Science.gov

Sample records for chemical reaction thermal

  1. Thermal energy storage. [by means of chemical reactions

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.

  2. Femtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies

    E-print Network

    Kim, Sang Kyu

    Femtosecond chemical activation of reactions at very high thermal energies, much above the bond energyFemtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies Sang Kyu Kim, Ju Guo, J. Spencer Baskin, and Ahmed H. Zewail* Arthur Amos Noyes Chemical Physics

  3. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John (Stanford, CA); Escher, Claus (Nieder-Ronstadt, DE)

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  4. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  5. A combined quantum-classical dynamics method for calculating thermal rate constants of chemical reactions in solution

    E-print Network

    Truong, Thanh N.

    -flux correlation function for calculating the thermal rate constants of chemical reactions in solution in this study would provide a complete tool for studying the quantum dynamics of chemical reactions the thermal chemical reaction rate constants. Furthermore, we also employ an efficient and accurate quantum

  6. Thermal Science & Engineering Vol.7 No. 6 (1999) FT-ICR Study of Chemical Reaction of Silicon Clusters

    E-print Network

    Maruyama, Shigeo

    1999-01-01

    Thermal Science & Engineering Vol.7 No. 6 (1999) - 1 - FT-ICR Study of Chemical Reaction of Silicon Clusters * Shigeo MARUYAMA , Masamichi KOHNO and Shuhei INOUE Abstract Chemical reaction of small silicon the reaction as an ethylene molecule. Key Words: Silicon Cluster, Chemical Reaction, Ethylene, FT-ICR, Mass

  7. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  8. Thermal Consolidation with Chemical Dehydration Reactions: Pore Pressure Generation in the Slow Slip Region of Subduction Zones

    E-print Network

    Rempel, Alan W.

    Thermal Consolidation with Chemical Dehydration Reactions: Pore Pressure Generation in the Slow of fluids must be attributed to chemical dehydration reactions. Here we model the condsolidation of low source of fluids to the plate interface must be attributed to chemical dehydration reactions in the sub

  9. Chemical reactions induced by oscillating external fields in weak thermal environments.

    PubMed

    Craven, Galen T; Bartsch, Thomas; Hernandez, Rigoberto

    2015-02-21

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations. PMID:25702003

  10. Chemical reactions induced by oscillating external fields in weak thermal environments

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Bartsch, Thomas; Hernandez, Rigoberto

    2015-02-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates predicted by stability analysis and rates obtained through numerical calculation of the reactive flux. We also show that the optimal dividing surface and the resulting reaction rate for a reactive system driven by weak thermal noise can be approximated well using the transition state geometry of the underlying deterministic system. This agreement persists as long as the thermal driving strength is less than the order of that of the periodic driving. The power of this result is its simplicity. The surprising accuracy of the time-dependent noise-free geometry for obtaining transition state theory rates in chemical reactions driven by periodic fields reveals the dynamics without requiring the cost of brute-force calculations.

  11. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  12. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  13. Numerical simulations of heterogeneous chemical reactions coupled to fluid flow in varying thermal fields

    SciTech Connect

    Carnahan, C.L.

    1991-11-01

    A numerical simulator of reactive chemical transport with coupling from precipitation-dissolution reactions to fluid flow, via changes of porosity and permeability, is applied to precipitation-dissolution of quartz and calcite in spatially and temporally variable fields of temperature. Significant effects on fluid flow are found in the quartz-silicic acid system in the presence of persistent, strong gradient of temperature. Transient heat flow in the quartz-silicic acid system and in a calcite-calcium ion-carbonato species system produces vanishingly small effects on fluid flow.

  14. Balancing Equations Chemical Reactions

    E-print Network

    Heller, Barbara

    Balancing Equations Chemical Reactions #12;Chemical Equations · A chemical equation describes what of the participants (solid, liquid, gas, aqueous) and the amount of each substance. #12;Balancing of Equations · To balance a chemical equation, you have to establish a mathematical relationship between the quantity

  15. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where

  16. Vaporization or Chemical Reaction: Which controls the fate of contaminants treated by in situ thermal remediation?

    EPA Science Inventory

    Thermal remediation technologies, which includes steam enhanced extraction, electrical resistance heating, and thermal conductive heating, have been developed based on technologies employed by the enhanced oil recovery industry. Although mobilization and/or volatilization of con...

  17. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y. (Pasco, WA); Wang, Yong (Richland, WA); Wegeng, Robert S. (Richland, WA); Gao, Yufei (Kennewick, WA)

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  18. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  19. Chemical reaction dynamics

    PubMed Central

    Crim, F. Fleming

    2008-01-01

    Understanding the motions of the constituent atoms in reacting molecules lies at the heart of chemistry and is the central focus of chemical reaction dynamics. The most detailed questions one can ask are about the evolution of molecules prepared in a single quantum state to products in individual states, and both calculations and experiments are providing such detailed understanding of increasingly complex systems. A central goal of these studies is uncovering the essential details of chemical change by removing the averaging over the initial conditions that occurs in many cases. Such information provides an exquisite test of theory and helps paint pictures of complicated chemical transformations. The goal of this Special Feature is to provide a snapshot of a portion of the field of chemical reaction dynamics. Much of the work presented here emphasizes a close interplay of experiment and theory in ways that sharpen the conclusions of both and animate future studies. The articles do not completely cover the rich field of chemical reaction dynamics but rather provide a glimpse of some of the emerging insights. PMID:18753626

  20. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  1. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  2. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  3. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  4. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Hsueh, Yun-Tai (Davis, CA); Smith, Rosemary L. (Davis, CA)

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  5. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA)

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  6. Ultrafast Laser Spectroscopyof Chemical Reactions

    E-print Network

    Zewail, Ahmed

    Ultrafast Laser Spectroscopyof Chemical Reactions - Joseph L. Kneeand AhmedH. Zewail California Instituteof Technology Ultrafast laser spectroscopy has extended reaction- tion, have been probed (very sensitively) by a variety of laser spec- troscopic techniques and have

  7. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  8. Classes of Chemical Reactions Reactions in aqueous media

    E-print Network

    Zakarian, Armen

    Classes of Chemical Reactions Reactions in aqueous media Precipitation reactions Acid-Base reactions Oxidation-Reduction reactions Reversible reactions Classes of Chemical Reactions Water (H2O;Classes of Chemical Reactions The solubility of ionic compounds: dissociation O H H + NaCl Cl- Cl- Cl- Na

  9. First Order Chemical Reaction Effects on Exponentially Accelerated Vertical Plate with Variable Mass Diffusion in the Presence of Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Lakshmi, C. S.

    2015-05-01

    Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.

  10. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction

    PubMed Central

    Hayat, Tasawar; Muhammad, Taseer; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2015-01-01

    This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly stratified surface. Both temperature and concentration stratification effects are considered. Thermal radiation and chemical reaction effects are accounted. The governing nonlinear boundary layer equations are converted to coupled nonlinear ordinary differential equations using appropriate transformations. Resulting nonlinear systems are solved for the convergent series solutions. Graphs are plotted to examine the impacts of physical parameters on the non-dimensional temperature and concentration distributions. The local Nusselt number and the local Sherwood number are computed and analyzed numerically. PMID:26102200

  11. Chemical burn or reaction

    MedlinePLUS

    ... different products that contain toxic chemicals such as ammonia and bleach. The mixture can give off hazardous ... chemicals immediately after use. Use paints, petroleum products, ammonia, bleach, and other products that give off fumes ...

  12. Speeding chemical reactions by focusing

    E-print Network

    A. M. Lacasta; L. Ramirez-Piscina; J. M. Sancho; K. Lindenberg

    2012-12-13

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  13. Geometric description of chemical reactions

    E-print Network

    Hernando Quevedo; Diego Tapias

    2013-01-02

    We use the formalism of Geometrothermodynamics to describe chemical reactions in the context of equilibrium thermodynamics. Any chemical reaction in a closed system is shown to be described by a geodesic in a $2-$dimensional manifold that can be interpreted as the equilibrium space of the reaction. We first show this in the particular cases of a reaction with only two species corresponding to either two ideal gases or two van der Waals gases. We then consider the case of a reaction with an arbitrary number of species. The initial equilibrium state of the geodesic is determined by the initial conditions of the reaction. The final equilibrium state, which follows from a thermodynamic analysis of the reaction, is shown to correspond to a coordinate singularity of the thermodynamic metric which describes the equilibrium manifold.

  14. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  15. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  16. Solar-thermal reaction processing

    DOEpatents

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  17. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  18. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical

  19. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  20. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  1. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  2. Theoretical studies of chemical reaction dynamics

    SciTech Connect

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  3. Homeostasis in Chemical Reaction Pathways

    E-print Network

    V. A. Malyshev; A. D. Manita; A. A. Zamyatin

    2011-12-25

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  4. Homeostasis in Chemical Reaction Pathways

    E-print Network

    Malyshev, V A; Zamyatin, A A

    2011-01-01

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  5. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  6. The lepidocrocite-maghemite-haematite reaction chain-I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Gendler, T. S.; Shcherbakov, V. P.; Dekkers, M. J.; Gapeev, A. K.; Gribov, S. K.; McClelland, E.

    2005-03-01

    We report on the magnetic properties and the acquisition of a chemical remanent magnetization (CRM) in a field of 100 ?T as a function of temperature and time during the lepidocrocite-maghemite-haematite reaction chain. The development of CRM was monitored at a series of 13 temperatures ranging from 175 to 550 C data acquisition was done at the specific formation temperatures for durations of up to 500 hr. Up to acquisition temperatures of 200 C it takes a considerable time (up to 7 hr) before the CRM is measurable. This time decreases with increasing temperature, reflecting the activation energy of the reaction to form the first maghemite. During the lepidocrocite conversion, formation of two types of maghemite is suggested by two peaks in the CRM versus time curves. Magnetic properties were analysed after various stages in the reaction. They indicate a mixture of superparamagnetic and single-domain maghemite. The first reaction product (obtained after annealing at 200 C) is a fine-grained yet crystalline maghemite (labelled type A). Before massive maghemite formation occurs, the coercive and remanent coercive forces go through a minimum at intermediate temperatures of 250-300 C (annealing for 2.5 hr). This minimum lowers to 200-250 C with increasing annealing time (500 hr). This is probably the result of two processes acting simultaneously-formation of superparamagnetic maghemite particles of a second less crystalline maghemite type (labelled type B) and removal of stacking faults in type A maghemite. The second process is suggested by analogy to the behaviour of natural magnetite/maghemite systems on annealing. Removal of stacking faults is reported to result in a magnetic softening of the grain assemblage. Annealing at 300-350 C removes most of the lepidocrocite and the second maghemite type, type B, becomes prominent. Haematite formation sets in at slightly higher temperatures, yet the type B maghemite is in part thermally stable up to 600 C enabling Thellier-Thellier experiments. This stability is also inferred from Arrhenius fitting that shows a comparatively high activation energy for the maghemite to haematite reaction. In Thellier-Thellier experiments the CRM showed a markedly downward convex Arai-Nagata plot while a second thermoremanent magnetization (TRM) showed perfect linear behaviour as expected. This feature may be used to recognize CRM in natural rocks.

  7. THEORY OF CHEMICAL REACTION ANTONIO LAGANA

    E-print Network

    Auzinsh, Marcis

    THEORY OF CHEMICAL REACTION DYNAMICS Edited by: ANTONIO LAGANA Department of Chemistry University Theoretical treatment of the dynamics of chemical reactions has undergone a spectacular development during the NATO Advanced Research Work- shop on the Theory of the Dynamics of Chemical Reactions in Balatonf

  8. Learning to Predict Chemical Reactions

    PubMed Central

    Kayala, Matthew A.; Azencott, Chlo-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits section. PMID:21819139

  9. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1) Adsorption of dilute PFOS(aq) and PFOA(aq) to acoustically cavitating bubble interfaces was greater than equilibrium expectations due to high-velocity bubble radial oscillations; 2) Relative ozone oxidation kinetics of aqueous iodide, sulfite, and thiosulfate were at variance with previously reported bulk aqueous kinetics; 3) Organics that directly chelated with the anode surface were oxidized by direct electron transfer, resulting in immediate carbon dioxide production but slower overall oxidation kinetics. Chemical reactions at aqueous interfaces can be the rate-limiting step of a reaction network and often display novel mechanisms and kinetics as compared to homogeneous chemistry.

  10. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  11. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  12. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  13. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different

  14. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  15. 2005 Chemical Reactions at Surfaces

    SciTech Connect

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  16. Thermodynamic performance for a chemical reactions model

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Snchez-Salas, N.; Chimal-Egua, J. C.

    2015-01-01

    This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies.

  17. The 1st Law of Thermodynamics in Chemical Reactions

    E-print Network

    I. A. Stepanov

    2000-11-10

    In the previous papers of the author it has been shown that the 1st law of thermodynamics in chemical reactions is the following one: dU=dQ+PdV+SUM In the present paper this theory was developed and it has been shown that the 1st law of thermodynamics in chemical reactions has the following form: dC=-dU+dA and -dU=dQ where dC is the change in the chemical energy, dU is the change in the internal energy. Internal energy is the energy of thermal motion of molecules.

  18. Chemical reactions in low-g

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.

    1978-01-01

    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  19. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  20. Solar thermal harvesting for enhanced photocatalytic reactions.

    PubMed

    Hashemi, Seyyed Mohammad Hosseini; Choi, Jae-Woo; Psaltis, Demetri

    2014-03-21

    The Shockley-Queisser limit predicts a maximum efficiency of 30% for single junction photovoltaic (PV) cells. The rest of the solar energy is lost as heat and due to phenomena such as reflection and transmission through the PV and charge carrier recombination. In the case of photocatalysis, this maximum value is smaller since the charge carriers should be transferred to acceptor molecules rather than conductive electrodes. With this perspective, we realize that at least 70% of the solar energy is available to be converted into heat. This is specifically useful for photocatalysis, since heat can provide more kinetic energy to the reactants and increase the number of energetic collisions leading to the breakage of chemical bonds. Even in natural photosynthesis, at the most 6% of the solar spectrum is used to produce sugar and the rest of the absorbed photons are converted into heat in a process called transpiration. The role of this heating component is often overlooked; in this paper, we demonstrate a coupled system of solar thermal and photocatalytic decontamination of water by titania, the most widely used photocatalyst for various photo reactions. The enhancement of this photothermal process over solely photocatalytic water decontamination is demonstrated to be 82% at 1 sun. Our findings suggest that the combination of solar thermal energy capture with photocatalysis is a suitable strategy to utilize more of the solar spectrum and improve the overall performance. PMID:24480846

  1. M. Bahrami ENSC 461 (S 11) Chemical Reactions 1 Chemical Reactions

    E-print Network

    Bahrami, Majid

    and formation of chemical bonds between the atoms. Thermodynamic analysis of reactive mixtures is primarilyM. Bahrami ENSC 461 (S 11) Chemical Reactions 1 Chemical Reactions When analyzing reacting systems, we need to consider the chemical internal energy, which is the energy associated with the destruction

  2. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R. (Kennewick, WA); Dodson, Michael G. (Richland, WA)

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  3. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  4. Thermal, chemical, and mechanical cookoff modeling

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  5. Solar thermal aerosol flow reaction process

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  6. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  7. The Smallest Multistationary Mass-Preserving Chemical Reaction Network

    E-print Network

    Rowell, Eric C.

    The Smallest Multistationary Mass-Preserving Chemical Reaction Network Anne Shiu Dept bistability are of interest to biologists and mathematicians alike. Chemical reaction network the- ory can state exists. Keywords: Chemical reaction network, bistability. 1 Introduction Bistable biochemical

  8. Probability 1 computation with chemical reaction networks Rachel Cummings

    E-print Network

    Probability 1 computation with chemical reaction networks Rachel Cummings David Doty David Soloveichik Abstract The computational power of stochastic chemical reaction networks (CRNs) varies signifi computation. How can chemical reactions process information, make decisions, and solve problems? A natural

  9. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A

  10. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  11. Controlling chemical reactions of a single particle

    E-print Network

    Lothar Ratschbacher; Christoph Zipkes; Carlo Sias; Michael Khl

    2012-09-26

    The control of chemical reactions is a recurring theme in physics and chemistry. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, physical methods such as laser or magnetic field control have emerged to provide completely new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing. For these undertakings, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer gas cooling of single ion clocks.

  12. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  13. Heterogeneous chemical reactions: Preparation of monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.

    1977-01-01

    It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.

  14. Entropy generation in a chemical reaction

    E-print Network

    E. N. Miranda

    2012-08-10

    Entropy generation in a chemical reaction is analyzed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first order reaction is used to show that entropy production is always positive. A second approach assumes that the reaction is near equilibrium to prove that the entropy generated is always greater than zero, without any reference to the kinetics of the reaction. Finally, it is shown that entropy generation is related to fluctuations in the number of particles at equilibrium, i.e. it is associated to a microscopic process.

  15. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  16. Chemical Changes in Lipids Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Nawar, Wassef W.

    1984-01-01

    Describes heat effects on lipids, indicating that the chemical and physical changes that occur depend on the lipid's composition and conditions of treatment. Thermolytic and oxidation reactions, thermal/oxidative interaction of lipids with other food components and the chemistry of frying are considered. (JN)

  17. Stochastic thermodynamics of chemical reaction networks

    E-print Network

    Tim Schmiedl; Udo Seifert

    2006-12-19

    For chemical reaction networks described by a master equation, we define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations like a generalized Jarzynski relation and a generalized Clausius inequality are discussed. We illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.

  18. Chemical preconcentrator with integral thermal flow sensor

    DOEpatents

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  19. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  20. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  1. Decrease of Entropy and Chemical Reactions

    E-print Network

    Yi-Fang Chang

    2008-07-01

    The chemical reactions are very complex, and include oscillation, condensation, catalyst and self-organization, etc. In these case changes of entropy may increase or decrease. The second law of thermodynamics is based on an isolated system and statistical independence. If fluctuations magnified due to internal interactions exist in the system, entropy will decrease possibly. In chemical reactions there are various internal interactions, so that some ordering processes with decrease of entropy are possible on an isolated system. For example, a simplifying Fokker-Planck equation is solved, and the hysteresis as limit cycle is discussed.

  2. Acceleration of chemical reaction by chaotic mixing

    E-print Network

    M. Chertkov; V. Lebedev

    2003-01-27

    Theory of fast binary chemical reaction, ${\\cal A}+{\\cal B}\\to{\\cal C}$, in a statistically stationary chaotic flow at large Schmidt number ${Sc}$ and large Damk\\"ohler number ${Da}$ is developed. For stoichiometric condition we identify subsequent stages of the chemical reaction. The first stage corresponds to the exponential decay, $\\propto\\exp(-\\lambda t)$ (where $\\lambda$ is the Lyapunov exponent of the flow), of the chemicals in the bulk part of the flow. The second and the third stages are related to the chemicals remaining in the boundary region. During the second stage the amounts of ${\\cal A}$ and ${\\cal B}$ decay $\\propto 1/\\sqrt{t}$, whereas the decay law during the third stage is exponential, $\\propto\\exp(-\\gamma t)$, where $\\gamma\\sim\\lambda/\\sqrt{Sc}$.

  3. Tuning Bimolecular Chemical Reactions by Electric Fields

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Krems, Roman V.

    2015-07-01

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF +H ?Li +HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150 kV /cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering.

  4. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    A color-change reaction is described in which two colorless solutions are combined to afford a black mixture. Two more colorless solutions are combined to afford a white mixture. The black and white mixtures are then combined to afford a clear, colorless solution. The reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, vinegar, ammonia, bleach, Epsom salt, and laundry starch.

  5. An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

    E-print Network

    Troina, Angelo

    An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions Roberto Barbuti, Andrea introduce a probabilistic algorithm for the simulation of chemical reactions, which can be used evolution of chemical reactive systems described by Gillespie. Moreover, we use our algorithm

  6. Cores from the Salton Sea scientific drilling program: Metamorphic reaction progress as a function of chemical and thermal environment: Final report

    SciTech Connect

    Papike, J.J.; Shearer, C.K.

    1987-05-13

    The study investigated the downhole progressive metamorphism at the Salton Sea site by monitoring and evaluating discontinuous and continuous metamorphic reactions. The main emphasis was placed on: (1) the addition of petrographic, geochemical, and mineralogical data to the Salton Sea data base; (2) determination of downhole reactions; (3) evaluation of the progress of individual continuous reaction (epsilon) and the overall reaction progress (epsilon/sub T/) during the transition from one metamorphic zone to the next; and (4) evaluation and correlation of mineral reactions and reaction progress with mineral phase and organic material geothermometry. To these ends, thirty-three samples from the Salton Sea core were analyzed for: (1) quantitative modal mineralogy using the x-ray diffraction reference intensity method (RIM), (2) 30 major and trace elements in the whole rock and (3) mineral chemistry and structural state. In addition, a subset of these samples were used for temperature determinations using vitrinite reflectivity.

  7. Classification of Chemical Reactions: Stages of Expertise

    ERIC Educational Resources Information Center

    Stains, Marilyne; Talanquer, Vicente

    2008-01-01

    In this study we explore the strategies that undergraduate and graduate chemistry students use when engaged in classification tasks involving symbolic and microscopic (particulate) representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention when classifying

  8. Deterministic Function Computation with Chemical Reaction Networks

    E-print Network

    Doty, David

    controllers for biochemical systems, "wet robots", smart drugs, etc. Need to understand theoretical principles1 Deterministic Function Computation with Chemical Reaction Networks David Doty (joint work with Ho for existing systems) #12;3 Cells are smart: controlled by signaling and regulatory networks source: David

  9. Computer Animation of a Chemical Reaction.

    ERIC Educational Resources Information Center

    Eaker, Charles W.; Jacobs, Edwin L.

    1982-01-01

    Taking a prototype chemical reaction (molecular hydrogen plus hydrogen atom), constructs an accurate semiempirical, generalized diatomics-in-molecules potential energy surface, calculates motions of these atoms on this surface using REACTS trajectory program, and presents results as moving picture on a microcomputer graphics system. Provides

  10. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  11. Effect of metamorphic reactions on thermal evolution in collisional orogens

    E-print Network

    that devolatili- zation of metacarbonate rocks can also exert controls on metamorphic temperatures. Enthalpies, peak metamorphic conditions and crustal geotherms. Decarbonation reactions in metacarbonate rocks may: Barrovian; enthalpy; metacarbonate rocks; metamorphic reactions; thermal budget. INTRODUCTION The thermal

  12. Coupled thermal/chemical/mechanical modeling of insensitive explosives in thermal environments

    SciTech Connect

    Nichols, A.L. III

    1996-05-01

    The ability to predict the response of a weapon system that contains insensitive explosives to elevated temperatures is important in understanding its safety characteristics. To model such a system at elevated temperatures in a finite element computer code requires a variety of capabilities. These modeling capabilities include thermal diffusion and convection to transport the heat to the explosives in the weapon system, temperature based chemical reaction modeling of the decomposition of the explosive materials, and mechanical modeling of both the metal casing and the unreacted and decomposed explosive. The Chemical TOPAZ code has been developed to model coupled thermal/chemical problems where we do not need to model the mass motion. We have also developed the LYNX2D code, based on PALM2D and Chemical TOPAZ, which is an implicit, two-dimensional coupled thermal/chemical/mechanical finite element model computer code. Some representative examples are shown. {copyright} {ital 1996 American Institute of Physics.}

  13. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    E-print Network

    Anderson, James B.

    Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions Shannon D and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal

  14. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  15. Sensitivity of chemical reaction networks: a structural approach.

