (previous studies), but their W-specific values of oxygen consumption (QO2) were lower than in conspecific larvae (0.6 2?g O2[mg W]-1). QO2 showed a consiste

  10. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  11. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life. PMID:16566709

  12. Demand Response Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  13. Demand Response Analysis Tool

    SciTech Connect

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  14. [Oxygen supply in war times. Current perspectives].

    PubMed

    Le Guern, G; Dumas, P; Genco, G; Caroff, P; Belat, C; Dalger, J M; Puidupin, M

    1994-01-01

    The authors report their experience of the use of various sources of oxygen feeding in wartime: a classical feeding by liquid oxygen or by extractive oxygen cylinders; a new type of feeding by oxygen condensers or chemical oxygen. According to their practical experience, each source finds its role in wartime, this role being determined by war conditions. PMID:7842326

  15. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    SciTech Connect

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20?mA/cm{sup 2} at a turn-on field of 1.3?V/?m. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5?min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111?mA/cm{sup 2} at a much lower turn on field of 0.8?V/?m. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  16. Photochemistry without Light: Oxidation of Rubrene in a Microemulsion with a Chemical Source of Singlet Molecular Oxygen (1O2, 1Dg)

    NASA Astrophysics Data System (ADS)

    Nardello, Vronique; Marti, Marie-Jose; Pierlot, Christel; Aubry*, Jean-Marie

    1999-09-01

    This simple experiment illustrates the main features of excited oxygen in the singlet state 1O2 (1Dg): (i) its high oxidizing power and its selectivity towards unsaturated organic compounds, (ii) its low excitation energy which allows its access by various chemical processes and (iii) its long lifetime compared to the other usual excited molecules. In the laboratory experiment presented here, 1O2 is generated through the disproportionation of hydrogen peroxide catalyzed by molybdate ions and is used to carry out the oxidation of a polycyclic aromatic compound, rubrene. As the formation of 1O2 proceeds efficiently only in water, a microemulsion is used as solvent to oxidize this highly hydrophobic substrate. Actually, the microemulsion, which consists of aqueous microdroplets surrounded by a continuous organic phase, allows considerable amounts of hydrophilic reactants (H2O2 and MoO42-) and hydrophobic organic substrates to dissolve simultaneously. The typical size of the microdroplets (? 10-50 nm) is much smaller than the mean travel distance of 1O2 in water (? 200 nm). Therefore, 1O2 can diffuse, before deactivation by water, into the organic phase where the oxidation of the substrate can take place.

  17. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    PubMed

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT. PMID:21728653

  18. Effect of hydrogen sulfide on chemical looping of coal-derived synthesis gas over bentonite-supported metal---oxide oxygen carriers

    SciTech Connect

    Tian, H.; Simonyi, T.; Poston, J.; Siriwardane, R.

    2009-01-01

    The effect of hydrogen sulfide (H2S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxidesssuch as iron oxide, nickel oxide, manganese oxide, and copper oxideswas investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H2S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H2S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H2S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H2S for all four metal oxides.

  19. Multistep, eight-electron oxidation catalyzed by the cofactorless oxidase, PqqC: identification of chemical intermediates and their dependence on molecular oxygen.

    PubMed

    Bonnot, Florence; Iavarone, Anthony T; Klinman, Judith P

    2013-07-01

    The final step of the biosynthesis of prokaryotic cofactor PQQ is catalyzed by PqqC, a cofactorless oxidase that brings about a ring closure and overall eight-electron oxidation of its substrate. Time-dependent acid quenching and subsequent high-performance liquid chromatography separation and mass spectrometric analyses of reaction mixtures were performed to correlate the structures of intermediates with previously observed UV-visible signatures. The reaction is composed of four stepwise oxidations: three steps use O2 as the two-electron acceptor, and the fourth uses hydrogen peroxide (H2O2). The chemical nature of the intermediates, the stoichiometry of the reaction, and their dependence on the oxygen concentration indicate that the third oxidation uses the product, H2O2, from the preceding step to produce water. The last oxidation step can also be studied separately and is a reaction between O2 and PQQH2 trapped in the active site. This oxidation is approximately 10 times slower than the reoxidation of PQQH2 in solution. From the order of the four oxidation steps and their sensitivity to O2 concentration, we propose a progressive closure of the active site as the enzyme proceeds through its catalytic cycle. PMID:23718207

  20. Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers

    SciTech Connect

    Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R.

    2009-09-15

    The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

  1. Low thermal budget in situ removal of oxygen and carbon on silicon for silicon epitaxy in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    Sanganeria, Mahesh K.; Öztürk, Mehmet C.; Violette, Katherine E.; Harris, Gari; Lee, C. Archie; Maher, Dennis M.

    1995-03-01

    In this letter, we present experimental evidence on desorption of O and C from a Si surface resulting in impurity levels below the detection levels of secondary ion mass spectroscopy. We then propose a surface preperation method for silicon epitaxy that consists of an ex situ clean and an in situ low thermal budget prebake in an ultrahigh vacuum rapid thermal chemical vapor deposition (UHV-RTCVD) reactor. The ex situ clean consists of a standard RCA clean followed by a dilute HF dip and rinse in de-ionized water. The in situ clean is either carried out in vacuum or in a low partial pressure of 10% Si2H6 in H2. The experiments were conducted in an UHV-RTCVD reactor equipped with oil-free vacuum pumps. We propose that the responsible mechanism is desorption of oxygen and hydrocarbons from the Si surface due to the low partial pressures of these contaminants in the growth chamber. If Si2H6 is used during the prebake, a sufficiently low growth rate is required in order to provide sufficient time for desorption and avoid Si overgrowth on the O and C sites.

  2. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hun; Lee, Jinhwan; Kim, Jae Hyeon; Hwang, C. C.; Lee, Changgu; Park, Jeong Young

    2015-06-01

    The electrical properties of two-dimensional atomic sheets exhibit remarkable dependences on layer thickness and surface chemistry. Here, we investigated the variation of the work function properties of MoS2 films prepared with chemical vapor deposition (CVD) on SiO2 substrates with the number of film layers. Wafer-scale CVD MoS2 films with 2, 4, and 12 layers were fabricated on SiO2, and their properties were evaluated by using Raman and photoluminescence spectroscopies. In accordance with our X-ray photoelectron spectroscopy results, our Kelvin probe force microscopy investigation found that the surface potential of the MoS2 films increases by ˜0.15 eV when the number of layers is increased from 2 to 12. Photoemission spectroscopy (PES) with in-situ annealing under ultra high vacuum conditions was used to directly demonstrate that this work function shift is associated with the screening effects of oxygen or water molecules adsorbed on the film surface. After annealing, it was found with PES that the surface potential decreases by ˜0.2 eV upon the removal of the adsorbed layers, which confirms that adsorbed species have a role in the variation in the work function.

  3. Numerical study of He/CF{sub 3}I pulsed discharge used to produce iodine atom in chemical oxygen-iodine laser

    SciTech Connect

    Zhang Jiao; Wang Yanhui; Wang Dezhen; Duo Liping; Li Guofu

    2013-04-15

    The pulsed discharge for producing iodine atoms from the alkyl and perfluoroalky iodides (CH{sub 3}I, CF{sub 3}I, etc.) is the most efficient method for achieving the pulse operating mode of a chemical oxygen-iodine laser. In this paper, a one-dimensional fluid model is developed to study the characteristics of pulsed discharge in CF{sub 3}I-He mixture. By solving continuity equation, momentum equation, Poisson equation, Boltzmann equation, and an electric circuit equation, the temporal evolution of discharge current density and various discharge products, especially the atomic iodine, are investigated. The dependence of iodine atom density on discharge parameters is also studied. The results show that iodine atom density increases with the pulsed width and pulsed voltage amplitude. The mixture ratio of CF{sub 3}I and helium plays a more significant role in iodine atom production. For a constant voltage amplitude, there exists an optimal mixture ratio under which the maximum iodine atom concentration is achieved. The bigger the applied voltage amplitude is, the higher partial pressure of CF{sub 3}I is needed to obtain the maximum iodine atom concentration.

  4. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  5. Oxygen Therapy

    MedlinePLUS

    ... their chronic illness will need to continue their oxygen therapy. Some patients may need to use extra oxygen ... condition improves. You should never reduce or stop oxygen therapy on your own. Talk with your health care ...

