Science.gov

Sample records for chemical pulp

  1. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  2. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  3. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  4. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  5. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical pulp subcategory. The provisions of this subpart are applicable to discharges...

  6. Effect of biological treatment on pulp mill effluent chemical characteristics

    SciTech Connect

    LaFleur, L.E.; Bousquet, T.E.; Cook, D.L.

    1995-12-31

    In the last 20 years, detailed characterizations of pulping and bleaching wastewaters have been performed identifying a large variety of chemical by-products. However, formation in the process does not translate into discharge into the environment. Pulp and paper mills in the US almost uniformly practice biological treatment. Although initially implemented for BOD removal, biological treatment is also responsible for removing or reducing many classes of compounds. This paper will briefly review the literature related to the characterization of process versus biologically treated wastewaters. Data on specific removal efficiencies for these compounds will be summarized and discussed. mechanisms of removal (such as biological degradation or transformation, sorption or volatilization) for selected compounds will be discussed. Examples of mass emission rates for volatiles, resin and fatty ,acids, plant sterols, mono-terpenes (and related compounds), chlorinated and non-chlorinated phenolics and other cellulose degradation products will be presented. Factors influencing the discharge rates such as pulping and bleaching practices, geographical location of the mills and wood species being pulped will be discussed.

  7. Fermentation and chemical treatment of pulp and paper mill sludge

    DOEpatents

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  8. Effect of different locations on the morphological, chemical, pulping and papermaking properties of Trema orientalis (Nalita).

    PubMed

    Jahan, M Sarwar; Chowdhury, Nasima; Ni, Yonghao

    2010-03-01

    The chemical compositions and fiber morphology of stem and branch samples from Trema orientalis at three different sites planted in Bangladesh were determined and their pulping, bleaching and the resulting pulp properties were investigated. A large difference between the stem and branch samples was observed. The stem samples have consistently higher alpha-cellulose and lower lignin content, and longer fibers than the branch samples in all sites. T. orientalis from the Dhaka and Rajbari region had higher alpha-cellulose content and longer fiber length, resulting in higher pulp yield and better papermaking properties. The T. orientalis pulp from Rajbari region also showed the best bleachability. PMID:19914825

  9. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  10. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  11. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  12. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  13. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of...

  14. Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry.

    PubMed

    Kobayashi, Morio; Tsutsui, Takeo W; Kobayashi, Tomoko; Ohno, Maki; Higo, Yukari; Inaba, Tomohiro; Tsutsui, Takeki

    2013-01-01

    To determine the adverse effects against human dental pulp tissue, the sensitivity of human dental pulp cells (D824 cells) to 18 chemical agents used for endodontic treatments in dentistry was examined. The cytotoxicity, as determined by a decrease in colony-forming ability of cells treated with the chemical agents, increased as the concentration increased. As a quantitative measure of the cytotoxic effect, LC(50), the concentration which induces a 50% lethality, was extrapolated from the concentration-response curves. The rank of the chemical agents according to their cytotoxic effect (LC(50)) was sodium arsenite > formaldehyde > hydrogen peroxide > zinc oxide > thymol ≈ iodoform ≈ eugenol > guaiacol > ethylenediaminetetraacetic acid ≈ iodine > procaine > lidocaine ≈ chloramphenicol ≈ m-cresol > calcium hydroxide ≈ sodium hypochlorite ≈ phenol ≈ p-phenolsulfonic acid. To compare the cytotoxicity and the levels of apoptosis and mRNA expression of five genes related to the function of dental pulp tissue, D824 cells treated with the LC(50) concentrations of chemical agents were assayed by the TUNEL method and quantitative reverse transcription polymerase chain reaction analysis, respectively. The inducibility of apoptotic cells and the level of mRNA expression of the genes varied with the chemical agents, indicating that both effects occurred independent of the rank of cytotoxic effect of the chemical agents. The results not only provide information concerning cytotoxicity of various chemical agents to human dental pulp cells, but also show an insight into the diversity of the pharmacodynamic action of the chemical agents. PMID:22083529

  15. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  16. [Chemical characteristics of the pulp and oil of the annona tree (Annona coriaceae)].

    PubMed

    Agostini, T da S; Cecchi, H M; Barrera-Arellano, D

    1995-09-01

    Belonging to the Annonaceae family, marolo (Annona coriaceae) is a native species of the Brazilian "cerrado" región (Minas Gerais, Goiás and Distrito Federal) and can be found in South American tropical zones. Its fruits are highly consumed by local people and commercialized in markets or street stalls. There is, however, a tendency for the extinction of marolo due to deforestation and the large scale plantation of monocultures instead of native plants. The literature still offers no data on the chemical composition of the proximate composition and vitamin C, A and tannin contents were carried out on the yellow marolo pulp as well as the determination of the physico-chemical characteristics of the seed oil. Five batches of fruit from the Alfenas region--south of Minas Gerais State--were analysed in this work and their average composition were: humidity 77%, total sugar 15%, reducing sugar 11%, crude protein 1%, lipids 3%, fiber 5% and fixed mineral residue 1%. The contents of vitamin C and A were 8.2 mg/100g and 117.5 RE/100g, respectively, and the tannin content was 245 mg/100g. The results showed high fiber and lipid contents of marolo pulp in comparison with many other tropical fruit pulps. The vitamin C contents were equivalent to those found in avocado, pineapple and watermelon, while the vitamin A contents were equivalent to papaya, peach, guava and several other tropical fruits. Marolo seed contains 45% of oil on a dry basis. Its composition and physico-chemical characteristics showed the possibility of producing a good quality oil, with great potential for the fine oil market. However the presence of alkaloids in the oil needs to be further studied. Their elimination could be done by refining or extraction in a continuous press. The results exalt the high quality of marolo pulp, showing that the preservation of native species should be stimulated. PMID:9382684

  17. Alkaline peroxide pulping of oil palm empty fruit bunch by variation of chemical strength

    NASA Astrophysics Data System (ADS)

    Dermawan, Yunita Megasari; Ghazali, Arniza; Daud, Wan Rosli Wan; Lazin, Mohd Azli Khairil Mat

    2012-09-01

    Papers produced from oil palm empty fruit bunches (EFB) via Alkaline Peroxide Pulping (APP) was preceded by three main steps; dewaxing of EFB, alkaline peroxide (AP) impregnation into EFB and refining of biomass to generate pulp. The experiment was carried by varying chemical level and number of impregnation stages. For 2:2.5% AP level, two-stage impregnation improved hand sheets tear index by 45%, 164% boost in tensile index, 26% enhancement in zero span index and more than 5% in burst index. By applying 8:10% AP level, significant improvements were gained at the third and fourth stages of AP impregnation. Although there was no significant change in hand sheet strength with multiple impregnation for 4:5% AP level, improvement in brightness of hand sheets was apparent, analogous to the effect of increasing AP level. The found paper properties development show that alkaline peroxide pulping of EFB could be adapted to various targeted properties by adjustment of AP level and impregnation stages.

  18. Identification of the need for research on chemical tracers to detect pulp mill effluent exposure

    SciTech Connect

    Ali, N.; Humphrey, S.; Van Coillie, R.

    1995-12-31

    A critical factor in the assessment of the effects of effluent exposure on sampled biota is the verification of exposure in nearfield and farfield zones and verification of the lack of exposure in the reference areas. At mills with rapid dilution of effluent, or where physical barriers to fish movement between exposure and reference areas do not exist, an appropriate fish tracer must be used. In Canada, because of multiple industrial and municipal discharges at certain pulp mill sites, it is difficult to assess the effects of the mill effluent in isolation from those of neighboring influences unless tracers specific to the different effluents are used. Examples of substances proposed as tracers for pulp mill effluent include resin acids, chloroguaiacols, chlorophenols, dioxin, and furan congeners. This paper gives a summary of tracer substances used to date and the problems encountered in selecting and measuring suitable chemical tracers for regulated environmental effects monitoring studies at Canadian mills. Based on their experience, there is urgent need for research into appropriate tracer substances for pulp mill as well as other industrial and municipal effluents.

  19. Refining of Polysulfide Pulps

    NASA Astrophysics Data System (ADS)

    Copur, Yalcin

    This study compares the modified kraft process, polysulfide pulping, one of the methods to obtain higher pulp yield, with conventional kraft method. More specifically, the study focuses on the refining effects of polysulfide pulp, which is an area with limited literature. Physical, mechanical and chemical properties of kraft and polysulfide pulps (4% elemental sulfur addition to cooking digester) cooked under the same conditions were studied as regards to their behavior under various PFI refining (0, 3000, 6000, 9000 revs.). Polysulfide (PS) pulping, compared to the kraft method, resulted in higher pulp yield and higher pulp kappa number. Polysulfide also gave pulp having higher tensile and burst index. However, the strength of polysulfide pulp, tear index at a constant tensile index, was found to be 15% lower as compared to the kraft pulp. Refining studies showed that moisture holding ability of chemical pulps mostly depends on the chemical nature of the pulp. Refining effects such as fibrillation and fine content did not have a significant effect on the hygroscopic behavior of chemical pulp.

  20. Chemical composition and protein enrichment of orange peels and sugar beet pulp after fermentation by two Trichoderma species

    PubMed Central

    Ahmadi, F; Zamiri, M. J.; Khorvash, M; Banihashemi, Z; Bayat, A. R.

    2015-01-01

    The present experiment aimed at increasing orange peel and sugar beet pulp protein content through solid-state fermentation by Trichoderma reesei and Trichoderma viride. In vitro digestibility and changes in the chemical composition of the fermented products were determined after seven days of fungal cultivation using gas production tests. The cultivation of T. reesei and T. viride on orange peels decreased neutral detergent soluble content (P<0.01) and increased cellulose, hemicellulose and lignin contents (P<0.01). Changes in fiber fractions were found to be more pronounced with T. viride. The cultivation of T. reesei and T. viride on sugar beet pulp increased neutral detergent soluble content (P<0.01) and decreased cellulose and hemicellulose contents (P<0.01). These changes were more pronounced with T. reesei. The cultivation of T. reesei or T. viride on orange peels or sugar beet pulp increased crude protein content (P<0.01) compared with the unfermented materials; however, the increase was more pronounced for orange peels fermented with T. viride when corrected for weight loss (P<0.05). After 24 and 48 h of incubation, significant decreases in cumulative gas production (P<0.01) were observed in fermented sugar beet pulp and orange peels compared with the unfermented materials. Fungal treatment of orange peels and sugar beet pulp reduced the digestibility of in vitro organic matter, metabolizable energy and average fermentation and gas production rates (P<0.01). The data showed that seven days of solid-state fermentation of orange peels and sugar beet pulp by T. reesei or T. viride can increase their crude protein content. PMID:27175146

  1. Green chemicals from pulp production black liquor by partial wet oxidation.

    PubMed

    Muddassar, Hassan Raja; Melin, Kristian; de Villalba Kokkonen, Daniela; Riera, Gerard Viader; Golam, Sarwar; Koskinen, Jukka

    2015-11-01

    To reduce greenhouse gas emissions, more sustainable sources of energy, fuel and chemicals are needed. Biomass side streams such as black liquor, which is a by-product of pulp production, has the potential to be used for this purpose. The aim of the study was the production of carboxylic acids, such as lactic acid, formic acid and acetic acid, from kraft and non-wood black liquor. The processes studied were partial wet oxidation (PWO) and catalytic partial wet oxidation (CPWO). The results show that the yield of carboxylic acid is higher when treated by PWO than the results from CPWO at temperatures of 170 °C and 230 °C. The results shows that the PWO process can increase the yield of carboxylic acids and hydroxy acids in black liquor, reduce lignin content and decrease pH, which makes further separation of the acids more favourable. The hydroxy acids are valuable raw materials for biopolymers, and acetic acid and formic acid are commonly used chemicals conventionally produced from fossil feedstock. PMID:26377325

  2. Pulp and paper mills

    SciTech Connect

    Not Available

    1980-10-14

    The various hazards present in the many steps used in the production of products from pulp and paper mills were reviewed and discussed. The biological effects of 43 chemical, physical and dust hazards were detailed in the report. Dust hazards included exposures to wood dust, mold and bagasse dusts and fibrogenic dusts. Physical hazards included high heat and humidity, and noise. Raw materials and chemical intermediates discussed included calcium-oxide (1305788), magnesium-oxide (1309484), pulping liquors, sodium-hydroxide (1310732), sulfate, sulfites, sulfides, sulfur (7704349) and sulfuric-acid (7664939). Pulp bleaching agents were discussed along with papermaking additives, contaminants and/or byproducts, and pulping or combustion effluents. Sampling and analytical techniques for physical and chemical hazards were discussed. Engineering controls for hazards in pulp and paper mills were reviewed. OSHA regulations governing pulp and paper mills were evaluated.

  3. Thermal Processing Alters the Chemical Quality and Sensory Characteristics of Sweetsop (Annona squamosa L.) and Soursop (Annona muricata L.) Pulp and Nectar.

    PubMed

    Baskaran, Revathy; Ravi, Ramasamy; Rajarathnam, Somasundaram

    2016-01-01

    The objective of this study was to investigate the effect of thermal processing on the chemical quality and sensory characteristics of Annona squamosa L. and Annona muricata L. fruit pulps and nectar. The fruit pulps were pasteurized at 85 °C for 20 min and nectar prepared as per Food Safety and Standards Authority of India (FSSAI) specifications. The chemical composition of fresh and heated pulps of A. squamosa and A. muricata showed that compared to fresh, the chemical profile and sensory profile changed in heated samples and nectar. The free and bound phenolics of A. squamosa increased in heated pulp (127.61 to 217.22 mg/100 g and 150.34 to 239.74 mg/100 g, respectively), while in A. muricata, free phenolics increased very marginally from 31.73 to 33.74 mg/100 g and bound phenolics decreased from 111.11 to 86.91 mg/100 g. This increase in phenolic content may be attributed to the perception of bitterness and astringency in A. squamosa pulp on heating. In electronic tongue studies, principal component analysis (PCA) confirmed that the fresh and heated pulps had different scores, as indicated by sensory analysis using qualitative descriptive analysis (QDA). E-tongue analysis of samples discriminated the volatile compounds released from the heated A. squamosa and A. muricata fruit pulps and nectar in their respective PCA plots by forming different clusters. PMID:26642109

  4. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring

    NASA Astrophysics Data System (ADS)

    Mohammadi, Abdolreza R.; Bennington, Chad P. J.; Chiao, Mu

    2011-01-01

    We have developed an integrated piezoresistive pressure and temperature sensor for multiphase chemical reactors, primarily Kraft pulp digesters (pH 13.5, temperatures up to 175 °C, reaching a local maximum of 180 °C and pressures up to 2 MPa). The absolute piezoresistive pressure sensor consisted of a large square silicon diaphragm (1000 × 1000 µm2) and high resistance piezoresistors (10 000 Ω). A 4500 Ω buried piezoresistive wire was patterned on the silicon chip to form a piezoresistive temperature sensor which was used for pressure sensor compensation and temperature measurement. A 4 µm thick Parylene HT® coating, a chemically resistant epoxy and a silicone conformal coating were deposited to passivate the pressure sensor against the caustic environment in Kraft digesters. The sensors were characterized up to 2 MPa and 180 °C in an environment chamber. A maximum thermal error of ±0.72% full-scale output (FSO), an average sensitivity of 0.116 mV (V kPa)-1 and a power consumption of 0.3 mW were measured in the pressure sensor. The sensors' resistances were measured before and after test in a Kraft pulping cycle and showed no change in their values. SEM pictures and topographical surfaces were also analyzed before and after pulp liquor exposure and showed no observable changes.

  5. [Vegetable resources with agroindustrial potential from Guatemala. Chemical characterization of the pulp and of the seeds of Theobroma bicolor].

    PubMed

    Furlán, A L; Bressani, R

    1999-12-01

    T. bicolor grows wild in certain regions of Guatemala. The fruit is utilized by the rural population for the preparation of drinks from the pulp and the seed, replacing cocoa (T. cocoa). The fruit of T. bicolor used in the present study, measured on the average, 15 cm long and had an average weight, of 752 g. The pulp, the shell, and the seed represented 23.8, 62.5, and 13.7%, respectively, of the fruit weight. The pulp contained on the average, 38 seeds/fruit, which weighted on the average, 1.11 g and were 2.4 cm long. T. cacao seeds weighted 0.62 g and were 1.6 cm long. The protein content (24.42%) and fiber content (30.86%) of the T. bicolor seeds, was greater than those from T. cacao, although fat content was lower (25.48%). The fat of the seeds of T. bicolor has different physicochemical characteristics than the fat of the seeds of T. cacao, such as melting point, iodine value, and saponification number. The seeds of both, T. cacao and T. bicolor, were used for the preparation of a local drink using toasted corn flour, sugar, and anatto flour in equal preparations, with and without toasted whole soybean flours (6.25%). Through a sensory ranking trial, it is established that the drink from T. bicolor and soybeans, was preferred over other preparations with T. cacao. The pulp of T. bicolor with an interesting chemical composition, yielded an aromatic pleasant drink, and from T. bicolor, is an interesting resource for industrialization and for genetic characteristics for T. cacao improvement. PMID:10883304

  6. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the global structure of microwave-assisted alkaline soluble polysaccharides (ASP) isolated from fresh sugar beet pulp. The objective was to minimize the disassembly and possibly the degradation of these polysaccharides during extraction. Prior to ASP microwave assisted-extraction (...

  7. Physico-chemical characterization of protein associated polysaccharides extracted from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar Beet Pulp (SBP), contains 67 to 80% (dry weight) of potentially valuable polysaccharides. We have solubilized and separated polysaccharides from SBP into three fractions with steam assisted flash extraction (SAFE) employed to solubilize the first and second fractions. Pectin, the first fract...

  8. Converting waste gases from pulp mills into value-added chemicals

    EPA Science Inventory

    Engineering, Miami University, 64 J Engineering Building, Oxford, OH, 45056 The pulp and paper industry generates large amounts of HAPs, VOCs and total reduced sulfur compounds (TRSs) of the various sources. As the industry is moving to a sustainable future, the U.S. EPA and Mia...

  9. Physico-chemical characterization of a cellulosic fraction from sugar beet pulp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The residue of sugar beet pulp from which pectin and alkaline soluble polysaccharides have been removed by microwave assisted extraction (MAE) or conventional heat was treated with sodium monochloroacetate under alkaline pH to convert the residual cellulose present to carboxy methyl cellulose (CMC)....

  10. Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques.

    PubMed

    Edalatmanesh, Maryam; Sain, Mohini; Liss, Steven N

    2010-01-01

    For proper treatment, recycling, or disposal of the pulp and paper mill secondary sludge qualitative and quantitative determination of its characteristics are necessary. Chemical extraction, quantitative characterization, and spectroscopic experiments have been performed to determine the molecular composition and chemical functionality of a pulp and paper mill secondary sludge. In order to extract the low-molecular-weight substances, soxhlet extraction with polar and non-polar solvents was performed where most of the target substances (17±1.3%.) were extracted after 2 hours. Over time, this extraction followed a first-order kinetics. Fiber analyses have shown 12±3% lignin, 28±3% cellulose, and 12±4% hemicelluloses content. The ash content was about 17±0.5%. In this work, 7 and 16% intra- and extracellular polymeric substances, respectively, were extracted from the secondary sludge. EPS and mixture of intra- and extracellular biopolymers have shown similar chemical functionalities. These analyses confirmed that the paper secondary sludge consisted mainly of wood fiber, i.e. lignocellulosic substances, along with proteins and polysaccharides originated from microorganisms. PMID:21123914

  11. Isolation and chemical identification of lipid derivatives from avocado (Persea americana) pulp with antiplatelet and antithrombotic activities.

    PubMed

    Rodriguez-Sanchez, Dariana Graciela; Flores-García, Mirthala; Silva-Platas, Christian; Rizzo, Sheryl; Torre-Amione, Guillermo; De la Peña-Diaz, Aurora; Hernández-Brenes, Carmen; García-Rivas, Gerardo

    2015-01-01

    Platelets play a pivotal role in physiological hemostasis. However, in coronary arteries damaged by atherosclerosis, enhanced platelet aggregation, with subsequent thrombus formation, is a precipitating factor in acute ischemic events. Avocado pulp (Persea americana) is a good source of bioactive compounds, and its inclusion in the diet as a source of fatty acid has been related to reduced platelet aggregability. Nevertheless, constituents of avocado pulp with antiplatelet activity remain unknown. The present study aims to characterize the chemical nature of avocado constituents with inhibitory effects on platelet aggregation. Centrifugal partition chromatography (CPC) was used as a fractionation and purification tool, guided by an in vitro adenosine diphosphate (ADP), arachidonic acid or collagen-platelet aggregation assay. Antiplatelet activity was initially linked to seven acetogenins that were further purified, and their dose-dependent effects in the presence of various agonists were contrasted. This process led to the identification of Persenone-C (3) as the most potent antiplatelet acetogenin (IC₅₀=3.4 mM) among the evaluated compounds. In vivo evaluations with Persenone A (4) demonstrated potential protective effects against arterial thrombosis (25 mg kg⁻¹ of body weight), as coagulation times increased (2-fold with respect to the vehicle) and thrombus formation was attenuated (71% versus vehicle). From these results, avocado may be referred to as a functional food containing acetogenin compounds that inhibit platelet aggregation with a potential preventive effect on thrombus formation, such as those that occur in ischaemic diseases. PMID:25319210

  12. Electrodialysis field test for selective chloride removal from the chemical recovery cycle of a kraft pulp mill

    SciTech Connect

    Rapp, H.J.; Pfromm, P.H.

    1998-12-01

    Chloride accumulation is a serious issue in the kraft pulping process. Chloride can be selectively removed from dissolved electrostatic precipitator dust (ESP dust) in the kraft chemical recovery cycle by electrodialysis with monovalent-selective anion-exchange membranes. In a pilot-scale field test, this process was investigated (total run time, 750 h). The test was performed at about 3.5% of full scale. The process showed outstanding performance and no significant membrane fouling. In feed-and-bleed operation, chloride removal levels of 94% and 61% were tested. The energy consumption for electrodialysis is low (120 kWh per metric ton of chloride removed at a 63% chloride removal level). The process performed very well even with no feed pretreatment, polarity reversal, or membrane cleaning.

  13. Agricultural land application of pulp and paper mill sludges in the Donnacona area, Quebec: Chemical evaluation and crop response

    SciTech Connect

    Veillette, A.X.; Tanguay, M.G.

    1997-12-31

    Primary paper mill sludges from a thermomechanical pulp (TMP) mill were land applied at the rate of 20 metric ton per hectare (t/ha) for agricultural purposes in the Donnacona area, Quebec, in May 1994 and May 1995. Eleven agricultural sites featuring various crops were tested over two seasons to measure the impact of TMP primary paper mill sludges on soil, plant tissue and crop yield. Cereal and potato crops showed a significant increase in yield. TMP Primary sludges were also applied at the rate of 225 t/ha for land reclamation purposes of one site at the end of 1994. Soils were tested every second month. Chemical crop analyses were also performed. The first year crop response was satisfactory. Combined (primary and secondary) TMP sludges were added at the rate of 200 t/ha in the beginning of 1996. Soil, vadose zone water and crop analysis are being investigated. Impressive crop responses were obtained in the 1996 season.

  14. Chemical composition and pulping of date palm rachis and Posidonia oceanica--a comparison with other wood and non-wood fibre sources.

    PubMed

    Khiari, R; Mhenni, M F; Belgacem, M N; Mauret, E

    2010-01-01

    In the present paper, the valorisation of two residues: Posidonia oceanica and date palm rachis was investigated. First, their chemical composition was studied and showed that they present amounts of holocellulose, lignin and cellulose similar to those encountered in softwood and hardwood. Extractives in different solvents and ash contents are relatively high. Moreover, ash composition assessment showed that silicon is the major component (17.7%) for P. oceanica. The high ash quantity and the low DP (about 370) may be considered as serious disadvantages of P. oceanica, in the pulping and papermaking context. Oppositely, the properties of rachis date palm and those of the ensuing pulp, obtained from a classical soda-anthraquinone cooking, demonstrated the suitability of this agricultural by-product for papermaking. Preliminary tests conducted on unrefined pulp suspensions and handsheets from date palm rachis in terms of freeness, Water Retention Value and mechanical properties allowed confirming the good quality of date palm rachis fibres. PMID:19766481

  15. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report and Appendices (CD-ROM)

    SciTech Connect

    Not Available

    2002-10-01

    The main report on this CD assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performace and efficiency improvements. The Appendices on this CD provide supporting information for the analyses and provides and recommendations for assessing the effectiveness of the U.S. Department of Energy BestPractices Steam Program.

  16. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  17. Effect of temperature-controlled fermentation on physico-chemical properties and lactic acid bacterial count of durian (Durio zibethinus Murr.) pulp.

    PubMed

    Wasnin, Ramdiah M; Karim, Muhammad Shahrim Abdul; Ghazali, Hasanah Mohd

    2014-11-01

    Effects of controlled-temperature fermentation on several physico-chemical properties, lactic acid bacteria (LAB) counts and aroma of durian pulp were examined by storing fresh durian pulp was mixed with 2 % (w/w) salt and stored at 15 °C, 27 °C and 40 °C for 10 days. Storage at 15 °C did not affect the properties of the pulp much. However, at 27 °C and 40 °C, pH and total soluble solids decreased up to 60 % and 52 %, respectively, with greater losses at 27 °C. Titratable acidity, which increased at 27 °C, was due to lactic and acetic acids formation. Loss of sucrose and increases in glucose were greater at 27 °C. LAB population increased up to Day 3 of storage, and then decreased slightly. Principal component analysis based on aroma examination using a zNose(TM) showed better retention of aroma profile at 27 °C. Overall, durian fermented at 27 °C was more acceptable than the one prepared at 40 °C, and it is ready to be consumed between Day 4 and 6. PMID:26396291

  18. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species.

    PubMed

    Raphael, Kurian; Velmourougane, K

    2011-06-01

    Coffee pulp is the main solid residue from the wet processing of coffee berries. Due to presence of anti-physiological and anti-nutritional factors, coffee pulp is not considered as adequate substrate for bioconversion process by coffee farmers. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. The plant nutrients, nitrogen (80.6%), phosphorus (292%) and potassium (550%) content found to increase significantly in the vermicompost produced using native earthworms as compared to the initial values, while the calcium (85.7%) and magnesium (210%) content found to increase significantly in compost produced utilizing exotic worms. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis). PMID:20922463

  19. POZONE technology to bleach pulp

    SciTech Connect

    Wang, H.; Shi, Y.; Le, L.; Wang, S.M.; Wei, J.; Chang, S.G.

    1997-09-01

    Currently, there has been a move in the pulp and paper industry to reduce or eliminate chlorine-based bleaching due to environmental concerns. The POZONE process, a chemical means of ozone production, has been used to bleach wood pulp. The brightness, Kappa number, and viscosity of wood pulp subjected to POZONE treatment have been determined. Brightness increases of up to 44 points and Kappa number decreases of as much as 22 points have been achieved. Promise for effective industrial application has been demonstrated.

  20. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    SciTech Connect

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  1. Alkaline pulping of some eucalypts from Sudan.

    PubMed

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper. PMID:15935655

  2. Pollution prevention for the kraft pulp and paper industry

    SciTech Connect

    Not Available

    1992-09-01

    The document is an annotated bibliography of publications related to pollution prevention in the Kraft segment of the pulp and paper industry. It is organized by process area as follows: chip preparation, chemical pulping, pulp washing, bleaching, chemical recovery, recausticizing, power generation, wastewater treatment, papermaking, and general plant. The document contains 269 citations.

  3. Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps

    NASA Astrophysics Data System (ADS)

    Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela

    2012-09-01

    Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.

  4. Canola straw chemimechanical pulping for pulp and paper production.

    PubMed

    Hosseinpour, Reza; Fatehi, Pedram; Latibari, Ahmad Jahan; Ni, Yonghao; Javad Sepiddehdam, S

    2010-06-01

    Non-wood is one of the most important raw materials for pulp and paper production in several countries due to its abundance and cost-effectiveness. However, the pulping and papermaking characteristics of canola straw have rarely been investigated. The objective of this work was to determine the potential application of canola straw in the chemimechanical pulping (CMP) process. At first, the chemical composition and characteristics of canola straw were assessed and compared with those of other non-woods. Then, the CMP pulping of canola straw was conducted using different dosages of sodium sulfite and sodium hydroxide. The results showed that, by applying a mild chemical pretreatment, i.e., 4-12% (wt.) NaOH and 8-12% (wt.) Na(2)SO(3), in the CMP pulping of canola straw, the pulp brightness reached almost 40%ISO, and the strength properties were comparable to those of bagasse CMP and of wheat straw CMP. The impact of post-refining on the properties of canola straw CMP was also discussed in this work. PMID:20144862

  5. Recalcitrant organic compounds (chemical oxygen demand sources) in biologically treated pulp and paper mill effluents: Their fate and environmental impact in receiving waters

    SciTech Connect

    Archibald, F.; Roy-Arcand, L.; Methot, M.; Valeanu, L.

    1998-11-01

    Most North American pulp and paper mills now biologically treat (biotreat) their liquid effluent. However, treated water still contains effluent-derived recalcitrant organic material (EROM), measured as chemical oxygen demand (COD), for which emission limits exist in Europe and are being considered in the US. Production of microbially resistant, dissolved natural organic material (NOM) typically found in Canadian stream and lake waters occurs slowly under gentle conditions, while mill EROM is generated from lignocellulosics by faster and harsher processes. Similarity of the environmental effects of NOM and pulp and paper mill EROM are examined. Changes occurring over 4 months in biologically treated effluent from two modern Canadian mills and lake NOM when sealed in gas- and light-permeable bags and placed in a pristine Quebec lake are reported. Addition of microbial co-metabolites significantly improved the dark mineralization of organochlorines surviving mill biological treatment. Mill EROM was light sensitive, nonacutely toxic in the Microtox assay, and similar to NOM in the surrounding lake in most bulk properties. There was no evidence to suggest that placing specific limits on mill EROM (COD) emissions would be environmentally beneficial.

  6. Strength loss in kraft pulping

    NASA Astrophysics Data System (ADS)

    Iribarne, Jose

    Unbleached kraft pulps from two U.S. mills were 21% and 26% weaker than comparable laboratory pulps from the same chip sources, when assessed as the tear index at a tensile index of 70 kN.m/kg. The phenomena involved were clarified by characterizing the differences between the mill and laboratory pulps in terms of fundamental fiber properties. All of the strength loss could be explained by a reduction in intrinsic fiber strength of 9% to 11%, as estimated from wet zero-span tensile tests and fiber length distributions. Most of the effects of different fiber shape and length were isolated by PFI mill refining and decrilling, respectively. The higher fiber coarseness of mill pulps was a factor in their maximum density and bond strength, but changes in these variables were analogous to those of laboratory pups due to similar swelling. Specific bond strength, determined from a wet pressing experiment, was similar in mill and laboratory pulps. Neither carbohydrate composition nor crystalline structure, assessed through x-ray diffraction analysis, were significant factors in the observed fiber strength differences. The mill pulps were not more heterogeneous than the laboratory pulps, within the resolution of a fractionation experiment. The number of weak points in each pulp was assessed through analysis of the amount of fiber cutting during PFI mill refining and treatments with potassium superoxide or cellulase. The results suggested that the chemistry of kraft pulping preferentially weaken short, slender fibers, while mechanical stresses during the hot discharge of batch digesters mainly affect long, thick fibers. The greater number of weak points in the long-fiber fractions of mill pulps is probably associated with their lower wet zero-span tensile indices. Automated optical detection of major singularities with a prototype instrument suggested that only the weak points induced by mechanical stress could be detected by local variations in birefringence. In contrast

  7. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition. PMID:24488518

  8. Selective fractionation of Sugar Beet Pulp for release of fermentation and chemical feedstocks; optimisation of thermo-chemical pre-treatment.

    PubMed

    Hamley-Bennett, C; Lye, G J; Leak, D J

    2016-06-01

    The effect of time and pressure on the selective extraction of sugar beet pectin using steam pre-treatment on unprocessed Sugar Beet Pulp was evaluated using a design of experiments approach. This process gave the highest solubilisation of pectin oligomers at a relatively low pressure and longer time (5Bar, 24min), whilst leaving the majority of the cellulose fraction intact. This method of steam pre-treatment fits into the concept of a sugar beet biorefinery as it valorises an existing waste stream without requiring any further physical processing such as milling or dilution with water. The residual cellulose fraction was enriched in cellulose and could be effectively fermented into ethanol by yeast after enzymatic digestion, producing 0.48g ethanol per gram of glucose. PMID:26978325

  9. Isolation and identification of ligands for the goldfish testis androgen receptor in chemical recovery condensates from a Canadian bleached kraft pulp and paper mill.

    PubMed

    Scott, Philip D; Milestone, Craig B; Smith, D Scott; MacLatchy, Deborah L; Hewitt, L Mark

    2011-12-01

    This study builds on a series of investigations characterizing substances in kraft mill chemical recovery condensates that depress sex steroids in fish. Here, incubations of goldfish testis androgen receptors (AR) with condensate extracts were used to investigate the potential role of androgens in hormone depressions. Condensates contained variable levels of AR ligands, with the highest amounts in nonpolar extracts of filtered solids prior to solid phase extraction (SPE). High pressure liquid chromatography (HPLC) fractionation recovered the majority of activity in one fraction, with ligands detected in three additional fractions. Gas chromatography mass spectrometry analysis of the most active fraction confirmed the two most abundant components as the diterpenes manool and geranyl linalool. Manool exhibited a relative affinity for the AR that was 300 fold less than testosterone and accounted for 26% of total filtered solids activity. Geranyl linalool exhibited no affinity for the AR. Three additional diterpenoid families were tentatively identified as principal components of the three other androgenic HPLC fractions. Compared to condensates, final effluent had 3000 fold less androgenic activity, with <1% attributable to manool. Putative androgens previously associated with mill effluents (androstenedione and androstadienedione) and progesterone were not detected; however, additional condensate diterpenes suspected as androgens were identified in final effluent. This study is the first to confirm nonsteroidal cyclic diterpenes as androgenic at pulp mills. A major in-mill source of these substances was identified, and the role of androgens in mill effluents affecting fish reproduction was reinforced. PMID:22040000

  10. Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect

    2007-07-01

    This factsheet describes a project that seeks to develop feasible chemical modifications during kraft pulping operations to obtain significant energy and product benefits for U.S. kraft pulp and paper mills.

  11. Trace elements in bivalves from the Rio Cruces, Chile, trace watershed evolution after a major earthquake and challenge a postulated chemical spill from a pulp plant

    NASA Astrophysics Data System (ADS)

    Risk, M.; Burchell, M.; Nairn, R.; Tubrett, M.; Forsterra, G.

    2009-05-01

    In May, 1960, the largest recorded earthquake in the history of the planet hit southern Chile, dropping part of the course of the Rio Cruces by 2m and creating an extensive wetland. The Brazilian Waterweed Egeria densa colonised the area, and became a primary food source for large populations of the Black-necked Swan, Cygnus melancoryphus. In 2004, a large pulp mill commenced operations upstream on the river. According to local reports, immediately after the opening of the plant, the weed died and the swans left. There was public outcry, and a search for a cause or a culprit. It was postulated that some sort of chemical spill from the plant caused the weed to die, resulting in departure of the swans. In 2008, we collected specimens of the bivalve Diplodon chilensis from several locations downstream from the Plant and towards the wetland to see if there was evidence of a chemical spill recorded in the shells. We prepared thin-sections of the shells to observe growth line development and patterns. Additionally, shell samples were analysed for stable oxygen isotopes and trace elements, using LA-ICP/MS. Based on annual growth lines, some of the bivalves were long-lived, with an age of more than 50 years. These individuals settled in the river shortly after the earthquake, and have lived there continuously ever since. Annual and sub-annual banding was clear, and the annual cyclicity of the major bands was verified with oxygen isotope analysis. There are no changes in growth corresponding to 2004. Trace element scans provided a wealth of information on the evolution of this earthquake-impacted wetland. Barium, Strontium and Manganese all showed strong annual cyclicity. From the analysis of older specimens, we interpret the high peaks of the Ba signal as reflecting soil erosion-Ba peaks are large immediately after the earthquake, then they diminish through time. Sr is likely a temperature signal, and Mn reflects runoff. Minor peaks in Cu, As and Pb probably reflect

  12. Ethanol determination in frozen fruit pulps: an application of quantitative nuclear magnetic resonance.

    PubMed

    da Silva Nunes, Wilian; de Oliveira, Caroline Silva; Alcantara, Glaucia Braz

    2016-04-01

    This study reports the chemical composition of five types of industrial frozen fruit pulps (acerola, cashew, grape, passion fruit and pineapple fruit pulps) and compares them with homemade pulps at two different stages of ripening. The fruit pulps were characterized by analyzing their metabolic profiles and determining their ethanol content using quantitative Nuclear Magnetic Resonance (qNMR). In addition, principal component analysis (PCA) was applied to extract more information from the NMR data. We detected ethanol in all industrial and homemade pulps; and acetic acid in cashew, grape and passion fruit industrial and homemade pulps. The ethanol content in some industrial pulps is above the level recommended by regulatory agencies and is near the levels of some post-ripened homemade pulps. This study demonstrates that qNMR can be used to rapidly detect ethanol content in frozen fruit pulps and food derivatives. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26578064

  13. Survey of receiving-water environmental impacts associated with discharges from pulp mills; 1: Mill characteristics, receiving-water chemical profiles and lab toxicity tests

    SciTech Connect

    Robinson, R.D. . Dept. of Environmental Biology); Carey, J.H. . Rivers Research Branch); Solomon, K.R. ); Smith, I.R. . Water Resources Branch); Servos, M.R.; Munkittrick, K.R. . Great Lakes Lab. for Fisheries and Aquatic Sciences)

    1994-07-01

    This survey examined the relationship between environmental responses at pulp mill sites and the pulping process, effluent treatment, and bleaching technology used by pulp mills. This manuscript is the first in a series of four; it reviews the location and operating characteristics of mills included in the survey and provides background information on water chemistry that is relevant to the other components of the survey. In addition, lab 7-d toxicity tests of receiving water were conducted using fathead minnows (Pimephales promelas) and the cladoceran Ceriodaphnia dubia with water samples collected upstream and downstream of effluent discharges at 11 Canadian pulp and paper mills; these samples were collected at the same time as fish surveys were conducted. Survival of fathead minnow larvae was significantly reduced at four of the 11 downstream sites. Ceriodaphnia reproduction was significantly higher at six of the 11 downstream sites and significantly lower at two downstream sites. There were no significant effects on fathead minnow larva growth or adult Ceriodaphnia survival at any of the examined downstream sites. Negative effects in the toxicity tests were generally associated with the low dilution discharge of primary treated effluent with a previous history of acute toxicity. Fathead minnow and Ceriodaphnia tests were generally correlated with historical data on benthic macroinvertebrate community responses. Neither toxicity test predicted the physiological changes in wild fish that are presented in accompanying papers.

  14. Chemical and sensory characterization of orange (Citrus sinensis) pulp,a by-product of orange juice processing using gas-chromatography-olfactometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile composition of commercial orange pulp (from Brazil and Florida, U.S.A.) were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-Olfactometry (GC-O). In both samples 72 volatiles were detected, of which 58 were identified. Odor-active compounds with high frequency of detection (...

  15. Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement.

    PubMed

    Holland, R; de Souza, V; Murata, S S; Nery, M J; Bernabé, P F; Otoboni Filho, J A; Dezan Júnior, E

    2001-01-01

    Considering several reports about the similarity between the chemical compositions of the mineral trioxide aggregate (MTA) and Portland cement (PC), the subject of this investigation was to analyze the behavior of dog dental pulp after pulpotomy and direct pulp protection with these materials. After pulpotomy, the pulp stumps of 26 roots of dog teeth were protected with MTA or PC. Sixty days after treatment, the animal was sacrificed and the specimens removed and prepared for histomorphological analysis. There was a complete tubular hard tissue bridge in almost all specimens. In conclusion, MTA and PC show similar comparative results when used in direct pulp protection after pulpotomy. PMID:11445912

  16. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  17. Model pollution prevention plan for the kraft segment of the pulp and paper industry

    SciTech Connect

    Not Available

    1992-09-01

    The document provides a generic process-by-process assessment of pollution prevention opportunities for the Kraft segment of the pulp and paper industry. The process areas covered are: wood yard operations, pulping and chemical recovery, pulp bleaching, pulp drying and papermaking, and wastewater treatment. These process areas are further broken down by specific process (e.g., oxygen delignification as one specific process under the pulping and chemical recovery area). For each specific process there is a description, a cost estimate, a discussion of applicability, and estimate of environmental benefits, and a list of references.

  18. Application of enzyme for improvement of Acacia APMP pulping and refining of mixed pulp for printing papermaking in Vietnam.

    PubMed

    Dien, Le Quang; Hoang, Phan Huy; Tu, Do Thanh

    2014-02-01

    This study assesses the influence of commercial enzyme (FibreZyme LBR) treatment applied to APMP pulp and to the mixture of 55% Acacia CTMP75 pulp, 30% soft-wood bleached chemical pulp (LBKP 90 from Chile) and 15% hard-wood bleached chemical pulp (NPKP 90 from Indonesia). The treatment was conducted at different temperatures, reaction times and enzyme dosages. The APMP and mixed pulp treated with the enzyme showed a significant decrease of refining time to achieve the same refining degree (Schopper-Riegler freeness, °SR) and better mechanical-physical properties due to the development of fibrillation. The fibre morphology difference between before and after treatment was revealed by the microscopic observations performed by a scanning electron microscope (SEM). The SEM analysis showed that the surface of the enzyme-treated fibre had some swelling and fibrillar phenomenon that lead to strong paper properties such as tear index, tensile index and burst index. PMID:24222497

  19. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    SciTech Connect

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  20. DENTAL PULP TISSUE ENGINEERING

    PubMed Central

    Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE

    2013-01-01

    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641

  1. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  2. Pollution prevention in the pulp and paper industry

    SciTech Connect

    Jenkins, P.G.

    1995-09-01

    Probably no other industry has made as much progress as the kraft pulp and paper industry in reclaiming waste products. About half of the wood used in making pulp is cellulose; the reclamation of the other ingredients in the wood constitutes a continuing evolution of pollution prevention and economic success. The by-products of chemical pulping include turpentine used in the paint industry, lignosulfonates used as surfactants and dispersants, ``tall oil`` used in chemical manufacturing, yeast, vanillin, acetic acid, activated carbon, and alcohol. Sulfamic turpentine recovered in the kraft process is used to manufacture pine oil, dimethyl sulfoxide (DMSO), and other useful chemical products. In addition, the noncellulose portion of the wood is used to provide energy for the pulping process through the combustion of concentrated black liquor. Over 75% of the pulp produced in the US is manufactured using the kraft process. Because of the predominance of the kraft process, the remainder of this section will address pollution prevention methods for kraft pulp and paper mills. Some of these techniques may be applicable or adaptable to other pulping processes, especially sulfite mills. The major steps in the kraft process are described, followed by a discussion of major wastestreams, and proven pollution prevention methods for each of these steps.

  3. High-energy electron irradiation of annual plants (bagasse) for an efficient production of chemi-mechanical pulp fibers

    NASA Astrophysics Data System (ADS)

    Pathak, Shailesh; Ray, A. K.; Großmann, Harald; Kleinert, Rene

    2015-12-01

    The paper industry is one of the largest consumers of energy and energy consumption has been increased several times in last few decades. Bagasse chemical pulping has very low yield about 45-55% and also generates high pollution load in the effluent as compared to mechanical pulping, g. Thermo-mechanical pulp (TMP). On the other hand,-->e.g. thermo-mechanical pulp (TMP). On the other hand, the specific energy consumption is very high for TMP pulps. ETMP (Energy efficient Thermo-Mechanical Pulping) or ECTMP (Energy efficient Chemi-Thermo Mechanical Pulping) is an innovative idea for reducing the energy demand in TMP refining. In the present investigation, energy efficient mechanical pulping potential of bagasse was studied using TMP, CTMP and ECTMP pulping methodology with electron irradiation pretreatment. It is evident from the results that more than 50% energy saving potential of irradiation pre-treatment was achieved.

  4. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    SciTech Connect

    Norman, J.C.; Sell, N.J. ); Ciriacks, J.C. )

    1990-06-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia.

  5. Dental Pulp Testing: A Review

    PubMed Central

    Chen, Eugene; Abbott, Paul V.

    2009-01-01

    Dental pulp testing is a useful and essential diagnostic aid in endodontics. Pulp sensibility tests include thermal and electric tests, which extrapolate pulp health from sensory response. Whilst pulp sensibility tests are the most commonly used in clinical practice, they are not without limitations and shortcomings. Pulp vitality tests attempt to examine the presence of pulp blood flow, as this is viewed as a better measure of true health than sensibility. Laser Doppler flowmetry and pulse oximetry are examples of vitality tests. Whilst the prospect is promising, there are still many practical issues that need to be addressed before vitality tests can replace sensibility tests as the standard clinical pulp diagnostic test. With all pulp tests, the results need to be carefully interpreted and closely scrutinised as false results can lead to misdiagnosis which can then lead to incorrect, inappropriate, or unnecessary treatment. PMID:20339575

  6. Assessment of electrochemical and chemical coagulation as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    PubMed

    Buzzini, A P; Motheo, A J; Pires, E C

    2005-01-01

    This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible. PMID:16180426

  7. Inference of chemicals that cause biological effects in treated pulp and paper mill effluent using gene expression in caged fathead minnows

    EPA Science Inventory

    Analytical chemistry techniques can identify chemicals present in the waters of the Great Lakes areas of concern, however it remains a challenge to identify those chemicals or classes of chemicals that actually cause adverse effects. Use of caged fathead minnows (Pimephales prome...

  8. Understanding the Nature and Reactivity of Residual Lignin for Improved Pulping and Bleaching Efficiency

    SciTech Connect

    Yuan-Zong Lai

    2001-11-30

    One of the most formidable challenges in kraft pulping to produce bleached chemical pulps is how to effectively remove the last 5-10% of lignin while maintaining the fiber quality. To avoid a severe fiber degradation, kraft pulping is usually terminated in the 25-30 kappa number range and then followed by an elementally chlorine free (ECF) or a totally chlorine free (TCF) bleaching sequence to reduce the environmental impacts.

