Science.gov

Sample records for chemical process design

  1. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    The design of a chemical process involves many aspects: from profitability, flexibility and reliability to safety to the environment. While each of these is important, in this work, the focus will be on profitability and the environment. Key to the study of these aspects is the ...

  2. WORKSHOP ON ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    To encourage the consideration of environmental issues during chemical process design, the USEPA has developed techniques and software tools to evaluate the relative environmental impact of a chemical process. These techniques and tools aid in the risk management process by focus...

  3. Molecular Thermodynamics for Chemical Process Design

    ERIC Educational Resources Information Center

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  4. Chemical kinetics and oil shale process design

    SciTech Connect

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  5. DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...

  6. Chemical Process Design: An Integrated Teaching Approach.

    ERIC Educational Resources Information Center

    Debelak, Kenneth A.; Roth, John A.

    1982-01-01

    Reviews a one-semester senior plant design/laboratory course, focusing on course structure, student projects, laboratory assignments, and course evaluation. Includes discussion of laboratory exercises related to process waste water and sludge. (SK)

  7. DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...

  8. DESIGNING CHEMICAL PROCESSES WITH OPEN AND FUGITIVE EMISSIONS

    EPA Science Inventory

    Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the conomics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. Th...

  9. New Vistas in Chemical Product and Process Design.

    PubMed

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates. PMID:27088667

  10. Parametric design methodology for chemical processes using a simulator

    SciTech Connect

    Diwekar, U.M.; Rubin, E.S. )

    1994-02-01

    Parameter design is a method popularized by the Japanese quality expert G. Taguchi, for designing products and manufacturing processes that are robust in the face of uncontrollable variations. At the design stage, the goal of parameter design is to identify design settings that make the product performance less sensitive to the effects of manufacturing and environmental variations and deterioration. Because parameter design reduces performance variation by reducing the influence of the sources of variation rather than by controlling them, it is a cost-effective technique for improving quality. A recent study on the application of parameter design methodology for chemical processes reported that the use of Taguchi's method was not justified and a method based on Monte Carlo simulation combined with optimization was shown to be more effective. However, this method is computationally intensive as a large number of samples are necessary to achieve the given accuracy. Additionally, determination of the number of sample runs required is based on experimentation due to a lack of systematic sampling methods. In an attempt to overcome these problems, the use of a stochastic modeling capability combined with an optimizer is presented in this paper. The objective is that of providing an effective means for application of parameter design methodologies to chemical processes using the ASPEN simulator. This implementation not only presents a generalized tool for use by chemical engineers at large but also provides systematic estimates of the number of sample runs required to attain the specified accuracy. The stochastic model employs the technique of Latin hypercube sampling instead of the traditional Monte Carlo technique and hence has a great potential to reduce the required number of samples. The methodology is illustrated via an example problem of designing a chemical process.

  11. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  12. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  13. A Framework to Design and Optimize Chemical Flooding Processes

    SciTech Connect

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  14. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    ERIC Educational Resources Information Center

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  15. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  16. EVALUATING AND DESIGNING CHEMICAL PROCESSES FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Chemicals and chemical processes are at the heart of most environmental problems. This isn't surprising since chemicals make up all of the products we use in our lives. The common use of cjhemicals makes them of high interest for systems analysis, particularly because of environ...

  17. POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION

    EPA Science Inventory

    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  18. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  19. DECISION SUPPORT SYSTEM TO ENHANCE AND ENCOURAGE SUSTAINABLE CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    There is an opportunity to minimize the potential environmental impacts (PEIs) of industrial chemical processes by providing process designers with timely data nad models elucidating environmentally favorable design options. The second generation of the Waste Reduction (WAR) algo...

  20. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...

  1. DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES

    EPA Science Inventory

    A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...

  2. Fiber optic sensor design for chemical process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mahendran, R. S.; Harris, D.; Wang, L.; Machavaram, V. R.; Chen, R.; Kukureka, St. N.; Fernando, G. F.

    2007-07-01

    Cure monitoring is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composites can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in-situ cure monitoring of a model thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture in the cured resin system.

  3. Development of Chemical Process Design and Control for Sustainability

    EPA Science Inventory

    This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....

  4. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  5. EVALUATING THE ECONOMICS AND ENVIRONMENTAL FRIENDLINESS OF NEWLY DESIGNED OR RETROFITTED CHEMICAL PROCESSES: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1646 Smith*, R.L. Evaluating the Economics and Environmental Friendliness of Newly Designed or Retrofitted Chemical Processes. Clean Products and Processes (Springer-Verlag) 3:383-391 (2002). 10/22/2001 This work describes a method for using spreadsheet analyses of ...

  6. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  7. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. PMID:24309506

  8. Membrane process designs in the recovery of bio-fuels and bio-chemicals

    SciTech Connect

    Leeper, S.A.

    1990-01-01

    In this presentation, the emerging membrane unit operations and process designs that can be used in recovery of fuels and organic chemicals produced via bioconversion are briefly summarized. Product recovery costs are a major barrier to increased use of bioconversion for the production of fuels and chemicals. The integration of developing membrane unit operations into product recovery schemes may reduce process energy requirements and cost. Membrane unit operations that are used or studied in recovery of bio-fuels and organic chemicals include pervaporation (PV), vapor permeation (VPe), reverse osmosis (RO), membrane extraction, and electrodialysis (ED). Although it can be argued that ultrafiltration (UF) is used to purify bio-fuels and bio-chemicals, UF is not included in this survey for two reasons: (1) the primary uses of UF in bioprocessing are to clarify fermentation broth and to retain cells/enzymes in bioreactors and (2) the literature on UF in biotechnology is expansive. Products of bioconversion for which data are compiled include ethanol, acetone, butanol, glycerol, isopropanol, ethyl acetate, fusel oils, acetaldehyde, acetic acid, butyric acid, citric acid, propionic acid, succinic acid, and tartaric acid. 13 refs.

  9. Chemical feedstock from hardwood by organosolv hydrolysis: Computer-aided process design and economic evaluation

    NASA Astrophysics Data System (ADS)

    Nguyen, X. N.

    1982-12-01

    A two stage catalyzed organosolv plant producing ethanol, furfural, acetic acid, and soluble lignin from wood waste was investigated. The GEMS computer system was used to aid the preliminary design and cost estimation of the proposed wood chemical plant. For a plant processing 1000 ovendry tons of wood per day, a capital investment of $66 million and an operating expense of about $20 million per year were estimated. The capital cost calculated compares favorably with other published estimates. Sensitivity analyses of some key factors in the proposed process disclose that the recovery efficiency of ethanol used in the lignin extraction stage is most important in determining the process economics. Ethanol solvent recovery of about 98% is required. At 95% recovery efficiency, conversion to glucose in the acid hydrolysis step above 90% is necessary for the ethanol selling price to be comparable to the current market price.

  10. Chemical process hazards analysis

    SciTech Connect

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  11. WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...

  12. EVALUATING THE ECONOMICS AND ENVIRONMENTAL FRIENDLINESS OF NEWLY DESIGNED OR RETROFITTED CHEMICAL PROCESSES

    EPA Science Inventory

    This work describes a method for using spreadsheet analyses of process designs and retrofits to provide simple and quick economic and environmental evaluations simultaneously. The method focuses attention onto those streams and components that have the largest monetary values and...

  13. COMPUTER AIDED CHEMICAL PROCESS DESIGN METHODOLOGIES FOR POLLUTION REDUCTION(SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The objective of the project is to develop computer optimization and simulation methodologies for the design of economical chemical manufacturing processes with a minimum of impact on the environment. The computer simulation and optimization tools developed in this project can be...

  14. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark Eiteman

    2007-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzymes PEP carboxylase and pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The study reports on strain development and process development. In the area of strain development, knockouts in genes which divert carbon from the enzymatic steps involved in CO{sub 2} consumption were completed, and were shown not to affect significantly the rate of CO{sub 2} sequestration and succinic acid generation. Furthermore, the pyc gene encoding for pyruvate carboxylase proved to be unstable when integrated onto the chromosome. In the area of process development, an optimal medium, pH and base counterion were obtained, leading to a sequestration rate as great as 800 mg/Lh. Detailed studies of gas phase composition demonstrated that CO{sub 2} composition has a significant affect on CO{sub 2} sequestration, while the presence of 'toxic' compounds in the gas, including NO{sub 2}, CO and SO{sub 2} did not have a detrimental effect on sequestration. Some results on prolonging the rate of sequestration indicate that enzyme activities decrease with time, suggesting methods to prolong enzyme activity may benefit the overall process.

  15. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark A. Eiteman

    2005-11-01

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzyme pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The first phase of this research has focused on strain development and on process development. Progress in strain development has been made in three areas. The gene encoding for alcohol dehydrogenase has been ''knocked out'' of the bacteria, and thereby eliminating the synthesis of the by-product ethanol. The gene for glucokinase has been overexpressed in the production strain with the goal of faster utilization of glucose (and hence CO{sub 2}). Efforts have continued toward integrating pyruvate carboxylase gene (pyc) onto the E. coli chromosome. Progress in process development has come in conducting several dozen fermentation experiments to find a defined medium that would be successful for the growth of the bacteria, while permitting a high rate of CO{sub 2} utilization in a subsequent prolonged production phase. Using this defined medium, the strains that continue to be constructed are being compared for CO{sub 2} utilization, so that we may understand the factors that govern the biological sequestration process.

  16. Chemical Processing Manual

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1972-01-01

    Chemical processes presented in this document include cleaning, pickling, surface finishes, chemical milling, plating, dry film lubricants, and polishing. All types of chemical processes applicable to aluminum, for example, are to be found in the aluminum alloy section. There is a separate section for each category of metallic alloy plus a section for non-metals, such as plastics. The refractories, super-alloys and titanium, are prime candidates for the space shuttle, therefore, the chemical processes applicable to these alloys are contained in individual sections of this manual.

  17. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark A. Eiteman

    2006-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzyme pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The phases of research have included strain development and process development. Though we continue to work on one important component of strain development, the research has principally focused on process development. In the previous year we constructed several strains which would serve as templates for the CO{sub 2} sequestration, including the knock-out of genes involved in the formation of undesirable byproducts. This project period the focus has been on the integration of the pyruvate carboxylase gene (pyc) onto the E. coli chromosome. This has proven to be a difficult task because of relatively low expression of the gene and resulting low enzyme activity when only one copy of the gene is present on the chromosome. Several molecular biology techniques have been applied, with some success, to improve the level of protein activity as described herein. Progress in process development has come as a result of conducting numerous fermentation experiments to select optimal conditions for CO{sub 2} sequestration. This process-related research has progressed in four areas. First, we have clarified the range of pH which results in the optimal rate of sequestration. Second, we have determined how the counterion used to control the pH affects the sequestration rate. Third, we have determined how CO{sub 2} gas phase composition impacts sequestration rate. Finally, we have made progress in determining the affect of several potential gaseous impurities on CO{sub 2} sequestration; in particular we have completed a study using NO{sub 2}. Although the results provide significant guidance as to process conditions for CO{sub 2} sequestration and succinate production, in some cases we do not yet understand

  18. DESIGNING PROCESSES FOR ENVIRONMENTAL PROBLEMS

    EPA Science Inventory

    Designing for the environment requires consideration of environmental impacts. The Generalized WAR Algorithm is the methodology that allows the user to evaluate the potential environmental impact of the design of a chemical process. In this methodology, chemicals are assigned val...

  19. Fiber-optic sensor design for chemical process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mahendran, R. S.; Wang, L.; Machavaram, V. R.; Pandita, S. D.; Chen, R.; Kukureka, S. N.; Fernando, G. F.

    2009-10-01

    "Curing" is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber-reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composite can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in situ monitoring of the cross-linking reactions of a commercially available thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture into the cured resin system.