  6. On the chemical nature of the oxygenated organic aerosol: implication in the formation and aging of ?-pinene SOA in a Mediterranean environment, Marseille

    NASA Astrophysics Data System (ADS)

    El Haddad, I.; D'Anna, B.; Temime-Roussel, B.; Nicolas, M.; Boreave, A.; Favez, O.; Voisin, D.; Sciare, J.; George, C.; Jaffrezo, J.-L.; Wortham, H.; Marchand, N.

    2012-08-01

    Organic Aerosol (OA) measurements were conducted during summer 2008 at an urban background site, in Marseille, France's second city and the largest port in the Mediterranean, an urban industrialized environment known for its active photochemistry. PM2.5 was collected using high volume samplers and analyzed for elemental and organic carbon, major ions (NH4+, NO3- and SO42-), humic-like-substances, organic markers (i.e. primary tracers and ?-pinene oxidation products), elemental composition and radiocarbon content (14C). The real-time chemical characterization of submicron particles was also achieved using a compact time of flight aerosol mass spectrometer. Positive matrix factorization conducted on the organic aerosol mass spectra matrix revealed four factors, including traffic emissions (hydrocarbon-like OA, HOA), industrial emissions, semi-volatile (SV-OOA) and low-volatile (LV-OOA) oxygenated organic aerosol (OOA) related to oxidation processes. The results obtained were in excellent agreement with chemical mass balance source apportionments conducted in conjunction with organic markers and elements. It appears that while primary emissions contributed only 22% to the total OA (of which 23% was associated with industrial processes), OOA constituted the overwhelming fraction. Radiocarbon measurements suggest that about 80% of this fraction was of non-fossil origin, assigned predominantly to biogenic secondary organic aerosol. Non-fossil carbon appears to especially dominate the LV-OOA fraction, an aged long-range-transported OOA, marginally affected by local anthropogenic SOA. We also examined the relation between OOA and ?-pinene SOA obtained based on the levels of ?-pinene oxidation products. ?-pinene SOA showed good correlation with SV-OOA, suggesting that the compounds used for estimating ?-pinene SOA appear to pertain mainly to the moderately oxidized fraction. In contrast, LV-OOA was found to be intimately related to HUmic LIke substances (HULIS), meaning that these two fractions arise from the same oxidation pathways and share a similar chemical composition (i.e. poly-carboxylic species). A thorough analysis of ?-pinene individual oxidation products showed that aging can heavily impact their respective concentrations, as early generation products seem to decay with photochemistry when more oxidized compounds seem to be formed.

  7. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  8. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 2. Limiting parameters of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-08-31

    The final stages in the development of a branching chain decomposition reaction of iodide in the active medium of a pulsed chemical oxygen-iodine laser (COIL) are analysed. Approximate expressions are derived to calculate the limiting parameters of the chain reaction: the final degree of iodide decomposition, the maximum concentration of excited iodine atoms, the time of its achievement, and concentrations of singlet oxygen and iodide at that moment. The limiting parameters, calculated by using these expressions for a typical composition of the active medium of a pulsed COIL, well coincide with the results of numerical calculations. (active media)

  9. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    PubMed

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent of the nickel loading. However, in the reduction stage, carbon deposition, from the thermal decomposition of methane, and CO emissions, mainly derived from the partial reduction of titania as support acting as an additional oxygen source, may impose some constraints to the efficiency of the overall chemical-looping combustion process in CO2 capture. PMID:16124317

  10. Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC.

    PubMed

    Timmers, Ruud A; Strik, David P B T B; Arampatzoglou, Cristina; Buisman, Cees J N; Hamelers, Hubertus V M

    2012-03-01

    In this paper, the effect of root oxygen loss on energy recovery of the plant microbial fuel cell (PMFC) is described. In this manner, advanced understanding of competing processes within the rhizosphere-anode interface was provided. A microscopic model was developed on the basis of exudation, oxygen loss, biological oxidation, and biological current generation. The model was successfully validated by comparison to oxygen concentration profiles, volatile fatty acid profiles, and chemical oxygen demand profiles measured in the anode compartment. The model predicted oxic zones around roots in the anode of the plant microbial fuel cell. Results show no direct link between current generation and photosynthesis. This was consistent with the model which predicted that current was generated via hydrolysis of root-derived organic compounds. This result means that to optimize energy recovery of a PMFC, the plant selection should focus on high root biomass production combined with low oxygen loss. PMID:22265596

  11. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.

    PubMed

    Lepik, Riina; Tenno, Toomas

    2012-01-01

    The aim of this study was to investigate the biodegradation of phenol, o-cresol and p-cresol individually and as bi-substrate mixtures at low initial substrate concentrations. Activated sludge was taken from the Kohtla-Jrve wastewater treatment plant, Estonia, which is also treating phenolic wastewater from the oil-shale chemical industry and is considered to be acclimated to the phenolic compounds. Respirometric data have been used for evaluation of the kinetic parameters describing the bio-oxidation of substrates. Activated sludge was able to degrade phenol and p-cresol faster than o-cresol, showing better affinity to p-cresol. However, at higher concentrations, phenol and p-cresol exhibited also an inhibitory effect to the microorganisms. The highest values for maximum rate of oxygen uptake (V(O2,max)) were obtained for the bi-substrate system of phenol--p-cresol among the mixtures containing both substrates at equal concentrations from 0.005 mM to 0.050 mM. Concerning the systems containing one substrate at 0.1 mM and the other substrate varied in the abovementioned range, the highest V(O2,max) values were found for phenol--o-cresol(0.1 mM). The interaction parameters indicated that phenol had a stronger inhibition effect on the biodegradation of p-cresol than p-cresol had on the biodegradation of phenol. However, the obtained interaction parameters for systems of phenol--o-cresol indicated that o-cresol had a stronger inhibition effect on the biodegradation of phenol, which in turn had a mild inhibition or even enhancing effect on the biodegradation of o-cresol. In the case of a 1:1 mixture, phenol and o-cresol had a similar mild inhibition effect on each other's biodegradation. PMID:22519119

  12. Wastewater treatment with zero dissolved oxygen

    SciTech Connect

    Hirl, P.J.

    1998-07-01

    Many wastewater treatment plants operate their biological reactors inefficiently because the aeration is not adjusted so that the oxygen supply rate equals the microbial oxygen demand in real times. Tapered aeration systems vary aeration based on the oxygen demand profile but these systems are static. Dynamic oxygen control systems have been successful but do not operate at low dissolved oxygen concentrations. The purpose of the research described is to develop a control system and reactor operating strategies to dynamically change the aeration rate to match the oxygen uptake rate while maintaining the dissolve oxygen concentration less than 0.5 mg/L. Though, low dissolved oxygen operation can reduce the rate of carbon degradation and/or promote filamentous bulking, it also maximizes the oxygen transfer rate and can promote simultaneous nitrification and denitrification. Development and testing of a control system and operating strategies at the bench scale is in progress.

  13. Chemical and physical characteristics of water in estuaries of Texas, October 1976-September 1978

    USGS Publications Warehouse

    Fisher, J.C.

    1982-01-01

    This report presents basic data on the chemical and physical characteristics of water in the estuaries of Texas for the period October 1976-September 1978. The properties or constituents that are measured in the field are dissolved oxygen (DO), specific conductance, temperature, pH, and transparency by Secchi disk. Analyses conducted in the laboratory include the principal inorganic ions, biochemical oxygen demand (BOD), total organic carbon (TOC), ammonium, nitrite, nitrate, and total phosphate. (USGS)

  14. High Selectivity Oxygen Delignification

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  15. Latin American demand

    SciTech Connect

    1994-12-01

    From Mexico to Argentina, independent power companies are finding great demand for their services in Latin America. But while legal and economic conditions are increasingly favorable, political and financial uncertainties make power development challenging.

  16. Supply and Demand

    MedlinePLUS

    ... a good breastfeeding rhythm with your baby. In reality, the efficient supply-and-demand rhythm of normal ... is one reason it’s a good idea to alternate which breast you use to begin nursing. A ...