  9. Biotechnology in the pulp and paper industry; A review

    SciTech Connect

    Trotter, P.C. )

    1990-05-01

    This paper reviews biotechnology in the pulp and paper industry. As to biopulping and biobleaching, little effort is being devoted to improving strength properties of pulps. However, positive results have been reported in improving tensile properties by treating mechanical pulps with white-rot organisms and in enzymatic beating of chemical pulps with hemicellulase enzymes. Papermaking is another seemingly overlooked area, although biological systems and processes have been used in the past and ought to be important still. On the other hand, waste treatment has been a stronghold of biotechnology within the industry for years. New possibilities may emerge via biotechnology for removing color and AOX from bleach plant effluents. New research on the use of white-rot organisms and soil bacteria to detoxify chlorinated organics in soils and groundwater may yield technologies that the industry can apply.

  10. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  11. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b)...

  12. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b)...

  13. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b)...

  14. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed Central

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  15. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DENTAL DEVICES Diagnostic Devices § 872.1720 Pulp tester. (a) Identification. A pulp tester is an AC or... current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pulp tester. 872.1720 Section 872.1720 Food...

  16. Characterization of active paper packaging incorporated with ginger pulp oleoresin

    NASA Astrophysics Data System (ADS)

    Wiastuti, T.; Khasanah, L. U.; Atmaka Kawiji, W.; Manuhara, G. J.; Utami, R.

    2016-02-01

    Utilization of ginger pulp waste from herbal medicine and instant drinks industry in Indonesia currently used for fertilizer and fuel, whereas the ginger pulp still contains high oleoresin. Active paper packaging were developed incorporated with ginger pulp oleoresin (0%, 2%, 4%, and 6% w/w). Physical (thickness, tensile strength, and folding endurance, moisture content), sensory characteristics and antimicrobial activity of the active paper were evaluated. Selected active paper then were chemically characterized (functional groups). The additional of ginger pulp oleoresin levels are reduced tensile strength, folding endurance and sensory characteristic (color, texture and overall) and increased antimicrobial activity. Due to physical, sensory characteristic and antimicrobial activity, active paper with 2% ginger pulp oleoresin incorporation was selected. Characteristics of selected paper were 9.93% of water content; 0.81 mm of thickness; 0.54 N / mm of tensile strength; 0.30 of folding endurance; 8.43 mm inhibits the growth of Pseudomonas fluorescence and 27.86 mm inhibits the growth of Aspergillus niger (antimicrobial activity) and neutral preference response for sensory properties. For chemical characteristic, selected paper had OH functional group of ginger in 3422.83 cm-1 of wave number and indicated contain red ginger active compounds.

  17. The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper.

    PubMed

    Okwonna, Okumneme O

    2013-10-15

    Microcrystalline cellulose (MCC) powder was isolated from three grades of waste paper: book, Groundwood/Newsprint and paperboard, through the processes of pulping and hydrolysis. Pulping treatment on these grades of waste paper was done using varying concentrations of caustic soda. Effects of the concentration of the pulping medium on the thermal and kinetic properties were investigated. Also determined were the effects of this on the physico-chemical properties. The chemical structure was characterized using an infrared spectroscopy (FTIR). Results showed these properties to be affected by the concentration of the pulping medium. PMID:23987404

  18. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  19. Fluoropolymer use in the pulp and paper industry

    SciTech Connect

    Magdzinski, L.

    1999-11-01

    Fluoropolymers are ubiquitous in the pulp and paper industry. Fluoropolymer-lined pumps, valves, pipes, tanks, scrubbers, and towers are encountered frequently in the pulp mill. Chemically resistant fluoropolymer filter fabrics are used in bleach plant washers and flue gas scrubbers. In the recovery cycle, fluoropolymer coatings and fluoroelastomers are used as gaskets and expansion joints in accumulators and heat exchangers. Fluoropolymer-containing paper machine fabrics, roll covers, and greases provide corrosion-free, clean and smooth performance. The array of fluorinated materials for different applications is detailed. New corrosion and caustic resistant filter fabrics, surfacing veils, paints and ductwork are presented.

  20. Electron treatment of wood pulp for the viscose process

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  1. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. PMID:27295251

  2. The Fractionation of Loblolly Pine Woodchips Into Pulp For Making Paper Products

    SciTech Connect

    Kiran Kadam, PhD

    2006-11-30

    The overall goal of the project was to test the PureVision biomass fractionation technology for making pulp from loblolly pine. A specific goal was to produce a pulp product that is comparable to pulp produced from the kraft process, while reducing the environmental effects of the kraft process, known to be a highly pollutant process. The overall goal of the project was met by using the biomass fractionation concept for making pulp product. This proof-of-concept study, done with Southern pine pinchips as feedstock, evaluated NaOH concentration and residence time as variables in single-stage cocurrent pulping process. It can be concluded that 1% NaOH is adequate for effective delignification using the PureVision process; this is about 1/3 of that used in the kraft process. Also, the PureVision process does not use sulfur-based chemicals such as N2S and hence, is environmentally more benign.

  3. Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp.

    PubMed

    Jiménez, L; Serrano, L; Rodríguez, A; Sánchez, R

    2009-02-01

    The influence of soda-anthraquinone pulping variables (temperature, time and soda concentration) and beating (number of PFI beating revolution) of palm oil empty fruit bunches (EFB) on the resulting paper sheets was studied, with a view to identifying the optimum operating conditions. Equations were derived that reproduced the properties of the paper sheets with errors less than 10-12% in 90-95% of cases. An optimum compromise was found as regards operating conditions (15% soda, 170 degrees C, 70 min and 2400 number of PFI beating revolutions) that provided paper properties departing by less than 12% from their optimum values (59.63 Nm/g tensile index, 4.48% stretch, 4.17 kN/g burst index and 7.20 m Nm(2)/g tear index), and a beating grade of 47.5 degrees SR, acceptable to obtain paper sheets. Because these conditions involve a lower soda, temperature, time and beating than those required to maximize the studied paper properties, they can save chemical reagents, energy and immobilized capital for industrial facilities. On the other hand, the stretch properties of these pulp beaten are higher than those of others non-wood pulps, as wheat straw and olive wood. PMID:18815028

  4. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    PubMed

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill. PMID:19767203

  5. Dissolving pulp from jute stick.

    PubMed

    Matin, Mhafuza; Rahaman, M Mostafizur; Nayeem, Jannatun; Sarkar, Mamon; Jahan, M Sarwar

    2015-01-22

    Jute stick is woody portion of jute plant, which remain as leftover after extracting bast fibre. Presently, it is being used for fencing in the rural area. In this investigation, biorefinery concept was initiated in producing dissolving pulp from jute stick by pre-hydrolysis kraft process. At 170°C for 1h of pre-hydrolysis, 70% of hemicelluloses was dissolved with negligible loss of α-cellulose. At this condition, 75% of dissolved sugars in the pre-hydrolysis liquor were in the oligomeric form. The pre-hydrolysed jute stick was subsequently pulped by kraft process with the variation of active alkali. The pulp yield was 36.2% with kappa number 18.5 at the conditions of 16% active alkali for 2h of cooking at 170°C. Final pulp was produced with 92% α-cellulose and 89% brightness after D0EpD1EpD1 bleaching. The produced dissolving pulp can be used in rayon production. PMID:25439866

  6. Deinked pulp manufacturers make a midwest market

    SciTech Connect

    White, K.M. ); Meade, K.

    1993-09-01

    Deinked pulp manufacturers, a burgeoning trend in recycling, are opening up the market for office waste paper in the Midwest. Great Lakes Pulp and Fibre, Inc., (Menominee, Michigan), a new paper group formed by industry veterans, is planning a major deinked pulp mill in Michigan's Upper Peninsula that will recycle large amounts of office waste paper. The mill will have the capacity to process nearly 275,000 tons per year (tpy)-673 tpd-of mixed office paper into 182,000 tpd of sheet-dried, deinked pulp. That pulp would be sold to nearby fine paper manufacturers that want to have recycled content without adding their own deinking.

  7. Effects of dental trauma on the pulp.

    PubMed

    Love, R M

    1997-05-01

    Infection of the root canal system following dental trauma induces pulp and periapical disease and prevents healing of previously healthy pulp. A clinical goal in treating trauma is the maintenance of pulp vitality, and clinicians should be aware of factors that influence pulp healing. The learning objective of this article is to review the factors and techniques that influence pulp vitality and examine the influence pulp has on the healing of adjacent tissues. The potential routes for bacterial infection of the root canal system are discussed, with the clinical crown as the primary portal of entry. Uncomplicated and complicated crown fractures, as well as the crown-root and root fractures, are reviewed. Complications in pulp healing include canal obliteration, disturbed root development, apexogenesis, apexification, and the various forms of resorption. PMID:9550069

  8. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    PubMed

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%). PMID:18226892

  9. Pulp reaction to vital bleaching.

    PubMed

    Fugaro, Jessica O; Nordahl, Inger; Fugaro, Orlando J; Matis, Bruce A; Mjör, Ivar A

    2004-01-01

    This study evaluated the histological changes in dental pulp after nightguard vital bleaching with 10% carbamide peroxide gel. Fifteen patients between 12 and 26 years of age with caries-free first premolars scheduled for orthodontic extraction were treated with 10% Opalescence (Ultradent Products, Inc). Tooth #5 had four days of bleaching, tooth #12 was treated for two weeks, tooth #21 was bleached for two weeks followed by two weeks without treatment and tooth #28, serving as the control, was without treatment. All teeth were extracted at the same time. Immediately after extraction, 4 mm of the most apical portion of the root was sectioned off and each specimen was placed in a vial containing 10% neutral buffered formalin. The samples were prepared for histological evaluation at the Scandinavian Institute of Dental Materials (NIOM) and microscopically examined independently at both NIOM and Indiana University School of Dentistry (IUSD). Pulp reactions were semi-quantitatively graded as none, slight, moderate and severe. Slight pulpal changes were detected in 16 of the 45 bleached teeth. Neither moderate nor severe reactions were observed. The findings indicate that the slight histological changes sometimes observed after bleaching tend to resolve within two weeks post-treatment. Statistical differences existed only between the untreated control and the four-day (p=0.0109) and two-week (p=0.0045) treatment groups. The findings from this study demonstrated that nightguard vital bleaching procedures using 10% carbamide peroxide might cause initial mild, localized pulp reactions. However, the minor histological changes observed did not affect the overall health of the pulp tissue and were reversible within two weeks post-treatment. Therefore, two weeks of treatment with 10% carbamide peroxide used for nightguard vital bleaching is considered safe for dental pulp. PMID:15279473

  10. Pulp Regeneration: Current Approaches and Future Challenges

    PubMed Central

    Yang, Jingwen; Yuan, Guohua; Chen, Zhi

    2016-01-01

    Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α), basic Fibroblast Growth Factor (bFGF), Platelet Derived Growth Factor (PDGF), stem cell factor (SCF), and Granulocyte Colony-Stimulating Factor (G-CSF) were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration. PMID:27014076

  11. Biological modification of loblolly pine chips with Ceriporiopsis subvermispora prior to kraft pulping

    NASA Astrophysics Data System (ADS)

    Villalba, Laura L.

    The ability of the white-rot fungus Ceriporiopsis subvermispora to selectively degrade lignin in loblolly pine chips and the effect on kraft pulps was investigated. The effect of fungal treatment was assessed by comparing changes in untreated wood chips with chips incubated for two and four weeks. The kraft pulping step included two different cooking times and two levels of chemical dosage as the variables, 16 and 22% for the effective alkali and 60 and 90 min at 170°C. The other cooking variables were kept constant for all the experiments and were: sulfidity, 22%; liquor/wood ratio 4:1; time to Tmax 90 min.; Tmax 170°C. Scanning electron microscopy (SEM) revealed that the colonization introduced significant chemical and physical changes. Pore size distribution analyses revealed a statistically significant increase in the average pore size as fungal treatment progressed. Significant reduction in the extractives content (23%) was found in the first 2 weeks, after which the reduction leveled off. Lignin losses reached 2% in the first 2 weeks of incubation, followed by an 11% loss after 4 weeks of treatment. Lignin phenolic hydroxyl groups increased 14% after 4 weeks of incubation. Fungal treatment caused 4 and 6% carbohydrate loss in 2 and 4 weeks-treated chips, respectively. The selectivity of the fungal treatment was emphasized in the subsequent kraft pulping. The best response regarding improved delignification was found in kraft pulps processed at the mildest pulping conditions without affecting pulp viscosity. Benefits of fungal treatment regarding freeness of kraft pulps were evidenced after 4 weeks of incubation with a maximum of 35% freeness reduction in kraft pulps refined at 12,000 rev in a PFI mill. Strength properties of kraft pulps of fungal treated chips were superior to those of the control. This method involves chemical and physical modification of wood chips using fungi. The approach improved chip impregnation, which in turn, led to more uniform

  12. New Approaches in Vital Pulp Therapy in Permanent Teeth

    PubMed Central

    Ghoddusi, Jamileh; Forghani, Maryam; Parisay, Iman

    2014-01-01

    Vitality of dental pulp is essential for long-term tooth survival. The aim of vital pulp therapy is to maintain healthy pulp tissue by eliminating bacteria from the dentin-pulp complex. There are several different treatment options for vital pulp therapy in extensively decayed or traumatized teeth. Pulp capping or pulpotomy procedures rely upon an accurate assessment of the pulp status, and careful management of the remaining pulp tissue. The purpose of this review is to provide an overview of new approaches in vital pulp therapy in permanent teeth. PMID:24396371

  13. Use of xylanase in the TCF bleaching of eucalyptus kraft pulp

    SciTech Connect

    Roncero, B.; Vidal, T.; Torres, A.L.; Colom, J.F.

    1996-10-01

    Environmental pressures are forcing the pulp and paper industry to develop new technologies that reduce or eliminate the presence of various contaminants in bleaching plant effluents. Oxygen delignification techniques, replacement of elemental chlorine with chlorine dioxide, ozone, hydrogen peroxide and new agents as well as the use of xylanase enzymes for biobleaching, reduce o eliminate the production of chlorinated organic substances. This paper compares the sequence XOZP with OZP in the bleaching of Eucalyptus globulus kraft pulps. It has been studied the influence of enzymatic treatment on the consumption of bleaching agents: ozone and hydrogen peroxide. Chemical, physical, optical and refining properties of pulps, as well as COD and colour of effluent are also studied. The xylanase treatment is positive and it is possible to manufacture fully bleached pulps at high brightness and viscosity without using chlorine compounds at a low ozone and hydrogen peroxide consumption.

  14. Anaerobic treatment of pulp and paper mill effluents--status quo and new developments.

    PubMed

    Habets, Leo; Driessen, Willie

    2007-01-01

    Since the early 1980s, anaerobic treatment of industrial effluents has found widespread application in the pulp and paper industry. Over 200 installations are treating a large variety of different pulp and paper mill effluents. Amongst various anaerobic systems the UASB and IC are the most applied anaerobic reactor systems. Anaerobic treatment is well feasible for effluents originated from recycle paper mills, mechanical pulping (peroxide bleached), semi-chemical pulping and sulphite and kraft evaporator condensates. The advantages of anaerobic pre-treatment are (1) net production of renewable energy (biogas), (2) minimized bio-solids production, (3) minimal footprint and (4) reduced emission of greenhouse gases. Via in-line application of anaerobic treatment in closed circuits (paper kidney technology) further savings on cost of fresh water intake and effluent discharge levies are generated. PMID:17486855

  15. [Functional morphology of pulp tissue].

    PubMed

    Heine, H; Schaeg, G; Türk, R

    1989-01-01

    As compared with mesenchyme no genuine defense cells are developed in the tissue of the dental pulp and the nervous tissue. This is a further hint for the common development from ectoderm. The three dimensional meshwork of pulpa fibroblasts ("mesectoderm") is structured by elongated cell processes connected with each other by a variety of special cell junctions ("electronic cell coupling"). Metabolites from the microcirculation and neuropeptides from vegetative axons influence the activity of fibroblasts synthetizing groundsubstance. The meshwork of the groundsubstance has exclusion effects concerning molecules with a distinct molecular weight and charge. Thus a primitive defense system is established. With this the role of a newly described cell type of the dental pulp, the "lymphocytic pericyte" is discussed. Because of the poor capacity of the pulpa tissue for immunological reactions pathologically disorders may easily become chronically spreading their antigenic components throughout the body. PMID:2800671

  16. Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress.

    PubMed

    Orqueda, María Eugenia; Rivas, Marisa; Zampini, Iris Catiana; Alberto, María Rosa; Torres, Sebastian; Cuello, Soledad; Sayago, Jorge; Thomas-Valdes, Samanta; Jiménez-Aspee, Felipe; Schmeda-Hirschmann, Guillermo; Isla, María Inés

    2017-02-01

    The aim of this work was to assess the nutritional and functional components of powder obtained by lyophilization of whole fruits, seeds, pulp and skin from chilto (Solanum betaceum Cav) cultivated in the ecoregion of Yungas, Argentina. The powders have low carbohydrate and sodium content and are a source of vitamin C, carotenoid, phenolics, potassium and fiber. The HPLC-ESI-MS/MS analysis of the fractions enriched in phenolics allowed the identification of 12 caffeic acid derivatives and related phenolics, 10 rosmarinic acid derivatives and 7 flavonoids. The polyphenols enriched extracts before and after simulated gastroduodenal digestion inhibited enzymes associated with metabolic syndrome, including α-glucosidase, amylase and lipase and exhibited antioxidant activity by different mechanisms. None of the analyzed fruit powders showed acute toxicity or genotoxicity. The powders from the three parts of S. betaceum fruit may be a potential functional food and the polyphenol enriched extract of seed and skin may have nutraceutical properties. PMID:27596394

  17. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp.

    PubMed

    Walia, Abhishek; Mehta, Preeti; Guleria, Shiwani; Shirkot, Chand Karan

    2015-09-01

    Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries. PMID:26220821

  18. Properties of cellulose derivatives produced from radiation—Modified cellulose pulps

    NASA Astrophysics Data System (ADS)

    Iller, Edward; Stupińska, Halina; Starostka, Paweł

    2007-07-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared.

  19. [Endodontic treatment of primary teeth. Pulp exposure and pulp necrosis].

    PubMed

    Gruythuysen, R J M

    2005-11-01

    With management of the deep caries in primary teeth we have to take account into the coping strategies of the patient and the state of the development of the dentition. That's why in most cases a root canal treatment of primary incisors or even a pulpotomy is not indicated. Often Intellectual Decision Not To Restore is a good alternative for treatment of deep caries in primary incisors. In deep caries lesions of primary canines and molars preferably minimal invasive techniques as indirect pulp capping are performed. In case of a exposure, the dentist can choose between several types of treatment. Improved techniques have lead to clinical satisfying results of the calcium hydroxide pulpotomy. A partial pulpotomy is if possible the treatment of choice. A resin modified glass ionomer cement is used to cover the pulp wound because it has good sealing properties and it is easy to handle. To limit the burden in young children a root canal treatment in primary teeth is seldom indicated. Overfilling with calcium hydroxide in root canal treatment of primary teeth never causes problems. PMID:16320568

  20. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 186.1673 Pulp....

  1. Pulp and Paper Industry Effluent Management.

    ERIC Educational Resources Information Center

    Gove, George W.

    1978-01-01

    Presents a literature review of wastes from pulp and paper industry, covering publications of 1976-77. This review focuses on: (1) receiving water, toxicity, and effluent characterization; (2) pulping liquor disposal and recovery; and (3) physicochemical and biological treatment. A list of 238 references is also presented. (HM)

  2. Changes are in Store for Pulping Technology

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    The pulp and paper industry are being forced by economic considerations and air pollution regulations to consider alternatives to the use of sulfur systems, be they kraft, acid or neutral sulfite. To meet environmental requirements and combat erosion of profits, modernized non-sulfur pulping methods will increasingly appear on the scene. (BT)

  3. 21 CFR 186.1673 - Pulp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pulp. 186.1673 Section 186.1673 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 186.1673 Pulp....

  4. Cortical representation area of human dental pulp.

    PubMed

    Kubo, K; Shibukawa, Y; Shintani, M; Suzuki, T; Ichinohe, T; Kaneko, Y

    2008-04-01

    To elucidate the dental pulp-representing area in the human primary somatosensory cortex and the presence of A-beta fibers in dental pulp, we recorded somatosensory-evoked magnetic fields from the cortex in seven healthy persons using magnetoencephalography. Following non-painful electrical stimulation of the right maxillary first premolar dental pulp, short latency (27 ms) cortical responses on the magnetic waveforms were observed. However, no response was seen when stimulation was applied to pulpless teeth, such as devitalized teeth. The current source generating the early component of the magnetic fields was located anterior-inferiorly compared with the locations for the hand area in the primary somatosensory cortex. These results demonstrate the dental pulp representation area in the primary somatosensory cortex, and that it receives input from intradental A-beta neurons, providing a detailed organizational map of the orofacial area, by adding dental pulp to the classic "sensory homunculus". PMID:18362319

  5. Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste.

    PubMed

    Mathews, Stephanie L; Pawlak, Joel J; Grunden, Amy M

    2014-07-01

    Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. A microorganism was isolated from a black liquor sample collected from the Department of Forest Biomaterials at North Carolina State University. The organism was identified as Paenibacillus glucanolyticus using 16S rRNA sequence analysis and was shown to be capable of growth on black liquor as the sole carbon source based on minimal media growth studies. Minimal media growth curves demonstrated that this facultative anaerobic microorganism can degrade black liquor as well as cellulose, hemicellulose, and lignin. Gas chromatography-mass spectrometry was used to identify products generated by P. glucanolyticus when it was grown anaerobically on black liquor. Fermentation products which could be converted into high-value chemicals such as succinic, propanoic, lactic, and malonic acids were detected. PMID:24841577

  6. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  7. Mesenchymal Dental Pulp Cells Attenuate Dentin Resorption in Homeostasis

    PubMed Central

    Zheng, Y.; Chen, M.; He, L.; Marão, H.F.; Sun, D.M.; Zhou, J.; Kim, S.G.; Song, S.; Wang, S.L.

    2015-01-01

    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone–derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  8. [Effects of the treatment of coffee pulp, fresh or ensilaged, with calcium hydroxide, on its nutritive value].

    PubMed

    Gómez-Brenes, R; Bendaña, G; González, J M; Jarquín, R; Braham, J E; Bressani, R

    1988-03-01

    This study was carried out to determine the effects of the addition of calcium hydroxide on the chemical composition and nutritive value of fresh or ensilaged coffee pulp. Fresh or ensilaged pulp were mixed with 1, 2 and 3% of calcium hydroxide. The process was carried out during 0 and 16 hr, after which time the treated pulp was sun-dried for 36 hr until moisture content reached 12%. These samples were then analyzed for their proximate chemical composition and for some minerals (Ca, P, Na, K), as well as for caffeine, tannins and chlorogenic and caffeic acids content. Diets were then prepared from these materials, containing 15% protein and 15 or 30% fresh or ensilaged coffee pulp, and offered to weanling rats during six weeks. Information required on weight gain, food conversion, apparent digestibility and toxicity of the diets was recorded. Results of the chemical analysis revealed that the main changes found in both types of pulp as a result of the calcium hydroxide treatment were the following: a decrease in ether extract (from 4.0 to 2.5 g/100 g), crude fiber (from 18.3 to 11.9 g/100 g) and protein content (from 12.3 to 8.6 g/100 g) in an inverse relation to the amount of calcium hydroxide used. The amount of ash increased, fluctuated between 5.5 and 15.4%, depending on the amount of calcium hydroxide used. The latter affected the Ca:P ratio in the diets, where an average ratio of 7.2:1 was found in the control pulp (0% calcium hydroxide) and 59.0:1 in those treated with the highest amount of calcium hydroxide (3%). Regarding the caffeine, tannins and chlorogenic and caffeic acids contents, calcium hydroxide was effective in decreasing only tannins, more so in the fresh than in the ensilaged pulp; the decrease was in direct proportion to the amount of calcium hydroxide added and to the length of the Ca(OH)2 treatment. The results of the biological assays showed that the addition of Ca(OH)2 in either of the two time periods used and at either of the

  9. The microbial challenge to pulp regeneration.

    PubMed

    Fouad, A F

    2011-07-01

    Pulp regeneration is considered in cases where the dental pulp has been destroyed because of microbial irritation. Diverse oral and food-borne micro-organisms are able to invade the pulp space, form biofilm on canal walls, and infiltrate dentinal tubules. Prior to pulp regeneration procedures, the pulp space and dentinal walls need to be sufficiently disinfected to allow for and promote regeneration. The necessary level of disinfection is likely higher than that accepted for traditional endodontic therapy, because in traditional techniques the mere lowering of bacterial loads and prevention of bacterial access to periapical tissues is conducive to healing. Moreover, several of the non-specific antimicrobials used in traditional endodontic therapy may cause significant changes in remaining dentin that interfere with its inherent potential to mediate regeneration. Non-specific antimicrobials also suppress all microbial taxa, which may allow residual virulent micro-organisms to preferentially repopulate the pulp space. Therefore, it is important for endodontic pathogens to be studied by molecular methods that allow for a broad depth of coverage. It is then essential to determine the most effective protocols to disinfect the pulp space, with minimal disruption of remaining dentin. These protocols include the topical use of effective antibiotics, including newer agents that have demonstrated efficacy against endodontic pathogens. PMID:21677080

  10. Biomechanical pulping: A mill-scale evaluation

    SciTech Connect

    Akhtar, M.; Scott, G.M.; Swaney, R.E.; Shipley, D.F.

    1999-07-01

    Mechanical pulping process is electrical energy intensive and results in low paper strength. Biomechanical pulping, defined as the fungal treatment of lignocellulosic materials prior to mechanical pulping, has shown at least 30% savings in electrical energy consumption, and significant improvements in paper strength properties compared to the control at a laboratory scale. In an effort to scale-up biomechanical pulping to an industrial level, fifty tons of spruce wood chips were inoculated with the best biopulping fungus in a continuous operation and stored in the form of an outdoor chip pile for two weeks. The pile was ventilated with conditioned air to maintain the optimum growth temperature and moisture throughout the pile. The control and fungus-treated chips were refined through a thermomechanical pulp mill (TMP) producing lightweight coated paper. The fungal pretreatment saved 33% electrical energy and improved paper strength properties significantly compared to the control. Since biofibers were stronger than the conventional TMP fibers, the authors were able to reduce the amount of bleached softwood kraft pulp by at least 5% in the final product. Fungal pretreatment reduced brightness, but brightness was restored to the level of bleached control with 60% more hydrogen peroxide. The economics of biomechanical pulping look attractive.

  11. A Review on Vital Pulp Therapy in Primary Teeth

    PubMed Central

    Parisay, Iman; Ghoddusi, Jamileh; Forghani, Maryam

    2015-01-01

    Maintaining deciduous teeth in function until their natural exfoliation is absolutely necessary. Vital pulp therapy (VPT) is a way of saving deciduous teeth. The most important factors in success of VPT are the early diagnosis of pulp and periradicular status, preservation of the pulp vitality and proper vascularization of the pulp. Development of new biomaterials with suitable biocompatibility and seal has changed the attitudes towards preserving the reversible pulp in cariously exposed teeth. Before exposure and irreversible involvement of the pulp, indirect pulp capping (IPC) is the treatment of choice, but after the spread of inflammation within the pulp chamber and establishment of irreversible pulpitis, removal of inflamed pulp tissue is recommended. In this review, new concepts in preservation of the healthy pulp tissue in deciduous teeth and induction of the reparative dentin formation with new biomaterials instead of devitalization and the consequent destruction of vital tissues are discussed. PMID:25598803

  12. A review on vital pulp therapy in primary teeth.

    PubMed

    Parisay, Iman; Ghoddusi, Jamileh; Forghani, Maryam

    2015-01-01

    Maintaining deciduous teeth in function until their natural exfoliation is absolutely necessary. Vital pulp therapy (VPT) is a way of saving deciduous teeth. The most important factors in success of VPT are the early diagnosis of pulp and periradicular status, preservation of the pulp vitality and proper vascularization of the pulp. Development of new biomaterials with suitable biocompatibility and seal has changed the attitudes towards preserving the reversible pulp in cariously exposed teeth. Before exposure and irreversible involvement of the pulp, indirect pulp capping (IPC) is the treatment of choice, but after the spread of inflammation within the pulp chamber and establishment of irreversible pulpitis, removal of inflamed pulp tissue is recommended. In this review, new concepts in preservation of the healthy pulp tissue in deciduous teeth and induction of the reparative dentin formation with new biomaterials instead of devitalization and the consequent destruction of vital tissues are discussed. PMID:25598803

  13. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    PubMed Central

    Zhang, Weibo; Yelick, Pamela C.

    2010-01-01

    Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization. PMID:20454445

  14. A Diagnostic Aid To Pulp Production

    NASA Astrophysics Data System (ADS)

    Kowalski, Allan; Lebensold, Julian M.

    1989-03-01

    Pitch deposits in the production of pulp from wood are a very significant problem in the pulp and paper industry. Conservative estimates place the annual cost at around $30 million a year. At the present time problems in this domain are handled by human experts, whose time might otherwise be available for research. Development of an expert system in this area would be expected to have several beneficial effects. Quantitatively, it will decrease down time, thus allowing for greater production, and qualitatively it will decrease the occurrence of contamination in the final pulp.

  15. Recent Advances in Pulp Capping Materials: An Overview

    PubMed Central

    Qureshi, Asma; E., Soujanya; Nandakumar; Pratapkumar; Sambashivarao

    2014-01-01

    Emphasis has shifted from the “doomed” organ concept of an exposed pulp to one of hope and recovery. The era of vital-pulp therapy has been greatly enhanced with the introduction of various pulp capping materials. The aim of this article is to summarize and discuss about the various and newer pulp capping materials used for protection of the dentin-pulp complex. PMID:24596805

  16. A New Technology for Treating Pulp Waste with Plasma

    NASA Astrophysics Data System (ADS)

    Feng, Xiaozhen; Tian, Zhongyu

    2009-10-01

    New methods for both the treatment of pulp waste liquor called black liquor (BL) and the recovery of chemicals by using plasma, and the concentration of BL with the freezing technique were developed. The new methods aiming at the pilot plant scale are described and the experiments in a small-scale research facility for demonstration and test are presented. The energy consumption for treating waste liquid is 1 kg/kWh. Plasma processing can reduce the costs for treatment and eliminate pollution.

  17. Polysaccharides isolated from sugar beet pulp by quaternization under acidic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp was extracted and chemically modified under acidic conditions using glycidyltrimethylammonium chloride in the presence of trifuoroacetic (TFA), HCl or H3PO4. The goal was to find out how the type of acid used and quaternization could affect the yield of soluble polysaccharide, its mo...

  18. Fractionation of sugar beet pulp by introducing ion-exchange groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp (SBP) was chemically modified with the goal to utilize this method for the preparation of water-soluble polysaccharides. Yields of the trimethylammoniumhydroxypropylated (TMAHP) polysaccharide fractions prepared under vacuum in absence of NaOH or KOH, as well as their molar masses, w...

  19. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    SciTech Connect

    Lucia, Lucian A

    2013-04-19

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  20. Indirect pulp therapy and stepwise excavation.

    PubMed

    Bjørndal, Lars

    2008-01-01

    Various treatment concepts have been suggested to solve the deep carious lesion dilemma. Recent systematic reviews are presented. Their conclusions are based on very few studies, and the main message is that optimal randomized clinical studies are lacking. Observational studies on indirect pulp treatment and stepwise excavation demonstrate that these treatments avoid pulp exposures, but it cannot be said which approach is best. A less invasive modified stepwise excavation approach is described, focusing on changing on active lesion into on arrested lesion even without performing an excavation close to the pulp. In Denmark and Sweden a randomized clinical multi-center trial is currently taking place, the Caries and Pulp (CAP) trial. This trial is investigating the effects of stepwise excavation over 2 visits versus 1 complete excavation of deep caries in permanent teeth. Guidelines for treatment are presented. PMID:18615988

  1. Indirect pulp therapy and stepwise excavation.

    PubMed

    Bjørndal, Lars

    2008-07-01

    Various treatment concepts have been suggested to solve the deep carious lesion dilemma. Recent systematic reviews are presented. Their conclusions are based on very few studies, and the main message is that optimal randomized clinical studies are lacking. Observational studies on indirect pulp treatment and stepwise excavation demonstrate that these treatments avoid pulp exposures, but it cannot be said which approach is best. A less invasive modified stepwise excavation approach is described, focusing on changing an active lesion into an arrested lesion even without performing an excavation close to the pulp. In Denmark and Sweden a randomized clinical multi-center trial is currently taking place, the Caries and Pulp (CAP) trial. This trial is investigating the effects of stepwise excavation over 2 visits versus 1 complete excavation of deep caries in permanent teeth. Guidelines for treatment are presented. PMID:18565369

  2. ADVANCED FILTRATION OF PULP MILL WASTES

    EPA Science Inventory

    Laboratory and pilot plants studies of reverse osmosis (hyperfiltration) and ultrafiltration of pulp mill wastes were performed by International Paper Company and Oak Ridge National Laboratory (subcontractor). Decker filtrates were treated with dynamically formed reverse osmosis ...

  3. Pulp and paper program fact sheets

    SciTech Connect

    1995-07-01

    Summaries are presented of Argonne technology transfer research projects in: sustainable forest management, environmental performance, energy performance, improved capital effectiveness, recycling, and sensors and controls. Applications in paper/pulp industry, other industries, etc. are covered.

  4. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  5. Influence of process variables on the properties of laccase biobleached pulps.

    PubMed

    Martin-Sampedro, Raquel; Miranda, Jesús; García-Fuentevilla, Luisa L; Hernández, Manuel; Arias, Maria E; Diaz, Manuel J; Eugenio, Maria E

    2015-01-01

    A laccase stage can be used as a pre-treatment of a standard chemical bleaching sequence to reduce environmental concerns associated to this process. The importance of each independent variable and its influence on the properties of the bleached pulp have been studied in depth in this work, using an adaptive network-based fuzzy inference system (ANFIS) with four independent variables (laccase, buffer, mediator and oxygen) as input. Eucalyptus globulus kraft pulp was biobleached using a laccase from Pycnoporus sanguineus and a natural mediator (acetosyringone). Later, an alkaline extraction and a hydrogen peroxide treatment were applied. Most biobleaching processes showed a decrease in kappa number and an increase in brightness with no significant impact on the viscosity values, compared with the control. Oxygen was the variable with the smallest influence on the final pulp properties while the laccase and buffer solution showed a significant influence. PMID:25085529

  6. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  7. Draft standards and guidelines for the land application of mechanical pulp mill sludge to agricultural land

    SciTech Connect

    1998-09-01

    Mechanical pulp mill sludge consists primarily of water, wood fiber, biomass, and residual chemicals. Research has shown that application of sludge to land improves the nutrient status and physical properties of soil, resulting in enhanced plant growth. This report presents guidelines for operations involving the application of mechanical pulp mill sludge on agricultural land in Alberta. It lists the regulatory requirements for sludge generators, restrictions on land application, and record-keeping and reporting requirements; provides general information on sludge properties and parameters of interest, suitability of receiving soils and areas, and sludge application rates and frequencies. Research studies conducted in Alberta on the benefits of land application of mechanical pulp mill sludge are also summarized.

  8. Biological decolourisation of pulp mill effluent using white rot fungus Trametes versicolor.

    PubMed

    Srinivasan, S V; Murthy, D V S; Swaminathan, T

    2012-07-01

    The conventional biological treatment methods employed in the pulp and paper industries are not effective in reducing the colour and chemical oxygen demand (COD). The white-rot fungi are reported to have the ability to biodegrade the lignin and its derivatives. This paper is focused on the biological treatment of pulp mill effluent from a bagasse-based pulp and paper industry using fungal treatment. Experiments were conducted using the white rot fungus, Trametes versicolor in shake flasks operated in batch mode with different carbon sources. The decolourisation efficiencies of 82.5% and 80.3% were obtained in the presence of 15 g/L and 5 g/L of glucose and sucrose concentrations respectively with a considerable COD reduction. The possibility of reusing the grown fungus was examined for repeated treatment studies. PMID:24749195

  9. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    PubMed

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-01-01

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue. PMID:25739081

  10. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    PubMed Central

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-01-01

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue. PMID:25739081

  11. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  12. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    PubMed

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. PMID:23260272

  13. Bacteria-tight sealing of exposed dog pulps.

    PubMed

    Wijnbergen-Buijen van Weelderen, M; van Mullem, P J

    1984-05-01

    Penetration of bacteria past filling materials can interfere with the vitality of exposed pulps. In the present study, seventy-three dog's teeth were filled--after exposure--with Cavit -W and then sealed either with a chemically or a UV polymerizing bonding. After 14 days a failure rate of 28% was demonstrated using the chemically polymerizing Concise and of 4.5% using the UV polymerizing Uvio -Bond. After 42 days the latter bonding revealed a success rate of 100%. To achieve a bacteria-tight seal of deep cavities for middle long term animal experimentation, Uvio -Bond can be used--after etching--to cover the filling material and the surrounding enamel. PMID:6234386

  14. POST BIOLOGICAL SOLIDS CHARACTERIZATION AND REMOVAL FROM PULP MILL EFFLUENTS

    EPA Science Inventory

    The study characterized the post biological solids in pulp and paper mill secondary effluent and evaluated various suspended solids removal techniques. Characterization was performed on samples from 9 mills, representing various locations, pulping processes and treatment system t...

  15. Laser Induced Fluorescence For Measurement Of Lignin Concentrations In Pulping Liquors

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.; Biasca, K. L.; Attala, R.

    1988-11-01

    Laser excited fluorescence of pulping liquors was investigated for use in the pulp and paper industry for process measurement and control applications. Liquors from both mill and laboratory cooks were studied. A Nd-YAG pumped dye laser was used to generate the excitation wavelength of 280 nm; measurements were also performed using a commercially available fluorometer. Measurements on mill pulping liquors gave strong signals and showed changes in the fluorescence intensity during the cook. Absorption spectra of diluted mill liquor samples showed large changes during the cook. Samples from well controlled and characterized laboratory cooks showed fluorescence to be linear with concentration over two decades with an upper limit of approximately 1000 ppm dissolved lignin. At the end of these cooks a possible chemical change was indicated by an increase in the observed fluorescence intensity. Results indicate that lignin concentrations in pulping liquors can be accurately determined with fluorescence in the linear optical region over a greater dynamic range than absorption spectroscopy. Laser induced fluorescence may also provide an indication of chemical changes occurring in the lignin structure during a cook.

  16. Environmental control for pulp and paper mills

    SciTech Connect

    Edde, H.

    1984-01-01

    The purpose of this book is to provide the pulp and paper industry engineering community with a new source of information for use in the planning, design and operation of present and future environmental control facilities. New pollution control methods are described, and the applications of new techniques for more effectively removing a broad spectrum of contaminants from air and water discharges are discussed. The information will also be useful as text material for students in pulp and paper technology and industrial waste engineering. The book contains two parts; the first describes water and solid waste pollution control for the pulp and paper industry, while the second presents air pollution control. A condensed table of contents listing chapter titles and selected subtitles is also given.

  17. Biocompatibility of a new pulp capping cement

    PubMed Central

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Dagna, Alberto; Colombo, Marco; Chiesa, Marco

    2014-01-01

    Summary Aim The aim of the present study was to evaluate the biocompatibility of a new pulp capping material (Biodentine, Septodont) compared with reference pulp capping materials: Dycal (Dentsply), ProRoot MTA (Dentsply) and MTA-Angelus (Angelus) by using murine odontoblast cell line and Alamar blue and MTT cytotoxicity tests. Methods The citocompatibility of murine odontoblasts cells (MDPC-23) were evaluated at different times using a 24 Transwell culture plate by Alamar blue test and MTT assay. Results The results were significantly different among the pulp capping materials tested. Biocompatibility was significant different among materials with different composition. Conclusions Biodentine and MTA-based products show lower cytotoxicity varying from calcium hydroxide-based material which present higher citotoxicity. PMID:25002921

  18. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a tooth... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrode gel for pulp testers. 872.1730...

  19. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers. (a) Identification. An electrode gel for pulp testers is a device intended to be applied to the surface of a tooth... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrode gel for pulp testers. 872.1730...

  20. Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol.

    PubMed

    Rezić, Tonči; Oros, Damir; Marković, Iva; Kracher, Daniel; Ludwig, Roland; Santek, Božidar

    2013-09-28

    Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 g/l·h, respectively. PMID:23851274

  1. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation.

    PubMed

    Ferro, Federico; Spelat, Renza; Baheney, Chelsea S

    2014-01-01

    Dental pulp stem cells (DPSC) have been proposed as an alternative to pluripotent stem cells to study multilineage differentiation in vitro and for therapeutic application. Standard culture media for isolation and expansion of stem cells includes animal sera or animal-derived matrix components (e.g., Matrigel(®)). However, animal-derived reagents raise significant concerns with respect to the translational ability of these cells due to the possibility of infection and/or severe immune reaction. For these reasons clinical grade substitutes to animal components are needed in order for stem cells to reach their full therapeutic potential. In this chapter we detail a method for isolation and proliferation of DPSC in a chemically defined medium containing a low percentage of human serum. We demonstrate that in this defined culture medium a 1.25 % human serum component sufficiently replaces fetal bovine serum. This method allows for isolation of a morphologically and phenotypically uniform population of DPSCs from dental pulp tissue. DPSCs represent a rapidly proliferating cell population that readily differentiates into the osteoblastic, neuronal, myocytic, and hepatocytic lineages. This multilineage capacity of these DPSCs suggests that they may have a more broad therapeutic application than lineage-restricted adult stem cell populations such as mesenchymal stem cells. Further the culture protocol presented here makes these cells more amenable to human application than current expansion techniques for other pluripotent stem cells (embryonic stem cell lines or induced pluripotent stem cells). PMID:25173163

  2. Microwave Measurements of Low Pulp Concentration in Papermaking Process

    NASA Astrophysics Data System (ADS)

    Nakayama, Shigeru

    1994-06-01

    A method of microwave measurements of low pulp concentrations in the papermaking process is developed using a coaxial cavity resonator with an inner slot antenna. We measure the attenuation of the resonant peak of the cavity resonator which is related to the pulp concentration. The pulp concentration up to 10.1% is measured, and then the linear relationship between the attenuation and low pulp concentrations down to 0.6% is determined. By this method, a low pulp concentration can be measured within the standard deviation of 0.03% by linear approximation.

  3. CYTOTOXICITY AND BIOCOMPATIBILITY OF DIRECT AND INDIRECT PULP CAPPING MATERIALS

    PubMed Central

    Modena, Karin Cristina da Silva; Casas-Apayco, Leslie Caroll; Atta, Maria Teresa; Costa, Carlos Alberto de Souza; Hebling, Josimeri; Sipert, Carla Renata; Navarro, Maria Fidela de Lima; Santos, Carlos Ferreira

    2009-01-01

    There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH. PMID:20027424

  4. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOEpatents

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  5. Methods for Facilitating Microbial Growth on Pulp Mill Waste Streams and Characterization of the Biodegradation Potential of Cultured Microbes

    PubMed Central

    Mathews, Stephanie L.; Ayoub, Ali S.; Pawlak, Joel; Grunden, Amy M.

    2013-01-01

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor. PMID:24378616

  6. Effects of Dates Pulp Extract and Palm Sap (Phoenix dactylifera L.) on Gastrointestinal Transit Activity in Healthy Rats

    PubMed Central

    Souli, Abdellaziz; Rtibi, Kaïs; Chehimi, Latifa; Sakly, Mohsen; Amri, Mohamed; El-Benna, Jamel

    2014-01-01

    Abstract The current study was performed to measure the chemical composition and the effects of dates pulp extract and palm sap on gastrointestinal transit (GIT) activity in healthy adult rats. In this respect, male Wistar rats fasted for 24 hours were used and received per orally (p.o.) sodium chloride (NaCl) (0,9%) (control group) or various doses of dates pulp extract (150 and 300 mg/kg, body weight [b.w.]) and palm sap (0.4 and 4 mL/kg, b.w.). Two other groups of rats (batch tests) received, respectively, clonidine (an alpha-2 adrenergic agonist, 1 mg/kg, b.w.) and yohimbine (an alpha-2 adrenergic antagonist, 2mg/kg, b.w.). Chemical analysis showed that the dates pulp extract is more rich in sugars and minerals, especially potassium and sucrose, as compared with palm sap composition. On the other hand, in vivo study showed that the aqueous dates pulp extract significantly, and dose dependently, increased the GIT activity while the palm sap slightly increased it. Moreover, a converse effect has been observed using clonidine (decreased 68%) and yohimbine (increased 33%) on the GIT activity. These findings suggest that dates pulp extract and palm sap have a stimulating effect on GIT activity in rats and confirm their use in traditional Tunisian medicine for the treatment of constipation. PMID:24611963

  7. Methods for facilitating microbial growth on pulp mill waste streams and characterization of the biodegradation potential of cultured microbes.

    PubMed

    Mathews, Stephanie L; Ayoub, Ali S; Pawlak, Joel; Grunden, Amy M

    2013-01-01

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor. PMID:24378616

  8. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  9. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  10. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.