    E-print Network

    Fiedler, Bernold

    Sensitivity of chemical reaction networks: a structural approach. 2. Regular monomolecular systems sensitivity of steady states to perturbations of reaction rates in chemical reaction networks. Strong structure of the metabolic or chemical reaction network, only, we call our approach a structural sensitivity

  16. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W. (Kennewick, WA); Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA); Consani, Keith A. (Richland, WA)

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  17. Chemical computing with reaction-diffusion processes.

    PubMed

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. PMID:26078345

  18. Concordant Chemical Reaction Networks and the Species-Reaction Graph

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate networks Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368

  19. Finding Chemical Reaction Paths with a Multilevel Preconditioning Seyit Kale,,

    E-print Network

    Dinner, Aaron

    Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol Seyit Kale,, Olaseni for chemical reactions can be computationally costly owing to the level of quantum- chemical theory needed for the reaction path iteratively. These methods have yielded important insights in quantum chemical contexts9

  20. Steady detonation problem for slow and fast chemical reactions

    E-print Network

    Ceragioli, Francesca

    Steady detonation problem for slow and fast chemical reactions F. Conforto1 , M. Groppi2 , R chemical reaction are discussed. The former consists in a system of balance laws for the case of a chemical is a system of conser- vation laws for the case of short chemical relaxation time (fast reaction). After

  1. Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  2. Semiclassical approaches to controlling chemical reaction dynamics

    E-print Network

    Hiroshi Fujisaki; Yoshiaki Teranishi; Alexey Kondorskiy; Hiroki Nakamura

    2003-02-04

    We propose to use semiclassical methods to treat laser control problems of chemical reaction dynamics. Our basic strategy is as follows: Laser-driven chemical reactions are considered to consist of two processes. One is the wavepacket propagation on an adiabatic potential energy surface (PES), and the other is the electronic transition between PES's. Because the latter process is mathematically equivalent to nonadiabatic transitions between Floquet (dressed) states, we can control such a process using the semiclassical Zhu-Nakamura theory for nonadiabatic transitions. For the former process, we incorporate semiclassical propagation methods such as the Herman-Kluk propagator into optimization procedures like optimal control theory. We show some numerical examples for our strategies. We also develop a semiclassical direct algorithm to treat the adiabatic propagation and nonadiabatic transitions as a whole.

  3. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  4. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jlicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  5. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolants pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  6. Stochastic flux analysis of chemical reaction networks

    PubMed Central

    2013-01-01

    Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153

  7. A Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions Coupled in Time

    E-print Network

    Ismagilov, Rustem F.

    reaction network that performs a function: it uses autocatalysis in a time- controlled microfluidic device the reactions in space and time.1-5 An example of a chemical network is an array of 16 coupled reactionsA Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions

  8. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores

    E-print Network

    Lisal, Martin

    Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit of confinement on chemical reaction equilibrium in nanoporous materials. We use the reaction ensemble Monte Carlo condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium

  9. Computed Potential Energy Surfaces for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A manuscript describing the calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction, which were described in the last progress report, has been accepted for publication in J. Chem. Phys., and a copy of the manuscript is included in the appendix. The production of (1)CH2 in this reaction is important in hydrocarbon combustion since (1)CH2 is highly reactive and would be expected to insert into N2, possibly leading to a new source for prompt NO(x) (vide infra). During the last six months new calculations have been carried out for the NH2 + NO system, which is important in the thermal de-NO(x) process.

  10. P MATRIX PROPERTIES, INJECTIVITY AND STABILITY IN CHEMICAL REACTION SYSTEMS

    E-print Network

    Banaji,. Murad

    P MATRIX PROPERTIES, INJECTIVITY AND STABILITY IN CHEMICAL REACTION SYSTEMS MURAD BANAJI§, PETE. Chemical reactions; P matrices; Injectivity; Stability; Mass action AMS subject classifications. 80A30; 15A48; 34D30 1. Introduction. In this paper we will study chemical reaction systems, and systems derived

  11. CANARDS, BLACK SWANS AND CONTROL OF CHEMICAL REACTIONS Vladimir Sobolev

    E-print Network

    CANARDS, BLACK SWANS AND CONTROL OF CHEMICAL REACTIONS By Vladimir Sobolev and Elena Shchepakina: 612-626-7370 URL: http://www.ima.umn.edu #12;Canards, Black Swans and Control of Chemical Reactions V. The sense of criticality here is as follows. The critical regime corresponds to chemical reaction separating

  12. GRAPH THEORETIC APPROACHES TO INJECTIVITY IN CHEMICAL REACTION SYSTEMS

    E-print Network

    Craciun, Gheorghe

    GRAPH THEORETIC APPROACHES TO INJECTIVITY IN CHEMICAL REACTION SYSTEMS MURAD BANAJI AND GHEORGHE algebraic and graph theoretic conditions for injectivity of chemical reaction systems. After developing the possibility of multiple equilibria in the systems in question. Key words. Chemical reactions; Injectivity; SR

  13. Gamma and the chemical reaction model: fteen years after?

    E-print Network

    Fradet, Pascal

    Gamma and the chemical reaction model: fteen years after? Jean-Pierre Ban^atre1, Pascal Fradet2 the formalism is to describe computation as a form of chemical reaction on a collection of individual pieces on unexpected applications of the chemical reaction model, showing that this paradigm has been a source

  14. Analyzing Multistationarity in Chemical Reaction Networks using the Determinant

    E-print Network

    Rowell, Eric C.

    Analyzing Multistationarity in Chemical Reaction Networks using the Determinant Optimization Method which chemical reaction networks exhibit multistationarity, i.e. if they have the potential to exhibit a certain infinite family of chemical reaction networks Km,n to be of particular in- terest among networks

  15. Chemical Reaction Dynamics accompanying Electron-Transfer Osamu SUGINO

    E-print Network

    Katsumoto, Shingo

    Chemical Reaction Dynamics accompanying Electron-Transfer Osamu SUGINO Institute for Solid State Physics, the University of Tokyo 5-1-5 Kashiwanoha, Chiba 277-8581 1. Introduction Many chemical reactions and the dynamics goes nonadiabatically. The former appears typically in chemical reactions that accompany electron

  16. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations

  17. Sensitivity of chemical reaction networks: a structural approach.

    E-print Network

    Fiedler, Bernold

    Sensitivity of chemical reaction networks: a structural approach. 2. Regular monomolecular systems to perturbations of reaction rates in chemical reaction networks. Strong motivation for our study comes from recent For the deceptively innocent case of monomolecular reactions, only, we embark on a systematic mathematical analysis

  18. Chemical Reaction due to Stronger Ramachandran Interaction

    E-print Network

    Andrew Das Arulsamy

    2013-12-26

    The origin of a chemical reaction between two reactant atoms is associated to the activation energy, with the assumption that, high-energy collisions between these atoms, are the ones that overcome the activation energy. Here, we (i) show that a stronger attractive van der Waals (vdW) and electron-ion Coulomb interactions between two polarized atoms are responsible to initiate a chemical reaction, either before or after the collision. We derive this stronger vdW attraction formula exactly using the quasi one-dimensional Drude model within the ionization energy theory and the energy-level spacing renormalization group method. Along the way, we (ii) expose the precise physical mechanism responsible for the existence of a stronger vdW interaction for both long and short distances, and also show how to technically avoid the electron-electron Coulomb repulsion between polarized electrons from these two reactant atoms. Finally, we properly and correctly associate the existence of this stronger attraction to Ramachandran's 'normal limits' (distance shorter than what is allowed by the standard vdW bond) between chemically nonbonded atoms.

  19. Plasmon-assisted chemical reactions revealed by high-vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Shuaicheng; Sheng, Shaoxiang; Zhang, Zhenglong; Xu, Hongxing; Zheng, Hairong

    2014-08-01

    Tip-enhanced Raman spectroscopy (TERS) is the technique that combines the nanoscale spatial resolution of a scanning probe microscope and the highly sensitive Raman spectroscopy enhanced by the surface plasmons. It is suitable for chemical analysis at nanometer scale. Recently, TERS exhibited powerful potential in analyzing the chemical reactions at nanoscale. The high sensitivity and spatial resolution of TERS enable us to learn the reaction processes more clearly. More importantly, the chemical reaction in TERS is assisted by surface plasmons, which provides us an optical method to manipulate the chemical reactions at nanoscale. Here using our home-built high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup, we successfully observed the plasmon-assisted molecule dimerization and dissociation reactions. In HV-TERS system, under laser illumination, 4-nitrobenzenethiol (4NBT) molecules can be dimerized to p,p'-dimercaptoazobenzene (DMAB), and dissociation reaction occurs for malachite green (MG) molecules. Using our HV-TERS setup, the dynamic processes of the reactions are clearly revealed. The chemical reactions can be manipulated by controlling the plasmon intensity through changing the power of the incident laser, the tunneling current and the bias voltage. We also investigated the role of plasmonic thermal effect in the reactions by measuring both the Stokes and anti- Stokes Raman peaks. Our findings extend the applications of TERS, which can help to study the chemical reactions and understand the dynamic processes at single molecular level, and even design molecules by the plasmon-assisted chemical reactions.

  20. DSMC Predictions of Chemical Reaction Rates between Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Bond, R. B.; Torczynski, J. R.

    2009-11-01

    A recently proposed chemical reaction model based solely on molecular-level information is applied to calculate equilibrium and non-equilibrium chemical reaction rates for atmospheric reactions in hypersonic flows. The DSMC model is capable of reproducing measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular-level properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. The DSMC-predicted chemical reaction rates are compared to theoretically calculated and experimentally measured reaction rates for non-equilibrium conditions. The observed agreement provides strong evidence that molecular-level modeling of chemical reactions provides an accurate method for predicting equilibrium and non-equilibrium chemical reaction rates. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. On the geometrical thermodynamics of chemical reactions

    E-print Network

    Manuel Santoro; Albert S. Benight

    2005-07-08

    The formal structure of geometrical thermodynamics is reviewed with particular emphasis on the geometry of equilibria submanifolds. On these submanifolds thermodynamic metrics are defined as the Hessian of thermodynamic potentials. Links between geometry and thermodynamics are explored for single and multiple component, closed and open systems. For multi-component closed and open systems the Gibbs free energy is employed as the thermodynamic potential to investigate the connection between geometry and thermodynamics. The Gibbs free energy is chosen for the analysis of multicomponent systems and, in particular, chemical reactions.

  2. Stochastic Chemical Reactions in Micro-domains

    E-print Network

    D. Holcman; Z. Schuss

    2004-12-25

    Traditional chemical kinetics may be inappropriate to describe chemical reactions in micro-domains involving only a small number of substrate and reactant molecules. Starting with the stochastic dynamics of the molecules, we derive a master-diffusion equation for the joint probability density of a mobile reactant and the number of bound substrate in a confined domain. We use the equation to calculate the fluctuations in the number of bound substrate molecules as a function of initial reactant distribution. A second model is presented based on a Markov description of the binding and unbinding and on the mean first passage time of a molecule to a small portion of the boundary. These models can be used for the description of noise due to gating of ionic channels by random binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photo-receptors, hair cells in the cochlea.

  3. Dept. of Chemical Engineering Thermal and Flow Engineering Lab course 424508 E Ron Zevenhoven

    E-print Network

    Zevenhoven, Ron

    Dept. of Chemical Engineering Thermal and Flow Engineering Lab course 424508 E Ron Zevenhoven exam a chemical reaction proceeds that releases heat as a function of temperature. The plate has thickness L (m) and temperatures T1 (K) and T2 (K) on either sides, as shown in the Figure. The heat generated by the chemical

  4. Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed

    2015-11-01

    This paper deals with the boundary layer flow of nanofluid over power-law stretched surface. Analysis has been carried out in the presence of applied magnetic field and chemical reaction. Heat and mass transfer characteristics are studied using heat and mass convective conditions. The governing partial differential equations are transferred to the nonlinear ordinary differential equations. Convergent series solutions are obtained for fluid velocity, temperature and concentrations fields. Influences of pertinent parameters including Hartman number, thermal and concentration Biot numbers and chemical reaction parameters are discussed on the velocity, temperature and concentration profiles. Graphical result are presented and discussed. Computations for local Nusselt and Sherwood numbers are carried out. It is observed that the heat transfer rate is enhanced by increasing power-law index, thermal Biot number and chemical reaction parameter while mass transfer rate increases for power-law index and chemical reaction parameter.

  5. Flossie Brown CHEMICAL REACTIONS FOR A HYDROGEN ECONOMY.

    E-print Network

    Lasenby, Joan

    Flossie Brown CHEMICAL REACTIONS FOR A HYDROGEN ECONOMY. At present, hydrogen production a chemical reaction must be found that allows hydrogen production to take place quickly, cheaply and safely reaction, the reasons for their shortcomings can be identified. In each process, a reactant, condition

  6. Uncertain dynamics in nonlinear chemical reactions Jichang Wang,a

    E-print Network

    Showalter, Kenneth

    Uncertain dynamics in nonlinear chemical reactions Jichang Wang,a Hongyan Sun,b Stephen K. Scottc a dissociation reaction of the autocatalytic species, B ! X + Y, followed by a recombination reaction, X + Y ! C evolution of the system. 1. Introduction The study of nonlinear chemical kinetics has flourished in the past

  7. Chemical attenuation reactions of selenium; Final report

    SciTech Connect

    Zachara, J.M.; Rai, D.; Moore, D.A.; Turner, G.D.; Felmy, A.R.

    1994-02-01

    This report summarizes research on the geochemical behavior of Se present in utility coal-combustion wastes. Laboratory experiments quantified select geochemical reactions that control the concentrations of selenite (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}) in soil solutions and groundwater and determined the magnitude and mechanisms of chemical attenuation of these species in soils and subsurface materials. Thermodynamic data, equilibrium constants, and modeling procedures were developed that to utilities to make improved predictions of the mobility of Se species from ponded and dry landfill sites. An adsorption-constant database for selenite and selenate on common soil minerals was developed. The database, which can be used to estimate the extent of Se attenuation by adsorption in utility soils, was used to determine the specific mineral phases control the adsorption of selenite (Fe oxides) and selenate (Al oxides). Solubility studies were performed with two Se solid phases that may form in the environment [BaSeO{sub 4}(c) and Fe{sub 2}(SeO{sub 3}){sub 3}{lg_bullet}6H{sub 2}0(c)] to establish upper limits on Se concentrations. New thermodynamic data were developed to allow prediction of aqueous Se concentrations where these phases may exist. Eleven soil and subsurface materials, collected nationally and representative of properties frequently encountered at waste sites, were used in experiments involving adsorption of selenite and selenate to assess their potential for Se chemical attenuation and to determine chemical and mineralogic factors that control Se adsorption. Selenite was far more strongly adsorbed by the geologic materials than the selenate. The adsorption of both Se species depended on the type of natural materials and showed positive correlation with Fe and Al oxides associated with particle surfaces. Procedures were developed to predict Se adsorption from comprehensive chemical and mineralogic characterization data.

  8. PROOF COPY 705507JCP Stochastic chemical reactions in microdomains

    E-print Network

    Holcman, David

    PROOF COPY 705507JCP PROOF COPY 705507JCP Stochastic chemical reactions in microdomains D. Holcman; accepted 24 November 2004 Traditional chemical kinetics may be inappropriate to describe chemical reactions dynamics of the molecules, we derive a master-diffusion equation for the joint probability density

  9. Reasoning and Representation: the Sketching of Organic Chemical Reaction Mechanisms

    E-print Network

    Marchese, Francis

    is standard chemical iconography of atoms (vertices) and bonds (edges) in which each two-dimensional drawingReasoning and Representation: the Sketching of Organic Chemical Reaction Mechanisms Position paper of sketching chemical reaction mechanisms in order to reason-out the structural transformations that convert

  10. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  11. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  12. CONTINUOUS TIME MARKOV CHAIN MODELS FOR CHEMICAL REACTION NETWORKS

    E-print Network

    Anderson, David F.

    Chapter 1 CONTINUOUS TIME MARKOV CHAIN MODELS FOR CHEMICAL REACTION NETWORKS David F. Anderson of identifying the different time scales and deriving the reduced models. Keywords: Reaction network, Markov for the reaction is that the probability of the reaction occurring in a small time inter- val (t, t + t] should

  13. Continuous time Markov chain models for chemical reaction networks

    E-print Network

    Kurtz, Tom

    Continuous time Markov chain models for chemical reaction networks David F. Anderson Departments for the model for the reaction is that the probability of the reaction occurring in a small time interval (t and to the length of the time interval. In other words, since for the reaction to occur a molecule

  14. Spectroscopy and reactions of molecules important in chemical evolution

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1974-01-01

    The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.

  15. Tradeoffs and the evolution of thermal reaction norms

    E-print Network

    Angilletta, Michael

    Tradeoffs and the evolution of thermal reaction norms Michael J. Angilletta Jr1 , Robbie S. Wilson2 in the develop- ment of theories describing the evolution of reaction norms. Different classes of tradeoffs of these tradeoffs. Conse- quently, these theories cannot account for some of the variation in reaction norms

  16. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  17. Prediction and Prevention of Chemical Reaction Hazards: Learning by Simulation.

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Cutlip, Michael B.

    2001-01-01

    Points out that chemical hazards are the major cause of accidents in chemical industry and describes a safety teaching approach using a simulation. Explains a problem statement on exothermic liquid-phase reactions. (YDS)

  18. Thermal and chemical convection in planetary mantles

    NASA Technical Reports Server (NTRS)

    Dupeyrat, L.; Sotin, C.; Parmentier, E. M.

    1995-01-01

    Melting of the upper mantle and extraction of melt result in the formation of a less dense depleted mantle. This paper describes series of two-dimensional models that investigate the effects of chemical buoyancy induced by these density variations. A tracer particles method has been set up to follow as closely as possible the chemical state of the mantle and to model the chemical buoyant force at each grid point. Each series of models provides the evolution with time of magma production, crustal thickness, surface heat flux, and thermal and chemical state of the mantle. First, models that do not take into account the displacement of plates at the surface of Earth demonstrate that chemical buoyancy has an important effect on the geometry of convection. Then models include horizontal motion of plates 5000 km wide. Recycling of crust is taken into account. For a sufficiently high plate velocity which depends on the thermal Rayleigh number, the cell's size is strongly coupled with the plate's size. Plate motion forces chemically buoyant material to sink into the mantle. Then the positive chemical buoyancy yields upwelling as depleted mantle reaches the interface between the upper and the lower mantle. This process is very efficient in mixing the depleted and undepleted mantle at the scale of the grid spacing since these zones of upwelling disrupt the large convective flow. At low spreading rates, zones of upwelling develop quickly, melting occurs, and the model predicts intraplate volcanism by melting of subducted crust. At fast spreading rates, depleted mantle also favors the formation of these zones of upwelling, but they are not strong enough to yield partial melting. Their rapid displacement toward the ridge contributes to faster large-scale homogenization.

  19. Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments

    SciTech Connect

    ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

    2000-11-27

    The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw-dominated failure mode experienced in the tests. High-pressure burning rates are needed for more detailed post-ignition studies. Sub-models for chemistry, mechanical response and burn dynamics need to be validated against data from less complex experiments. The sub-models can then be used in integrated analysis for comparison with experimental data taken during integrated tests.

  20. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  1. Solar-Thermal Fluid-Wall Reaction Processing

    DOEpatents

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  2. Solar-thermal fluid-wall reaction processing

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  3. Chemical kinetics computer program for static and flow reactions

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    General chemical kinetics computer program for complex gas mixtures has been developed. Program can be used for any homogeneous reaction in either one dimensional flow or static system. It is flexible, accurate, and easy to use. It can be used for any chemical system for which species thermodynamic data and reaction rate constant data are known.

  4. On the rate of relativistic surface chemical reactions.

    PubMed

    Veitsman, E V

    2004-07-15

    On the basis of special relativity and the classical theory of chemical reaction rates it is shown how the surface chemical reaction rates vary as v --> c, where v is the velocity of the object under study and c is the velocity of light. PMID:15178286

  5. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes

    PubMed Central

    Kabbani, Mohamad A.; Tiwary, Chandra Sekhar; Autreto, Pedro A.S.; Brunetto, Gustavo; Som, Anirban; Krishnadas, K.R.; Ozden, Sehmus; Hackenberg, Ken P.; Gong, Yongi; Galvao, Douglas S.; Vajtai, Robert; Kabbani, Ahmad T.; Pradeep, Thalappil; Ajayan, Pulickel M.

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations. PMID:26073564

  6. Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes.

    PubMed

    Kabbani, Mohamad A; Tiwary, Chandra Sekhar; Autreto, Pedro A S; Brunetto, Gustavo; Som, Anirban; Krishnadas, K R; Ozden, Sehmus; Hackenberg, Ken P; Gong, Yongi; Galvao, Douglas S; Vajtai, Robert; Kabbani, Ahmad T; Pradeep, Thalappil; Ajayan, Pulickel M

    2015-01-01

    Carbon nanotubes can be chemically modified by attaching various functionalities to their surfaces, although harsh chemical treatments can lead to their break-up into graphene nanostructures. On the other hand, direct coupling between functionalities bound on individual nanotubes could lead to, as yet unexplored, spontaneous chemical reactions. Here we report an ambient mechano-chemical reaction between two varieties of nanotubes, carrying predominantly carboxyl and hydroxyl functionalities, respectively, facilitated by simple mechanical grinding of the reactants. The purely solid-state reaction between the chemically differentiated nanotube species produces condensation products and unzipping of nanotubes due to local energy release, as confirmed by spectroscopic measurements, thermal analysis and molecular dynamic simulations. PMID:26073564

  7. Chemical Changes in Proteins Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal

  8. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  9. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  10. Semiclassical methods in chemical reaction dynamics

    SciTech Connect

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  11. The Quantum Instanton (QI) Model for Chemical Reaction Rates: The "Simplest" QI with One Dividing Surface

    E-print Network

    Miller, William H.

    The Quantum Instanton (QI) Model for Chemical Reaction Rates: The "Simplest" QI with One Dividing: December 10, 2003 A new version of the quantum instanton (QI) approach to thermal rate constants) is presented, namely, the simplest QI (SQI) approximation with one dividing surface (DS), referred to here

  12. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    PubMed

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water. PMID:25562934

  13. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  14. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  15. Chemical reactions between muonium and porphyrins

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Ng, B. W.; Walker, D. C.

    1980-11-01

    The rate constants for reaction of muonium atoms with hemin and the protoporphyrin are found to be 2.7 10 9 and 6 10 8 M -1 s -1, respectively. The reaction mechanisms are mainly through the addition to the conjugated double bond for the protoporphyrin and by reductions or partial spin conversion processes for the hemin solutions. The point of reaction is suggested to be the peripheral site of the porphyrin molecules.

  16. Chemical Demonstrations with Consumer Chemicals: The Black and White Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes a dramatic chemical demonstration in which chemicals that are black and white combine to produce a colorless liquid. Reactants include tincture of iodine, bleach, white vinegar, Epsom salt, vitamin C tablets, and liquid laundry starch. (DDR)

  17. Modeling chemical reactions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2015-11-01

    Under the assumption of local thermal equilibrium, a numerical algorithm is proposed to find the equation of state for laser-induced plasmas (LIPs) in which chemical reactions are permitted in addition to ionization processes. The Coulomb interaction in plasma is accounted for by the Debye-Hckel method. The algorithm is used to calculate the equation of state for LIPs containing carbon, silicon, nitrogen, and argon. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules {N}_2, {C}_2, {Si}_2, {CN}, {SiN}, {SiC} and their ions. The algorithm is incorporated into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas. The dynamics of LIP plumes obtained by the ablation of SiC, solid silicon, or solid carbon in an ambient gas containing {N}_2 and Ar is simulated to study formation of molecules and molecular ions.