  17. Physiological demands of competitive basketball.

    PubMed

    Narazaki, K; Berg, K; Stergiou, N; Chen, B

    2009-06-01

    The aim of this study was to assess physiological demands of competitive basketball by measuring oxygen consumption (VO2) and other variables during practice games. Each of 12 players (20.4 +/- 1.1 years) was monitored in a 20-min practice game, which was conducted in the same way as actual games with the presence of referees and coaches. VO2 was measured by a portable system during the game and blood lactate concentration (LA) was measured in brief breaks. Subjects were also videotaped for time-motion analysis. Female and male players demonstrated respective VO2 of 33.4 +/- 4.0 and 36.9 +/- 2.6 mL/kg/min and LA of 3.2 +/- 0.9 and 4.2 +/- 1.3 mmol/L in the practice games (P>0.05). They spent 34.1% of play time running and jumping, 56.8% walking, and 9.0% standing. Pre-obtained VO(2max) was correlated to VO(2) during play (r=0.673) and to percent of duration for running and jumping (r=0.935 and 0.962 for females and males, respectively). This study demonstrated a greater oxygen uptake for competitive basketball than that estimated based on a previous compendium. The correlation between aerobic capacity and activity level suggests the potential benefit of aerobic conditioning in basketball. PMID:18397196

  18. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Salas, L. J.; Chatfield, R. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Crawford, J. H.; Avery, M. A.; Sandholm, S.; Fuelberg, H.

    2004-08-01

    Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (CnH2n+1COO2NO2), and organic nitrates (CnH2n+1ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (?OVOC) was nearly twice that of nonmethane hydrocarbons (?C2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HOx) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C yr-1) but remain poorly quantified.

  19. Analysis of the Atmospheric Distribution, Sources, and Sinks of Oxygenated Volatile Organic Chemicals Based on Measurements over the Pacific during TRACE-P

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L. J.; Chatfield, r. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Crawford, J. H.; Avery, M. A.; Sandholm, S.; Fuelberg, H.

    2004-01-01

    Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (C(sub n)H(sub 2n+1)COO2NO2), and organic nitrates (C(sub n)H(sub 2n+1)ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (Summation of OVOC) was nearly twice that of nonmethane hydrocarbons (Summation of C2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HO x ) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C / yr) but remain poorly quantified.

  20. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  1. Oxygen safety

    MedlinePLUS

    ... oven. Watch out for splattering grease. It can catch fire. Keep children with oxygen away from the ... freely under the bed. Keep liquids that may catch fire away from your oxygen. This includes cleaning ...

  2. [Apneic oxygenation].

    PubMed

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used. PMID:24624863

  3. Chemical State of Surface Oxygen on Carbon and Its Effects on the Capacity of the Carbon Anode in a Lithium-Ion Battery Investigated

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2001-01-01

    In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.

  4. Lesson on Demand. Lesson Plan.

    ERIC Educational Resources Information Center

    Weaver, Sue

    This lesson plan helps students understand the role consumer demand plays in the market system, i.e., how interactions in the marketplace help determine pricing. Students will participate in an activity that demonstrates the concepts of demand, demand schedule, demand curve, and the law of demand. The lesson plan provides student objectives;

  5. Ridesharing: Transportation demand management

    SciTech Connect

    Valdez, R.; Wang, J.; Flynn, C.P.; Glazer, L.J.; Pultz, S.

    1989-01-01

    The 13 papers in the report deal with the following areas: Comparison of transportation demand management market research study results and transportation management association development in three suburban activity centers; Ten cities' strategies for transportation demand management; Key considerations for developing local government transportation system management programs; First Hill Action Plan: A unique public/private approach to transportation demand management; Comparison of travel behavior before and after the opening of HOV lanes in a suburban travel corridor; Evaluation of Springfield instant carpooling; George Washington Bridge bus-carpool lane: 1-Year Operational Report; Guaranteed Ride Home: An insurance program for HOV users; Evaluation of Ridefinders and Central Richmond Association's transportation and parking information service; Vanpools: Pricing and market penetration; Cost-effectiveness of private employer ridesharing programs: An employer's assessment; Temporal analysis of handicapped ridership in specialized transportation service: Lexington/Fayette County experience; Characterization of the 'publico' system of Puerto Rico.

  6. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  7. Oxygen analyzer

    NASA Astrophysics Data System (ADS)

    Benner, W. H.

    1984-05-01

    An oxygen analyzer is described which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135 C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135 C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  8. Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea): chemical characterization of the water masses and inferences on the N : P ratios

    NASA Astrophysics Data System (ADS)

    Kress, Nurit; Herut, Barak

    2001-11-01

    The spatial and seasonal variability of nutrients and dissolved oxygen concentrations as well as the chemical characterization of the different water masses of the Southern Levantine Basin were determined in detail. In summer, the upper 150 m of the water body was stratified and the cross basin distribution of dissolved oxygen and nutrients was fairly constant. Surficial waters were saturated with dissolved oxygen, and a shallow oxygen maximum (oversaturated) was present at about 80 m depth. Oversaturation was attributed mainly to the physical process of rapid capping and trapping of oxygen in the Atlantic water (AW) mass, with only 28% of the excess oxygen originating from biological production. Nutrient concentrations were very low and showed an increase in the intermediate levels, coupled with a decrease in oxygen. The winter cross-section distribution showed an upper mixed layer of 100 m, with dissolved oxygen and nutrient concentrations fairly constant across the basin. The concentration of nitrate was higher than in summer, while phosphate was slightly lower and silicic acid similar. In winter, the influence of the physical features (gyres) could be detected up to the surface, and in summer they were detected by the chemical properties in the 150-600 m layer. In the transition layer between the Levantine intermediate water (LIW) and the deep water (DW) (400-700 m) there was a gradual decrease in dissolved oxygen and an increase in nutrient concentrations eastwards. The DW showed no seasonal variation, only spatial variability: dissolved oxygen decreased and silicic acid increased eastwards. No differences were found in nitrate and phosphate concentrations between the DW in the western and eastern provinces, indicating the oxidation of organic matter poor in N and P. N : P ratios in the upper water masses were seasonally dependent. The largest variation was found in the Levantine surface water (LSW), from an average of 52 in winter to 5 in summer. It is hypothesized that the gradual decrease from winter to summer values was due mainly to preferential atmospheric input of N in winter and P in summer, together with biological consumption and differential regeneration of N and P. In the DW, the N : P ratios were constant throughout the year (25.22.7, n=567), and higher than Redfield's ratio. It was speculated that the high N : P ratio in the DW was a result of oxidation of particulate organic matter deficient in P. The winter wet atmospheric input of N provided 12% of new N to the LSW. Average new production for the Southern Levantine Basin was estimated from the new N as 4.75 g C m -2 yr -1. The dry atmospheric contribution of P was estimated to significantly increase the P pool in the LSW. Dry deposition is not evenly distributed and occurs in episodic and localized events, which may have a large effect on productivity in the short periods when deposition occurs. There have been recently reported changes in the deep thermohaline circulation of the Eastern Mediterranean, with main contribution of the Aegean Sea as a source of DW. The data presented here can serve as a reference for assessing future changes in the chemical composition of the water masses in the Southern Levantine.

  9. Travel Demand Modeling

    SciTech Connect

    Southworth, Frank; Garrow, Dr. Laurie

    2011-01-01

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  10. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (ESTSC)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  11. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  12. Demanding Divestment from Sudan

    ERIC Educational Resources Information Center

    Asquith, Christina

    2006-01-01

    Bowing to student demands to "stop supporting genocide," the University of California regents voted earlier this year to divest millions of dollars from companies working in the war-torn African nation of Sudan, the first major public university in the nation to take such action. Since student protests on the subject began at Harvard University in

  13. Distribution of Childrearing Demands.

    ERIC Educational Resources Information Center

    Zimmerman, Judith D.; And Others

    The tools of economic analysis were applied to demographic data in order to develop a social indicator measuring the extent of inequality in the distribution of childrearing responsibility in households from 1940 to 1980. With data drawn from the Current Population Survey of the Bureau of the Census, a "demand intensity" measure was developed.

  14. The future demands efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demand for food, feed, fuel, and fiber from agricultural production systems will require increased efficiency of production, resilience to climate change, enhanced quality of the product, and new insights into management. These may sound like impossible challenges; however, the solution l...