  20. Chemical and process thermodynamics

    SciTech Connect

    Kyle, B.G.

    1984-01-01

    The book is intended mainly to be used as a text for undergraduate chemical engineering studies. Presented is a unified and up-to-date treatment of the major chemical and engineering applications of thermodynamics. Special features include a four chapter sequence on phase equilibrium which begins with simple concepts discussions. More difficult concepts are introduced gradually. Partial molar properties and infinite dilution activity coefficients appear toward the end of the sequence. Solution behavior, including activity coefficients via UNIVAC, is covered. Chapter 14 discusses heat exchange, separation processes, and second law analysis of chemical processes. Chapter 12 provides a firm foundation for chemical equilibrium, and Chapter 13 includes complex chemical equilibrium and free energy minimization. A selection of end-of-chapter problems is included to help the student apply principles and concepts in practical situations.

  1. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    NASA Astrophysics Data System (ADS)

    Weiss, Theodor; Nowak, Martin; Mundloch, Udo; Zielasek, Volkmar; Kohse-Höinghaus, Katharina; Bäumer, Marcus

    2014-10-01

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  2. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    SciTech Connect

    Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar Bäumer, Marcus; Mundloch, Udo; Kohse-Höinghaus, Katharina

    2014-10-15

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  3. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition

    EPA Science Inventory

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  4. Experiments To Demonstrate Chemical Process Safety Principles.

    ERIC Educational Resources Information Center

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  5. Chemical Sensing in Process Analysis.

    ERIC Educational Resources Information Center

    Hirschfeld, T.; And Others

    1984-01-01

    Discusses: (1) rationale for chemical sensors in process analysis; (2) existing types of process chemical sensors; (3) sensor limitations, considering lessons of chemometrics; (4) trends in process control sensors; and (5) future prospects. (JN)

  6. Evaluation of a no-clean soldering process designed to eliminate the use of ozone depleting chemicals

    SciTech Connect

    Iman, R.L.; Armendariz, M.E.; Anderson, D.J. |; Lichtenberg, L.; Van Buren, P.; Paffett, M.T.

    1992-11-01

    The destruction of the Earth`s protective ozone layer is one of today`s largest environmental concerns. Solvent emissions released during the cleaning of printed wiring boards (PWBs) have been identified as a primary contributor to ozone destruction. No-clean soldering (sometimes referred to as self-cleaning) processes represent an ideal solution since they eliminate the need for cleaning after soldering. Elimination of solvent cleaning operations significantly reduces the emissions of ozone depleting chemicals (ODCs), reduces energy consumption, and reduces product costs. Several no-clean soldering processes have been developed over the past few years. The program`s purpose was to evaluate the no-clean soldering process and to determine if hardware produced by the process is acceptable for military applications. That is, determine if the no-clean process produces hardware that is as reliable as that soldered with the existing rosin-based flux solvent cleaning process.

  7. Teaching Process Design through Integrated Process Synthesis

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  8. A Course in Chemical Reactor Design.

    ERIC Educational Resources Information Center

    Takoudis, Christos G.

    1983-01-01

    Presents course outline, topics covered, and final project (doubling as a take home final exam) for a one-semester, interdisciplinary course on the design and behavior of chemical reactors. Interplay of chemical and physical rate processes is stressed in the course. (JM)

  9. Chemical processing of lunar materials

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  10. Future integrated design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1980-01-01

    The design process is one of the sources used to produce requirements for a computer system to integrate and manage product design data, program management information, and technical computation and engineering data management activities of the aerospace design process. Design activities were grouped chronologically and explored for activity type, activity interface, data quantity, and data flow. The work was based on analysis of the design process of several typical aerospace products, including both conventional and supersonic airplanes and a hydrofoil design. Activities examined included research, preliminary design, detail design, manufacturing interface, product verification, and product support. The design process was then described in an IPAD environment--the future.

  11. Evaluation of no-clean solder process designed to eliminate the use of ozone-depleting chemicals

    SciTech Connect

    Paffett, M.T.; Farr, J.D.; Rogers, Y.C.; Hutchinson, W.B.

    1993-10-01

    This paper summarizes the LANL contributions to a joint Motorola/SNLA/LANL cooperative research and development agreement study on the reliability of an alternative solder process that is intended to reduce or eliminate the use of ozone-depleting chemicals in the manufacture of printed wire boards (PWBs). This process is termed self-cleaning because of the nature of the thermal chemistry associated with the adipic and formic acid components used in place of traditional solder rosin fluxes. Traditional rosin fluxes used in military electronic hardware applications are cleaned (by requirement) using chlorofluorohydrocarbons. The LANL contribution centers around analytical determination of PWB cleanliness after soldering using the self-cleaning method. Results of these analytical determinations involving primarily surface analysis of boards following temperature, temperature and humidity, and long-term storage testing are described with representative data. It is concluded that the self-cleaning process leaves behind levels of solid residue that are visually and analytically observable using most of these surface analysis techniques. The materials compatibility of electronic components soldered using the self-cleaning soldering process is more fully described in the project report issued by SNLA that encompasses the complete project with statistical lifetime and accelerated aging studies. Analytical surface specificity and suggestions for further work are also given.

  12. Chemical waterflood process development

    SciTech Connect

    Chang, H.L.

    1980-04-01

    A waterflood process is claimed wherein a slug of biopolymer is injected into a formation, followed by a slug of synthetic polymer. The biopolymer slug protects the synthetic polymer from degradation due to presence of salts or surfactants in the formation.

  13. Ethylene process design optimization

    SciTech Connect

    2001-09-01

    Integration of Advanced Technologies will Update Ethylene Plants. Nearly 93 million tons of ethylene are produced annually in chemical plants worldwide, using an energy intensive process that consumes 2.5 quadrillion Btu per year.

  14. Process Security in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  15. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    PubMed

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes. PMID:23039255

  16. Synthesis and optimization of integrated chemical processes

    SciTech Connect

    Barton, Paul I.; Evans, Lawrence B.

    2002-04-26

    This is the final technical report for the project titled ''Synthesis and optimization of integrated chemical processes''. Progress is reported on novel algorithms for the computation of all heteroazeotropic compositions present in complex liquid mixtures; the design of novel flexible azeotropic separation processes using middle vessel batch distillation columns; and theory and algorithms for sensitivity analysis and numerical optimization of hybrid discrete/continuous dynamic systems.

  17. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  18. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  19. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  20. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2010-10-20

    We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, {approx}140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H{sub 2}O and CO{sub 2}. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH{sub 3}OH, HCOOCH{sub 3}, and CH{sub 3}OCH{sub 3} to potentially observable values (i.e., a fractional abundance of {approx}>10{sup -11}).

  1. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  2. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  3. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  4. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  5. Flow Chemistry for Designing Sustainable Chemical Synthesis (journal article)

    EPA Science Inventory

    An efficiently designed continuous flow chemical process can lead to significant advantages in developing a sustainable chemical synthesis or process. These advantages are the direct result of being able to impart a higher degree of control on several key reactor and reaction par...

  6. [Signal Processing Suite Design

    NASA Technical Reports Server (NTRS)

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  7. Chemical Processing. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Reviews major organic and inorganic chemicals, their products, and the sociocultural impact of the chemical industry. Provides the following learning activity components: objectives, list of materials and equipment, procedures, student quiz with answers, and three references. (SK)

  8. RUBBER-PROCESSING CHEMICALS DATA BASE

    EPA Science Inventory

    The objective of this research program was to compile a data base covering all the commercially significant organic rubber-processing chemicals produced or imported in the United States. The Rubber-Processing Chemicals Data Base contains the following elements: chemical informati...

  9. EVALUATING POLLUTION PREVENTION PROGRESS (P2P) III: AN ENVIRONMENTAL TOOL FOR SCREENING IN PRODUCT LIFE CYCLE ASSESSMENT AND CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    P2P is a computer-based tool that supports the comparison of process and product alternatives in terms of environmental impacts. This tool provides screening-level information for use in process design and in product LCA. Twenty one impact categories and data for approximately ...

  10. Life cycle costs for chemical process pumps

    SciTech Connect

    Urwin, B.; Blong, R.; Jamieson, C.; Erickson, B.

    1998-01-01

    Though construction and startup costs are always a concern, proper investment in equipment and installation will save money down the line. This is particularly important for heavily used items, such as centrifugal pumps, one of the workhouses of the chemical process industries (CPI). By properly sizing and installing a centrifugal pump, the life and efficiency of the pump can be increased. At the same time, maintenance costs can be reduced. When considering a new pump, there are several areas that require attention. The first is the baseplate design. The impeller is another area of concern. The seal chamber, the third area of importance, must be designed for proper heat dissipation and lubrication of seal faces. Lastly, the power end must be considered. Optimum bearing life, effective oil cooling and minimum shaft deflection are all vital. The paper discusses installation costs, operating cost, maintenance cost, seal environment, and extended bearing life.

  11. Design of Chemical Stores--Or Not!

    ERIC Educational Resources Information Center

    Piggott, Andy

    2010-01-01

    When science departments are designed for new builds, or are to be refurbished or moved to other parts of the school, design of preparation areas should be a major feature. It is vital that the brief contains everything that is needed including, in particular, a chemical store. But no matter how well a brief is specified, the people who actually…

  12. Chemical Processing of Electrons and Holes.

    ERIC Educational Resources Information Center

    Anderson, Timothy J.

    1990-01-01

    Presents a synopsis of four lectures given in an elective senior-level electronic material processing course to introduce solid state electronics. Provides comparisons of a large scale chemical processing plant and an integrated circuit. (YP)

  13. Chemical engineering design of CO oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  14. A Process for Design Engineering

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2004-01-01

    The American Institute of Aeronautics and Astronautics Design Engineering Technical Committee has developed a draft Design Engineering Process with the participation of the technical community. This paper reviews similar engineering activities, lays out common terms for the life cycle and proposes a Design Engineering Process.

  15. PILOT PLANT DESIGN FOR CHEMICAL DESULFURIZATION OF COAL

    EPA Science Inventory

    The report gives results of a program for design and operational planning of facilities for testing the Meyers Process for chemical removal of pyritic sulfur from coal. Two options were evaluated: a complete pilot plant test of the process at a 0.5-ton per hour scale; and scale-u...

  16. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  17. Chemical designs of functional photoactive molecular assemblies.

    PubMed

    Yan, Qifan; Luo, Zhouyang; Cai, Kang; Ma, Yuguo; Zhao, Dahui

    2014-06-21

    Molecular assemblies with well-defined structures capable of photo-induced electron transfer and charge transport or photochemical reactions are reviewed. Hierarchical supramolecular architectures, which assemble the modular units into specific spatial arrangements and facilitate them to work cooperatively, are vital for the achievement of photo-functions in these systems. The chemical design of molecular building blocks and noncovalent interactions exploited to realize supramolecular organizations are particularly discussed. Reviewing and recapitulating the chemical evolution traces of these accomplished systems will hopefully delineate certain fundamental design principles and guidelines useful for developing more advanced functions in the future. PMID:24492680

  18. Book Processing Facility Design.

    ERIC Educational Resources Information Center

    Sheahan (Drake)-Stewart Dougall, Marketing and Physical Distribution Consultants, New York, NY.

    The Association of New York Libraries for Technical Services (ANYLTS) is established to develop and run a centralized book processing facility for the public library systems in New York State. ANYLTS plans to receive book orders from the 22 library systems, transmit orders to publishers, receive the volumes from the publishers, print and attach…

  19. Microwave-enhanced chemical processes

    DOEpatents

    Varma, Ravi

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  20. Microwave-enhanced chemical processes

    DOEpatents

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  1. Reengineering the Project Design Process

    NASA Technical Reports Server (NTRS)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  2. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  3. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  4. Efficient Nonlinear Programming Algorithms for Chemical Process Control and Operations

    NASA Astrophysics Data System (ADS)

    Biegler, Lorenz T.