    PubMed

    Mockos, Gregory R; Smith, William A; Loge, Frank J; Thompson, David N

    2008-03-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste-activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25 degrees C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents. PMID:18418753

  11. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells

    PubMed Central

    Viña-Almunia, Jose; Borras, Consuelo; Gambini, Juan; El Alamy, Marya; Viña, Jose

    2016-01-01

    Background Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. Material and Methods One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Results Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Conclusions Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents. Key words:Dental pulp stem cells, mesenchymal stem cells, isolation method. PMID:26946201

  12. Archaea prevalence in inflamed pulp tissues

    PubMed Central

    Efenberger, Magdalena; Agier, Justyna; Pawłowska, Elżbieta

    2015-01-01

    Archaea have been detected in several ecological niches of the human body such as the large intestine, skin, vagina as well as the oral cavity. At present, archaea are recognized as nonpathogenic microorganisms. However, some data indicate that they may be involved in the etiopathogenesis of several diseases, including intestinal diseases as well as oral diseases: periodontitis, peri-implantitis and endodontitis. In this study, on the basis of 16S rRNA gene sequence analysis, we examined whether archaea might be present in inflamed pulp tissues and contribute to the development of endodontic infection. In comparison, we also determined selected bacterial species associated with endodontitis. We detected archaea in 85% of infected endodontic samples. In addition, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were present in inflamed pulp tissue samples and Treponema denticola occurred with the highest frequency (70%). Further analysis revealed the presence of methanogenic archaea in analyzed samples. Direct sequencing of archaeal 16S rRNA gene PCR products indicated the occurrence of methanogenic archaea in inflamed pulp tissues; phylogenetically most similar were Methanobrevibacter oralis and Methanobrevibacter smithii. Therefore, our results show that methanogenic archaea are present in inflamed pulp tissues and may participate in the development of endodontic infection. PMID:26557034

  13. 21 CFR 872.1720 - Pulp tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pulp tester. 872.1720 Section 872.1720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... battery powered device intended to evaluate the pulpal vitality of teeth by employing high...

  14. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  15. Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp

    PubMed Central

    Paice, M. G.; Reid, I. D.; Bourbonnais, R.; Archibald, F. S.; Jurasek, L.

    1993-01-01

    Previous work has shown that Trametes (Coriolus) versicolor bleaches kraft pulp brownstock with the concomitant release of methanol. In this work, the fungus is shown to produce both laccase and manganese peroxidase (MnP) but not lignin peroxidase during pulp bleaching. MnP production was enhanced by the presence of pulp and/or Mn(II) ions. The maximum level of secreted MnP was coincident with the maximum rate of fungal bleaching. Culture filtrates isolated from bleaching cultures produced Mn(II)- and hydrogen peroxide-dependent pulp demethylation and delignification. Laccase and MnP were separated by ion-exchange chromatography. Purified MnP alone produced most of the demethylation and delignification exhibited by the culture filtrates. On the basis of the methanol released and the total and phenolic methoxyl contents of the pulp, it appears that MnP shows a preference for the oxidation of phenolic lignin substructures. The extensive increase in brightness observed in the fungus-treated pulp was not found with MnP alone. Therefore, either the MnP effect must be optimized or other enzymes or compounds from the fungus are also required for brightening. Images PMID:16348850

  16. Pulp stem cells: implication in reparative dentin formation.

    PubMed

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth. PMID:24698687

  17. The relationship between pulp calcifications and salivary gland calcifications

    PubMed Central

    Kaswan, Sumita; Maheshwari, Sneha; Rahman, Farzan; Khandelwal, Suneet

    2014-01-01

    Aim: Pulp stones are discrete calcified bodies found in the dental pulp. Sialolithasis is the most common salivary gland disease. The aim of the present study was to determine the relationship between the pulp stones and salivary gland stones. Material and Methods: 196 patients were randomly selected from the out patient department for the study. The periapical radiographs for all patients were evaluated for the presence or absence of the narrowing of dental pulp chambers and pulp canals. The intra oral occlusal radiographs were also evaluated to determine the presence or absence of salivary stones. The results were compared and analyzed using the Chi-square test (p<0.001). Results: Salivary gland calcifications were detected in 5 patients. 191 patients had pulp narrowing and 118 patients had pulp stones. There was no statistical correlation between pulp narrowing and salivary stones (p>0.001) and also between pulp stones and salivary gland stones (p>0.001). Conclusions: However, the incidental findings of salivary gland stones on intra oral occlusal radiographs can provide useful information in the early diagnosis of the condition, but in the present study no significant relationship was found between the presence of pulp stones and salivary gland stones. Key words:Pulp stone, salivary gland stone, periapical radiograph, occlusal radiograph. PMID:25674311

  18. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    PubMed

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. PMID:27518034

  19. Pulp and dentin tissue engineering and regeneration: current progress

    PubMed Central

    Huang, George TJ

    2009-01-01

    Dental pulp tissue is vulnerable to infection. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial rubber-like material is employed to treat the infection – commonly known as root-canal therapy. Regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. However, with the advent of the concept of modern tissue engineering and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the early attempts to regenerate pulp tissue and the current endeavor of pulp and dentin tissue engineering, and regeneration. The prospective outcome of the current advancement in this line of research will be discussed. PMID:19761395

  20. Pulp and dentin tissue engineering and regeneration: current progress.

    PubMed

    Huang, George T J

    2009-09-01

    Dental pulp tissue is vulnerable to infection. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial rubber-like material is employed to treat the infection - commonly known as root-canal therapy. Regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. However, with the advent of the concept of modern tissue engineering and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the early attempts to regenerate pulp tissue and the current endeavor of pulp and dentin tissue engineering, and regeneration. The prospective outcome of the current advancement in this line of research will be discussed. PMID:19761395

  1. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  2. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect

    Stuart E. Strand

    2001-12-06

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  3. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  4. Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration

    SciTech Connect

    Spangnuolo, M.; Crecchio, C.; Pizzigallo, M.D.R.; Ruggiero, P.

    1999-09-20

    Incubation of beet pulp with two arabinases ({alpha}-L-arabinofuranosidase and endo-arabinase), used singularly or in combination at different units of activity per gram of beet pulp, caused the hydrolysis of arabinasn, which produced a hydrolyzate consisting mainly of arabinose. Pectin and a residue enriched with cellulose were subsequently separated from the incubation mixture. The best enzymatic hydrolysis results were obtained when 100 U/g of beet pulp of each enzyme worked synergistically with yields of 100% arabinose and 91.7% pectin. These yields were higher than those obtained with traditional chemical hydrolysis. The pectin fraction showed a low content of neutral sugar content and the cellulose residue contained only a small amount of pentoses. Semicontinuous hydrolysis with enzyme recycling in an ultrafiltration unit was also carried out to separate arabinose, pectin, and cellulose from beet pulp in 7 cycles of hydrolysis followed by ultrafiltration. The yields of separation were similar to those obtained in batch experiments, with an enzyme consumption reduced by 3.5 times and some significant advantages over batch processes.

  5. The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries.

    PubMed

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2007-04-01

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed. PMID:18478399

  6. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    NASA Astrophysics Data System (ADS)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  7. Refractory organic pollutants and toxicity in pulp and paper mill wastewaters.

    PubMed

    Lindholm-Lehto, Petra C; Knuutinen, Juha S; Ahkola, Heidi S J; Herve, Sirpa H

    2015-05-01

    This review describes medium and high molecular weight organic material found in wastewaters from pulp and paper industry. The aim is to review the versatile pollutants and the analysis methods for their determination. Among other pollutants, biocides, extractives, and lignin-derived compounds are major contributors to harmful effects, such as toxicity, of industrial wastewaters. Toxicity of wastewaters from pulp and paper mills is briefly evaluated including the methods for toxicity analyses. Traditionally, wastewater purification includes mechanical treatment followed by chemical and/or biological treatment processes. A variety of methods are available for the purification of industrial wastewaters, including aerobic and anaerobic processes. However, some fractions of organic material, such as lignin and its derivatives, are difficult to degrade. Therefore, novel chemical methods, including electrochemical and oxidation processes, have been developed for separate use or in combination with biological treatment processes. PMID:25647495

  8. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products.

    PubMed

    Pan, Xuejun; Arato, Claudio; Gilkes, Neil; Gregg, David; Mabee, Warren; Pye, Kendall; Xiao, Zhizhuang; Zhang, Xiao; Saddler, John

    2005-05-20

    Pulps with residual lignin ranging from 6.4-27.4% (w/w) were prepared from mixed softwoods using a proprietary biorefining technology (the Lignol process) based on aqueous ethanol organosolv extraction. The pulps were evaluated for bioconversion using enzymatic hydrolysis of the cellulose fraction to glucose and subsequent fermentation to ethanol. All pulps were readily hydrolyzed without further delignification. More than 90% of the cellulose in low lignin pulps (< or =18.4% residual lignin) was hydrolyzed to glucose in 48 h using an enzyme loading of 20 filter paper units/g cellulose. Cellulose in a high lignin pulp (27.4% residual lignin) was hydrolyzed to >90% conversion within 48 h using 40 filter paper units/g. The pulps performed well in both sequential and simultaneous saccharification and fermentation trials indicating an absence of metabolic inhibitors. Chemical and physical analyses showed that lignin extracted during organosolv pulping of softwood is a suitable feedstock for production of lignin-based adhesives and other products due to its high purity, low molecular weight, and abundance of reactive groups. Additional co-products may be derived from the hemicellulose sugars and furfural recovered from the water-soluble stream. PMID:15772945

  9. Bioremediation of agro-based pulp mill effluent by microbial consortium comprising autochthonous bacteria.

    PubMed

    Kumar, Virendra; Dhall, Purnima; Kumar, Rita; Prakash Singh, Yogendra; Kumar, Anil

    2012-01-01

    Small-scale agro-based pulp and paper mills are characterized as highly polluting industries. These mills use Kraft pulping process for paper manufacturing due to which toxic lignified chemicals are released into the environment. Lack of infrastructure, technical manpower, and research and development facilities restricts these mills to recover these chemicals. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem, four bacteria were isolated from the premises of agro-based pulp and paper mill which were identified as species of Pseudomonas, Bacillus, Pannonibacter, and Ochrobacterum. These bacteria were found capable of reducing COD up to 85%-86.5% in case of back water and 65-66% in case of back water : black liquor (60:40), respectively, after acclimatization under optimized conditions (pH 6.8, temperature 35°C, and shaking 200 rpm) when the wastewater was supplemented with nitrogen and phosphorus as trace elements. PMID:22448126

  10. Bioremediation of Agro-Based Pulp Mill Effluent by Microbial Consortium Comprising Autochthonous Bacteria

    PubMed Central

    Kumar, Virendra; Dhall, Purnima; Kumar, Rita; Prakash Singh, Yogendra; Kumar, Anil

    2012-01-01

    Small-scale agro-based pulp and paper mills are characterized as highly polluting industries. These mills use Kraft pulping process for paper manufacturing due to which toxic lignified chemicals are released into the environment. Lack of infrastructure, technical manpower, and research and development facilities restricts these mills to recover these chemicals. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem, four bacteria were isolated from the premises of agro-based pulp and paper mill which were identified as species of Pseudomonas, Bacillus, Pannonibacter, and Ochrobacterum. These bacteria were found capable of reducing COD up to 85%–86.5% in case of back water and 65-66% in case of back water : black liquor (60 : 40), respectively, after acclimatization under optimized conditions (pH 6.8, temperature 35°C, and shaking 200 rpm) when the wastewater was supplemented with nitrogen and phosphorus as trace elements. PMID:22448126

  11. Evaluating pulp stiffness from fibre bundles by ultrasound

    NASA Astrophysics Data System (ADS)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  12. Pulp Stone, Haemodialysis, End-stage Renal Disease, Carotid Atherosclerosis

    PubMed Central

    Patil, Santosh; Sinha, Nidhi

    2013-01-01

    Objectives: The aim of this study was to determine the relationship between the presence of pulp calcification and carotid artery calcification on the dental panoramic radiographs in End Stage Renal Disease (ESRD) patients who were on haemodialysis. Methods: A total of 112 End Stage Renal Disease (ESRD) patients on who were haemodialysis participated in this study. The periapical and the panoramic radiographs for all the patients were evaluated for the presence or absence of the narrowing of the dental pulps and for pulp stones in the pulp chambers and the pulp canals. The panoramic radiographs were also evaluated to determine the carotid calcification. Results: Carotid calcifications were detected in none of the patients. 84 (74.99%) patients had dental pulp narrowing, and 38 (33.92%) patients had pulp stones. There was no statistical correlation between pulp narrowing and Carotid Artery Calcification (CAC) in the haemodialysis patient group. There was also no statistical correlation between pulp stones and CAC in the haemodialysis patients. Conclusion: However, the incidental finding of CAC on a panoramic radiograph can provide life-saving information for the vascular disease patients, but in the present study, no significant relationship was found between the presence of the pulpal calcification and CAC in the ESRD patients who were on haemodialysis. Therefore, the presence of pulp calcification does not seem to serve as a diagnostic marker for carotid atherosclerosis. PMID:23905147

  13. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  14. Pulping effluents: Biological treatment. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning effluent and wastewater biological treatment and disposal in the pulping industry. Effluent toxicity; treatment plant management, treatment systems, and equipment design; combined mechanical and biological treatment processes; biological degradation treatment in chemical pulp mills; and the handling and disposal of solid wastes are among the topics discussed. Also examined are performance evaluations of biological treatment processes in domestic and foreign plants in full scale operation and pilot programs. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  15. Detection of organochlorine compounds formed during the contact of sodium hypochlorite with dentin and dental pulp.

    PubMed

    Varise, Tiago Gilioli; Estrela, Carlos; Guedes, Débora Fernandes Costa; Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma

    2014-01-01

    This study used gas chromatography-mass spectrometry (GC-MS) to detect the products formed during the contact of sodium hypochlorite (NaOCl) with bovine pulp and dentin. For analysis of the products formed in the volatile phase, 11 mg of bovine pulp tissue were placed in contact with 0.5%, 2.5% and 5.25% NaOCl until complete tissue dissolution occurred. The solid phase microextraction (SPME) fiber was exposed inside the container through the cover membrane and immediately injected into the GC-MS system. 30 mg of the of dentin were kept in contact with NaOCl, and then the SPME fiber was exposed inside the container through the cover membrane for adsorption of the products and injected into the GC-MS system. The same protocol was used for the aqueous phase. For analysis of the volatile compounds, the final solution was extracted using pure ethyl ether. The suspended particulate phase of the mixture was aspirated, and ether was separated from the aqueous phase of the solution. The ether containing the products that resulted from the chemical interaction of dentin and pulp with the NaOCl was filtered and then injected into the GC-MS system for analysis of the aqueous phase. The aqueous and volatile phases of both dentin and pulp showed the formation of chloroform, hexachloroethane, dichloromethylbenzene and benzaldehyde. In conclusion, organochlorine compounds are generated during the contact of dentin and pulp with NaOCl at concentrations of 0.5%, 2.5% and 5.25%. PMID:25140714

  16. Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism

  17. In Vivo Experiments with Dental Pulp Stem Cells for Pulp-Dentin Complex Regeneration

    PubMed Central

    Kim, Sunil; Shin, Su-Jung; Song, Yunjung; Kim, Euiseong

    2015-01-01

    In recent years, many studies have examined the pulp-dentin complex regeneration with DPSCs. While it is important to perform research on cells, scaffolds, and growth factors, it is also critical to develop animal models for preclinical trials. The development of a reproducible animal model of transplantation is essential for obtaining precise and accurate data in vivo. The efficacy of pulp regeneration should be assessed qualitatively and quantitatively using animal models. This review article sought to introduce in vivo experiments that have evaluated the potential of dental pulp stem cells for pulp-dentin complex regeneration. According to a review of various researches about DPSCs, the majority of studies have used subcutaneous mouse and dog teeth for animal models. There is no way to know which animal model will reproduce the clinical environment. If an animal model is developed which is easier to use and is useful in more situations than the currently popular models, it will be a substantial aid to studies examining pulp-dentin complex regeneration. PMID:26688616

  18. Activation of the NLRP3/caspase-1 inflammasome in human dental pulp tissue and human dental pulp fibroblasts.

    PubMed

    Jiang, Wenkai; Lv, Haipeng; Wang, Haijing; Wang, Diya; Sun, Shukai; Jia, Qian; Wang, Peina; Song, Bing; Ni, Longxing

    2015-08-01

    The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts. PMID:25684031

  19. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    SciTech Connect

    Zhang, Xufang; Jiang, Hongwei; Gong, Qimei; Fan, Chen; Huang, Yihua; Ling, Junqi

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  20. Current trends in primary tooth pulp therapy.

    PubMed

    Haney, Kevin L

    2007-10-01

    Pulp therapy in the primary dentition remains a technique generating a tremendous amount of study. Formocresol has been and continues to be the most commonly used intrapulpal medicament despite its known ability to escape the microcirculation of the pulp. Ferric sulfate has gained significant favor as a result of formocresol's disadvantages, though at the cost of requiring a much more acute awareness of the potential for remaining disease and its ability to mask that process. Mineral trioxide aggregate perhaps offers the best immediate alternative to either of the above though at this time it is still cost-prohibitive in a practice that actively treats many children. And, as MTA has no fixative properties of its own, accurately analyzing the extent of the pulpal disease becomes even more critical to the overall success of the procedure. As with other techniques in dentistry, the debate is sure to continue for severl years to come. PMID:18019933

  1. Tissue Engineering Considerations in Dental Pulp Regeneration

    PubMed Central

    Nosrat, Ali; Kim, Jong Ryul; Verma, Prashant; S. Chand, Priya

    2014-01-01

    Regenerative endodontic procedure is introduced as a biologically based treatment for immature teeth with pulp necrosis. Successful clinical and radiographic outcomes following regenerative procedures have been reported in landmark case reports. Retrospective studies have shown that this conservative treatment allows for continued root development and increases success and survival rate of the treated teeth compared to other treatment options. Although the goal of treatment is regeneration of a functional pulp tissue, histological analyses show a different outcome. Developing predictable protocols would require the use of key elements for tissue engineering: stem cells, bioactive scaffolds, and growth factors. In this study we will review the evidence based steps and outcomes of regenerative endodontics. PMID:24396373

  2. Optical determination of dental pulp vitality.

    PubMed

    Schmitt, J M; Webber, R L; Walker, E C

    1991-04-01

    In this preliminary study, we explored the feasibility of employing photoplethysmography and pulse oximetry to assess the status of the blood circulation in the dental pulp. A simple photometer that measures diffuse light transmission at 575 nm was built to record tooth plethysmograms, and the ability to distinguish vital from surgically devitalized teeth of a dog using plethysmography was demonstrated. As an extension of the photoplethysmographic technique, red-infrared pulse oximetry applied to the measurement of the oxygen saturation (SO2) of blood in the pulp was also examined using an in vitro test setup. Results suggest that the measurement of relative SO2 changes is feasible, but standard dual-wavelength pulse oximetry does not enable determination of SO2 independent of tooth geometry and sensor placement. PMID:1855796

  3. Hydrothermal carbonization of pulp mill streams.

    PubMed

    Wikberg, Hanne; Ohra-Aho, Taina; Honkanen, Mari; Kanerva, Heimo; Harlin, Ali; Vippola, Minnamari; Laine, Christiane

    2016-07-01

    The progress of the conversion, the yield, the structure and the morphology of the produced carbonaceous materials as a function of time were systematically studied with pyrolysis-GC/FID and FESEM microscope. The conversion of galactoglucomannan, bleached kraft pulp and TEMPO oxidized cellulose nanofibrils followed the reaction route of glucose being slower though with fibrous material, higher molar mass and viscosity. The conversion of kraft lignin was minor following completely different reaction route. Carbonaceous particles of different shape and size were produced with yields between 23% and 73% after 4h with being higher for lignin than carbohydrates. According to the results, potential pulp mill streams represent lignocellulosic resources for generation of carbonaceous materials. PMID:27107340

  4. Novel fiber optic dental pulp vitalometer

    NASA Astrophysics Data System (ADS)

    Makiniemi, Matti; Kopola, Harri K.; Oikarinen, Kyosti; Herrala, Esko

    1995-02-01

    Since the diagnosis of the intradental blood supply is difficult in dental trauma, we have designed and built a new dental pulp vitalometer based on optical reflectance measurement and exploiting the different absorption spectra of haemoglobins. The device comprises light transmitters, a receiver, electronics and a PC. Pulsed light is transmitted along the fiber optic probe, which illuminates the tooth being tested. The same probe collects the reflected light from the tooth pulp and transfers the light to the receiver. The received signal is divided into AC and DC components and a data acquisition card reads these signals, performs an A/D conversion and writes the results in a text file. A reference plethysmogram signal from a finger is used to help in processing the measured dental signal. The computer program calculates an estimate for the oxygen saturation.

  5. Does removal of the original pulp tissue before autotransplantation influence ingrowth of new tissue in the pulp chamber?

    PubMed

    Laureys, Wim G M; Dermaut, Luc R; Cuvelier, Claude A; De Pauw, Guy A M

    2010-10-01

    In an attempt to extend the indication area for autotransplantation of vital teeth, two possibilities can be proposed: (i) The enlargement of the apical foramen, with the aim to facilitate revascularization and ingrowth of new tissue. The ingrowth of tissue will eliminate the need for endodontic treatment when mature teeth are transplanted and (ii) the cryopreservation of teeth in case they cannot be transplanted immediately to the receptor site. Teeth with an ideal stage of root formation can be cryopreserved to perform transplantation later. Although pulpcell cultures survive crypreservation in vitro, the pulp tissue cannot survive the cryopreservation procedures when it is kept inside the pulpchamber. Therefore, the pulp tissue has to be removed before cryopreservation. It has been demonstrated that revascularization and ingrowth of new tissue can occur in an empty pulp chamber (1). The aim of this study was to find out if revascularization and ingrowth of new pulp tissue is influenced by removal of the original pulp tissue before autotransplantation. Twenty nine single-rooted teeth from three adult beagle dogs were transplanted after resection of the root tip. One group of teeth (n = 14) had the pulp tissue removed before transplantation. The other group (n = 15) had the original pulp left in situ. The transplanted teeth were histologically analysed 90 days post-transplantation. In the group with the tissue left in situ, 12 teeth (80%) showed a pulp chamber totally filled or at least 1/3 to 2/3 filled with viable tissue. In the group with the pulp tissue removed, 11 teeth (79%) had no or little vital tissue in the pulp chamber. The necrotic masses that develop in the original pulp tissue immediately after transplantation are a possible stimulating factor in the repair process of the pulp. As a conclusion, it can be stated that in case of autotransplantation of teeth, it is advisable to leave the pulp tissue in situ to stimulate the revascularization and

  6. Surface and thermal enhancement of the cellulosic component of thermo mechanical pulp using a rapid method: Iodomethane modification.

    PubMed

    George, Michael; Mussone, Paolo G; Bressler, David C

    2016-05-20

    The feasibility of employing chemical methods for enhancement of cellulose-based materials is dependent on the availability, price, and green index of the modifying agent. This study details the use of iodomethane, an inexpensive organo halide, to increase the hydrophobicity of thermo mechanical (TMP) samples, which renders them better structural elements for composite materials. For this system, we studied the influence of various concentration of iodomethane, concentration of caustic, and reaction time. Infrared spectroscopy suggested reaction of the organo halide with the hydroxyl groups of cellulose and lignin components of TMP. Pulp samples treated for 4 h or at low caustic concentration showed the least improvements plausibly due to pulp degradation or poor pulp swelling, respectively. On the other hand, pulp treated at 3 h using high concentrations of caustic were characterized with surfaces that were more hydrophobic. Thus, this study outlines a fast and organic solvent-free (clean up) method that can be used to enhance pulp samples for composite applications. PMID:26917403

  7. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes.

    PubMed

    Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang

    2015-09-01

    Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility. PMID:26080104

  8. Optical measurement of pulp quantity in a rotating disc refiner

    NASA Astrophysics Data System (ADS)

    Alahautala, Taito; Lassila, Erkki; Hernberg, Rolf; Härkönen, Esko; Vuorio, Petteri

    2004-11-01

    An optical method based on light extinction was used in measuring pulp quantity in the plate gap of a 10 MW thermomechanical pulping refiner for the first time. The relationship between pulp quantity and light extinction was determined by empirical laboratory experiments. The empirical relationship was then applied to interpret the image data obtained from field measurements. The results show the local distribution of pulp in the refiner plate gap for different rotor plate positions and refiner operation points. The maximum relative uncertainty in the measured pulp quantity was 50%. Relative pulp distributions were measured at higher accuracy. The measurements have influenced the development of a laser-based optical diagnostic method that can be applied to the quantitative visualization of technically demanding industrial processes.

  9. Immune defense mechanisms of the dental pulp.

    PubMed

    Jontell, M; Okiji, T; Dahlgren, U; Bergenholtz, G

    1998-01-01

    Defense reactions of the dentin/pulp complex involve a variety of biological systems, in which the immune system plays a pivotal role. The knowledge of the organization and function of pulpal immunocompetent cells has been sparse, but in recent years a significant body of information of immune mechanisms in general has provided a footing for substantial new knowledge of the immune mechanisms of the dental pulp. The identification of pulpal dendritic cells (DCs) has generated research activities which have led to a concept of how an antigenic challenge may evoke a pulpal inflammatory response. Although DCs are not able to identify foreign antigens specifically, they provide necessary signals to activate T-lymphocytes which in turn will orchestrate other immunocompetent cells to mount the local immune defense of the dental pulp. The purpose of this review is to accent the organization and function of pulpal DCs and other tissue and cellular components and to provide a basis for how they may interact to instigate pulpal defense mechanisms. PMID:9603235

  10. Mechanical behaviors of molded pulp material

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; Wang, Huaiwen; Chen, Jinlong

    2008-11-01

    Many mechanical phenomena of interest for web-like materials, such as molded pulp, take place at the micro-scale. A SEM (scanning electron microscope) with SHIMADZU electrohydraulic servo experimental system was employed to study the micro-scale mechanical behavior of molded pulp materials. Uniaxial tension tests of molded pulp specimens were carried out, resulting in the stress-strain curves. Experimental results indicated that the material is not only elasticplastic, but also emplastic. The surface morphology evolution of the tensile specimen was visually monitored during the process of loading, and some SEM micrographs were captured under different load levels. Full-field deformations over an area of 190x170 μm2 were obtained using the digital image correlation method. The higher strains occurred at the fibre fines zone or around voids whereas the lower strains were obviously found at long fibres, demonstrating that the strain distribution is obviously uneven. The reason may be due to the random orientation and the fraction of the fibres, and the presence of impurities and voids as well.

  11. Factors affecting the corrosivity of pulping liquors

    NASA Astrophysics Data System (ADS)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  12. Characterisation of mechanical pulp fines from alkaline peroxide pulping of EFB

    NASA Astrophysics Data System (ADS)

    Kamaludin, Nurul Hasanah; Ghazali, Arniza; Daud, Wan Rosli Wan

    2012-09-01

    EFB (empty fruit bunch) was subjected to alkaline peroxide pulping for generation of fibrous mass as raw material for the making of pulp-based products. During refining, co-produced fines were collected by fractionation on square-mesh screens of 200-, 250-, 300- and 400- mesh sizes, placed at the refining discharge by order of increasing mesh. Each set of the produced paper was incorporated with 12% fines for microscopic analysis. It appears that sheared vessel elements and fibrils were predominant and they make up the mass rendering collapsibility of cell wall for good product formation. The study acknowledged the form of fines functioning as natural filler in pulp network and worthy of utilization for reduction of total suspended solid.

  13. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. PMID:26572472

  14. Pilot scale fermentation of Jerusalem artichoke tuber pulp mashes

    SciTech Connect

    Ziobro, G.C.; Williams, L.A.

    1983-01-01

    Processing and fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tuber pulp mashes were successfully carried out at pilot scales of 60 gallons and 1000 gallons. Whole tubers were pulped mechanically into a thick mash and fermented, using commercially available Saccharomyces cerevisiae and selected strains of Kluyveromyces fragilis. EtOH fermentation yields ranging from 50-70% of theoretical maximum were obtained in 3-4 days. Several problems regarding the processing and direct fermentation of tuber pulp mashes are discussed.

  15. Bioceramic Materials and the Changing Concepts in Vital Pulp Therapy.

    PubMed

    Cao, Yangpei; Bogen, George; Lim, Jung; Shon, Won-Jun; Kang, Mo K

    2016-05-01

    Vital pulp therapy (VPT) is devised to preserve and maintain vitality of pulpally involved teeth challenged by a variety of intraoral conditions. Notable progress has been made in this field due to a better understanding of pulp physiology, improved clinical protocols and advanced bioceramic materials paired with adhesive technology. With focused case selection, conservative VPT can provide reliable treatment options for permanent teeth diagnosed with normal pulps or reversible pulpitis. PMID:27290822

  16. The ups and downs of the pulp and paper industry

    SciTech Connect

    McKenna, J.C.

    1998-12-31

    The ``Up`s and Down`s of the Pulp and Paper Industry`` deals with the design, fabrication, and installation elements of upflow and downflow bleach (retention) towers utilized in the Pulp and Paper industry. Fabrication processes for the shop and field components of these systems are reviewed. In addition, an overview of the advantages of Fiberglass Reinforced Plastics (FRP), considering the changing chemistries for pulp bleaching is presented, and a number of case histories are reviewed.

  17. Histopathology of the pulp in primary incisors with deep dentinal caries.

    PubMed

    Eidelman, E; Ulmanksy, M; Michaeli, Y

    1992-01-01

    The purpose of this study was to assess the histological appearance of the pulp of human primary incisors extracted because of deep, unrestorable caries, and to determine how clinical pulp exposures affected the histological status of the pulp compared to nonexposures. Caries was removed carefully from all teeth after fixation; 24 incisors had pulp exposures, and 29 teeth had no pulp exposures. Histological examination showed normal pulps in 69% of the teeth without pulp exposures, compared to 33% of teeth with exposed pulps (P < 0.05). Microabscesses were observed in 33% of cases with pulp exposures, compared to 10% of cases without pulp exposures. In this study, 46 of 53 pulps remained vital in spite of the multiple and deep carious lesions. Teeth without pulp exposures were diagnosed in the treatable category in 20 of 26 cases. PMID:1303544

  18. In vitro antibacterial activity of different pulp capping materials

    PubMed Central

    Beltrami, Riccardo; Colombo, Marco; Ceci, Matteo; Dagna, Alberto; Chiesa, Marco

    2015-01-01

    Background Direct pulp capping involves the application of a dental material to seal communications between the exposed pulp and the oral cavity (mechanical and carious pulp exposures) in an attempt to act as a barrier, protect the dental pulp complex and preserve its vitality. The aim of this study was to evaluate and compare, by the agar disc diffusion test, the antimicrobial activity of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), Biodentine (Septodont). Material and Methods Streptococcus salivarius, Streptococcus sanguis and Streptococcus mutans strains were selected to evaluate the antimicrobial activity by the agar disc diffusion test of different pulp capping materials. Paper disks were impregnated whit each pulp capping materials and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each pulp capping materials were recorded and compared for each bacterial strain. Results For the investigation of the antibacterial properties the ANOVA showed the presence of significant differences among the various materials. Tukey test showed that MTA-based materials induced lower growth inhibition zones. Conclusions MTA-based products show a discrete antibacterial activity varying from calcium hydroxide-based materials which present an higher antibacterial activity. Key words:Agar disc diffusion test, antimicrobial activity, calcium hydroxide, MTA, pulp capping materials. PMID:26644833

  19. Association between dental pulp stones and calcifying nanoparticles.

    PubMed

    Zeng, Jinfeng; Yang, Fang; Zhang, Wei; Gong, Qimei; Du, Yu; Ling, Junqi

    2011-01-01

    The etiology of dental pulp stones, one type of extraskeletal calcification disease, remains elusive to date. Calcifying nanoparticles (CNPs), formerly referred to as nanobacteria, were reported to be one etiological factor in a number of extraskeletal calcification diseases. We hypothesized that CNPs are involved in the calcification of the dental pulp tissue, and therefore investigated the link between CNPs and dental pulp stones. Sixty-five freshly collected dental pulp stones, each from a different patient, were analyzed. Thirteen of the pulp stones were examined for the existence of CNPs in situ by immunohistochemical staining (IHS), indirect immunofluorescence staining (IIFS), and transmission electron microscope (TEM). The remaining 52 pulp stones were used for isolation and cultivation of CNPs; the cultured CNPs were identified and confirmed via their shape and growth characteristics. Among the dental pulp stones examined in situ, 84.6% of the tissue samples staines positive for CNPs antigen by IHS; the corresponding rate by IIFS was 92.3 %. In 88.2% of the cultured samples, CNPs were isolated and cultivated successfully. The CNPs were visible under TEM as 200-400 nm diameter spherical particles surrounded by a compact crust. CNPs could be detected and isolated from a high percentage of dental pulp stones, suggesting that CNPs might play an important role in the calcification of dental pulp. PMID:21289988

  20. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    PubMed

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  1. LPS induces pulp progenitor cell recruitment via complement activation.

    PubMed

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  2. Simultaneous bench scale production of dissolving grade pulp and valuable hemicelluloses from softwood kraft pulp by ionic liquid extraction.

    PubMed

    Laine, Christiane; Asikainen, Sari; Talja, Riku; Stépán, Agnes; Sixta, Herbert; Harlin, Ali

    2016-01-20

    Ionic liquid extraction of wood pulp has been highlighted as a highly potential new process for dissolving pulp production. Coproduction with a polymeric hemicellulose fraction was demonstrated in bench scale from softwood kraft pulp using extraction with the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM OAc) and water. In total, the recovered pulp and hemicellulose fraction together yielded 95.5 wt.% of the pulp input. The extracted pulp had a remarkably high purity with an R18-value of 97.8%. The hemicellulose fraction consisted of galactoglucomannan, arabinoxylan and some cellulose and was precipitated from the ionic liquid-water mixture. After hydroxypropylation of the hemicellulose fraction, films were prepared and barrier and strength properties were compared to films from other polysaccharides. Reduced oxygen and water vapor permeation and good strength properties were demonstrated when compared to corresponding films from hydroxypropylated xylan from cold caustic extraction. The films have potential for applications in food packaging and edible films. PMID:26572370

  3. Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-05-01

    Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. PMID:25710682

  4. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  5. Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana).

    PubMed

    Rodríguez-Sánchez, Dariana; Silva-Platas, Christian; Rojo, Rocío P; García, Noemí; Cisneros-Zevallos, Luis; García-Rivas, Gerardo; Hernández-Brenes, Carmen

    2013-12-30

    Avocado fruit is a rich source of health-related lipophilic phytochemicals such as monounsaturated fatty acids, tocopherols, carotenes, acetogenins and sterols. However, limited information is available on the contribution of specific phytochemicals to the overall antioxidant capacity (AOC) of the fruit. Centrifugal partition chromatography was used as fractionation tool, guided by an in vitro chemical assay of oxygen radical absorbance capacity (ORAC). Subsequent experiments focused on isolation and characterization of the chemical nature of the main contributors to lipophilic AOC of avocado pulp. ORAC values obtained for acetogenins were contrasted with results from an isolated kidney mitochondria membrane lipid peroxidation bioassay. The present study established that lipophilic AOC of the pulp was significantly higher than its hydrophilic AOC. Our results confirmed the presence of acetogenins in the fractions with highest lipophilic AOC, and for the first time linked them as contributors to lipophilic-ORAC values. Further HPLC-PDA/MS-TOF analysis led to structural elucidation of two novel acetogenins, not previously reported as present in avocado pulp, along with five already known related-compounds. Antioxidant properties observed for avocado pulp acetogenins by the ORAC assay suggested that, in the presence of an emulsifying agent, acetogenins could serve as novel lipophilic antioxidants in a food matrix. Results from isolated mitochondria lipid peroxidation bioassay, indicated that L-ORAC values which may have relevance for food matrix applications, should not be interpreted to have a direct relevance in health-related claims, compounds need to be evaluated considering the complexity of biological systems. PMID:24211333

  6. Problems in Pulps: A Study of Special Collections in Pulp Magazines.

    ERIC Educational Resources Information Center

    Tuttle, George

    Heads of special collections of pulp magazines, the medium for popular fiction prior to the introduction of mass market paperbacks in 1939, were surveyed to help analyze and address the problems facing these collections. A survey mailed to special collections administrators gathered background information from the four largest collections…

  7. PDADMAC as a flocculant for lignosulfonate of NSSC pulping process.

    PubMed

    Oveissi, Farshad; Sitter, Thomas; Fatehi, Pedram

    2016-05-01

    The spent liquor (SL) of neutral sulfite semi-chemical (NSSC) pulping process contains about 8 wt% lignocelluloses that can be extracted and used in the production of value-added materials. In this work, a flocculation process followed by centrifugation was considered for isolating lignosulfonate and hemicelluloses from SL. It was observed that, by adding 20 mg/g of polydiallyldimethylammuniom chloride (PDADMAC) with 100,000-200,000 g/mol molecular weight to SL, 45% of lignosulfonate and 39% of hemicelluloses were removed at 30°C. The lignocellulose removal was more efficient for the dual flocculation system of low and high molecular weights PDADMAC than for individual PDADMAC systems. Overall, 49% of lignosulfonate, 47% of hemicelluloses and 97% of turbidity were removed from SL from the dual system when 10 mg/g low molecular weight PDADMAC and 10 mg/g high molecular weight PDADMAC were added to the SL at 30°C, subsequently. The thermogravimetric analysis (TGA) of generated flocs showed that all samples had similar thermal behaviour and 13-16 wt% of flocs remained as ash after burning at 700°C in nitrogen. As the flocs are made of lignocellulosic materials and they are thermally stable, they could be used as fillers in paper board production. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:686-691, 2016. PMID:26914393

  8. Aetiology, classification and pathogenesis of pulp and periapical disease.

    PubMed

    López-Marcos, Joaquín F

    2004-01-01

    At present, the majority of the treatments that are performed in the clinic are due to disease entities involving the dental pulp and periapex. Dental pulp is a richly vascularized and innervated tissue, enclosed by surrounding tissues that are incapable of expanding, such as dentin. It has terminal blood flow and small-gauge circulatory access the periapex. All of these characteristics severely constrain the defensive capacity of the pulp tissue when faced with the different aggressions it may be subjected to. Pulp tissue can also be affected by a retrograde infection, arising from the secondary canaliculi, from the periodontal ligament or from the apex during the course of periodontitis. Due to the fact that periapical disease is almost inevitably preceded by pulp disease, we shall begin by describing the causes of pulp disease and will then proceed to a discussion of the causes of periapical disease. The course of illness and classification of these pathological entities will depend on the aetiology involved. We will analyse pulp necrosis and pulp degeneration that are capable of triggering reversible apical periodontitis or irreversible apical periodontitis. PMID:15580137

  9. Influence of moderate to severe chronic periodontitis on dental pulp

    PubMed Central

    Fatemi, K; Disfani, R; Zare, R; Moeintaghavi, A; Ali, Saadat A.; Boostani, H. R

    2012-01-01

    Background: The relationship between periodontal disease and dental pulp changes is controversial and has been debated for many years. This human study was performed to evaluate the possible effects of moderate to advanced periodontal disease on the different aspect of dental pulp structure. Materials and Methods: Twenty hopeless permanent teeth were extracted from systemically healthy adults because of moderate to advanced chronic periodontitis, with a bone loss of >6 mm and a mobility of grade 2 or 3. Upon extraction, the apical 2 to 3 mm of the roots were immediately sectioned. Four to five sections were mounted on each slide, and every third slide was stained with hematoxylin and eosin. The specimens were histologically processed and examined by an oral pathologist. Results: Non-inflamed pulp, with partial or complete necrosis in some sections and several non-necrotic sections, was found in only 6.3% of teeth. Most teeth (58.3%) displayed edematous pulps. Slightly fibrotic pulps were seen in 52.1% of sections. Odontoblastic integrity was seen in 31.3% of teeth. Most teeth (77.1%) displayed no pulp stones. In 43.8% of teeth, the pulp vessels displayed dilatation. Conclusions: Moderate to advanced periodontal disease can affect the dental pulp. Careful consideration of diagnostic and treatment planing in patients with endodontic-periodontal involvement is therefore recommended. PMID:23493524

  10. TOXICITY OF PULP AND PAPER MILL EFFLUENT, A LITERATURE REVIEW

    EPA Science Inventory

    The review of pulp and paper mill effluents considers the need for additional toxicity data to insure effective effluent regulation. Effluent characteristics and problems of toxicity testing particular to pulp and paper mill effluents are discussed; however, the emphasis is on to...

  11. Corvidae feather pulp and West Nile virus detection

    USGS Publications Warehouse

    Docherty, D.E.; Romaine Long, R.; Griffin, Katie M.; Saito, E.K.

    2004-01-01

    We evaluated cloacal swab, vascular pulp of flight feather, and kidney and spleen pool samples from carcasses of members of the family Corvidae as sources of West Nile virus (WNV). The cloacal swab, kidney and spleen pool, and feather pulp were the source of WNV in 38%, 43%, and 77%, respectively, of the carcasses.

  12. Axonal Degeneration in Dental Pulp Precedes Human Primary Teeth Exfoliation.

    PubMed

    Suzuki, K; Lovera, M; Schmachtenberg, O; Couve, E

    2015-10-01

    The dental pulp in human primary teeth is densely innervated by a plethora of nerve endings at the coronal pulp-dentin interface. This study analyzed how the physiological root resorption (PRR) process affects dental pulp innervation before exfoliation of primary teeth. Forty-four primary canine teeth, classified into 3 defined PRR stages (early, middle, and advanced) were fixed and demineralized. Longitudinal cryosections of each tooth were stained for immunohistochemical and quantitative analysis of dental pulp nerve fibers and associated components with confocal and electron microscopy. During PRR, axonal degeneration was prominent and progressive in a Wallerian-like scheme, comprising nerve fiber bundles and nerve endings within the coronal and root pulp. Neurofilament fragmentation increased significantly during PRR progression and was accompanied by myelin degradation and a progressive loss of myelinated axons. Myelin sheath degradation involved activation of autophagic activity by Schwann cells to remove myelin debris. These cells expressed a sequence of responses comprising dedifferentiation, proliferative activity, GAP-43 overexpression, and Büngner band formation. During the advanced PRR stage, increased immune cell recruitment within the dental pulp and major histocompatibility complex (MHC) class II upregulation by Schwann cells characterized an inflammatory condition associated with the denervation process in preexfoliative primary teeth. The ensuing loss of dental pulp axons is likely to be responsible for the progressive reduction of sensory function of the dental pulp during preexfoliative stages. PMID:26149320

  13. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrode gel for pulp testers. 872.1730 Section 872.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers....

  14. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrode gel for pulp testers. 872.1730 Section 872.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers....

  15. 21 CFR 872.1730 - Electrode gel for pulp testers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrode gel for pulp testers. 872.1730 Section 872.1730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1730 Electrode gel for pulp testers....

  16. 29 CFR 1910.261 - Pulp, paper, and paperboard mills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Pulp, paper, and paperboard mills. 1910.261 Section 1910.261 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.261 Pulp, paper, and paperboard mills. (a) General...

  17. A Radiographic Correlation between Renal and Pulp Stones

    PubMed Central

    Ertas, E Tarim; Inci, M; Demirtas, A; Ertas, H; Yengil, E; Sisman, Y; Gokce, C

    2014-01-01

    ABSTRACT Aim: The purpose of this study was to determine the correlation between pulp stones and renal stones. This study also aimed to report associations between the presence of pulp stone and gender, age, tooth type, dental arches and sides. Patients and Methods: Data were collected through examination of bitewing radiographs of 116 kidney stone patients and a similar number of age-matched controls, referred to the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Erciyes University. Two oral radiologists examined the radiographs to identify pulp stones. The Chi-squared and Mann Whitney U tests were used to investigate the correlations between the presence of pulp chamber calcification and age, gender, dental status and kidney stone. Results: Pulp chamber opacities were detected in 199 (19.3%) out of the 1031 examined teeth, and in 84 (72.4%) out of the 116 kidney stone patients. There was no statistically significant difference between the study and control group (p = 0.882). The occurrence of pulp stones was significantly higher in molars than premolars and similar prevalences were found between dental arches and sides. Conclusion: In this study, no correlation was found between the presence of pulp stones and kidney stones in the investigated group. Therefore, the presence of pulp stones does not seem to be correlated with that of kidney stones. PMID:25803378

  18. Tablet fluoridation influences the calcification of primary tooth pulp.

    PubMed

    Holtgrave, E A; Hopfenmüller, W; Ammar, S

    2001-01-01

    This study was conducted to determine the influence of long-term tablet fluoridation on primary pulp calcification by light microscopy. Twenty-four caries-free primary molars (after continuous postpartally initiated 1- to 10-year tablet fluoridation) were compared to 17 primary molars of children without fluoride prophylaxis. Pulp calcification in children with tablet fluoridation was significantly more frequent and more pronounced than in untreated children (p = 0.001). Besides the known pulp stones, the prophylaxis group evidenced a special form of calcification consisting of fibrodentin-like hard tissue not observed in the untreated children. These hard tissue bodies developed "intramurally" on the pulp floor and the inside of the dental roots with an irregular extramural spread into the coronal and radicular pulp by displacement and fibrotization of the pulp tissue. Moreover, some of the teeth had more or less extensive areas of interglobular dentin. The affected teeth were ankylosed in the area of the bi- and trifurcation and on the inside of the roots and were thus infra-occluded. Although the duration of tablet fluoridation has no statistically significant influence on pulp calcification, there is a correlation between extensive pulp calcification, postnatally initiated fluoride prophylaxis and the infraocclusion of primary molars. PMID:11227204

  19. Roles of electricity: Pulp and papermaking

    SciTech Connect

    Burwell, C.C.; Mills, M.; McCarthy, D.

    1986-09-01

    The report begins with a brief description of the industry. The pulp and paper business, while seemingly homogeneous, is enormously variable in detail. In this brief analysis, the reader is provided with an overview of the subject - a view of the forest, so to speak, not of the trees - sufficient to grasp the forces causing change in the industry. It will be seen that these changes, in general, are dictating an increasing dependence on electricity. The focus of this analysis has been to shed light on the increasing role for electricity in the age-old process of papermaking.

  20. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation. PMID:11487132

  1. Alkaline phosphatase activity in normal and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Di Stilio, M; Piattelli, A

    2001-03-01

    Alkaline phosphatase (ALP) seems to be important in the formation of mineralized tissues. High levels of ALP have been demonstrated in dental pulp cells. In the present study ALP activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic ALP control values for the normal healthy pulps were 110.96+/-20.93. In the reversible pulpitis specimens the ALP activity increased almost eight times to 853.6+/-148.27. In the irreversible pulpitis specimens the values decreased sharply to 137.15+/-21.28 and were roughly equivalent to those seen in normal healthy pulps. The differences between the groups (control vs. reversible pulpitis and reversible pulpitis vs. irreversible pulpitis) were statistically significant. These results could point to a role of ALP in the initial pulp response after injury. PMID:11487147

  2. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  3. Synthesis of SiC nanorods from bleached wood pulp

    SciTech Connect

    Shin, Yongsoon; Wang, Chong M.; Samuels, William D.; Exarhos, Gregory J.