  15. Oxygenated Derivatives of Hydrocarbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  16. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO{sub 4} oxygen carrier in a fluidized bed reactor

    SciTech Connect

    Qilei Song; Rui Xiao; Zhongyi Deng; Wenguang Zheng; Laihong Shen; Jun Xiao

    2008-11-15

    The cyclic test of a CaSO{sub 4}-based oxygen carrier (natural anhydrite) in alternating reducing simulated coal gas and oxidizing conditions was performed at 950{degree}C in a fluidized bed reactor at atmospheric pressure. A high concentration of CO{sub 2} was obtained in the reduction. The H{sub 2} and CO conversions and CO{sub 2} yield increased initially and final decreased significantly. The release of SO{sub 2} and H{sub 2}S during the cyclic test was found to be responsible for the decrease of reactivity of a CaSO{sub 4} oxygen carrier. The oxygen carrier conversion after the reduction reaction decreased gradually in the cyclic test. Through the comparison of mass-based reaction rates as a function of mass conversion at typical cycles, it was also evident that the reactivity of a CaSO{sub 4} oxygen carrier increased for the initial cycles but finally decreased after around 15 cycles. X-ray diffraction analysis revealed that the presence and intensity of the reduction sulfur species was in accordance with the results of gas conversion. The content of CaO was higher than expected, suggesting the formation of SO{sub 2} and H{sub 2}S during the cycles. Surface morphology analysis demonstrates that the natural anhydrite particle surface varied from impervious to porous after the cyclic test. It was also observed that the small grains on the surface of the oxygen carrier sintered in the cyclic tests. Energy-dispersive spectrum analysis also demonstrated the decrease of oxygen intensity after reduction, and CaO became the main component after the 20th oxidation. Pore structure analysis suggested that the particles agglomerated or sintered in the cyclic tests. The possible method for sulfur mitigation is proposed. Finally, some basic consideration on the design criteria of a CLC system for solid fuels using a CaSO{sub 4} oxygen carrier is discussed by the references and provides direction for future work. 49 refs., 10 figs., 5 tabs.

  17. Evaluation of oxygen utilization as an indicator of municipal solid-waste compost stability

    SciTech Connect

    Zimmerman, R.A.

    1991-01-01

    This research evaluated oxygen utilization parameters as indicators of MSW compost stability. Parameters evaluated were the oxygen utilization rate (OUR), specific oxygen uptake rate (SOUR), five-day biochemical oxygen demand, and chemical oxygen demand. In addition, other suggested indicators of stability were investigated including percent volatile solids, volatile solids reduction, nitrogen content, carbon: nitrogen ratio, and reheating potential (RP). OUR is a measure of the rate of oxygen utilization by the microorganisms in the decomposition of organic matter in compost. OUR was observed to be sensitive to the degree of stabilization and decreased with increasing compost age and stability. OUR values near zero indicate that the compost microorganisms are in a state of endogenous respiration, which is characteristic of a stable compost. Therefore, OUR is an excellent indicator of stability. A number of disadvantages are associated with OUR for practical application. Therefore, other parameters were evaluated as indicators of stability based on their statistical correlation to OUR. RP exhibited the strongest correlation to OUR. In combination, RP and SOUR were the two parameters which exhibited the strongest correlation to OUR. OUR, RP, and SOUR are all measures of microbial activity which reflect the degree of organic decomposition, and therefore, stability. Based on the results of this research; OUR, RP, and SOUR are useful parameters in assessing compost stability.

  18. Venous oxygen saturation.

    PubMed

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation. PMID:25480771

  19. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    This project builds upon previous advances in modeling bottom sediment processes in eutrophication models. It develops algorithms for simulating processes responsible for nitrogen (nitrate, ammonium, organic-N) and carbon transformation and cycling (organic-N and methane) in bott...

  20. USE OF POTASSIUM FERRATE IN OXYGEN DEMAND MEASUREMENT

    EPA Science Inventory

    This research project was initiated with the primary objective of improving the commonly used COD test by the use of ferrate (VI) ion as an alternate or preliminary oxidant. The oxidation of NH3 and more general oxidation of organic compounds was desired. A secondary objective wa...

  1. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  2. Atrophy in metal demand

    SciTech Connect

    Tilton, J.E.

    1986-01-01

    What appears to be a major structural change with serious implications for all of the major metal industries has in many quarters gone largely unnoticed. This change, which apparently took place about 1974, shortly after the first major oil crisis, involves a sharp break or discontinuity in the growth of world demand for metals. Its magnitude is high-lighted by the graphs which show the rise in world consumption, outside the socialist countries, for the major metals since 1950. Indeed, growth in consumption has not only slowed, it has for many metals ground to a halt over the last decade. The graphs also illustrate what consumption would have been in the post 1974 period had earlier growth trends been sustained. The large gaps between the actual and the trend figures indicate that much of the distress suffered by the major metal industries in recent years can be attributed to the slowdown in the growth of demand. 13 references, 1 figure, 1 table.

  3. Surface control of epitaxial manganite films via oxygen pressure

    SciTech Connect

    Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; Qiao, Liang; Ganesh, Panchapakesan; Meyer, Tricia L.; Lee, Ho Nyung; Biegalski, Michael D.; Baddorf, Arthur P.; Kalinin, Sergei

    2015-03-11

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La5/8Ca3/8MnO3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorr of O2 leads to mixed-terminated film surfaces, with B-site (MnO2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.

  4. Surface control of epitaxial manganite films via oxygen pressure

    DOE PAGESBeta

    Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; Qiao, Liang; Ganesh, Panchapakesan; Meyer, Tricia L.; Lee, Ho Nyung; Biegalski, Michael D.; Baddorf, Arthur P.; Kalinin, Sergei

    2015-03-11

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La5/8Ca3/8MnO3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorr of O2 leadsmore » to mixed-terminated film surfaces, with B-site (MnO2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.« less

  5. Surface Control of Epitaxial Manganite Films via Oxygen Pressure.

    PubMed

    Tselev, Alexander; Vasudevan, Rama K; Gianfrancesco, Anthony G; Qiao, Liang; Ganesh, P; Meyer, Tricia L; Lee, Ho Nyung; Biegalski, Michael D; Baddorf, Arthur P; Kalinin, Sergei V

    2015-04-28

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. This is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La5/8Ca3/8MnO3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorr of O2 leads to mixed-terminated film surfaces, with B-site (MnO2) termination being structurally imperfect at the atomic scale. A relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction. PMID:25758864

  6. A fast and environment-friendly method for determination of chemical oxygen demand by using the heterogeneous Fenton-like process (H2O2/Fe(3-x)Co(x)O4 nanoparticles) as an oxidant.

    PubMed

    Esteves, Lorena C R; Oliveira, Thaís R O; Souza, Elias C; Bomfeti, Cleide A; Gonçalves, Andrea M; Oliveira, Luiz C A; Barbosa, Fernando; Pereira, Márcio C; Rodrigues, Jairo L

    2015-04-01

    An easy, fast and environment-friendly method for COD determination in water is proposed. The procedure is based on the oxidation of organic matter by the H2O2/Fe(3-x)Co(x)O4 system. The Fe(3-x)Co(x)O4 nanoparticles activate the H2O2 molecule to produce hydroxyl radicals, which are highly reactive for oxidizing organic matter in an aqueous medium. After the oxidation step, the organic matter amounts can be quantified by comparing the quantity of H2O2 consumed. Moreover, the proposed COD method has several distinct advantages, since it does not use toxic reagents and the oxidation reaction of organic matter is conducted at room temperature and atmospheric pressure. Method detection limit is 2.0 mg L(-1) with intra- and inter-day precision lower than 1% (n=5). The calibration graph is linear in the range of 2.0-50 mg L(-1) with a sample throughput of 25 samples h(-1). Data are validated based on the analysis of six contaminated river water samples by the proposed method and by using a comparative method validated and marketed by Merck, with good agreement between the results (t test, 95%). PMID:25640128

  7. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  8. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that

  9. Mathematical model of oxygen depletion in the New York Bight: an analysis of physical, biological, and chemical factors in 1975 and 1976

    SciTech Connect

    Stoddard, A.

    1983-01-01

    A marine ecosystem model of the New York Bight is developed with the model equations describing oxygen depletion, nutrient dynamics, and phytoplankton distributions during the stratified season. The large-scale anoxic event during the summer of 1976 is the problem setting for an analysis of the relative significance of natural physical-biological processes and anthropogenic waste inputs on oxygen depletion in the Bight. The simulation results clearly demonstrate the influence of the flow field reversal during June-July 1976 on the accumulation of the dinoflagellate, Ceratium tripos, and other particulate materials over the New Jersey shelf. The onset, and progression of anoxia across the New Jersey shelf resulted primarily from decomposition of the declining Ceratium bloom within a subpycnocline layer substantially reduced in thickness by the deep pycn

  10. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-02-28

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  11. Oxygen transfer in membrane bioreactors treating synthetic greywater.