    Optimization is applied in numerous areas of chemical engineering including the development of process models from experimental data, design of process flowsheets and equipment, planning and scheduling of chemical process operations, and the analysis of chemical processes under uncertainty and adverse conditions. These off-line tasks require the solution of nonlinear programs (NLPs) with detailed, large-scale process models. Recently, these tasks have been complemented by time-critical, on-line optimization problems with differential-algebraic equation (DAE) process models that describe process behavior over a wide range of operating conditions, and must be solved sufficiently quickly. This paper describes recent advances in this area especially with dynamic models. We outline large-scale NLP formulations and algorithms as well as NLP sensitivity for on-line applications, and illustrate these advances on a commercial-scale low density polyethylene (LDPE) process.

  5. Energy conservation in regenerated chemical absorption processes

    SciTech Connect

    Thompson, R.E.

    1986-01-01

    Energy savings from split-flow design modifications or the installation of absorber intercoolers are quantified for solvent-based separation processes. Absorber-stripper systems that use aqueous monoethanolamine (MEA) or diethanolamine (DEA) to remove CO/sub 2/ or H/sub 2/S from natural gas streams are modeled. Use of split flow in regenerated chemical absorption processes with isothermal columns resulted in energy savings of over 50% for systems with large solute-recovery fractions. The energy savings are a linear function of the logarithm of percent unrecovered solute. Optimal values are found for the flow rate and withdrawal point of the split-flow stream. The optimal design and operating conditions for CO/sub 2/ systems with adiabatic columns are determined by the stripper column; the stripper exhibits a steam-consumption minimum with respect to the total solvent flow rate and the composition of the lean-solvent stream. In contrast, optimal conditions for H/sub 2/S systems are set by the absorber. These absorber-limited systems exhibit a steam consumption minimum for the lowest solvent flow which can achieve the specified solute recovery in the absorber. Absorber intercoolers conserve energy by reducing the solvent flow rate required for a specified solute recovery. The optimal intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler is optically sized by equating the absorber-solvent-feed temperature, the absorber-intercooler process-outlet temperature, and the cooling-water effluent temperature.

  6. A Course in Project Evaluation in the Chemical Process Industries.

    ERIC Educational Resources Information Center

    Valle-Riestra, J. Frank

    1983-01-01

    Describes a course designed to expose neophytes to methodology used in chemical process industries to evaluate commercial feasibility of proposed projects. Previously acquired disciplines are integrated to facilitate process synthesis, gain appreciation of nature of industrial projects and industrial viewpoint in managing them, and to become adept…

  7. U-GAS process for chemical manufacture

    SciTech Connect

    Dihu, R.; Leppin, D.; Patel, J.G.

    1980-01-01

    The U-GAS coal gasification process and its potential application to the manufacture of two important industrial chemicals, methanol and ammonia, are described. Pilot plant results, the current status of the process, and economic projections for the cost of manufacture of methanol and ammonia are presented.

  8. Circumventing Graphical User Interfaces in Chemical Engineering Plant Design

    ERIC Educational Resources Information Center

    Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert

    2007-01-01

    Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…

  9. Process safety management for highly hazardous chemicals

    SciTech Connect

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  10. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  11. Enzymes toughen up for chemical processing

    SciTech Connect

    Hairston, D.

    1995-05-01

    While enzymes have been making tremendous inroads into detergent formulation and food processing, the penetration of these protein-based catalysts into other chemical-process manufacture and hazardous waste treatment--where they are slated to replace heavy metal catalysts and other processing aids--has been relatively slow. Recently, however, enhancements in the enzyme`s properties are opening the door wider for such broadened usage. Some of these non-traditional uses of enzymes are described.

  12. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  13. Design of intelligent controllers for exothermal processes

    NASA Astrophysics Data System (ADS)

    Nagarajan, Ramachandran; Yaacob, Sazali

    2001-10-01

    Chemical Industries such as resin or soap manufacturing industries have reaction systems which work with at least two chemicals. Mixing of chemicals even at room temperature can create the process of exothermic reaction. This processes produces a sudden increase of heat energy within the mixture. The quantity of heat and the dynamics of heat generation are unknown, unpredictable and time varying. Proper control of heat has to be accomplished in order to achieve a high quality of product. Uncontrolled or poorly controlled heat causes another unusable product and the process may damage materials and systems and even human being may be harmed. Controlling of heat due to exothermic reaction cannot be achieved using conventional control methods such as PID control, identification and control etc. All of the conventional methods require at least approximate mathematical model of the exothermic process. Modeling an exothermal process is yet to be properly conceived. This paper discusses a design methodology for controlling such a process. A pilot plant of a reaction system has been constructed and utilized for designing and incorporating the proposed fuzzy logic based intelligent controller. Both the conventional and then an adaptive form of fuzzy logic control were used in testing the performance. The test results ensure the effectiveness of controllers in controlling exothermic heat.

  14. Optimization process in helicopter design

    NASA Technical Reports Server (NTRS)

    Logan, A. H.; Banerjee, D.

    1984-01-01

    In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.

  15. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  16. Chemical Processes in Astrophysical Radiation Fields

    SciTech Connect

    Stancil, P.C.; Dalgarno, A.

    1997-12-31

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented.

  17. Safety Considerations in the Chemical Process Industries

    NASA Astrophysics Data System (ADS)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  18. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  19. Total chemical management in photographic processing

    USGS Publications Warehouse

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  20. VCM Process Design: An ABET 2000 Fully Compliant Project

    ERIC Educational Resources Information Center

    Benyahia, Farid

    2005-01-01

    A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…

  1. The Process Design Courses at Pennsylvania: Impact of Process Simulators.

    ERIC Educational Resources Information Center

    Seider, Warren D.

    1984-01-01

    Describes the use and impact of process design simulators in process design courses. Discusses topics covered, texts used, computer design simulations, and how they are integrated into the process survey course as well as in plant design projects. (JM)

  2. Hydroforming design and process advisor

    SciTech Connect

    Greer, J.T.; Ni, C.M.

    1996-10-10

    The hydroforming process involves hydraulically forming components by conforming them to the inner contours of a die. These contours can be complex and can often cause the material being formed to be stressed to rupture. Considerable process knowledge and materials modeling expertise is required to design hydroform dies and hydroformed parts that are readily formed without being overly stressed. For this CRADA, materials properties for steel tubes subjected to hydraulic stresses were collected; algorithms were developed which combined the materials properties data with process knowledge; and a user friendly graphical interface was utilized to make the system usable by a design engineer. A prototype hydroforming advisor was completed and delivered to GM. The technical objectives of the CRADA were met allowing for the development of an intelligent design systems, prediction of forming properties related to hydroforming, simulation and modeling of process execution, and design optimization. The design advisor allows a rapid and seamless approach to integration an otherwise enormous and onerous task of analysis and evaluation.

  3. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. PMID:26078345

  4. Estimation of Environment-Related Properties of Chemicals for Design of Sustainable Processes: Development of Group-Contribution+ (GC+) Property Models and Uncertainty Analysis

    EPA Science Inventory

    The aim of this work is to develop group-contribution+ (GC+) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncert...

  5. Advanced microlithography process with chemical shrink technology

    NASA Astrophysics Data System (ADS)

    Kanda, Takashi; Tanaka, Hatsuyuki; Kinoshita, Yoshiaki; Watase, Natsuo; Eakin, Ronald J.; Ishibashi, Takeo; Toyoshima, Toshiyuki; Yasuda, Naoki; Tanaka, Mikihiro

    2000-06-01

    Mitsubishi Electric Corporation (MELCO) has developed an advanced microlithographic process for producing 0.1 micrometer contact holes (CH). A chemical shrink technology, RELACSTM (Resolution Enhancement Lithography Assisted by Chemical Shrink), utilizes the crosslinking reaction catalyzed by the acid component existing in a predefined resist pattern. This 'RELACSTM' process is a hole shrinking procedure that includes simple coating, baking, and rinse steps applied after conventional photolithography. This paper examines the process parameters affecting shrinkage of CH size. We subsequently evaluated the dependency of CH shrinkage on resist formulation. We conducted investigations of shrink magnitude dependency on each process parameter. (1) Photoresist lithography process: CH size, exposure dose, post development bake temperature. (2) AZR R200 [a product of Clariant, Japan) K.K.] RELACSTM process: Soft bake temperature, film thickness, mixing bake temperature (diffusion bake temperature), etc. We found that the mixing bake condition (diffusion bake temperature) is one of most critical parameters to affect the amount of CH shrink. Additionally, the structural influence of photoacid generators on shrinkage performance was also investigated in both high and low activation energy resist systems. The shrinkage behavior by the photoacid generator of the resist is considered in terms of the structure (molecular volume) of the photogenerated acid and its acidity (pKa). The results of these studies are discussed in terms of base polymer influence on shrinkage performance and tendency. Process impact of the structure and acidity of the photogenerated acid is explored. Though the experimental acetal type KrF positive resist (low activation energy system) can achieve around 0.1 micrometer CH after RELACSTM processing under the optimized condition, the experimental acrylate type positive resist (high activation energy system) showed less shrinkage under the same process

  6. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  7. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    PubMed

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via

  8. Using GREENSCOPE for Sustainable Process Design: An Educational Opportunity

    EPA Science Inventory

    Increasing sustainability can be approached through the education of those who design, construct, and operate facilities. As chemical engineers learn elements of process systems engineering, they can be introduced to sustainability concepts. The EPA’s GREENSCOPE methodology and...

  9. Denitrification as a Model Chemical Process

    NASA Astrophysics Data System (ADS)

    Grguric, Gordan

    2002-02-01

    Bacterial denitrification in seawater facilities such as aquaria and mariculture systems is a process particularly well suited for illustrating important concepts in chemistry to undergraduates. Students can gain firsthand experience related to these concepts, for example by (i) analyzing and quantifying chemical reactions based on empirical data, (ii) employing stoichiometry and mass balance to determine the amounts of reactants required and products produced in a chemical reaction, and (iii) using acid-base speciation diagrams and other information to quantify the changes in pH and carbonic acid speciation in an aqueous medium. At the Richard Stockton College of New Jersey, we have utilized actual data from several seawater systems to discuss topics such as stoichiometry, mass and charge balance, and limiting reagents. This paper describes denitrification in closed seawater systems and how the process can be used to enhance undergraduate chemistry education. A number of possible student exercises are described that can be used as practical tools to enhance the students' quantitative understanding of chemical reactions.

  10. Automation of Design Engineering Processes

    NASA Technical Reports Server (NTRS)

    Torrey, Glenn; Sawasky, Gerald; Courey, Karim

    2004-01-01

    A method, and a computer program that helps to implement the method, have been developed to automate and systematize the retention and retrieval of all the written records generated during the process of designing a complex engineering system. It cannot be emphasized strongly enough that all the written records as used here is meant to be taken literally: it signifies not only final drawings and final engineering calculations but also such ancillary documents as minutes of meetings, memoranda, requests for design changes, approval and review documents, and reports of tests. One important purpose served by the method is to make the records readily available to all involved users via their computer workstations from one computer archive while eliminating the need for voluminous paper files stored in different places. Another important purpose served by the method is to facilitate the work of engineers who are charged with sustaining the system and were not involved in the original design decisions. The method helps the sustaining engineers to retrieve information that enables them to retrace the reasoning that led to the original design decisions, thereby helping them to understand the system better and to make informed engineering choices pertaining to maintenance and/or modifications of the system. The software used to implement the method is written in Microsoft Access. All of the documents pertaining to the design of a given system are stored in one relational database in such a manner that they can be related to each other via a single tracking number.

  11. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act

  12. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  13. The concepts of energy, environment, and cost for process design

    SciTech Connect

    Abu-Khader, M.M.; Speight, J.G.