  18. Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores

    E-print Network

    Lisal, Martin

    and cylindrical nanopores Alexandr Malijevsk1,2,a and Martin Lsal2,3 1 Department of Chemical Engineering a theoretical study of the effects of confinement on chemical reaction equilibrium in slit and cylindrical the nitric oxide dimerization reaction, 2NO NO 2, in carbonlike slit and cylindrical nanopores in equilibrium

  19. Multidimensional thermal-chemical cookoff modeling

    SciTech Connect

    Baer, M.R.; Gross, R.J.; Gartling, D.K.; Hobbs, M.L.

    1994-08-01

    Multidimensional thermal/chemical modeling is an essential step in the development of a predictive capability for cookoff of energetic materials in systems subjected to abnormal thermal environments. COYOTE II is a state-of-the-art two- and three-dimensional finite element code for the solution of heat conduction problems including surface-to-surface thermal radiation heat transfer and decomposition chemistry. Multistep finite rate chemistry is incorporated into COYOTE II using an operator-splitting methodology; rate equations are solved element-by-element with a modified matrix-free stiff solver, CHEMEQ. COYOTE II is purposely designed with a user-oriented input structure compatible with the database, the pre-processing mesh generation, and the post-processing tools for data visualization shared with other engineering analysis codes available at Sandia National Laboratories. As demonstrated in a companion paper, decomposition during cookoff in a confined or semi-confined system leads to significant mechanical behavior. Although mechanical effect are not presently considered in COYOTE II, the formalism for including mechanics in multidimensions is under development.

  20. Non-equilibrium effects in high temperature chemical reactions

    NASA Technical Reports Server (NTRS)

    Johnson, Richard E.

    1987-01-01

    Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.

  1. Morphological changes of amphiphilic molecular assemblies induced by chemical reaction

    E-print Network

    Koh M. Nakagawa; Hiroshi Noguchi

    2014-11-21

    Shape transformations of amphiphilic molecular assemblies induced by chemical reaction are studied using coarse-grained molecular simulations. A binding reaction between hydrophilic and hydrophobic molecules is considered. It is found that the reaction induces transformation of an oil droplet to a tubular vesicle via bicelles and vesicles with discoidal arms. The discoidal arms close into vesicles, which are subsequently fused into the tubular vesicle. Under the chemical reaction, the bicelle-to-vesicle transition occurs at smaller sizes than in the absence of the hydrophobic molecules. It is revealed that the enhancement of this transition is due to embedded hydrophobic particles that reduce the membrane bending rigidity.

  2. 4.0 Application of Chemical Reaction Models Computerized chemical reaction models based on thermodynamic principles may be used to calculate

    E-print Network

    4.0 Application of Chemical Reaction Models Computerized chemical reaction models based. The capabilities of a chemical reaction model depend on the models incorporated into its computer code is an equilibrium chemical reaction model. It was developed with EPA funding by originally combining

  3. Energy analysis of thermal, chemical, and metallurgical processes

    SciTech Connect

    Szargut, J.; Morris, D.R.; Steward, F.R.

    1988-01-01

    This book consists of the following chapters: The exergy concept and exergy losses; Calculation of exergy; Physical and chemical exergy of typical substances; Exergy analysis of typical thermal and chemical processes; Cumulative exergy consumption and cumulative degree of perfection; Reduction of external exergy losses; Exergy analysis of major thermal and chemical processes; Thermoeconomic applications of exergy; and Ecological applications of exergy.

  4. Power law behavior in chemical reactions.

    PubMed

    Claycomb, J R; Nawarathna, D; Vajrala, V; Miller, J H

    2004-12-22

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied. PMID:15606263

  5. Developing Secondary Students' Conceptions of Chemical Reactions: The Introduction of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Van Driel, Jan H.; De Vos, Wobbe; Verloop, Nico; Dekkers, Hetty

    1998-01-01

    Describes an empirical study concerning the introduction of the concept of chemical equilibrium in chemistry classrooms in a way which challenges students' initial conceptions of chemical reactions. Contains 23 references. (DDR)

  6. FACILITATED CHEMICAL SYNTHESIS UNDER ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    The chemical research in the late 1990's witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into the atmo...

  7. The How and Why of Chemical Reactions

    ERIC Educational Resources Information Center

    Schubert, Leo

    1970-01-01

    Presents a discussion of some of the fundamental concepts in thermodynamics and quantum mechanics including entropy, enthalpy, free energy, the partition function, chemical kinetics, transition state theory, the making and breaking of chemical bonds, electronegativity, ion sizes, intermolecular energies and of their role in explaining the nature

  8. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  9. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  10. Thermal reaction of nickel and Si0.75Ge0.25 alloy K. L. Peya)

    E-print Network

    Thermal reaction of nickel and Si0.75Ge0.25 alloy K. L. Peya) Department of Electrical and Computer; accepted 22 July 2002 The interfacial reactions and chemical phase formation between nickel and ultrahigh900 C for forming low resistive and uniform silicide films for future application in SiGe based metaloxide

  11. Bifurcations of dividing surfaces in chemical reactions

    NASA Astrophysics Data System (ADS)

    Iarrea, Manuel; Palacin, Jess F.; Pascual, Ana Isabel; Salas, J. Pablo

    2011-07-01

    We study the dynamical behavior of the unstable periodic orbit (NHIM) associated to the non-return transition state (TS) of the H2 + H collinear exchange reaction and their effects on the reaction probability. By means of the normal form of the Hamiltonian in the vicinity of the phase space saddle point, we obtain explicit expressions of the dynamical structures that rule the reaction. Taking advantage of the straightforward identification of the TS in normal form coordinates, we calculate the reaction probability as a function of the system energy in a more efficient way than the standard Monte Carlo method. The reaction probability values computed by both methods are not in agreement for high energies. We study by numerical continuation the bifurcations experienced by the NHIM as the energy increases. We find that the occurrence of new periodic orbits emanated from these bifurcations prevents the existence of a unique non-return TS, so that for high energies, the transition state theory cannot be longer applied to calculate the reaction probability.

  12. Log-domain circuit models of chemical reactions

    E-print Network

    Mandal, Soumyajit

    We exploit the detailed similarities between electronics and chemistry to develop efficient, scalable bipolar or subthreshold log-domain circuits that are dynamically equivalent to networks of chemical reactions. Our ...

  13. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. CHEMICAL REACTIONS SIMULATED BY GROUND-WATER-QUALITY MODELS.

    USGS Publications Warehouse

    Grove, David B.; Stollenwerk, Kenneth G.

    1987-01-01

    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  15. Chemical pathways in ultracold reactions of SrF molecules

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund R.; Bohn, John L.

    2011-03-01

    We present a theoretical investigation of the chemical reaction SrF + SrF ? products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF ? Sr2 + F2 is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF ? SrF2 + Sr, and even then only singlet states of the SrF2 trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule handing off a fluorine atom to the other molecule.

  16. APRIORI BOUNDS FOR REACTION-DIFFUSION SYSTEMS ARISING IN CHEMICAL JEFF S. MCGOUGH AND KYLE RILEY

    E-print Network

    McGough, Jeff S.

    APRIORI BOUNDS FOR REACTION-DIFFUSION SYSTEMS ARISING IN CHEMICAL KINETICS JEFF S. MCGOUGH AND KYLE RILEY Abstract. The authors investigate reaction diffusion equations which arise in chemical kinetics diffusion equations, gradient bounds, chemical kinetics, autocatalytic reactions AMS subject classifications

  17. Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination

    E-print Network

    Anderson, James B.

    Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination Shannon Carlo simulations of a chemical reaction system with bimolecular and termolecular dissociation8 to be well suited for treating chemical reaction systems with nonequilibrium distributions, coupled gas

  18. Analyzing Multistationarity in Chemical Reaction Networks using the Determinant Optimization Method

    E-print Network

    Rowell, Eric C.

    Analyzing Multistationarity in Chemical Reaction Networks using the Determinant Optimization Method Multistationary chemical reaction networks are of interest to scientists and mathematicians alike. While some, multistationary rates and steady states. Keywords: Mass-action kinetics, chemical reaction networks

  19. Determining Interconnections in Chemical Reaction Networks Antonis Papachristodoulou and Ben Recht

    E-print Network

    Recht, Ben

    Determining Interconnections in Chemical Reaction Networks Antonis Papachristodoulou and Ben Recht Abstract-- We present a methodology for robust determina- tion of chemical reaction network' dynamics. We illustrate our methodology on a hypothetical chemical reaction network under various

  20. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.

    1992-01-01

    The work on the NH + NO system which was described in the last progress report was written up and a draft of the manuscript is included in the appendix. The appendix also contains a draft of a manuscript on an Ar + H + H surface. New work which was completed in the last six months includes the following: (1) calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction; (2) calculations for the NH2 + O reaction; (3) calculations for the CH3 + O2 reaction; and (4) calculations for CH3O and the two decomposition channels--CH2OH and H + H2CO. Detailed descriptions of this work will be given in manuscripts; however, brief descriptions of the CH3 + OH and CH3 + O2 projects are given.

  1. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to

  2. Photo, thermal and chemical degradation of riboflavin

    PubMed Central

    Kazi, Sadia Hafeez; Ahmed, Sofia; Anwar, Zubair; Ahmad, Iqbal

    2014-01-01

    Summary Riboflavin (RF), also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented. PMID:25246959

  3. Probing Isotope Effects in Chemical Reactions Using Single Ions

    NASA Astrophysics Data System (ADS)

    Staanum, Peter F.; Hjbjerre, Klaus; Wester, Roland; Drewsen, Michael

    2008-06-01

    Isotope effects in reactions between Mg+ in the 3p P3/22 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only 250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From an additional 65 reactions with H2 and D2 we find that the overall fragmentation probability of the intermediate MgH2+, MgHD+, or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  4. Thermal oxidative degradation reactions of perfluoroalklethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Harris, D. H.; Smythe, M. E.; Kratzer, R. H.

    1983-01-01

    The objective of this contract was to investigate the mechanisms operative in thermal and thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids has not been established. It was determined that this behavior was not associated with hydrogen end-groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres was found to be dependent on the surface/volume ratio. Once a limiting ratio was reached, a steady rate appeared to be attained. Based on elemental analysis and oxygen consumption data, -CF2OCF2CF2O-, not -CF2CF2O-, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys was found to be much more drastic in the case of Fomblin Z fluids than that observed for the hexalfuoropropane oxide derived materials. The effectiveness of antioxidation/anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys was very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appeared to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes; this took place to a much lesser degree with M-50.

  5. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    ERIC Educational Resources Information Center

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the

  6. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  7. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu . PMID:24160861

  8. Basics of Chemical Kinetics -1 Rate of reaction = rate of disappearance of A =

    E-print Network

    Albert, Réka

    Basics of Chemical Kinetics - 1 Rate of reaction = rate of disappearance of A = # of moles of Chemical Kinetics - 3 Elementary Reaction: Reaction order of each species is identical reactions: Forward Reaction Backward Reaction CBA + 2 CBA + 2 CBA + 2 CBA + 2 #12;Basics of Chemical

  9. Effect of Finite-rate Chemical Reactions on Turbulence in Hypersonic Turbulent Boundary Layers

    E-print Network

    Martn, Pino

    Effect of Finite-rate Chemical Reactions on Turbulence in Hypersonic Turbulent Boundary Layers Lian reaction. The influence of chemical reactions on temperature fluctuation variance, Reynolds stresses that the recombination reaction enhances turbulence, while the dissociation reaction damps turbulence. Chemical reactions

  10. Chemical kinetic reaction mechanism for the combustion of propane

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1984-01-01

    A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.

  11. Understanding chemical reactions within a generalized Hamilton-Jacobi framework

    E-print Network

    A. S. Sanz; X. Gimenez; J. M. Bofill; S. Miret-Artes

    2009-08-13

    Reaction paths and classical and quantum trajectories are studied within a generalized Hamilton-Jacobi framework, which allows to put on equal footing topology and dynamics in chemical reactivity problems. In doing so, we show how high-dimensional problems could be dealt with by means of Caratheodory plots or how trajectory-based quantum-classical analyses reveal unexpected discrepancies. As a working model, we consider the reaction dynamics associated with a Mueller-Brown potential energy surface, where we focus on the relationship between reaction paths and trajectories as well as on reaction probability calculations from classical and quantum trajectories.

  12. [Research on chemical reactions during ginseng processing].

    PubMed

    Zhang, Miao; Qin, Kun-Ming; Li, Wei-Dong; Yin, Fang-Zhou; Cai, Hao; Cai, Bao-Chang

    2014-10-01

    As a kind of commonly used traditional Chinese medicine, ginseng has a high reputation at home and abroad. The research of ginseng has been expanded to medicine, pharmacy, biology, food science and other fields, with great achievements in recent years. Ginseng contains ginsenosides, volatile oil, carbohydrates, amino acids, polypeptides, inorganic elements and othser chemical constituents. Each component has extensive physiological activity, and is the base of ginseng's effect. After processing, the complicated changes are taken place in the constituents of ginseng, and some new substances produced. This paper aims to review the studies on chemical constituents and their mechanisms during ginseng processing, and the ideas, methods and the direction of the development of traditional Chinese medicine processing in the future. PMID:25612424

  13. Quantifying chemical reactions by using mixing analysis.

    PubMed

    Jurado, Anna; Vzquez-Su, Enric; Carrera, Jess; Tubau, Isabel; Pujades, Estanislao

    2015-01-01

    This work is motivated by a sound understanding of the chemical processes that affect the organic pollutants in an urban aquifer. We propose an approach to quantify such processes using mixing calculations. The methodology consists of the following steps: (1) identification of the recharge sources (end-members) and selection of the species (conservative and non-conservative) to be used, (2) identification of the chemical processes and (3) evaluation of mixing ratios including the chemical processes. This methodology has been applied in the Bess River Delta (NE Barcelona, Spain), where the River Bess is the main aquifer recharge source. A total number of 51 groundwater samples were collected from July 2007 to May 2010 during four field campaigns. Three river end-members were necessary to explain the temporal variability of the River Bess: one river end-member is from the wet periods (W1) and two are from dry periods (D1 and D2). This methodology has proved to be useful not only to compute the mixing ratios but also to quantify processes such as calcite and magnesite dissolution, aerobic respiration and denitrification undergone at each observation point. PMID:25280248

  14. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  15. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, Donald J. (Los Alamos, NM)

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  16. Laser cutting with chemical reaction assist

    SciTech Connect

    Gettemy, D.J.

    1991-04-08

    This invention is comprised of a method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  17. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface reactions on the substrate surface, conductive, convective, inductive and radiative heat transfer, species transport and thereto-elastic stress distributions. Gas phase and surface reactions are studied thermodynamically and kinetically. Based on experimental results, detailed reaction mechanisms are proposed and the deposition rates are predicted. The deposition model proposed could be used for other experiments with similar operating conditions. Four different growth systems are presented in this thesis to discuss comprehensive transport phenomena in crystal growth from vapor. The first is the polysilicon bulk growth by modified Siemens technique in which a silicon tube is used as the starting material. The research effort has been focused on system design, geometric and operating parameters optimization, and heterogeneous and homogeneous silane pyrolysis analysis. The second is the GaN thin film growth by iodine vapor phase epitaxy technique. Heat and mass transport is studied analytically and numerically. Gas phase and surface reactions are analyzed thermodynamically and kinetically. Quasi-equilibrium and kinetic deposition models are developed to predict the growth rate. The third one is the AlN thin film growth by halide vapor phase epitaxy technique. The effects of gas phase and surface reactions on the crystal growth rate and deposition uniformity are studied. The last one is the AlN sublimation growth system. The research effort has been focused on the effect of thermal environment evolution on the crystal growth process. The thermoelastic stress formed in the as-grown AlN crystal is also calculated.

  18. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  19. THERMAL AND CHEMICAL EVOLUTION OF COLLAPSING FILAMENTS

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-05-10

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z Almost-Equal-To 0.1 Z{sub Sun} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form a dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10{sup -3} Z{sub Sun} filaments, the collapse proceeds much more slowly. This is mostly due to the lower initial temperatures, which lead to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbursting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occurs. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  20. Coupled thermal-hydraulic-chemical modelling of enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Bchler, D.; Kohl, T.

    2005-05-01

    The study investigates thermal-, hydraulic- and chemically coupled processes of enhanced geothermal systems (EGS). On the basis of the two existing numerical codes, the finite element program FRACTURE and the geochemical module of CHEMTOUGH, FRACHEM was developed, to simulate coupled thermal-hydraulic-chemical (THC) processes, accounting for the Soultz specific conditions such as the high salinity of the reservoir fluid and the high temperatures. The finite element part calculates the thermal and hydraulic field and the geochemical module the chemical processes. According to the characteristics of the Soultz EGS reservoir, the geochemical module was modified. (i) The Debye-Huckel approach was replaced by the Pitzer formalism. (ii) New kinetic laws for calcite, dolomite, quartz and pyrite were implemented. (iii) The porosity-permeability relation was replaced by a new relation for fractured rock. (iv) The possibility of re-injecting the produced fluid was implemented. The sequential non-iterative approach (SNIA) was used to couple transport and reactions. Sensitivity analyses proved the proper functionality of FRACHEM, but highlighted the sensitivity of the SNIA approach to time steps. To quantify the FRACHEM results, a comparative simulation with the code SHEMAT was conducted, which validated FRACHEM. Coupled THC processes in a fractured zone in the Soultz reservoir at 3500 m (T0= 165 C), which occur as a result of the injection of fluid (Tinj= 65 C) at one end of the zone and the production at the other end, were modelled for 2 yr. Calcite is the most reactive mineral and therefore the porosity and permeability evolution results from the calcite reactions: near the injection point, porosity and permeability increase and near the production well they decrease. After 2 yr, the system seems to be very close to steady-state. Therefore, mineral dissolution and precipitation during the circulation of the fluid in the reservoir do not represent a limiting factor on the EGS reservoir (at 3500 m depth) performance at the Soultz site. Finally, the numerical transmissivity was compared to the transmissivity of the 1997 circulation test. The fact that the transmissivity decreases during the circulation test, when thermomechanical effects are factored out, points to geochemical processes in the reservoir such as the precipitation of calcite. These findings highlight the importance of THC coupled EGS reservoir models. The integration of geochemical considerations is therefore indispensable for integrated simulations of EGS systems and predictions of its performance.

  1. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137

  2. Communications: Ab initio dynamics of rare thermally activated reactions

    NASA Astrophysics Data System (ADS)

    a Beccara, S.; Garberoglio, G.; Faccioli, P.; Pederiva, F.

    2010-03-01

    We introduce a framework to investigate ab initio the dynamics of rare thermally activated reactions, which cannot be studied using the existing techniques. The electronic degrees of freedom are described at the quantum-mechanical level in the Born-Oppenheimer approximation, while the nuclear degrees of freedom are coupled to a thermal bath, through a classical Langevin equation. This method is based on the path integral representation for the stochastic dynamics and yields the time evolution of both nuclear and electronic degrees of freedom, along the most probable reaction pathways, without spending computational time to explore metastable states. As a first illustrative application, we characterize the dominant pathway in the cyclobutene?butadiene reaction, using the semiempirical Parametrized Model 3 (PM3) approach.

  3. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (ESTSC)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommoreaccelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.less

  4. Earth's interdependent thermal, structural, and chemical evolution

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.; Criss, R. E.

    2012-12-01

    The popular view that 30-55% of Earth's global power is primordial, with deep layers emanating significant power, rests on misunderstandings and models that omit magmatism and outgassing. These processes link Earth's chemical and thermal evolution, while creating layers, mainly because magmas transport latent heat and radioactive isotopes rapidly upwards. We link chemistry to heat flow, measured and theoretical, to understand the interior layering and workings. Quasi-steady state conditions describe most of Earth's history: (1) Accretion was cold and was not a source of deep heat. (2) Friction during core formation cannot have greatly heated the interior (thermodynamics plus buoyancy). (3) Conduction is the governing microscopic mechanism in the deep Earth. (4) Using well-constrained values of thermal conductivity (k), we find that homogeneously distributed radionuclides provide extremely high internal temperature (T) under radial symmetry. Moreover, for any given global power, sequestering heat producing elements into the upper mantle reduces Earth's central temperature by a factor of 10 from a homogeneous distribution. Hence, (5) core formation was a major cooling event. From modern determinations of k(T) we provide a reference conductive geotherm. Present-day global power of 30 TW from heat flux measurements and sequestering of heat producing elements in the upper mantle and transition zone, produces nearly isothermal T = 5300 K below 670 km, which equals experimentally determined freezing of pure Fe0 at the inner core boundary. Core freezing buffers the interior temperatures, while the Sun constrains the surface temperature, providing steady state conditions: Earth's deep interior is isothermal due to these constraints, low flux and high k. Our geotherms point to a stagnant lower mantle and convection above 670 km. Rotational flattening cracks the brittle lithosphere, providing paths for buoyant magmas to ascend. Release of latent heat augments the conductive gradient, making these oriented cracks equivalent to vertical hot plates, thereby imparting a large lateral component and preferred direction to upper mantle circulation. The latent heat release limits lower mantle flux to 1 TW and its temperature change to 500 K High lower mantle temperatures require a bulk composition more like the Moon than chondrites, which is consistent with proposals that calcuim-aluminum inclusions constitute a presolar reservoir near the nebula center. From oxygen isotopes and chemical composition of meteorites, we provide a new class of meteoritic model, based on mixing and not volatile element depletion, for the types and amounts of Earth's heat producing elements. Our model permits crust preservation at ~ 4 Ga, whereas hypothetical primordial heat would delay this significantly. The lower mantle is chemically distinct from the peridotite (chondritic) upper mantle, being comprised of refractory phases with much higher Ca, Al and Ti contents than previously considered. Huge changes in chemistry and temperature are required across the transition zone and profoundly affect the workings of the Earth. The lower mantle formed during gravitational sorting very early on, as did the core, in the drive towards energy minimization.

  5. International chemical identifier for reactions (RInChI)

    PubMed Central

    2013-01-01

    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases. PMID:24152584

  6. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  7. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-print Network

    Zevenhoven, Ron

    Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven Course) that was last updated in 1996. Thus, although the underlying Laws of Physics that (chemical) engineers have "VTG" this course is also the last course in process engineering for quite a few of A's chemical

  8. Chemical vapor detection with a multispectral thermal imager

    E-print Network

    Chang, Chein-I

    Chemical vapor detection with a multispectral thermal imager Mark 1. G. Aithouse, MEMBER SPIE U.S. Army Chemical Research Development and Engineering Center SMCCR-DDT Aberdeen Proving Ground, Maryland algorithm 7. Conclusions 8. Acknowledgments 9. References 1. INTRODUCTION Detection of chemical vapor clouds

  9. 5.0 Application of Chemical Reaction Codes 5.1. Background

    E-print Network

    5.1 5.0 Application of Chemical Reaction Codes 5.1. Background Determination of species analyses of water compositions and a competent chemical reaction model. Computerized chemical reaction that may leach from waste, an understanding of the capabilities and application of chemical reaction models

  10. Using hyperheuristics to improve the determination of the kinetic constants of a chemical reaction in

    E-print Network

    Gimnez, Domingo

    Using hyperheuristics to improve the determination of the kinetic constants of a chemical reaction constants of a chemical reaction Kinetic parameters of a chemical reaction are determined with metaheuristic of a chemical reaction that occurs in heterogeneous phase involves the simulation of the processes occurring

  11. Speed faults in computation by chemical reaction networks Ho-Lin Chen

    E-print Network

    Speed faults in computation by chemical reaction networks Ho-Lin Chen Rachel Cummings David Doty David Soloveichik Abstract Chemical reaction networks (CRNs) formally model chemistry in a well in natural sciences is that of chemical reaction networks (CRNs), i.e., (finite) sets of chemical reactions

  12. Theoretical studies of the dynamics of chemical reactions

    SciTech Connect

    Wagner, A.F.