    PubMed

    Henkel, Jochen; Lemac, Mladen; Wagner, Martin; Cornel, Peter

    2009-04-01

    Mass transfer coefficients (k(L)a) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar alpha-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT). PMID:19217638

  12. Meeting increased demand.

    PubMed

    Blair, Andrew

    2004-07-01

    New Zealand is a little country with a little economy but with a population that's rapidly aging. New Zealand's population is only 4.3 million people. It's GDP is only $US58.6 billion (2002). New Zealand's expenditure on health as a percentage of GDP is not out of line with that of other countries. As a nation we have been increasing expenditure on health over recent years. In 1990 we spent 7% of GDP on health. In 1995 that increased to 7.65% and is now 8.3%. However, in per capita terms our expenditure on health does not compare so well with like countries. The size of New Zealand's economy is restricting what our country spends on health. Health is already the second highest demand on the New Zealand tax dollar. The tolerance of New Zealanders would be challenged if a Government attempted to increase taxes further to meet the growing demands for expenditure on health, but at the same time the population's expectations are increasing. This is the challenging situation we face today. What lies ahead? Like all industrialized countries New Zealand is facing an aging population. The population below age 40 is decreasing, but it is increasing significantly over that age. 16% of the population is currently aged over 60. By 2051 this proportion will almost double to just over 31%. Coupled with the aging population is increased awareness and expectations, as access to options for treatment and technology becomes readily accessible to the population through such media as the internet. The extent of the impact of the aging population can be clearly represented by focusing on one specialty such as orthopaedics. The New Zealand Orthopaecic Association undertook a study in July 2003 which concluded (among other things) that as a result of the projected aging of the population, over the next 50 years: Musculo-skeletal operations will increase by over 30%. The number of hip replacements will nearly double. The incidence of osteoporosis will increase by a massive 201%. The number of people affected by arthritis will increase by nearly 50%. A huge increase in numbers affected with musculoskeletal conditions will require significant increases in health care resources, including hospital beds and facilities, orthopaedic surgeons and other health care professionals. New Zealand has been slow to acknowledge and plan for the increased demand for health services which is looming. Growing New Zealand's economy will help, but alone will not be enough. It is more than just finding the financial resources to better meet the demand. The enormous demands on the availability of treatment resources including hospital facilities and trained health care professionals must be addressed. There are major workforce issues to be faced. The change in population distribution between young and old will have an impact and it will be necessary to ensure that there are sufficient numbers of properly trained health care professionals available at all levels. It is hoped that improvements in preventative care programmes and new technologies and treatment techniques may reduce the rate of demand. As the health of our population is improved through targeted programmes dealing with obesity, diabetes, smoking and accident prevention, it may be possible to reallocate or change the focus of resources within the health and hospital sectors. Many countries are developing national strategies for their aging population. Clearly the New Zealand Government needs to move swiftly to develop a plan to manage the increased burden that is developing as a result of the aging population. That plan must create an environment which facilitates, encourages and supports greater private investment in healthcare facilities and healthcare delivery. Incentives must be created to motivate individuals to take greater responsibility for their healthcare needs and the funding of it. The development of a long term strategy to meet the challenges of the aging population is a priority. PMID:19195249

  13. Dividends with Demand Response

    SciTech Connect

    Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

    2003-10-31

    To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

  14. Electrochemical studies of quinone oxygen

    SciTech Connect

    Deanhardt, M.L. ); Mushrush, G.W.; Stalick, W.M. ); Watkins, J.M. Jr. )

    1990-02-01

    Asphaltenes are a chemically complex mixture of aromatic and heteroaromatic compounds. This material contains oxygen in various functional groups. The distribution includes esters, carboxylic acids, phenolic and most probably quinone type oxygen functionalities. The present work details the complete electrochemical behaviour of quinone type oxygen. The method is quinone specific. A condensed aromatic quinone, 9,10-anthraquinone, was selected as representative of complex quinones. By this method quinones can be determined in the presence of other oxygen functional groups, alcohols, carboxylic acids, ethers, and other carbonyls.

  15. Physiological demands of downhill mountain biking.

    PubMed

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 6.9 ml kg(-1) min(-1) or 52 14% of VO(2max) with corresponding heart rates of 146 11 bpm (80 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 9.4 kg (5.5 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness. PMID:23025296

  16. Oxygen release kinetics from solid phase oxygen in Arctic Alaska.

    PubMed

    Schmidtke, T; White, D; Woolard, C

    1999-01-29

    Child's Pad is a gravel construction surface that was contaminated with petroleum during oil-field service operations in Deadhorse, Alaska. As part of a remedial action plan, a buffer strip of uncontaminated sandy gravel was placed along sections of the pad boundary. A magnesium peroxide formulation manufactured by Regenesis, and sold as Oxygen Release Compound (ORC), was placed in the buffer strips. The ORC was intended to supply oxygen to aerobic microorganisms capable of degrading petroleum. Studies were conducted in the laboratory to determine initial oxygen release kinetics from ORC in contact with barrier soil. Studies quantified the biotic and abiotic catalytic mechanisms for converting hydrogen peroxide (a possible MgO2 intermediate) and ORC to oxygen and water, the effects of temperature on oxygen release from ORC, and the effect of field exposure on ORC viability. Barrier soil exhibited sufficient catalytic activity to convert hydrogen peroxide to oxygen faster than the expected biological demand. The oxygen evolution rate (OER) from ORC was lower at 7 degrees C than 21 degrees C by more than two times. The ORC recovered from Child's Pad after less than 1 year retained nearly all of the original available oxygen, although physical bridging was evident. PMID:10337396

  17. Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier

    SciTech Connect

    Yan Cao; Bianca Casenas; Wei-Ping Pan

    2006-10-15

    This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

  18. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (ESTSC)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  19. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.

    PubMed

    Kotula, Lukasz; Ranathunge, Kosala; Schreiber, Lukas; Steudle, Ernst

    2009-01-01

    Radial oxygen loss (ROL) and root porosity of rice (Oryza sativa L.) plants grown in either aerated or deoxygenated (stagnant) conditions were combined for the first time with extensive histochemical and biochemical studies of the apoplastic barriers in the roots' peripheral cell layers. Growth in stagnant solution significantly affected structural and, consequently, the physiological features of rice roots. It increased adventitious root porosity by about 20% and decreased the ROL towards the base to zero at a distance of 40 mm from the apex. By contrast, roots of plants grown in aerated solutions revealed the highest rates of ROL at 30 mm from the apex. Differences in the ROL pattern along the root were related to histochemical studies, which showed an early development of Casparian bands and suberin lamellae in the exodermis, and lignified sclerenchyma cells in roots of plants grown in deoxygenated solution. In agreement with anatomical studies, absolute contents of suberin and lignin in the outer part of the roots (OPR) were higher in plants grown in deoxygenated solution. Regardless of growth conditions, the levels of suberin and lignin increased along the roots towards the base. It is concluded that radial oxygen loss can be effectively restricted by the formation of a suberized exodermis and/or lignified sclerenchyma in the OPR. However, the relative contribution of suberin and lignin in the formation of a tight barrier is unclear. Knowing the permeability coefficient across OPR for roots of plants grown in both conditions will allow a more precise understanding of the mechanisms controlling ROL. PMID:19443620

  20. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-01

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2.2H2O). On the formation of Na2O2.2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  1. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries

    PubMed Central

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-01-01

    With the demand for high-energy-storage devices, the rechargeable metal–oxygen battery has attracted attention recently. Sodium–oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium–oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium–oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium–oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium–oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium–oxygen batteries to achieve high efficiency and rechargeability. PMID:26892931

  2. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries.

    PubMed

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-01-01

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability. PMID:26892931

  3. Quantum dots as a possible oxygen sensor.

    PubMed

    Zi?czyk, Paulina; Kur-Kowalska, Katarzyna; Przybyt, Ma?gorzata; Miller, Ewa

    2014-05-21

    Results of studies on optical properties of low toxicity quantum dots (QDs) obtained from copper doped zinc sulfate are discussed in the paper. The effect of copper admixture concentration and solution pH on the fluorescence emission intensity of QDs was investigated. Quenching of QDs fluorescence by oxygen was reported and removal of the oxygen from the environment by two methods was described. In the chemical method oxygen was eliminated by adding sodium sulfite, in the other method oxygen was removed from the solution using nitrogen gas. For elimination of oxygen by purging the solution with nitrogen the increase of fluorescence intensity with decreasing oxygen concentration obeyed Stern-Volmer equation indicating quenching. For the chemical method Stern-Volmer equation was not fulfilled. The fluorescence decays lifetimes were determined and the increase of mean lifetimes at the absence of oxygen support hypothesis that QDs fluorescence is quenched by oxygen. PMID:24568848

  4. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles

    SciTech Connect

    Gorenstein, D.G.; Luxon, B.A.; Goldfield, E.M.; Lai, K.; Vegeais, D.