    2004-05-01

    The process industries (specifically, energy and chemicals) are characterized by a variety of reactors and reactions to bring about successful process operations. The design of energy-related and chemical processes and their evolution is a complex process that determines the competitiveness of these industries, as well as their environmental impact. Thus, we have developed an Enviro-Energy Concept designed to facilitate sustainable industrial development. The Complete Onion Model represents a complete methodology for chemical process design and illustrates all of the requirements to achieve the best possible design within the accepted environmental standards. Currently, NOx emissions from industrial processes continue to receive maximum attention, therefore the issue problem of NOx emissions from industrial sources such as power stations and nitric acid plants is considered. The Selective Catalytic Reduction (SCR) is one of the most promising and effective commercial technologies. It is considered the Best Available Control Technology (BACT) for NOx reduction. The solution of NOx emissions problem is either through modifying the chemical process design and/or installing an end-of-pipe technology. The degree of integration between the process design and the installed technology plays a critical role in the capital cost evaluation. Therefore, integrating process units and then optimizing the design has a vital effect on the total cost. Both the environmental regulations and the cost evaluation are the boundary constraints of the optimum solution.

  14. Principles of technological design of wasteless chemical processes based on the use of wastes for production of alkaline slag cements and concretes

    SciTech Connect

    Glukhovskii, V.D.; Chernobaev, I.P.; Emel'yanov, B.M.; Semenyuk, A.P.

    1985-05-20

    The strength characteristics of alkaline slag-cement made with the use of waste from alkaline sealing of metals are presented. The cement was prepared from granulated blast-furnance slag with average component contents in the following ranges (mass %): SiO/sub 2/ 36.0-40.2, Al/sub 2/O/sub 3/ 4-18.2, FeO 0.1-3.7, MnO 0.4-5.2, CaO 33.1-48.8, MgO 2.2-9.8. With the use of wastes from the descaling process in alkali melts for production of alkaline slag cements it is possible to obtain highly effective cements of type 700-900, which is 2 to 3 times the value for portland cements. Therefore, the use of wastes from alkaline descaling for production of alkaline slag cements is of great economic and conservational significance. It is possible to devise a wasteless process of scale removal from metals; this is an important advantage of the alkaline scaling method over acid pickling.

  15. THE SECOND GENERATION OF THE WASTE REDUCTION (WAR) ALGORITHM: A DECISION SUPPORT SYSTEM FOR GREENER CHEMICAL PROCESSES

    EPA Science Inventory

    chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...

  16. EVALUATING THE ENVIRONMENTAL FRIENDLINESS, ECONOMICS, AND ENERGY EFFICIENCY OF CHEMICAL PROCESSES: HEAT INTEGRATION

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...

  17. Idaho Chemical Processing Plant failure rate database

    SciTech Connect

    Alber, T.G.; Hunt, C.R.; Fogarty, S.P.; Wilson, J.R.

    1995-08-01

    This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included.

  18. Quantification of chemical transport processes from soil to surface runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there is a conceptual understanding on processes governing chemical transport from soil to surface runoff, there are little literature and research results actually quantifying these individual processes. We developed a laboratory flow cell and experimental procedures to quantify chemical ...

  19. GAX absorption cycle design process

    SciTech Connect

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  20. INCORPORATING ENVIRONMENTAL AND ECONOMIC CONSIDERATIONS INTO PROCESS DESIGN: THE WASTE REDUCTION (WAR) ALGORITHM

    EPA Science Inventory

    A general theory known as the WAste Reduction (WASR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory integrates environmental impact assessment into chemical process design Potential en...

  1. Effects of Semiconductor Processing Chemicals on Conductivity of Graphene

    SciTech Connect

    Chen, Chung Wei; Ren, F.; Chi, G.C.; Hung, S. C.; Huang, Y. P.; Kim, J.; Kravchenko, Ivan I; Pearton, S. J.

    2012-01-01

    Graphene layers on SiO2/Si substrates were exposed to chemicals or gases commonly used in semiconductor fabrication processes, including solvents (isopropanol, acetone), acids (HCl), bases (ammonium hydroxide), UV ozone, H2O and O2 plasmas. The recovery of the initial graphene properties after these exposures was monitored by measuring both the layer resistance and Raman 2D peak position as a function of time in air or vacuum. Solvents and UV ozone were found to have the least affect while oxygen plasma exposure caused an increase of resistance of more than 3 orders of magnitude. Recovery is accelerated under vacuum but changes can persist for more than 5 hours. Careful design of fabrication schemes involving graphene is necessary to minimize these interactions with common processing chemicals.

  2. Film processing investigation. [improved chemical mixing system

    NASA Technical Reports Server (NTRS)

    Kelly, J. L.

    1972-01-01

    The present operational chemical mixing system for the Photographic Technology Division is evaluated, and the limitations are defined in terms of meeting the present and programmed chemical supply and delivery requirements. A major redesign of the entire chemical mixing, storage, analysis, and supply system is recommended. Other requirements for immediate and future implementations are presented.

  3. Design Thinking in Elementary Students' Collaborative Lamp Designing Process

    ERIC Educational Resources Information Center

    Kangas, Kaiju; Seitamaa-Hakkarainen, Pirita; Hakkarainen, Kai

    2013-01-01

    Design and Technology education is potentially a rich environment for successful learning, if the management of the whole design process is emphasised, and students' design thinking is promoted. The aim of the present study was to unfold the collaborative design process of one team of elementary students, in order to understand their multimodal…

  4. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    SciTech Connect

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  5. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  6. ESS Accelerator Cryoplant Process Design

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Arnold, P.; Hees, W.; Hildenbeutel, J.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration in Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant (ACCP) will provide the cooling for the cryomodules and the cryogenic distribution system that delivers the helium to the cryomodules. The ACCP will cover three cryogenic circuits: Bath cooling for the cavities at 2 K, the thermal shields at around 40 K and the power couplers thermalisation with 4.5 K forced helium cooling. The open competitive bid for the ACCP took place in 2014 with Linde Kryotechnik AG being selected as the vendor. This paper summarizes the progress in the ACCP development and engineering. Current status including final cooling requirements, preliminary process design, system configuration, machine concept and layout, main parameters and features, solution for the acceptance tests, exergy analysis and efficiency is presented.

  7. Optimal design of solidification processes

    NASA Technical Reports Server (NTRS)

    Dantzig, Jonathan A.; Tortorelli, Daniel A.

    1991-01-01

    An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem.

  8. Chemical kinetics models for semiconductor processing

    SciTech Connect

    Coltrin, M.E.; Creighton, J.R.; Meeks, E.; Grcar, J.F.; Houf, W.G.; Kee, R.J.

    1997-12-31

    Chemical reactions in the gas-phase and on surfaces are important in the deposition and etching of materials for microelectronic applications. A general software framework for describing homogeneous and heterogeneous reaction kinetics utilizing the Chemkin suite of codes is presented. Experimental, theoretical and modeling approaches to developing chemical reaction mechanisms are discussed. A number of TCAD application modules for simulating the chemically reacting flow in deposition and etching reactors have been developed and are also described.

  9. Physical-chemical processes in a protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Lavrukhina, Avgusta K.

    1991-01-01

    Physical-chemical processes in a protoplanetary cloud are discussed. The following subject areas are covered: (1) characteristics of the chemical composition of molecular interstellar clouds; (2) properties and physico-chemical process in the genesis of interstellar dust grains; and (3) the isotope composition of volatiles in bodies of the Solar System.

  10. CHEMICAL AND PHYSICAL PROCESS AND MECHANISM MODELING

    EPA Science Inventory

    The goal of this task is to develop and test chemical and physical mechanisms for use in the chemical transport models of EPA's Models-3. The target model for this research is the Community Multiscale Air Quality (CMAQ) model. These mechanisms include gas and aqueous phase ph...

  11. Speleothems as Examples of Chemical Equilibrium Processes.

    ERIC Educational Resources Information Center

    Wilson, James R.

    1984-01-01

    The chemical formation of speleothems such as stalactites and stalagmites is poorly understood by introductory geology instructors and misrepresented in most textbooks. Although evaporation may be a controlling factor in some caves, it is necessary to consider chemical precipitation as more important in controlling the diagenesis of calcium…

  12. Designer cell signal processing circuits for biotechnology.

    PubMed

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192

  13. Designer cell signal processing circuits for biotechnology

    PubMed Central

    Bradley, Robert W.; Wang, Baojun

    2015-01-01

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192

  14. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    EPA Science Inventory

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  15. Enhanced Teaching and Student Learning through a Simulator-Based Course in Chemical Unit Operations Design

    ERIC Educational Resources Information Center

    Ghasem, Nayef

    2016-01-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes…

  16. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect

    Olszewski, M.; Zaltash, A.

    1995-03-01

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  17. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  18. 76 FR 70368 - Disaster Designation Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... USDA Secretarial disaster designation process. FSA proposes to simplify the processes and delegate them... rule would update the language to reflect current practice. The current regulations require that a... proposes to simplify the USDA Secretarial designation process from a six-step process to a two-step...

  19. Photonic IC design software and process design kits

    NASA Astrophysics Data System (ADS)

    Korthorst, Twan; Stoffer, Remco; Bakker, Arjen

    2015-04-01

    This review discusses photonic IC design software tools, examines existing design flows for photonics design and how these fit different design styles and describes the activities in collaboration and standardization within the silicon photonics group from Si2 and by members of the PDAFlow Foundation to improve design flows. Moreover, it will address the lowering of access barriers to the technology by providing qualified process design kits (PDKs) and improved integration of photonic integrated circuit simulations, physical simulations, mask layout, and verification.

  20. CHEMICAL PROCESSES AND MODELING IN ECOSYSTEMS

    EPA Science Inventory

    Trends in regulatory strategies require EPA to understand better chemical behavior in natural and impacted ecosystems and in biological systems to carry out the increasingly complex array of exposure and risk assessments needed to develop scientifically defensible regulations (GP...

  1. Biochemical Engineering. Part II: Process Design

    ERIC Educational Resources Information Center

    Atkinson, B.

    1972-01-01

    Describes types of industrial techniques involving biochemical products, specifying the advantages and disadvantages of batch and continuous processes, and contrasting biochemical and chemical engineering. See SE 506 318 for Part I. (AL)

  2. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  3. Graphic Design in Libraries: A Conceptual Process

    ERIC Educational Resources Information Center

    Ruiz, Miguel

    2014-01-01

    Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…

  4. Instructional Design Processes and Traditional Colleges

    ERIC Educational Resources Information Center

    Vasser, Nichole

    2010-01-01

    Traditional colleges who have implemented distance education programs would benefit from using instructional design processes to develop their courses. Instructional design processes provide the framework for designing and delivering quality online learning programs in a highly-competitive educational market. Traditional college leaders play a…

  5. 77 FR 41248 - Disaster Designation Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... designation regulations to provide for changes in the designation process (76 FR 70368-70374). In general, that rule proposed to simplify the disaster designation process and to delegate the authority for... 759.6 has also been changed from the proposed rule to remove proposed language referring to a...

  6. Reengineering the JPL Spacecraft Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, C.

    1995-01-01

    This presentation describes the factors that have emerged in the evolved process of reengineering the unmanned spacecraft design process at the Jet Propulsion Laboratory in Pasadena, California. Topics discussed include: New facilities, new design factors, new system-level tools, complex performance objectives, changing behaviors, design integration, leadership styles, and optimization.