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  13. Simulation of chemical reaction dynamics on an NMR quantum computer

    E-print Network

    Dawei Lu; Nanyang Xu; Ruixue Xu; Hongwei Chen; Jiangbin Gong; Xinhua Peng; Jiangfeng Du

    2011-05-21

    Quantum simulation can beat current classical computers with minimally a few tens of qubits and will likely become the first practical use of a quantum computer. One promising application of quantum simulation is to attack challenging quantum chemistry problems. Here we report an experimental demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is already able to simulate the dynamics of a prototype chemical reaction. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.

  14. Freezing of Spinodal Decompostion by Irreversible Chemical Growth Reaction

    E-print Network

    Michael Schulz; Benjamin Paul

    1998-08-10

    We present a description of the freezing of spinodal decomposition in systems, which contain simultaneous irreversible chemical reactions, in the hydrodynamic limit approximation. From own results we conclude, that the chemical reaction leads to an onset of spinodal decomposition also in the case of an initial system which is completely miscible and can lead to an extreme retardation of the dynamics of the spinodal decomposition, with the probability of a general freezing of this process, which can be experimetally observed in simultaneous IPN formation.

  15. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  16. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  17. Photon Antibunching in a Cyclic Chemical Reaction Scheme.

    PubMed

    Vester, Michael; Staut, Tobias; Enderlein, Jrg; Jung, Gregor

    2015-04-01

    The direct observation of chemical reactions on the single-molecule level is an ultimate goal in single-molecule chemistry, which also includes kinetic analyses. To analyze the lifetime of reaction intermediates, very sophisticated excitation schemes are often required. Here we focus on the kinetic analysis of the ground-state proton transfer within the photocycle of a photoacid. In detail, we demonstrate the determination of the bimolecular rate constant of this process with nanosecond resolution. The procedure relies on the exploration of a purely quantum-optical effect, namely, photon antibunching, and thus on evaluating interphoton arrival times to extract the reaction rate constant. PMID:26262964

  18. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044 (2009). 4) V.I.Burkov, L.A.Goncharova, G.A.Gusev, H.Hashimoto, F.Kaneko, T.Kaneko, K. Kobayashi, H.Mita, E.V.Moiseenko, T.Ogawa, N.G.Poluhina, T.Saito, S.Shima, J.Takahashi, M.Tanaka, Y.Tao, V.A.Tsarev, J.Xu, H.Yabuta, K.Yagi-Watanabe, H.Yan, G.Zhang, Origins Life Evol. Biosphere, 39 295 (2009).

  19. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  20. Amplitude Equations and Chemical Reaction-Diffusion Systems

    E-print Network

    M. Ipsen; F. Hynne; P. G. Soerensen

    1997-11-03

    The paper discusses the use of amplitude equations to describe the spatio-temporal dynamics of a chemical reaction-diffusion system based on an Oregonator model of the Belousov-Zhabotinsky reaction. Sufficiently close to a supercritical Hopf bifurcation the reaction-diffusion equation can be approximated by a complex Ginzburg-Landau equation with parameters determined by the original equation at the point of operation considered. We illustrate the validity of this reduction by comparing numerical spiral wave solutions to the Oregonator reaction-diffusion equation with the corresponding solutions to the complex Ginzburg-Landau equation at finite distances from the bifurcation point. We also compare the solutions at a bifurcation point where the systems develop spatio-temporal chaos. We show that the complex Ginzburg-Landau equation represents the dynamical behavior of the reaction-diffusion equation remarkably well sufficiently far from the bifurcation point for experimental applications to be feasible.

  1. Chemical pathways in ultracold reactions of SrF molecules

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2011-03-15

    We present a theoretical investigation of the chemical reaction SrF + SrF {yields} products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF {yields} Sr{sub 2} + F{sub 2} is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF {yields} SrF{sub 2} + Sr, and even then only singlet states of the SrF{sub 2} trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule ''handing off'' a fluorine atom to the other molecule.

  2. Program Helps To Determine Chemical-Reaction Mechanisms

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  3. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid-phase chemical reaction by varying the development time of the catalyst. Investigation results of the catalyst such as surface area, pore radius, lattice size, and photographs of scanning electron microscope (SEM) were also given. In the simulation of energy transport efficiency of this system, by simulating the energy transfer system using two-step liquid phase methanol decomposition and synthetic reactions, and comparing with the technology so far, it can be expected that an innovative energy transfer system is possible to realize.

  4. Mapping students' ideas about chemical reactions at different educational levels

    NASA Astrophysics Data System (ADS)

    Yan, Fan

    Understanding chemical reactions is crucial in learning chemistry at all educational levels. Nevertheless, research in science education has revealed that many students struggle to understand chemical processes. Improving teaching and learning about chemical reactions demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the discipline. Thus, we have carried out a qualitative study using semi-structured interviews as the main data collection tool to explore students reasoning about reaction mechanism and causality. The participants of this study included students at different levels of training in chemistry: general chemistry students (n=22), organic chemistry students (n=16), first year graduate students (n=13) and Ph.D. candidates (n=14). We identified major conceptual modes along critical dimensions of analysis, and illustrated common ways of reasoning using typical cases. Main findings indicate that although significant progress is observed in student reasoning in some areas, major conceptual difficulties seem to persist even at the more advanced educational levels. In addition, our findings suggest that students struggle to integrate important concepts when thinking about mechanism and causality in chemical reactions. The results of our study are relevant to chemistry educators interested in learning progressions, assessment, and conceptual development.

  5. On some dynamical diagrams of chemical reaction engineering.

    PubMed

    Aris, Rutherford

    1999-03-01

    A brief historical survey of some of the influential types of diagrams that have been used in chemical reaction engineering is given. These include the phase plane, the simple autocatalytic diagram, and the stroboscopic phase plane. (c) 1999 American Institute of Physics. PMID:12779797

  6. 2011 Chemical Reactions at Surfaces Gordon Research Conference

    SciTech Connect

    Peter Stair

    2011-02-11

    The Gordon Research Conference on Chemical Reactions at Surfaces is dedicated to promoting and advancing the fundamental science of interfacial chemistry and physics by providing surface scientists with the foremost venue for presentation and discussion of research occurring at the frontiers of their fields.

  7. Molecular Codes in Biological and Chemical Reaction Networks

    PubMed Central

    Grlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannons theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process meaningful information from those that do not. Here, we present a formal method to assess a systems semantic capacity by analyzing a reaction networks capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems posses different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756

  8. Molecular codes in biological and chemical reaction networks.

    PubMed

    Grlich, Dennis; Dittrich, Peter

    2013-01-01

    Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life. PMID:23372756

  9. Dissipation Scale Fluctuations and Chemical Reaction Rates in Turbulent Flows

    E-print Network

    Victor Yakhot

    2007-06-29

    Small separation between reactants, not exceeding $10^{-8}-10^{-7}cm$, is the necessary condition for various chemical reactions. It is shown that random advection and stretching by turbulence leads to formation of scalar-enriched sheets of {\\it strongly fluctuating thickness} $\\eta_{c}$. The molecular-level mixing is achieved by diffusion across these sheets (interfaces) separating the reactants. Since diffusion time scale is $\\tau_{d}\\propto \\eta_{c}^{2}$, the knowledge of probability density $Q(\\eta_{c},Re)$ is crucial for evaluation of chemical reaction rates. In this paper we derive the probability density $Q(\\eta_{c},Re,Sc)$ and predict a transition in the reaction rate behavior from ${\\cal R}\\propto \\sqrt{Re}$ ($Re\\leq 10^{4}$) to the high-Re asymptotics ${\\cal R}\\propto Re^{0}$. The theory leads to an approximate universality of transitional Reynolds number $Re_{tr}\\approx 10^{4}$. It is also shown that if chemical reaction involves short-lived reactants, very strong anomalous fluctuations of the length-scale $\\eta_{c}$ may lead to non-negligibly small reaction rates.

  10. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2006-04-27

    The purpose of this research was the development and application of theoretical/computational methods for accurate predictions of the rates of reactions in many-atom systems. The specific aim was to improve computational methods for studying the chemical dynamics of large, complex systems and to obtain a better understanding of the chemical reactions involving large polyatomic molecules and radicals. The focus was on the development an automatic potential energy surface generation algorithm that takes advantage of high-performance computing environments; e.g., software for rate calculations that direct quantum chemistry codes to produce ab initio predictions of reaction rates and related dynamics quantities. Specifically, we developed interpolative moving least-squares (IMLS) methods for accurately fitting ab initio energies to provide global PESs and for use in direct dynamics simulations.

  11. Multiscale stochastic simulations of chemical reactions with regulated scale separation

    SciTech Connect

    Koumoutsakos, Petros; Feigelman, Justin

    2013-07-01

    We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as ? and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.

  12. The role of chemical reactions in the Chernobyl accident

    SciTech Connect

    Grishanin, E. I.

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharply increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.

  13. Evaluation on thermal explosion induced by slightly exothermic interface reaction.

    PubMed

    Yu, Ma-Hong; Li, Yong-Fu; Sun, Jin-Hua; Hasegawa, Kazutoshi

    2004-09-10

    An asphalt-salt mixture (ASM), which once caused a fire and explosion in a reprocessing plant, was prepared by imitating the real bituminization process of waste on a lab scale to evaluate its actual thermal hazards. Heat flux reaction calorimeters were used to measure the release of heat for the simulated ASM at a constant heating rate and at a constant temperature, respectively. Experimental results show that the reaction in the ASM below about 250 degrees C is a slightly exothermic interface reaction between the asphalt and the salt particles contained in the asphalt, and that the heat release rate increases sharply above about 250 degrees C due to melting of the salt particles. The reaction rates were formulated on the basis of an assumed reaction model, and the kinetic parameters were determined. Using the model with the kinetic parameters, temperature changes with time and drum-radius axes for the ASM-filled drum were numerically simulated assuming a one-dimensional infinite cylinder system, where the drum was being cooled at an ambient temperature of 50 degrees C. The minimum filling temperature, at which the runaway reaction (MFTRR) can occur for the simulated ASM in the drum is about 194 degrees C. Furthermore, a very good linear correlation exists between this MFTRR and the initial radius of salt particles formed in the bituminization product. The critical filling temperature to the runaway reaction is about 162 degrees C for the asphalt-salt mixture, containing zero-size salt particles, filled in the same drum at an ambient temperature of 50 degrees C. Thus, the runaway reaction will never occur in the drum filled with the asphalt-salt mixture under the conditions of the filling temperature below 162 degrees C and a constant ambient temperature of 50 degrees C. As a consequence, the ASM explosion occurred in the reprocessing plant likely was due to a slightly exothermically reaction and self heating. PMID:15363527

  14. Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors

    SciTech Connect

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.

    1997-12-01

    Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.

  15. Students' Understandings of Chemical Bonds and the Energetics of Chemical Reactions.

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    1998-01-01

    Investigates Grade 12 students' understandings of the nature of chemical bonds and the energetics elicited across five familiar chemical reactions following a course of instruction. Discusses the many ways in which students can misconstruct concepts and principles. Contains 63 references. (DDR)

  16. Development of a chemical oxygen - iodine laser with production of atomic iodine in a chemical reaction

    SciTech Connect

    Censky, M; Spalek, O; Jirasek, V; Kodymova, J; Jakubec, I

    2009-11-30

    The alternative method of atomic iodine generation for a chemical oxygen - iodine laser (COIL) in chemical reactions with gaseous reactants is investigated experimentally. The influence of the configuration of iodine atom injection into the laser cavity on the efficiency of the atomic iodine generation and small-signal gain is studied. (lasers)

  17. Moment equations for chemical reactions on interstellar dust grains

    E-print Network

    Azi Lipshtat; Ofer Biham

    2002-12-09

    While most chemical reactions in the interstellar medium take place in the gas phase, those occurring on the surfaces of dust grains play an essential role. Chemical models based on rate equations including both gas phase and grain surface reactions have been used in order to simulate the formation of chemical complexity in interstellar clouds. For reactions in the gas phase and on large grains, rate equations, which are highly efficient to simulate, are an ideal tool. However, for small grains under low flux, the typical number of atoms or molecules of certain reactive species on a grain may go down to order one or less. In this case the discrete nature of the opulations of reactive species as well as the fluctuations become dominant, thus the mean-field approximation on which the rate equations are based does not apply. Recently, a master equation approach, that provides a good description of chemical reactions on interstellar dust grains, was proposed. Here we present a related approach based on moment equations that can be obtained from the master equation. These equations describe the time evolution of the moments of the distribution of the population of the various chemical species on the grain. An advantage of this approach is the fact that the production rates of molecular species are expressed directly in terms of these moments. Here we use the moment equations to calculate the rate of molecular hydrogen formation on small grains. It is shown that the moment equation approach is efficient in this case in which only a single reactive specie is involved. The set of equations for the case of two species is presented and the difficulties in implementing this approach for complex reaction networks involving multiple species are discussed.

  18. Beating polymer gels coupled with a nonlinear chemical reaction

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryo; Kokufuta, Etsuo; Yamaguchi, Tomohiko

    1999-06-01

    We report on a beating polymer gel that exhibits periodical volume changes (swelling and deswelling) in a closed solution without external stimuli, like autonomous heartbeat. The mechanical oscillation is driven by the chemical energy of the oscillatory Belousov-Zhabotinsky (BZ) reaction. The gel is a copolymer gel of N-isopropylacrylamide (NIPAAm) in which ruthenium tris(2,2'-bipyridine) [Ru(bpy)3], known as a catalyst of the BZ reaction, is covalently bonded to the polymer chain. The poly[NIPAAm-co-Ru(bpy)3] gel provides an open system where the BZ reaction proceeds, when immersed in an aqueous solution containing the reactants of the BZ reaction (with the exception of a catalyst). The chemical oscillation in the BZ reaction generates the periodical changes of the charge of Ru(bpy)3 in the gel network between reduced [Ru(II)] and oxidized [Ru(III)] states. The gel swells at the oxidized state because the hydrophilicity of the polymer chains increases, while at the reduced state the gel deswells. Thus, the chemical energy is transduced into the mechanical energy to drive the polymer gel oscillation with a period of about 5 min, depending on the composition of the surrounding solution. The oscillation mode of the gel depends on its size scaled by the wavelength of the BZ pattern. Sufficiently small bead-like gels demonstrate isotropic beating. A large rectangular gel shows mechanical oscillation with a peristaltic motion coupled with the propagating chemical waves. The dynamic behavior of the chemical and mechanical oscillations have been analyzed with a model simulation.

  19. Single-molecule chemical reactions on DNA origami

    NASA Astrophysics Data System (ADS)

    Voigt, Niels V.; Trring, Thomas; Rotaru, Alexandru; Jacobsen, Mikkel F.; Ravnsbk, Jens B.; Subramani, Ramesh; Mamdouh, Wael; Kjems, Jrgen; Mokhir, Andriy; Besenbacher, Flemming; Gothelf, Kurt Vesterager

    2010-03-01

    DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally addressable solid supports.

  20. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  1. Relationship between Pressure and Reaction Violence in Thermal Explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Rodriguez, George; Remelius, Dennis; Baca, Eva; Oschwald, David; Suvorova, Natalya

    2015-06-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX9502 thermal explosions, and fiber bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  2. PDF calculation of scalar mixing layer with simple chemical reactions

    NASA Astrophysics Data System (ADS)

    Kanzaki, Takao; Pope, Stephen B.

    1999-11-01

    A joint velocity-composition-turbulent frequency PDF(JPDF) model is used to simulate reactive mixing layer in a grid-generated turbulence with the influence of second-order irreversible chemical reactions. To investigate the effects of molecular mixing, a gas flow and a liquid flow are simulated. For a gas flow, the oxidation reaction (NO+ O3 arrow NO2 +O2 ) between nitricoxide (NO) and ozone (O3 ) is used. For a liquid flow, the saponification reaction(NaOH+HCOOCH3 arrow HCOONa+CH_3OH) between sodiumhydroxide(NaOH) and methylformate(HCOOCH_3) is used. The both cases are moderately fast reactions. Therefore, reactive scalar statistics are affected by turbulent mixing. The results of caliculation are compared with experimental data of Komori et al.(1994) and Bilger et al.(1991)

  3. The concept of chemical looping reactions has been widely applied in chemical industries. Fundamental research on chemical looping reactions has also been applied to energy systems. Fossil fuel chemical looping applications were used with the steam-iron p

    E-print Network

    The concept of chemical looping reactions has been widely applied in chemical industries. Fundamental research on chemical looping reactions has also been applied to energy systems. Fossil fuel chemical looping applications were used with the steam-iron process for coal processing from the 1900s

  4. "Kinetics of Chemical Reactions in Environmental Systems: Research Needs and Challenges"

    E-print Network

    Sparks, Donald L.

    "Kinetics of Chemical Reactions in Environmental Systems: Research Needs and Challenges" Donald(oid)s, nutrients, radionuclides, and organic chemicals have shown that reaction rates are initially rapid followed by a slow approach to a steady state. The rapid reaction has been ascribed to chemical reactions and film

  5. Atoms of multistationarity in chemical reaction networks Badal Joshi and Anne Shiu

    E-print Network

    Rowell, Eric C.

    Atoms of multistationarity in chemical reaction networks Badal Joshi and Anne Shiu 13 July 2012 Abstract Chemical reaction systems are dynamical systems that arise in chemical engineering and systems) multistationary chemical reaction networks, which we propose to call `atoms of multistationarity,' characterize

  6. Chemistry 231 Fall 2013 Chemistry 231, Chemical Kinetics and Molecular Reaction Dynamics

    E-print Network

    Continetti, Robert E.

    Chemistry 231 Fall 2013 Chemistry 231, Chemical Kinetics and Molecular Reaction Dynamics Dept chemical kinetics, the connection between chemical kinetics and molecular reaction dynamics as well as some and Hase, Prentice Hall (1999) 4. Chemical Kinetics, K.J. Laidler, McGraw Hill (1965) 5. Gas Phase Reaction

  7. Thermal/chemical degradation of inorganic membrane materials

    SciTech Connect

    Krishnan, G.N.; Damle, A.S.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1995-12-01

    The objective of this program is to evaluate the long-term thermal and chemical degradation of inorganic membranes that are developed to separate gases produced by coal combustion and coal gasification. Membrane materials tested include alumina, vycor, platinum foil, and palladium foils. The porosity, permeability, and characterization of physical and chemical changes after exposure to hot gas streams is described.

  8. Spatial patterns and double diffusion in chemical reactions

    PubMed Central

    Dewel, G.; Borckmans, P.; Walgraef, D.

    1983-01-01

    Spatial ordering has been observed recently during various photochemical reactions. Convoluted concentration bands first appear near the surface of shallow irradiated solutions. They thereafter extend into the bulk, and finger-like structures spontaneously develop. We discuss here the possible role of double-diffusion effects in the onset of this phenomenon. Indeed, chemical reactions occurring near the surface or evaporation of the solvent, or both, induce in the bulk adverse gradients of a pair of properties (concentrations of solute or concentration and temperature) having different diffusivities. This difference can then destabilize the homogeneous solution and trigger the observed patterns. PMID:16593384

  9. Reaction Kinetics and Catalysis Letters, Vol. 1, No. 1, 113-117/1974/ STOCHASTIC SIMULATION OF CHEMICAL REACTION BY

    E-print Network

    Tóth, János

    Reaction Kinetics and Catalysis Letters, Vol. 1, No. 1, 113-117/1974/ STOCHASTIC SIMULATION OF CHEMICAL REACTION BY DIGITAL COMPUTER, I. THE MODEL T. Sipos, 1 j. T6th, 2 and P. l~rdi 1 1. Danube Oil Received November 9, 1972 A stochastic model of complex chemical reactions is outlined. A discrete

  10. Laser studies of chemical reaction and collision processes

    SciTech Connect

    Flynn, G.

    1993-12-01

    This work has concentrated on several interrelated projects in the area of laser photochemistry and photophysics which impinge on a variety of questions in combustion chemistry and general chemical kinetics. Infrared diode laser probes of the quenching of molecules with {open_quotes}chemically significant{close_quotes} amounts of energy in which the energy transferred to the quencher has, for the first time, been separated into its vibrational, rotational, and translational components. Probes of quantum state distributions and velocity profiles for atomic fragments produced in photodissociation reactions have been explored for iodine chloride.

  11. Avalanche behavior in the dynamics of chemical reactions.

    PubMed

    Claycomb, J R; Bassler, K E; Miller, J H; Nersesyan, M; Luss, D

    2001-10-22

    Sudden bursts of chemical activity, displaying avalanche-like behavior, have been observed in reactions between metals and liquid electrolytes by measuring the time-dependent chemomagnetic fields with a high-T(c) SQUID. The observed intermittent chemomagnetic field pulses exhibit power-law behavior in the distributions of peak sizes, noise spectra, and return-time distributions. Such power-law behavior provides evidence for self-organized criticality occurring in the form of "chemical avalanches" over a wide range of size and time scales. PMID:11690317

  12. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  13. Implementation of a vibrationally linked chemical reaction model for DSMC

    NASA Technical Reports Server (NTRS)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  14. Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization

    NASA Astrophysics Data System (ADS)

    Khavrutskii, Ilja V.; Smith, Jason B.; Wallqvist, Anders

    2013-10-01

    Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM/molecular mechanical (QM/MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP/6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP/6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal/mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM/MM studies of reaction mechanisms.

  15. Controlling ultracold chemical reactions via Rydberg-dressed interactions

    E-print Network

    Jia Wang; Jason N. Byrd; Ion Simbotin; R. Ct

    2014-03-24

    We show that ultracold chemical reactions can be manipulated and controlled by using Rydberg-dressed interactions. Scattering in the ultracold regime is sensitive to long-range interactions, especially when weakly bound (or quasi-bound) states exist near the collision threshold. We investigate how, by Rydberg-dressing a reactant, one enhances its polarizability and modifies the long-range van der Waals collision complex, which can alter chemical reaction rates by shifting the position of near threshold bound states. We carry out a full quantum mechanical scattering calculation for the benchmark system H$_2$+D, and show that resonances can be moved substantially and that rate coefficients at cold and ultracold temperatures can be increased by several orders of magnitude.

  16. Potential for exothermic chemical reactions in waste tanks

    SciTech Connect

    Van Tuyl, H.H.

    1983-02-03

    The potential for exothermic chemical reactions in waste tanks at Hanford is discussed. Organic chemicals have been added to Hanford waste tanks, particularly as ferrocyanides and when processing sludges at B Plant. Recent planned or ongoing activities involving stored wastes have possibly increased the potential for reaction of these wastes with nitrate salts in the waste tanks. Risk evaluations appear to be deficient in assessing the consequences of a deflagration, and in determining the probability of either a deflagration or detonation. The present question is whether current plans and recent safety-related documentation have given proper consideration to the available information about organic compounds in waste tanks. The principal organic additions to Hanford waste tanks are 1200 tonnes of organic carbon'' and 500 tonnes of Ni{sub 2}Fe(CN){sub 6}. 13 refs.