    1982-02-02

    The temperature dependence to the /sup 31/P NMR spectra of poly(d(GC))-poly(d(GC)), d(GC)/sub 4/, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The /sup 31/P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and ''Z'' helix. The increasing downfield shift with temperature for the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A seperate upfield peak (20-26% of the total phosphates) is observed at lower temperatures in the oligo(U)-poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The /sup 31/P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation.

  5. The use of a housecleaning product in an indoor environment leading to oxygenated polar compounds and SOA formation: Gas and particulate phase chemical characterization

    NASA Astrophysics Data System (ADS)

    Rossignol, S.; Rio, C.; Ustache, A.; Fable, S.; Nicolle, J.; Même, A.; D'Anna, B.; Nicolas, M.; Leoz, E.; Chiappini, L.

    2013-08-01

    This work investigates Secondary Organic Aerosol (SOA) formed by limonene ozonolysis using a housecleaning product in indoor environment. This study combines simulation chamber ozonolysis experiments and field studies in an experimental house allowing different scenarios of housecleaning product use in real conditions. Chemical speciation has been performed using a new method based on simultaneous sampling of both gas and particulate phases on sorbent tubes and filters. This method allowed the identification and quantification of about 35 products in the gas and particulate phases. Among them, products known to be specific from limonene ozonolysis such as limononaldehyde, ketolimonene and ketolimonic acid have been detected. Some other compounds such as 2-methylbutanoic acid had never been detected in previous limonene ozonolysis studies. Some compounds like levulinic acid had already been detected but their formation remained unexplained. Potential reaction pathways are proposed in this study for these compounds. For each experiment, chemical data are coupled together with physical characterization of formed particles: mass and size and number distribution evolution which allowed the observation of new particles formation (about 87,000 particle cm-3). The chemical speciation associated to aerosol size distribution results confirmed that limonene emitted by the housecleaning product was responsible for SOA formation. To our knowledge, this work provides the most comprehensive analytical study of detected compounds in a single experiment for limonene ozonolysis in both gaseous and particulate phases in real indoor environment.

  6. In situ reactive oxygen species production for tertiary wastewater treatment.

    PubMed

    Guitaya, La; Drogui, Patrick; Blais, Jean Franois

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05??10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45??10(-5) M after 20 min of electrolysis to a concentration of 2.87??10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent. PMID:25483973

  7. Rhenium-Oxygen Interactions at High Temperatures

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald

    2000-01-01

    The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.

  8. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasi?ska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Pea, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simn-Daz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the cool one provides the bulk of hydrogen ionization, while the hot one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M? requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M?, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  9. On the effect of 1,4-diazabicyclo[2.2.2]octane on the singlet-oxygen dimol emission: chemical generation of 1O2)2 in peroxide reactions.

    PubMed

    Kazakov, Dmitri V; Kazakov, Valeri P; Maistrenko, Gulchekhra Ya; Mal'zev, Dmitri V; Schmidt, Reinhard

    2007-05-24

    The acetone-catalyzed decomposition of monoperoxysulfate ions, the molybdate ion-induced decay of hydrogen peroxide, and the reactions of N-chlorosuccinimide or N-bromosuccinimide with hydrogen peroxide and of dimethyldioxirane with tertiary amines as well as the thermal decomposition of 1,4-dimethylnaphthalene endoperoxide lead to the chemiluminescence of singlet-oxygen dimol species (1O2)2 emitting at 634 and 703 nm. In contrast to the expected enhancement of (1O2)2 chemiluminescence upon addition of 1,4-diazabicyclo[2.2.2]octane (DABCO) [Deneke, C.F.; Krinsky, N. I. J. Am. Chem. Soc. 1976, 98, 3041. Di Mascio, P.; Sies, H. J. Am. Chem. Soc. 1989, 111, 2909.], quenching has been observed. Our data show that enhancement of singlet-oxygen dimol chemiluminescence is not a general phenomenon and, consequently, DABCO is not a reliable chemiluminescent probe for the presence of (1O2)2 in chemical and biochemical systems. PMID:17455924

  10. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  11. Demand Response Programs, 6. edition

    SciTech Connect

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  12. Microcirculatory oxygen transport and utilization.

    PubMed

    Hamlin, Shannan K; Parmley, C Lee; Hanneman, Sandra K

    2014-09-01

    The cardiovascular system (macrocirculation) circulates blood throughout the body, but the microcirculation is responsible for modifying tissue perfusion and adapting it to metabolic demand. Hemodynamic assessment and monitoring of the critically ill patient is typically focused on global measures of oxygen transport and utilization, which do not evaluate the status of the microcirculation. Despite achievement and maintenance of global hemodynamic and oxygenation goals, patients may develop microcirculatory dysfunction with associated organ failure. A thorough understanding of the microcirculatory system under physiologic conditions will assist the clinician in early recognition of microcirculatory dysfunction in impending and actual disease states. PMID:25169685

  13. Seasonal oxygen depletion in Chesapeake Bay

    SciTech Connect

    Taft, J.L.; Hartwig, E.O.; Loftus, R.

    1980-12-01

    The spring freshet increases density stratification in Chesapeake Bay and minimizes oxygen transfer from the surface to the deep layer so that waters below 10 m depth experience oxygen depletion which may lead to anoxia during June to September. Respiration in the water of the deep layer is the major factor contributing to oxygen depletion. Benthic respiration seems secondary. Organic matter from the previous year which has settled into the deep layer during winter provides most of the oxygen demand but some new production in the surface layer may sink and thus supplement the organic matter accumulated in the deep layer.

  14. Effects of rainfalls variability and physical-chemical parameters on enteroviruses in sewage and lagoon in Yopougon, Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Momou, Kouassi Julien; Akoua-Koffi, Chantal; Traoré, Karim Sory; Akré, Djako Sosthène; Dosso, Mireille

    2016-02-01

    The aim of this study was to assess the variability of the content of nutrients, oxidizable organic and particulate matters in raw sewage and the lagoon on the effect of rainfall. Then evaluate the impact of these changes in the concentration of enteroviruses (EVs) in waters. The sewage samples were collected at nine sampling points along the channel, which flows, into a tropical lagoon in Yopougon. Physical-chemical parameters (5-day Biochemical Oxygen Demand, Chemical Oxygen Demand, Suspended Particulate Matter, Total Phosphorus, Orthophosphate, Total Kjeldahl Nitrogen and Nitrate) as well as the concentration of EV in these waters were determined. The average numbers of EV isolated from the outlet of the channel were 9.06 × 104 PFU 100 ml-1. Consequently, EV was present in 55.55 and 33.33 % of the samples in the 2 brackish lagoon collection sites. The effect of rainfall on viral load at the both sewage and brackish lagoon environments is significant correlate (two-way ANOVA, P < 0.05). Furthermore, in lagoon environment, nutrients (Orthophosphate, Total Phosphorus), 5-day Biochemical Oxygen Demand, Chemical Oxygen Demand and Suspended Particulate Matter were significant correlated with EVs loads (P < 0.05 by Pearson test). The overall results highlight the problem of sewage discharge into the lagoon and correlation between viral loads and water quality parameters in sewage and lagoon.

  15. An integrated communications demand model

    NASA Astrophysics Data System (ADS)

    Doubleday, C. F.

    1980-11-01

    A computer model of communications demand is being developed to permit dynamic simulations of the long-term evolution of demand for communications media in the U.K. to be made under alternative assumptions about social, economic and technological trends in British Telecom's business environment. The context and objectives of the project and the potential uses of the model are reviewed, and four key concepts in the demand for communications media, around which the model is being structured are discussed: (1) the generation of communications demand; (2) substitution between media; (3) technological convergence; and (4) competition. Two outline perspectives on the model itself are given.