  7. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  8. Design of Nanomaterial Synthesis by Aerosol Processes

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Aerosol synthesis of materials is a vibrant field of particle technology and chemical reaction engineering. Examples include the manufacture of carbon blacks, fumed SiO2, pigmentary TiO2, ZnO vulcanizing catalysts, filamentary Ni, and optical fibers, materials that impact transportation, construction, pharmaceuticals, energy, and communications. Parallel to this, development of novel, scalable aerosol processes has enabled synthesis of new functional nanomaterials (e.g., catalysts, biomaterials, electroceramics) and devices (e.g., gas sensors). This review provides an access point for engineers to the multiscale design of aerosol reactors for the synthesis of nanomaterials using continuum, mesoscale, molecular dynamics, and quantum mechanics models spanning 10 and 15 orders of magnitude in length and time, respectively. Key design features are the rapid chemistry; the high particle concentrations but low volume fractions; the attainment of a self-preserving particle size distribution by coagulation; the ratio of the characteristic times of coagulation and sintering, which controls the extent of particle aggregation; and the narrowing of the aggregate primary particle size distribution by sintering. PMID:22468598

  9. Information-Processing Models and Curriculum Design

    ERIC Educational Resources Information Center

    Calfee, Robert C.

    1970-01-01

    "This paper consists of three sections--(a) the relation of theoretical analyses of learning to curriculum design, (b) the role of information-processing models in analyses of learning processes, and (c) selected examples of the application of information-processing models to curriculum design problems." (Author)

  10. Development of the chemical and electrochemical coal cleaning (CECC) process

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  11. The Architectural and Interior Design Planning Process.

    ERIC Educational Resources Information Center

    Cohen, Elaine

    1994-01-01

    Explains the planning process in designing effective library facilities and discusses library building requirements that result from electronic information technologies. Highlights include historical structures; Americans with Disabilities Act; resource allocation; electrical power; interior spaces; lighting; design development; the roles of…

  12. NANEX: Process design and optimization.

    PubMed

    Baumgartner, Ramona; Matić, Josip; Schrank, Simone; Laske, Stephan; Khinast, Johannes; Roblegg, Eva

    2016-06-15

    Previously, we introduced a one-step nano-extrusion (NANEX) process for transferring aqueous nano-suspensions into solid formulations directly in the liquid phase. Nano-suspensions were fed into molten polymers via a side-feeding device and excess water was eliminated via devolatilization. However, the drug content in nano-suspensions is restricted to 30 % (w/w), and obtaining sufficiently high drug loadings in the final formulation requires the processing of high water amounts and thus a fundamental process understanding. To this end, we investigated four polymers with different physicochemical characteristics (Kollidon(®) VA64, Eudragit(®) E PO, HPMCAS and PEG 20000) in terms of their maximum water uptake/removal capacity. Process parameters as throughput and screw speed were adapted and their effect on the mean residence time and filling degree was studied. Additionally, one-dimensional discretization modeling was performed to examine the complex interactions between the screw geometry and the process parameters during water addition/removal. It was established that polymers with a certain water miscibility/solubility can be manufactured via NANEX. Long residence times of the molten polymer in the extruder and low filling degrees in the degassing zone favored the addition/removal of significant amounts of water. The residual moisture content in the final extrudates was comparable to that of extrudates manufactured without water. PMID:27090153

  13. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    EPA Science Inventory

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  14. Program Prepares Students for Chemical-Processing Careers

    ERIC Educational Resources Information Center

    Jorgensen, Haley

    2005-01-01

    This article describes a chemical-processing program at Saginaw Career Complex in Saginaw, Michigan. The program is preparing 42 11th- and 12th-graders to work as chemical-processing operators or technicians by the time they graduate from high school. It was developed in partnership with the Saginaw Career Complex--one of 51 centers in the state…

  15. Stereodynamics: From elementary processes to macroscopic chemical reactions

    SciTech Connect

    Kasai, Toshio; Che, Dock-Chil; Tsai, Po-Yu; Lin, King-Chuen; Palazzetti, Federico; Aquilanti, Vincenzo

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  16. Chemical process safety management within the Department of Energy

    SciTech Connect

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  17. Practical Multimedia Courseware Design for Learner's Difficulties in Chemical Education.

    ERIC Educational Resources Information Center

    Tsoi, Mun Fie; Goh, Ngoh Khang; Chia, Lian Sai

    The designing of multimedia chemistry courseware is a complex and challenging task for many instructional developers and writers especially in the initial stage of the prototype to be developed. As such, this paper provides insights gained into some practical design considerations in developing a multimedia courseware in chemical education at…

  18. News: Good chemical manufacturing process criteria

    EPA Science Inventory

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  19. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process.

    PubMed

    Lee, H V; Hamid, S B A; Zain, S K

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  20. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    PubMed Central

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  1. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  2. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    SciTech Connect

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  3. Process Design Manual for Nitrogen Control.

    ERIC Educational Resources Information Center

    Parker, Denny S.; And Others

    This manual presents theoretical and process design criteria for the implementation of nitrogen control technology in municipal wastewater treatment facilities. Design concepts are emphasized through examination of data from full-scale and pilot installations. Design data are included on biological nitrification and denitrification, breakpoint…

  4. Reinventing The Design Process: Teams and Models

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.

    1999-01-01

    The future of space mission designing will be dramatically different from the past. Formerly, performance-driven paradigms emphasized data return with cost and schedule being secondary issues. Now and in the future, costs are capped and schedules fixed-these two variables must be treated as independent in the design process. Accordingly, JPL has redesigned its design process. At the conceptual level, design times have been reduced by properly defining the required design depth, improving the linkages between tools, and managing team dynamics. In implementation-phase design, system requirements will be held in crosscutting models, linked to subsystem design tools through a central database that captures the design and supplies needed configuration management and control. Mission goals will then be captured in timelining software that drives the models, testing their capability to execute the goals. Metrics are used to measure and control both processes and to ensure that design parameters converge through the design process within schedule constraints. This methodology manages margins controlled by acceptable risk levels. Thus, teams can evolve risk tolerance (and cost) as they would any engineering parameter. This new approach allows more design freedom for a longer time, which tends to encourage revolutionary and unexpected improvements in design.

  5. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  6. Chemical and biological processes of evaporation ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural evaporation ponds are designed to impound and dissipate saline agricultural drainage water in areas with no opportunities for offsite disposal in the San Joaquin Valley of California. This paper reviews and summarizes research findings on the pond chemistry. Drainage waters in these pon...

  7. Laser/plasma chemical processing of substrates

    DOEpatents

    Gee, James M.; Hargis, Jr., Philip J.

    1986-01-01

    A process for the modification of substrate surfaces is described, wherein etching or deposition at a surface occurs only in the presence of both reactive species and a directed beam of coherent light.

  8. Hydrocarbon Processing`s process design and optimization `96

    SciTech Connect

    1996-06-01

    This paper compiles information on hydrocarbon processes, describing the application, objective, economics, commercial installations, and licensor. Processes include: alkylation, ammonia, catalytic reformer, crude fractionator, crude unit, vacuum unit, dehydration, delayed coker, distillation, ethylene furnace, FCCU, polymerization, gas sweetening, hydrocracking, hydrogen, hydrotreating (naphtha, distillate, and resid desulfurization), natural gas processing, olefins, polyethylene terephthalate, refinery, styrene, sulfur recovery, and VCM furnace.

  9. Water in Biological and Chemical Processes

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman

    2013-11-01

    Part I. Bulk Water: 1. Uniqueness of water; 2. Anomalies of water; 3. Dynamics of water: molecular motions and hydrogen bond breaking kinetics; 4. Inherent structures of liquid water; 5. pH of water; Part II. Water in Biology: Dynamical View and Function: 6. Biological water; 7. Explicit role of water in biological functions; 8. Hydration of proteins; 9. Can we understand protein hydration layer: lessons from computer simulations; 10. Water in and around DNA and RNA; 11. Role of water in protein-DNA interaction; 12. Water surrounding lipid bilayers; 13. Water in Darwin's world; Part III. Water in Complex Chemical Systems: 14. Hydrophilic effects; 15. Hydrophobic effects; 16. Aqueous binary mixtures: amphiphilic effect; 17. Water in and around micelles, reverse micelles and microemulsions; 18. Water in carbon nanotubes; Part IV. Bulk Water: Advanced Topics: 19. Entropy of water; 20. Freezing of water into ice; 21. Supercritical water; 22. Microscopic approaches to understand water anomalies.

  10. Chemical surface modification of fluorocarbon polymers by excimer laser processing

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Yabe, Akira

    1996-04-01

    Surface of poly(tetrafluoroethylene) [PTFE] film was modified chemically by an ArF excimer laser-induced reaction in a hydrazine gas atmosphere. The polymer surface modified upon the irradiation of 1000 pulses at 27 mJ cm -2, which was a fairly lower fluence than the ablation threshold for usual polymer films, showed hydrophilicity (contact angle for water: 30°) enough to be metallized by chemical plating. The mechanism for chemical surface modification was investigated by FTIR, XPS, and SIMS analyses. The laser-treated PTFE film was metallized by a chemical plating process. These processes will be used to fabricate printed wiring boards for high frequency electronics.

  11. Process for controlling accidents in chemical laboratories

    SciTech Connect

    Delvin, W.L.

    1980-10-01

    Most laboratory safety programs include inspections to identify hazards and thereby control accidents. There are certain elements that must be a part of a successful inspection and control process. These are a systematic and consistent inspection procedure, a reliable evaluation of identified hazards, and effective follow-up actions. Laboratory management, through its responsibility for the total system, has a key role in the inspection and control process for follow-up actions and accepting risks. If any of the above requirements are missing, the process will be less than adequate. Understanding the relationship between accidents, hazards, and risks is important in establishing an effective inspection and control program. Hazards are potential sources of accidents (accidents waiting to happen). Associated with each is a risk, which has two components: probability and consequence. Probability refers to the likelihood that a hazard will turn into an accident and consequence is the result of such an accident. In assessing the seriousness of a hazard, both probability and consequence must be considered in terms of risk level and acceptability. This paper presents a process that can be used by laboratory management to establish an effective inspection and control program for the laboratory. A discussion of safety concepts and their relationships that affect the process is included.

  12. 32nm design rule and process exploration flow

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqiang; Cobb, Jonathan; Yang, Amy; Li, Ji; Lucas, Kevin; Sethi, Satyendra

    2008-10-01

    Semiconductor manufacturers spend hundreds of millions of dollars and years of development time to create a new manufacturing process and to design frontrunner products to work on the new process. A considerable percentage of this large investment is aimed at producing the process design rules and related lithography technology to pattern the new products successfully. Significant additional cost and time is needed in both process and design development if the design rules or lithography strategy must be modified. Therefore, early and accurate prediction of both process design rules and lithography options is necessary for minimizing cost and timing in semiconductor development. This paper describes a methodology to determine the optimum design rules and lithography conditions with high accuracy early in the development lifecycle. We present results from the 32nm logic node but the methodology can be extended to the 22nm node or any other node. This work involves: automated generation of extended realistic logic test layouts utilizing programmed teststructures for a variety of design rules; determining a range of optical illumination and process conditions to test for each critical design layer; using these illumination conditions to create a extrapolatable process window OPC model which is matched to rigorous TCAD lithography focus-exposure full chemically amplified resist models; creating reticle enhancement technique (RET) recipes which are flexible enough to be used over a variety of design rule and illumination conditions; OPC recipes which are flexible enough to be used over a variety of design rule and illumination conditions; and OPC verification to find, categorize and report all patterning issues found in the different design and illumination variations. In this work we describe in detail the individual steps in the methodology, and provide results of its use for 32nm node design rule and process optimization.

  13. Chemical mass transfer in magmatic processes

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.