  17. Tuning Ultracold Chemical Reactions via Rydberg-Dressed Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Byrd, Jason N.; Simbotin, Ion; Ct, R.

    2014-07-01

    We show that ultracold chemical reactions with an activation barrier can be tuned using Rydberg-dressed interactions. Scattering in the ultracold regime is sensitive to long-range interactions, especially when weakly bound (or quasibound) states exist near the collision threshold. We investigate how, by Rydberg dressing a reactant, one enhances its polarizability and modifies the long-range van der Waals collision complex, which can alter chemical reaction rates by shifting the position of near-threshold bound states. We carry out a full quantum mechanical scattering calculation for the benchmark system H2+D, and show that resonances can be moved substantially and that rate coefficients at cold and ultracold temperatures can be increased by several orders of magnitude.

  18. Chemical reaction fouling model for single-phase heat transfer

    SciTech Connect

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.

  19. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P. (Bozeman, MT); Herbst, Ronald S. (Idaho Falls, ID)

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  20. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  1. Solution of Chemical Master Equations for Nonlinear Stochastic Reaction Networks

    PubMed Central

    Smadbeck, Patrick; Kaznessis, Yiannis N.

    2014-01-01

    Stochasticity in the dynamics of small reacting systems requires discrete-probabilistic models of reaction kinetics instead of traditional continuous-deterministic ones. The master probability equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks. With the first solution of chemical master equations, a wide range of experimental observations of small-system interactions may be mathematically conceptualized. PMID:25215268

  2. Modeling of Thermal-Hydrological-Chemical Laboratory Experiments

    SciTech Connect

    P. F. Dobson; T. J. Kneafsey; E. L. Sonnenthal; Nicolas Spycher

    2001-05-31

    The emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, will result in enhanced water-rock interaction around the emplacement drifts. Water present in the matrix and fractures of the rock around the drift may vaporize and migrate via fractures to cooler regions where condensation would occur. The condensate would react with the surrounding rock, resulting in mineral dissolution. Mineralized water flowing under gravity back towards the heat zone would boil, depositing the dissolved minerals. Such mineral deposition would reduce porosity and permeability above the repository, thus altering the flow paths of percolating water. The objective of this research is to use coupled thermal-hydrological-chemical (THC) models to simulate previously conducted laboratory experiments involving tuff dissolution and mineral precipitation in a boiling, unsaturated fracture. Numerical simulations of tuff dissolution and fracture plugging were performed using a modified version of the TOUGHREACT code developed at LBNL by T. Xu and K. Pruess. The models consider the transport of heat, water, gas and dissolved constituents, reactions between gas, mineral and aqueous phases, and the coupling of porosity and permeability to mineral dissolution and precipitation. The model dimensions and initial fluid chemistry, rock mineralogy, permeability, and porosity were defined using the experimental conditions. A 1-D plug-flow model was used to simulate dissolution resulting from reaction between deionized water and crushed ash flow tuff. A 2-D model was developed to simulate the flow of mineralized water through a planar fracture within a block of ash flow tuff where boiling conditions led to mineral precipitation. Matrix blocks were assigned zero permeability to confine fluid flow to the fracture, and permeability changes in the fracture were specified using the porosity cubic law relationship.

  3. Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yuemin; Wll, Christof

    2009-06-01

    The most successful method to unravel the microscopic mechanisms governing reactions in heterogeneous catalysis is the "surface science" approach which is based on well-controlled studies on model catalysts (usually single crystal surfaces) under ultrahigh vacuum (UHV) conditions [G. Ertl, Angew. Chem. 47 (2008) 3524]. In this review our recent vibrational spectroscopic studies on selected model reactions at various single-crystalline metal oxide surfaces are summarized. Two vibrational spectroscopic methods, high resolution electron energy loss spectroscopy (HREELS) and Fourier-transform infrared spectroscopy (FTIRS), were applied to characterize the adsorbed species and to elucidate the elementary processes of chemical reactions at oxide surfaces ranging from well-defined single crystals to modified surfaces with deliberately introduced defects. The combination of both methods allows us to extend the vibrational spectroscopic studies from ideal to complex systems.

  4. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect

    Gray, S.K.

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  5. Reaction Kinetics and Catalysis Letters, Vol. 1, No. 2/1974/209-213 STOCHASTIC SIMULATION OF CHEMICAL REACTIONS BY

    E-print Network

    Tóth, János

    Reaction Kinetics and Catalysis Letters, Vol. 1, No. 2/1974/209-213 STOCHASTIC SIMULATION OF CHEMICAL REACTIONS BY DIGITAL COMPUTER, H. APPLICATIONS T. Sipos1, J.TSth 2 and P. ~.rdi1 1. Danube Oil reactions/1/is described. Two applications of the program are given: (i) a reaction taking place

  6. Propagation of Reactions in Thermally-damaged PBX-9501

    SciTech Connect

    Tringe, J W; Glascoe, E A; Kercher, J R; Willey, T M; Springer, H K; Greenwood, D W; Molitoris, J D; Smilowitz, L; Henson, B F; Maienschein, J L

    2010-03-05

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosive and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.

  7. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes. PMID:18718710

  8. Chemical reaction dynamics using the Advanced Light Source

    SciTech Connect

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G. |; Lin, J.; Wodtke, A.M.

    1995-09-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10{sup 16} photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source.

  9. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  10. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  11. Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities

    E-print Network

    Vallino, Joseph J.

    Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities Outline Metabolic Classifications. Winogradsky columns, Microenvironments. Redox Reactions Chemical (Chemotrophs) Inorganic (Chemolithotrophs) Aerobic (majority) Anaerobic (few) Organic

  12. Influence of Chemical Reactions on the Nonlinear Dynamics of Dissipative Flows

    E-print Network

    A. R. Karimov; A. M. Korshunov; V. V. Beklemishev

    2015-04-16

    The nonlinear dynamics of resistive flow with a chemical reaction is studied. Proceeding from the Lagrangian description, the influence of a chemical reaction on the development of fluid singularities is considered.

  13. Automated microreactor system for reaction development and online optimization of chemical processes

    E-print Network

    McMullen, Jonathan Patrick

    2010-01-01

    Developing the optimal conditions for chemical reactions that are common in fine chemical and pharmaceutics is a difficult and expensive task. Because syntheses in these fields have multiple reaction pathways, a significant ...

  14. Chemical enhancement of fingermark in blood on thermal paper.

    PubMed

    Hong, Sungwook; Seo, Jin Yi

    2015-12-01

    Chemical enhancement methods for fingermark in blood deposited on the surface of a thermal paper substrate were examined. The blood-sensitive reagents compared were LCV (leuco crystal violet), Amido black and Hungarian red. Fingermark in blood on the surface of thermal paper can be fixed with 2% 5-sulfosalicylic acid solution. LCV was found as an inadequate blood staining reagent because of bubbling, diffusion, and blurring on the surface of thermal paper. Hungarian red was also an inadequate blood staining reagent because excess Hungarian red on the surface of thermal paper was not washed away in the de-staining procedure. Amido black was the best staining reagent among three staining reagents compared. The maximum dilution ratio visible to the naked eye after Amido black staining was 1 in 80 for the thermally sensitive surface and 1 in 20 for the thermally non-sensitive surface. PMID:26540182

  15. Building robust chemical reaction mechanisms : next generation of automatic model construction software

    E-print Network

    Song, Jing, 1972-

    2004-01-01

    Building proper reaction mechanisms is crucial to model the system dynamic properties for many industrial processes with complex chemical reaction phenomena. Because of the complexity of a reaction mechanism, computer-aided ...

  16. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  17. SENSITIVITY OF CHEMICAL REACTION NETWORKS: A STRUCTURALAPPROACH. 1. EXAMPLES AND THE CARBON METABOLIC NETWORK

    E-print Network

    Fiedler, Bernold

    -1- SENSITIVITY OF CHEMICAL REACTION NETWORKS: A STRUCTURALAPPROACH. 1. EXAMPLES AND THE CARBON of Theoretical Biology, June 21, 2014) #12;-2- Abstract In biological cells, chemical reaction pathways lead information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction

  18. Log-Domain Circuit Models of Chemical Reactions Soumyajit Mandal and Rahul Sarpeshkar

    E-print Network

    Sarpeshkar, Rahul

    Log-Domain Circuit Models of Chemical Reactions Soumyajit Mandal and Rahul Sarpeshkar Department to networks of chemical reactions. Our circuits can be used for transient and steady-state simulations the energy barrier of a chemical reaction, exponentially changing its speed. In an analogous fashion, gate

  19. in Press, Physical Review Letters Predicting the progress of diffusively limited chemical reactions

    E-print Network

    Gollub, Jerry P.

    in Press, Physical Review Letters Predicting the progress of diffusively limited chemical reactions: December 9, 2005) The effects of chaotic advection and diffusion on fast chemical reactions in two, fast chemical reactions, numeri- cal studies have attempted to relate product concentra- tion growth

  20. Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models

    E-print Network

    Craciun, Gheorghe

    Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models G of complex chemical reaction networks, taken with mass-action kinetics, to admit multiple equilibria.) In both papers, it was understood that the reactions were taking place in the context of what chemical

  1. A Nonlinear Observer for Semidetectable Chemical Reactions with Application to Kinetic-Rate-Constant Estimation

    E-print Network

    Bernstein, Dennis S.

    A Nonlinear Observer for Semidetectable Chemical Reactions with Application to Kinetic]. For the class of polyno- mial systems that model the concentrations of species of a chemical reaction network that the reactions of chemical networks are semistable, that is, the concentrations converge to nonzero values

  2. A general method for the computation of probabilities in systems of first order chemical reactions

    E-print Network

    Djuri, Petar M.

    A general method for the computation of probabilities in systems of first order chemical reactions for the computation of molecular population distributions in a system of first-order chemical reactions. The method to model the chemical reactions in a stochastic way rather than with the traditional differential equations

  3. STRAIN-INDUCED STRUCTURAL CHANGES AND CHEMICAL REACTIONSII. MODELLING OF REACTIONS

    E-print Network

    Meyers, Marc A.

    STRAIN-INDUCED STRUCTURAL CHANGES AND CHEMICAL REACTIONSII. MODELLING OF REACTIONS IN SHEAR BAND V 1997; accepted in revised form 26 April 1998) AbstractThe problem on strain-induced chemical reaction is connected with the additional heating due to RIP. A kinetic criterion of chemical reaction is formulated

  4. SHEAR LOCALIZATION AND CHEMICAL REACTION IN HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF

    E-print Network

    Meyers, Marc A.

    SHEAR LOCALIZATION AND CHEMICAL REACTION IN HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF Ti regions can initiate chemical reaction inside a reac- tive powder mixture. The shear band spacing was H0-induced chemical reactions in silicide systems have been investigated in recent years. Vreeland and coworkers [7

  5. Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction I. Z. Kiss,1,

    E-print Network

    Kiss, Istvan Zoltan

    Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction I. Z dynamics corresponding to an oscillatory chemical reaction coupled with diffusion and chaotic advection as a synchronization of these local oscillators. The specific chemical reaction that we consider is the chlorine

  6. Toward Accurate Potentials for Condensed-Phase Chemical Reactions: Electrostatically Embedded Multi-Configuration Molecular Mechanics

    E-print Network

    Truhlar, Donald G

    Toward Accurate Potentials for Condensed-Phase Chemical Reactions: Electrostatically Embedded Multi and molecular mechanical (QM/MM) methods have provided powerful means for studying chemical reactions be used in QM/MM methods. The result is a key step toward studying chemical reactions in condensed phases

  7. Boundary Effects on Chaotic Advection-Diffusion Chemical Reactions M. Chertkov1

    E-print Network

    Lebedev, Vladimir

    Boundary Effects on Chaotic Advection-Diffusion Chemical Reactions M. Chertkov1 and V. Lebedev1,2 1 chemical reaction, A B ! C, in a statistically stationary bounded chaotic flow at large Peclet number Pe advection should essentially accelerate chemical reactions rate in fluid phase, since it should lead

  8. Models for Multi-Specie Chemical Reactions Using Polynomial Stochastic Hybrid Systems

    E-print Network

    Hespanha, Joo Pedro

    Models for Multi-Specie Chemical Reactions Using Polynomial Stochastic Hybrid Systems Abhyudai for chemical reactions is presented. This is done by representing the population of various species involved in a chemical reaction as the continuous state of a polynomial Stochastic Hybrid System (pSHS). An important

  9. A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks

    E-print Network

    De Leenheer, Patrick

    A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks David Angeli, Patrick De not approach the boundary of this orthant. For chemical reaction networks and other models in biology as well as sufficient conditions for of chemical species in reaction networks, and the applicability

  10. Memory Switches in Chemical Reaction Space Naren Ramakrishnan1,2

    E-print Network

    Ramakrishnan, Naren

    Memory Switches in Chemical Reaction Space Naren Ramakrishnan1,2 , Upinder S. Bhalla3 * 1 and family relationships among such switches. We performed a systematic exploration of chemical reaction of bistable systems. Thus, our systematic exploration of chemical reaction space has produced a valuable

  11. A Petri net approach to the study of persistence in chemical reaction networks

    E-print Network

    Sontag, Eduardo

    A Petri net approach to the study of persistence in chemical reaction networks David Angeli Dip. di in the positive orthant do not approach the boundary of the orthant. For chemical reactions and population models checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from

  12. Time-resolved UPS: a new experimental technique for the study of surface chemical reactions

    E-print Network

    Bauer, Michael

    Time-resolved UPS: a new experimental technique for the study of surface chemical reactions the dynamics of surface chemical reactions using photoemission spectroscopy. In this paper we describe details. Keywords: Visible and ultraviolet photoelectron spectroscopy; Surface chemical reaction; Oxygen; Platinum 1

  13. Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase

    E-print Network

    Schiller, Stephan

    Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase B. Roth, D-cooled ion trapping apparatus, we have investigated laser-induced chemical reactions between cold trapped Ba is to investigate chemical reactions between cold atomic and molecular ions trapped in radio-frequency traps

  14. Computational analysis of an instantaneous chemical reaction in a T-microreactor

    E-print Network

    Bothe, Dieter

    Computational analysis of an instantaneous chemical reaction in a T-microreactor Dieter Bothe 1 in liquid systems with very fast irreversible chemical reaction to the case of unequal diffusivities and energy transport. Hence, they are well suited for fast chemical reactions which are seriously affected

  15. State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero De ciency Type

    E-print Network

    Chaves, Madalena

    State-Estimators for Chemical Reaction Networks of Feinberg-Horn-Jackson Zero De#12;ciency Type #3 for detectability for chemical reaction networks of the Feinberg-Horn-Jackson zero de#12;ciency type. Under. Keywords: observers, chemical reaction systems, detectability 1 Introduction One of the most interesting

  16. Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry

    E-print Network

    Stadler, Peter F.

    Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry Gil Benk¨uckel Theory method. Here we describe an extension of the model that models chemical reactions as the result, the reactions are simulated in a way that treats the formation and breakage of individual chemical bonds

  17. DNS of a Mach 4 Boundary Layer with Chemical Reactions M. Pino Martin

    E-print Network

    Martn, Pino

    DNS of a Mach 4 Boundary Layer with Chemical Reactions M. Pino Martin Graham V. Candler Aerospace understanding of the interaction between turbulent motion and chemical reactions in hypersonic flows is limited to perform a fundamental study of isotropic turbulence interacting with finite-rate chemical reactions

  18. A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks

    E-print Network

    Sontag, Eduardo

    A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks David Angeli, Patrick De not approach the boundary of this orthant. For chemical reaction networks and other models in biology as well as sufficient conditions for persistence of chemical species in reaction networks

  19. Modeling Chemical Reactions with Single Reactant Specie Abhyudai Singh and Jo~ao Pedro Hespanha

    E-print Network

    Hespanha, Joo Pedro

    Modeling Chemical Reactions with Single Reactant Specie Abhyudai Singh and Jo~ao Pedro Hespanha Abstract-- A procedure for constructing approximate stochastic models for chemical reactions involving involved in a chemical reaction as the continuous state of a polynomial Stochastic Hybrid System (p

  20. Predicting the Progress of Diffusively Limited Chemical Reactions in the Presence of Chaotic Advection

    E-print Network

    Gollub, Jerry P.

    Predicting the Progress of Diffusively Limited Chemical Reactions in the Presence of Chaotic chemical reactions in two-dimensional fluid flows are investigated using experimentally measured stretchingRevLett.96.024501 PACS numbers: 47.52.+j, 05.45.a, 47.70.Fw, 82.40.Ck Chemical reactions in solution

  1. CHEMICAL REACTIONS AS -LIMIT OF DIFFUSION MARK A. PELETIER, GIUSEPPE SAVARE, AND MARCO VENERONI

    E-print Network

    Veneroni, Marco

    CHEMICAL REACTIONS AS -LIMIT OF DIFFUSION MARK A. PELETIER, GIUSEPPE SAVARE, AND MARCO VENERONI a rigorous proof of Kramers's formal derivation, and we show how chemical reactions and diffusion processes can be embedded in a common framework. This allows one to derive a chemical reaction as a singular

  2. Effect of chemical reactions on decaying isotropic turbulence M. Pino Martin and Graham V. Candler

    E-print Network

    Martn, Pino

    Effect of chemical reactions on decaying isotropic turbulence M. Pino Martin and Graham V. Candler combustion flows, however the interaction between turbulent motion and the chemical reactions that occur. In hypersonic flows the dominant chemical reactions are the dissociation and recombination of nitrogen

  3. Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry

    E-print Network

    Stadler, Peter F.

    Explicit Collision Simulation of Chemical Reactions in a Graph Based Artifical Chemistry Gil Benk?uckel Theory method. Here we describe an extension of the model that models chemical reactions as the result, the reactions are simulated in a way that treats the formation and breakage of individual chemical bonds

  4. HOW TO AVOID OVERCOOKING: OPTIMAL YIELD OF B FROM THE CONSECUTIVE CHEMICAL REACTIONS ABC

    E-print Network

    Salamon, Peter

    HOW TO AVOID OVERCOOKING: OPTIMAL YIELD OF B FROM THE CONSECUTIVE CHEMICAL REACTIONS ABC Thor A the consecutive chemical reactions ABC both numerically and analytically using temperature as the control. Keywords: Optimal control, Chemical reactions, Temperature control, Optimal yield INTRODUCTION Already half

  5. Chemical Reaction of Cobalt Clusters with Ethanol by Using FT-ICR Mass Spectrometer

    E-print Network

    Maruyama, Shigeo

    1 * *1 *2 Chemical Reaction of Cobalt Clusters with Ethanol by Using FT-ICR Mass-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Chemical reaction of cobalt clusters with ethanol (1 CH3 2 CH2OH, and on methyl in case of dehydrogenated chemisorptions. Keyword: FT-ICR, Chemical Reaction, Cobalt, Cluster

  6. Chemical reaction network approaches to Biochemical Systems Theory.

    PubMed

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Mller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Mller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. PMID:26363083

  7. Surface Reaction Kinetics of Ga 1x In x P Growth During Pulsed Chemical Beam Epitaxy

    E-print Network

    Surface Reaction Kinetics of Ga 1x In x P Growth During Pulsed Chemical Beam Epitaxy N. Dietz 1 growth has been a slow process because little is known about chemical reaction properties and reaction into the surface reaction kinetics during an organometallic deposition process. These insights will allow us

  8. Holistic Metrics for Assessment of the Greenness of Chemical Reactions in the Context of Chemical Education

    ERIC Educational Resources Information Center

    Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2013-01-01

    Two new semiquantitative green chemistry metrics, the green circle and the green matrix, have been developed for quick assessment of the greenness of a chemical reaction or process, even without performing the experiment from a protocol if enough detail is provided in it. The evaluation is based on the 12 principles of green chemistry. The

  9. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    EPA Science Inventory

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  10. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  11. Chemical characteristics of mineral trioxide aggregate and its hydration reaction.

    PubMed

    Chang, Seok-Woo

    2012-11-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  12. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Miller, William H.

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within 20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods.

  13. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (inventors)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  14. Transient assembly of active materials fueled by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  15. Exploring chemical diversity via a modular reaction pairing strategy.

    PubMed

    Loh, Joanna K; Yoon, Sun Young; Samarakoon, Thiwanka B; Rolfe, Alan; Porubsky, Patrick; Neuenswander, Benjamin; Lushington, Gerald H; Hanson, Paul R

    2012-01-01

    The efficient synthesis of an 80-member library of unique benzoxathiazocine 1,1-dioxides by a microwave-assisted, intermolecular nucleophilic aromatic substitution (S(N)Ar) diversification pathway is reported. Eight benzofused sultam cores were generated by means of a sulfonylation/S(N)Ar/Mitsunobu reaction pairing protocol, and subsequently diversified by intermolecular S(N)Ar with ten chiral, non-racemic amine/amino alcohol building blocks. Computational analyses were employed to explore and evaluate the chemical diversity of the library. PMID:23019462

  16. On the chemical reaction of matter with antimatter.

    PubMed

    Lodi Rizzini, Evandro; Venturelli, Luca; Zurlo, Nicola

    2007-06-01

    A chemical reaction between the building block antiatomic nucleus, the antiproton (p or H- in chemical notation), and the hydrogen molecular ion (H2+) has been observed by the ATHENA collaboration at CERN. The charged pair interact via the long-range Coulomb force in the environment of a Penning trap which is purpose-built to observe antiproton interactions. The net result of the very low energy collision of the pair is the creation of an antiproton-proton bound state, known as protonium (Pn), together with the liberation of a hydrogen atom. The Pn is formed in a highly excited, metastable, state with a lifetime against annihilation of around 1 micros. Effects are observed related to the temperature of the H2+ prior to the interaction, and this is discussed herein. PMID:17492700

  17. Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-06-01

    A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  18. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mller, Daniel; Regenspurg, Simona; Milsch, Harald; Blcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to formation damage in ATES systems. We would like to present preliminary results of the structural reservoir model and the hydraulic-thermal-chemical coupling for the demonstration site. Literature: Wissmeier, L. and Barry, D.A., 2011. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains. Environmental Modelling & Software 26, 210-218.

  19. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  20. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-print Network

    Zevenhoven, Ron

    Aug.2013 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven Course 424101 Processteknikens grunder ("PTG") Introduction to Process Engineering v. 2013 0 > V (m3/s; equations, variables and units 1.1 Process engineering, this course 1.2 Process calculations, equations

  1. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  2. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  3. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  4. Laboratory investigation of chemical reactions relevant in Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Franceschi, P.; Ascenzi, D.; Guella, G.; Scarduelli, G.; Tosi, P.

    Experimental data obtained by the Huygens-Cassini mission demonstrate the chemical complexity of the Titan's atmosphere. To rationalize such a complexity it is important to set-up laboratory investigations of the chemical processes occurring in the energetic processing of hydrocarbon nitrogen mixtures followed by the detailed study of selected key reactions. In laboratory, energetic conditions can be simulated in the plasma treatment of hydrocarbon-nitrogen samples and molecular synthesis as well as polymerization can be observed [1]. In the last months we investigated the dynamics of non equilibrium discharges containing benzene focusing on the growth of complex molecular systems [2]. Our study has been performed combining well established analytical methods for neutral product detection with mass spectrometric analysis of the ion population. In this communication, preliminary results on the molecular growth in nitrogen-hydrocarbon plasma processes will be presented and the dynamics of the C6 H+ + C6 H6 reaction will be discussed. 5 References [1] R. Hodyss, Methods for the analysis of organic chemistry on Titan, Phd Dissertation, California Institute of Technology (2005). [2] G. Guella, D. Ascenzi, P. Franceschi, P. Tosi, Rapid Commun. Mass Spectrom. 19, 1-6 (2005).