    2007-05-01

    Unbleached and bleached soft wood pulps have been used as templates and carbon precursors to produce SiC nanorods. Hydrolyzed tetraethylorthosilicate (TEOS), Silicic acid was infiltrated into the pulps followed by a carbothermal reduction to form SiC nanorods at 1400oC in Ar. Residual carbon formed along with SiC was removed by gasification at 700oC in air. The SiC materials prepared from unbleached pulp were non-uniform SiC with a thick SiO2 coating, while the SiC nanorods prepared from the bleached pulp were uniform and straight with dimensions of 250 nm in diameter and 5.0 mm long. The formation of uniform camelback structure of SiC in the reaction between silica and bleached pulp is attributed to more silica deposited in the amorphous region of cellulose.

  4. Biodentine pulpotomy several days after pulp exposure: Four case reports

    PubMed Central

    Borkar, Swati A.; Ataide, Ida

    2015-01-01

    Conventionally, few-days-old pulp exposures have been treated with root canal treatment. We report four cases of traumatized, fully matured, maxillary permanent central incisors, which have been treated by Biodentine pulpotomy several days after traumatic pulp exposure. Biodentine pulpotomy consisted of pulp tissue removal to a depth of 2 mm, then capping the pulpal wound with Biodentine, followed by immediate restoration. The teeth were assessed clinically through pulpal sensitivity tests and radiographically for periapical healing. At each recall (24 hours, 1 week, 30 days, 3, 6, 12, and 18 months), no spontaneous pain was observed; the pulp showed signs of vitality and absence of periapical radiolucency after 18 months. Biodentine pulpotomy is recommended as a treatment option for cases of vital pulp exposure in permanent incisors due to trauma. PMID:25657533

  5. Biodentine pulpotomy several days after pulp exposure: Four case reports.

    PubMed

    Borkar, Swati A; Ataide, Ida

    2015-01-01

    Conventionally, few-days-old pulp exposures have been treated with root canal treatment. We report four cases of traumatized, fully matured, maxillary permanent central incisors, which have been treated by Biodentine pulpotomy several days after traumatic pulp exposure. Biodentine pulpotomy consisted of pulp tissue removal to a depth of 2 mm, then capping the pulpal wound with Biodentine, followed by immediate restoration. The teeth were assessed clinically through pulpal sensitivity tests and radiographically for periapical healing. At each recall (24 hours, 1 week, 30 days, 3, 6, 12, and 18 months), no spontaneous pain was observed; the pulp showed signs of vitality and absence of periapical radiolucency after 18 months. Biodentine pulpotomy is recommended as a treatment option for cases of vital pulp exposure in permanent incisors due to trauma. PMID:25657533

  6. Can Pulp Fibroblasts Kill Cariogenic Bacteria? Role of Complement Activation.

    PubMed

    Jeanneau, C; Rufas, P; Rombouts, C; Giraud, T; Dejou, J; About, I

    2015-12-01

    Complement system activation has been shown to be involved in inflammation and regeneration processes that can be observed within the dental pulp after moderate carious decay. Studies simulating carious injuries in vitro have shown that when human pulp fibroblasts are stimulated by lipoteichoic acid (LTA), they synthetize all complement components. Complement activation leads to the formation of the membrane attack complex (MAC), which is known for its bacterial lytic effect. This work was designed to find out whether human pulp fibroblasts can kill Streptococcus mutans and Streptococcus sanguinis via complement activation. First, histological staining of carious tooth sections showed that the presence of S. mutans correlated with an intense MAC staining. Next, to simulate bacterial infection in vitro, human pulp fibroblasts were incubated in serum-free medium with LTA. Quantification by an enzymatic assay showed a significant increase of MAC formation on bacteria grown in this LTA-conditioned medium. To determine whether the MAC produced by pulp fibroblasts was functional, bacteria sensitivity to LTA-conditioned medium was evaluated using agar well diffusion assay and succinyl dehydrogenase (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide [MTT]) assay. Both assays showed that S. mutans and S. sanguinis were sensitive to LTA-conditioned medium. Finally, to evaluate whether MAC formation on cariogenic bacteria, by pulp fibroblasts, can be directly induced by the presence of these bacteria, a specific coculture model of human pulp fibroblasts and bacteria was developed. Immunofluorescence revealed an intense MAC labeling on bacteria after direct contact with pulp fibroblasts. The observed MAC formation and its lethal effects were significantly reduced when CD59, an inhibitor of MAC formation, was added. Our findings demonstrate that the MAC produced by LTA-stimulated pulp fibroblasts is functional and can kill S. mutans and S. sanguinis. Taken together

  7. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells.

    PubMed

    Zhang, Xufang; Jiang, Hongwei; Gong, Qimei; Fan, Chen; Huang, Yihua; Ling, Junqi

    2014-08-01

    High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration. PMID:25019990

  8. Alkaline polyol pulping and enzymatic hydrolysis of hardwood: effect of pulping severity and pulp composition on cellulase activity and overall sugar yield.

    PubMed

    Hundt, Martin; Schnitzlein, Klaus; Schnitzlein, Michael G

    2013-05-01

    The saccharification of beech wood using alkaline polyol pulping (AlkaPolP) and enzymatic hydrolysis was investigated. It will be demonstrated that the AlkaPolP process yields high quality pulps which can easily be hydrolyzed by cellulases. In order to find optimum reaction conditions chips of Fagus sylvatica were pretreated by alkaline glycerol at temperatures between 190 and 230 °C for 15, 20, and 25 min. The impacts of temperature and time were expressed using a severity factor R0. The dependencies of the conversion during enzymatic hydrolysis on severity, pulp yield, delignification and pulp composition are shown. In further experiments it was investigated if the sugar yields can be increased by the application of ultrasound or surfactants before enzyme addition. Up to 95% of the initial cellulose in wood were converted into glucose using cellulases from Trichoderma reesei and β-glucosidase from Aspergillus niger. PMID:23570715

  9. Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product.

    PubMed

    Mayer, F; Hillebrandt, J O

    1997-10-01

    Potato pulp, one of the agricultural waste products obtained in high quantities during starch production, contains starch, cellulose, hemicelluloses, pectin, proteins, free amino acids and salts. It exhibits physical and physicochemical properties of a typical colloid. It is mainly used, in a dried and pelleted form, as cattle feed. Its autochthonic microbial flora (bacteria, fungi) was identified and studied with a view towards the degradative potential of the microorganisms and ways of conserving the pulp for subsequent technical applications; 33 isolates (28 bacteria, 4 fungi, 1 yeast), belonging to 15 genera were characterized. Biological conservation was possible at very low oxygen pressure, brought about by the autochthonic anaerobic microorganisms causing acidification. Chemical conservation was achieved with sorbic acid. By treatment with hot water vapour under pressure (autoclaving), followed by a pressure release procedure, intact cells in the pulp (both potato cells and microorganisms, not spores) were destroyed, and their contents and wall fragments were set free. This process resulted in low drying costs and was a prerequisite for the production of a powder that can be used as glue or as animal feed. PMID:9390450

  10. Bioactive Phenylpropanoids, Phenolic Acid and Phytosterol from Landolphia owariensis P. Beauv Stringy Seed Pulp.

    PubMed

    Okonkwo, Tochukwu J N; Osadebe, Patience O; Proksch, Peter

    2016-01-01

    Landolphia owariensis P. Beauv is economically important for latex/rubber and folklore medicine. Its stringy seed pulp is freely eaten by humans and animals. Thus, L. owariensis stringy seed pulp was extracted serially with hexane and acetone to isolate and characterize its active pharmaceutical ingredients. Solvent/solvent partition and chromatographic separations afforded four bioactive compounds, (E)-3-(3,4-Dihydroxylcinnamoyl)quinic acid [(E)-Chlorogenic acid], I; (E)-3-(3,4-Dihydroxylcinnamoyl)quinic acid methyl ester [(E)-Chlorogenic acid methyl ester], II; 3,4-Dihydroxylbenzoic acid, (Protocatechuic acid), III; and 22,23-Dihydrostigmaster-3β-ol (3β-Sitosterol) (IV). Structures of I, II and III were assigned by combinations of high-performance liquid chromatography-ultraviolet-visible spectroscopy, 1D and 2D nuclear magnetic resonance spectroscopy, high-performance liquid chromatography-mass spectrometry and reference to published literatures, while compound IV was identified by chemical methods and gas chromatography-mass spectrometry. The phenylpropanoids and phenolic acid (compounds I, II and III) are notable standard antioxidants with confirmed hepatic-protective activity and other exciting biological activities. Compound IV has been reported to possess anti-inflammatory activity, anti-colon cancer action and a cholesterol-lowering effect. The described compounds are important medicinal constituents of L. owariensis stringy seed pulp, and this is the first major report on the phytochemistry of L. owariensis P. Beauv. PMID:26537109

  11. Kinetics of pulp mill effluent treatment by ozone-based processes.

    PubMed

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes. PMID:19304380

  12. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration

    PubMed Central

    Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji

    2013-01-01

    Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108

  13. 40 CFR 430.70 - Applicability; description of the mechanical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical pulp subcategory. 430.70 Section 430.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mechanical Pulp Subcategory § 430.70 Applicability; description of the mechanical pulp subcategory. The... groundwood chemi-mechanical mills; the production of pulp and paper at groundwood mills through...

  14. Responses of white sucker (Catostomus commersoni) to 20 years of process and waste treatment changes at a bleached kraft pulp mill, and to mill shutdown.

    PubMed

    Bowron, L K; Munkittrick, K R; McMaster, M E; Tetreault, G; Hewitt, L M

    2009-11-01

    The impacts of pulp mill effluents on white sucker (Catostomus commersoni) have been studied at Jackfish Bay, ON, Canada since the late 1980s. The site receives effluent from a large bleached kraft pulp mill which is the only source of chemical contamination in the area. Many laboratory studies have looked at the toxicological consequences of pulping process changes, but the benefit of these changes have not been looked at in wild fish. Jackfish Bay white sucker showed impacts on sexual maturity, gonad size, secondary sexual characteristics and circulating steroids hormone levels in the early years of the studies, and impacts were evaluated after installation of secondary treatment (1989), major pulping process changes (1995) and after the mill ceased pulp production and effluent release (2006). The addition of secondary treatment resulted in minor improvements in wild fish health, and the conversion to elemental chlorine free (ECF) bleaching at the mill was associated with more recovery in liver and gonad size. While some impacts persist at the exposure site, reproductive parameters showed further improvement during the mill shutdown period demonstrating that biologically active chemicals are still being discharged from modernized mills. PMID:19783055

  15. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    PubMed Central

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo. PMID:26538821

  16. Scaffolds to Control Inflammation and Facilitate Dental Pulp Regeneration

    PubMed Central

    Colombo, John S.; Moore, Amanda N.; Hartgerink, Jeffrey D.; D’Souza, Rena N.

    2014-01-01

    In dentistry, the maintenance of a vital dental pulp is of paramount importance, as teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. While the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis due to their ability to switch to a pro-resolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a pro-resolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented. PMID:24698696

  17. Scaffolds to control inflammation and facilitate dental pulp regeneration.

    PubMed

    Colombo, John S; Moore, Amanda N; Hartgerink, Jeffrey D; D'Souza, Rena N

    2014-04-01

    In dentistry, the maintenance of a vital dental pulp is of paramount importance because teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. Although the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis because of their ability to switch to a proresolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a proresolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented. PMID:24698696

  18. Wood pulp characterization by a novel photoacoustic sensor

    NASA Astrophysics Data System (ADS)

    Niemi, Jan; Löfqvist, Torbjörn

    2012-08-01

    In this paper we introduce a novel photoacoustic sensing technique that captures a photoacoustic signal excited by a laser light pulse after the light has propagated through a turbid medium. Simultaneously, the ultrasonic sound wave is captured after it has propagated through the same turbid medium. By combining the two signals, more information on the investigated medium can be obtained. Applications can be found in the pulp and paper industry where monitoring wood pulp compositions is of interest. Depending on its origin, pulp suspension contains different compositions of fibres and fibre fragments (fines). Poor control of the pulp composition leads to an unstable process that compromises the production, quality and energy efficiency in the pulp mill. The result shows the feasibility of the photoacoustic sensor in monitoring the mass fractions of fibres and fines in a pulp suspension. The first received echo, corresponding to the light interaction with the sample, showed a stronger correlation to the fines mass fraction compared to fibre mass fraction. The second echo, corresponding to the sound wave interaction with the sample, showed a much stronger correlation to fibre mass fraction than to fines mass fraction. Hence, it is proposed that by combining these two echoes, more information about the pulp suspension could be extracted than from any other sensor built on a single sensing principle.

  19. Agricultural fibres for pulp and paper manufacture in developed countries

    SciTech Connect

    Wong, A.

    1995-11-01

    Agricultural fibres are routinely used for the manufacture of paper products in developing countries. The agriculture (non-wood) pulp industry accounts more than 50% of the national pulp production in China and in India. In contrast, paper manufacturers of the developed countries have relied largely on wood pulp fibres since the 1950`s. During the past 3 decades, the global wood pulp production capacities has expanded substantially. There is a renewed interest to use agriculture-based fibres in place of wood, for the production of pulp and paper in developing countries. The alternative is driven, in part, by the growing shortage of commercial wood supply as caused by the over-cutting of the standing forest and the accelerated re-allocation of forest land for ecological and recreational uses. Although the shortage of wood supply can be alleviated partially by the adoption of higher-yield wood pulping technologies and by the increased use of waste paper. But ultimately, these remedial steps will be inadequate to meet the growing demand for paper products. There are several important factors which affect the use of agricultural fibres for pulp and paper manufacture in developed countries. For some on-purpose fibre crops, continued farm subsidy and repeal of certain sections of the Narcotics Act would be required. Agri-pulp production from agricultural cropping residues appears to be the most practical economic means to supplement the fibre needs of the paper industry. In the social context, agri-pulp implementation in North America would also provide lower taxes that would be accrued from the elimination of substantial annual subsidies to grain farmers from the government.

  20. Nestin expressions of exposed pulp after direct pulp capping by calcium hydroxide and platelet rich plasma

    PubMed Central

    Puspita, Sartika; Utoro, Totok; Haniastuti, Tetiana

    2016-01-01

    Objective: The aim of this study was to evaluate nestin expression of pulp tissue following direct pulp capping with platelet-rich plasma (PRP). Materials and Methods: The thirty sound teeth from Sprague-Dawley rats were used and divided into two groups: Groups 1, teeth were capped with calcium hydroxide/Ca(OH)2 (n = 15) and Group 2 with PRP (n = 15). After 1st, 7th, and 21st days, respectively, 5 teeth each group (American Dental Association 41) were processed for light microscopic examination. Expressions of nestin were assessed by immunohistochemical techniques. Results: Nestin expression of Ca(OH)2 on the distance place of exposure at 1st and 7th days were 80% and at 21st day were 60%. Nestin expression of PRP on the distance place at 1st day was 80%, 7th 100%, and 21st day was 80%. At day 21 observation, Kruskal–Wallis test shows nestin expression was increased significantly in PRP groups (P < 0.05), but it was not increase significantly compare with Ca(OH)2. Conclusion: PRP had ability as a direct pulp capping material to induce nestin expression. PMID:27403050

  1. Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching.

    PubMed

    Pouyet, Frédéric; Chirat, Christine; Potthast, Antje; Lachenal, Dominique

    2014-08-30

    The formation of carbonyl groups during the ozone treatment (Z) of eucalyptus (Eucalyptus grandis and Eucalyptus urophylla hybrid) kraft pulps and their behaviors during subsequent alkaline stages were investigated by the CCOA method with carbazole-9-carboxylic acid [2-(2-aminooxethoxy)-ethoxy] amide (CCOA) as the carbonyl-selective fluorescence label. Several pulp samples with or without lignin and hexenuronic acids (hexA) were used to elucidate the effects of these components when present in unbleached kraft pulp. Both hexA and lignin increased the formation of carbonyl groups on cellulose and hemicellulose during ozonation. It was concluded that radicals are likely formed when ozone reacts with either lignin or hexA. These carbonyl groups were involved in cellulose depolymerization during subsequent alkaline extraction stages with sodium hydroxide (E) and alkaline hydrogen peroxide (P, in ZEP or ZP). Their numbers decreased after E but increased during P when H2O2 was not stabilized enough. Several ways to minimize the occurrence of carbonyl group formation are suggested. PMID:24815405

  2. Modifications of the dental pulp in marginal periodontitis. Electronomicroscopical contributions.

    PubMed

    Deva, V; Vătăman, Maria; Manolea, H

    2006-01-01

    Histological studies on teeth with marginal periodontitis, but without cavity lesions have shown a frequent apparition of modifications in the pulp tissue structure. In this study, by using the electron microscopy method, we have shown a series of interesting aspects of the intimate modifications that appear on the level of all components of the pulp tissue. The observations show that the degree of affecting can be correlated to the type of marginal periodontitis, and at the same time they contribute to a right evaluation of the defensive abilities of the pulp of the teeth with marginal periodontitis. PMID:16838061

  3. Method and apparatus for assaying wood pulp fibers

    DOEpatents

    Gustafson, Richard; Callis, James B.; Mathews, Jeffrey D.; Robinson, John; Bruckner, Carsten A.; Suvamakich, Kuntinee

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  4. Preparation of clinker from paper pulp industry wastes.

    PubMed

    Buruberri, Leire H; Seabra, M P; Labrincha, J A

    2015-04-01

    The production of paper pulp by the Kraft method generates considerable amounts of wastes. Namely, lime mud generated in the recovery circuit of chemical reagents, biological sludge from the wastewater treatment of wood digestion process and fly ash collected in the fluidized bed combustor used to generate electricity from biomass burning. The final destination of such wastes is an important concern, since environmental regulations are becoming stricter regarding their landfill. Driven by this fact, industries are looking for more sustainable solutions, such as the recycling in distinct products. This work tested these wastes as secondary raw materials to produce clinker/cement that was then experienced in mortar formulations. The first step involved the residues detailed characterization and a generated amounts survey. Then, specific but simple steps were suggested, aiming to facilitate transport and manipulation. Distinct blends were prepared and fired in order to get belitic and Portland clinkers. The Portland clinkers were processed at lower temperatures than the normally used in the industry due to the presence of mineralizing impurities in some wastes. Belite-based cements were used to produce mortars that developed satisfactory mechanical strength and did not reveal signs of deterioration or durability weaknesses. PMID:25590818

  5. Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour.

    PubMed

    Alves, Ariana Vieira; Sanjinez-Argandoña, Eliana Janet; Linzmeier, Adelita Maria; Cardoso, Claudia Andrea Lima; Macedo, Maria Lígia Rodrigues

    2016-01-01

    Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae), which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq.) Lodd) is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83%) and lipid (40.45%), with significant levels of unsaturated fatty acids (65.99%), antioxidant activity (4.5 μM Trolox/g of oil extracted from larvae) and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae. PMID:26974840

  6. Ash from a pulp mill boiler--characterisation and vitrification.

    PubMed

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. PMID:20346582

  7. Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour

    PubMed Central

    Alves, Ariana Vieira; Sanjinez-Argandoña, Eliana Janet; Linzmeier, Adelita Maria; Cardoso, Claudia Andrea Lima; Macedo, Maria Lígia Rodrigues

    2016-01-01

    Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae), which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq.) Lodd) is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83%) and lipid (40.45%), with significant levels of unsaturated fatty acids (65.99%), antioxidant activity (4.5 μM Trolox/g of oil extracted from larvae) and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae. PMID:26974840

  8. The pulp switch flap: an option for the treatment of loss of the dominant half of the digital pulp.

    PubMed

    Silva, J Braga; Pires, F K S; Teixeira, L F

    2013-11-01

    The fingertip has an important role in bi-digital pinch quality, and pulp loss is common and difficult to solve. The pulp switch consists of a pulp island flap with a homodigital neurovascular pedicle, vascularized by the palmar digital artery of the non-dominant pulp transposed to the dominant pulp side. We report the results in 16 patients treated for loss of the dominant half of a digital pulp from January 2000 to December 2008. On review after a minimum of 6 (range 6-18) months, the Weber's test demonstrated an average of 8 mm in static 2 point discrimination test for all digits, except the ring finger. In the monofilament Semmes-Weinstein test, we obtained a score of 3.61 for the thumb and little fingers, and 4.31 for the other fingers. We did not find partial or total necrosis of the flap. The pulp switch flap gave satisfactory functional results for viability, sensitivity, and digital mobility providing a sensate bi-digital pinch with acceptable aesthetic results in a single surgical procedure. PMID:23592535

  9. Preventing Strength Loss of Unbleached Kraft Pulp

    SciTech Connect

    Martin Hubbe; Richard Venditti; John Heitmann

    2003-04-16

    Kraft pulp fibers lose inter-fiber bonding ability when they are dried during the manufacture of paper. Adverse environmental consequences of this loss include (a) limitations on the number of times that kraft fibers can be recycled, (b) reduced paper strength, sometimes making it necessary to use heavier paper or paperboard to meet product strength requirements, increasing the usage of raw materials, (c) decreased rates of paper production in cases where the fiber furnish has been over-refined in an attempt to regain inter-fiber bonding ability. The present study is the first of its type to focus on unbleached kraft fibers, which are a main ingredient of linerboard for corrugated containers. About 90 million tons of unbleached kraft fiber are used worldwide every year for this purpose.

  10. Low Odor, High Yield Kraft Pulping

    SciTech Connect

    W.T. McKean

    2000-12-15

    In laboratory cooks pure oxygen was profiled into the circulation line of a batch digester during two periods of the cooking cycle: The first injection occurred during the heating steps for the purpose of in-situ generation of polysulfide. This chip treatment was studied to explore stabilization against alkaline induced carbohydrate peeling and to increase pulp yield. Under optimum conditions small amounts of polysulfide were produced with yield increase of about 0.5% These increases fell below earlier reports suggesting that unknown differences in liquor composition may influence the relative amounts of polysulfide and thiosulfate generated during the oxidation. Consequently, further studies are required to understand the factors that influence the ratios of those two sulfur species.

  11. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  12. High-solids black liquor firing in pulp and paper industry Kraft recovery boilers. Final report, Phase 1, Volume 1: Executive summary

    SciTech Connect

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The objectives are to develop a preliminary design of a recovery furnace simulator; evaluate the economics of high-solids; and delineate a project concept for evaluating candidate technologies to improve chemical recovery.

  13. Effects of laccase-natural mediator systems on kenaf pulp.

    PubMed

    Andreu, Glòria; Vidal, Teresa

    2011-05-01

    This paper reports the first application of laccase-mediator systems (LMS) to kenaf pulp. Five natural phenolic compounds (acetosyringone, syringaldehyde, p-coumaric acid, vanillin and acetovanillone) were used as mediators in combination with laccase in an L stage in order to elucidate their effect on delignification. After LMS treatment, pulp samples were subjected to two alkaline treatments (an E or P stage). The results obtained were compared with those provided by the laccase-1-hydroxybenzotriazole (HBT) system. All natural mediators increased kappa number, decreased brightness and changed optical properties of the pulp after the L stage, suggesting that natural mediators tend to couple to fibers during a laccase-mediator treatment. The greatest delignification and bleaching effects after the P stage were obtained with syringaldehyde and acetosyringone, providing an effective means for delignifying kenaf, whereas those based on the other three could be used to functionalize kenaf with a view to obtaining pulp with novel properties. PMID:21444198

  14. Antifungal activity of fruit pulp extract from Bromelia pinguin.

    PubMed

    Camacho-Hernández, I L; Chávez-Velázquez, J A; Uribe-Beltrán, M J; Ríos-Morgan, A; Delgado-Vargas, F

    2002-08-01

    The methanol extract of the fruit pulp of Bromelia pinguin was evaluated for its antifungal activity. The extract showed a significant activity against some Trichophyton strains, although Candida strains were generally insensitive. PMID:12165338

  15. 'KLEBSIELLA' DENSITIES IN WATERS RECEIVING WOOD PULP EFFLUENTS

    EPA Science Inventory

    Surface waters receiving pulp mill effluents were examined for the presence of total coliforms, fecal coliforms, and Salmonella species. Fecal coliforms were biochemically identified as belonging to the Escherichia, Klebsiella or Enterobacter genera. Sixty percent of the isolates...

  16. Pulp-dentin Regeneration: Current State and Future Prospects.

    PubMed

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  17. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.

    PubMed

    Li, Meng; Wang, Li-jun; Li, Dong; Cheng, Yan-ling; Adhikari, Benu

    2014-02-15

    Cellulose nanofibers (diameter=10-70 nm) were produced using chemical treatments (alkali treatment and bleaching) and high pressure homogenization from de-pectinated sugar beet pulp (DSBP). Chemical analysis and Fourier transform infrared spectroscopy (FTIR) indicated that the chemical treatments greatly removed the hemicellulose and lignin from the DSBP and significantly increased the cellulose content. The crystallinity of the cellulose nanofibers increased from 35.67% to 69.62% after alkali treatment and bleaching. The thermal degradation temperature of DSBP cellulose nanofibers was 271.7 °C which was found to be 47.3 °C higher than that of the untreated DSBP. The DSBP cellulose nanofibers can be preferably used as reinforcement in the biocomposite material at high temperature. PMID:24507265

  18. High Speed Photography Of Wood Pulping In A Disc Refiner

    NASA Astrophysics Data System (ADS)

    Atack, D.; Clayton, D. L.; Quinn, A. E.; Stationwala, M. I.

    1985-02-01

    Some of the mechanisms involved in the reduction of wood chips to papermaking pulp in a commercial disc refiner have been determined by high speed photography. Flow patterns of pulp through the refiner, including an unexpected recirculation pattern, have been recorded. Cine-photography was also employed to show how wood chips are transported by a ribbon screw feeder into the refiner. Some aspects of photographing in a hostile environment are described. The following salient observations have been made during these studies. Chips and dilution water fall to the base of the feeder housing and are fed along it to the refiner eye, where the chips are reduced to coarse pulp. This coarse pulp proceeds through the breaker bars into the refining zone. Some pulp in the inner part of the refining zone flows back to the breaker bars along grooves of the stationary plates, giving rise to considerable recirculation. Pulp in the outer part of the refining zone moves radially outwards. For a short fraction of its passage through the refiner, most of the fibrous material is constrained to move in the direction of rotation of the moving plates. Some of this material is stapled momentarily in a tangential orientation across the bars of both sets of plates. The immobilized fibres are then subjected to the refining action between the relatively moving bars before being disgorged into the adjacent grooves.

  19. Biotechnological potential of coffee pulp and coffee husk for bioprocesses.

    PubMed

    Pandey; Soccol; Nigam; Brand; Mohan; Roussos

    2000-10-01

    Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial residues such as coffee pulp and coffee husk. Coffee pulp or husk is a fibrous mucilagenous material (sub-product) obtained during the processing of coffee cherries by wet or dry process, respectively. Coffee pulp/husk contains some amount of caffeine and tannins, which makes it toxic in nature, resulting the disposal problem. However, it is rich in organic nature, which makes it an ideal substrate for microbial processes for the production of value-added products. Several solutions and alternative uses of the coffee pulp and husk have been attempted. These include as fertilizers, livestock feed, compost, etc. However, these applications utilize only a fraction of available quantity and are not technically very efficient. Attempts have been made to detoxify it for improved application as feed, and to produce several products such as enzymes, organic acids, flavour and aroma compounds, and mushrooms, etc. from coffee pulp/husk. Solid state fermentation has been mostly employed for bioconversion processes. Factorial design experiments offer useful information for the process optimization. This paper reviews the developments on processes and products developed for the value-addition of coffee pulp/husk through the biotechnological means. PMID:10959086

  20. Binding and desulfurization characteristics of pulp black liquor in biocoalbriquettes.

    PubMed

    Kim, Heejoon; Lu, Guoqing; Li, Tianji; Sadakata, Masayoshi

    2002-04-01

    To control pollutant emissions from coal combustion in some developing countries, biocoalbriquette, an artificially produced solid fuel, was developed. Both the breaking strength and production costs of the biocoalbriquette have become essentially the most important factors in popularizing it in these countries. To increase the breaking strength and decrease the production costs, it is proposed in this study to use pulp black liquor, a byproduct from the pulp production industry, as a binder. The influences of pulp black liquor on the briquetting and combustion characteristics were investigated. Furthermore, the desulfurization characteristics of pulp black liquor were also evaluated through combustion experiments. The study results show that the briquetting pressure has a limited effect on the breaking strength. An increase in the briquetting pressure yields greater breaking strength of up to the 50 MPa. Above 50 MPa, the breaking strength changes very little with the briquetting pressure. The use of pulp black liquor has had a greater effect on increasing the breaking strength than on changing the briquetting pressure and also on improving the combustion characteristics of the biocoalbriquette. On the other hand, pulp black liquor has some desulfurization capabilities. When used as a binder, it not only increases the breaking strength and decreases the necessary briquetting pressure, but it also improves some characteristics of the combustion and reduces the pollutants emission. PMID:11999073

  1. Biosolids recycling at a pulp and paper mill

    SciTech Connect

    Gratton, P.F.; Montgomery, K.L.; Page, S.H.

    1997-12-31

    The Bio Gro Division of Wheelabrator Water Technologies Inc. has traditionally been involved in recycling biosolids from domestic wastewater treatment plants. The biosolids, or primarily organic residuals that result from the treatment of wastewater, have long been used in agriculture as a soil conditioner, fertilizer, organic lime material and also for other soil fertility practices. It has long been known that residuals from certain industrial wastewater processes are very high in nutrients and organic matter which can also be successfully used in agricultural activities. One of these industrial biosolids with well-documented agricultural value is the organic residual from the treatment of wastewater from pulp and paper mills. Most pulp and paper producers in the US recognize the value of pulp and paper biosolids as a material that can fertilize their own tree stands or can be used in normal agricultural practices. In 1995, Bio Gro entered into a contract with a two large pulp and paper mills in Maine for the management of its pulp and paper biosolids. Bio Gro was responsible for implementing the beneficial use options for a mixture of primary and secondary biosolids from the wastewater treatment process which was combined with combustion ash from the facility`s power generation facilities. The contract included the layout of spreading areas, mixing of the residuals and spreading the material on the sites. This paper will explain the process that Bio Gro employed to manage the pulp and paper biosolids generated at the mill.

  2. Indirect pulp therapy: an alternative to pulpotomy in primary teeth.

    PubMed

    Seale, N Sue

    2010-11-01

    Preservation of the primary teeth until their normal exfoliation is essential for normal oral function and facial growth of the child. To that end, treatment of primary teeth with large carious lesions approximating the pulp should be aimed at preserving the tooth. Currently, the pulpotomy is the most frequently used pulp treatment for cariously involved primary teeth. The purpose of this manuscript is to describe the use of an alternative to the pulpotomy, indirect pulp therapy (IPT), for the treatment of vital, primary teeth with carious involvement approaching the pulp. Accurate diagnosis of the vitality status of the pulp is critical to the success of IPT and involves careful radiographic and clinical assessment of the teeth to be sure they are healthy or at worst, reversibly inflamed. The indications for IPT are the same as for pulpotomy. The technique involves one appointment, requires that some carious dentin be left to avoid pulp exposure and requires the placement of a biologically sealing base and sealing final restoration. Teeth treated with IPT have success rates at least as good as those treated with pulpotomies, and IPT offers an acceptable alternative to pulpotomy as a treatment for vital, asymptomatic, cariously involved primary teeth. PMID:21309277

  3. Visibility of dental pulp spaces in dental ultrasound.

    PubMed

    Szopinski, K T; Regulski, P

    2014-01-01

    The purpose of this study was to assess the feasibility of dental ultrasound with conventional sonographic equipment. The teeth of three adult volunteers who had cone beam CT examinations performed previously with clinical indications and one extracted tooth were examined using linear and compact (hockey stick) sonographic probes. The sonographic images were compared with cone beam CT images reconstructed accordingly. Dental pulp spaces were demonstrated in all teeth not covered with prosthetic crowns. The dentin and pulp were best visualized at the level of the neck of the teeth. The dentin was hypoechoic, and the superficial layer comprising the cementum and the pulp spaces were hyperechoic. Dental ultrasound is feasible with general purpose sonographic machines. The buccal surfaces of all teeth are accessible with a compact (hockey stick) probe. Visualization and differentiation of dental pulp spaces, dentin and the superficial layer comprising cementum is possible in the portions of teeth not covered by the alveolar bone or prosthetic crowns. The dental pulp spaces are best seen at the level of the tooth neck. Pulp and endodontic fillings can be distinguished on ultrasound. PMID:24170803

  4. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    PubMed

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  5. Effect of ripe fruit pulp on the sensory and nutritive quality of ready-to-eat breakfast cereal produced from maize and soybean flours and cassava starch blends.

    PubMed

    Enwere, N J; Ntuen, I G

    2005-02-01

    The effects of various concentrations of different ripe fruit pulps on the sensory and nutritive quality of breakfast cereal were studied. The breakfast cereal was formulated using 1 kg composite flour (composed of 600 g maize flour and 400 g soy flour) in addition to 100 g cassava starch, 225 g sugar and 12 g salt. Pineapple, pawpaw and banana ripe fruit pulps were added separately to the breakfast formulation at concentrations of 0, 100, 200, 300 and 400 g/kg composite flour. Using sensory evaluation, the data obtained showed that samples containing 100 g pineapple, 100 g banana pulp and 100 g pawpaw fruit pulp per kilogram of composite flour (equivalent to 7% of the total weight of the breakfast cereal formulation) were the most acceptable of all concentrations. These samples were comparable in sensory evaluation scores with the commercial breakfast cereal sample Golden morn. Chemical analysis also showed that there was increase in ss-carotene (vitamin A precursor) and vitamin C and a slight increase in the mineral content of the breakfast cereal as a result of the addition of fruit pulp. PMID:16019313

  6. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature.

    PubMed

    Conde, M C M; Chisini, L A; Demarco, F F; Nör, J E; Casagrande, L; Tarquinio, S B C

    2016-06-01

    Stem cell-based therapy (SC-BT) is emerging as an alternative for endodontic therapies. The interaction between stem cells and scaffolds plays a crucial role in the generation of a 'friendly cell' microenvironment. The aim of this systematic review was to explore techniques applied to regenerate the pulp-dentine complex tissue using SC-BT. An electronic search into the SciVerse Scopus (SS), ISI Web Science (IWS) and Entrez PubMed (EP) using specific keywords was performed. Specific inclusion and exclusion criteria were predetermined. The search yielded papers, out of which full-text papers were included in the final analyses. Data extraction pooled the results in four main topics: (a) influence of the chemical properties of the scaffolds over cell behaviour; (b) influence of the physical characteristics of scaffolds over cell behaviour; (c) strategies applied to improve the stem cell/scaffold interface; and (d) influence of cue microenvironment on stem cell differentiation towards odontoblast-like cells and pulp-like tissue formation. The relationship between the scaffolds, the environment and the growth factors released from dentine are critical for de novo pulp tissue regeneration. The preconditioning of dentine walls with ethylenediaminetetraacetic acid (EDTA) was imperative for successful pulp-dentine complex regeneration. An analyses of the grouped results revealed that pulp regeneration was an attainable goal. PMID:26101143

  7. Effect of Residual Lignin Type and Amount on Bleaching of Kraft Pulp by Trametes versicolor

    PubMed Central

    Reid, Ian D.; Paice, Michael G.

    1994-01-01

    The white rot fungus Trametes (Coriolus) versicolor can delignify and brighten unbleached hardwood kraft pulp within a few days, but softwood kraft pulps require longer treatment. To determine the contributions of higher residual lignin contents (kappa numbers) and structural differences in lignins to the recalcitrance of softwood kraft pulps to biobleaching, we tested softwood and hardwood pulps cooked to the same kappa numbers, 26 and 12. A low-lignin-content (overcooked) softwood pulp resisted delignification by T. versicolor, but a high-lignin-content (lightly cooked) hardwood pulp was delignified at the same rate as a normal softwood pulp. Thus, the longer time taken by T. versicolor to brighten softwood kraft pulp than hardwood pulp results from the higher residual lignin content of the softwood pulp; possible differences in the structures of the residual lignins are important only when the lignin becomes highly condensed. Under the conditions used in this study, when an improved fungal inoculum was used, six different softwood pulps were all substantially brightened by T. versicolor. Softwood pulps whose lignin contents were decreased by extended modified continuous cooking or oxygen delignification to kappa numbers as low as 15 were delignified by T. versicolor at the same rate as normal softwood pulp. More intensive O2 delignification, like overcooking, decreased the susceptibility of the residual lignin in the pulps to degradation by T. versicolor. PMID:16349246

  8. Fungal secretomes enhance sugar beet pulp hydrolysis

    PubMed Central

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-01-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g–1 protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1–17.5 mg g–1 SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  9. Fungal secretomes enhance sugar beet pulp hydrolysis.

    PubMed

    Kracher, Daniel; Oros, Damir; Yao, Wanying; Preims, Marita; Rezic, Iva; Haltrich, Dietmar; Rezic, Tonci; Ludwig, Roland

    2014-04-01

    The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load. PMID:24677771

  10. Effective anaesthesia of the acutely inflamed pulp: part 1. The acutely inflamed pulp.

    PubMed

    Virdee, S S; Seymour, D; Bhakta, S

    2015-10-23

    Achieving profound pulpal anaesthesia in a mandibular molar diagnosed with irreversible pulpitis can be argued to be the most testing of dental anaesthetic challenges. This can be attributed to the technical complexities of conventional techniques and the presence of pulp pathosis. Reasons for why the latter influences the ability to attain pulpal anaesthesia is not yet fully understood, but its frequent occurrence is well documented. In light of overcoming this it has become common practice to prescribe antibiotics, refer onto secondary care or to even commence treatment without appropriately anaesthetising the tooth. Therefore, this two part series aims to help practitioners attain clinically acceptable pulpal anaesthesia in the most testing of scenarios; the acutely inflamed mandibular molar. They should then be able to apply these same principles to other teeth presenting with similar symptoms. This section outlines the clinical presentation and pathophysiology associated with an acutely inflamed pulp, defines what it is to attain pulpal anaesthesia and critically analyses theories as to why these teeth are up to eight times more difficult to anaesthetise than their healthy counterparts. PMID:26494344

  11. Electroporation for Transfection and Differentiation of Dental Pulp Stem Cells

    PubMed Central

    Rabie, Bakr M.

    2013-01-01

    Abstract Target gene delivery is needed to induce cellular differentiation or a specific therapeutic effect. Electroporation is a relatively safe and simple technique to deliver nucleic acids to the cell that acts by rendering cells transiently permeable using short periods of high voltage. In stem cell research, human dental pulp stem cells (hDPSCS) are highly accessible, and they exhibit broad differentiation potential. Until now, no studies have attempted to optimize electroporation parameters for DPSCs with respect to transfection efficiency and viability. In this study, we aimed to optimize transfection of DPSCs through varying different electroporation parameters, including voltage, mode of pulsation, and the number of pulses. As positive control, we used commonly utilized the chemical transfection reagents Lipofectamine 2000 and FuGene 6. In addition, we used our newly optimized transfection conditions to transfect hDPSCs with a functional chondrogenic transgene. We obtained higher transfection efficiency and cell viability with these electroporation conditions compared to controls. The highest transfection efficiency (63.81±4.72%) was achieved with 100 V, 20 msec, one-pulse square-wave condition. Among chemical transfection groups, FuGene 6 showed the highest cell viability at all tested transfection ratios, while Lipofectamine 2000 showed the highest transfection efficiency (19.23±3.19%) using 1:1 DNA (μg):Lipofectamine (μL). Transfected DPSCs functionally expressed the transforming growth factor β-3 chondrogenic transgene on the mRNA level as detected by real-time polymerase chain reaction and on the protein level as detected by Western blot analysis. An increase in various chondrogenic markers was also found when studying mRNA expression in transfected cells. In conclusion, the results of our study demonstrate optimal electroporation and chemical transfection reagent conditions for hDPSCs, and, subsequently, we provide proof of concept for

  12. Ultrasonic Sensor to Characterize Wood Pulp During Refining

    SciTech Connect

    Greenwood, Margaret S.; Panetta, Paul D.; Bond, Leonard J.; McCaw, M. W.

    2006-12-22

    A novel sensor concept has been developed for measuring the consistency, the degree of refining, the water retention value (WRV), and the consistency of wood pulp during the refining process. The measurement time is less than 5 minutes and the sensor can operate in a slip-stream of the process line or as an at-line instrument. The consistency is obtained from a calibration, in which the attenuation of ultrasound through the pulp suspension is measured as a function of the solids weight percentage. The degree of refining and the WRV are determined from settling measurements. The settling of a pulp suspension (consistency less than 0.5 Wt%) is observed, after the mixer that keeps the pulp uniformly distributed is turned off. The attenuation of ultrasound as a function of time is recorded and these data show a peak, after a certain delay, defined as the “peak time.” The degree of refining increases with the peak time, as demonstrated by measuring pulp samples with different degrees of refining. The WRV can be determined using the relative peak time, defined as the ratio T2/T1, where T1 is an initial value of the peak time and T2 is the value after additional refining. This method offers an additional WRV test for the industry, because the freeness test is not specific for the WRV.

  13. Bacteriological analysis of necrotic pulp and fistulae in primary teeth

    PubMed Central

    FABRIS, Antônio Scalco; NAKANO, Viviane; AVILA-CAMPOS, Mario Júlio

    2014-01-01

    Objectives Primary teeth work as guides for the eruption of permanent dentition, contribute for the development of the jaws, chewing process, preparing food for digestion, and nutrient assimilation. Treatment of pulp necrosis in primary teeth is complex due to anatomical and physiological characteristics and high number of bacterial species present in endodontic infections. The bacterial presence alone or in association in necrotic pulp and fistula samples from primary teeth of boys and girls was evaluated. Material and Methods Necrotic pulp (103) and fistula (7) samples from deciduous teeth with deep caries of 110 children were evaluated. Bacterial morphotypes and species from all clinical samples were determined. Results A predominance of gram-positive cocci (81.8%) and gram-negative coccobacilli (49.1%) was observed. In 88 out of 103 pulp samples, a high prevalence of Enterococcus spp. (50%), Porphyromonas gingivalis (49%), Fusobacterium nucleatum (25%) and Prevotella nigrescens (11.4%) was observed. Porphyromonas gingivalis was detected in three out of seven fistula samples, Enterococcus spp. in two out of seven samples, and F. nucleatum, P. nigrescens and D. pneumosintes in one out of seven samples. Conclusions Our results show that Enterococcus spp. and P. gingivalis were prevalent in necrotic pulp from deciduous teeth in boys from 2 to 5 years old, and that care of the oral cavity of children up to five years of age is important. PMID:24676582

  14. The pulp capping procedure in primary teeth "revisited".

    PubMed

    Kopel, H M

    1997-01-01

    The purpose of this review is to "revisit" an earlier paper (1992) on the subject of direct pulp capping in primary teeth and bring some new considerations for the procedure by the use of dentin bonding adhesives. It has come to be recognized that the customary employment of calcium hydroxide for this therapy has some shortcomings that reduce the prognosis for a favorable outcome. For at least a decade, many investigations have found that postoperative sensitivity, thermal stimuli, pulp inflammation and pathosis can be attributed not to the composition of various dental materials and their insertion techniques, but to microleakage with subsequent bacterial invasion at the enamel/restoration and the dentin/pulp interfaces. It is imperative, as pointed out, that there be an impervious resinous bond between the dentin and the dentinopulpal complex which can be achieved by the use of dentinal adhesive agents to eliminate microleakage outward movement of pulpal fluids. Various steps in the bonding technique for the treatment of deep dentin caries and/or a pulp exposure has raised some concerns for their effect on the pulp. This review discusses these concerns, which can lead to the conclusion that the use of dentinal bonding adhesives is a safe and biologically feasible procedure, whether it be in permanent or primary teeth. PMID:9391709

  15. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  16. Relationships between MFO induction in fish exposed to pulp mill effluent and TCDD equivalent concentration

    SciTech Connect

    Heuvel, M.R. van den; Servos, M.R.; Dixon, D.G.; Munkittrick, K.R.

    1995-12-31

    The rat hepatoma (H411E) cell culture bioassay was used to quantify MFO-inducing chemicals in the liver tissue of white sucker exposed to pulp mill effluent. Bioassay-derived TCDD toxic equivalent concentrations (TECs) were measured at ten pulp mills during one field sampling season. Sampling at ten mills revealed that fish at all but one mill site had TECs significantly higher than corresponding reference sites, including two mills that did not use chlorine bleaching. Directly measured chlorinated dioxins and furans accounted for most of the bioassay derived TECs at many, but not at all of the mills. TECs in these fish correlated significantly with hepatic EROD activity. In spring of 1993 prespawning male white sucker captured at one of the ten mill sites, Jackfish Bay, and at a reference site were caged in the effluent plume at Jackfish Bay. Fish from both sites initially had similar liver MFO activity and demonstrated a twenty-fold increase in activity upon BKME exposure within two days. Jackfish Bay males had higher bioassay-derived TECs than the reference fish for both BKME caged and caged control fish. Reference fish TECs showed a significant increase when exposed to effluent whereas Jackfish Bay TECs did not increase. Neither Jackfish Bay nor reference sucker showed increases in TECs calculated from directly measured dioxins and furans. At Jackfish Bay, bioassay derived TECs in liver decreased significantly over a four year period that encompassed the installation of secondary treatment and increased chlorine dioxide substitution. The weight of evidence in this study strongly suggests that compounds other than chlorinated dioxins and furans may be playing a significant role in the MFO induction in fish exposed to pulp mill effluent.

  17. Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp.