    1987-07-01

    Lasaga's (1982) Master Equation for crystal growth is solved for multicomponent systems in situations which allow for coupled diffusion of melt species. The structure of the solution is explored in some detail for the case of a constant diffusion coefficient matrix. Incorporating these results, the growth of plagioclase is modeled in undercooled tholeiitic melts by approximating interface growth rates with (1) a reduced growth rate function and with (2) calculated solid-liquid solution properties obtained from the silicate liquid solution model of Ghiorso et al. (1983; appendix of Ghiorso 1985). For this purpose algorithms are provided for estimating the liquidus temperature or the chemical affinity of a multicomponent solid solution precipitating from a complex melt of specified bulk composition. Compositional trends in initial solids produced by successive degrees of undercooling are opposite to those predicted in the binary system NaAlSi3O8-CaAl2Si2O8. Calculations suggest that the solid phase and interface melt compositions rapidly approach a “steady state” for a given degree of undercooling. Consequently, the overall isothermal growth rate of plagioclase forming from tholeiitic melts appears to be entirely diffusion controlled. In magmatic systems the multicomponent growth equations allow for the formation of oscillatory zoned crystals as a consequence of the “couplingr” between interface reaction kinetics and melt diffusion. The magnitude of this effect is largely dependent upon the asymmetry of the diffusion coefficient matrix. Methods are described to facilitate the calibration of diffusion matrices from experimental data on multicomponent penetration curves. Experimental results (Lesher and Walker 1986) on steady state Soret concentration profiles resulting from thermal diffusion in MORB and andesitic liquids are analyzed using the theory of multicomponent linear irreversible thermodynamics. Under conditions where the entropy production is

  14. Dynamic displays of chemical process flowsheet models

    SciTech Connect

    Aull, J.E.

    1996-11-01

    This paper describes the algorithms used in constructing dynamic graphical displays of a process flowsheet. Movies are created which portray changes in the process over time using animation in the flowsheet such as individual streams that take on a color keyed to the current flow rate, tank levels that visibly rise and fall and {open_quotes}gauges{close_quotes} that move to display parameter values. Movies of this type can be a valuable tool for visualizing, analyzing, and communicating the behavior of a process model. This paper describes the algorithms used in constructing displays of this kind for dynamic models using the SPEEDUP{trademark} modeling package and the GMS{trademark} graphics package. It also tells how data is exported from the SPEEDUP{trademark} package to GMS{trademark} and describes how a user environment for running movies and editing flowsheets is set up. The algorithms are general enough to be applied to other processes and graphics packages. In fact the techniques described here can be used to create movies of any time-dependent data.

  15. (New process modeling, design and control strategies for energy efficiency, high product quality and improved productivity in the process industries)

    SciTech Connect

    Not Available

    1991-01-01

    Highlights are reported of work to date on: resilient design and control of chemical reactors (polymerization, packed bed), operation of complex processing systems (compensators for multivariable systems with delays and Right Half Plane zeroes, process identification and controller design for multivariable systems, nonlinear systems control, distributed parameter systems), and computer-aided design software (CONSYD, POLYRED, expert systems). 15 figs, 54 refs. (DLC)

  16. [New process modeling, design and control strategies for energy efficiency, high product quality and improved productivity in the process industries

    SciTech Connect

    Not Available

    1991-12-31

    Highlights are reported of work to date on: resilient design and control of chemical reactors (polymerization, packed bed), operation of complex processing systems (compensators for multivariable systems with delays and Right Half Plane zeroes, process identification and controller design for multivariable systems, nonlinear systems control, distributed parameter systems), and computer-aided design software (CONSYD, POLYRED, expert systems). 15 figs, 54 refs. (DLC)

  17. Chemical processing in geothermal nuclear chimney

    DOEpatents

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  18. Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study

    EPA Science Inventory

    The chemical industry is one of the most important business sectors, not only economically, but also societally; as it allows humanity to attain higher standards and quality of life. Simultaneously, chemical products and processes can be the origin of potential human health and ...

  19. Evaluation of Chemical Coating Processes for AXAF

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell

    1998-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.

  20. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the

  1. Chemical Processing monthly report, April 1985

    NASA Astrophysics Data System (ADS)

    1985-04-01

    In the PUREX/UO3 operations, 151 tones of N reactor fuel were charged to the PUREX dissolvers in April 1985, bringing the Fiscal Year-to-Date (FYTD) total to 667, which is now only 61 tones behind the 1200 tone recovery plan. One hundred thirty-nine tonnes of UO3 were shipped to the Feed Materials Production Center (FMPC), bringing the FYTD total to 644 tones. Twenty-two percent of the PUO2 shipments were achieved, bringing the cumulative shipments to 52%. In the plutonium finishing (PF) plant/nuclear materials management program, 10% of plutonium nitrate was loaded out. Total Operating Efficiency for Plutonium Reclamation Facility (PRF) was 53% for the month, compared to a goal of 70%. Remote Mechanical C (RMC) metal line reactivation activities are 95% complete. Terminal clean out operations are about one month behind schedule, due to diversion of personnel to the RMC reactivation effort. Within the area of decontamination and decommissioning activities, removal of the Sorter/Chopper hood in 232-Z Building was completed. Design on B-339, vault safety and inventory system was completed on schedule.

  2. Post cleaning of chemical mechanical polishing process

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Wen; Dai, Bau-Tong; Yeh, Ching-Fa

    1996-02-01

    We describe a study on the effect of the electrostatic nature in silica particles on the post CMP cleaning behavior. A fall-off for the zeta potential of silica particles is observed as the pH of dip solutions is increased. In this study, we also observed that particle counts on the SiO 2 and the Si 3N 4 dielectric films had a similar dependence on the pH. Furthermore, we confirmed that surface hardness of the wafer is an important factor for particles physically embedded in different dielectric materials during and after the CMP process. The nanoscale surface hardness of dielectric films was measured by the nanoindentation technique. Experimental results showed that particles had difficulty attaching to a harder surface of the dielectric film.

  3. 64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  4. 2. OVERHEAD CHEMICAL PROCESS PIPING BETWEEN BUILDINGS 422, ON RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERHEAD CHEMICAL PROCESS PIPING BETWEEN BUILDINGS 422, ON RIGHT, AND 431, ON LEFT. - Rocky Mountain Arsenal, Crude Mustard & Aldrin Manufacturing, 1200 feet South of December Seventh Avenue; 600 feet East of D Street, Commerce City, Adams County, CO

  5. SCREENING PROTOCOL FOR ASSESSING TOXICITY OF ORGANIC CHEMICALS TOANAEROBIC PROCESSES

    EPA Science Inventory

    A screening protocol has been developed to provide a rapid andrepeatable assessment of the effect of toxic organic chemicals onanaerobic treatment processes. his protocol also providesinformation on the rate limiting biological reactions and theconcentrations at which changes in ...

  6. DIOXINS. VOLUME III. ASSESSMENT OF DIOXIN-FORMING CHEMICAL PROCESSES

    EPA Science Inventory

    Chemical reaction mechanisms by which dioxins may be formed are reviewed, particularly those likely to occur within commercially significant processes. Various routes of formation are identified in addition to the classical route of the hydrolysis of trichlorophenol. Basic organi...

  7. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  8. Priorities in the design of chemical shops at coke plants

    SciTech Connect

    V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak

    2009-07-15

    Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

  9. Numerical simulations supporting the process design of ring rolling processes

    NASA Astrophysics Data System (ADS)

    Jenkouk, V.; Hirt, G.; Seitz, J.

    2013-05-01

    In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing.

  10. The Engineering Process in Construction & Design

    ERIC Educational Resources Information Center

    Stoner, Melissa A.; Stuby, Kristin T.; Szczepanski, Susan

    2013-01-01

    Recent research suggests that high-impact activities in science and math classes promote positive attitudinal shifts in students. By implementing high-impact activities, such as designing a school and a skate park, mathematical thinking can be linked to the engineering design process. This hands-on approach, when possible, to demonstrate or…

  11. Distributed Group Design Process: Lessons Learned.

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ganesan, Radha

    A typical Web-based training development team consists of a project manager, an instructional designer, a subject-matter expert, a graphic artist, and a Web programmer. The typical scenario involves team members working together in the same setting during the entire design and development process. What happens when the team is distributed, that is…

  12. Identifying and designing chemicals with minimal acute aquatic toxicity

    PubMed Central

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T.; Zimmerman, Julie Beth

    2015-01-01

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure–activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical–chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard. PMID:24639521

  13. Chemical Processes and Thresholds in Hawaiin Soils

    NASA Astrophysics Data System (ADS)

    Chadwick, O.

    2007-12-01

    The Hawaiian Islands are a useful natural laboratory for studying soil development particularly those that can be understood using a matrix of chonosequences and climosequences. The islands are formed over a stationary mantle plume and then are carried to the northwest on the Pacific Plate. Thus the islands get older with distance from the hotspot; Kauai has remnant shield surfaces whose lavas date to about 4,000 ky. It is possible to sample soils that are developing on different age flows ranging from a few hundred years to a few million years. Additionally, individual volcanoes are impacted by differing amounts of rainfall depending on location with respect to the northeasterly trade winds. Whereas rainfall over the open ocean near Hawaii is about 700 mm, rainfall over the Islands ranges from 150 to 11,000 mm. Hawaii is minimally impacted by mineral aerosol additions compared to continental areas and this has a significant impact on soil development. More than 100 soil profiles have been sampled along the Hawaii time-climate matrix with some surprising results. For example, in arid soils might be expected to develop smectite clays, but they are rich in halloysite and allophane. Importantly, these same soils show a trend from high-Mg calcite to dolomite as carbonates accumulate within the profiles - this is one of the first documented occurrences of pedogenic dolomite that is not associated with high levels of salts. It appears that lack of smectite formation lowers the incorporation of Mg into silicate clays and increases its incorporation into carbonates. This is an unusual pedogenic process that seems to be enhanced by the lack of substantial amounts of mica in the basalt derived soils. The only mica is in surface horizons that receive dust derived from distant continents. Without mica there is no template to allow smectite clay formation under the rapid wetting and drying regimes encountered in the arid soils. At the same time that halloysite is forming, iron

  14. Some aspects of mathematical and chemical modeling of complex chemical processes

    NASA Technical Reports Server (NTRS)

    Nemes, I.; Botar, L.; Danoczy, E.; Vidoczy, T.; Gal, D.

    1983-01-01

    Some theoretical questions involved in the mathematical modeling of the kinetics of complex chemical process are discussed. The analysis is carried out for the homogeneous oxidation of ethylbenzene in the liquid phase. Particular attention is given to the determination of the general characteristics of chemical systems from an analysis of mathematical models developed on the basis of linear algebra.

  15. Microlenses with focal length controlled by chemical processes

    NASA Astrophysics Data System (ADS)

    Muric, B. D.; Panic, B. M.

    2012-05-01

    The influence of chemical processing on the optical properties of microlenses formed on a gelatin-sensitized layer was investigated. The gelatin is sensitized with tot'hema and eosin, irradiated with a Gaussian profile laser beam and subsequently chemically processed. Microlenses with a focal length of 400 μm were obtained after alcohol processing. Additionally, focal lengths could be controlled by varying the alum concentration, and lenses with focal length up to 1.2 mm were obtained. The microlenses become stable after alum processing. Their optical properties remain unchanged.

  16. Chemical processing and shampooing impact cortisol measured in human hair

    PubMed Central

    Hoffman, M. Camille; Karban, Laura V.; Benitez, Patrick; Goodteacher, Angela; Laudenslager, Mark L.