  5. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is

  6. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    The motivations for the research issues addressed in this thesis are based on the needs of the aerospace structural analysis and the design community. The specific focus is related to the characterization and shock induced chemical reactions of multi-functional structural-energetic materials that are also known as the reactive structural materials and their reaction capabilities. Usually motivation for selection of aerospace structural materials is to realize required strength characteristics and favorable strength to weight ratios. The term strength implies resistance to loads experienced during the service life of the structure, including resistance to fatigue loads, corrosion and other extreme conditions. Thus, basically the structural materials are single function materials that resist loads experienced during the service life of the structure. However, it is desirable to select materials that are capable of offering more than one basic function of strength. Very often, the second function is the capability to provide functions of sensing and actuation. In this thesis, the second function is different. The second function is the energetic characteristics. Thus, the choice of dual functions of the material are the structural characteristics and energetic characteristics. These materials are also known by other names such as the reactive material structures or dual functional structural energetic materials. Specifically the selected reactive materials include mixtures of selected metals and metal oxides that are also known as thermite mixtures, reacting intermetallic combinations and oxidizing materials. There are several techniques that are available to synthesize these structural energetic materials or reactive material structures and new synthesis techniques constitute an open research area. The focus of this thesis, however, is the characterization of chemical reactions of reactive material structures that involve two or more solids (or condensed matter). The subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated temperatures and strains. (4) Press-cure synthesis of Nano-nickel and nano-aluminum based reacti

  7. The quantum dynamics of electronically nonadiabatic chemical reactions

    NASA Technical Reports Server (NTRS)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally adiabatic functions in various quantum scattering algorithms.

  8. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  9. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    USGS Publications Warehouse

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to distinguish whether solid bitumen, either in situ or removed and concentrated from the rock matrix, was formed via the TCA or TRS process. ?? 2008 Elsevier Ltd.

  10. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    PubMed

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage. PMID:22097561

  11. A Multi-Time-Scale Analysis of Chemical Reaction Networks : II. Stochastic Systems

    E-print Network

    Ciocan-Fontanine, Ionut

    A Multi-Time-Scale Analysis of Chemical Reaction Networks : II. Stochastic Systems Xingye Kan1 reactions, and for which the time scales are widely separated. We develop a computational algorithm consider stochastic descriptions of chemical reaction networks in which there are both fast and slow

  12. Testing Thermodynamic Compliance of Chemical Reaction Networks in Polynomial Time on

    E-print Network

    Rowell, Eric C.

    Testing Thermodynamic Compliance of Chemical Reaction Networks in Polynomial Time on Average of thermodynamics often occur unde- tected in chemical reaction networks, leading to inaccuracy of the model. Beard vectors based on cycles of an oriented matroid derived from a reaction network's stoichiometric matrix

  13. On persistence of chemical reaction networks with time-dependent kinetics and no global conservation laws

    E-print Network

    Sontag, Eduardo

    On persistence of chemical reaction networks with time-dependent kinetics and no global work. The new results allow the consideration of reaction rates which are time-varying, thus for persistence of chemical reaction networks are proposed, which extend those obtained by the authors in previous

  14. Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory (12.95E, 47.05N) using novel thermal-desorption proton transfer reaction mass spectrometer (TD-PTRMS) technique

    NASA Astrophysics Data System (ADS)

    Holzinger, Rupert; Kasper-Giebl, Anne; Schauer, Gerhard; Staudinger, Michael; Rckmann, Thomas

    2010-05-01

    A new combination of aerosol collection (humidification aided impaction and controlled thermo-evaporation) and high mass resolution Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) was used to measure the composition of organic aerosol at the Mt. Sonnblick observatory (~3100 m.a.s.l.) in Austria during a 6 weeks period in summer 2008. Fractional mass differences as low as 0.01 Da were resolved and more than 400 compounds have been tentatively identified by their molecular formula. Besides pure hydrocarbons and oxygenated compounds, we also observed organic compounds containing nitrogen, sulfur, or halogen atoms. The concentration of the detected compounds covered the range of 10s of picogram to 100s of nanogram per cubic meter. During the campaign six distinct periods have been identified which were separated by short periods of low temperature and very low organic aerosol concentrations (most compounds were below the detection limit). The maximum sum concentration of all detected compounds was up to a few microgram per cubic meter which is in agreement with EC/OC analysis of aerosol filter samples and demonstrates that a fraction of >50% of the total organic carbon is detected with our new approach. Different regimes of aerosol processing and ageing are revealed by the measured thermograms. During some periods more low volatility compounds have been detected than during other periods. Entrainment of contaminated air from the boundary layer was regularly observed. Because most of the detected compounds could be identified by their molecular formula the degree of oxygenation can be directly calculated. A higher degree of oxygenation corresponds with lower volatility of the respective aerosol sample, which is in agreement with current understanding of aerosol ageing. It remains to be established how well the calculated oxygenation corresponds with the real degree of oxygenation mostly because a significant fraction of oxygen may be lost when evaporated aerosol compounds are ionized via proton transfer reactions. Several of the observed compounds have the potential to serve as tracers for sources and/or processes of organic aerosol.

  15. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  16. Luminescence from Collapsing Centimeter Bubbles Expanded by Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Duplat, Jrme; Villermaux, Emmanuel

    2015-08-01

    We report on a new method for realizing an exceptionally strong inertial confinement of a gas in a liquid: A centimetric spherical bubble filled with a reactive gaseous mixture in a liquid is expanded by an exothermic chemical reaction whose products condense in the liquid at the bubble wall. Hence, the cavity formed in this way is essentially empty as it collapses. The temperatures reached at maximum compression, inferred from the cavity radius dynamics and further confirmed by spectroscopic measurements exceed 20 000 K. Because the cavity is typically big, our findings also provide unique space and time resolved sequences of the events accompanying the collapse, notably the development of the inertial instability notoriously known to deter strong compression.

  17. Synthesis and chemical reactions of the steroidal hormone 17?-methyltestosterone.

    PubMed

    El-Desoky, El-Sayed Ibrahim; Reyad, Mahmoud; Afsah, Elsayed Mohammed; Dawidar, Abdel-Aziz Mahmoud

    2016-01-01

    Structural modifications of natural products with complex structures like steroids require great synthetic effort. A review of literature is presented on the chemistry of the steroidal hormone 17?-methyltestosterone that is approved by Food and Drug Administration (FDA) in the United States as an androgen for estrogen-androgen hormone replacement therapy treatment. The analog also offers special possibilities for the prevention/treatment of hormone-sensitive cancers. The testosterone skeleton has important functionalities in the molecule that can act as a carbonyl component, an active methylene compound, ?,?-unsaturated enone and tertiary hydroxyl group in various chemical reactions to access stereoisomeric steroidal compounds with potent activity. In addition, microbiological methods of synthesis and transformation of this hormone are presented. PMID:26639430

  18. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  19. Simulation of quantum interference by reactions of chemical type

    E-print Network

    Yuri Ozhigov

    2003-11-06

    A quantum unitary evolution alternated with measurements is simulated by a bubble filled with fictitious particles called amplitude quanta that move chaotically and can be transformed by the simple rules that look like chemical reactions. A basic state of simulated system is treated as a collision of the two corresponding amplitude quanta, that gives the quantum statistics of measurements. The movement of the external membrane of the bubble corresponds to the classical dynamics of the simulated system. Measurements are treated as the membrane perforations and they are completely determined by initial conditions. An identity of particles and an entanglement is simulated by the membranes touching. The required memory grows linearly where the number of particles increases, but entangled states of the big number of particles can be simulated. The method can be used for a visualization of quantum dynamics.

  20. DownloadedBy:[CanadianResearchKnowledgeNetwork]At:10:3327May2008 Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method

    E-print Network

    Lisal, Martin

    DownloadedBy:[CanadianResearchKnowledgeNetwork]At:10:3327May2008 Simulation of chemical reaction, the relationship between the RxMC method and other techniques that simulate chemical reaction behaviour is given; reaction; equilibria; simulation 1. Introduction The behaviour of chemical reactions in highly non

  1. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Ziaul Huque

    2007-08-31

    This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.

  2. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals

    NASA Astrophysics Data System (ADS)

    Austin, Ryan; Barton, Nathan; Howard, William; Fried, Laurence

    2013-06-01

    The collapse of micron-sized pores in crystalline high explosives is the primary route to initiating thermal decomposition reactions under shock wave loading. Given the difficulty of resolving such processes in experiments, it is useful to study pore collapse using numerical simulation. A significant challenge that is encountered in such calculations is accounting for anisotropic mechanical responses and the effects of highly exothermic chemical reactions. In this work, we focus on simulating the shock-wave-induced collapse of a single pore in crystalline HMX using a multiphysics finite element code (ALE3D). The constitutive model set includes a crystal-mechanics-based model of thermoelasto-viscoplasticity and a single-step decomposition reaction with empirically determined kinetics. The model is exercised for shock stresses up to ~10 GPa to study the localization of energy about the collapsing pore and the early stages of reaction initiation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-618941).

  3. Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis

    E-print Network

    Zhao, Huimin

    as to more sustainable synthetic routes. In addition, multistep one-pot reactions can improve stereochemicalMultistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis are developed are generally fine-tuned for individual reactions. In a multistep synthesis, each reaction

  4. Thermalization with chemical potentials, and higher spin black holes

    E-print Network

    Gautam Mandal; Ritam Sinha; Nilakash Sorokhaibam

    2015-03-06

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\\lambda]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

  5. Thermalization with chemical potentials, and higher spin black holes

    NASA Astrophysics Data System (ADS)

    Mandal, Gautam; Sinha, Ritam; Sorokhaibam, Nilakash

    2015-08-01

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of local ob-servables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[?]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

  6. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  7. Progress in an oxygen-carrier reaction kinetics experiment for rotary-bed chemical looping combustion

    E-print Network

    Jester-Weinstein, Jack (Jack L.)

    2013-01-01

    The design process for an experimental platform measuring reaction kinetics in a chemical looping combustion (CLC) process is documented and justified. To enable an experiment designed to characterize the reaction kinetics ...

  8. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  9. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  10. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.

  11. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  12. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me up carbon and metal catalyst, with the carbon precipitating from the cluster as it co

  13. Chemical dynamics in the gas phase : quantum mechanics of chemical reactions.

    SciTech Connect

    Gray, S. K.

    2006-01-01

    This research program focuses on both the development and application of accurate quantum mechanical methods to describe gas phase chemical reactions and highly excited molecules. Emphasis is often placed on time-dependent or integrative approaches that, in addition to computational simplifications, yield useful mechanistic insights. Applications to systems of current experimental and theoretical interest are emphasized. The results of these calculations also allow one to gauge the quality of the underlying potential energy surfaces and the reliability of more approximate theoretical approaches such as classical trajectories and transition state theories.

  14. Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors

    SciTech Connect

    Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Lattanzi, D.; Pillon, M.; Montereali, R. M.; Vincenti, M. A.

    2008-03-01

    Recently, a compact solid-state neutron detector capable of simultaneously detecting thermal and fast neutrons was proposed [M. Marinelli et al., Appl. Phys. Lett. 89, 143509 (2006)]. Its design is based on a p-type/intrinsic/metal layered structure obtained by Microwave Plasma Chemical Vapor Deposition (CVD) of homoepitaxial diamond followed by thermal evaporation of an Al contact and a {sup 6}LiF converting layer. Fast neutrons are directly detected in the CVD diamond bulk, since they have enough energy to produce the {sup 12}C(n,{alpha}){sup 9}Be reaction in diamond. Thermal neutrons are instead converted into charged particles in the {sup 6}LiF layer through the {sup 6}Li(n,{alpha})T nuclear reaction. These charged particles are then detected in the diamond layer. The thickness of the {sup 6}LiF converting layer and the CVD diamond sensing layer affect the counting efficiency and energy resolution of the detector both for low- (thermal) and high-energy neutrons. An analysis is carried out on the dynamics of the {sup 6}Li(n,{alpha})T and the {sup 12}C(n,{alpha}){sup 9}Be reactions products, and the distribution of the energy released inside the sensitive layer is calculated. The detector counting efficiency and energy resolution were accordingly derived as a function of the thickness of the {sup 6}LiF and CVD diamond layers, both for thermal and fast neutrons, thus allowing us to choose the optimum detector design for any particular application. Comparison with experimental results is also reported.

  15. A Case Study in Chemical Kinetics: The OH + CO Reaction.

    ERIC Educational Resources Information Center

    Weston, Ralph E., Jr.

    1988-01-01

    Reviews some important properties of the bimolecular reaction between the hydroxyl radical and carbon monoxide. Investigates the kinetics of the reaction, the temperature and pressure dependence of the rate constant, the state-to-state dynamics of the reaction, and the reverse reaction. (MVL)

  16. Verification and Validation of a Chemical Reaction Solver Coupled to the Piecewise Parabolic Method

    NASA Astrophysics Data System (ADS)

    Attal, Nitesh; Ramaprabhu, Praveen; Hossain, Jahed; Karkhanis, Varad; Roy, Sukesh; Gord, James; Uddin, Mesbah

    2012-11-01

    We present a detailed chemical kinetics reaction solver coupled to the Piecewise Parabolic Method (PPM) embedded in the widely used astrophysical FLASH code. The FLASH code solves the compressible Euler equations with a directionally split, PPM with Adaptive Mesh Refinement (AMR). The reaction network is solved using a library of coupled ODE solvers, specialized for handling stiff systems of equations. Finally, the diffusion of heat, mass, and momentum is handled either through an update of the fluxes of each quantity, or by directly solving a diffusion equation for each. The resulting product is capable of handling a variety of physics such as gas-phase chemical kinetics, diffusive transport of mass, momentum, and heat, shocks, sharp interfaces, multi-species mixtures, and thermal radiation. We will present results from verification and validation of the above capabilities through comparison with analytical solutions, and published numerical and experimental data. Our validation cases include advection of reacting fronts in 1-D and 2D, laminar premixed flames in a Bunsen burner configuration, and shock-driven combustion. We acknowledge funding from Spectral Energies LLC.

  17. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect

    Gopalsami, N.

    1999-03-30

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  18. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  19. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  20. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  1. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2004-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2004) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a procedure to speed up the training of NPCA. The developed procedure is based on the non-parametric statistical technique of kernel smoothing. When this smoothing technique is implemented as a Neural Network, It is know as Generalized Regression Neural Network (GRNN). We present results of implementing GRNN on a test problem. In addition, we present results of an in house developed 2-D CFD code that will be used through out the project period.

  2. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2005-12-01

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a novel procedure to speed up the training of NPCA. The same procedure termed L{sub 2}Boost can be used to increase the order of approximation of the Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of computing the derivatives of GRNN function approximation using complex variables or the Complex Step Method (CSM). The results presented demonstrate the significance of the methods developed and will be useful in many areas of applied science and engineering.

  3. Chemical reactions between Venus' surface and atmosphere - An update. (Invited)

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    2013-12-01

    The surface of Venus, at ~740K, is hot enough to allow relatively rapid chemical reactions between it and the atmosphere, i.e. weathering. Venus chemical weathering has been explored in detail [1], to the limits of available data. New data from Venus Express (VEx) and new ideas from exoplanets have sparked a modest renewal of interest in Venus weathering. Venus' surface cannot be observed in visible light, but there are several NIR ';windows' through its atmosphere that allow surface imaging. The VIRTIS spectrometer on VEx viewed the surface through one window [2]; emissivity variations among lava flows on Imdr and Themis Regios have been explained as varying degrees of weathering, and thus age [3]. The VMC camera on VEx also provides images through a NIR window, which suggest variable degrees of weathering on some basaltic plains [4]. Indirect evidence for weathering may come from varying SO2 abundance at Venus' cloud tops; repeated rapid increases and gradual declines may represent volcanic eruptions followed by weathering to form sulfate minerals [5]. Continued geochemical modeling relevant to Venus weathering is motivated by expolanet studies [6]. Models have been extended to hypothetical exo-Venuses of different temperatures and surface compositions [7]. The idea that Venus' atmosphere composition can be buffered by reaction with its surface was explored in detail, and the derived constraint extended to other types of planets [8]. Several laboratories are investigating Venus weathering, motivated in part by the hope that they can provide real constraints on timescales of Venus volcanism [3]. Aveline et al. [9] are extending early studies [10] by reacting rocks and minerals with concentrated SO2 (to accelerate reaction rates to allow detectability of products). Kohler et al. [11] are investigating the stability of metals and chalcogenides as possible causes of the low-emissivity surfaces at high elevations. Berger and Aigouy [12] studied rock alteration on a hypothetical early Venus with a water-rich atmosphere. Martin et al. [13] investigated the fate of weathered rock when heated (by igneous or impact events). Our understanding of Venus' geological history is stymied by a lack of data - spacecraft observations of and/or at its surface. VMC on VEx may continue to provide new data on surface emissivity, but their interpretation is inherently ambiguous. Laboratory experiments seem the most promising approach - attempting to quantify rates of weathering and thus volcanism [3], and (with luck) framing significant problems that can be directly answered by spacecraft observations. [1] Fegley B.Jr. et al. (1997) In Venus II. U. Ariz. Press. p. 591. [2] Helbert J. et al. (2008) GRL 35, L11201. [3] Smrekar S.E et al. (2010) Science 328, 605-608. [4] Basilevsky A.T. et al. (2012) Icarus 217, 434-450. [5] Marcq E. et al. (2013) Nature Geoscience 6, 25-28. [6] Kane S.R. et al. (2013) Astrophysical J. 770, L20. [7] Schaefer L. & Fegley B.Jr. (2011) Astrophysical J. 729, 6. [8] Treiman A.H. & Bullock M.A. (2012) Icarus 217, 534-541. [9] Aveline D.C. et al. (2011) Lunar Planet. Sci. Conf. 42, Abstr. #2165. [10] Fegley B.Jr. & Prinn R.G. (1989) Nature 337, 55-58. [11] Kohler E. et al. (2012) Lunar Planet. Sci. Conf. 43, Abstr. #2749. [12] Berger G. & Aigouy T. (2011) Lunar Planet. Sci. Conf. 42, Abstr. #1660. [13] Martin A.M. et al. (2012) Earth Planet. Sci. Lett. 331-332, 291-304.

  4. Thermal Reactions of Oxygen Atoms with Alkenes at Low Temperatures on Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Ward, Michael D.; Price, Stephen D.

    2011-11-01

    Laboratory experiments show that the thermal heterogeneous reactions of oxygen atoms may contribute to the synthesis of epoxides in interstellar clouds. The data set also indicates that the contribution of these pathways to epoxide formation, in comparison to non-thermal routes, is likely to be strongly temperature dependent. Our results indicate that an increased abundance of epoxides, relative to the corresponding aldehydes, could be an observational signature of a significant contribution to molecular oxidation via thermal O atom reactions with alkenes. Specifically surface science experiments show that both C2H4O and C3H6O are readily formed from reactions of ethene and propene molecules with thermalized oxygen atoms at temperatures in the range of 12-90 K. It is clear from our experiments that these reactions, on a graphite surface, proceed with significantly reduced reaction barriers compared with those operating in the gas phase. For both the C2H4 + O and the C3H6 + O reactions, the surface reaction barriers we determine are reduced by approximately an order of magnitude compared with the barriers in the gas phase. The modeling of our experimental results, which determines these reaction barriers, also extracts desorption energies and rate coefficients for the title reactions. Our results clearly show that the major product from the O + C2H4 reaction is ethylene oxide, an epoxide.

  5. THERMAL REACTIONS OF OXYGEN ATOMS WITH ALKENES AT LOW TEMPERATURES ON INTERSTELLAR DUST

    SciTech Connect

    Ward, Michael D.; Price, Stephen D. E-mail: s.d.price@ucl.ac.uk

    2011-11-10

    Laboratory experiments show that the thermal heterogeneous reactions of oxygen atoms may contribute to the synthesis of epoxides in interstellar clouds. The data set also indicates that the contribution of these pathways to epoxide formation, in comparison to non-thermal routes, is likely to be strongly temperature dependent. Our results indicate that an increased abundance of epoxides, relative to the corresponding aldehydes, could be an observational signature of a significant contribution to molecular oxidation via thermal O atom reactions with alkenes. Specifically surface science experiments show that both C{sub 2}H{sub 4}O and C{sub 3}H{sub 6}O are readily formed from reactions of ethene and propene molecules with thermalized oxygen atoms at temperatures in the range of 12-90 K. It is clear from our experiments that these reactions, on a graphite surface, proceed with significantly reduced reaction barriers compared with those operating in the gas phase. For both the C{sub 2}H{sub 4} + O and the C{sub 3}H{sub 6} + O reactions, the surface reaction barriers we determine are reduced by approximately an order of magnitude compared with the barriers in the gas phase. The modeling of our experimental results, which determines these reaction barriers, also extracts desorption energies and rate coefficients for the title reactions. Our results clearly show that the major product from the O + C{sub 2}H{sub 4} reaction is ethylene oxide, an epoxide.

  6. Motivational Factors Contributing to Turkish High School Students' Achievement in Gases and Chemical Reactions

    ERIC Educational Resources Information Center

    Kadioglu, Cansel; Uzuntiryaki, Esen

    2008-01-01

    This study aimed to investigate the contribution of motivational factors to 10th grade students' achievement in gases and chemical reactions in chemistry. Three hundred fifty nine 10th grade students participated in the study. The Gases and Chemical Reactions Achievement Test and the Motivated Strategies for Learning Questionnaire were

  7. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  8. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's

  9. Introducing Stochastic Simulation of Chemical Reactions Using the Gillespie Algorithm and MATLAB: Revisited and Augmented

    ERIC Educational Resources Information Center

    Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.

    2008-01-01

    The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible

  10. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen

  11. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,

  12. Thermal and Chemical Freeze-out in Spectator Fragmentation

    E-print Network

    W. Trautmann; R. Bassini; M. Begemann-Blaich; A. Ferrero; S. Fritz; S. J. Gaff-Ejakov; C. Gross; G. Imme; I. Iori; U. Kleinevoss

    2007-12-17

    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.

  13. Thermal, chemical and spectral equilibration in heavy-ion collisions

    E-print Network

    Gbor Andrs Almsi; Gyrgy Wolf

    2015-09-28

    We have considered the equilibration in a relativistic heavy ion collision using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c which time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have also shown that the mass spectra of broad resonances immediately follows their in-medium spectral functions.

  14. PUBLISHED ONLINE: 22 JULY 2012 | DOI: 10.1038/NPHYS2373 Controlling chemical reactions of a single particle

    E-print Network

    Loss, Daniel

    LETTERS PUBLISHED ONLINE: 22 JULY 2012 | DOI: 10.1038/NPHYS2373 Controlling chemical reactions, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products

  15. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  16. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition reactions of FORP compositions used in this study were unremarkable, Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant-system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid MMH and liquid NTO in a confined space. The test hardware was constructed with pressure- and temperature-measurement devices to determine if the expected fuel oxidizer reaction would result in increased energy release when FORP, FORP constituents, or propellant-system corrosion products were present. These tests demonstrated that FORP, MMHN, AN, or Inconel corrosion products can induce a mixture of MMH and NTO to produce component-damaging energies. The simulation-test program was not extensive enough to provide statistical probabilities for these events but did show that such events can occur. Damaging events required FORP or metal salts to be present at the initial mixing of MMH and NTO. Based on the results of these studies, it is suggested that removal or mitigation of a buildup of these materials may decrease the incidence of these high-energy, potentially damaging events.