  16. Titration biosensors for the estimation of the biochemical nitrate demand of municipal and industrial wastes.

    PubMed

    Onnis, A; Carucci, A; Cappai, G

    2006-03-01

    An anoxic titrimetric test was investigated for measuring denitrification potential of different wastewaters, both municipal and industrial, and to quantify the denitrifying activity in an activated sludge system. The method measures the amount of acid that is required to maintain the pH set-point value in a batch denitrification experiment, and it was performed using a DENICON (denitrification controller) biosensor. The amount of acid is proportional to the nitrate used to oxidise the biodegradable chemical oxygen demand present in the wastewater, while the acid consumption rate is used to derive the denitrifying activity. The wastewaters tested were a municipal wastewater (MW), an industrial-municipal wastewater (MIW; 70% and 30%, respectively), and four industrial wastewaters drawn from an ice-cream factory (IW1), a beet-sugar factory (IW2), a brewery (IW3), and a tuna cannery industry (IW4). Good correlation between titration data and analyses was found. PMID:15856352

  17. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

  18. Physiological Demands of Flat Horse Racing Jockeys.

    PubMed

    Cullen, SarahJane; O?Loughlin, Gillian; McGoldrick, Adrian; Smyth, Barry; May, Gregory; Warrington, Giles D

    2015-11-01

    The physiological demands of jockeys during competition remain largely unknown, thereby creating challenges when attempting to prescribe sport-specific nutrition and training guidelines. The purpose of this study was to evaluate the physiological demands and energy requirements of jockeys during flat racing. Oxygen uptake (V[Combining Dot Above]O2) and heart rate (HR) were assessed in 18 male trainee jockeys during a race simulation trial on a mechanical horse racing simulator for the typical time duration to cover a common flat race distance of 1,400 m. In addition, 8 male apprentice jockeys participated in a competitive race, over distances ranging from 1,200 to 1,600 m, during which HR and respiratory rate (RR) were assessed. All participants performed a maximal incremental cycle ergometer test. During the simulated race, peak V[Combining Dot Above]O2 was 42.74 5.6 mlkgmin (75 11% of V[Combining Dot Above]O2peak) and below the mean ventilatory threshold (81 5% of V[Combining Dot Above]O2peak) reported in the maximal incremental cycle test. Peak HR was 161 16 bmin (86 7% of HRpeak). Energy expenditure was estimated as 92.5 18.8 kJ with an associated value of 9.4 metabolic equivalents. During the competitive race trial, peak HR reached 189 5 bmin (103 4% of HRpeak) and peak RR was 50 7 breaths per minute. Results suggest that horse racing is a physically demanding sport, requiring jockeys to perform close to their physiological limit to be successful. These findings may provide a useful insight when developing sport-specific nutrition and training strategies to optimally equip and prepare jockeys physically for the physiological demands of horse racing. PMID:25932980

  19. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    PubMed

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered. PMID:25965854

  20. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    ERIC Educational Resources Information Center

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO

  1. Harnessing the power of demand

    SciTech Connect

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  2. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    ERIC Educational Resources Information Center

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO…

  3. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  4. Automated Demand Response and Commissioning

    SciTech Connect

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  5. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  7. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen.

    PubMed

    Kim, Yoon-Chang; Sasaki, Satoshi; Yano, Kazuyoshi; Ikebukuro, Kazunori; Hashimoto, Kazuhito; Karube, Isao

    2002-08-01

    A photocatalytic sensor for the determination of chemical oxygen demand (COD) using titanium dioxide, based on the use of a pair of oxygen electrodes and flow injection analysis, is described. The measuring principle is based on the direct determination of the oxygen concentration change resulting from photocataltic oxidation of organic compounds. One of the two oxygen electrodes, the reference oxygen electrode, was utilized to measure the reference signal responding only to oxygen present in the injected samples. Oxygen consumption due to the TiO2-catalyzed photochemical oxidation of organic compounds in samples was monitored with the working oxygen electrode. The COD value of this sensor was calculated as the difference of the currents at reference and working oxygen electrodes, respectively. The operation characteristics of the sensor are demonstrated using artificially treated wastewater as a substrate. The sensor was also applied to the determination of COD in real water samples from dam reservoirs (n = 20) all over Japan. The results were in good agreement with those from the conventional COD methods (i.e., permanganate and dichromate methods). PMID:12175176

  8. Oxygen ionic conductivity of La2NiO4+? via interstitial oxygen defect

    NASA Astrophysics Data System (ADS)

    Jeon, S.-Y.; Choi, M.-B.; Im, H.-N.; Hwang, J.-H.; Song, S.-J.

    2012-05-01

    The ionic conduction properties of La2NiO4+? were studied from oxygen permeation flux and defect-related transport properties. The effects of the applied oxygen chemical potential gradient and temperature on the oxygen permeability of La2NiO4+? at various thickness are reported. The thermally activated oxygen permeation flux increased monotonically with increasing oxygen chemical potential gradient, yielding a maximum of 0.15 cc min-1 cm-2 under air/N2 conditions for the 0.95 mm-thick La2NiO4+? specimen at 900 C. The oxygen ion conductivity of La2NiO4+? was calculated as a function of temperature and oxygen partial pressure by differentiating the chemical diffusion equation for the oxygen permeation flux based on the dominant electronic transference number. In addition, the oxygen ion conductivity was extracted successfully by solving the Nernst-Einstein equation combining with the calculated self-diffusion coefficient of oxygen from the chemical diffusivity and thermodynamic enhancement factor from the equilibrium oxygen nonstoichoimetry of a La2NiO4+? specimen, and a deviation of the OPP dependence of 1/6 power was observed.

  9. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  10. PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL

    EPA Science Inventory

    Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...

  11. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  12. Chemical and structural changes in Ln2NiO4+δ (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature

    NASA Astrophysics Data System (ADS)

    Flura, Aurélien; Dru, Sophie; Nicollet, Clément; Vibhu, Vaibhav; Fourcade, Sébastien; Lebraud, Eric; Rougier, Aline; Bassat, Jean-Marc; Grenier, Jean-Claude

    2015-08-01

    The chemical stability of lanthanide nickelates Ln2NiO4+δ (Ln=La, Pr or Nd) has been studied in the temperature range 25-1300 °C, either in air or at low pO2 (down to 10-4 atm). Thermal gravimetry analysis (TGA) measurements coupled with X-ray diffraction (XRD) characterization have shown that all compounds retain their K2NiF4-type structure in these conditions, while remaining over-stoichiometric in oxygen up to 1000 °C. Only Nd2NiO4+δ starts to decompose into Nd2O3 and NiO above 1000 °C, at pO2=10-4 atm. In addition, a careful analysis of the lanthanide nickelates structural features has been performed by in situ XRD, as a function of temperature and pO2. For all compounds, a structural transition has been always observed in the temperature range 200-400 °C, in air or at pO2=10-4 atm. In addition, their cell volume did not vary upon the variation of the oxygen partial pressure. Therefore, these materials do not exhibit a chemical expansion in these conditions, which is beneficial for a fuel cell application as cathode layers. Additional dilatometry measurements have revealed that a temperature as high as 950 °C for Pr2NiO4+δ or 1100 °C for La2NiO4+δ and Nd2NiO4+δ has to be reached in order to begin the sintering of the material particles, which is of primary importance to obtain an efficient electronic/ionic conduction in the corresponding designed cathode layers. Besides, excellent matching was found between the thermal expansion coefficients of lanthanide nickelates and SOFC electrolytes such as 8wt% yttria stabilized zirconia (8YSZ) or Ce0.8Gd0.2O2-δ (GDC), at least from 400 °C up to 1400 °C in air or up to 1200 °C at pO2=10-4 atm.

  13. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  14. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  15. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  16. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  17. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  18. Integrated-Optic Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Mendoza, Edgar A.; Lieberman, Robert A.

    2004-01-01

    Compact optical oxygen sensors with self-calibration capabilities are undergoing development. A sensor of this type features a single-chip, integrated-optic design implemented by photolithographic fabrication of optical waveguides in a photosensitive porous glass. The porosity serves as both a matrix for retention of an oxygen-sensitive fluorescent indicator chemical and a medium for diffusion of oxygen to the chemical from the ambient air to be monitored. Each sensor includes at least one such waveguide exposed to the atmosphere and at least one covered with metal for isolation from the atmosphere. The covered one serves as a reference channel. In operation, the concentration of oxygen is deduced from the intensity and lifetime of the fluorescence in the exposed channel, with the help of calibration data acquired via the reference channel. Because the sensory chemical is placed directly in and throughout the cross section of the light path, approximately 99 percent of the light in the waveguide is available for interaction with the chemical, in contradistinction to only about 1 percent of the light in an optical sensor that utilizes evanescentwave coupling. Hence, a sensor of this type is significantly more sensitive.