    2015-01-01

    Purpose The assessment of cortisol in hair has gained popularity as a means to measure retrospective hypothalamic-pituitary-adrenal activity in a number of species; however, cortisol levels from human hair subjected to typical chemicals for cosmetic or hygienic purposes may be altered by the chemicals used. The purposed of this study was to determine if exposure of hair to chemical processing or shampooing impacts cortisol values. Methods Human hair not exposed to prior chemical processing was cut from the posterior vertex region of the head of 106 human subjects as close to the scalp as possible. The hair sample was divided into 4-6 full-length clusters depending on quantity of hair available. Each hair sample was processed for baseline (native) cortisol and remaining clusters were exposed to five standard chemical hair treatments (Experiment 1) or were shampooed 15 or 30 times (Experiment 2). Hair was ground and cortisol levels were determined by enzyme immunoassay (EIA). Comparisons were made between native hair and processed hair using paired t-tests and Pearson correlation. Results Hair cortisol as assessed by EIA was significantly altered by chemical processing but in somewhat different ways. Exposure to bleach (harshest exposure), demi-perm (least exposure) or 15-30 shampoos resulted in a significant decrease in cortisol level while exposure to varying percentages of peroxides increased cortisol measured. There were no differences in cortisol levels associated with sex, age or tobacco use in the native hair for this particular group. Conclusion Chemical processing and frequent shampooing affect cortisol levels measured in hair. Chemically processed or excessively shampooed hair should be avoided when recruiting subjects for hair cortisol studies. PMID:25090265

  17. Poly(ADP-ribose): From chemical synthesis to drug design.

    PubMed

    Drenichev, Mikhail S; Mikhailov, Sergey N

    2016-08-01

    Poly(ADP-ribose) (PAR) is an important biopolymer, which is involved in various life processes such as DNA repair and replication, modulation of chromatin structure, transcription, cell differentiation, and in pathogenesis of various diseases such as cancer, diabetes, ischemia and inflammations. PAR is the most electronegative biopolymer and this property is essential for its binding with a wide range of proteins. Understanding of PAR functions in cell on molecular level requires chemical synthesis of regular PAR oligomers. Recently developed methodologies for chemical synthesis of PAR oligomers, will facilitate the study of various cellular processes, involving PAR. PMID:27318540

  18. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  19. De Novo Fragment Design for Drug Discovery and Chemical Biology.

    PubMed

    Rodrigues, Tiago; Reker, Daniel; Welin, Martin; Caldera, Michael; Brunner, Cyrill; Gabernet, Gisela; Schneider, Petra; Walse, Björn; Schneider, Gisbert

    2015-12-01

    Automated molecular de novo design led to the discovery of an innovative inhibitor of death-associated protein kinase 3 (DAPK3). An unprecedented crystal structure of the inactive DAPK3 homodimer shows the fragment-like hit bound to the ATP pocket. Target prediction software based on machine learning models correctly identified additional macromolecular targets of the computationally designed compound and the structurally related marketed drug azosemide. The study validates computational de novo design as a prime method for generating chemical probes and starting points for drug discovery. PMID:26486226

  20. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  1. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  2. National toxicology program chemical nomination and selection process

    SciTech Connect

    Selkirk, J.K.

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  3. Considerations for designing chemical screening strategies in plant biology

    PubMed Central

    Serrano, Mario; Kombrink, Erich; Meesters, Christian

    2015-01-01

    Traditionally, biologists regularly used classical genetic approaches to characterize and dissect plant processes. However, this strategy is often impaired by redundancy, lethality or pleiotropy of gene functions, which prevent the isolation of viable mutants. The chemical genetic approach has been recognized as an alternative experimental strategy, which has the potential to circumvent these problems. It relies on the capacity of small molecules to modify biological processes by specific binding to protein target(s), thereby conditionally modifying protein function(s), which phenotypically resemble mutation(s) of the encoding gene(s). A successful chemical screening campaign comprises three equally important elements: (1) a reliable, robust, and quantitative bioassay, which allows to distinguish between potent and less potent compounds, (2) a rigorous validation process for candidate compounds to establish their selectivity, and (3) an experimental strategy for elucidating a compound's mode of action and molecular target. In this review we will discuss details of this general strategy and additional aspects that deserve consideration in order to take full advantage of the power provided by the chemical approach to plant biology. In addition, we will highlight some success stories of recent chemical screenings in plant systems, which may serve as teaching examples for the implementation of future chemical biology projects. PMID:25904921

  4. Sealed-bladdered chemical processing method and apparatus

    DOEpatents

    Harless, D. Phillip

    1999-01-01

    A method and apparatus which enables a complete multi-stepped chemical treatment process to occur within a single, sealed-bladdered vessel 31. The entire chemical process occurs without interruption of the sealed-bladdered vessel 31 such as opening the sealed-bladdered vessel 31 between various steps of the process. The sealed-bladdered vessel 31 is loaded with a batch to be dissolved, treated, decanted, rinsed and/or dried. A pressure filtration step may also occur. The self-contained chemical processing apparatus 32 contains a sealed-bladder 32, a fluid pump 34, a reservoir 20, a compressed gas inlet, a vacuum pump 24, and a cold trap 23 as well as the associated piping 33, numerous valves 21,22,25,26,29,30,35,36 and other controls associated with such an apparatus. The claimed invention allows for dissolution and/or chemical treatment without the operator of the self-contained chemical processing apparatus 38 coming into contact with any of the process materials.

  5. Dust as interstellar catalyst. I. Quantifying the chemical desorption process

    NASA Astrophysics Data System (ADS)

    Minissale, M.; Dulieu, F.; Cazaux, S.; Hocuk, S.

    2016-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV- and cosmic-ray-induced photons do not account for such processes. Aims: The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included in astrochemical models. Methods: We present a collection of experimental results of more than ten reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice were used. We derived a formula for reproducing the efficiencies of the chemical desorption process that considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II of this study we extend these results to astrophysical conditions. Results: The equipartition of energy correctly describes the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient, and a better description of the interaction with the surface is still needed. Conclusions: We show that the mechanism that directly transforms solid species into gas phase species is efficient for many reactions.

  6. Resist roughness improvement by a chemical shrink process

    NASA Astrophysics Data System (ADS)

    Nagahara, Tatsuro; Sekito, Takashi; Matsuura, Yuriko

    2016-04-01

    In this paper, we will discuss the improvement of resist pattern roughness on NTD (Negative Tone Development) resist by chemical shrink process. Chemical shrink process is one of the most practical approaches to achieve small feature size CH (Contact Hole) or trench with ArF immersion lithography. We found that this shrink material has not only general benefits of shrink process like DOF (Depth of Focus) margin improvement, but also demonstrates a pattern smoothing effect through observation of the surface of shrink layer using SPM (Scanning Probe Microscope). Additionally, an improvement of LWR (Line Width Roughness) over 16% and an improvement of LCDU (Local Critical Dimension Uniformity) around 60% were observed.

  7. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  8. The National Toxicology Program chemical nomination selection and testing process.

    PubMed

    Heindel, J J

    1988-01-01

    The NTP is an interagency program of the Federal Government which coordinates toxicological programs at the NIH (NIEHS), FDA (NCTR), and CDC (NIOSH) with input from NCI, NIH, OSHA, CPSC, EPA, and ATSDR. The NTP has the capability to completely characterize the toxicologic profile of a chemical, including studies of chemical disposition, genetic toxicity, immunotoxicity, teratology, reproductive toxicity, carcinogenicity, neurotoxicity, and specific organ toxicity. The NTP encourages nominations of chemicals of human health concern from all sectors of the public, including industry, labor, and the general public. The specific process of nomination, evaluation, and selection of chemicals for testing by the NTP is described. It is a multicomponent system with several evaluations and a public peer review step to assure adequate consideration of all nominated chemicals. The results of NTP studies are all peer reviewed and available to the general public as well as to the scientific community. PMID:2980357

  9. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    PubMed

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (<100 mg l(-1)) of Chinese Notational Integrated Wastewater Discharge Standard (GB8978-1996) even if without using any dilution water. Compared with the original dilution and biological process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year. PMID:19273902

  10. Macrocell design for concurrent signal processing

    SciTech Connect

    Pope, S.P.; Brodersen, R.W.

    1983-01-01

    Macrocells serve as subsystems at the top level of the hardware design hierarchy. The authors present the macrocell design technique as applied to the implementation of real-time, sampled-data signal processing functions. The design of such circuits is particularly challenging due to the computationally intensive nature of signal-processing algorithms and the constraints of real-time operation. The most efficient designs make use of a high degree of concurrency-a property facilitated by the microcell approach. Two circuit projects whose development resulted largely from the macrocell methodology described are used as examples throughout the report: a linear-predictive vocoder circuit, and a front-end filter-bank chip for a speech recognition system. Both are monolithic multiprocessor implementations: the lpc vocoder circuit contains three processors, the filter-bank chip two processors. 10 references.

  11. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  12. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  13. DEVELOPMENT OF A CHEMICAL PROCESS MODELING ENVIRONMENT BASED ON CAPE-OPEN INTERFACE STANDARDS AND THE MICROSOFT .NET FRAMEWORK

    EPA Science Inventory

    Chemical process simulation has long been used as a design tool in the development of chemical plants, and has long been considered a means to evaluate different design options. With the advent of large scale computer networks and interface models for program components, it is po...

  14. Design principles of chemical penetration enhancers for transdermal drug delivery

    PubMed Central

    Karande, Pankaj; Jain, Amit; Ergun, Kaitlin; Kispersky, Vincent; Mitragotri, Samir

    2005-01-01

    Chemical penetration enhancers (CPEs) are present in a large number of transdermal, dermatological, and cosmetic products to aid dermal absorption of curatives and aesthetics. This wide spectrum of use is based on only a handful of molecules, the majority of which belong to three to four typical chemical functionalities, sporadically introduced as CPEs in the last 50 years. Using >100 CPEs representing several chemical functionalities, we report on the fundamental mechanisms that determine the barrier disruption potential of CPEs and skin safety in their presence. Fourier transform infrared spectroscopy studies revealed that regardless of their chemical make-up, CPEs perturb the skin barrier via extraction or fluidization of lipid bilayers. Irritation response of CPEs, on the other hand, correlated with the denaturation of stratum corneum proteins, making it feasible to use protein conformation changes to map CPE safety in vitro. Most interestingly, the understanding of underlying molecular forces responsible for CPE safety and potency reveals inherent constraints that limit CPE performance. Reengineering this knowledge back into molecular structure, we designed >300 potential CPEs. These molecules were screened in silico and subsequently tested in vitro for molecular delivery. These molecules significantly broaden the repertoire of CPEs that can aid the design of optimized transdermal, dermatological, and cosmetic formulations in the future. PMID:15774584

  15. Teaching sustainable design: A collaborative process

    SciTech Connect

    Theis, C.C.

    1997-12-31

    This paper describes a collaborative educational experience in the Schools of Architecture and Landscape Architecture at Louisiana State University. During the Fall Semester of 1996 an upper-level architectural design studio worked with a peer group of landscape architecture students on the design of a master plan for an environmentally sensitive residential development on Cat Island, a barrier island located approximately eight miles south of Gulfport, Mississippi. This paper presents the methodology and results of the project, describes the collaborative process, and assesses both the viability of the design solutions and the value of the educational experience.

  16. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  17. Design of the HTGR for process heat applications

    SciTech Connect

    Vrable, D.L.; Quade, R.N.

    1980-05-01

    This paper discusses a design study of an advanced 842-MW(t) HTGR with a reactor outlet temperature of 850/sup 0/C (1562/sup 0/F), coupled with a chemical process whose product is hydrogen (or a mixture of hydrogen and carbon monoxide) generated by steam reforming of a light hydrocarbon mixture. This paper discusses the plant layout and design for the major components of the primary and secondary heat transfer systems. Typical parametric system study results illustrate the capability of a computer code developed to model the plant performance and economics.

  18. Process design for Al backside contacts

    SciTech Connect

    Chalfoun, L.L.; Kimerling, L.C.

    1995-08-01

    It is known that properly alloyed aluminum backside contacts can improve silicon solar cell efficiency. To use this knowledge to fullest advantage, we have studied the gettering process that occurs during contact formation and the microstructure of the contact and backside junction region. With an understanding of the alloying step, optimized fabrication processes can be designed. To study gettering, single crystal silicon wafers were coated with aluminim on both sides and subjected to heat treatments. Results are described.