  17. Thermal decomposition of sodium bicarbonate and its effect on the reaction of sodium bicarbonate and sulfur dioxide in a simulated flue gas

    SciTech Connect

    Keener, T.C.

    1982-01-01

    The effect of thermally decomposing sodium bicarbonate while simultaneously reacting with SO/sub 2/, was studied. The study was performed by quantitatively determining the rate of thermal decomposition as a function of particle size in an SO/sub 2/ free gas stream. The rate of reaction of sodium carbonate (product of the thermal decomposition) with SO/sub 2/ was then studied, and the data applied to a pore-plugging model which accounts for the loss in reactivity with increased reaction time. The reaction of sodium bicarbonate with SO/sub 2/ was then studied and the results compared to that for sodium carbonate. From the analysis of the data, the activation energy for the thermal decomposition reaction, the SO/sub 2/ sodium carbonate and SO/sub 2/ sodium bicarbonate reaction were derived. The thermal decomposition reaction of sodium biocarbonate was found to be similar to that of calcium carbonate below the point where heat transfer is rate limiting. The degree of conversion of sodium bicarbonate was found to be 12-17 times greater (depending on particle size) than that of sodium carbonate in the temperature range 250/sup 0/-350/sup 0/F (120/sup 0/-177/sup 0/C). This greater conversion was qualitatively explained by hypothesizing the formation of an activated species during thermal decomposition which would be more chemically reactive.

  18. Chemical TOPAZ: Modifications to the heat transfer code TOPAZ: The addition of chemical reaction kinetics and chemical mixtures

    SciTech Connect

    Nichols, A.L. III.

    1990-06-07

    This is a report describing the modifications which have been made to the heat flow code TOPAZ to allow the inclusion of thermally controlled chemical kinetics. This report is broken into parts. The first part is an introduction to the general assumptions and theoretical underpinning that were used to develop the model. The second section describes the changes that have been implemented into the code. The third section is the users manual for the input for the code. The fourth section is a compilation of hints, common errors, and things to be aware of while you are getting started. The fifth section gives a sample problem using the new code. This manual addenda is written with the presumption that most readers are not fluent with chemical concepts. Therefore, we shall in this section endeavor to describe the requirements that must be met before chemistry can occur and how we have modeled the chemistry in the code.

  19. A modified next reaction method for simulating chemical systems with time dependent propensities and delays

    E-print Network

    Anderson, David F.

    A modified next reaction method for simulating chemical systems with time dependent propensities method. In this paper we make explicit use of the fact that the initiation times of the reactions can introduce our representation of the reaction times as the fir- ing times of independent,

  20. A metabolism is a complex chemical reaction system, whose metabolic genotype the DNA encoding the

    E-print Network

    Wagner, Andreas

    A metabolism is a complex chemical reaction system, whose metabolic genotype the DNA encoding the enzymes catalyzing these reactions can be compactly represented by its complement of metabolic reactions. Here, we analyze a space of such metabolic genotypes. Specifically, we study nitrogen metabolism

  1. Weber's Law for Biological Responses in Autocatalytic Networks of Chemical Reactions Masayo Inoue1

    E-print Network

    Kaneko, Kunihiko

    's law in a system of chained or parallel-connected autocatalytic reactions. In addition, we explore oscWeber's Law for Biological Responses in Autocatalytic Networks of Chemical Reactions Masayo Inoue1 in the external input. In this study, we demonstrate that a system involving a simple autocatalytic reaction shows

  2. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1993-06-01

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  3. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    NASA Astrophysics Data System (ADS)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal stability by thermogravimetric analysis in a subsequent experiment. Overlay plots, combining individual weight loss curves, demonstrate that the experimental factors, solvent system and extraction time, produce effects on the thermal stability of the treated biomass samples. These data also indicated that the individual lignocellulosic materials had unique responses to the type of solvent used for pretreatment. Increasing extraction time had either no correlation with or a positive effect on thermal stability of the biomass samples.

  4. Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

    SciTech Connect

    Nelson Butuk

    2006-09-21

    This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the significant development made in developing a truly meshfree computational fluid dynamics (CFD) flow solver to be coupled to NPCA. First, the procedure of obtaining nearly analytic accurate first order derivatives using the complex step method (CSM) is extended to include computation of accurate meshfree second order derivatives via a theorem described in this report. Next, boosted generalized regression neural network (BGRNN), described in our previous report is combined with CSM and used to obtain complete solution of a hard to solve wave dominated sample second order partial differential equation (PDE): the cubic Schrodinger equation. The resulting algorithm is a significant improvement of the meshfree technique of smooth particle hydrodynamics method (SPH). It is suggested that the demonstrated meshfree technique be termed boosted smooth particle hydrodynamics method (BSPH). Some of the advantages of BSPH over other meshfree methods include; it is of higher order accuracy than SPH; compared to other meshfree methods, it is completely meshfree and does not require any background meshes; It does not involve any construction of shape function with their associated solution of possibly ill conditioned matrix equations; compared to some SPH techniques, no equation for the smoothing parameter is required; finally it is easy to program.

  5. Thermal runaway reaction hazard and decomposition mechanism of the hydroxylamine system

    E-print Network

    Wei, Chunyang

    2006-10-30

    runaway reactions, such as incidents that involved hydroxylamine and hydroxylamine nitrate. The thermal stability of hydroxylamine system under various industrial conditions was studied thoroughly to develop an understanding necessary to prevent recurrence...

  6. Regenerated fibre Bragg gratings used to map internal reaction temperatures of a modified chemical vapour deposition (MCVD) optical fibre preform lathe

    NASA Astrophysics Data System (ADS)

    slund, Mattias L.; Canagasabey, Albert; Liu, Yang; Cook, Kevin; Canning, John; Peng, Gang-Ding

    2011-05-01

    The temperature profile of the reaction zone inside the substrate tube of a modified chemical vapour deposition (MCVD) optical fibre perform lathe has been characterised using thermal chirp compensated ultra-high temperature stable regenerated optical fibre Bragg gratings (FBGs). Results indicate significant differences in measured internal temperatures than those predicted theoretically or measured externally.

  7. Thermal stabilization of kerogen maturation over a finite reaction duration

    SciTech Connect

    Barker, C.E.

    1984-04-01

    If a first order reaction can be assumed for kerogen maturation during burial diagenesis, then its reaction constant is k = -ln(f)/t, where f is the fraction of kerogen tranformable to hydrocarbon remaining after some functional reaction duration, t. The fraction of reactive kerogen is estimated from Tissot and Espitalie's model of vitrinite reflectance (R/sub 0/) evolution. A method for calculating the functional reaction duration is suggested by kerogen maturation experiments that show hydrocarbon generation proceeds by concurrent reactions with successively higher activation energies (E/sub a/), which at a given temperature: are already complete and not generating products; are generating significant products; or are slow and will not generate significant products in geologic time. The general correlation of R/sub 0/ with maximum temperature suggests that at a given temperature, only a limited suite of reactions control hydrocarbon generation, and increased time at the that temperature will not make the slower, (high E/sub a/) reactions geologically significant. Thus, the functional reaction to essentially complete hydrocarbon generation (to the 99% level). Geologic field data, and kerogen maturation experiments extrapolated to geologic time and temperature ranges, suggest this occurs in 10/sup 6/-10/sup 7/ years. When plotted on an Arrhenius diagram (ln k versus l/T), reaction rate constants calculated for 80 cases of kerogen maturation at maximum temperature show a strong linear relationship (r = 0.77). The pseudo E/sub a/ of the overall kerogen maturation reaction is about 9 kcal/mole, and its frequency factor is 10/sup -11/ sec/sup -1/. This curve provides a method of assessing maximum paleotemperature from R/sub 0/ if the kerogen has had sufficient time to stabilize.

  8. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    SciTech Connect

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  9. Chemical conversion of phenylethylamine into phenylacetaldehyde by carbonyl-amine reactions in model systems.

    PubMed

    Zamora, Rosario; Delgado, Rosa M; Hidalgo, Francisco J

    2012-05-30

    The chemical conversion of phenylethylamine into phenylacetaldehyde in the presence of lipid oxidation products (LOPs) was studied to investigate the possibility that biogenic amines can be converted into Strecker aldehydes upon processing. Model systems of phenylethylamine and methyl 13-hydroperoxyoctadeca-9,11-dienoate (HP), 2,4-decadienal (DD), 4,5-epoxy-2-heptenal (EH), 4,5-epoxy-2-decenal (ED), 4-oxo-2-hexenal (OH), 4-oxo-2-nonenal (ON), or 4-hydroxy-2-nonenal (HN) were heated for 1 h at 180 C and pH 3. Although HN and EH did not produce more phenylacetaldehyde than when phenylethylamine was heated alone, all other lipid oxidation products assayed increased the amount of phenylacetaldehyde produced by 300-900%, with ON being the most reactive compound for this reaction. The reaction was mainly produced at acidic pH values (<6) and was dependent upon the concentration of the LOPs involved, and the phenylacetaldehyde produced increased linearly as a function of the time and temperature. The E(a) values for the reactions between phenylethylamine and DD and ON were 54.8 and 53.8 kJ/mol, respectively. The reaction is proposed to take place by the formation of an imine between the phenylethylamine and the LOPs, which is later converted into another imine by an electronic rearrangement. This new imine is the origin of phenylacetaldehyde by hydrolysis. These results show a new pathway for Strecker aldehyde formation. This route provides a potential way to reduce biogenic amine content in foods when they can be thermally processed before consumption. PMID:22578256

  10. CHEMICAL SYNTHESIS USING 'GREENER' ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The chemical research during the last decade has witnessed a paradigm shift towards "environmentally-friendly chemistry" more popularly known as "green chemistry" due to the increasing environmental concerns and legislative requirements to curb the release of chemical waste into ...

  11. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in

  12. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions

    E-print Network

    Minnesota, University of

    -mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computedAccurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions Howard Salis and Yiannis Kaznessisa) Department of Chemical Engineering and Materials Science

  13. ONCE MORE ON DG OF CHEMICAL REACTION E.B. Rudnyi, L.N. Sidorov

    E-print Network

    Rudnyi, Evgenii B.

    in equations 2 and 3 arose early on in the history of chemical thermodynamics, where two approaches to DG described by introducing a chemical variable x defined by the equation n = n + xn (6) i o,i i or dn = n dxONCE MORE ON DG OF CHEMICAL REACTION E.B. Rudnyi, L.N. Sidorov Department of Chemistry, Moscow

  14. SUBSTITUTION REACTIONS FOR THE DETOXIFICATION OF HAZARDOUS CHEMICALS

    EPA Science Inventory

    Chemical Treatment is one of several treatment techniques used for the remediation of toxic and hazardous chemicals. Chemical treatment in this report is defined as substitution of halogens by hydrogens for the conversion of halogenated organic toxicant into its native hydrocarb...

  15. 1) Mean climatologies and equations of motion a)Thermal, chemical and dynamical climatologies

    E-print Network

    Lott, Francois

    1 1) Mean climatologies and equations of motion a)Thermal, chemical and dynamical climatologies b)Equations at the equator a) Thermal, chemical and dynamical climatologies #12;9 The SST is always warmer in the equatorial: contain 2 of the 3 layers of the neutral atmosphere: the stratosphere and the mesosphere. Les chemical

  16. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    SciTech Connect

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  17. Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Leonard, Andy D.; Hill, James C.

    1992-01-01

    Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.

  18. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Nobuto, Kyosuke; Miyagi, Shigeyuki; Tachibana, Kunihide

    2015-10-01

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH3 in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

  19. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  20. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earths crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complexheterogeneous assemblages of mineral grains, pores, and fracturesand visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of heat and chemical reactions on microbial communities. Will microbial communities and gene assemblages evolve rapidly in response to changes in heat-flow and stimulate changes in subsurface geochemistry? Does hydrothermal circulation alter the availability of nutrients, trace metals, and hydrogen and control observed microbial responses? In this presentation we will discuss some of the scientific questions that may be addressed in such an experiment, potential experimental designs, and fundamental scientific studies being performed to aid in the experimental design.

  1. Control of Mass Transport and Chemical Reaction Kinetics in Ultrasmall Volumes

    NASA Astrophysics Data System (ADS)

    Collier, Charles

    2012-02-01

    This talk will describe means for triggering chemical reactions for studying reaction kinetics under extreme confinement with sub-millisecond temporal resolution, including on-demand generation and fusion of femtoliter (10-15 L) volume water-in-oil droplets, and triggering reactions in femtoliter chambers microfabricated in poly(dimethylsiloxane) (PDMS). We demonstrated a reversible chemical toggle switch, which lays the groundwork for exploring more complex chemical and biochemical reaction sequences triggered and monitored in real time in discrete ultrasmall reactors, such as sequential and coupled enzymatic reactions. We are also developing methods to vary confinement and macromolecular crowding in ultrasmall, water-in-oil droplets and chambers micromolded in PDMS as biomimetic reaction vessels containing minimal synthetic gene circuits, in order to better understand how confinement, reduced dimensionality and macromolecular crowding affect molecular mechanisms involved in the operation and regulation of genetic circuits in living cells.

  2. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2 - The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    PubMed

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. PMID:26022364

  3. FT-ICR Study of Chemical Reaction of Precursor Clusters of SWNT Masamichi Kohno, Shuhei Inoue and Shigeo Maruyama

    E-print Network

    Maruyama, Shigeo

    FT-ICR Study of Chemical Reaction of Precursor Clusters of SWNT Masamichi Kohno, Shuhei Inoue and Shigeo Maruyama Chemical reaction of carbon clusters and metal-carbon binary clusters (MCn , M = Ni or Co

  4. Product-state control of bi-alkali-metal chemical reactions

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund R.; Bohn, John L.

    2010-10-01

    We consider ultracold, chemically reactive scattering collisions of the diatomic molecules KRb. When two such molecules collide in an ultracold gas, we find that they are energetically forbidden from reacting to form the trimer species K2Rb or Rb2K, and hence can only react via the bond-swapping reaction 2KRb?K2+Rb2. Moreover, the tiny energy released in this reaction can in principle be set to zero by applying electric or microwave fields, implying a means of controlling the available reaction channels in a chemical reaction.

  5. Product-state control of bi-alkali-metal chemical reactions

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2010-10-15

    We consider ultracold, chemically reactive scattering collisions of the diatomic molecules KRb. When two such molecules collide in an ultracold gas, we find that they are energetically forbidden from reacting to form the trimer species K{sub 2}Rb or Rb{sub 2}K, and hence can only react via the bond-swapping reaction 2KRb{yields}K{sub 2}+Rb{sub 2}. Moreover, the tiny energy released in this reaction can in principle be set to zero by applying electric or microwave fields, implying a means of controlling the available reaction channels in a chemical reaction.

  6. Molecular dynamics study of phase separation in fluids with chemical reactions

    NASA Astrophysics Data System (ADS)

    Krishnan, Raishma; Puri, Sanjay

    2015-11-01

    We present results from the first d =3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A ?B ). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (?eq) in the steady state suggests a power-law dependence on the reaction rate ? :?eq?-? with ? ?1.0 .

  7. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; Gonzlez-Garca, Nria; Lendvay, Gyrgy; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M ? (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 2.1) 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions. PMID:25853321

  8. Thermal, chemical and spectral equilibration in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Almsi, Gbor Andrs; Wolf, Gyrgy

    2015-11-01

    We have considered the equilibration in relativistic heavy ion collisions at energies 1-7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff-Baym equations employed via the (local) gradient expansion.

  9. Chemical oxygen-iodine laser (COIL) thermal management

    NASA Astrophysics Data System (ADS)

    Truesdell, Keith A.; Helms, Charles A.; Longergan, Thomas; Wisniewski, Charles F.; Scott, Joseph E.; Healey, Keith P.

    1995-03-01

    The chemical oxygen-iodine laser (COIL) has been studied at the Phillips Laboratory since its invention in 1978. One of the most difficult challenges in COIL technology is to produce constant power for more than a few seconds; an essential feature for most applications. The key to developing a laser with these operational characteristics is management of the heat released during the production of singlet delta oxygen. Approximately 10 joules is deposited into the singlet delta oxygen generator (SOG) for every joule extracted as laser power. A recent test series demonstrated run times of 120 seconds at 9 kW by controlling the SOG reaction temperature with a flowing aqueous solution of cold hydroperoxide (BHP). This method of managing the energy released is quite effective but requires a large reservoir of cold BHP.

  10. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    PubMed

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-01

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials. PMID:25864730

  11. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 C to 45 C. These features imply that the candle ccPCR system can provide robust medical detection services.

  12. Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol

    SciTech Connect

    Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.; Vaida, Veronica

    2012-04-28

    The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energy is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.

  13. Chemical characteristics of the major thermal springs of Montana

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 milligramsper litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100?C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in 'granitic' terranes.

  14. Chemical and microstructural characterization of thermally grown alumina scales

    SciTech Connect

    Natesan, K.; Richier, C.; Veal, B.W.

    1995-09-01

    An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales.

  15. Researcher breaks new ground in understanding chemical reaction process

    E-print Network

    Glaser, Rainer

    texts, aids cancer research back tochemistry textbook authors have written in a variety of applications, including dyes, but also represent a basic chemical molecular structure found in nature. Now, a professor of chemistry has found that this chemical process has been incorrectly described

  16. Efficiency of a stirred chemical reaction in a closed vessel

    E-print Network

    Cristobal lopez; Davide Vergni; Angelo Vulpiani

    2002-01-22

    We perform a numerical study of the reaction efficiency in a closed vessel. Starting with a little spot of product, we compute the time needed to complete the reaction in the container following an advection-reaction-diffusion process. Inside the vessel it is present a cellular velocity field that transports the reactants. If the size of the container is not very large compared with the typical length of the velocity field one has a plateau of the reaction time as a function of the strength of the velocity field, $U$. This plateau appears both in the stationary and in the time-dependent flow. A comparison of the results for the finite system with the infinite case (for which the front speed, $v_f$, gives a simple estimate of the reacting time) shows the dramatic effect of the finite size.

  17. Study of chemical reactions under the influence of ultrasound

    SciTech Connect

    Lee, Kien-Yin

    1993-07-01

    At Los Alamos the author is interested in sonochemistry because there is potential for accelerating reactions involving the synthesis of certain nitro compounds and for reducing the possibility of decomposition under milder reaction conditions. The author has initiated the study of the nitration of 2,4-dihydro-3H-1,2,4-triazol-3-one with concentrated nitric acid under sonication. The preparation of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, and oxidation of 3,6-diamino-1,2,4,5-tetrazine were also studied. Sonication reaction conditions and results of these reactions under ultrasound are discussed in detail.

  18. THE JOURNAL OF CHEMICAL PHYSICS 133, 224101 (2010) Steepest descent reaction path integration using a first-order

    E-print Network

    Schlegel, H. Bernhard

    2010-01-01

    THE JOURNAL OF CHEMICAL PHYSICS 133, 224101 (2010) Steepest descent reaction path integration using; accepted 20 October 2010; published online 8 December 2010) The theoretical treatment of chemical reactions surface and five chemical reactions. The use of Hessian updating, as a means for reducing the overall

  19. Optimal behavior of consecutive chemical reactions Thor A. Bak1, Peter Salamon2, Bjarne Andresen2,3

    E-print Network

    Salamon, Peter

    Optimal behavior of consecutive chemical reactions ABC Thor A. Bak1, Peter Salamon2, Bjarne The consecutive chemical reactions ABC are analyzed both numerically and analytically using temperature-11] considered the question of improving the yield of a chemical reaction taking place in a tubular reactor

  20. Hybrid Quantum and Classical Methods for Computing Kinetic Isotope Effects of Chemical Reactions in Solution and in Enzymes

    E-print Network

    Minnesota, University of

    1 Hybrid Quantum and Classical Methods for Computing Kinetic Isotope Effects of Chemical Reactions for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble that enzymes accelerate the rates of chemical reactions has fascinated chemists and biochemists for nearly

  1. JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 45, NO. 7, PP. 771793 (2008) Classification of Chemical Reactions: Stages of Expertise

    E-print Network

    Talanquer, Vicente A.

    2008-01-01

    of Chemical Reactions: Stages of Expertise Marilyne Stains, Vicente Talanquer Department of Chemistry attention when classifying chemical reactions at the symbolic and microscopic levels. We identified the categories that students create when classifying chemical reactions, and compared the performance in simple

  2. React. Kinet. Catal. Lett., Vol. 15, No. 2,245-250 (1980) DYNAMICS OF CHEMICAL REACTIONS AND NONPHYSICAL

    E-print Network

    Gorban, Alexander N.

    1980-01-01

    React. Kinet. Catal. Lett., Vol. 15, No. 2,245-250 (1980) DYNAMICS OF CHEMICAL REACTIONS behavior of chemical reactions,in particular,the reasonsfor slow relaxa- tions. IIoKa3aHo, qTO 14[HdpKcaum~. Prolonged transientregimes were found experimentally in chemical reactions in greatlydifferenthomogeneous

  3. CHEMICAL REACTION SYSTEMS WITH TORIC STEADY STATES MERCEDES PEREZ MILLAN, ALICIA DICKENSTEIN, ANNE SHIU, AND CARSTEN CONRADI

    E-print Network

    Rowell, Eric C.

    1 CHEMICAL REACTION SYSTEMS WITH TORIC STEADY STATES MERCEDES PEREZ MILLAN, ALICIA DICKENSTEIN, ANNE SHIU, AND CARSTEN CONRADI Abstract. Mass-action chemical reaction systems are frequently used that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction

  4. Stability of Traveling Waves for a Class of Reaction-diffusion Systems that Arise in Chemical Reaction Models

    E-print Network

    Schecter, Stephen

    that the perturbation be exponentially close at the right is natural: there are other traveling waves that approachStability of Traveling Waves for a Class of Reaction-diffusion Systems that Arise in Chemical North Carolina State University 1 #12;2 I. Combustion of a solid fuel in one space dimension Model: tu

  5. Coherent chemical kinetics as quantum walks I: Reaction operators for radical pairs

    E-print Network

    A. Chia; A. Gorecka; K. C. Tan; L. Pawela; P. Kurzynski; T. Paterek; D. Kaszlikowski

    2015-08-20

    Classical chemical kinetics use rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, or in other words, a reaction which contain only incoherent transitions. A prominent example reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator which determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts a recombination dephasing rate consistent with recent experiments [J. Chem. Phys. {\\bf 139}, 234309 (2013)], in contrast to previous work by Jones and Hore [Chem. Phys. Lett. {\\bf 488}, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalised density operator incorporating both the radical pair and reaction products, or by a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalised and refers only to radical-pair states. Generalisations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  6. Descriptive Simulation: Combining Symbolic and Numerical Methods in the Analysis of Chemical Reaction Mechanisms

    E-print Network

    Eisenberg, Michael

    1989-09-01

    The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module ...

  7. The Kineticist's Workbench: Combining Symbolic and Numerical Methods in the Simulation of Chemical Reaction Mechanisms

    E-print Network

    Eisenberg, Michael A.

    1991-05-01

    The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that ...

  8. EVALUATION OF CHEMICAL REACTION MECHANISMS FOR PHOTOCHEMICAL SMOG. PART 2. QUANTITATIVE EVALUATION OF THE MECHANISMS (REVISED)

    EPA Science Inventory

    Six chemical reaction mechanisms for photochemical smog were analyzed to determine why, under identical conditions, they predict different maximum ozone concentrations. To perform the analysis, a counter species technique was used to determine the contributions of individual reac...