  19. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  20. Industrial Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. Residential Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  2. Saving Electricity and Demand Response

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Nobuyuki

    A lot of people lost their lives in the tremendous earthquake in Tohoku region on March 11. A large capacity of electric power plants in TEPCO area was also damaged and large scale power shortage in this summer is predicted. In this situation, electricity customers are making great effort to save electricity to avoid planned outage. Customers take actions not only by their selves but also by some customers' cooperative movements. All actions taken actually are based on responses to request form the government or voluntary decision. On the other hand, demand response based on a financial stimulus is not observed as an actual behavior. Saving electricity by this demand response only discussed in the newspapers. In this commentary, the events regarding electricity-saving measure after this disaster are described and the discussions on demand response, especially a raise in power rate, are put into shapes in the context of this electricity supply-demand gap.

  3. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology. PMID:21177952

  4. Demand Response Spinning Reserve Demonstration

    SciTech Connect

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  5. Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(1?) 1.27 ?m emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Marshall, B. Thomas; Martin-Torres, F. Javier; Russell, James M.; Thompson, R. Earl; Remsberg, Ellis E.; Gordley, Larry L.

    2007-08-01

    We report observations of the daytime O2(1?) airglow emission at 1.27 ?m recorded by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. The measured limb radiances are inverted to yield vertical profiles of the volume emission rate of energy from the O2 molecule. From these emission rates we subsequently derive the mesospheric ozone concentrations using a nonlocal thermodynamic equilibrium (non-LTE) radiative and kinetic model. Rates of energy deposition due to absorption of ultraviolet radiation in the Hartley band of ozone are also derived, independent of knowledge of the ozone abundance and solar irradiances. Atomic oxygen concentrations are obtained from the ozone abundance using photochemical steady state assumptions. Rates of energy deposition due to exothermic chemical reactions are also derived. The data products illustrated here are from a test day (4 July 2002) of SABER Version 1.07 data which are now becoming publicly available. This test day illustrates the high quality of the SABER O2(1?) airglow and ozone data and the variety of fundamental science questions to which they can be applied.

  6. Oxygen plasmas used to synthesize superoxides

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Production of alkali metal superoxides by interaction of molecular oxygen with alkali metals or their salts is discussed. Diagram of reactor to show components and operating principles is provided. Analysis of chemical reactions involved is developed.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  9. Hemoglobin-Based Nanoarchitectonic Assemblies as Oxygen Carriers.

    PubMed

    Jia, Yi; Duan, Li; Li, Junbai

    2016-02-01

    Safe and effective artificial oxygen carriers are the subject of great interest due to the problems of traditional blood transfusion and enormous demand in clinical use. In view of its unique oxygen-transport ability and normal metabolic pathways, hemoglobin is regarded as an ideal oxygen-carrying unit. With advances in nano-biotechnology, hemoglobin assemblies as artificial oxygen carriers achieve great development. Here, recent progress on hemoglobin-based oxygen carriers is highlighted in view of two aspects: acellular hemoglobin-based oxygen carriers and cellular hemoglobin-based oxygen carriers. These novel oxygen carriers exhibit advantages over traditional carriers and will greatly promote research on reliable and feasible oxygen carriers. PMID:26479864

  10. Effects of oxygen on fracturing fluids

    SciTech Connect

    Walker, M.L.; Shuchart, C.E.; Yaritz, J.G.; Norman, L.R.

    1995-11-01

    The stability of polysaccharide gels at high temperature is limited by such factors as pH, mechanical degradation, and oxidants. Oxygen is unavoidably placed in fracturing fluids through dissolution of air. To prevent premature degradation of the fracturing fluid by this oxidant, oxygen scavengers are commonly used. In this paper, the effects of oxygen and various oxygen scavengers on gel stability will be presented. Mechanical removal of oxygen resulted in surprisingly stable fracturing gels at 275 F. However, chemical removal of oxygen gave mixed results. Test data from sodium thiosulfate, sodium sulfite, and sodium erythorbate used as oxygen scavengers/gel stabilizers showed that the efficiency of oxygen removal from gels did not directly coincide with the viscosity retention of the gel, and large excesses of additives were necessary to provide optimum gel stabilization. The inability of some oxygen scavengers to stabilize the gel was the result of products created from the interaction of oxygen with the oxygen scavenger, which in turn, produced species that degraded the gel. The ideal oxygen scavenger should provide superior gel stabilization without creating detrimental side reaction products. Of the materials tested, sodium thiosulfate appeared to be the most beneficial.

  11. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  12. Workload demand in police officers during mountain bike patrols.

    PubMed

    Takken, T; Ribbink, A; Heneweer, H; Moolenaar, H; Wittink, H

    2009-02-01

    To the authors' knowledge this is the first paper that has used the training impulse (TRIMP) 'methodology' to calculate workload demand. It is believed that this is a promising method to calculate workload in a range of professions in order to understand the relationship between work demands and aerobic fitness. The aim of this study was to assess workload demand in police officers from the Utrecht police department in the Netherlands, during patrol by mountain bike. Maximum oxygen intake, maximum heart rate (HRmax), ventilatory threshold (VT)1 and VT2 were determined with a maximal exercise test on a bicycle ergometer. Heart rates were registered throughout three shifts in 20 subjects using a heart rate monitor. Exercise intensity was divided into three phases: phase I (between 40% of HRmax and VT1); phase II (between VT and the respiratory compensation point (RCP)); and phase III (>RCP). The total TRIMP score was obtained by summating the results of the three phases. Average daily workload demands of 355 TRIMPs per day and 1777 TRIMPs per week were measured. Workload demand approached and in some cases exceeded the upper limit of 2000 TRIMPs per week threshold level for physiological stress demands in professional male cyclists. PMID:19296321

  13. Power generation capabilities of microbial fuel cells with different oxygen supplies in the cathodic chamber.

    PubMed

    Juang, Der-Fong; Lee, Chao-Hsien; Hsueh, Shu-Chun; Chou, Huei-Yin

    2012-06-01

    Two microbial fuel cells (MFCs) inoculated with activated sludge of a wastewater treatment plant were constructed. Oxygen was provided by mechanical aeration in the cathodic chamber of one MFC, whereas it was obtained by the photosynthesis of algae in the other. Electrogenic capabilities of both MFCs were compared under the same operational conditions. Results showed that the MFC with mechanical aeration in the cathodic chamber displayed higher power output than the one with photosynthesis of algae. Good linear relationship between power density and chemical oxygen demand (COD) loading rate was obtained only on the MFC with mechanical aeration. Furthermore, the relationships between power density and effluent COD and between Coulombic efficiency and COD loading rate can only be expressed as binary quadratic equations for the MFC with mechanical aeration and not for the one with photosynthesis of algae. PMID:22588734

  14. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  16. Chemical durability

    SciTech Connect

    Kreuer, K.D.; Warhus, U.

    1986-03-01

    The chemical durability of NASICON (Na/sub 1+x/Zr/sub 2/Si/sub x/P/sub 3-x/O/sub 12/, x=0-3) versus molten sodium and sulfur at 600 K has been investigated. Degradation by molten sodium has been observed for phosphorus-containing compositions only. The pure silicate (x=3), however, appeared to be stable, because reduction of silicon demanded by thermodynamics did not occur at the given temperature for kinetic reasons. The latter composition has also been shown to have good durability against molten sulfur.

  17. The myths of demand management

    SciTech Connect

    Fraser, M. )

    1992-01-01

    Like any field of study or business activity, energy demand management is full of myths. Often these myths create unrealistic expectations about the potential for demand management and the way it should be carried out. In this paper, a half dozen myths will be explored, based on the experience of the former Manager of Ontario Hydro's Commercial Programs Department. These include the following: Who Pays the Piper Calls the Tune; The Rational, Economic Decision-Maker; One Perfect Technology; One Shot Implementation; Utilities Know Best; Ontario Hydro's Just Beginning.

  18. Oxygen requirements of the earliest animals

    PubMed Central

    Mills, Daniel B.; Ward, Lewis M.; Jones, CarriAyne; Sweeten, Brittany; Forth, Michael; Treusch, Alexander H.; Canfield, Donald E.

    2014-01-01

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earths surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.54.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth. PMID:24550467

  19. Oxygen requirements of the earliest animals.

    PubMed

    Mills, Daniel B; Ward, Lewis M; Jones, Carriayne; Sweeten, Brittany; Forth, Michael; Treusch, Alexander H; Canfield, Donald E

    2014-03-18

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth. PMID:24550467

  20. OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284