    PubMed

    Tukacs-Hájos, Annamária; Pap, Bernadett; Maróti, Gergely; Szendefy, Judit; Szabó, Piroska; Rétfalvi, Tamás

    2014-08-01

    Anaerobe fermentation of sugar beet pressed pulp was investigated in pilot-scale digesters. Thermophilic adaptation of mesophilic culture was monitored using chemical analysis and metagenomic characterization of the sludge. Temperature adaptation was achieved by increasing the temperature gradually (2 °C day(-1)) and by greatly decreasing the OLR. During stable run, the OLR was increased gradually to 11.29 kg VS m(-3)d(-1) and biogas yield was 5% higher in the thermophilic reactor. VFA levels increased in the thermophilic reactor with increased OLR (acetic acid 646 mg L(-1), propionic acid 596 mg L(-1)), then VFA decreased and the operation was manageable beside the relative high tVFA (1300-2000 mg L(-1)). The effect of thermophilic adaptation on the microbial communities was studied using a sequencing-based metagenomic approach. Connections between physico-chemical parameters and populations of bacteria and methanogen archaea were revealed. PMID:24926601

  18. Biodegradation of pulp and paper mill effluent using anaerobic followed by aerobic digestion.

    PubMed

    Bishnoi, Narsi R; Khumukcham, R K; Kumar, Rajender

    2006-05-01

    An experimental study was carried to find out the degradability of black liquor of pulp and paper mill wastewater for biomethanogenesis in continuous stirred tank reactor (CSTR) and followed by activated sludge process (ASP). Continuous stirred tank reactor was used in present study for anaerobic digestion of black liquor, while completely mixed activated sludge system was used for aerobic digestion. A maximum methane production was found up to 430 ml/day, chemical oxygen demand was reduced up to 64% and total volatile fatty acid increased up to 1500 mg/l from 975 mg/l at 7.3 pH, 37 degrees C temperature and 8 days hydraulic retention time during anaerobic digestion. In activated sludge process (aerobic digestion) chemical oxygen demand and biological oxygen demand reduction were 81% and 86% respectively at 72 hr hydraulic retention time. PMID:17436533

  19. Research on the properties of dope-dyed bamboo pulp staple fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.

    2016-07-01

    In order to understand the properties of the dope-dyed bamboo pulp staple fibers, the moisture regains, tensile properties, friction properties and electrical conductivity of them and the white bamboo pulp fiber were tested, compared and analyzed. The results show that the moisture regains of the dope-dyed bamboo pulp fibers are smaller than the white bamboo pulp fiber's, whereas their friction coefficients, breaking strengths and elongations and mass ratio resistances are a bit larger.

  20. Physico-chemical evaluation of Dovyalis spp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research was to establish physico-chemical characterization of dovyalis hybrid fruits (MIA 25359). Samples of 30 fruits were characterized by evaluation of fruit and seed weight, length and width, percentage and number of seeds per fruit, peel and pulp percentage, total soluble s...

  1. Magnet options for sensors for the pulp and paper industry

    SciTech Connect

    Green, M.A.; Barale, P.J.; Fong, C.G.; Luft, P.A.; Reimer, J.A.; Yahnke, M.S.

    2001-05-05

    The Lawrence Berkeley National Laboratory (LBNL) has been developing sensors for the pulp and paper industry that uses a magnetic field. The applications for magnetic sensors that have studied include (1) sensors for the measurement of the water and ice content of wood chips entering the pulping mill, (2) sensors for measuring the water content and other constituents of the black liquor leaving the paper digester, and (3) sensors for measuring paper thickness and water content as the paper is being processed. These tasks can be done using nuclear magnetic resonance (NMR). The magnetic field used for doing the NMR can come from either permanent magnets or superconducting magnets. The choice of the magnet is dependent on a number of factors, which include the size of the sample and field strength needed to do the sensing task at hand. This paper describes some superconducting magnet options that can be used in the pulp and paper industry.

  2. Soda pulp and fuel gases synthesis from Hesperaloe funifera.

    PubMed

    Sánchez, Rafael; Rodríguez, Alejandro; Requejo, Ana; Ferrer, Ana; Navarro, Enrique

    2010-09-01

    The main objective of this work is to evaluate the suitability of Hesperaloe funifera which is an alternative raw material, for pulping with soda-anthraquinone to produce pulp and paper. It was studied the influence of operational variables (temperature (155-185 degrees C), cooking time (20-60 min) and soda concentration (5-15%), with a constant addition of 1% of anthraquinone and a liquid/solid ratio of 8, in soda-anthraquinone cooking of H. funifera on pulps and paper sheets properties obtained. Finally, the cooking liquors were acidified to separate solid fractions that were subjected to pyrolysis and gasification in order to obtain synthesis and fuel gases. H. funifera contains little lignin and abundant alpha-cellulose; this, together with the morphological characteristics of its fibers, makes it a potentially highly useful papermaking raw material. PMID:20430614

  3. Current fungal biotechnologies: Guidelines useful for pulping and bleaching

    SciTech Connect

    Kirk, T.K.

    1996-10-01

    This symposium deals with the potential use of fungi in pulping wood and bleaching pulp. The fungi useful in this regard are higher basidiomycetes, which are nature`s major degraders of lignin. Their ligninolytic enzyme systems were discovered 14 years ago, and have been studied intensely since then. However, neither these enzymes nor the fungi themselves have been harnessed commercially in biotechnological processes-with the exception that some of the fungi are grown as food. Using the fungi in pulp manufacturing processes, therefore, must be approached without the benefit of direct guidelines, which increases the uncertainty and risk. It is instructive, therefore, to review current commercial fungal-based bio-technologies, components of which provide information useful to the development and evaluation of proposed processes. This paper will briefly review existing types of biotechnical processes that are based on filamentous fungi, and discuss how that information is being used to guide development of new processes for biopulping and biobleaching.

  4. Biological pretreatment for thermomechanical (TMP) and chemithermomechanical (CTMP) pulping processes

    SciTech Connect

    Myers, G.C.; Akhtar, M.; Lentz, M.

    1996-10-01

    Treatment of wood chips with lignin-degrading fungi prior to preparing a refiner mechanical pulp (RMP) has substantially reduced energy consumption and increased paper strength properties. This study reports on thermomechanical (TMP) and chemithermo-mechanical pulping (CTMP) of fungus treated wood chips. Loblolly pine chips were innoculated with Ceriporiopsis subvermispora, strain L14807 SS-3, and incubated two weeks in a chip silo. A pressurized 305 mm diameter disk refiner was used to prepare TMP and CTMP`s from fungal treated and non-treated wood chips. Two procedures were used to prepare the CTMP`s, injecting a sodium hydroxide and hydrogen peroxide solution into the pressurized refiner, and impregnating the wood chips with a sodium sulfite solution. Energy consumption during pulp preparation and handsheet strength and optical properties will be presented and discussed.

  5. Biocomposition and reaction of pulp tissues to restorative treatments.

    PubMed

    Cox, C F; Hafez, A A

    2001-01-01

    Dentistry has experienced exponential growth in the biologic and physiologic knowledge of enamel, dentin, and pulp tissues. In one decade, material development has exceeded clinical testing limits, allowing their arrival to the commercial market without proper validation. This article clarifies the enigma of acid etching; explaining and clarifying the diverse opinions and issues of material toxicity between in vitro and in vivo usage test perspectives. This article also demystifies the biology of pulp healing regarding calcium hydroxide and adhesive systems to promote dentin bridge formation. Lastly, this article provides biologically lucid pulp exposure treatment regimens with agents such as NaOCl, allowing clinicians to increase their long-term clinical success. PMID:11210698

  6. [Utilization of organic resources in paper pulp waste liquid].

    PubMed

    Lin, Qiaojia; Liu, Jinghong; Yang, Guidi; Huang, Biao

    2005-04-01

    In this paper, one hundred percent of condensed sulfate paper pulp waste liquid was used as the raw material of adhesive, and the activation of its lignin as well as the improving effects of phenol formaldehyde resin and polyfunctional aqueous polymer isocyanate (PAPI) were studied. The results showed that adding formaldehyde to the waste liquid could increase the reactivity of contained lignin, and adding 30% phenol formaldehyde resin or 20% PAPI could make the waste liquid in place of pure phenol formaldehyde resin for producing class I plywood. Furthermore, the cost could be reduced by 55.5% and 49.0%, respectively, in comparing with pure phenol formaldehyde resin. This approach fully used the organic resources in paper pulp waste liquid, reduced environment pollution at the same time, and had unexceptionable economic, social and ecological benefits. The feasibility of preparing adhesives from paper pulp waste liquid was also analyzed by infrared spectrum. PMID:16011170

  7. Inflammatory and immunological aspects of dental pulp repair

    PubMed Central

    Goldberg, Michel; Farges, Jean-Christophe; Lacerda-Pinheiro, Sally; Six, Ngampis; Jegat, Nadège; Decup, Frank; Septier, Dominique; Carrouel, Florence; Durand, Stéphanie; Chaussain-Miller, Catherine; DenBesten, Pamela; Veis, Arthur; Poliard, Anne

    2010-01-01

    The repair of dental pulp by direct capping with calcium hydroxide or by implantation of bioactive extracellular matrix (ECM) molecules implies a cascade of four steps: a moderate inflammation, the commitment of adult reserve stem cells, their proliferation and terminal differentiation. The link between the initial inflammation and cell commitment is not yet well established but appears as a potential key factor in the reparative process. Either the release of cytokines due to inflammatory events activates resident stem (progenitor) cells, or inflammatory cells or pulp fibroblasts undergo a phenotypic conversion into osteoblast/odontoblast-like progenitors implicated in reparative dentin formation. Activation of antigen-presenting dendritic cells by mild inflammatory processes may also promote osteoblast/odontoblast-like differentiation and expression of ECM molecules implicated in mineralization. Recognition of bacteria by specific odontoblast and fibroblast membrane receptors triggers an inflammatory and immune response within the pulp tissue that would also modulate the repair process. PMID:18602009

  8. Wavelet neural networks applied to pulping of oil palm fronds.

    PubMed

    Zainuddin, Zarita; Wan Daud, Wan Rosli; Pauline, Ong; Shafie, Amran

    2011-12-01

    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained. PMID:21996481

  9. Magnet options for sensors for the pulp and paper industry

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Barale, P. J.; Fong, C. G.; Luft, P. A.; Reimer, J. A.; Yahnke, M. S.

    2002-05-01

    The Lawrence Berkeley National Laboratory (LBNL) has been developing sensors for the pulp and paper industry that use a magnetic field. The applications for magnetic sensors that have been studied include 1) sensors for the measurement of the water and ice content of wood chips entering the pulping mill, 2) sensors for measuring the water content and other constituents of the black liquor leaving the paper digester, and 3) sensors for measuring paper thickness and water content as the paper is being processed. These tasks can be done using nuclear magnetic resonance (NMR). The magnetic field used for doing the NMR can come from either permanent magnets or superconducting magnets. The choice of the magnet is dependent on a number of factors, which include the size of the sample and field strength needed to do the sensing task at hand. This paper describes some superconducting magnet options that can be used in the pulp and paper industry.

  10. Innovative endodontic therapy for anti-inflammatory direct pulp capping of permanent teeth with a mature apex

    PubMed Central

    Komabayashi, Takashi; Zhu, Qiang

    2010-01-01

    Direct pulp capping is a treatment of an exposed vital pulp with a dental material to facilitate the formation of reparative dentin and maintenance of vital pulp. It has been studied as an alternate way to avoid vital pulp extirpation. However, the success rate of pulp capping is much lower than that of vital pulp extirpation. Therefore, direct pulp capping is currently considered controversial by many clinicians. To increase success rate, a critical need exists to develop new biologically-based therapeutics that reduce pulp inflammation, promote the continued formation of new dentin-pulp complex, and restore vitality by stimulating the regrowth of pulpal tissue. Bioengineered anti-inflammatory direct pulp capping materials, together with adhesive materials for leakage prevention, have great potential to improve the condition of the existing pulp from an inflamed to a non-inflamed status and lead to a high rate of long-term success. PMID:20416524

  11. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-chemical subcategory. 430.60 Section 430.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills....

  12. Thieves or mutualists? Pulp feeders enhance endozoochore local recruitment.

    PubMed

    Fedriani, José M; Zywiec, Magdalena; Delibes, Miguel

    2012-03-01

    The persistence of mutualisms despite the strong incidence of exploiters could be explained if exploiters deny one or more services (i.e., cheat) while eventually supplying some subtler but critical services. Pulp feeders usually ingest fruit reward without dispersing seeds and thus are considered to be mainly cheaters or thieves of seed-disperser mutualisms. By consuming the fruit pulp, however, they could release seeds from pulp inhibitory effect, enhancing germination and, potentially, subsequent seedling emergence, growth, survival, and thus local recruitment. We evaluated such a largely neglected hypothesis by considering the interaction between Pyrus bourgaeana and its pulp feeders. We experimentally showed that pericarp removal had a consistent strong positive effect on seed performance (e.g., lower rotting and higher germination percentages) and seedling fate (greater emergence, growth, and survival to two years old). Interestingly, these relatively large positive effects of depulpation on plant fitness persisted for a surprisingly long time. Though seedlings experienced higher mortality under fruiting conspecifics, the benefits of depulpation were not overridden by high propagule mortality beneath fruiting trees or in adverse microhabitats after two years of monitoring. Specifically, the cumulative probability of establishment for depulped seeds was 4-25 times higher than for seeds in whole ripe fruits. Thus, under some circumstances, pulp feeders can provide essential services to endozoochorous plants. Our study contributes to clarifying the apparent paradox of plant-frugivore mutualisms that persist in the face of exploitation by pulp feeders. Because "thieves" and "mutualists" refer to the extremes of a complex continuum, and because organisms displaying concurrent cheating and honest behaviors during different host stages are likely prevalent, the persistent language of mutualists vs. thieves, cheaters, or exploiters might be misleading. PMID:22624212

  13. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  14. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  15. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  16. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  17. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect

    Urbaniec, K.; Malczewski, J.

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  18. The enzymatic hydrolysis of pretreated pulp fibers predominantly involves “peeling/erosion” modes of action

    PubMed Central

    2014-01-01

    Background There is still considerable debate regarding the actual mechanism by which a “cellulase mixture” deconstructs cellulosic materials, with accessibility to the substrate at the microscopic level being one of the major restrictions that limits fast, complete cellulose hydrolysis. In the work reported here we tried to determine the predominant mode of action, at the fiber level, of how a cellulase mixture deconstructs pretreated softwood and hardwood pulp fibers. Quantitative changes in the pulp fibers derived from different pretreated biomass substrates were monitored throughout the course of enzymatic hydrolysis to see if the dominant mechanisms involved either the fragmentation/cutting of longer fibers to shorter fibers or their “peeling/delamination/erosion,” or if both cutting and peeling mechanisms occurred simultaneously. Results Regardless of the source of biomass, the type of pretreatment and the chemical composition of the substrate, under typical hydrolysis conditions (50°C, pH 4.8, mixing) longer pulp fibers (fiber length >200 μm) were rapidly broken down until a relatively constant fiber length of 130 to 160 μm was reached. In contrast, shorter fibers with an initial average fiber length of 130 to 160 μm showed no significant change in length despite their substantial hydrolysis. The fragmentation/cutting mode of deconstruction was only observed on longer fibers at early stages of hydrolysis. Although the fiber fragmentation mode of deconstruction was not greatly influenced by enzyme loading, it was significantly inhibited by glucose and was mainly observed during initial mixing of the enzyme and substrate. In contrast, significant changes in the fiber width occurred throughout the course of hydrolysis for all of the substrates, suggesting that fiber width may limit the rate and extent of cellulose hydrolysis. Conclusion It appears that, at the fiber level, pretreated pulp fibers are hydrolyzed through a two-step mode of action

  19. Russell bodies in the pulp of a primary tooth.

    PubMed

    Tagger, E; Tagger, M; Sarnat, H

    2000-09-01

    Russell bodies can be found in the majority of the inflamed tissues throughout the body. They have been shown to consist of accumulations of normal globulins that may burst out of the distended plasma cells that secrete them. Russell bodies have also been described in oral tissues and are believed to occur in 80% of the chronic periapical lesions. Yet their occurrence in the pulp has not been subjected to scrutiny. Concentrations of large intracellular (in-plasma cells) and extracellular Russell bodies have been found in the inflammatory tissue occupying the pulp cavity of carious primary teeth. Their significance is so far unknown. PMID:10982960

  20. Management of the pulp in primary teeth--an update.

    PubMed

    Brosnan, M G; Natarajan, A K; Campbell, J M; Drummond, B K

    2014-12-01

    Management of the pulpal tissue in primary teeth is a clinical challenge facing dental practitioners on a regular basis. This article reviews the most common treatments used at the present time in the management of the pulp in deciduous teeth. It gives an overview of treatment options and the indications and contra-indications for the different treatment modalities. The evidence behind the medicaments used, their actions and success rates are discussed. Practical guidelines for choosing to retain or extract deciduous teeth and management of the primary tooth pulp with different clinical presentations are discussed. Areas of future research are highlighted. PMID:25597190

  1. Efficacy of tooth bleaching with and without light activation and its effect on the pulp temperature: an in vitro study.

    PubMed

    Hahn, Petra; Schondelmaier, Nina; Wolkewitz, Martin; Altenburger, Markus Jörg; Polydorou, Olga

    2013-01-01

    The aim of this in vitro study was to evaluate the colour stability of bleaching after light activation with halogen unit, laser, LED unit or chemical activation up to 3 months after treatment. Four groups of teeth (n = 20) were bleached with Opalescence Xtra Boost (38% hydrogen peroxide) using four different methods: activation with halogen, LED, laser or chemical activation only. All teeth were bleached in one session for four times (4 × 15 min) and the colour was evaluated using a spectrophotometer at the following time points: before bleaching, immediately after bleaching, 1 day, and 1 and 3 months after the end of bleaching. Between the tested time points, the teeth were stored in 0.9% NaCl solution. Additionally, the temperature increase in the pulp chamber was measured using a measuring sensor connected to a computer. Bleaching with the halogen unit showed the highest colour change. Halogen unit, laser and chemical activation resulted in whiter teeth after 1 and 3 months compared to the colour after the end of the bleaching procedure (p ≤ 0.05). Three months after the end of bleaching, the shade changes observed were-halogen: 7.1 > chemical activation: 6.2 > LED: 5.4 > laser: 5.2. Halogen showed the highest temperature increase (17.39°C ± 1.96) followed by laser (14.06°C ± 2.55) and LED (0.41°C ± 0.66) (p < 0.0001). Chemical activation did not affect the temperature in the pulp chamber. The use of light activation did not show any advantages compared to chemical bleaching. Although halogen unit showed the higher shade's change, its use resulted also in the higher pulp temperature. According to the present findings, light activation of the bleaching agent seems not to be beneficial compared to bleaching without light activation, concerning the colour stability up to 3 months after bleaching and the pulp temperature caused during the bleaching procedure. PMID:22395767

  2. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper.

    PubMed

    Hirn, Ulrich; Schennach, Robert

    2015-01-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption. PMID:26000898

  3. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    NASA Astrophysics Data System (ADS)

    Hirn, Ulrich; Schennach, Robert

    2015-05-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption.

  4. Characterization and mesenteric lymph node cells-mediated immunomodulatory activity of litchi pulp polysaccharide fractions.

    PubMed

    Huang, Fei; Zhang, Ruifen; Liu, Yang; Xiao, Juan; Su, Dongxiao; Yi, Yang; Wang, Guangjin; Wei, Zhencheng; Zhang, Mingwei

    2016-11-01

    Three water-soluble hetero-polysaccharides, designated LP1-3, were isolated from litchi pulp. Their structures, solution properties and immunomodulatory activities were evaluated. LP1 contained (1→4,6)-β-d-Glc and (1→4)-α-l-Gal, while LP2 contained (1→3)-α-l-Ara and (l→2)-β-d-Gal, and LP3 contained α-l-Ara and (l→4)-β-Rha. Their molecular weights ranged from 105,880 to 986,470g/mol. LP1 had a spherical conformation with hyper-branched structure and LP2 was semi-flexible chain, while the polysaccharide chains of LP3 were cross linked to form network-like conformation in solution. In addition, all fractions strongly stimulated mesenteric lymph node cell proliferation, IFN-γ and IL-6 secretion in the dose range of 25-100μg/mL compared with untreated control group (p<0.05). LP1 exhibited the strongest stimulation of mesenteric lymph node cell proliferation and cytokine secretion, which may be attributed to its unique chemical structure and chain conformation. This is the first report on the solution properties and intestinal immunity activities of polysaccharides from litchi pulp. PMID:27516297

  5. Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption.

    PubMed

    Dashtban, Mehdi; Gilbert, Allan; Fatehi, Pedram

    2014-04-01

    Hemicelluloses and lignin present in the spent liquor (SL) of neutral sulfite semichemical (NSSC) pulping process can potentially be converted into value-added products such as furfural, hydroxymethylfurfural, levulinic acid, phenols and adhesives. However, the direct conversion of hemicelluloses and lignin of SL into value-added products is uneconomical due to the dilute nature of the SL. To have a feasible downstream process for utilizing lignocelluloses of SL, the lignocelluloses should initially be separated from the SL. In this study, an adsorption process (via applying activated carbon) was considered for isolating the dissolved lignin and hemicelluloses from the SL of an NSSC pulping process. Under the optimal conditions of pH, SL/AC weight ratio, time and temperature of 5.7, 30, 360 min and 30 °C, the maximum lignin and hemicellulose adsorptions were 0.33 and 0.25 g/g on AC. The chemical oxygen demand (COD) and turbidity of the SL were decreased by 11% and 39%, respectively, as a result of lignocellulose adsorption on AC. Also, the incineration behavior of the SL-treated AC was studied with a thermo-gravimetric analysis (TGA). PMID:24565877

  6. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction. PMID:26508075

  7. Green Technology for the Removal of Chloro-Organics from Pulp and Paper Mill Wastewater.

    PubMed

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya; Kumar, Vivek

    2015-07-01

    This study evaluates the treatment efficiency of a horizontal subsurface-flow constructed wetland (HSSF-CW) for the removal of chloro-organic compounds from pulp and paper mill wastewater. The surface area of the HSSF-CW unit was 5.25 m² and was planted with Colocasia esculenta. The wastewater was characterized for different chloro-organic compounds, that is, adsorbable organic halides (AOX), chlorophenolics, and chlorinated resin and fatty acids (cRFAs). Under a hydraulic retention time of 5.9 days, the average AOX, chlorophenolics, and cRFA removal from wastewater was 87, 87, and 93%, respectively. Some of the chlorophenolics were found to accumulate in the plant biomass and soil material. The mass balance studies show that a significant fraction of chlorophenolics and cRFA was degraded in the constructed wetland system. Modeling studies were carried out to estimate the first-order area-based removal rate constants (k) for chemical oxygen demand removal. The HSSF-CW was found to be an effective treatment technology for the remediation of pulp and paper mill wastewater. PMID:26163503

  8. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps.

    PubMed

    Zheng, Huiwen; Zhang, Qiuyun; Quan, Junping; Zheng, Qiao; Xi, Wanpeng

    2016-08-15

    The composition and content of sugars, organic acids, volatiles and carotenoids, in the pulps of six grapefruit cultivars, were examined by HPLC and GC-MS. The results showed that sucrose was the dominant sugar in grapefruit, making up 40.08-59.68% of the total sugars, and the ratio of fructose to glucose was almost 1:1. Citric acid was the major organic acid and represented 39.10-63.55% of the total organic acids, followed by quininic acid. The ratios of individual sugars and organic acids play an important role in grapefruit taste determination. Monoterpenes and sesquiterpenes were the predominant volatiles in grapefruit, in particular d-limonene and caryophyllene. Caryophyllene, α-humulene, humulen-(v1), β-linalool and tert-butyl 2-methylpropanoate are the characteristic aroma compounds of grapefruit. Although β-carotene is the primary carotenoid in grapefruit, the pulp color is mainly determined by the ratios of zeaxanthin, β-cryptoxanthin and lycopene. Our results provide the first complete chemical characterization of the taste, aroma and color of grapefruit. PMID:27006221

  9. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. PMID:27359065

  10. New method of laser doppler flowmetry signal processing in pulp vitality evaluation after teeth cosmetic treatment

    NASA Astrophysics Data System (ADS)

    Todea, Carmen; Sarpe, Amalia; Vitez, Bogdan; Draganescu, Gheorghe

    2014-01-01

    The present study aims to assess the pulp vitality before and after different tooth bleaching procedures, in order to determine the changes in pulpal microcirculation and whether they are reversible or not. Twelve volunteers were included in this study. For each volunteer, the pulpal blood flow of maxillary teeth was assessed prior to treatment using Laser Doppler Flowmetry. The "in office" bleaching technique was used 6 anterior teeth, with two different gels, a conventional one chemically activated (Group I 3teeth) and another one activated using Nd:YAG laser (Group II-3 teeth). The bleaching agents were applied on counterpart teeth and, after obtaining a esthetic results for each tooth, the pulpal blood flow was assessed using Laser Doppler Flowmetry immediately after treatment and then after one day and one week. All data were collected and statistically analyzed. Immediately after treatment, the assessment showed an increase of pulpal blood flow, for both study groups, but higher in Group I as compared to Group II (p<0.005). The subsequent assessments showed a reduction of the pulpal blood flow with non - significant differences between the study groups (p<0.005).The results suggest that the tooth bleaching procedurere presents a safe treatment method, which does not lead to irreversible damage to the dental pulp, when used correctly.

  11. A comparative study on thermomechanical pulping pressate treatment using thermophilic and mesophilic sequencing batch reactors.

    PubMed

    Zheng, Meiru; Liao, B Q

    2014-01-01

    A comparative study on the treatment of thermomechanical pulping (TMP) pressate was conducted under thermophilic (55 degrees C) and mesophilic (30 degrees C) temperatures to explore in-mill biological treatment, with the intention to operate under heat-efficient conditions. The experimental study involved sequencing batch reactors (SBRs) operated over 114 days. Receiving a total influent chemical oxygen demand (COD) of 3700-4100 mg L(-1), the COD removal efficiencies of 80-90% and 75-85% were achieved for the mesophilic and thermophilic SBRs, respectively, at a hydraulic retention time (HRT) of 12 and 24h. Excellent sludge settleability (sludge volume index < 100 mL g(-1) mixed liquor suspended solids) was obtained at both thermophilic and mesophilic SBRs. A higher level of effluent suspended solids was observed under thermophilic conditions. The results support the feasibility of applying thermophilic biological treatment of TMP pressate. The treated effluent has the potential for subsequent reuse as process water after polishing, thus addressing the long-standing desire to develop water system closure for the pulp and paper mill operation. PMID:24701939

  12. Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid.

    PubMed

    Li, De-Qiang; Du, Guang-Ming; Jing, Wei-Wen; Li, Jun-Fang; Yan, Jia-Yu; Liu, Zhi-Yong

    2015-09-20

    The extraction of pectin from sugar beet pulp by citric acid was carried out under different conditions using Box-Behnken design for four independent variables (pH, temperature, time and liquid to solid ratio). The yield of sugar beet pulp pectin ranged from 6.3% to 23.0%, and the content of protein from 1.5% to 4.5%. All independent variables significantly affected the yield, and all variables except liquid to solid ratio significantly affected the protein content. The yield increased as decreasing pH of extracting solution, extending time and advancing temperature, and an opposite relationship of effects between variables and content of protein was obtained. The chemical composition of collected samples was determined. Moreover, from the results of emulsifying properties study, the extracted pectin from sugar beet pulp could prepare steady oil-in-water emulsions. Therefore, it was inferred that the extraction conditions could influence yield and protein content, resulting in different emulsifying property. PMID:26050895

  13. A case study of waste management at the Northern Finnish pulp and paper mill complex of Stora Enso Veitsiluoto Mills.

    PubMed

    Nurmesniemi, Hannu; Pöykiö, Risto; Keiski, Riitta Liisa

    2007-01-01

    This work presents the current waste management system at the pulp and paper mill complex of Stora Enso Oyj Veitsiluoto Mills at Kemi, Northern Finland. This paper covers examples of case studies carried out at the mill and describes how the wastes and by-products are utilized as a neutralizing agent for acidic wastewaters (i.e., green liquor dregs from the causticizing process), as a hardener in filling mine cavities (i.e., ash from the fluidized bed boiler), as a landscaping agent (i.e., ash as well as the fibre clay from chemical wastewater treatment plant), as a hydraulic barrier material for landfills (i.e., fibre clay), and as a soil enrichment agent (i.e., calcium carbonate from the precipitated calcium carbonate plant). In addition, the wood waste from the wood-handling plant, sawmill, packaging pallet plant and from the groundwood mill, as well as the biosludge from the biological wastewater treatment plant, are all incinerated in the fluidized bed boiler for energy production. Due to effective utilization of the solid wastes generated at the mills, the annual amount of waste to be disposed of in the landfill has decreased between 1994 and 2004 from 42,990 to 6083 tonn (expressed as wet weight). The paper also gives an overview of the relevant European Union legislation on the forest industry and on waste management, as well as of the pulping process and of the generation of major solid wastes in the pulp and paper mills. PMID:16987647

  14. Continuous on-line measurement of lignin concentration in wood pulp

    SciTech Connect

    Jeffers, L.A.; Roman, G.W.

    1994-06-01

    We are working toward the development of an instrument for the continuous, on-line measurement of the lignin concentration in wood pulp. The instrument is based on laser induced fluorescence of the wood pulp and is to be used as a primary sensor for both feedback control of the pulping and feedforward control of bleaching. We report here the results of a series of laboratory tests that characterized the fluorescence properties of wood pulp and demonstrated a correlation between various fluorescence functions and the Kappa number of the pulps as determined by TAPPI Procedure T236.

  15. Testing of the cytotoxic effects of sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Golis, E

    1994-01-01

    The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp. PMID:7729767

  16. A comparison of kraft, PS, kraft-AQ and kraft-NaBH4 pulps of Brutia pine.

    PubMed

    Copur, Y; Tozluoglu, A

    2008-03-01

    The aim of this work was to study the effect of adding PS, AQ and NaBH(4) into kraft pulping with special attention given to NaBH(4). Kraft, kraft-AQ, PS, and kraft-NaBH(4) pulps were produced under the same cooking conditions and the pulps produced were compared in terms of pulp and paper properties. Kraft method was modified by adding 0.1% AQ, 4% PS and 2% and 4% NaBH(4) and the resultant pulps displayed an increase in pulp yield and reduction in both kappa number and screening rejects. On the other hand, there observed an increase in both pulp yield and kappa number when the kraft was modified to PS method. The benefits of NaBH(4) addition into kraft pulping was a significant reduction in kappa number and screening rejects and a significant increase in pulp yield. The most notable outcome of NaBH(4) was 66.6% increase in pulp brightness when 4% NaBH(4) was added into kraft pulping. Of unrefined pulps, unrefined kraft pulp displayed the highest strength of pulp, which is described as tear index at a constant tensile index. Of refined pulps, kraft-AQ showed the highest pulp strength when refined to 6000 and 12,000 revs in PFI mill. PMID:17531474

  17. Utilization of pectin extracted sugar beet pulp for composite application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp (SBP) is the residue left after beet sugar extraction. SBP contains ~25% pectin and is an important source for pectin. However, sugar beet pectin does not have good gel-forming properties and complete extraction of pectin is not typically performed due to the low quality of the galac...

  18. DESIGN CONSIDERATIONS FOR PULP AND PAPER-MILL SLUDGE LANDFILLS

    EPA Science Inventory

    This report presents procedures for the engineering design and control of pulp and paper-mill sludge disposal landfills. Engineering design will allow more efficient use, thereby contributing to economic and environmental benefits. To form the basis for engineering design of slud...

  19. MINIMIZING THE POLLUTION IMPACT OF KRAFT PULPING THROUGH OXYGEN BLEACHING

    EPA Science Inventory

    In December, 1972, The Chesapeake Corporation started up a unique three-stage oxygen bleaching system (D/COD) to produce 272 metric air dry tons per day of 88+ brightness hardwood market pulp. This system cost less than conventional chlorination and offered potential for reducing...

  20. Allogenic banking of dental pulp stem cells for innovative therapeutics

    PubMed Central

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-01-01

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017

  1. WHY COMT-DEFICIENT PLANTS HAVE POOR PULPING PERFORMANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants that have reduced lignin content, or structurally or compositionally modified lignins, have been studied in order to identify traits with excellent pulping performance. COMT is an enzyme in the monolignol pathway crucial to the synthesis of sinapyl alcohol, one of the two major mon...

  2. Ultrasonic sensor to characterize wood pulp during refining.

    PubMed

    Greenwood, M S; Panetta, P D; Bond, L J; McCaw, M W

    2006-12-22

    A novel sensor concept has been developed for measuring the degree of refining, the water retention value (WRV), and the weight percentage of wood pulp during the refining process. The measurement time is less than 5 min and the sensor can operate in a slip-stream of the process line or as an at-line instrument. The degree of refining and the WRV are determined from settling measurements. The settling of a pulp suspension (with a weight percentage less than 0.5 wt%) is observed, after the mixer, which keeps the pulp uniformly distributed, is turned off. The attenuation of ultrasound as a function of time is recorded and these data show a peak at a time designated as the "peak time." The peak time T increases with the degree of refining, as demonstrated by measuring pulp samples with known degrees of refining. The WRV can be determined using the relative peak time, defined as the ratio T(2)/T(1), where T(1) is an initial peak time and T(2) is the value after additional refining. This method offers an alternative WRV test for the industry to the current time-consuming method. PMID:16920173

  3. Critical factors of coating performance in Kraft pulping digesters

    SciTech Connect

    Verstak, A.A.; Baranovski, V.E.; Calkins, M.

    1999-07-01

    Not only the coating material corrosion resistance, but also the coating-substrate interface crack resistance and coating permeation to liquor and its vapor are found to be critical factors affecting the coating performance in Kraft pulping digesters. The behavior of electric-arc and HVOF sprayed coatings is discussed.

  4. Dentin regeneration using deciduous pulp stem/progenitor cells.

    PubMed

    Zheng, Y; Wang, X Y; Wang, Y M; Liu, X Y; Zhang, C M; Hou, B X; Wang, S L

    2012-07-01

    Reparative dentin formation is essential for maintaining the integrity of dentin structure during disease or trauma. In this study, we investigated stem/progenitor cell-based tissue engineering for dentin regeneration in a large animal model. Porcine deciduous pulp stem/progenitor cells (PDPSCs) were mixed with a beta-tricalcium phosphate (β-TCP) scaffold for dentin regeneration. Different concentrations of PDPSCs were tested to determine the optimal density for dentin regeneration. Aliquots of 5×10(5) PDPSCs in 1 mL resulted in the highest number of cells attached to the scaffold and the greatest alkaline phosphatase activity. We labeled PDPSCs with green fluorescent protein (GFP) and used the optimal cell numbers mixed with β-TCP to repair pulp chamber roof defects in the premolars of swine. Four weeks after transplantation, GFP-positive PDPSCs were observed in PDPSC-embedded scaffold constructs. At 16 weeks after transplantation, the PDPSCs mixed with β-TCP significantly regenerated the dentin-like structures and nearly completely restored the pulp chamber roof defects. This study demonstrated that the PDPSC/scaffold construct was useful in direct pulp-capping and provides pre-clinical evidence for stem/progenitor cell-based dentin regeneration. PMID:22660968

  5. Permittivities of watermelon pulp and juice and correlation with quality.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permittivities from 10 to 4500 MHz at 24 'C were measured on pulp and juice of watermelons of different maturities with an open-ended coaxial-line probe and network analyzer. The dielectric constant of both materials decreased monotonically with increasing frequency and loss factor had minimum at ab...

  6. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS...

  7. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS...

  8. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS...

  9. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances for Use Only as Components of Paper...

  10. 21 CFR 176.260 - Pulp from reclaimed fiber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pulp from reclaimed fiber. 176.260 Section 176.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS...

  11. [Glomus tumor of the finger pulp: an unusual pediatric case].

    PubMed

    Abbassi, A; Amrani, A; Dendane, M A; El Alami, Z; El Madhi, T; Gourinda, H

    2012-07-01

    Glomus tumor is a rare benign tumor. Diagnosis is often delayed because of the absence of specific symptoms and confirmation can only be made by histological study. Treatment is always surgical. We report a clinical case of glomus tumor of the thumb pulp in a 6-year-old girl, and we discuss clinical, radiological and histological aspects of this tumor. PMID:22727476

  12. Superior recycled fiber industries leads pack in deinked pulp market

    SciTech Connect

    Rabasca, L.

    1994-07-01

    Since President Clinton signed an executive order last October requiring the federal government to purchase recycled printing and writing paper, a number of companies across the country have announced plans to either expand or build new deinking mills. In fact, a study released in May by the American Forest Paper Association (AF PA, Washington, D.C.) predicts continued growth in capacity for paper recycling over the next four years, especially for deinking mills. At least one deinking mill is ahead of the game. Two months before Clinton signed the executive order, Superior Recycled Fiber Industries, Inc. (SRFI, Duluth, Minn.A), began producing 100% deinked market pulp. The deinked pulp, which is made from office waste paper, is sold to paper manufacturers that use the pulp to make printing and writing paper. The deinked pulp is 100% post-consumer-content material. However, the final product--printing and writing paper--has a lower post-consumer content, says Anthony Pekovitch, environmental principal for Synertec, Inc. (Duluth, Minn.), a part owner of SRFI. Clinton's executive order directs the federal government to buy printing and writing paper with a 20% post-consumer content by the end of 1994 and a 30% post-consumer content by the end of 1998.

  13. Pelletization of biomass waste with potato pulp content

    NASA Astrophysics Data System (ADS)

    Obidziński, Sławomir

    2014-03-01

    This paper presents the results of a research on the influence of potato pulp content in a mixture with oat bran on the power demand of the pelletization process and on the quality of the produced pellets, in the context of use thereof as a heating fuel. The tests of the densification of the pulp and bran mixture were carried out on a work stand whose main element was a P-300 pellet mill with the `flat matrix-densification rolls' system. 24 h after the pellets left the working system, their kinetic durability was established with the use of a Holmen tester. The research results obtained in this way allowed concluding that increasing the potato pulp content in a mixture with oat bran from 15 to 20% caused a reduction of the power demand of the pellet mill. It was also established that as the pulp content in a mixture with oat bran increases from 15 to 25%, the value of the kinetic durability of the pellets determined using Holmen and Pfost methods decreases.

  14. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration.

    PubMed

    Yasui, T; Mabuchi, Y; Toriumi, H; Ebine, T; Niibe, K; Houlihan, D D; Morikawa, S; Onizawa, K; Kawana, H; Akazawa, C; Suzuki, N; Nakagawa, T; Okano, H; Matsuzaki, Y

    2016-02-01

    Human dental pulp stem/progenitor cells (hDPSCs) are attractive candidates for regenerative therapy because they can be easily expanded to generate colony-forming unit-fibroblasts (CFU-Fs) on plastic and the large cell numbers required for transplantation. However, isolation based on adherence to plastic inevitably changes the surface marker expression and biological properties of the cells. Consequently, little is currently known about the original phenotypes of tissue precursor cells that give rise to plastic-adherent CFU-Fs. To better understand the in vivo functions and translational therapeutic potential of hDPSCs and other stem cells, selective cell markers must be identified in the progenitor cells. Here, we identified a dental pulp tissue-specific cell population based on the expression profiles of 2 cell-surface markers LNGFR (CD271) and THY-1 (CD90). Prospectively isolated, dental pulp-derived LNGFR(Low+)THY-1(High+) cells represent a highly enriched population of clonogenic cells--notably, the isolated cells exhibited long-term proliferation and multilineage differentiation potential in vitro. The cells also expressed known mesenchymal cell markers and promoted new bone formation to heal critical-size calvarial defects in vivo. These findings suggest that LNGFR(Low+)THY-1(High+) dental pulp-derived cells provide an excellent source of material for bone regenerative strategies. PMID:26494655

  15. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    PubMed Central

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Background Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Materials and methods Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. Results MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. Conclusions This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment. PMID:22933973

  16. Morphological and mechanical effects of extended beating on EFB pulp web

    NASA Astrophysics Data System (ADS)

    Zukeri, Mohd Ridzuan Hafiz Mohd; Ghazali, Arniza; Lazin, Mohd Azli Khairil Mat

    2012-09-01

    The pulp extracted from the alkaline peroxide pulping (APP) of EFB was beaten from 500 revolutions to 10000 revolutions using PFI mill to investigate the morphological changes undergone by the pulp and the resultant effect on paper sheet properties. As a result of beating, pulp elements were observed as intensely fibrillated, reducing the amounts of fibre bundles and thus, reducing interruption in the inter-fiber bonding. To a defined extent, beating was also seen as unwinding the structure of vessel element to a single strand of loose spiral body. These fibrillated vessel elements of APP pulp from EFB, plus the fines element germinating from further segmentation of the vessels, were the factors contributing to the overall strength improvement of the produced EFB pulp network. The applied increment in beating revolution had apparently widened the known broad spectrum quality of APP pulp from EFB. This demonstrates EFB potential for application in specialty paper production.

  17. Waste paper and pulp sludge as feedstock for ethanol production

    SciTech Connect

    Sosulski, K.; Swerhone, B.

    1993-12-31

    Samples of newsprint, office, cardboard and magazine paper, paper towels, pulp waste and sludge were evaluated for their cellulose contents and rates of cellulose conversion to glucose. Several pretreatments were evaluated to increase the rate of conversion of newsprint cellulose to glucose. The influence of printers` inks on enzyme hydrolysis and fermentation were determined for printed newsprint and magazine paper and corresponding imprinted controls. Two streams of mixed paper were formed to determine the need for separation of paper prior to processing. A modified, two-stage process was evaluated for hydrolyses of paper samples. The process consisted of sample hydrolysis with one-half of total enzymes for 24 hr, separation of sugars by filtration and hydrolysis of the residue with fresh enzymes for an additional 24 hr. In this way, at the same enzyme loading, the rates of cellulose conversion were increased by 18 to 59%, depending on sample. The maximum cellulose conversion rates were: 62.4% for newsprint, 65.4% for cardboard, 65.7% for office paper, 54.5% for magazine paper and 55.0% for paper towel. Bleached pulp waste was hydrolysed to the level of 62.7%, and the rates of conversion of pulp sludge cellulose were 32.4 to 74.6%, depending on paper waste used for reprocessing by pulp mills. The degrees of saccharification determined for the mixed paper samples were comparable or slightly lower than those calculated based on the best conversion rates for each of the constituents and their contents in mixed sample. Based on the findings of this study, it became apparent that ethanol plants would be able to process all types of paper and pulp wastes blends, at varying ratios, without the need for separation of waste streams. Also, there was no need for other pretreatments than particle size reduction by grinding, prior to enzyme hydrolysis. Printers` inks had no adverse affect on enzyme hydrolysis or yeast fermentation.

  18. Dentin Sialophosphoprotein-derived Proteins in the Dental Pulp.

    PubMed

    Yamamoto, R; Oida, S; Yamakoshi, Y

    2015-08-01

    Porcine dentin sialophosphoprotein (DSPP), the most abundant noncollagenous protein in dentin, is critical for proper mineralization of tooth dentin. DSPP is processed by proteases into 3 major domains: dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP). There are at least 2 mRNA variants expressed from the Dspp gene: one encodes the full-length DSPP protein (DSP+DGP+DPP); the other encodes only DSP. The shorter transcript is generated through the use of a polyadenylation signal within intron 4, immediately following the DSP coding region (DGP and DPP are encoded by exon 5). We fractionated DSPP-derived proteins from the dental pulp of developing porcine incisors using heparin chromatography. DSP was identified, but little DPP could be detected in any fractions. BMP-1 digestion of DSPP-derived proteins extracted from dental pulp did not generate new DPP bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (indicating an absence of intact DSPP), although the results suggested another BMP-1 cleavage site within DSP. We further purified DSPP-derived protein by reversed-phase high-performance liquid chromatography. Its amino acid composition was similar to DSP. Expression of the full-length Dspp mRNA by quantitative real-time polymerase chain reaction analysis was significantly higher in odontoblasts than in pulp, while expression of the DSP-only mRNA was almost equal in odontoblasts and in the body of the pulp. Expression of the full-length Dspp mRNA was also significantly higher than the expression of DSP-only mRNA in odontoblasts. Both the full-length and the DSP-only Dspp mRNA showed only trace expression in the pulp tip. We conclude that use of the 3' polyadenylation signal in exon 5 predominates in fully differentiated odontoblasts, while both polyadenylation signals are used throughout odontoblast differentiation. PMID:25951824

  19. Pulp and plaque microbiotas of children with severe early childhood caries

    PubMed Central

    Chalmers, Natalia I.; Oh, Kevin; Hughes, Christopher V.; Pradhan, Nooruddin; Kanasi, Eleni; Ehrlich, Ygal; Dewhirst, Floyd E.; Tanner, Anne C. R.

    2015-01-01

    Background and objective Bacterial invasion into pulps of primary teeth can lead to infection and premature tooth loss in children. This pilot study aimed to explore whether the microbiota of carious exposures of dental pulps resembles that of carious dentin or that of infected root canals. Design Children with severe early childhood caries were studied. Children were consented and extent of caries, plaque, and gingivitis measured. Bacteria were sampled from carious lesion biofilms and vital carious exposures of pulps, and processed by anaerobic culture. Isolates were characterized from partial sequences of the 16S rRNA gene and identified by comparison with taxa in the Human Oral Microbiome Database (http://www.HOMD.org). The microbiotas of carious lesions and dental pulps were compared using univariate and multivariate approaches. Results The microbiota of cariously exposed pulps was similar in composition to that of carious lesion biofilms except that fewer species/taxa were identified from pulps. The major taxa identified belonged to the phyla Firmicutes (mainly streptococci) and Actinobacteria (mainly Actinomyces species). Actinomyces and Selenomonas species were associated with carious lesions whereas Veillonella species, particularly Veillonella dispar was associated with pulps. Other bacteria detected in pulps included Streptococcus mutans, Parascardovia denticolens, Bifidobacterium longum, and several Lactobacillus and Actinomyces species. By principal, component analysis pulp microbiotas grouped together, whereas those in caries biofilms were widely dispersed. Conclusions We conclude that the microbiota of cariously exposed vital primary pulps is composed of a subset of species associated with carious lesions. Vital primary pulps had a dominant Firmicutes and Actinobacteria microbiota which contrasts with reports of endodontic infections which can harbor a gram-negative microbiota. The microbiota of exposed primary pulps may provide insight into bacterial

  20. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry.