  19. Reduced product yield in chemical processes by second law effects

    NASA Technical Reports Server (NTRS)

    England, C.; Funk, J. E.

    1980-01-01

    An analysis of second law effects in chemical processes, where product yield is explicitly related to the individual irreversibilities within the process to indicate a maximum theoretical yield, is presented. Examples are given that indicate differences between first and second law approaches toward process efficiency and process yield. This analysis also expresses production capacity in terms of the heating value of a product. As a result, it is particularly convenient in analyzing fuel conversion plants and their potential for improvement. Relationships are also given for the effects of irreversibilities on requirements for process heat and for feedstocks.

  20. Influence of chemical processing on the imaging properties of microlenses

    NASA Astrophysics Data System (ADS)

    Vasiljević, Darko; Murić, Branka; Pantelić, Dejan; Panić, Bratimir

    2009-07-01

    Microlenses are produced by irradiation of a layer of tot'hema and eosin sensitized gelatin (TESG) by using a laser beam (Nd:YAG 2nd harmonic; 532 nm). All the microlenses obtained are concave with a parabolic profile. After the production, the microlenses are chemically processed with various concentrations of alum. The following imaging properties of microlenses were calculated and analyzed: the root mean square (rms) wavefront aberration, the geometric encircled energy and the spot diagram. The microlenses with higher concentrations of alum in solution had a greater effective focal length and better image quality. The microlenses chemically processed with 10% alum solution had near-diffraction-limited performance.

  1. Signal Processing For Chemical Sensing: Statistics or Biological Inspiration

    NASA Astrophysics Data System (ADS)

    Marco, Santiago

    2011-09-01

    Current analytical instrumentation and continuous sensing can provide huge amounts of data. Automatic signal processing and information evaluation is needed to overcome drowning in data. Today, statistical techniques are typically used to analyse and extract information from continuous signals. However, it is very interesting to note that biology (insects and vertebrates) has found alternative solutions for chemical sensing and information processing. This is a brief introduction to the developments in the European Project: Bio-ICT NEUROCHEM: Biologically Inspired Computation for Chemical Sensing (grant no. 216916) Fp7 project devoted to biomimetic olfactory systems.

  2. Statistically designed experiments to screen chemical mixtures for possible interactions.

    PubMed Central

    Groten, J P; Tajima, O; Feron, V J; Schoen, E D

    1998-01-01

    For the accurate analysis of possible interactive effects of chemicals in a defined mixture, statistical designs are necessary to develop clear and manageable experiments. For instance, factorial designs have been successfully used to detect two-factor interactions. Particularly useful for this purpose are fractionated factorial designs, requiring only a fraction of all possible combinations of a full factorial design. Once the potential interaction has been detected with a fractionated design, a more accurate analysis can be performed for the particular binary mixtures to ensure and characterize these interactions. In this paper this approach is illustrated using an in vitro cytotoxicity assay to detect the presence of mixtures of Fusarium mycotoxins in contaminated food samples. We have investigated interactions between five mycotoxin species (Trichothecenes, Fumonisins, and Zearalenone) using the DNA synthesis inhibition assay in L929 fibroblasts. First, a central composite design was applied to identify possible interactive effects between mycotoxins in the mixtures (27 combinations from 5(5) possible combinations). Then two-factor interactions of particular interest were further analyzed by the use of a full factorial design (5 x 5 design) to characterize the nature of those interactions more precisely. Results show that combined exposure to several classes of mycotoxins generally results in effect addition with a few minor exceptions indicating synergistic interactions. In general, the nature of the interactions characterized in the full factorial design was similar to the nature of those observed in the central composite design. However, the magnitude of interaction was relatively small in the full factorial design. PMID:9860893

  3. Flexible Processing and the Design of Grammar

    ERIC Educational Resources Information Center

    Sag, Ivan A.; Wasow, Thomas

    2015-01-01

    We explore the consequences of letting the incremental and integrative nature of language processing inform the design of competence grammar. What emerges is a view of grammar as a system of local monotonic constraints that provide a direct characterization of the signs (the form-meaning correspondences) of a given language. This…

  4. Dynamic Process Simulation for Analysis and Design.

    ERIC Educational Resources Information Center

    Nuttall, Herbert E., Jr.; Himmelblau, David M.

    A computer program for the simulation of complex continuous process in real-time in an interactive mode is described. The program is user oriented, flexible, and provides both numerical and graphic output. The program has been used in classroom teaching and computer aided design. Typical input and output are illustrated for a sample problem to…

  5. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  6. Composition and placement process for oil field chemicals

    SciTech Connect

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  7. Using scoping as a design process

    SciTech Connect

    Mulvihill, P.R. ); Jacobs, P. )

    1998-07-01

    Skillful use of the scoping phase of environment assessment (EA) is critical in cases involving a wide diversity of stakeholders and perspectives. Scoping can exert a strong influence in shaping a relevant impact assessment and increasing the probability of a process that satisfies stakeholders. This article explores key challenges facing scoping processes conducted in highly pluralistic settings. Elements of a notable case study--the scoping process conducted in 1992 for the proposed Great Whale Hydroelectric project in Northern Quebec--are discussed to illustrate innovative approaches. When used as a design process, scoping can ensure that EA reflects the different value sets and cultures that are at play, particularly where diverse knowledge systems and ways of describing environmental components and impacts exist. As it sets the stage for subsequent steps in the EA process, scoping needs to be a sufficiently broad umbrella that accommodates diverse approaches to identifying, classifying, and assessing impacts.

  8. Combined system of monothermal chemical exchange process with electrolysis and thermal diffusion process for enriching tritium

    SciTech Connect

    Kitamoto, A.; Hasegawa, K.; Masui, T.

    1988-09-01

    Monothermal chemical exchange process with electrolysis (wellknown as the CECE process) is an effective method for enriching and removing tritium from tritiated water of low to middle level activity. The thermal diffusion process (ThD) is a low inventory gas phase method for enriching tritium from hydrogen. ThD and CECE process can be combined with each other by hydrogen gas line.

  9. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  10. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  11. ASSESSING TOXICITY OF ORGANIC CHEMICALS TO ANAEROBIC TREATMENT PROCESSES

    EPA Science Inventory

    A screening protocol has been developed to provide a rapid but dependable and repeatable assessment of the effect of toxic organic chemicals on anaerobic treatment processes. his protocol provides information on the rate limiting biological reactions and the concentration of toxi...

  12. 26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT NORTH EDGE FROM DECEMBER 7TH AVENUE. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  13. GREENSCOPE: A Method for Modeling Chemical Process Sustainability

    EPA Science Inventory

    Current work within the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory is focused on the development of a method for modeling chemical process sustainability. The GREENSCOPE methodology, defined for the four bases of Environment, Economics, Ef...

  14. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  15. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  16. Secondary cleanup of Idaho Chemical Processing Plant solvent

    SciTech Connect

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate.

  17. Illinois Occupational Skill Standards: Chemical Process Technical Operators.

    ERIC Educational Resources Information Center

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended for workforce preparation program providers, details the Illinois Occupational Skill Standards for programs preparing students for employment as chemical process technical operators. The document begins with a brief overview of the Illinois perspective on occupational skill standards and credentialing, the process…

  18. Coexistence of superconductivity and magnetism by chemical design.

    PubMed

    Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J; Baker, Peter J

    2010-12-01

    Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni(0.66)Al(0.33)(OH)(2)][TaS(2)] at ∼4 K. The method is further demonstrated in the isostructural [Ni(0.66)Fe(0.33)(OH)(2)][TaS(2)], in which the magnetic ordering is shifted from 4 K to 16 K. PMID:21107366

  19. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model

  20. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  1. Influence of surface coverage on the chemical desorption process

    SciTech Connect

    Minissale, M.; Dulieu, F.

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  2. Composting process design criteria. II. Detention time

    SciTech Connect

    Haug, R.T.

    1986-09-01

    Attention has always been directed to detention time as a criteria for design and operation of composting systems. Perhaps this is a logical outgrowth of work on liquid phase systems, where detention time is a fundamental parameter of design. Unlike liquid phase systems, however, the interpretation of detention time and actual values required for design have not been universally accepted in the case of composting. As a case in point, most compost systems incorporate facilities for curing the compost product. However, curing often is considered after the fact or as an add on with little relationship to the first stage, high-rate phase, whether reactor (in-vessel), static pile, or windrow. Design criteria for curing and the relationships between the first-stage, high-rate and second-stage, curing phases of a composting system have been unclear. In Part 2 of this paper, the concepts of hydraulic retention time (HRT) and solids residence time (SRT) are applied to the composting process. Definitions and design criteria for each are proposed. Based on these criteria, the first and second-stages can be designed and integrated into a complete composting system.

  3. PROCESS DESIGN FOR ENVIRONMENT: A MULTI-OBJECTIVE FRAMEWORK UNDER UNCERTAINTY

    EPA Science Inventory

    Designing chemical processes for environment requires consideration of several indexes of environmental impact including ozone depletion and global warming potentials, human and aquatic toxicity, and photochemical oxidation, and acid rain potentials. Current methodologies like t...

  4. Multiwavelet design for cardiac signal processing.

    PubMed

    Peelers, R L M; Karel, J M H; Westra, R L; Haddad, S A P; Serdijn, W A

    2006-01-01

    An approach for designing multiwavelets is introduced, for use in cardiac signal processing. The parameterization of the class of multiwavelets is in terms of associated FIR polyphase all-pass filters. Orthogonality and a balanced vanishing moment of order 1 are built into the parameterization. An optimization criterion is developed to associate the wavelets with different meaningful segments of a signal. This approach is demonstrated on the simultaneous detection of QRS-complexes and T-peaks in ECG signals. PMID:17946917

  5. Chemical Modification for PAN Fibers during Heat-treatment Process

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Yin, Wenyan

    Chemical modification for Polyacrylonitrile (PAN) fibers during heat-treatment process were systematically studied by DSC, FT-IR, EA, XPS, etal. Comparing with original PAN fibers, chemical reactions, structures and elemental compositions of fibers modified with potassium permanganate (KMnO4) solutions were totally changed at a certain extent. KMnO4 had reduced the activation energy of cyclization, decreased the area and widened the peak of exothermic curve, decreased the velocity of cyclization reaction, increased the oxygen content about 67%, hence increased C-O-C and C=O groups and the core/shell ratio.

  6. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measurements of chemical kinetics parameters for heterogeneous reactions of importance in the stratosphere and the troposphere. It involves the elucidation of the mechanism of the interaction of HCl vapor with ice surfaces, which is the first step in the heterogeneous chlorine activation processes, as well as the investigation of the atmospheric oxidation mechanism of soot particles emitted by biomass and fossil fuels. The techniques being employed include turbulent flow-chemical ionization mass spectrometry and optical ellipsometry, among others.

  7. Approaches to Chemical and Biochemical Information and Signal Processing

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2012-02-01

    We outline models and approaches for error control required to prevent buildup of noise when ``gates'' and other ``network elements'' based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information and signal processing. We also survey challenges and possible future research. [4pt] [1] Control of Noise in Chemical and Biochemical Information Processing, V. Privman, Israel J. Chem. 51, 118-131 (2010).[0pt] [2] Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic, V. Privman, J. Halamek, M. A. Arugula, D. Melnikov, V. Bocharova and E. Katz, J. Phys. Chem. B 114, 14103-14109 (2010).[0pt] [3] Towards Biosensing Strategies Based on Biochemical Logic Systems, E. Katz, V. Privman and J. Wang, in: Proc. Conf. ICQNM 2010 (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2010), pages 1-9.

  8. Chip Design Process Optimization Based on Design Quality Assessment

    NASA Astrophysics Data System (ADS)

    Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel

    2010-06-01

    Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.

  9. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  10. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater. PMID:17918591