    PubMed

    Sharma, Ram Jee; Gupta, Ramesh C; Bansal, Arvind Kumar; Singh, Inder Pal

    2015-06-01

    Eugenia jambolana, commonly known as 'jamun' or Indian blackberry, is an important source of bioactive compounds. All parts of the plant like stem bark, leaves, flower, fruit pulp and seeds are traditionally used for many diseases. Metabolite profiling in medicinally important plants is critical to resolve the problems associated with standardization and quality control. Metabolite profiling of the fruit pulp of Jamun was performed by NMR, HPLC, MS, GC-MS and MALDI-TOF mass spectrometry. These hyphenated techniques helped in the identification of 68 chemically-diverse metabolites of the fruit pulp. These include anthocyanins, anthocyanidins, sugars, phenolics and volatile compounds. Five extracts of fruit pulp were prepared i.e. hexane, chloroform, ethylacetate, butanol and aqueous methanolic. Twenty-five metabolites identified and quantified in the n-butanol and aqueous-methanolic extracts of ripe jamun fruit by qNMR. LC-PDA-MS and MALDI-TOF spectrometry helped in deciphering thirty-nine metabolites out of which thirteen were quantified. PMID:26197529

  1. Integrated control of emission reductions, energy-saving, and cost-benefit using a multi-objective optimization technique in the pulp and paper industry.

    PubMed

    Wen, Zongguo; Xu, Chang; Zhang, Xueying

    2015-03-17

    Reduction of water pollutant emissions and energy consumption is regarded as a key environmental objective for the pulp and paper industry. The paper develops a bottom-up model called the Industrial Water Pollutant Control and Technology Policy (IWPCTP) based on an industrial technology simulation system and multiconstraint technological optimization. Five policy scenarios covering the business as usual (BAU) scenario, the structural adjustment (SA) scenario, the cleaner technology promotion (CT) scenario, the end-treatment of pollutants (EOP) scenario, and the coupling measures (CM) scenario have been set to describe future policy measures related to the development of the pulp and paper industry from 2010-2020. The outcome of this study indicates that the energy saving amount under the CT scenario is the largest, while that under the SA scenario is the smallest. Under the CT scenario, savings by 2020 include 70 kt/year of chemical oxygen demand (COD) emission reductions and savings of 7443 kt of standard coal, 539.7 ton/year of ammonia nitrogen (NH4-N) emission reductions, and savings of 7444 kt of standard coal. Taking emission reductions, energy savings, and cost-benefit into consideration, cleaner technologies like highly efficient pulp washing, dry and wet feedstock preparation, and horizontal continuous cooking, medium and high consistency pulping and wood dry feedstock preparation are recommended. PMID:25692210

  2. Combination of coagulation and catalytic wet oxidation for the treatment of pulp and paper mill effluents.

    PubMed

    Verenich; Laari, A; Nissen, M; Kallas, J

    2001-01-01

    Wet oxidation (WO) is a well established process for purification of concentrated municipal and industrial wastewaters. Many attempts have been made to modify the WO process or to create a suitable combination of processes. This work was undertaken to investigate wet oxidation integrated with coagulation, i.e. to treat the sludge remaining after coagulation with a WO process. The possibility of regeneration of the used coagulant was also considered. Two waters from paper mills were used: TMP (thermomechanical pulp) circulation water and membrane concentrate. About 50% of the COD in the original water can be removed by coagulation using Fe2(SO4)3. The results from the wet oxidation experiments show the positive effect of iron in the chemical sludge as a catalyst. The efficiency of the WO process was enhanced almost by 100%. The remaining dissolved organic matter can be easily removed biologically. PMID:11695452

  3. Crown-root fracture with pulp exposure: a case report with 16-year follow-up.

    PubMed

    Moura, Lucia Fatima Almeida de Deus; Leao, Valeria Leopoldino de Area; de Moura, Marcoeli Silva; de Moura, Carmem Dolores Vilarinho Soares; Goncalves, Alessandro Ribeiro; Lima, Cacilda Castelo Branco; de Lima, Marina de Deus Moura

    2015-01-01

    A 12-year-old boy presented for dental care 35 days after he fell from his bicycle. Clinical and radiographic examinations revealed a longitudinal crown-root fracture with pulp exposure in the maxillary left central incisor. The radiograph also suggested necrosis of the maxillary right central incisor. Urgent treatment of the left central incisor involved gingivectomy followed by autogenous bonding of the tooth fragment with self-curing composite resin. Immediately after bonding, coronal access was prepared, chemical and mechanical preparation was completed, and a calcium hydroxide intracanal dressing was placed. One week after the initial appointment, endodontic treatment was initiated in the right central incisor. The root canal of the maxillary left central incisor was maintained with calcium hydroxide paste (replaced at 45-day intervals) for 1 year and then definitively obturated. At the 16-year follow-up, satisfactory periodontal, esthetic, and clinical conditions were observed, and a radiograph revealed no resorption or periapical changes. PMID:26325652

  4. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction

    PubMed Central

    Wang, Kun; Xu, Feng; Sun, Runcang

    2010-01-01

    Kraft-AQ pulping lignin was sequentially fractionated by organic solvent extractions and the molecular properties of each fraction were characterized by chemical degradation, GPC, UV, FT-IR, 13C-NMR and thermal analysis. The average molecular weight and polydispersity of each lignin fraction increased with its hydrogen-bonding capacity (Hildebrand solubility parameter). In addition, the ratio of the non-condensed guaiacyl/syringyl units and the content of β-O-4 linkages increased with the increment of the lignin fractions extracted successively with hexane, diethylether, methylene chloride, methanol, and dioxane. Furthermore, the presence of the condensation reaction products was contributed to the higher thermal stability of the larger molecules. PMID:21152286

  5. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm.

    PubMed

    Wu, Juan; Xiao, Ya-Zhong; Yu, Han-Qing

    2005-08-01

    An investigation was conducted to explore the lignin-degrading capacity of attached-growth white-rot fungi. Five white-rot fungi, Phanerochaete chrysosporium, Pleurotus ostreatus, Lentinus edodes, Trametes versicolor and S22, grown on a porous plastic media, were individually used to treat black liquor from a pulp and paper mill. Over 71% of lignin and 48% of chemical oxygen demand (COD) were removed from the wastewater. Several factors, including pH, concentrations of carbon, nitrogen and trace elements in wastewater, all had significant effects on the degradation of lignin and the removal of COD. Three white-rot fungi, P. chrysosporium, P. ostreatus and S22, showed high capacity for lignin degradation at pH 9.0-11.0. The addition of 1 g l-1 glucose and 0.2 g l-1 ammonium tartrate was beneficial for the degradation of lignin by the white-rot fungi studied. PMID:15792583

  6. Preparation of adsorbent with magnesium sulfate and straw pulp black liquor and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Guo, Lugang; Wang, Haizeng

    2009-09-01

    A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 °C. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.

  7. Promotion of Dental Pulp Cell Migration and Pulp Repair by a Bioceramic Putty Involving FGFR-mediated Signaling Pathways.

    PubMed

    Zhang, J; Zhu, L X; Cheng, X; Lin, Y; Yan, P; Peng, B

    2015-06-01

    Mineral trioxide aggregate is the currently recommended material of choice for clinical pulp repair despite several disadvantages, including handling inconvenience. Little is known about the signaling mechanisms involved in bioceramic-mediated dental pulp repair-particularly, dental pulp cell (DPC) migration. This study evaluated the effects of iRoot BP Plus, a novel ready-to-use nanoparticulate bioceramic putty, on DPC migration in vitro and pulp repair in vivo, focusing on possible involvement of fibroblast growth factor receptor (FGFR)-related signaling, including mitogen-activated protein kinase and Akt pathways. Treatment with iRoot BP Plus extracts enhanced horizontal and vertical migration of DPCs, which was comparable with the effects induced by mineral trioxide aggregate extracts. The DPCs exposed to iRoot BP Plus extracts demonstrated no evident apoptosis. Importantly, treatment with iRoot BP Plus extracts resulted in rapid activation of FGFR, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), and Akt signaling in DPCs. Confocal immunofluorescence staining revealed that iRoot BP Plus stimulated focal adhesion formation and stress fiber assembly in DPCs, in addition to upregulating the expression of focal adhesion molecules, including p-focal adhesion kinase, p-paxillin, and vinculin. Moreover, activation of FGFR, ERK, JNK, and Akt were found to mediate the upregulated expression of focal adhesion molecules, stress fiber assembly, and enhanced DPC migration induced by iRoot BP Plus. Consistent with the in vitro results, we observed induction of homogeneous dentin bridge formation and expression of p-focal adhesion kinase, p-FGFR, p-ERK 1/2, p-JNK, and p-Akt near injury sites by iRoot BP Plus in an in vivo pulp repair model. These data demonstrate that iRoot BP Plus can promote DPC migration and pulp repair involving the FGFR-mediated ERK 1/2, JNK, and Akt pathways. These findings provide

  8. Vertical distribution of AhR-activating compounds in sediments contaminated by modernized pulp and paper industry.

    PubMed

    Ratia, H; Oikari, A

    2014-03-01

    Increased ethoxyresorufin-O-deethylase (EROD) activity is a sensitive biomarker of exposure to the chemicals which activate the aryl hydrocarbon receptor (AhR) and induce the cytochrome P450 system, such as many polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs). Pulp bleaching was one of the main sources of PCDDs and PCDFs until elemental chlorine free (ECF) and total chlorine free bleaching processes since 1990s have remarkably decreased but not completely eliminate discharges of these chemicals. In addition, historically contaminated sediments may act as a source of these persistent contaminants. In this study, the contamination history and recovery of a watercourse heavily loaded by the chemical wood industry were studied by analyzing PCDDs, PCDFs and PCBs from vertical sediment samples and by measuring hepatic EROD activity from rainbow trout intraperitoneally dosed with the sediment extracts. No PCDDs or PCDFs were found above the chromatographic limit of detection from the study area and only small amounts of PCB congeners 101, 138, 153, and 180 were present. No increased EROD activity was observed in fish indicating the absence of any AhR-activating compounds in the surface sediment, to about 15 cm depth, representing about the last 20 years when kraft pulping and ECF bleaching with activated wastewater treatment have been used. It can be concluded that nowadays organochlorines and other AhR-ligands do not harm the previously heavily polluted watercourse. PMID:24361517

  9. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills. ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the...

  10. 40 CFR 430.60 - Applicability; description of the semi-chemical subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Semi-Chemical Subcategory § 430.60 Applicability; description of the semi-chemical subcategory... of pulp and paper at semi-chemical mills. ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the...

  11. Matrix metalloproteinase levels and gelatinolytic activity in clinically healthy and inflamed human dental pulps.

    PubMed

    Gusman, Heloisa; Santana, Ronaldo B; Zehnder, Matthias

    2002-10-01

    The role of matrix metalloproteinases (MMPs) in the breakdown of pulp tissue of teeth with severe caries has not yet been directly elucidated. This study was to determine the levels of selected MMPs and the overall gelatinolytic activity in clinically healthy and inflamed human dental pulps of 29 healthy subjects, aged 10-19 yr. Seventeen pulps were collected from subjects diagnosed with symptomatic pulpitis, and 18 control pulps were obtained from 12 subjects following premolar extraction for orthodontic reasons. The levels of MMP-1, MMP-2, MMP-3 and MMP-9 were determined with enzyme-linked immunosorbent assay. Densitometric analysis of gelatin zymograms was used to assay gelatinolytic activity in pulp supernatants. The MMP-1 levels were below the detection limit for both groups. Levels of MMP-2 and MMP-3 were significantly lower in symptomatic vs. clinically healthy pulps. In contrast, levels of MMP-9 in inflamed pulps were significantly higher than those recorded in clinically normal pulps. The overall gelatinolytic activity was elevated in inflamed pulps compared with healthy counterparts. Further, the gelatinolytic activity was positively correlated with MMP-9 levels. The data obtained suggest a key role of MMP-9 in the breakdown of inflamed human dental pulp tissue. PMID:12664465

  12. Prevalence of and relationship between pulp and renal stones: A radiographic study

    PubMed Central

    Patil, Santosh R.

    2015-01-01

    Aim The aim of the present study was to determine the prevalence of and the relationship between pulp and renal in affected patients and in healthy adults. Materials and methods A total of 240 patients participated in the study. Group A consisted of 120 patients who had renal calculi and Group B had 120 randomly selected controls for the study. The periapical radiographs for all patients were evaluated for the presence or absence of the narrowing of dental pulp chambers and pulp canals. The radiographs were also evaluated to determine the presence or absence of pulp stones. The results were compared and analyzed using the Chi-square test (p < 0.001). Results A total of 164 patients had pulp narrowing and 112 patients had pulp stones, which included 55 controls and 57 renal calculi patients. There was no statistical correlation between pulp narrowing and renal stones (p > 0.001) and also between pulp stones and renal stones (p > 0.001). Conclusion However, there was no significant correlation between the presence of pulp stones and renal stones, and the incidental findings of pulp stones on periapical radiographs can provide useful information in the early diagnosis of the systemic calcifications. PMID:26605145

  13. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective

    PubMed Central

    HUANG, GEORGE T.-J.; AL-HABIB, MEY; GAUTHIER, PHILIPPE

    2013-01-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic. PMID:23914150

  14. The Prevalence of Pulp stones in Adult Patients of Shiraz Dental School, a Radiographic Assessment

    PubMed Central

    Ravanshad, Shohreh; Khayat, Shideh; Freidonpour, Najmeh

    2015-01-01

    Statement of the Problem Pulp stones are calcifications found in the pulp chamber or pulp canals of the teeth. Its different prevalence in different population is a matter of concern. Purpose This study aimed to assess the prevalence of pulp stones in a sample of Iranian population and to report its occurrence regarding gender, dental arch, tooth type and dental status. Materials and Methods Dental records of patients who attended Shiraz Dental School were selected randomly. Only bitewing and periapical radiographs of maxillary and mandibular permanent posterior teeth were studied. Teeth were classified in the case of presence or absence of pulp stones, and the prevalence was analyzed in different gender, tooth types, dental arch, and dental status (intact, carious, or restored) groups. Statistical analysis was performed using X2 test. Results Of the 652examined subjects, 306 (46.9%) had one or more teeth with pulp stones. Of the 8244 posterior teeth examined, 928 (11.25%) had pulp stones in the pulp chamber. These pulp stones were detected in 76(37.6%) of males and 230 (51%) of females. The frequency of pulp stones among different teeth between maxillary and mandibular arches had almost a similar pattern. Among teeth demonstrating the condition, first molars were the most prevalent, followed by second molars. In maxillary molars the frequency of occurrence (26%) was higher than mandibular molars (18.7%). No Significant difference was found between dental status and pulp stones occurrence. Conclusion The occurrence of pulp stones noted in this study was significantly higher in female, molar teeth than premolar and 1st maxillary molar than mandibular. There was no significant association between pulp stone and condition of the crown. PMID:26636125

  15. Management of a Nonvital Young Permanent Tooth by Pulp Revascularization

    PubMed Central

    Chandran, Vidya; Sivadas, G

    2014-01-01

    ABSTRACT% This report presents the case of a 10-year-old patient with a nonvital young permanent tooth which was managed by pulp revascularization. Following disinfection of the canal by irrigation with NaOCl and use of a triantibiotic paste, a scaffold was created by inducing the formation of a blood clot within the canal. At the subsequent follow-up visits, the patient was asymptomatic, with normal response to percussion, normal periodontal probing depths, and no abnormal mobility. The radiographs showed evidence of continued apical root development with increase in root length, signs of apical closure and increase in thickness of dentinal walls. Thus, this case adds to the growing evidence supporting the revascularization approach as an option for management of nonvital young permanent teeth. How to cite this article: Chandran V, Chacko V, Sivadas G. Management of a Nonvital Young Permanent Tooth by Pulp Revascularization. Int J Clin Pediatr Dent 2014;7(3):213-216. PMID:25709305

  16. Duplex stainless steels for the pulp and paper industry

    SciTech Connect

    Alfonsson, E.; Olsson, J.

    1999-07-01

    The metallurgy and corrosion resistance of duplex stainless steel, particularly with regards to applications in the pulp and paper industry, are described. Practical experiences from pressure vessel installations in cooking plants and bleach plants as well as from non-pressurized items in different parts along the fiber line, are given. The paper also reviews corrosion test results presented previously and compares these with recent test data and the practical experiences. Though most of the installations have been successful, some cases of corrosion attacks on duplex stainless steel have been reported, although these are very limited in number: one digester, one calorifier, two pulp storage towers, and two bleach plant filter washers, of a total of more than 700 identified installations.

  17. Management of a nonvital young permanent tooth by pulp revascularization.

    PubMed

    Chandran, Vidya; Chacko, Varghese; Sivadas, G

    2014-01-01

    This report presents the case of a 10-year-old patient with a nonvital young permanent tooth which was managed by pulp revascularization. Following disinfection of the canal by irrigation with NaOCl and use of a triantibiotic paste, a scaffold was created by inducing the formation of a blood clot within the canal. At the subsequent follow-up visits, the patient was asymptomatic, with normal response to percussion, normal periodontal probing depths, and no abnormal mobility. The radiographs showed evidence of continued apical root development with increase in root length, signs of apical closure and increase in thickness of dentinal walls. Thus, this case adds to the growing evidence supporting the revascularization approach as an option for management of nonvital young permanent teeth. How to cite this article: Chandran V, Chacko V, Sivadas G. Management of a Nonvital Young Permanent Tooth by Pulp Revascularization. Int J Clin Pediatr Dent 2014;7(3):213-216. PMID:25709305

  18. Valorisation of by Products from Bleached Eucalyptus Kraft Pulp Mill

    NASA Astrophysics Data System (ADS)

    Silva, M. C.; Lopes, O. R.; Colodette, J. L.; Porto, A. O.; Rieumont, J.; Chaussy, D.; Belgacem, M. N.; Silva, G. G.

    2008-08-01

    Three industrial wastes arising from bleached hardwood kraft pulps, namely: unbleached screen rejects (USR), effluent treatment (ETW), and eucalyptus bark (EB) were analyzed with the aim of their possible valorization as an alternative source of cellulose. Their morphological properties were determined using MorFi apparatus. For this study the sample bleached kraft pulp, BKP, was analyzed as a reference. Lignin and carbohydrate contents were also quantified. These by-products were studied as such (i.e. without careful purification) because we intended to find rational and low-cost way of valorization. In fact any additional operation will induce an over cost. The results obtained indicate that these industrial wastes can be potential raw material in fibre-based applications (paper, composites…), since they contain a high proportion of cellulose with preserved fibrillar morphology. Some of these materials have low lignin and inorganic residue contents.

  19. Utilization of geothermal energy in a pulp and paper mill

    SciTech Connect

    Hotson, G.W.

    1997-01-01

    The Tasman Pulp and Paper Company Ltd.`s Mill at Kawerau, New Zealand, has been utilizing geothermal energy for more than 30 years. The mill produces approximately 200,000 tonnes of kraft pulp and 400,000 tonnes of newsprint per annum. Geothermal energy produces 26% of the process steam requirements and 6% of the mill`s electrical load. The management of the mill`s energy sources is complex and ever changing, which has resulted in unique control strategies being developed over the years to improve efficiencies in the operation of the plant. Complete utilization of the geothermal resource has been the aim of the company and has led to pioneering plant and process developments.

  20. Assessment of opacimeter calibration on kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Gomes, Joa˜o. F. P.

    This paper describes the methodology and specific techniques for calibrating automatic on-line industrial emission analysers, specifically equipments that measure total suspended dust installed in pulp mills within the scope of Portuguese Regulation No. 286/93 on air quality. The calibration of opacimeters is a multi-parameter relationship instead of the bidimensional calibration which is used in industrial practice. For a stationary source from a pulp mill such as the recovery boiler stack, which is subjected to significant variations, the effects of parameters such as the humidity and gas temperature, deviations of isokinetism, size range of particles and characteristic transmittance of equipment are analysed. The multivariable analysis of a considerable set of data leads to an estimate of about 98% of equipment transmittance over the other parameters with a level of significance greater than 0.99 which is a validation of the bidimensional practical calibrations.

  1. The early effects of segmental surgery on the human pulp.

    PubMed

    Summers, L; Booth, D R

    1975-12-01

    The teeth of two patients requiring preprosthetic segmental surgery were removed between 4 and 10 weeks postoperatively. The pulps of these teeth were examined histologically using sound teeth from patients of the same age as controls and it was generally found that the teeth from the repositioned segment retained their vitality; there was progressive degeneration of nerves except for the nonmyelinated nerves of the autonomac nervous system, which remained intact. PMID:815185

  2. Cyclic GMP phosphodiesterase activity role in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Ferrante, M; D'Intino, M; Rega, L; Dolci, M; Trentini, P; Ciavarelli, L

    2004-01-01

    Cyclic GMP phosphodiesterase (cGMP PDE) plays an important role in pulp tissues. High levels of cGMP PDE are found in dental pulp cells. In the present study cGMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cGMP PDE control values for normal healthy pulps were 4.74+/-0.32 nmol/mg of proteins. In reversible pulpitis the cGMP PDE activity increased almost 3 times. In irreversible pulpitis specimens the values increased 4.5 times compared with the normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results point to a role of cGMP PDE in the initial pulp response after injury. PMID:16857102

  3. Cyclic Amp phosphodiesterase activity in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Menna, V; Serra, E; Santoleri, F; Perfetti, G; Ciavarelli, L; Trentini, P

    2004-01-01

    Cyclic AMP phosphodiesterase (cAMP PDE) seems to be important in pulp tissues. High levels of cAMP PDE have been demonstrated to be in dental pulp cells. In the present study cAMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cAMP PDE control values for normal healthy pulps were 12.14 +/- 3.74 nmols/mg of proteins. In reversible pulpitis the cAMP PDE activity increased almost 2.5 times. In irreversible pulpitis specimens the values increased 4.5 times compared with normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results could point to a role of cAMP PDE in the initial pulp response after injury. PMID:16857100

  4. [Clinical and experimental studies on membranous pulp-capping agent with Chinese medicinal herbs].

    PubMed

    Wang, Z P; Li, Z R; Li, S L

    1993-06-01

    A membranous pulp-capping agent of Chinese medicinal herbs was made by ourselves prescription, and was filled in capsules for medication. Direct pulp-capping and pulpotomy were performed on 102 permanent teeth. During the observation period of more than one year, the successful rate was 82.4%. Under light microscope, the artificial exposed sites of normal sheep teeth were fully sealed after capping for 45 days. There were calcification under the exposed sites. The inner lines were preparative dentins. Experiments on dogs' teeth revealed that the pulps were normal after two month's direct pulp-capping, and the new dentins appeared. The bacteria culture test was made before and after the pulp-capping agent was used on ten deep carious teeth. It revealed that the bacteria all converted negative after medication of two weeks. Clinical and experimental studies indicated that the pulp-capping agent is valuable in clinical treatment. PMID:8257838

  5. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. PMID:27099940

  6. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    NASA Astrophysics Data System (ADS)

    Kidalova, Lucia; Stevulova, Nadezda; Geffert, Anton

    2014-06-01

    Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  7. Direct pulp capping in an immature incisor using a new bioactive material

    PubMed Central

    Bhat, Sham S.; Hegde, Sundeep K.; Adhikari, Fardin; Bhat, Vidya S.

    2014-01-01

    Preservation of the pulp in a traumatized immature fractured incisor tooth is of prime importance in order to achieve apexogenesis, a natural apical closure. The main factor influencing this is pulpal protection by a bioactive material proving optimum marginal seal in preventing any microleakage. This case report presents an 8-year-old female diagnosed with Ellis Class 3 fracture of immature tooth 11 involving the mesial pulp horn. Under rubber dam isolation, a partial pulpotomy was performed and the pulp was sealed using a new bioactive material BIODENTINE to stimulate apexogenesis, dentine replacement and pulp protection. The fractured segment was reattached for optimum esthetics, which was a concern for the patient. The patient was followed-up for 1, 3, 6 and 12 months, which revealed continued apical closure and maintenance of pulp vitality. The patient remained asymptomatic. This case report provides evidence for the potential use of Biodentine as an effective pulp capping material in the future. PMID:25191081

  8. Direct pulp capping in an immature incisor using a new bioactive material.

    PubMed

    Bhat, Sham S; Hegde, Sundeep K; Adhikari, Fardin; Bhat, Vidya S

    2014-07-01

    Preservation of the pulp in a traumatized immature fractured incisor tooth is of prime importance in order to achieve apexogenesis, a natural apical closure. The main factor influencing this is pulpal protection by a bioactive material proving optimum marginal seal in preventing any microleakage. This case report presents an 8-year-old female diagnosed with Ellis Class 3 fracture of immature tooth 11 involving the mesial pulp horn. Under rubber dam isolation, a partial pulpotomy was performed and the pulp was sealed using a new bioactive material BIODENTINE to stimulate apexogenesis, dentine replacement and pulp protection. The fractured segment was reattached for optimum esthetics, which was a concern for the patient. The patient was followed-up for 1, 3, 6 and 12 months, which revealed continued apical closure and maintenance of pulp vitality. The patient remained asymptomatic. This case report provides evidence for the potential use of Biodentine as an effective pulp capping material in the future. PMID:25191081

  9. Management of nonprocess elements in low-effluent bleached kraft pulp mills

    SciTech Connect

    Bryant, P.S.

    1995-12-31

    Increasing environmental regulation for the discharge of chlorinated organics in bleach plant effluents has required most manufacturers in the pulp and paper industry to reduce the charge of elemental chlorine in the bleaching of kraft pulp. The best long term solution for reducing effluent pollutants from bleached kraft pulp mills is to move towards low-effluent (closed-cycle) bleaching. Closure of operating bleach plants would dramatically reduce both the volume and the pollutant concentration of pulp mill effluents. However, closing the mill creates many operational problems including a concentration build-up of nonprocess elements (NPE`s) in process streams. NPE`s usually enter the pulp process as trace constituents of wood. Recent studies have lead to a fundamental understanding of how NPE`s partition between the solid cellulose phase and the liquid aqueous phase in pulp mill process streams. This knowledge will help in the design, operation and optimization of future low-effluent bleach plants.

  10. Pulp Obliteration in a Patient with Sclerodermatous Chronic Graft-versus-Host Disease.

    PubMed

    Gomes, Camilla Borges Ferreira; Treister, Nathaniel Simon; Miller, Brian; Armand, Philippe; Friedland, Bernard

    2016-04-01

    Dental pulp calcification is a common finding associated with localized dental trauma, genetic disorders, and systemic inflammatory diseases. Chronic graft-versus-host disease (cGVHD) is a frequent complication after allogeneic hematopoietic cell transplantation (allo-HCT) characterized by immune-mediated injury to the skin, mouth, eyes, liver, and other tissues, resulting in significant disability and reduced quality of life. We report a patient with sclerodermatous cGVHD who presented with general pulp calcification in all teeth 5 years after allo-HCT. A review of full mouth dental radiographs obtained just before allo-HCT revealed normal-appearing pulp chambers. Based on prior reports of generalized pulp calcification associated with progressive systemic sclerosis, we hypothesized that the etiology was likely related to the presence of cGVHD with associated vascular and fibrotic tissue changes within the pulp vasculature. Clinicians should consider cGVHD in the differential diagnosis of generalized pulp calcification. PMID:26906241

  11. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    PubMed

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood. PMID:26706725

  12. Identification of cultivable microorganisms from primary teeth with necrotic pulps.

    PubMed

    Ledezma-Rasillo, Gildardo; Flores-Reyes, Hector; Gonzalez-Amaro, Ana M; Garrocho-Rangel, Arturo; Ruiz-Rodriguez, M del Socorro; Pozos-Guillen, Amaury J

    2010-01-01

    The objective of this study was to identify cultivable microorganisms from primary teeth with necrotic pulps. This experimental study included 21 patients of both sexes between 4 and 7 years of age with necrotic pulps in primary teeth. Twenty-one maxillary and mandibular molars containing at least 1 necrotic canal, an abscess or sinus tract, one or more radiolucent areas in the furcation or periapical region, teeth having at least two thirds of root length, and carious lesions directly exposed to the oral environment were included. After antisepsis of the oral cavity, anesthesia of the affected tooth, and isolation and disinfection of the operative field, 3 sterile absorbent paper points were sequentially placed for 30 seconds for the collection of samples. The samples were immediately processed in an anaerobic chamber, and all isolated microorganisms were identified. Anaerobic species (anaerobic facultative and moderate anaerobes) were isolated in all root canals; 68.4% of root canal samples studied showed a polymicrobial nature. Most of the isolate consisted of Bifidobacterium Spp2 and Streptococcus intermedius. Other less frequently encountered species were Actinomyces israelii, Bifidobacterium spp 1, Clostridium spp, and Candida albicans. Results indicate the existence of combinations of bacterial species in root canal infections of the primary dentition with necrotic pulps, anaerobic bacteria predominating. PMID:20831135

  13. Dental Pulp: Correspondences and Contradictions between Clinical and Histological Diagnosis

    PubMed Central

    Giuroiu, Cristian Levente; Căruntu, Irina-Draga; Lozneanu, Ludmila; Melian, Anca; Vataman, Maria; Andrian, Sorin

    2015-01-01

    Dental pulp represents a specialized connective tissue enclosed by dentin and enamel, the most highly mineralized tissues of the body. Consequently, the direct examination as well as pathological evaluation of dental pulp is difficult. Within this anatomical context, our study aimed to evaluate the correlation between dental pulp lesions and clinical diagnosis. Pulpectomies were performed for 54 patients with acute and chronic irreversible pulpitides and for 5 patients (control group) with orthodontic extractions. The morphological features were semiquantitatively assessed by specific score values. The clinical and morphological correspondence was noted for 35 cases (68.62%), whereas inconsistency was recorded for 16 cases (31.38%). The results of the statistical analysis revealed the correlations between clinically and pathologically diagnosed acute/chronic pulpitides. No significant differences were established between the score values for inflammatory infiltrate intensity, collagen depositions, calcifications and necrosis, and acute, respectively chronic pulpitides. We also obtained significant differences between acute pulpitides and inflammatory infiltrate and calcifications and between chronic pulpitides and inflammatory infiltrate, collagen deposition, and calcifications. On the basis of the predominant pathological aspects, namely, acute and chronic pulpitis, we consider that the classification schemes can be simplified by adequately reducing the number of clinical entities. PMID:26078972

  14. Carotenoids in durian fruit pulp during growth and postharvest ripening.

    PubMed

    Wisutiamonkul, Apinya; Promdang, Somnuk; Ketsa, Saichol; van Doorn, Wouter G

    2015-08-01

    Durian (Durio zibethinus) cvs. Chanee and Monthong fruit were severed from the tree during 14 day intervals, from 10 weeks after anthesis until commercial maturity. We determined the pulp (i.e. aril; fruit flesh) carotenoid composition, together with pulp firmness, color and total soluble solids (TSS) and postharvest quality. In ripe cv. Chanee fruit the main carotenoids were β-carotene (about 80%), and α-carotene (20%), with minor levels of lutein and zeaxanthin. In ripe fruit total carotenoid concentration (expressed per gram FW) was about 9-fold higher in cv. Chanee than in cv. Monthong. Large differences between the cultivars were also found in β-carotene levels (about 11 times more in cv. Chanee), and even larger ones in those of α-carotene. Differences in lutein and zeaxanthin concentrations were small. Pulp color was deeper yellow in cv. Chanee than in cv. Monthong, which was correlated with α-carotene and β-carotene concentrations. Durian contains a high fat percentage, which is conducive to carotenoid uptake. It is concluded that it is advisable to consume cv. Chanee rather than cv. Monthong if intake of carotenoids is considered important. PMID:25766832

  15. Facile pulping of lignocellulosic biomass using choline acetate.

    PubMed

    Cheng, Fangchao; Wang, Hui; Chatel, Gregory; Gurau, Gabriela; Rogers, Robin D

    2014-07-01

    Treating ground bagasse or Southern yellow pine in the biodegradable ionic liquid (IL), choline acetate ([Cho][OAc]), at 100°C for 24h led to dissolution of hemicellulose and lignin, while leaving the cellulose pulp undissolved, with a 54.3% (bagasse) or 34.3% (pine) reduction in lignin content. The IL solution of the dissolved biopolymers can be separated from the undissolved particles either by addition of water (20 wt% of IL) followed by filtration or by centrifugation. Hemicellulose (19.0 wt% of original bagasse, 10.2 wt% of original pine, containing 14-18 wt% lignin) and lignin (5.0 wt% of original bagasse, 6.0 wt% of original pine) could be subsequently precipitated. The pulp obtained from [Cho][OAc] treatment can be rapidly dissolved in 1-ethyl-3-methylimidazolium acetate (e.g., 17 h for raw bagasse vs. 7h for pulp), and precipitated as cellulose-rich material (CRM) with a lower lignin content (e.g., 23.6% for raw bagasse vs. 10.6% for CRM). PMID:24874879

  16. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    PubMed

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume. PMID:26634840

  17. HEMA inhibits migration of dental pulp stem cells

    PubMed Central

    Williams, Drake W.; Wu, Hongkun; Oh, Ju-Eun; Fakhar, Camron; Kang, Mo K.; Shin, Ki-Hyuk; Park, No-Hee; Kim, Reuben H.

    2013-01-01

    Objectives Cell migration is an important step in pulpal wound healing. Although components in the resin-based dental materials are known to have adverse effects on pulp wound healing including proliferation and mineralization, their effects on cell migration have been scarcely examined. Here, we investigated effects of 2-Hydroxyethyl methacrylate (HEMA) on migration of dental pulp stem cells (DPSC) in vitro. Methods Cell viability was assessed using MTT assay, and cell migration was evaluated using wound scratch assay and transwell migration assay at non-cytotoxic doses. Western blotting was used to examine pathways associated with migration such as focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), and glycogen synthase kinase 3 (GSK3). Results There were no drastic changes in the cell viability below 3mM HEMA. When DPSC were treated with HEMA at 0.5, 1.0, and 2.5mM, cell migration was diminished. HEMA-treated DPSC exhibited the loss of phosphorylated focal adhesion kinase (FAK) in a dose-dependent manner. The HEMA-mediated inhibition of cell migration was associated with phosphorylation of p38 but not GSK3, ERK or JNK pathways. When we inhibited the p38 signaling pathway using a p38 inhibitor, migration of DPSC was suppressed. Conclusion HEMA inhibits migration of dental pulp cells in vitro, suggesting that poor pulpal wound healing under resin-based dental materials may be due, in part, to inhibition of cell migration by HEMA. PMID:23953290

  18. Biological removal of phyto-sterols in pulp mill effluents.

    PubMed

    Mahmood-Khan, Zahid; Hall, Eric R

    2013-12-15

    Phyto-sterols and extractives found in pulp mill effluents are suspected to cause endocrine abnormalities in receiving water fish. The control of sterols in pulp mill effluents through biological secondary wastewater treatment was studied using two lab-scale bioreactor systems. After achieving a stable performance, both bioreactor systems successfully removed (>90%) sterols and the estimated biodegradation was up to 80%. Reactor 1 system operating at 6.7 ± 0.2 pH effectively treated pulp mill effluent sterols spiked up to 4500 μg/L in 11 h HRT and 11 day SRT. However, Reactor 2 system operating at 7.6 ± 0.2 pH performed relatively poorly. Retention time reductions beyond critical values deteriorated the performance of treatment systems and quickly reduced the sterols biodegradation. The biodegradation loss was indicated by mixed liquor sterols content that started increasing. This biodegradation loss was compensated by the increased role of bio-adsorption and the overall sterols removal remained relatively high. Hence, a relatively small (20-30%) loss in the overall sterols removal efficiency did not fully reflect the associated major (60-70%) loss in the sterols biodegradation because the amount of sterols accumulated in the sludge due to adsorption increased so the estimate of sterols removal through adsorption increased from 30-40% to 70-80% keeping the overall sterols removal still high. PMID:24211569

  19. Modification of high-lignin kraft pulps with laccase. Part 2. Xylanase-enhanced strength benefits.

    PubMed

    Chandra, Richard P; Ragauskas, Arthur J

    2005-01-01

    The effects of xylanase pretreatment of high lignin content softwood (SW) kraft pulp on subsequent pulp treatment with laccase in combination with gallic acid were investigated. Although xylanase pretreatment was ineffective in enhancing the laccase-facilitated biografting of gallic acid to kraft fibers, it was beneficial for subsequent treatment with laccase exclusively. Treating pulp fibers with xylanase followed by laccase provided a collective 25% and 46% increase in dry and wet tensile strength properties, respectively. PMID:16080715

  20. The solvent action of sodium hypochlorite on bovine tendon collagen, bovine pulp, and bovine gingiva.

    PubMed

    Nakamura, H; Asai, K; Fujita, H; Nakazato, H; Nishimura, Y; Furuse, Y; Sahashi, E

    1985-09-01

    The purpose of this study was to determine the optimum temperature and concentration of sodium hypochlorite solution required to dissolve bovine tendon collagen, pulp, and gingiva. The 10% concentration of sodium hypochlorite solution at 37 degrees C was found to be most effective in dissolving bovine tendon collagen, pulp, and gingiva. Sodium hypochlorite solution was more effective in dissolving bovine pulp or tendon collagen than in dissolving bovine gingiva. PMID:3862046

  1. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    PubMed

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment. PMID:26521558

  2. TCF bleaching of soda-anthraquinone and diethanolamine pulp from oil palm empty fruit bunches.

    PubMed

    Jiménez, L; Serrano, L; Rodríguez, A; Ferrer, A

    2009-02-01

    The AOpAZRP bleaching sequence (A is an acid treatment, Op an oxygen and peroxide stage, Z an ozone stage, R a reductive treatment and P a peroxide stage) have been applied to oil palm empty fruit bunches (EFB) soda-anthraquinone and diethanolamine pulp. On similar Kappa numbers for the two types of pulp (14.2 and 17.3), paper from unbleached soda-anthraquinone pulp exhibited increased tensile index (25.8 Nm/g), stretch (2.35%), burst index (1.69 kN/g), tear index (0.50 mN m(2)/g) and brightness (60.6%) relative to paper for unbleached diethanolamine pulp; but the latter type of pulp exhibited higher viscosity (659 mL/g) than the former. Upon bleaching with the AOpAZRP sequence, diethanolamine pulp exhibited higher viscosity (783 mL/g), and the properties of the paper sheets were close to or even better to those from soda-anthraquinone pulp, namely: 22.2 vs 20.4 Nm/g tensile index, 1.30 vs 1.42 kN/g burst index, 0.71 vs 0.70 mN m(2)/g tear index and 71.3% vs 77.5% brightness. Therefore, the properties of paper from diethanolamine pulp evolved more favourably during bleaching than did those of paper from soda-anthraquinone pulp. PMID:18809321

  3. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration.

    PubMed

    Yang, Jing-Wen; Zhang, Yu-Feng; Wan, Chun-Yan; Sun, Zhe-Yi; Nie, Shuai; Jian, Shu-Juan; Zhang, Lu; Song, Guang-Tai; Chen, Zhi

    2015-03-01

    Critical morphological requirements for pulp regeneration are tissues replete with vascularisation, neuron formation, and dentin deposition. Autophagy was recently shown to be related to angiogenesis, neural differentiation, and osteogenesis. The present study aimed to investigate the involvement of autophagy in stromal cell-derived factor-1α (SDF-1α)-mediated dental pulp stem cell (DPSC) migration and pulp regeneration, and identify its presence during pulp revascularisation of pulpectomised dog teeth with complete apical closure. In vitro studies showed that SDF-1α enhanced DPSCs migration and optimised focal adhesion formation and stress fibre assembly, which were accompanied by autophagy. Moreover, autophagy inhibitors significantly suppressed, whereas autophagy activator substantially augmented SDF-1α-stimulated DPSCs migration. Furthermore, after ectopic transplantation of tooth fragment/silk fibroin scaffold with DPSCs into nude mice, pulp-like tissues with vascularity, well-organised fibrous matrix formation, and new dentin deposition along the dentinal wall were generated in SDF-1α-loaded samples accompanied by autophagy. More importantly, in a pulp revascularisation model in situ, SDF-1α-loaded silk fibroin scaffolds improved the de novo ingrowth of pulp-like tissues in pulpectomised mature dog teeth, which correlated with the punctuated LC3 and Atg5 expressions, indicating autophagy. Our findings provide novel insights into the pulp regeneration mechanism, and SDF-1α shows promise for future clinical application in pulp revascularisation. PMID:25617122

  4. Characterization of the pulp and kernel oils from Syagrus oleracea, Syagrus romanzoffiana, and Acrocomia aculeata.

    PubMed

    Coimbra, Michelle Cardoso; Jorge, Neuza

    2011-10-01

    Vegetable oils are important sources of essential fatty acids. It is, therefore, important to characterize plant species that can be used as new oil sources. This study aimed to characterize the oils from guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana), and macaúba (Acrocomia aculeata). The physicochemical characterization was performed using official analytical methods for oils and fats, free fatty acids, peroxide value, refractive index, iodine value, saponification number, and unsaponifiable matter. The oxidative stability was determined using the Rancimat at 110 °C. The fatty acid composition was performed by gas chromatography. The results were submitted to Tukey's test for the medium to 5% using the ESTAT program. The pulp oils were more unsaturated than kernel oils, as evidenced by the higher refractive index and iodine value, especially the macaúba pulp oil which gave 1.4556 and 80 g I(2) /100 g, respectively, for these indices. The kernel oils were less altered by oxidative process and had high induction period, free fatty acids below 0.5%, and peroxide value around 0.19 meq/kg. The guariroba kernel oil showed the largest induction period, 91.82 h. Practical Application:  The vegetable oils, besides being consumed directly as food, are important raw material for the chemical, pharmaceutical, and food industries. In recent years, the world market of vegetable oils has been characterized by stronger growth of demand over supply. Several species of palm trees are shown to be promising sources of oils. The characterization of oils extracted from some species, such as guariroba, jerivá, and macaúba, has not yet been fully elucidated. For this reason, it becomes important to investigate the physicochemical characterization of these oils, aiming at a possible use in food or in the industry. PMID:22417579

  5. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions. PMID:25837566

  6. Human Pulp Response to Direct Pulp Capping and Miniature Pulpotomy with MTA after Application of Topical Dexamethasone: A Randomized Clinical Trial

    PubMed Central

    Mousavi, Seyed Amir; Ghoddusi, Jamileh; Mohtasham, Nooshin; Shahnaseri, Shirin; Paymanpour, Payam; Kinoshita, Jun-Ichiro

    2016-01-01

    Introduction: The aim of this randomized clinical trial was to compare the histologic pulp tissue response to one-step direct pulp capping (DPC) and miniature pulpotomy (MP) with mineral trioxide aggregate (MTA) after application of dexamethasone in healthy human premolars. Methods and Materials: Forty intact premolars from 10 orthodontic patients, were randomly chosen for DPC (n=20) or MP (n=20). In 10 teeth from each group, after exposure of the buccal pulp horn, topical dexamethasone was applied over the pulp. In all teeth the exposed/miniaturely resected pulp tissue was covered with MTA and cavities were restored with glass ionomer. Teeth vitality was evaluated during the next 7, 21, 42, and 60 days. Signs and/or symptoms of irreversible pulpitis or pulp necrosis were considered as failure. According to the orthodontic schedule, after 60 days the teeth were extracted and submitted for histological examination. The Kruskal-Wallis and Fisher’s exact tests were used for statistical analysis of the data (P=0.05). Results: Although dexamethasone specimens showed less inflammation, calcified bridge, pulpal blood vasculature, collagen fibers and granulation tissue formation were not significantly different between the groups (P>0.05). Conclusion: Topical dexamethasone did not hindered pulp healing but reduced the amount of underlying pulpal tissue inflammation after DPC and MP in healthy human premolars. PMID:27141213

  7. A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry

    SciTech Connect

    Eric D. Larson; Stefano Consonni; Ryan E. Katofsky; Kristiina Iisa; W. James Frederick

    2007-03-31

    Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Program of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the

  8. Detection of estrogen- and dioxin-like activity in pulp and paper mill black liquor and effluent using in vitro bioassays

    SciTech Connect

    Zacharewski, T.; Berhane, K.; Gillesby, B.; Burnison, K. |

    1995-12-31

    Pulp and paper mill effluent contains a complex mixture of compounds which adversely affect fish physiologically and at the population level. These effects include compromised reproductive fitness and the induction of mixed-function oxidase activities; two classic responses mediated by the estrogen and/or Ah receptor. In vitro recombinant receptor/reporter gene assays were used to examine pulp and paper mill black liquor and effluent for estrogenic, dioxin-like and antiestrogenic activities. Using MCF7 cells transiently transfected with a Gal4-estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc), it was estimated that black liquor contains 4 {+-} 2 ppb ``estrogen equivalents``, while negligible estrogenic activity was observed in a methanol-extracted pulp and paper mill effluent fraction (MF). A dioxin response element (DRE)-regulated luciferase reporter gene (pGudLucl.1) transiently transfected into Hepalclc7 wild type cells exhibited a dose-dependent increase in luciferase activity following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDO), black liquor and MF. Based on the dose response curves, black liquor and MF contain 10 {+-} 4 ppb and 20 {+-} 6 ppt ``TCDD equivalents``, respectively. Moreover, MF exhibited significant AhR-mediated antiestrogenic activity. These results demonstrate the utility of these bioassays and suggest that the effects observed in fish exposed to pulp and paper mill effluent may be due to unidentified ER and AhR ligands not detected by conventional chemical analysis due to the lack of appropriate chemical standards.

  9. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    PubMed

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. PMID:26661713

  10. Idiopathic dental pulp calcifications in a tertiary care setting in South India

    PubMed Central

    Satheeshkumar, PS; Mohan, Minu P; Saji, Sweta; Sadanandan, Sudheesh; George, Giju

    2013-01-01

    Background: Dental pulp calcifications are unique and represent the dental pulp regenerative process. Dental pulp calcifications are sometimes routine findings in oral radiographs and may later serve as an important diagnostic criterion for a hidden aspect of systemic illness. Objective: The purpose of this study was to assess the patterns and prevalence of idiopathic dental pulp calcifications in a tertiary care setting in South India. Materials and Methods: A total of 227 patients were included in the study fulfilling the inclusion criteria. Age range of the study population was from 15 to 70 years. Teeth were examined under digital panoramic radiograph. The presence or absence of pulp stones was recorded. The presence of pulp stone were categorized according to the types classified as Type I, Type IA, Type II, Type IIA, Type II B, and Type III. The frequency of occurrence of pulp stones with sex, tooth type, dental arches, and types were compared with the types of calcification. Results: Total no. of patients with pulpal calcification were 227 [females 133 (58.59%) and males 94 (41.40%)]. The most common type between both sexes was Type I (48%). Total no. of teeth with calcification was 697; maxilla (48%), mandible (52%). The prevalence of pulp stone was found to be higher in the molars in both the arches. Most no. of pulp stones are reported at the third and fourth decade of life. Conclusion: Idiopathic dental pulp calcifications are incidental radiographic findings of the pulp tissue and also may be an indicator of underlying disease. PMID:23349577

  11. Quality evaluation of dissolving pulp fabricated from banana plant stem and its potential for biorefinery.

    PubMed

    Das, Atanu Kumar; Nakagawa-Izumi, Akiko; Ohi, Hiroshi

    2016-08-20

    The study was conducted to evaluate the quality of dissolving pulp of Musa sapientum L. (banana) plant stem and its potential for biorefinery. Introduction of pre-hydrolysis prior to any alkaline pulping process helps to reduce the content of hemicellulose and consequently produce acceptably high content of cellulose pulp. Water pre-hydrolysis was done at 150°C for 90min. The amount of lignin, xylan and glucan in the extracted pre-hydrolysis liquor (PHL) was 1.6, 4.9 and 1.6%, respectively. Pulping of pre-extracted chips was done following soda-AQ, alkaline sulfite and kraft process. The ratio of chip to liquor was 1:7 for both pre-hydrolysis and pulping. The kraft pulping process with 20% active alkali and 25% sulfidity at 150°C for 90min showed the best result. The lowest kappa number was 26.2 with a considerable pulp yield of 32.7%. The pulp was bleached by acidic NaClO2 and the consistency was 10% based on air-dried pulp. The lowest amount of 7% NaClO2 was used for the bleaching sequence of D0ED1ED2. After D0ED1ED2 bleaching, the pulp showed that α-cellulose, brightness and ash were 91.9, 77.9 and 1.6% respectively. The viscosity was 19.9cP. Hence, there is a possibility to use banana plant stem as a raw material for dissolving grade pulp and other bioproducts. PMID:27178917

  12. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars

    PubMed Central

    Balic, Anamaria; Aguila, H. Leonardo; Caimano, Melissa J.; Francone, Victor P.; Mina, Mina

    2010-01-01

    In the past few years there have been significant advances in the identification of putative stem cells also referred to as “mesenchymal stem cells” (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulp from erupted molars displayed a reduced number of cells, contained higher percentage of CD45+ and lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts. PMID:20193787

  13. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    SciTech Connect

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A.

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  14. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996

    SciTech Connect

    Southards, W.T.; Blude, J.D.; Dickinson, J.A.

    1997-06-01

    This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

  15. Antinociceptive and neuropharmacological activities of methanol extract of Phoenix sylvestris fruit pulp

    PubMed Central

    Shajib, Md. Shafiullah; Akter, Saleha; Ahmed, Tajnin; Imam, Mohammad Zafar

    2015-01-01

    Fruits of Phoenix sylvestris Roxb. (Arecaceae) are used to treat back pain, toothache, headache, arthritis, nervous debility and as sedative. The aim of this study was to evaluate the antinociceptive and neuropharmacological activities of methanol extract of P. sylvestris fruit pulp (MEPS). The antinociceptive activity of MEPS was evaluated by heat-induced (hot plate, tail immersion test) and chemical-induced pain models (acetic acid-induced writhing, formalin-induced nociception, glutamate-induced nociception and paw edema test). The effect of MEPS on central nervous system (CNS) was studied using hole cross test, open field test, sodium thiopental-induced sleeping time and elevated plus maze test. MEPS showed strong, significant and dose-dependent antinociceptive activity in all heat-induced and chemical-induced pain models at all experimental doses. Involvement of opioid receptor mediated analgesia was evident from the reversal of analgesic effect by naloxone. MEPS also showed reduced locomotor activity in both hole cross and open field tests. The increase in sleeping time in sodium thiopental-induced sleeping test and anxiolytic activity in elevated plus maze test were also significant. So, it is evident that MEPS possesses strong central and peripheral antinociceptive activity as well as CNS depressant, sedative and anxiolytic activity. The results justify the ethnomedicinal use of P. sylvestris fruit in different painful conditions and CNS disorders. PMID:26483687

  16. Derivation of iPSCs after Culture of Human Dental Pulp Cells under Defined Conditions

    PubMed Central

    Takeda-Kawaguchi, Tomoko; Sugiyama, Ken; Chikusa, Shunji; Iida, Kazuki; Aoki, Hitomi; Tamaoki, Naritaka; Hatakeyama, Daijiro; Kunisada, Takahiro; Shibata, Toshiyuki; Fusaki, Noemi; Tezuka, Ken-ichi

    2014-01-01

    Human dental pulp cells (hDPCs) are a promising resource for regenerative medicine and tissue engineering and can be used for derivation of induced pluripotent stem cells (iPSCs). However, current protocols use reagents of animal origin (mainly fetal bovine serum, FBS) that carry the potential risk of infectious diseases and unwanted immunogenicity. Here, we report a chemically defined protocol to isolate and maintain the growth and differentiation potential of hDPCs. hDPCs cultured under these conditions showed significantly less primary colony formation than those with FBS. Cell culture under stringently defined conditions revealed a donor-dependent growth capacity; however, once established, the differentiation capabilities of the hDPCs were comparable to those observed with FBS. DNA array analyses indicated that the culture conditions robustly altered hDPC gene expression patterns but, more importantly, had little effect on neither pluripotent gene expression nor the efficiency of iPSC induction. The chemically defined culture conditions described herein are not perfect serum replacements, but can be used for the safe establishment of iPSCs and will find utility in applications for cell-based regenerative medicine. PMID:25521610

  17. Immunocytochemical investigation of neurovascular relationships in human tooth pulp

    PubMed Central

    Rodd, Helen D; Boissonade, Fiona M

    2003-01-01

    This study sought to explore the anatomical relationships between peptidergic nerves and blood vessels within human primary and permanent teeth. Extracted primary and permanent molars (n = 120) were split longitudinally, placed in Zamboni's fixative and the coronal pulps were processed for indirect immunofluorescence. Ten-micrometre-thick serial frozen pulp sections were triple-labelled using combinations of the following antisera: (1) protein gene-product 9.5 (PGP 9.5), a general neuronal marker; (2) one of the neuropeptides, calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal polypeptide (VIP) or neuropeptide Y (NPY); and (iii) the lectin Ulex europeus, a label for vascular endothelium. The mid-coronal pulp region was examined, using fluorescence microscopy, to determine the proportion of blood vessels showing a positive innervation (recorded when PGP 9.5-labelled nerves appeared to intersect the vessel wall). In addition, the percentage of these vascular-related nerves expressing each of the above neuropeptides was recorded. Overall, 20% of pulpal blood vessels appeared to have a positive innervation. In the main these were thick-walled arterioles. Capillaries, venules and lymphatics were mostly devoid of an associated innervation. Ninety-two per cent of vascular-related nerves expressed CGRP, 87% expressed SP, 15% expressed VIP and 80% expressed NPY. There were no significant differences in overall innervation or peptide-related innervation between primary and permanent teeth (P < 0.05, anova, indicating that pulpal blood flow is likely to be subject to similar neurological control mechanisms in both dentitions. PMID:12647869

  18. Morphological measurements of anatomic landmarks in human maxillary and mandibular molar pulp chambers.

    PubMed

    Deutsch, Allan S; Musikant, Barry Lee

    2004-06-01

    The aim of this in vitro study was to measure critical morphology of molar pulp chambers. One hundred random human maxillary and mandibular molars (200 teeth in total) were used. Each molar was radiographed mesiodistally on a millimeter grid. Using a stereomicroscope, the measurements were read to the nearest 0.5 mm. Results were as follows (mean, mm): pulp chamber floor to furcation, maxillary = 3.05 +/- 0.79, mandibular = 2.96 +/- 0.78; pulp chamber ceiling to furcation, maxillary = 4.91 +/- 1.06, mandibular = 4.55 +/- 0.91; buccal cusp to furcation, maxillary = 11.15 +/- 1.21, mandibular = 10.90 +/- 1.21; buccal cusp to pulp chamber floor, maxillary = 8.08 +/- 0.88, mandibular = 7.95 +/- 0.79; buccal cusp to pulp chamber ceiling, maxillary = 6.24 +/- 0.88, mandibular = 6.36 +/- 0.93; and pulp chamber height, maxillary = 1.88 +/- 0.69, mandibular = 1.57 +/- 0.68. The pulp chamber ceiling was at the level of the cementoenamel junction in maxillary, 98%, and mandibular, 97% of the specimens. The measurements showing the lowest percentage variance were buccal cusp to furcation (approximately 11%) and buccal cusp to pulp chamber ceiling (approximately 14%). The measurements were similar for both maxillary and mandibular molars. PMID:15167463

  19. New restoration and direct pulp capping systems using adhesive composite resin.

    PubMed

    Kashiwada, T; Takagi, M

    1991-12-01

    There have been many arguments on the irritating mechanisms of the composite resin on the dental pulp. While the direct irritative effect of the resin has been preferred, some authors considered that the marginal microleakage and the resulting bacterial infection play a more important role in inducing the complicating pulp irritation. We developed a new filling technique, called the direct inlay restoration method, which could prevent the marginal leakage associated with the polymerization shrinkage of the adhesive composite resin. In this study, we tried to apply our method clinically. None of the 440 cases which were filled with the adhesive composite resin and 60 cases out of 64 cases in which the pulps were directly capped with the adhesive composite resin developed any signs and symptoms of pulp irritation. The other 4 cases developed signs of pulp irritation. Two of those 4 cases were pulpectomized due to spontaneous pain and the other 2 cases turned out to be well after re-restoration. With the informed consent of the patients, the direct pulp capping using the adhesive composite resin was experimentally performed on 6 caries-free 3rd molars and the histopathological examination of these capped molars revealed that neither significant degenerative nor inflammatory changes were brought about in the dental pulp. These clinical and histopathological observation suggest that the dental pulp irritation after resin filling is not induced by the composite resin itself. PMID:1764760

  20. EPIDEMIOLOGICAL STUDY OF 'KLEBSIELLA PNEUMONIAE' AMONG PULP AND PAPER MILL WORKERS

    EPA Science Inventory

    This one-year study measured fecal coliform and Klebsiella bacteria densities in several of Wisconsin's pulp and paper mill processing wash waters, treated waters, and waters receiving pulp and paper mill effluent discharge. The isolation of fecal coliform bacteria ranged from as...

  1. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... megagram (7.2 pounds per ton) of ODP for mills that do not perform bleaching or 5.5 kilograms or more of total HAP per megagram (11.1 pounds per ton) of ODP for mills that perform bleaching. (d) The pulping... do not perform bleaching, treat the pulping process condensates to remove 3.3 kilograms or more...

  2. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... megagram (7.2 pounds per ton) of ODP for mills that do not perform bleaching or 5.5 kilograms or more of total HAP per megagram (11.1 pounds per ton) of ODP for mills that perform bleaching. (d) The pulping... do not perform bleaching, treat the pulping process condensates to remove 3.3 kilograms or more...

  3. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... megagram (7.2 pounds per ton) of ODP for mills that do not perform bleaching or 5.5 kilograms or more of total HAP per megagram (11.1 pounds per ton) of ODP for mills that perform bleaching. (d) The pulping... do not perform bleaching, treat the pulping process condensates to remove 3.3 kilograms or more...

  4. Antioxidant capacities of seven flavonoid compounds isolated from pulp of acai fruit (Euterpe oleracea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pulp of açai fruit (Euterpe oleracea Mart.) has been demonstrated to exhibit extremely high antioxidant capacity. Seven major flavonoids were isolated from freeze-dried acai pulp by various chromatographic methods. Their structures were elucidated as orientin (1), homoorientin (2), vitexin (3), ...

  5. Considerations for the direct pulp capping procedure in primary teeth: a review of the literature.

    PubMed

    Kopel, H M

    1992-01-01

    In reviewing the various studies concerning the direct pulp capping procedure in primary teeth, using rigid criteria for case selection and procedure appears to insure a significant amount of success. It is acknowledged that vital primary pulp tissue is capable of healing without resorting to complete pulpectomy, although statistically direct pulp capping has been found to be less successful in primary teeth than indirect pulp therapy or coronal amputation (pulpotomy). To achieve success for direct pulp capping in primary teeth, the considerations involve: selecting teeth with minimal or no clinical signs of pulpal inflammation; or pretreating the carious tooth with a sedative restoration before excavating the caries; disinfecting the cavity floor; enlarging the actual exposure, and flushing out dentinal debris with mild solutions; controlling bleeding by not allowing a clot to form; placing a hard-set, CaOH material over the exposure, followed by a fast-setting, zinc oxide-eugenol cement to achieve a hermetic seal; and lastly, placing a stainless steel crown to minimize microleakage and prevent a fractured or defective restoration. These procedural steps can hardly ensure complete success in direct pulp capping of a primary tooth; but, based on the many cited investigations in this review, a significant amount of success can be expected without resorting more frequently to invasive techniques. Surely the evidence presented leading to the feasibility of direct pulp capping in primary teeth merits further investigations, before dogmatically rejecting this procedure of pulp therapy. PMID:1583199

  6. Improvement of Pulping Uniformity by Measurement of Single Fiber Kappa Number

    SciTech Connect

    Richard R. Gustafson; James B. Callis

    2001-11-20

    A method to measure the kappa of single fibers by staining with a fluorescent dye, Acridine Orange (AO), has been developed. This method is now applied to develop and automated flow-through instrument that permits routine kappa analysis on thousands of images of AO stained fibers to give the fiber kappa number distribution of a pulp sample in a few minutes. The design and operation of the instrument are similar to that of a flow cytometer but with the addition of extensive fiber imaging capability. Fluorescence measurements in the flow-through instrument are found to be consistent with those made with fluorescence microscope provided the signal processing in the flow-thou instrument is handled propertly. The kappa distributions of pulps that were analyzed by means of a density gradient column are compared to those measured with the flow-through instrument with good results. The kappa distributions of various laboratory pulps and commercial pulps have been measured. It has been found that all pulps are non-uniform but that ommercial pulps generally have broader kappa distributions thatn their laboratory counterparts. The effects of different pulping methods and chip pretreatments on pulp uniformity are discussed in the report. Finally, the application of flow-through fluorescence technology to other single fiber measurements are presented.

  7. The limits of tooth pulp evoked potentials for pain quantitation.

    PubMed

    Cruccu, G; Fornarelli, M; Inghilleri, M; Manfredi, M

    1983-09-01

    Tooth pulp evoked potentials (TPEPs) and subjective evaluation of painful dental stimuli have been recorded in healthy volunteers. The amplitude of TPEPs late components and the subjective rating have been studied in different psychological states, by the expectancy of pain with a placebo and by providing foreknowledge of stimulus timing with self-stimulation. The placebo induced a significant depression of TPEPs and pain sensation. The amplitude of TPEPs evoked by self-delivered stimuli was reduced but the subjective report remained unchanged. These results demonstrate that TPEPs are not a stable correlate of the pain perceived or of the painful input. PMID:6635002

  8. IMMEDIATE HUMAN PULP RESPONSE TO ETHANOL-WET BONDING TECHNIQUE

    PubMed Central

    Scheffel, Débora Lopes Salles; Sacono, Nancy Tomoko; Ribeiro, Ana Paula Dias; Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Pashley, David Henry; Costa, Carlos Alberto de Souza; Hebling, Josimeri

    2016-01-01

    Objective To evaluate the short-term response of human pulps to ethanol-wet bonding technique associated with an etch-and-rinse adhesive system. Methods Deep class V cavities were prepared on the buccal surface of 17 sound premolars scheduled for extraction for orthodontics. The teeth were assigned into three groups: Ethanol-wet bonding (G1), water-wet bonding (G2) and calcium hydroxide (G3, control). Two teeth were used as intact control. After acid-etching, the cavities from G1 were filled with 100% ethanol for 60s and blot-dried before the application of Single Bond 2. In G2, the cavities were filled with distilled water for 60s previously to adhesive application and in G3, the cavity floor was lined with calcium hydroxide before etching and bonding. All cavities were restored with resin composite. The teeth were extracted 48h after the clinical procedures. From each tooth 6 μm-thick serial sections were obtained and stained with hematoxylin and eosin (H/E) and Masson's trichrome. Bacteria microleakage was assessed using Brown & Brenn. All sections were blindly evaluated and scored for five histological features. Results Mean remaining dentin thickness was 463±65μm (G1); 425±184μm (G2); and 348±194μm (G3). Similar pulp reactions followed ethanol- or water-wet bonding techniques. Slight inflammatory responses and disruption of the odontoblast layer related to the cavity floor were seen in all groups. Stained bacteria were not detected in any cavities. Normal pulp tissue was observed in G3 except for one case. Conclusions After 48 h, ethanol-wet bonding technique applied on deep cavities prepared in vital teeth does not increase pulpal damage compared to water-wet bonding technique. Clinical significance Ethanol-wet bonding has been considered an experimental technique that may increase resin-dentin bond durability. This study reported the in vivo response of human pulp tissue when 100% ethanol was applied previously to an etch-and-rinse simplified adhesive

  9. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    SciTech Connect

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  10. Pulp revascularization of a severely malformed immature maxillary canine.

    PubMed

    Cho, Won Chang; Kim, Mi Sun; Lee, Hyo-Seol; Choi, Sung Chul; Nam, Ok Hyung

    2016-01-01

    Dens invaginatus (DI) is a dental anomaly exhibiting complex anatomical forms. Because of this anatomical complexity, immature DI teeth with necrotic pulp are difficult to treat via apexification. We used revascularization as an alternative treatment for a patient with DI. An 11-year-old boy visited our clinic with chief complaints of gingival swelling and pain in the left maxillary canine. Clinical and radiographic findings were consistent with a diagnosis of type III DI. Revascularization therapy was performed, and a 24-month follow-up examination confirmed healing of the periapical radiolucency and physiological root formation. (J Oral Sci 58, 295-298, 2016). PMID:27349553

  11. Advanced Modeling and Materials in Kraft Pulp Mills

    SciTech Connect

    Keiser, J.R.; Gorog, J.P.

    2002-05-15

    This CRADA provided technical support to the Weyerhaeuser Company on a number of issues related to the performance and/or selection of materials at a number of locations in a pulp and paper mill. The studies related primarily to components for black liquor recovery boilers, but some effort was directed toward black liquor gasifiers and rolls for paper machines. The purpose of this CRADA was to assist Weyerhaeuser in the evaluation of materials exposed in various paper mill environments and to provide direction in the selection of alternate materials, when appropriate.

  12. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that

  13. 76 FR 59670 - Woodland Pulp, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Energy Regulatory Commission Woodland Pulp, LLC; Notice of Intent To File License Application, Filing of... Process. b. Project No.: 2492-012. c. Dated Filed: February 28, 2011. d. Submitted By: Woodland Pulp, LLC... Regulations. h. Potential Applicant Contact: Jay Beaudoin, Woodland Pulp, LLC, 144 Main Street,...

  14. 40 CFR 430.110 - Applicability; description of the fine and lightweight papers from purchased pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and lightweight papers from purchased pulp subcategory. 430.110 Section 430.110 Protection of... PAPERBOARD POINT SOURCE CATEGORY Fine and Lightweight Papers from Purchased Pulp Subcategory § 430.110 Applicability; description of the fine and lightweight papers from purchased pulp subcategory. The provisions...

  15. 40 CFR 430.120 - Applicability; description of the tissue, filter, non-woven, and paperboard from purchased pulp...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter,...

  16. 40 CFR 430.120 - Applicability; description of the tissue, filter, non-woven, and paperboard from purchased pulp...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven,...

  17. 40 CFR 430.120 - Applicability; description of the tissue, filter, non-woven, and paperboard from purchased pulp...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter,...

  18. 40 CFR 430.120 - Applicability; description of the tissue, filter, non-woven, and paperboard from purchased pulp...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven,...

  19. 40 CFR 430.120 - Applicability; description of the tissue, filter, non-woven, and paperboard from purchased pulp...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter,...

  20. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. PMID:23073093

  1. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying. PMID:21595211

  2. Ability of healthy and inflamed human dental pulp to reduce hydrogen peroxide.

    PubMed

    Esposito, Paola; Varvara, Giuseppe; Murmura, Giovanna; Terlizzi, Antonio; Caputi, Sergio

    2003-10-01

    This study examined the defensive ability of human dental pulp against H2O2 in healthy and reversible and irreversible pulpitis tissues through determination of catalase activity by spectrophotometric methods. Thirty-five systemically healthy patients were donors of the pulp tissue, and pulp conditions were assessed using clinical and X-ray evaluations. Catalase activity was 1.61 +/- 0.23 U mg(-1) protein in the healthy tissues, 2.99 +/- 0.45 U mg(-1) protein in the reversible pulpitis tissues, and 2.44 +/- 467 mU mg(-1) protein in the irreversible pulpitis tissues. All differences between the groups were statistically significant. These results point to a role for catalase during dental pulp inflammation in humans, and therefore demonstrate an inherent biological defense system against reactive oxidants in human dental pulp. PMID:12974692

  3. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.

    PubMed

    Paananen, Markus; Sixta, Herbert

    2015-10-01

    High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL. PMID:26119050

  4. Hydrolysis of organosolv wheat pulp in formic acid at high temperature for glucose production.

    PubMed

    Kupiainen, Laura; Ahola, Juha; Tanskanen, Juha

    2012-07-01

    Organosolv methods can be used to delignify lignocellulosic crop residues for pulp production or to pretreat them prior to enzymatic hydrolysis for bioethanol production. In this study, organic solvent was used as an acidic hydrolysis catalyst to produce glucose. Hydrolysis experiments were carried out in 5-20% formic acid at 180-220 °C. Wheat straw pulp delignified with a formicodeli™ method was used as a raw material. It was found that glucose yields from pulp are significantly higher than yields from microcrystalline cellulose, a model component for cellulose hydrolysis. The results indicate that cellulose hydrolysis of real fibers takes place more selectively to glucose than hydrolysis of microcrystalline cellulose particles does. The effect of the particle size on pulp hydrolysis was investigated, the crystallinity of hydrolyzed pulp was measured by XRD analysis, and the product distribution and its influence on the process was discussed. PMID:22609651

  5. INDIRECT PULP TREATMENT IN A PERMANENT MOLAR: CASE REPORT OF 4-YEAR FOLLOW-UP

    PubMed Central

    Fagundes, Ticiane Cestari; Barata, Terezinha Jesus Esteves; Prakki, Anuradha; Bresciani, Eduardo; Pereira, José Carlos

    2009-01-01

    This case report describes the Indirect Pulp Treatment (IPT) of deep caries lesion in a permanent molar. A 16-year-old male patient reported discomfort associated with thermal stimulation on the permanent mandibular left first molar. The radiographs revealed a deep distal caries lesion, very close to the pulp, absence of radiolucencies in the periapical region, and absence of periodontal space thickening. Pulp sensitivity was confirmed by thermal pulp vitality tests. Based on the main complaint and the clinical and radiographic examinations, the treatment plan was established to preserve pulp vitality. Clinical procedures consisted of removing the infected dentin and lining the caries-affected dentin with calcium hydroxide paste. The tooth was provisionally sealed for approximately 60 days. After this period, tooth vitality was confirmed, the remaining carious dentin was removed, and the tooth was restored. At 4-year follow-up, no clinical or radiographic pathological findings were found. PMID:19148410

  6. Simultaneous production of bio-ethanol and bleached pulp from red algae.

    PubMed

    Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum

    2012-12-01

    The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. PMID:23073109

  7. Effect of pulping variables on the characteristics of oil-palm frond-fiber.

    PubMed

    Wan Rosli, W D; Law, K N; Zainuddin, Z; Asro, R

    2004-07-01

    Caustic pulping of oil-palm frond-fiber strands was conducted following a central composite design using a two-level factorial plan involving three pulping variables (temperature: 160-180 degrees C, time: 1-2 h, alkali charge: 20-30% NaOH). Responses of pulp properties to the process variables were analyzed using a statistical software (DESIGN-EXPERT). The results indicated that frond-fiber strands could be pulped with ease to about 35-45% yield. Statistically, the reaction time was not a significant factor while the influences of the treatment temperature and caustic charge were in general significantly relative to the properties of the resultant pulps. PMID:15062817

  8. Chemicals from wood by organic-solvent delignification. Final report

    SciTech Connect

    April, G.C.; Nayak, R.G.; Daley, P.L.; Jabali, F.; Meraab, J.

    1983-10-01

    Studies undertaken to evaluate the effectiveness of organic-solvent delignification of sweet gum and southern yellow pine wood are reported. Batch delignification investigations were conducted using aqueous n-butanol, ethanol, and phenol solutions at temperatures between 135C and 205C. Temperature, catalyst type and concentration, wood type, and treatment method were some of the variables considered. Southern yellow pine pretreatment studies were performed using water, and the use of semi-batch pulping methods was evaluated. Both delignification and pulp loss were described by first-order kinetics, and results generally agreed with those reported in the literature. Soluble pulp rate constants agreed closely with the bulk delignification rate constants, indicating the probability of a common mechanism describing the hydrolysis of wood during the initial periods. Second-step rate constants indicated a significantly slower delignification process. Finally, findings indicate that high temperatures are needed to effectively remove lignin from softwoods when no chemical additives are used.

  9. Ex Vivo Modeling of Multidomain Peptide Hydrogels with Intact Dental Pulp.

    PubMed

    Moore, A N; Perez, S C; Hartgerink, J D; D'Souza, R N; Colombo, J S

    2015-12-01

    Preservation of a vital dental pulp is a central goal of restorative dentistry. Currently, there is significant interest in the development of tissue engineering scaffolds that can serve as biocompatible and bioactive pulp-capping materials, driving dentin bridge formation without causing cytotoxic effects. Our earlier in vitro studies described the biocompatibility of multidomain peptide (MDP) hydrogel scaffolds with dental pulp-derived cells but were limited in their ability to model contact with intact 3-dimensional pulp tissues. Here, we utilize an established ex vivo mandible organ culture model to model these complex interactions. MDP hydrogel scaffolds were injected either at the interface of the odontoblasts and the dentin or into the pulp core of mandible slices and subsequently cultured for up to 10 d. Histology reveals minimal disruption of tissue architecture adjacent to MDP scaffolds injected into the pulp core or odontoblast space. Additionally, the odontoblast layer is structurally preserved in apposition to the MDP scaffold, despite being separated from the dentin. Alizarin red staining suggests mineralization at the periphery of MDP scaffolds injected into the odontoblast space. Immunohistochemistry reveals deposition of dentin sialophosphoprotein by odontoblasts into the adjacent MDP hydrogel, indicating continued functionality. In contrast, no mineralization or dentin sialophosphoprotein deposition is evident around MDP scaffolds injected into the pulp core. Collagen III expression is seen in apposition to gels at all experimental time points. Matrix metalloproteinase 2 expression is observed associated with centrally injected MDP scaffolds at early time points, indicating proteolytic digestion of scaffolds. Thus, MDP scaffolds delivered centrally and peripherally within whole dental pulp tissue are shown to be biocompatible, preserving local tissue architecture. Additionally, odontoblast function and pulp vitality are sustained when MDP

  10. Rat molar teeth as a study model for direct pulp capping research in dentistry.

    PubMed

    Dammaschke, Till

    2010-01-01

    The aim of this review is to evaluate the suitability of rat molar teeth in preclinical evaluation of medical devices for direct pulp capping. The ISO standard 7405 states clearly that only non-rodent mammals are suitable species for animal research in dentistry. Furthermore, without clear justification a considerable number of researchers previously rejected results of animal experiments concerning preclinical evaluation of the biocompatibility of dental materials undertaken in rat molar teeth. However, in the past 50 years about 70 studies have been published using rat molar teeth in order to evaluate direct pulp capping, pulpotomies and tissue reactions after pulp exposure. Numerous studies showed that the healing of rat molar pulp tissue after direct pulp capping is histologically comparable with humans and other animal species pulp tissue. Rat molar teeth, including pulp tissue, can be seen anatomically, histologically, biologically, and physiologically as miniature human molar teeth. Hence, the essential biological reactions of the pulp tissue and the interaction during the different stages of wound healing of rat molar teeth are comparable with that of other mammals. Rat molar teeth are a valid study model in order to provide valuable data concerning pulp tissue reaction after direct pulp capping and related questions in dentistry. Therefore, the use of rats may significantly reduce the number of currently used higher animals in research. Tests in higher developed animals should be limited to experiments which clarify inconsistent results. However, some technical difficulties, like the small size of rat molar teeth must be dealt with before undertaking any research. PMID:19854755

  11. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of peel and pulp of three Tunisian Opuntia forms.

    PubMed

    Yeddes, Nizar; Chérif, Jamila Kalthoum; Trabelsi Ayadi, Malika

    2014-05-01

    The antioxidant activity and the chemical composition of methanol extracts from peel and pulp belonging to two species of Tunisian prickly pears Opuntia ficus indica (spiny and thornless forms) and Opuntia stricta has been studied. The antioxidant capacity was measured by DPPH radical scavenging activity. The Total Phenolic Compound (TPC) and the total flavonoid content were determined by the Folin-Ciocalteu method and colorimetric method, respectively. The phenolic compounds were identified and quantified by High Performance Liquid Chromatography (HPLC) coupled with an electrospray ionization mass spectrometry (ESI-MS). The results showed that O. stricta fruits present the best antioxidant activities than the two forms of O. ficus indica while the TPC was more important in O. ficus indica than in the O. stricta fruits. The peels have higher flavonoids than pulps and the thornless has more flavonoid than the spiny. The RP-HPLC and ESI-MS analysis detected two classes of phenolic compounds and betalain pigments. Isorhamnetin derivatives are the dominant flavonol glycoside identified in O. ficus indica (spiny: 65.25 μg g(-1); thornless: 77.03 μg g(-1)) and O. stricta peels (19.22 μg g(-1)). PMID:26030997

  12. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms

    PubMed Central

    Yeddes, Nizar; Chérif, Jamila K.; Guyot, Sylvain; Sotin, Hélène; Ayadi, Malika T.

    2013-01-01

    The antioxidant activity and the chemical composition of methanol extracts from peel and pulp belonging to two species of Tunisian prickly pears Opuntia ficus indica (spiny and thornless forms) and Opuntia stricta have been studied. The antioxidant capacity was measured by DPPH radical scavenging activity. The total phenolic compound (TPC) and the total flavonoid content were determined by the Folin–Ciocalteu method and colorimetric method, respectively. The phenolic compounds were identified and quantified by high-performance liquid chromatography (HPLC) coupled with an electrospray ionization mass spectrometry (ESI-MS). The results showed that O. stricta fruits present the best antioxidant activities than the two forms of O. ficus indica, while the TPC was more important in O. ficus indica than in the O. stricta fruits. The peels have higher flavonoids than pulp, and the thornless variety has more flavonoid than the spiny. The RP-HPLC and ESI-MS analysis detected two classes of phenolic compounds and betalain pigments. Isorhamnetin derivatives are the dominant flavonol glycoside identified in O. ficus indica (spiny: 65.25 μg·g−1; thornless: 77.03 μg·g−1) and O. stricta peels (19.22 μg·g−1). PMID:26787622

  13. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    PubMed

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased. PMID:25714637

  14. Spectroscopic characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent.

    PubMed

    Duarte, Regina M B O; Santos, Eduarda B H; Duarte, Armando C

    2003-10-01

    In order to investigate the chemical heterogeneity of fulvic and humic acids previously isolated from a bleached Kraft pulp mill effluent, a sequential ultrafiltration (UF) scheme through four polyethersulphone membranes was applied. The unfractionated fulvic and humic acids and their fractions were characterized by UV-VIS, synchronous fluorescence (with Deltalambda=60 nm) and FTIR spectroscopies. The FTIR spectra were compared with those of lignin isolated from Eucalyptus globulus wood and from the black liquor of a Kraft pulping process. The results highlighted that fulvic acids fractions of low molecular sizes contain more lignin derived phenolic units, while those of higher molecular size exhibit a higher content of carbohydrate structures. However, the shift observed in the UV-VIS absorbance and fluorescence intensity towards higher wavelength, suggests a higher degree of conjugation of pi-bonds in the fractions of highest molecular sizes. In what concerns the humic acids size fractions, the FTIR spectra did not exhibit major differences but, as observed for the fulvic acids' fractions, UV-VIS and synchronous fluorescence spectra also suggest a higher degree of conjugation of pi-bonds in the fractions with the highest molecular sizes. It was also observed that the fulvic and humic acids fractions of the same molecular size, operationally defined by the UF process, exhibit major differences in their spectroscopic features. PMID:12946888

  15. Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms.

    PubMed

    Yeddes, Nizar; Chérif, Jamila K; Guyot, Sylvain; Sotin, Hélène; Ayadi, Malika T

    2013-01-01

    The antioxidant activity and the chemical composition of methanol extracts from peel and pulp belonging to two species of Tunisian prickly pears Opuntia ficus indica (spiny and thornless forms) and Opuntia stricta have been studied. The antioxidant capacity was measured by DPPH radical scavenging activity. The total phenolic compound (TPC) and the total flavonoid content were determined by the Folin-Ciocalteu method and colorimetric method, respectively. The phenolic compounds were identified and quantified by high-performance liquid chromatography (HPLC) coupled with an electrospray ionization mass spectrometry (ESI-MS). The results showed that O. stricta fruits present the best antioxidant activities than the two forms of O. ficus indica, while the TPC was more important in O. ficus indica than in the O. stricta fruits. The peels have higher flavonoids than pulp, and the thornless variety has more flavonoid than the spiny. The RP-HPLC and ESI-MS analysis detected two classes of phenolic compounds and betalain pigments. Isorhamnetin derivatives are the dominant flavonol glycoside identified in O. ficus indica (spiny: 65.25 μg·g(-1); thornless: 77.03 μg·g(-1)) and O. stricta peels (19.22 μg·g(-1)). PMID:26787622

  16. Effect of effluent from a nitrogen fertilizer factory and a pulp mill on the distribution and abundance of Aeromonas hydrophila in Albemarle Sound, North Carolina

    SciTech Connect

    Hazen, T.C.; Esch, G.W.

    1983-01-01

    The density of Aeromonas hydrophila, standard count bacteria, fecal coliform bacteria, and 18 physical and chemical parameters were measured simultaneously at six sites for 12 months in Albemarle Sound, N.C. One site was above and two sites were below the discharge plume of a Kraft pulping process paper mill. The fourth site was above and the remaining two sites were below the discharge point of a nitrogen fertilizer factory. The impact of the pulp mill on water quality was acute, whereas that of the nitrogen fertilizer factory was chronic and much more subtle. Diffusion chamber studies indicated that A. hydrophila survival is increased by pulp mill effluent and decreased by nitrogen fertilizer factor effluent. From correlation and regression analysis, A. hydrophila was found to be directly affected by phytoplankton density and, thus, indirectly by concentrations of phosphate, nitrate, and total organic carbon. These two point sources are suspect as indirect causes of red-sore disease epizootics, a disease of fish caused by A. hydrophila.

  17. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    PubMed Central

    Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  18. Mesenchymal Stem Cells Derived from Dental Pulp: A Review.

    PubMed

    Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel; Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  19. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  20. Dentin barrier test with transfected bovine pulp-derived cells.

    PubMed

    Schmalz, G; Schuster, U; Thonemann, B; Barth, M; Esterbauer, S

    2001-02-01

    Growth kinetics of SV40 large T-antigen-transfected bovine pulp-derived cells on dentin were investigated. These cells were used in a dentin barrier test device, and the system was evaluated by testing a set of dental filling materials. Cells (120 cells/mm2) were seeded on dentin slices and incubated for up to 21 days. Cell proliferation was recorded using MTT assay. For cytotoxicity tests 3500 cells/mm2 were seeded on dentin discs, which were then incorporated into the dentin barrier test device. After 72 h preincubation test materials were applied. After a 24 h exposure with or without perfusion of the pulpal part of the test device, cell survival was evaluated using MTT assay. The cells revealed similar growth kinetics on dentin slices and on tissue culture plates. In cytotoxicity tests the cells were more sensitive toward the test materials than previously used three-dimensional cultures of human foreskin fibroblasts and as anticipated from clinical experience. Further improvement is expected by using three-dimensional cultures of pulp-derived cells. PMID:11491647

  1. Integration of pulp and paper technology with bioethanol production

    PubMed Central

    2013-01-01

    Background Despite decades of work and billions of dollars of investments in laboratory and pilot plant projects, commercial production of cellulosic ethanol is only now beginning to emerge. Because of: (1)high technical risk coupled with; (2) high capital investment cost relative to ethanol product value, investors have not been able to justify moving forward with large scale projects on woody biomass. Results Both issues have been addressed by targeting pulp and paper industry processes for application in bioethanol production, in Greenfield, Repurpose and Co-Location scenarios. Processes commercially proven in hundreds of mills for many decades have been tailored to the recalcitrance of the biomass available. Economically feasible cellulosic bioethanol can be produced in Greenfield application with hardwoods, but not softwoods, using kraft mill equipment. Both types of wood species can profitably produce ethanol when kraft mill or newsprint assets are Repurposed to a biorefinery. A third situation which can generate high financial returns is where excess kraft pulp is available at a mill which has no excess drying capacity. Each scenario is supported by laboratory simulation, engineering and financial analysis. While pretreatment is critical to providing access of the biomass to enzymes, capital investment per unit of ethanol produced can be attractive, even if ethanol yield is modest. Conclusions Three guiding principles result in attractive economics: (1) re-use existing assets to the maximum extent; (2) keep the process as simple as possible; (3) match the recalcitrance of the biomass with the severity of the pretreatment. PMID:23356540

  2. Mechanical properties of new dental pulp-capping materials.

    PubMed

    Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S

    2016-01-01

    The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time. PMID:26742167

  3. Electric pulp tester conductance through various interface media.

    PubMed

    Mickel, André K; Lindquist, Kimberly A D; Chogle, Sami; Jones, Jefferson J; Curd, Francis

    2006-12-01

    A conducting media is necessary when using an electric pulp tester (EPT). The objective of this study was to observe differences in conductance through various media. We hypothesized that variations in current conductance through different media exist. The pulp chamber of a freshly extracted premolar was exposed, and the cathode of a voltmeter was inserted into the pulpal tissue. The anode was coupled to the EPT handpiece. The measurement taken during dry (no interface media) EPT tip-to-tooth contact was 0 V, which served as negative control. EPT tip directly touching the cathode measured 3.9V and served as positive control. A number of media readily available in the dental office were tested. Data was analyzed using single factor ANOVA. Listerine (3.3) conducted the most voltage (p<0.5). Of nonliquids, K-Y Brand UltraGel and Crest Baking Soda & Peroxide Whitening Tartar Control toothpaste recorded significantly (p<0.05) higher voltage readings (1.4 V). PMID:17174677

  4. Pulp revascularization for immature replanted teeth: a case report.

    PubMed

    Nagata, J Y; Rocha-Lima, T F; Gomes, B P; Ferraz, C C; Zaia, A A; Souza-Filho, F J; De Jesus-Soares, A

    2015-09-01

    Immature avulsed teeth are not usually treated with pulp revascularization because of the possibility of complications. However, this therapy has shown success in the treatment of immature teeth with periapical lesions. This report describes the case of an immature replanted tooth that was successfully treated by pulp revascularization. An 8-year-old boy suffered avulsion on his maxillary left lateral incisor. The tooth showed incomplete root development and was replanted after 30 minutes. After diagnosis, revascularization therapy was performed by irrigating the root canal and applying a calcium hydroxide paste and 2% chlorhexidine gel for 21 days. In the second session, the intracanal dressing was removed and a blood clot was stimulated up to the cervical third of the root canal. Mineral trioxide aggregate was placed as a cervical barrier at the entrance of the root canal and the crown was restored. During the follow-up period, periapical repair, apical closure and calcification in the apical 4 mm of the root canal was observed. An avulsed immature tooth replanted after a brief extra-alveolar period and maintained in a viable storage medium may be treated with revascularization. PMID:26219350

  5. Dental pulp vitality measurement based on multiwavelength photoplethysmography

    NASA Astrophysics Data System (ADS)

    Sarkela, Ville; Kopola, Harri K.; Oikarinen, Kyosti; Herrala, Esko

    1995-01-01

    Observation of the intradental blood supply is important in cases of dental trauma, but difficult. As the methods used by dentists to measure pulp vitality are not very reliable, a dental pulp vitalometer based on fiberoptic reflectance measurement and measurement of the absorption of blood has been designed and built. In addition to the fiber optic probe and reflectance sensor electronics, the vitalometer includes a data acquisition card, a PC and data processing programs. The thick dentin and enamel layers and the small amount of blood in a tooth are major problems for optical measurement of its vitality, and scattered light from the enamel and the dentin surrounding the pulpa also causes a problem in measurements based on reflectance. These problems are assessed here by means of theoretical models and calculations. The advantage of reflectance measurement is that only one probe is used, which is easy to put against the tooth. Thus measurements are simple to make. Three wavelengths (560 nm, 650 nm, 850 nm) are used to measure photoplethysmographic signals, and these should allow the oxygen saturation of the blood in a tooth to be measured as well in the future. Series of measurements have been performed on vital and non-vital teeth by recording photoplethysmographic signals, using the vitalometer and using a commercial laser-Doppler instrument. Verifications of the laser-Doppler and vitalometer results are presented and deduced here.

  6. Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations.

    PubMed

    Yang, Chunyu; Wang, Wei; Du, Miaofen; Li, Chunfang; Ma, Cuiqing; Xu, Ping

    2013-02-01

    Pulp mill wastewater generated from wheat straw is characterized as high alkalinity and very high COD pollution load. A naturally developed microbial community in a pulp mill wastewater storage pool that had been disused were investigated in this study. Owing to natural evaporation and a huge amount of lignocellulose's deposition, the wastewater sediment contains high concentrations of organic matters and sodium ions, but low concentrations of chloride and carbonate. The microbiota inhabiting especially anaerobic community, including methanogenic arhcaea and cellulolytic species, was studied. All archaeal sequences fall into 2 clusters of family Halobacteriaceae and methanogenic archaeon in the phylum Euryarchaeota. In the methanogenic community, phylogenetic analysis of methyl coenzyme M reductase A (mcrA) genes targeted to novel species in genus Methanoculleus or novel genus of order Methanomicrobiales. The predominance of Methanomicrobiales suggests that methanogenesis in this system might be driven by the hydrogenotrophic pathway. As the important primary fermenter for methane production, the cellulolytic community of enzyme GHF48 was found to be dominated by narrower breadth of novel clostridial cellulase genes. Novel anoxic functional members in such extreme sediment provide the possibility of enhancing the efficiency of anoxic treatment of saline and alkaline wastewaters, as well as benefiting to the biomass transformation and biofuel production processes. PMID:23228889

  7. [Extraction and quantification of polyphenols from coffee pulp].

    PubMed

    García, L A; Vélez, A J; de Rozo, M P

    1985-09-01

    The polyphenol content of coffee pulp extracts was determined using the Folin-Ciocalteau method. The use of polyvynilpirrolidone (PVP) was introduced in order to eliminate interferences. Condensed polyphenols in the extracts were determined by the method of acidified vanillin. Chlorogenic acid and catechin were used as standards for Folin-Ciocalteau and Vanillin methods, respectively, and a calibration curve was constructed for each solvent. The solvents used were methanol, methanol-water (50:50), ammonium hydroxide (3%) and calcium hydroxide (1%), using times of extraction of 10 minutes and 1 hour. No differences were found in the amount of polyphenols extracted by the different solvents at the two extraction times. After 10 minutes, the alkaline solvents NH4OH (3%) and Ca(OH)2 (1%), extracted more polyphenols than the other two solvents. Nevertheless, ammonium hydroxide (3%) was more efficient in extracting condensed polyphenols. The results herein presented suggest that treating coffee pulp with mild alkaline solvents may improve its nutritive value. PMID:3842054

  8. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp.

    PubMed

    Isobe, Y; Koyama, N; Nakao, K; Osawa, K; Ikeno, M; Yamanaka, S; Okubo, Y; Fujimura, K; Bessho, K

    2016-01-01

    Populations of pluripotent stem cells were isolated from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous teeth and their multipotentiality properties compared. Osteogenic, chondrogenic, adipogenic, and neurogenic differentiation potentials were examined. Bone marrow mesenchymal stem cells (BMMSCs) and synovial fluid-derived cells (SFCs) showed the highest levels of osteogenesis as expressed by alkaline phosphatase (ALP) activity (0.54±0.094 U/mg protein and 0.57±0.039 U/mg protein, respectively; P=0.60) and by osteocalcin (BGLAP; determined by real-time RT-PCR). SFCs showed the highest levels of chondrogenesis as expressed by ALP activity (1.75±0.097 U/mg protein) and of COL2A1 and COL10A1 by real-time PCR. In terms of adipogenesis, lipid vesicles were observed in the BMMSCs and SFCs. Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) exhibited neurogenesis potential, as shown by increases in expression of class III β-tubulin (TUBB3) and microtubule-associated protein 2 (MAP2) on RT-PCR. Variability was found in the differentiation potential corresponding to the tendency of the original tissue to differentiate. It is suggested that the cell type should be selected depending on the regenerative treatment regimen. PMID:26235629

  9. Biobleaching of banana fibre pulp using Bacillus subtilis C O1 xylanase produced from wheat bran under solid-state cultivation.

    PubMed

    Manimaran, A; Vatsala, T M

    2007-11-01

    A cellulase-free xylanase produced by Bacillus subtilis C 01 from wheat bran under solid-state cultivation was tested for its efficacy in biobleaching of raw banana fibre and banana pulp obtained through a mechanical pulping process. Banana pulp samples treated with crude xylanase (450 nkat g(-1) pulp) resulted in a 19.6% increase in the brightness as compared to untreated pulp. The presence of chromophores, hydrophobic compounds and an increased reducing sugar (10.79 mg g(-1) pulp) quantity in the bleached solution after enzymatic treatment indicated the removal of materials that were absorbed at 237 nm from the banana pulp. PMID:17712584

  10. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.

    PubMed

    Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L

    2014-01-15

    This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (P<0.05) bioactive content than their respective fruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. PMID:24054258

  11. Influence of particle size on the effectiveness of beet pulp fiber.

    PubMed

    Clark, P W; Armentano, L E

    1997-05-01

    Sixteen Holstein cows in midlactation were used in a design based on a replicated 4 x 4 Latin square with the last period removed to determine the influence of particle size of beet pulp neutral detergent fiber (NDF) on its effectiveness as a replacement for alfalfa NDF. Diets were a low forage, low fiber diet [12.1 g of alfalfa NDF/100 g of dry matter (DM)], a normal forage diet (low forage plus 7.8 g of additional alfalfa NDF/100 g of DM), and two low forage diets with 5.3 g of NDF/100 g of DM from either whole or finely ground dried sugar beet pulp. Replacement of alfalfa fiber with beet pulp fiber increased milk protein yield because of the tendencies toward increased milk yield and protein concentration. However, milk fat concentration and yield were unaffected. The addition of beet pulp fiber, either whole or ground, to the basal low forage, low fiber diet did not affect yields of milk, protein, or fat, but milk protein concentration tended to be lower for cows fed the beet pulp diets than for cows fed the basal diet. Reducing the particle size of beet pulp increased DM intake but did not affect any of the milk yield measurements. Particle size reduction of beet pulp did not reduce its effectiveness as a fiber source as measured by changes in milk fat content. PMID:9178130

  12. Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases.

    PubMed

    Oksanen, T; Pere, J; Paavilainen, L; Buchert, J; Viikari, L

    2000-02-28

    Effects of recycling ECF-bleached softwood kraft pulp on pulp properties were evaluated in the laboratory. The tensile strength, fiber flexibility and WRV lost during drying of the pulp were recovered by refining between the cycles which, however, resulted in deteriorated drainage properties. The recycled pulps were treated with purified Trichoderma reesei cellulases and hemicellulases and the changes in fiber properties due to enzymatic treatments were characterized. The endoglucanases (EG I and EG II) significantly improved pulp drainage already at low dosage levels, and EG II was found to be more effective at a given level of carbohydrate solubilization. Combining hemicellulases with the endoglucanase treatments increased the positive effects of the endoglucanases on pulp drainage. However, as a result of the endoglucanase treatments a slight loss in strength was observed. Combining mannanase with endoglucanase treatments appeared to increase this negative effect, whereas the impact of xylanase was not significant. Although the drainage properties of the pulps could be improved by selected enzymes, the water retention capacity of the dried hornified fibers could not be recovered by any of the enzymes tested. PMID:10702909

  13. Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351

  14. Histological study of periradicular tissue responses to uninfected and infected devitalized pulps in dogs.

    PubMed

    Lin, Louis M; Di Fiore, Peter M; Lin, Jarshen; Rosenberg, Paul A

    2006-01-01

    Uninfected necrotic tissue, such as that which follows a myocardial or cerebral infarct, is capable of inducing an inflammatory reaction. Eventually, the infarct is organized by granulation tissue. Why then, does uninfected devitalized pulp tissue, such as in traumatized teeth, not cause periradicular inflammation and does not become organized by granulation tissue? Four beagle dogs were used in this experiment. A total of 48 teeth, which included 24 maxillary and 24 mandibular incisors, were aseptically devitalized, leaving residual pulp tissues in the root canals, and equally divided into two groups. Group A (24 uninfected): A sterile cotton pellet was placed deep into the canal orifice before the pulp chamber and access opening were closed with a layer of zinc-oxide eugenol cement followed by glass ionomer cement. Group B (24 infected): The teeth were left open to the oral cavity for 7 days and then closed with a cotton pellet and zinc-oxide eugenol and glass ionomer cement. The animals were sacrificed one year after the experiment and prepared for histological examination of periradicular tissue responses to uninfected and infected devitalized pulp tissues. The results indicate that uninfected devitalized pulp tissues did not continuously release inflammatory mediators and cause persistent periradicular inflammation over a period of one year. However, infected devitalized pulp tissues induced various degrees of periradicular inflammation. Only the apical few millimeters of uninfected devitalized pulp tissue in the root canals were organized by granulation tissue from vital periodontal ligament tissue. PMID:16410065

  15. Copper-zinc superoxide dismutase activity in dental pulp after dental preparation.

    PubMed

    Varvara, G; Pinchi, V; Caputi, S; D'Arcangelo, C; Scarano, A; Sinjari, B; Murmura, G

    2012-01-01

    The superoxide dismutases (SODs) are the major enzymatic defence mechanism against toxic reactive oxygen species generated during normal oxidative metabolism and during the respiratory burst associated with inflammation. To further clarify the potential role of copper-zinc (Cu/Zn)-SOD during inflammation of pulp tissue in humans, the aim was to determine whether significant changes in Cu/Zn-SOD activity occur in healthy dental pulp after dental preparation. The condition of the pulp was assessed using clinical and radiographic evaluation. Thirty systemically healthy patients were the source of the pulp tissue, which was collected by longitudinally grooving and splitting teeth that were matched between the control dental pulp and the prepared tooth (test) dental pulp. Cu/Zn-SOD activity was determined through spectrophotometric methods, with Mann-Whitney tests used to assess the significance of the differences between the groups. The Cu/Zn-SOD activity was 168.2+/-46.4 mU.mg−1 total protein (range: 96-212 mU.mg−1) in the control group, and 328.2+/-84.2 mU.mg−1 total protein (range: 280-420 mU.mg−1) in the test group. The difference between the groups was statistically significant, at P <0.001. These results demonstrate a potential role for Cu/Zn-SOD during dental pulp inflammation in humans after dental preparation. PMID:23241127

  16. Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation.

    PubMed

    Yang, Fang; Zeng, Jinfeng; Zhang, Wei; Sun, Xi; Ling, Junqi

    2011-01-01

    Calcifying nanoparticles (CNPs, previously called nanobacteria) are self-propagating, cultivable macromolecular complexes. Their extraordinary characteristic is that they can aggregate carbonate apatite on their envelope from soluble calcium and phosphorus at physiologic concentrations and display cytotoxic effects on murine and human fibroblast cell lines. The question arises whether CNPs contribute to the degeneration of pulp tissue and thus result in clinically significant human dental pulp stones as nidies. This study evaluates CNPs' effects upon human dental pulp cells (HDPCs, the host cells in pulp tissue). We observed the ultrastructural variation of HDPCs attacked by CNPs. The spatial relationship of HDPCs and CNPs after coculture was also identified by immunofluorescence staining. Furthermore, it was verified by MTT viability assay that CNPs isolated from dental pulp stones exerted cytotoxic effect on HDPCs. Therefore, it could be concluded that the existence of CNPs might interfere with the normal physiologic function of the cells, and that might lead to dental pulp calcification. Elucidation of the cytotoxic characteristics of CNPs may offer a new perspective for understanding the etiology of human dental pulp stones. PMID:21289977

  17. Free Pulp Transfer for Fingertip Reconstruction—The Algorithm for Complicated Allen Fingertip Defect

    PubMed Central

    Spyropoulou, Georgia-Alexandra; Shih, Hsiang-Shun

    2015-01-01

    Abstract Background: We present a review of all the cases of free toe pulp transfer and an algorithm for application of free pulp transfer in complicated Allen fingertip defect. Methods: Seventeen patients underwent free toe pulp transfer for fingertip reconstruction by the senior author. Twelve cases were Allen type II with oblique pulp defect, 4 were Allen type III, and 1 patient had 2 fingertip injuries classified both as type IV. According to the algorithm presented, for the type III defects where the germinal matrix is still preserved, we use free pulp transfer and nail bed graft to preserve the nail growth instead of toe to hand transfer. For the type IV injuries with multiple defects, a combination of web flap from both big toe and second toe is possible for 1-stage reconstruction. Results: All pulp flaps survived completely. Static 2-point discrimination ranged from 6 to 15 mm (mean: 10.5 mm). No patient presented dysesthesia, hyperesthesia, pain at rest, or cold intolerance. The donor site did not present any nuisances apart from partial skin graft loss in 3 cases. Conclusions: We tried to classify and modify the defects’ reconstruction according to Allen classification. Free toe pulp transfer is a “like with like” reconstruction that provides sensate, glabrous skin with good color and texture match for fingertip trauma, and minimal donor site morbidity compared with traditional toe to hand transfer. PMID:26894009

  18. [Assessment of the effect of environmental chemicals on the working population in mono-cities].

    PubMed

    Novikov, S M; Unguryanu, T N

    2014-01-01

    There was made the characterization of the health risk for workers' of pulp and paper industry, under the simultaneous effects of chemicals in the residential and working area. The main adverse effect of chemicals that pollute the air and work environment is related with the impact on the respiratory system. Under the successive exposure (ambient air--air in the workplace) in the adult population working at the Arkhangelsk Pulp and Paper Mill, the risk of occurrence of respiratory diseases (HI = 18.5) and individual carcinogenic risk (CR = 9.7 x 10(-3)) have been rated as high and constitute 86-99% of the total risk. PMID:25831935

  19. Interactions between cavity preparation and restoration events and their effects on pulp vitality.

    PubMed

    Wisithphrom, Kessiri; Murray, Peter E; About, Imad; Windsor, L Jack

    2006-12-01

    The purpose of this study was to investigate the precise effect and rank the importance of cavity preparation and restoration variables on human pulp vitality. Fifty-three Class V unexposed cavities were prepared and restored with calcium hydroxide/amalgam, resin-modified glass ionomer, zinc oxide-eugenol, resin composite, or zinc polycarboxylate materials. Pulp vitality was reduced by the remaining dentin thickness of the cavity preparations, whereas the other variables, including the type of restorative material, had little effect. Restorative materials cause minimal pulp damage in isolation; it is more important to minimize the removal of intact dentin to maintain the vitality of teeth. PMID:17243333

  20. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  1. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities.

    PubMed

    Yibchok-anun, Sirintorn; Adisakwattana, Sirichai; Yao, Cheng Yu; Sangvanich, Polkit; Roengsumran, Sophon; Hsu, Walter Haw

    2006-06-01

    The protein from Thai bitter gourd (Momordica charantia) fruit pulp was extracted and studied for its hypoglycemic effect. Subcutaneous administration of the protein extract (5, 10 mg/kg) significantly and markedly decreased plasma glucose concentrations in both normal and streptozotocin-induced diabetic rats in a dose-dependent manner. The onset of the protein extract-induced antihyperglycemia/hypoglycemia was observed at 4 and 6 h in diabetic and normal rats, respectively. This protein extract also raised plasma insulin concentrations by 2 fold 4 h following subcutaneous administration. In perfused rat pancreas, the protein extract (10 microg/ml) increased insulin secretion, but not glucagon secretion. The increase in insulin secretion was apparent within 5 min of administration and was persistent during 30 min of administration. Furthermore, the protein extract enhanced glucose uptake into C2C12 myocytes and 3T3-L1 adipocytes. Time course experiments performed in rat adipocytes revealed that M. charantia protein extract significantly increased glucose uptake after 4 and 6 h of incubation. Thus, the M. charantia protein extract, a slow acting chemical, exerted both insulin secretagogue and insulinomimetic activities to lower blood glucose concentrations in vivo. PMID:16755004

  2. White sucker (Catostomus commersoni) growth and sexual maturation in pulp mill-contaminated and reference rivers

    SciTech Connect

    Gagnon, M.M.; Bussieres, D.; Dodson, J.J. ); Hodson, P.V. )

    1995-02-01

    Induction of hepatic ethoxyresorufin-O-deethylase (EROD) activity and accumulation of chlorophenolic compounds typical of bleached-kraft mill effluent (BKME) in fish sampled downstream of a pulp mill on the St. Maurice River, Quebec, Canada, provided evidence of chemical exposure to BKME. In comparison, fish sampled over the same distances and in similar habitats in a noncontaminated reference river, the Gatineau River, demonstrated low EROD activity and contamination levels. Accelerated growth of white suckers occurred between 2 and 10 years of age in both rivers at downstream stations relative to upstream stations, suggesting the existence of gradients of nutrient enrichment independent of BKME contamination. The impact of BKME exposure was expressed as reduced investment in reproduction, as revealed by greater length at maturity, reduced gonad size, and more variable fecundity. These effects were not obvious in simple upstream-downstream comparisons, but became evident when fish from the uncontaminated Gatineau River showed increased gonadal development and reduced age and size at maturity in response to enhanced growth rates.

  3. Electrocoagulation treatment of black liquor from soda-AQ pulping of wheat straw.

    PubMed

    Rastegarfar, N; Behrooz, R; Bahramifar, N

    2015-02-01

    The effect of electrocoagulation treatment was investigated on black liquor from soda-anthraquinone (AQ) pulping of wheat straw. Removal of phenol, chemical oxygen demand (COD), color, total suspended solids (TSS), total dissolved solids (TDS), and total solids (TS) from black liquor was investigated at different current densities by using aluminum electrodes at various electrolysis times (10, 25, 40, 55, and 70 min) and pH levels (3, 5, 7, 9, and 10.5). It was observed that at 16 V, electrolysis time of 55 min and current density of 61.8 mA/cm(2) were sufficient for the removal of the pollutants. Energy consumption was evaluated as an important cost-relation parameter. Results showed that the electrocoagulation treatment reduced color intensity from the high initial value of 18,750 to 220 PCU. This was strongly influenced by the pH level of the wastewater. In addition, it was found that the removal efficiency increased with increasing of current density. The maximum efficiencies for removal were 98.8, 81, 80, 92, 61, and 68 % for color, phenol, COD, TSS, TDS, and TS, respectively. The lowest energy consumption values were obtained at neutral pH after 55 min. Electrocoagulation was found to be an effective, simple, and low-cost technique to treat black liquor. PMID:25637386

  4. Dentin and dental pulp regeneration by the patient’s endogenous cells

    PubMed Central

    KIM, SAHNG G.; ZHENG, YING; ZHOU, JIAN; CHEN, MO; EMBREE, MILDRED C.; SONG, KAREN; JIANG, NAN; MAO, JEREMY J.

    2014-01-01

    The goal of regenerative endodontics is to restore the functions of the dental pulp–dentin complex. Two approaches are being applied toward dental pulp–dentin regeneration: cell transplantation and cell homing. The majority of previous approaches are based on cell transplantation by delivering ex vivo cultivated cells toward dental pulp or dentin regeneration. Many hurdles limit the clinical translation of cell transplantation such as the difficulty of acquiring and isolating viable cells, uncertainty of what cells or what fractions of cells to use, excessive cost of cell manipulation and transportation, and the risk of immune rejection, pathogen transmission, and tumorigenesis in associated with ex vivo cell manipulation. In contrast, cell homing relies on induced chemotaxis of endogenous cells and therefore circumvents many of the difficulties that are associated with cell transplantation. An array of proteins, peptides, and chemical compounds that are yet to be identified may orchestrate endogenous cells to regenerate dental pulp–dentin complex. Both cell transplantation and cell homing are scientifically valid approaches; however, cell homing offers a number of advantages that are compatible with the development of clinical therapies for dental pulp–dentin regeneration. PMID:24976816

  5. Treatment of Pulp Mill D-Stage Bleaching Effluent Using a Pilot-Scale Electrocoagulation System.

    PubMed

    Perng, Yuan-Shing; Wang, Eugene I-Chen

    2016-03-01

    A pilot-scale study was conducted using electrocoagulation technology to treat chlorine dioxide bleaching-stage effluent of a local pulp mill, with the purpose of evaluating the treatment performance. The operating variables were the current density (0 ~ 133.3 A/m(2)) and hydraulic retention time (HRT, 6.5 ~ 16.25 minutes). Water quality indicators investigated were the conductivity, suspended solids (SS), chemical oxygen demand (COD), true color, and hardness. The results showed that electrocoagulation technology can be used to treat D-stage bleaching effluent for water reuse. Under the operating conditions studied, the removal of conductivity and COD always increased with increases in either the current density or HRT. The highest removals obtained at 133.3 A/m(2) and an HRT of 16.25 minutes for conductivity, SS, COD, true color, and hardness were respectively 44.2, 98.5, 75.0, 85.9, and 36.9% with aluminum electrodes. Iron electrodes were not applicable to the D-stage effluent due to formation of dark-colored ferric complexes. PMID:26931536

  6. Separation and characterization of lignins from the black liquor of oil palm trunk fiber pulping

    SciTech Connect

    Sun, R.; Tomkinson, J.; Bolton, J.

    1999-11-01

    Six lignin preparations, isolated by a novel two-step precipitation method instead of the traditional one-step precipitation method from the oil palm trunk fiber pulping (OPTFP) black liquor, were found to be relatively free of nonlignin materials such as polysaccharide degradation products, ash, and salts. A lignin fraction with a purity of 99.5% was obtained at an optimum precipitation pH 1.5 after isolation of the nonlignin materials in ethanol. About 94% of the total lignin was recovered by this novel method at this condition, and the value of COD in the treated black liquor reduced significantly to lower 250. The isolated lignin fractions contained syringyl, guaiacyl, and p-hydroxyphenyl units in an approximate molar ratio of 16--20:5:1 on the basis of chemical and spectroscopic analysis. Small amounts of p-hydroxybenzoic acids were found to be esterified to lignin, while ferulic acids were associated to lignin by ether linkage. {sup 13}C-NMR indicated the presence of {beta}-O-4 ether bonds, and {beta}-5 and 5-5{prime} carbon-carbon linkages between the lignin molecules.

  7. Effect of pulp mill sludge on soil characteristics, microbial community and vegetal production of Lolium Perenne.

    PubMed

    Gallardo, F; Cea, M; Tortella, G R; Diez, M C

    2012-03-01

    The effect of pulp mill sludge addition (10-30 Mg/ha) to soil derived from volcanic ash (Andisol) on soil characteristics, microbial community and Lolium perenne L. cv quartet. biomass production was evaluated in field assays. Soil without sludge was used as a control treatment. The sludge addition improved the chemical properties of the soil. Organic matter and phosphorous content increased in the soil with increasing amounts of sludge, obtaining 35% more organic matter content with the application of 30 Mg/ha than the control soil. The phosphorous was accumulated into the soil after the end of cultivation improving the phosphorous pool in the soil. When 30 Mg/ha sludge was added to the soil, a biomass of Lolium perenne, was 60% more than the control soil at the end of the experiment. The analysis of soil microbial community showed that the application of sludge did not modify greatly the microbial community of fungi and bacteria even when high doses were applied. PMID:21193264

  8. Dental Pulp Stem Cell Differentiation on Poly-4-vinyl-pyridine surfaces

    NASA Astrophysics Data System (ADS)

    Suarato, Giulia; Bherwani, Aneel; Chang, Chung-Chueh; Rafailovich, Miriam; Simon, Marcia

    2012-02-01

    In the regeneration of a natural tissue, the mechanics and the chemical properties of the artificial substrate play a critical role. In this study, the influence of poly-4-vinyl-pyridine scaffold morphology on dental pulp stem cell differentiation was analyzed. Cells were plated on spun cast films and electrospun fibers with diameters ranging from nano to micrometers. Confocal microscopy showed the presence of various cell morphologies: on microfibers cells conform precisely to the main axis of elongation, while on nanometric scaffolds they result spread and in contact with several fibers. Even if the surface chemistry was identical, a great variation in the curvature was present. From day 9 of incubation, spontaneous biomineralization in the absence of induction agents occurred only on the fibrous structures. The SEM revealed template deposits directly on the microfibers, while on the nanofibers large spherical islands were also present. EDAX determined hydroxyl apatite nature of the deposits. RT-PCR indicated upregulation of osteogenic markers, confirming differentiation. SEM also revealed the presence of ECM fibers covering the polymer structure, which may enhance the expression of focal adhesion sites on the cell membrane.

  9. Treatment of wastewater from pulp and paper mill industry by electrochemical methods in membrane reactor.

    PubMed

    Chanworrawoot, Kanjana; Hunsom, Mali

    2012-12-30

    The treatment of wastewater from a pulp and paper mill plant using electrochemical methods was performed at a laboratory bench-scale at ambient temperature (~30 °C). The effects of wastewater dilution (10- to 100-fold), circulating water flow rate (0-3.95 l/min), current density (1.90-3.80 mA/cm(2)) and sodium chloride concentration (0-3.75 g/l) were ascertained. The results demonstrated that this methods can facilitate the disappearance of the oxidative coupling unit of lignin as well as other organic and inorganic compounds, measured in terms of the removal of color, total biological- and total chemical oxygen demand (BOD and COD), and the total suspended and dissolved solids (TSS and TSD). In addition, the electrochemical method was more effective at reducing the pollutant levels, produced a smaller quantity of low-density sludge and had a low operating cost per unit quantity of COD. After optimization, the electrochemical method operating in a batch mode enhanced the removal of color, BOD and COD at around 98%, 98% and 97%, respectively, whilst in a continuous mode at the steady state condition (8 h after the start-up time) the color, BOD and COD levels were reduced by around 91%, 83% and 86%, respectively. PMID:23062272

  10. Differentiation and Behavior of Dental Pulp Stem Cells in Hydrogel Scaffolds of Various Stiffnesses

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Divya; Jurukovski, Vladimir; Rafailovich, Miriam; Simon, Marcia

    2011-03-01

    Dental Pulp Stem Cells (DPSCs) are known to differentiate in bone, dentine, or nerve tissue through different environment signals. This work investigates whether differentiation could occur in the absence of chemical induction and through mechanical stimuli only. For this study, we chose enzymatically cross-linked gelatin hydrogels as our substrates. Rheological studies carried out by oscillatory shear rheometry indicated that the modulus of the hardest hydrogel was of the order of 8kPa where as the medium and the softest hydrogel had modulus of the order of 1kPa and 100Pa respectively. DPSC were then plated on all three substrates and cultured with and without dexamethasone induction media. After 21 days of incubation, SEM analysis indicated that the cells cultured in the induction media produced biomineralized deposits on hard, medium as well as soft hydrogels. On the other hand, the cells cultured without the induction media also produced large amounts of biomineralized deposits.The modulus of the cells was also measured using AFM. En mass cell migration was also studied to determine the average velocity of migration of DPSCs. We also investigated whether stem cells that are induced to differentiate by their scaffold environment would continue to differentiate and biomineralize when removed from the inducing scaffold.

  11. Lignin analyzer based on pyrolysis-mass spectrometry of pulp in hydrogen or helium

    NASA Astrophysics Data System (ADS)

    Shakkottai, P.; Kwack, E. Y.; Lawson, D.

    1990-07-01

    The lignin content of wood, paper, pulp, or other materials containing lignin (such as filter paper soaked in black liquor) is readily determined by flash pyrolysis of the sample at approximately 550 °C in a reducing atmosphere of hydrogen or in an inert atmosphere of helium followed by a rapid analysis of the product gas by a mass spectrometer. The heated pyrolysis unit as fabricated, comprises a small platinum cup welded to an electrically heated stainless-steel ribbon with control units for programmed short duration (1.5 s, approximately) heating and for continuous flow of hydrogen or helium. The pyrolysis products enter an electron-ionization-mode mass spectrometer for spectral evaluation. Lignin content is obtained from certain ratios of integrated ion currents of many mass spectral lines, the ratios being linearly related to the Kappa number or Klason lignin. The Kappa number can be obtained from a few milligram sample in 3 min which is at least ten times faster than a Kappa number determination by the Standard Chemical Method. The present instrument can measure Kappa numbers in the whole range from 0 to 200 without any readjustments.

  12. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration.

    PubMed

    Tao, Yong; Wu, Chang-Yu; Mazyck, David W

    2006-09-01

    Methanol is one of the major hazardous air pollutants emitted from chemical pulp mills. Its collection and treatment is required by the Maximum Achievable Control Technology portion of the 1998 Cluster Rule. The objective of this study is to investigate the technical feasibility of combined adsorption and photocatalytic regeneration for the removal and destruction of methanol. To facilitate the regeneration, activated carbon (AC) was coated with commercially available photocatalyst by a spray desiccation method. Laboratory-scale experiments were conducted in a fixed-bed reactor equipped with an 8 W black light UV lamp (peak wavelength at 365 nm) at the center. The photocatalyst loaded onto AC had no significant impact on the adsorption capacity of the carbon. High humidity was found to greatly reduce the material's capacity in the adsorption and simultaneous adsorption and photocatalytic oxidation of methanol. The photocatalytic regeneration process is limited by the desorption of the adsorbate. Increasing desorption rate by using purge air greatly increased the regeneration capacity. When the desorption rate was greater than the photocatalytic oxidation rate, however, part of the methanol was directly desorbed without degradation. PMID:16630641

  13. Effect of Copper and Other Trace Metal Addition to Pulp and Paper Wastewater.

    PubMed

    Barnett, Jason; Richardson, Desmond; Stack, Karen; Lewis, Trevor

    2015-12-01

    Porous pots were used to mimic, on a laboratory scale, an industrial activated sludge plant from a thermomechanical pulp and news print paper mill. Trace metal additions of Ca, Co, Cu, Fe(III), and Mg were found to improve chemical oxygen demand removal from 82% to 86 to 87%. Copper (0.1 to 1.0 mg/L) was also found to be beneficial in significantly inhibiting the growth of filamentous bacteria, contributing to a reduction of 20 to 45% in sludge volume index (SVI) with improved settle ability and decreased bulking. However, at levels of 1.0 mg/L and higher, the concentration of Cu in the porous pot effluent would potentially exceed guidelines for receiving waters. The fate and impact of Cu was affected by the presence of other trace metals, in particular Mg and Ca. The addition of Mg or Ca along with 0.5 mg/L Cu increased the amount of Cu in the aqueous phase to levels that would potentially exceed government environmental guidelines. Calcium addition was also found to inhibit the effect of Cu in reducing filamentous bacteria and SVI. PMID:26652119

  14. Membrane treatment of the bleaching plant (EPO) filtrate of a kraft pulp mill.

    PubMed

    Quezada, Rafael; Silva, Claudio Mudado; Passos Rezende, Ana Augusta; Nilsson, Leif; Manfredi, Mauro

    2014-01-01

    The objective of this study was to evaluate the use of membrane technology to treat oxygen and peroxide-reinforced extraction stage (EPO) filtrate from a kraft pulp mill bleach plant. Three different types of tubular membranes were tested in a pilot plant: (i) tight ultrafiltration (UF); (ii) open UF followed by nanofiltration (UF+NF); and (iii) nanofiltration (NF). According to the separation performance, considering the chemical oxygen demand (COD) and colour removal, permeate flux, operational simplicity and cost, the results indicated that the best option for treatment of (EPO) filtrates was the tight UF membrane. This membrane obtained a COD removal of 79% with a colour reduction of 86%. The effect of (EPO) filtrate UF treatment on the mill effluent treatment plant was evaluated. Compared with the actual mill effluent, the results indicated that if the UF permeate was recycled in the bleaching area, the COD reduction efficiency increased by 7%, the final effluent colour decreased by 8%, the biological sludge production decreased by 18%, and the energy consumption decreased by 40%. In the tertiary treatment plant, the coagulant dosage decreased by 40%, and the tertiary sludge production decreased by 46%. PMID:25225931

  15. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.

    PubMed

    Kumar, Vishal; Marín-Navarro, Julia; Shukla, Pratyoosh

    2016-02-01

    Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches. PMID:26754672

  16. Characterization of the pretreatment liquor of biomass from the perennial grass, Eulaliopsis binata, for the production of dissolving pulp.

    PubMed

    Tang, Jiebin; Chen, Kefu; Huang, Fang; xu, Jun; Li, Jun

    2013-02-01

    To test a biorefinery concept, the non-wood biomass of Eulaliopsis binata was treated with dilute acid prior to dissolving pulp production at 160 °C for 30 min. The pretreatment liquor (PL) contained 42.04 g/L sugars, of which 81.46% was xylose and only 2.91% was glucose. Furfural and hydroxymethylfurfural in PL were 0.37% and 0.06%, respectively. Chemical or enzymatic hydrolysis of carbohydrates could be omitted when producing bioethanol with PL because 87.32% of the total sugars were in the form of monosaccharides. Membrane filtration with a molecular-weight cut-off of 100 Da was employed to concentrate the sugars and a concentration of 170.49 g/L was achieved. A method of zero release of the PL is proposed, which consists of ethanol production from the concentrated PL and recycling the permeate stream into the pretreatment process. PMID:23274218

  17. Methods for removing malodorous sulfur compounds from pulp mill flue gases and the like by using green liquor

    SciTech Connect

    Farin, W.G.

    1984-02-14

    This is an improved method for removing malodorous sulfur compounds from flue gases generated in kraft or sodium sulfite pulping operations and the like by the absorption process using green liquor, an aqueous solution containing sodium sulfide and sodium carbonate. The malodorous gas compounds, including hydrogen sulfide, methyl mercaptan, and dimethyl sulfide are preferentially absorbed by the sodium sulfide forming sodium hydrosulfide and methanol. Any sulfur dioxide in the gas is absorbed and neutralized by sodium carbonate. In this method carbon dioxide absorption is minimized and the formation of sodium bicarbonate is limited. Sodium bicarbonate formation is minimized in order to avoid its reaction with sodium hydrosulfide which would then release undesirable hydrogen sulfide during absorption, as well as to forestall the need to increase chemical and lime kiln capacity requirements when the green liquor returned to the kraft recovery process contains excess amounts of sodium bicarbonate.

  18. Materials interactions relevant to the pulp, paper, and wood industries

    SciTech Connect

    Caulfield, D.F. . Forest Products Lab.); Passaretti, J.D. ); Sobezynski, S.F. . Office of Industrial Programs)

    1990-01-01

    The symposium demonstrated that wood and paper, although often overlooked as materials by the materials research community, provide a vibrant field for materials research. Of special interest to materials researchers is the interaction between pulp, paper and wood with other materials. This paper is divided into categories that constituted the themes for the five sessions of the symposium: wood/polymer composites, fiber/fiber interactions, fiber/water interactions, papermaking and coating processes, and surface interactions: fillers and pigments. One recurrent problem discussed throughout the symposium was the need to discover new ways to promote intimate and effective interactions between the highly polar surfaces of wood, paper and cellulose and materials whose surfaces might tend to be non-polar in nature.

  19. Advances in regeneration of dental pulp--a literature review.

    PubMed

    Ajay Sharma, Lavanya; Sharma, Ajay; Dias, George J

    2015-05-01

    This review summarizes the biological response of dentin-pulp complexes to a variety of stimuli and responses to current treatment therapies and reviews the role of tissue engineering and its application in regenerative endodontics. An electronic search was undertaken based on keywords using Medline/PubMed, Embase, Web of Science and Ovid database resources up to March 2012 to identify appropriate articles, supplemented by a manual search using reference lists from relevant articles. Inclusion criteria were mainly based on different combinations of keywords and restricted to articles published in English language only. Biological approaches based on tissue engineering principles were found to offer the possibility of restoring natural tooth vitality, with distinct evidence that regeneration of lost dental tissues is possible. Studies to formulate an ideal restorative material with regenerative properties, however, are still under way. Further research with supporting clinical studies is required to identify the most effective and safe treatment therapy. PMID:23946258

  20. Antimicrobial activity of grapefruit seed and pulp ethanolic extract.

    PubMed

    Cvetnić, Zdenka; Vladimir-Knezević, Sanda

    2004-09-01

    Antibacterial and antifungal activity of ethanolic extract of grapefruit (Citrus paradisi Macf., Rutaceae) seed and pulp was examined against 20 bacterial and 10 yeast strains. The level of antimicrobial effects was established using an in vitro agar assay and standard broth dilution susceptibility test. The contents of 3.92% of total polyphenols and 0.11% of flavonoids were determined spectrometrically in crude ethanolic extract. The presence of flavanones naringin and hesperidin in the extract was confirmed by TLC analysis. Ethanolic extract exibited the strongest antimicrobial effect against Salmonella enteritidis (MIC 2.06%, m/V). Other tested bacteria and yeasts were sensitive to extract concentrations ranging from 4.13% to 16.50% (m/V). PMID:15610620

  1. JAB1 accelerates odontogenic differentiation of dental pulp stem cells.

    PubMed

    Lian, Min; Zhang, Ye; Shen, Qijie; Xing, Jing; Lu, Xiaohui; Huang, Dan; Cao, Peipei; Shen, Shuling; Zheng, Ke; Zhang, Jinlong; Chen, Jie; Wang, Yi; Feng, Guijuan; Feng, Xingmei

    2016-06-01

    Jun activation domain-binding protein 1 (JAB1) is a multifunctional protein that participates in the control of cell proliferation and the stability of multiple proteins. JAB1 regulates several key proteins, and thereby produces varied effects on cell cycle progression, genome stability and cell survival. Some studies have shown that the loss of JAB1 in osteochondral progenitor cells severely impairs embryonic limb development in mice. However, the biological significance of JAB1 activity in the odontogenic differentiation of dental pulp stem cells (DPSCs) remains unclear. This study aimed to determine the role of JAB1, a key player in tooth development, in reparative dentin formation, especially odontogenic differentiation. We found that increased expression of JAB1 promoted odontogenic differentiation of DPSCs via Wnt/β-catenin signaling. The role of JAB1 in the odontogenic differentiation of DPSCs was further confirmed by knocking down JAB1. Our findings provide novel insights on odontogenic differentiation of DPSCs. PMID:26989054

  2. Pulp science: education and communication in the paperback book revolution.

    PubMed

    Gormley, Melinda

    2016-03-01

    Paperback books on scientific topics were a hot commodity in the United States from the 1940s to 1960s providing a vehicle for science communication that transformed science education. Well-known scientists authored them, including Rachel Carson, Theodosius Dobzhansky, George Gamow, Fred Hoyle, Julian Huxley, and Margaret Mead. A short history of 'the paperback revolution' that began in the 1930s is provided before concentrating on one publishing company based in New York City, the New American Library of World Literature (NAL), which produced Signet and Mentor Books. The infrastructure that led to the production and consumption of paperback books is described and an underexplored and not-previously identified genre of educational books on scientific topics, what the author refers to as pulp science, is characterized. PMID:26832304

  3. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect

    Angelini, P.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  4. Characterization of the dental pulp using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.

    2006-02-01

    The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.

  5. System and method for conditioning a hardwood pulp liquid hydrolysate

    SciTech Connect

    Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

    2013-12-17

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  6. System and method for conditioning a hardwood pulp liquid hydrolysate

    SciTech Connect

    Waite, Darrell; Arnold, Richard; St. Pierre, James; Pendse, Hemant P.; Ceckler, William H.

    2015-06-30

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  7. Corrosion testing in flash tanks of kraft pulp mills

    SciTech Connect

    Clarke, S.J.; Stead, N.J.

    1999-11-01

    The corrosion observed in the first flash tanks in kraft pulp mills with modified cooking practices was characterized. Coupons of carbon steel (CS), several stainless steels (SS), and Ti were exposed at two mills. At one mill, identical sets of coupons were exposed in the No. 1 and No. 2 flash tank. At the other mill, three identical sets of coupons were placed in flash tank No. 1. The results of the exposures showed that both CS and Ti suffered high rates of general corrosion, while the SS suffered varying degrees of localized attack. The ranking of the corrosion resistance in the flash tank was the same that would be expected in a reducing acid environment. Attack by organic acids was concluded to be the most likely cause of corrosion of the flash tanks.

  8. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps.

    PubMed

    Penteado, Ana L; Leitão, Mauro F F

    2004-04-01

    Growth of Listeria monocytogenes in low-acid fruits (melon, watermelon and papaya) at different times of incubation and at temperatures of 10, 20 and 30 degrees C was studied. Fruit pulp portions with an average pH of 5.87, 5.50 and 4.87 for melon, watermelon and papaya, respectively, were obtained aseptically, homogenized, weighed and inoculated with suspensions (approximately 10(2) CFU/g) of L. monocytogenes. Generation times of 7.12, 13.03 and 15.05 h at 10 degrees C, 1.74, 2.17 and 6.42 h at 20 degrees C and 0.84, 1.00 and 1.16 h at 30 degrees C were obtained, respectively, for melon, watermelon and papaya. The results showed that L. monocytogenes grew in low-acid fruits at all tested temperatures, although growth was diminished, but not inhibited at 10 degrees C. PMID:15033271

  9. Enzymatic treatments of pulp using laccase and hydrophobic compounds.

    PubMed

    Garcia-Ubasart, Jordi; Esteban, Alberto; Vila, Carlos; Roncero, M Blanca; Colom, Josep F; Vidal, Teresa

    2011-02-01

    The aim of this work was to develop an innovative method for the internal sizing of paper by use of laccase and hydrophobic compounds. Nine different products containing hydrophobic moieties were tested in combination with laccase derived from Trametes villosa on Eucalyptus globulus kraft pulp in order to assess their internal sizing capability. The strongest internal sizing effect was obtained with lauryl gallate (LG). Heat treatment of the handsheets was found to increase the resistance to water absorption of internally sized samples significantly. Tests were conducted under variable operating conditions, including enzyme and reactant doses and treatment time. In addition to altering the water absorption rate, internal sizing with the laccase-LG treatments was found to affect the mechanical and optical properties of the handsheets. As shown in this work, treatments based on laccase and a hydrophobic compound (particularly lauryl gallate), can provide a new, effective biotechnological method for the internal sizing of paper. PMID:21050744

  10. Characterization of kraft pulp mill particulate emissions—A summary of existing measurements and observations

    NASA Astrophysics Data System (ADS)

    Pinkerton, John E.; Blosser, Russell O.

    Particulate matter emission sources at a kraft pulp mill include kraft recovery furnaces, lime kilns, smelt dissolving tanks and power boilers. Chemical and physical characteristics of these paniculate emissions are reviewed. Measurements of particle size distributions for these sources made with cascade impactors and microscopic counting techniques both before and after paniculate control devices such as multiple cyclones, wet scrubbers, and electrostatic precipitalors are discussed. In general, particles with equivalent diameters less than 3 jim comprise the bulk of the controlled paniculate emissions from all sources. Sodium sulfate is the dominant paniculate emission from kraft recovery furnaces, smelt dissolving tanks and lime kilns. Results from a field investigation of the relationship between human observations of near-stack plume opacity and measured in-stack paniculate concentrations and opacities are summarized. Trained cenified panels of observers were used in the investigation to estimate plume opacities from two kraft recovery furnaces, a combination wood/coal-fired boiler, and a combination wood/oil-fired boiler at four different pulp mill locations. Plume opacities were varied from near-zero to 45 % by adjustment of the paniculate control equipment operation. The effects of different background viewing conditions, observer positions, observer experience levels, and plume characteristics are enumerated. It is concluded that there can be substantial variations between measured in-stack opacities and human perceptions of near-stack plume opacities. The degree of agreement between the human judgements and measured in-stack opacities is significantly affected by the background viewing conditions. It is further shown that even with a panel of six or seven trained observers with similar visual acuity, there can be significant departures of individual opacity readings from the panel mean opacity. Although this investigation deals with questions of human

  11. Laser thresholds in pulp exposure: a rat animal model

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Kudler, Joel J.

    1995-05-01

    Laser technology is now being clinically investigated for the removal of carious enamel and dentin. This study used an animal model to evaluate histological pulpal effects from laser exposure. The molars of 24 Sprague-Dawley rats (n equals 264) were exposed to either a pulsed 1.06 micrometers Nd:YAG laser (120 microseconds, 320 micrometer diameter fiber), air rotor drill preparation or left untreated as controls. The following treatment conditions were investigated: control group (n equals 54); high speed drill with carbide bur (n equals 39); laser exposure at 50 mJ/p at 10 Hz (n equals 27), 100 mJ/p at 10 Hz (n equals 66) and 100 mJ/p at 20 Hz (n equals 39). A sixth treatment condition was investigated: root surface hypersensitivity, which included incremental laser exposure from 30 to 100 mJ/p at 10 Hz (n equals 39). The animals were euthanized either immediately after treatment, at one week, or at one month. The jaws were fixed and bioprepared. Remaining dentin thickness was measured, and ranged from 0.17 +/- 0.04 mm to 0.35 +/- 0.09 mm. The pulp tissue was examined for histologic inflammatory response. No evidence of pulpal involvement or adverse pulpal effects were found at any time period in teeth receiving 50 mJ/p. When histologic samples were compared with controls, all observations were similar. Of the 210 exposed teeth, 2 teeth receiving 100 mJ/p demonstrated abscess formation and were exfoliated. Further, in the rat molar when remaining dentin thickness was less than 0.5 mm, exposed to 100 mJ/p, threshold pulpal effects occurred. The response of rat pulp to laser exposure indicated no histologically measurable response to pulsed laser energy at 50 mJ/p.

  12. Angiogenic Properties of Human Dental Pulp Stem Cells

    PubMed Central

    Bronckaers, Annelies; Hilkens, Petra; Fanton, Yanick; Struys, Tom; Gervois, Pascal; Politis, Constantinus; Martens, Wendy; Lambrichts, Ivo

    2013-01-01

    Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC) that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1), but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM) assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions. PMID:23951091

  13. Angiogenic properties of human dental pulp stem cells.

    PubMed

    Bronckaers, Annelies; Hilkens, Petra; Fanton, Yanick; Struys, Tom; Gervois, Pascal; Politis, Constantinus; Martens, Wendy; Lambrichts, Ivo

    2013-01-01

    Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC) that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1), but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM) assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions. PMID:23951091

  14. Activated sludge optimization using ATP in pulp and paper industry.

    PubMed

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  15. Prevalence of Coronal Pulp Stones and Its Relation with Systemic Disorders in Northern Indian Central Punjabi Population

    PubMed Central

    Bains, Sandeep Kumar; Bhatia, Archana; Singh, Harkanwal Preet; Biswal, Swati Swagatika; Kanth, Shashi; Nalla, Srinivas

    2014-01-01

    Aim. To estimate the prevalence of coronal pulp stones in the molar teeth of dental outpatients of Sunam, Sangrur district, Punjab, India, to report any association between occurrence of pulp stones with age, gender, dental arch, side, and dental status and to find out correlation between pulp stones with dental and systemic diseases. Materials and Methods. 500 routine dental outpatients within age group of 18–67 years were involved in the study. Molar bitewing of left and right side of each patient was taken with XCP bitewing instrument and size 2 film. The presence or absence of pulp stones was recorded. Chi-square analysis was used to record the prevalence of pulp stones and to compare it with demographic and systemic factors. Results. Overall prevalence of pulp stones was 41.8%. Pulp stones were significantly higher in maxilla (11.59%) than mandible (6.54%), left side than right side, and first molar than other molars. Higher numbers of pulp stones were recorded in patients with cardiovascular disease (38.89%) than with cholelithiasis and renal lithiasis. Conclusion. Pulp stones were higher in maxillary arch than mandibular arch and in females than males. Cardiovascular patients had higher number of pulp stones than other groups. PMID:24944821

  16. In situ testing of CO2 laser on dental pulp function: Effects on microcirculation

    SciTech Connect

    Friedman, S.; Liu, M.; Doerscher-Kim, J.K.; Kim, S. )

    1991-01-01

    The effect of CO2 laser irradiation on pulpal microcirculation was studied in cat canines. The enamel surfaces of 4 teeth were exposed with energy densities of 304-1440J/cm2, using either a handpiece or a microslad, with a focal spot of 0.21mm and 0.33mm respectively. Pulpal blood flow (PBF) before and following lasing was recorded through the intact tooth surface by a laser Doppler flowmeter. CO2 laser irradiation caused an increase in PBF, which was immediate and transient. The PBF increase was higher in a large pulp than in a small pulp, and it was inversely related to the focal spot size. These findings confirm that the dental pulp is thermally affected by CO2 lasing of the tooth surface, however, without extensive pulp coagulation. It is concluded that the effects of laser irradiation on the pulpal microcirculation may be studied in situ by means of the presented methodology.

  17. Outcomes of Different Vital Pulp Therapy Techniques on Symptomatic Permanent Teeth: A Case Series

    PubMed Central

    Asgary, Saeed; Fazlyab, Mahta; Sabbagh, Sedigheh; Eghbal, Mohammad Jafar

    2014-01-01

    In modern endodontics, vital pulp therapy (VPT) has been considered an ultra-conservative treatment modality. Based on the level of pulp preservation, VPT includes stepwise excavation, indirect pulp capping (IDPC), direct pulp capping (DPC), miniature pulpotomy (MP), partial/Cvek pulpotomy and coronal/complete pulpotomy (CP). The present article reviews the treatment outcomes of 94 permanent teeth with irreversible pulpitis treated with either IDPC (n=28), DPC (n=28), MP (n=29) or CP (n=9) using calcium-enriched mixture (CEM) cement. After a mean follow-up time of 12.3 months, 93 treated teeth were radiographic/clinically successful; only one radiographic failure was observed in the DPC group. PMID:25386213

  18. Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry.

    PubMed

    Ferrer, A; Vega, A; Rodríguez, A; Jiménez, L

    2013-03-01

    Influence of operational variables in the EFB pulping [acetic acid (60-95%), hydrochloric acid (0.10-0.25%) and time (60-180 min)], on the yield, drainability or beating grade, Kappa number, lignin and viscosity of pulps was studied. By using a factorial design, equations were obtained that reproduced the experimental results for the dependent variables with errors less than 9-18%. These equations can be used to find the suitable conditions, so that operating with not too high values of operating variables (with minor costs of operation and capital) pulps with acceptable properties could be obtained: operating with 86.25% acetic acid, 0.25% hydrochloric acid and 120 min time, produced pulps with 46.56% yield, 15.9 °SR drainability, 36.3 Kappa number, 10.3% lignin and 303 mL/g viscosity, values all of them close to the optimal predicted. PMID:23395764

  19. Collection and dissemination of thermal energy storage system information for the pulp and paper industry

    NASA Technical Reports Server (NTRS)

    Edde, H.

    1981-01-01

    The collection and dissemination of thermal energy storage (TES) system technology for the pulp and paper industry with the intent of reducing fossil fuel usage is discussed. The study plan is described and a description presented of example TES systems.

  20. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    EPA Science Inventory

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...