  9. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  10. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction

    NASA Astrophysics Data System (ADS)

    Kelemen, Simon R.; Walters, Clifford C.; Kwiatek, Peter J.; Freund, Howard; Afeworki, Mobae; Sansone, Michael; Lamberti, William A.; Pottorf, Robert J.; Machel, Hans G.; Peters, Kenneth E.; Bolin, Trudy

    2010-09-01

    Solid bitumen can arise from several reservoir processes acting on migrated petroleum. Insoluble solid organic residues can form by oxidative processes associated with thermochemical sulfate reduction (TSR) as well as by thermal chemical alteration (TCA) of petroleum. TCA may follow non-thermal processes, such as biodegradation and asphaltene precipitation, that produce viscous fluids enriched in polar compounds that are then altered into solid bitumens. It is difficult to distinguish solid bitumen formed by TCA from TSR since both processes occur under relatively high temperatures. The focus of the present work is to characterize solid bitumen samples associated with TSR- or TCA-processes using a combination of solid-state X-ray Photoelectron Spectroscopy (XPS), Sulfur X-ray Absorption Near Edge Structure Spectroscopy (S-XANES), and 13C NMR. Naturally occurring solid bitumens from three locations, Nisku Formation, Brazeau River area (TSR-related); La Barge Field, Madison Formation (TSR-related); and, the Alaskan North Slope, Brooks Range (TCA-related), are compared to solid bitumens generated in laboratory simulations of TSR and TCA. The chemical nature of solid bitumens with respect to organic nitrogen and sulfur can be understood in terms of (1) the nature of hydrocarbon precursor molecules, (2) the mode of sulfur incorporation, and (3) their concentration during thermal stress. TSR-solid bitumen is highly aromatic, sulfur-rich, and nitrogen-poor. These heteroatom distributions are attributed to the ability of TSR to incorporate copious amounts of inorganic sulfur (S/C atomic ratio >0.035) into aromatic structures and to initial low levels of nitrogen in the unaltered petroleum. In contrast, TCA-solid bitumen is derived from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. TCA-bitumens from the Brooks Range have <75% aromatic carbon. TCA-bitumens exposed to greater thermal stress can have a higher aromaticity, like that observed in TSR-bitumens. Organic sulfur in TCA-organic solids remains relatively constant with increasing maturation (S/C atomic ratio <0.035) due to offsetting preservation and H 2S elimination reactions. Although S-XANES and 13C NMR provide information needed to understand changes in structure and reactivity that occur in the formation of petroleum solids, in some cases XPS analysis is sufficient to determine whether a solid bitumen is formed by TCA or TSR.

  11. Local Thermal and Chemical Equilibration and the Equation of State in Relativistic Heavy Ion Collisions

    E-print Network

    L. V. Bravina; M. Brandstetter; M. I. Gorenstein; E. E. Zabrodin; M. Belkacem; M. Bleicher; S. A. Bass; C. Ernst; M. Hofmann; S. Soff; H. Stoecker; W. Greiner

    1998-10-13

    Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi- isentropic expansion in the central reaction cell with volume 125 fm$^{3}$. distributions at all collision energies for $t\\geq 10 fm/c$ with a unique Baryon energy spectra in this cell are approximately reproduced by Boltzmann rapidly dropping temperature. At these times the equation of state has a simple form: $P \\cong (0.12-0.15) \\epsilon$. At 160 AGeV the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.

  12. Reaction operators for spin-selective chemical reactions of radical pairs

    E-print Network

    Jonathan A. Jones; Kiminori Maeda; Peter J. Hore

    2011-03-30

    Spin-selective reactions of radical pairs have traditionally been modelled theoretically by adding phenomenological rate equations to the quantum mechanical equation of motion of the radical pair spin density matrix. More recently an alternative set of rate expressions, based on a quantum measurement approach, has been suggested. Here we show how these two reaction operators can be seen as limiting cases of a more general reaction scheme.

  13. Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions

    E-print Network

    Daniel A. Beard; Hong Qian

    2006-11-22

    Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and re-verse fluxes and free energy for any chemical process operating in a steady state. This rela-tionship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

  14. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal orientations and a large number of different samples. To analyse the results, an innovative method was developed in which the apparently complex ring-closing reaction is distilled down to a small number of basic rotations. Immediately following photoexcitation, sub-picosecond structural changes associated with the formation of the intermediate are observed. The rotation of the thiophene rings is identified as the key motion. Subsequently, on the few picosecond time scale, the time-resolved diffraction patterns are observed to converge towards those associated with the closed-ring photoproduct. The formation of the closed-ring molecule is thus unambiguously witnessed.

  15. Non-stationary filtration mode during chemical reactions with the gas phase

    NASA Astrophysics Data System (ADS)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 ?m in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damkhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  16. Ultralocalized thermal reactions in subnanoliter droplets-in-air

    PubMed Central

    Salm, Eric; Guevara, Carlos Duarte; Dak, Piyush; Dorvel, Brian Ross; Reddy, Bobby; Alam, Muhammad Ashraf; Bashir, Rashid

    2013-01-01

    Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligandreceptor interactions, and rapid temperature cycling for amplification of DNA molecules. PMID:23401557

  17. Temporal disorder and fluctuation theorem in chemical reactions David Andrieux and Pierre Gaspard

    E-print Network

    Andrieux, David

    the analytical study of a class of chemical reactions described as birth-and-death stochastic processes ruled surface of a given electronic state. Since these surfaces control both the vibra- tional and reactional appropriate extensions of the basic methods of statistical thermodynamics. At the mesoscopic level, the random

  18. STABILITY OF CHEMICAL REACTIONS IN A CSTR WITH DELAYED RECYCLE STREAM

    E-print Network

    Lehman, Brad

    STABILITY OF CHEMICAL REACTIONS IN A CSTR WITH DELAYED RECYCLE STREAM Brad Lehman' Departmentof. Severalof these papers alsoinclude the effectsof a recycle stream on the reactors dynamic response, and hence the cost of reaction, its use is widespread in industry. For example, recycling is almost always

  19. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    E-print Network

    Epstein, Irving R.

    A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors Miles Dolnika (Received 13 July 1992; accepted 1 October 1992) The dynamical behavior of the chlorine dioxide, bursting behavior has been observed in the chlorine dioxide -iodide reaction in a CSTR." When the excitable

  20. Chemical and isotopic composition of water from thermal and mineral springs of Washington

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1982-02-01

    Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

  1. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  2. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel

    2010-12-01

    Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.

  3. Theoretical Studies of Chemical Reactions following Electronic Excitation

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  4. Exact Stochastic Simulation of Coupled Chemical Reactions Daniel T. Gillesple

    E-print Network

    Breitling, Rainer

    . As is evident from many of the papers in this symposium series, the art of reliably solving reaction. Introduction In this paper we shall be concerned with the following general problem: If a fixed volume V this problem begins by translating it into the mathematical language of ordinary differential equations. More

  5. Chemical Principles Revisited. Redox Reactions and the Electropotential Axis.

    ERIC Educational Resources Information Center

    Vella, Alfred J.

    1990-01-01

    This paper suggests a nontraditional pedagogic approach to the subject of redox reactions and electrode potentials suitable for freshman chemistry. Presented is a method for the representation of galvanic cells without the introduction of the symbology and notation of conventional cell diagrams. (CW)

  6. Exact Stochastic Simulation of Chemical Reactions with Cycle Leaping*

    E-print Network

    Bruck, Jehoshua (Shuki)

    no. P50 HG02370). phage [1] and the pap pili epigenetic response of bac- teria [20]. Modeling and simulating the probabilistic behavior of such systems is a challenging problem. On the one hand, macroscopic. As biochemical reactions fire, discrete state transitions occur. The behavior is that of a probabilistic

  7. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    PubMed

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information. PMID:25541888

  8. WORKSHOP ON STATUS OF TEST METHODS FOR ASSESSING POTENTIAL OF CHEMICALS TO INDUCE RESPIRATORY ALLERGIC REACTIONS

    EPA Science Inventory

    Because of the association between allergy and asthma and the increasing incidence of morbidity and mortality due to asthma, there is growing concern over the potential of industrial chemicals to produce allergic reactions in the respiratory tract. Two classes of chemicals have b...

  9. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2012-10-01

    During the operation of vanadium redox flow battery, the vanadium ions diffuse across the membrane as a result of concentration gradients between the two half-cells in the stack, leading to self-discharge reactions in both half-cells that will release heat to the electrolyte and subsequently increase the electrolyte temperature. In order to avoid possible thermal precipitation in the electrolyte solution and prevent possible overheating of the cell components, the electrolyte temperature needs to be known. In this study, the effect of the self-discharge reactions was incorporated into a thermal model based on energy and mass balances, developed for the purpose of electrolyte temperature control. Simulations results have shown that the proposed model can be used to investigate the thermal effect of the self-discharge reactions on both continuous charge-discharge cycling and during standby periods, and can help optimize battery designs and fabrication for different applications.

  10. Selective Growth of Straight Carbon Nanotubes by Low-Pressure Thermal Chemical Vapor Deposition

    E-print Network

    Hasegawa, Shuji

    Selective Growth of Straight Carbon Nanotubes by Low-Pressure Thermal Chemical Vapor Deposition) were grown by low-pressure thermal chemical vapor deposition using pure ethylene. It was found preferentially bridged between Fe nanoparticles under a low pressure of 100 Pa. Moreover, utilizing this method

  11. Interplay of explosive thermal reaction dynamics and structural confinement

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Zucker, Jonathan; Dickson, Peter M.; Parker, Gary R.; Asay, Blaine W.

    2007-04-01

    Explosives play a significant role in human affairs; however, their behavior in circumstances other than intentional detonation is poorly understood. Accidents may have catastrophic consequences, especially if additional hazardous materials are involved. Abnormal ignition stimuli, such as impact, spark, friction, and heat may lead to a very violent outcome, potentially including detonation. An important factor influencing the behavior subsequent to abnormal ignition is the strength and inertia of the vessel confining the explosive, i.e., the near-field structural/mechanical environment, also known as confinement (inertial or mechanical). However, a comprehensive and quantified understanding of how confinement affects reaction violence does not yet exist. In the research discussed here, we have investigated a wide range of confinement conditions and related the explosive response to the fundamentals of the combustion process in the explosive. In our experiments, a charge of an octahydrotetranitrotetrazine-based plastic bonded explosive (PBX 9501) was loaded into a gun assembly having variable confinement conditions and subjected to a heating profile. The exploding charge breached the confinement and accelerated a projectile down the gun barrel. High bandwidth pressure and volume measurements were made and a first-law analysis was used to obtain enthalpy and power from the raw data. These results were then used to quantify reaction violence. Enthalpy change and power ranged from 0-1.8 kJ and 0-12 MW for 300 mg charges, respectively. Below a confinement strength of 20 MPa, violence was found to decline precipitously with decreasing confinement, while the violence for the heaviest confinement experiments was found to be relatively constant. Both pressure and pressurization rate were found to have critical values to induce and sustain violent reaction.

  12. Diffusion reaction in a thermal gradient: Implications for the genesis of anorthitic plagioclase, high alumina basalt and igneous mineral layering

    NASA Astrophysics Data System (ADS)

    Lundstrom, Craig; Boudreau, Alan; Pertermann, Maik

    2005-09-01

    Piston-cylinder experiments investigating the interaction between basaltic andesite melt and partially molten gabbro in a thermal gradient provide insight into melt-rock reaction processes occurring during magma differentiation in the crust. In two experiments juxtaposing basaltic andesite and gabbro at 0.5 GPa pressure for durations of either 13 or 26 days, diffusive chemical exchange between the two materials results in mineral layering and notable mineral compositions such as anorthitic plagioclase. Specifically, the basaltic andesite gains Al 2O 3, MgO and CaO from the gabbro and loses Na 2O, K 2O, SiO 2 and FeO to it with a plagioclase-rich layer developing at the interface between the two materials in a process termed diffusion-reaction. The percent crystallinity of the basaltic andesite increases during the process and the plagioclase crystals within the interface region develop anorthitic cores (up to An 90) that abruptly shift in composition to thin rims that are in Na-Ca exchange equilibrium with the co-existing melt. Both the mineralogical layering and bulk compositional change occurring at the interface are reproduced in model simulations of diffusion-reaction. Isotopic tracers ( 45Ca, 6Li, 84Sr and 136Ba) initially deposited at the basaltic andesite-gabbro interface in the 13-day experiment were detected in the cores of the anorthitic plagioclase after the experiment, demonstrating that the melt chemically communicates with the plagioclase cores over the duration of the diffusion-reaction experiment. The formation of anorthitic plagioclase during diffusion-reaction may explain its widespread occurrence in terrestrial volcanic rocks without requiring the presence of ultra-calcic melts. Textures and mineralogical changes in the gabbro indicate that chemical transport occurs throughout the experiments despite temperatures at the cold end of the experimental capsule approaching 500 C. For instance, apatite, FeNiS, olivine and almost pure albite occur at distinct, specific horizons in the gabbro within the 26-day experiment. Because the bulk element profiles indicating chemical transport reflect analyses of almost completely solid gabbro, equilibration between minerals and fluids/melts must be rapid. The overall effect of the diffusion-reaction process is to make an ascending magma more primitive in composition (and in this case, produce anorthitic plagioclase) while making surrounding crustal wall rocks more evolved. Several observations within igneous rocks support the occurrence of this process, suggesting that the genesis of porphyritic high alumina basalt, ubiquitously observed at convergent margins, could reflect a diffusion-reaction process in the crust.

  13. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  14. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  15. Thermal, Mechanical and Chemical Analysis for VELOX -Verification Experiments for Lunar Oxygen Production

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Ksenik, Eugen; Braukhane, Andy; Richter, Lutz

    One major aspect for the development of a long-term human presence on the moon will be sustainability and autonomy of any kind of a permanent base. Important resources, such as breathable air and water for the survival of the crew on the lunar surface will have to be extracted in-situ from the lunar regolith, the major resource on the Moon, which covers the first meter of the lunar surface and contains about 45 At the DLR Bremen we are interested in a compact and flexible lab experimenting facility, which shall demonstrate the feasibility of this process by extracting oxygen out of lunar Regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, we have investigated important boundary conditions such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility and established basic requirements which shall be analyzed within this paper. These requirements have been used for the concept development and outline of the facility, which is currently under construction and will be subject to initial tests in the near future. This paper will focus mainly on the theoretical aspects of the facility development. Great effort has been put into the thermal and mechanical outline and pre-analysis of components and the system in a whole. Basic aspects that have been investigated are: 1. Selection of suitable materials for the furnace chamber configuration to provide a high-temperature capable operating mode. 2. Theoretical heat transfer analysis of the designed furnace chamber assembly with subsequent validation with the aid of measured values of the constructed demonstration plant. 3. Description of chemical conversion processes for Hydrogen reduction of Lunar Regolith with corresponding analysis of thermal and reaction times under different boundary conditions. 4. Investigation of the high-temperature mechanical behavior of the constructed furnace chamber with regard to thermal stability and especially to the hermetically sealed reactor due to internal Hydrogen atmosphere. In the end, we will give a first glimpse into the development of the test setup and first test results on the way to a superior test set-up and infrastructure with pre-and post-processing units such as feeding and extraction units and analysis of reaction products.

  16. Numerical modeling of coupled thermal chemical reactive transport: simulation of a heat storage system

    NASA Astrophysics Data System (ADS)

    Shao, H.; Watanabe, N.; Singh, A. K.; Nagel, T.; Linder, M.; Woerner, A.; Kolditz, O.

    2012-12-01

    As a carbon-free energy supply technology, the operation time and final energy output of thermal solar power plants can be greatly extended if efficient thermal storage systems are applied. One of the proposed design of such system is to utilize reversible thermochemical reactions and its embedded reaction enthalpy, e.g. the Ca(OH)2/CaO hydration circle, in a fixed-bed gas-solid reactor (Schaube et al. 2011) The modeling of such a storage system involves multiple strongly-coupled physical and chemical processes. Seepage velocity is calculated by the nonlinear Forchheimer law. Gas phase density and viscosity are temperature, pressure and composition dependent. Also, heat transfer between gas and solid phases is largely influenced by the exothermal heat produced by the hydration of calcium oxide. Numerical solution of four governing PDEs include the mass balance, reactive transport, heat balance equations for gas and solid phases, which are implemented into the open source scientific software OpenGeoSys in a monolithic way. Based on it, a 2D numerical model, considering the boundary heat loss of the system, was set up to simulate the energy-storage and release circle. The high performance computing techniques were employed in two stages. First, the dynamic behavior of the heat storage system is simulated on a parallel platform. Second, a large number of processors are employed to perform sensitivity analysis, whereas the reaction rates and efficiency factor of heat transfer are parameterized so that the measured and simulated temperature profile fit with each other. The model showed that heat transfer coefficient between solid and gas phase, grain size of the filling material will influence the final performance greatly. By varying these factors, the calibrated model will be further applied to optimize the design of such energy storage system.

  17. Dynamic simulation of impurity transport and chemical reactions in a Bridgman furnace for directional solidification of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Bellmann, M. P.; Panjwani, B.; Syvertsen, M.; Meese, E. A.

    2013-04-01

    Numerical results from a dynamic simulation of impurity transport and reactions in a Bridgman furnace for directional solidification of multi-crystalline silicon are presented and compared to experimental results. The simulation includes the calculation of the thermal field, melt and gas flow velocity field, transport and chemical reactions of oxygen and carbon impurities for the entire process based on heating, melting and solidification phases. Carbon and oxygen distribution in the ingot is analyzed experimentally by means of FT-IR spectroscopy and LECO combustion method, the CO development by means of an ?-GC gas analyzer. The simulated impurity distribution in the ingot and the CO development above the free melt surface are in good agreement with the experimental results. Furthermore the results indicate that the carbon solubility limit is already reached at the stage of melting and SiC precipitates are likely to form at the early stage of growth.

  18. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    SciTech Connect

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  19. EFFICIENT CHEMICAL TRANSFORMATIONS USING ALTERNATIVE REACTION CONDITIONS AND MEDIA

    EPA Science Inventory

    The diverse nature of chemical entities requires various green' strategic pathways in our quest towards attaining sustainability. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable...

  20. Characterization and Modeling of a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Conrad, M. E.; Jones, T. L.; Olsen, N. J.

    2010-12-01

    A design is being formulated for a large-scale subsurface experimental facility at the 4850 foot level of the Homestake Mine in South Dakota. The purpose of the experiment is to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock under stress and would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL). Key questions we propose to answer are: 1) What are the effective reaction rates for mineral-fluid interaction in fractured rock under stress?; 2) How does mineral and fluid chemistry affect fracture mechanical behavior and permeability changes under stress at elevated temperatures?; and 3) How do microbial communities evolve in fractured rock under a thermal gradient and under changing stress conditions? In addition to the experiment as an in-situ laboratory for studying crustal processes, it has significant benefits for evaluating stimulation and production in Enhanced Geothermal Systems. Design and planning of the experiment included characterization of the geological, chemical, and isotopic characteristics of the rock and seeping fluids, thermal-hydrological and reactive transport modeling. During a reconnaissance study, strong heterogeneity in fracture fluxes and permeability were observed at the block site with some open boreholes continuously flowing at up to 1 liter/minute, and locally elevated fluid temperatures. A two-dimensional thermal-hydrological model was developed to evaluate fluid fluxes and temperatures as a function of heat input and borehole heater configuration. The dual permeability model considers fluid flow and heat transfer between an array of fractures and rock matrix, both having permeability anisotropy. A horizontal rock matrix permeability of 10-18 m2 was based on recent lab measurements, with a vertical matrix permeability estimated to be one order-of-magnitude higher to account for the strong nearly vertical foliation in the Homestake and Poorman formations. The fracture permeability was assumed to be anisotropic with a higher vertical permeability (kH=10-14 m2; kV=10-13 m2) to treat larger fracture apertures perpendicular to the least principal stress. Ten borehole heaters were emplaced at distances of 4 m with a heat input of 5 kW/m. Maximum convective fracture flow velocities of about 10 m/y were predicted after 5 years of heating with temperatures reaching close to 375C. Reactive-transport models of the THMCB block will be a basis for the prediction of reaction-induced porosity/permeability changes as a function of the observed fracture fluxes and hydrological boundary conditions. The models use constraints from 87Sr/86Sr ratios measured in fluids, as well as other geochemical, mineralogical, and isotopic data.

  1. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    PubMed

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported. 2015 Wiley Periodicals, Inc. PMID:26487387

  2. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-print Network

    Kirol, L.

    1987-01-01

    have significant potential advantage over conventional tech nology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste... heat driven heat pump (temperature amplifier) using liquid-vapor chem1cal reactions- can oper ate with higher coefficient of performance and smaller heat exchangers than an absorption temp erature amplifying heat pump. Higher tempera tures...

  3. X-ray imaging of chemically active valence electrons during a pericyclic reaction.

    PubMed

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  4. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    PubMed Central

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  5. Thermochemical model for shock-induced chemical reactions in porous thermite: The heat detonation model

    SciTech Connect

    Boslough, M.B.

    1989-01-01

    A thermochemical model has been developed that treats a shock-induced solid state chemical reaction as a special type of detonation, called a ''heat detonation'' to distinguish it from an ordinary explosive detonation and describe the final form that the chemical energy takes. According to shock temperature measurements, chemical energy can be released from porous reactive solids on a time scale shorter than shock-transit times in laboratory samples. By comparing the experimental shock temperature for porous thermite to that calculated by the model, the amount of thermite reacted when shocked to about 4 GPa was estimated to be between 60 and 70%. Calculated shock temperatures are extremely strong functions of the extent of reaction, but are relatively insensitive to the initial porosity and amount of volatile impurities. Thus, shock temperature measurements are the most useful for real-time studies of shock-induced exothermic chemical reactions in solids. 11 refs., 5 figs., 1 tab.

  6. An approximate Riemann solver for thermal and chemical nonequilibrium flows

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1994-01-01

    Among the many methods available for the determination of inviscid fluxes across a surface of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables has been used extensively by the CFD community because of its simplicity and its ability to capture shocks exactly. This method, originally developed for perfect gas flows, has since been extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged variables for the case of a perfect gas flow is a simple task; however, for thermal and chemical nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the literature to determine these variables seem to lack sound bases. The present paper describes a simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-average state. The basis for this method is the requirement that the Roe-averaged variables form a consistent set of thermodynamic variables. The present method satisfies the requirement that the square of the speed of sound be positive.

  7. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    SciTech Connect

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  8. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-print Network

    Kirol, L. D.

    1986-01-01

    amplifier (HA). A bottoming cycle heat engine driving a heat pump is called a temperature amplifier (TA), and is driven by waste heat from the process or facility. Heat amplifiers are useful in reducing total energy con sumption of a process. Exergy... heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid is reactive, are consid...

  9. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    NASA Astrophysics Data System (ADS)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  10. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  11. Ca + HF - The anatomy of a chemical insertion reaction

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Pattengill, M. D.; Mascarello, F. G.; Zare, R. N.

    1987-01-01

    A comprehensive first-principles theoretical investigation of the gas phase reaction Ca + HF - CaF + H is reported. Ab initio potential energy calculations are first discussed, along with characteristics of the computed potential energy surface. Next, the fitting of the computed potential energy points to a suitable analytical functional form is described, and maps of the fitted potential surface are displayed. The methodology and results of a classical trajectory calculation utilizing the fitted potential surface are presented. Finally, the significance of the trajectory study results is discussed, and generalizations concerning dynamical aspects of Ca + HF scattering are drawn.

  12. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  13. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    PubMed Central

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  14. A quantum chemical study of the ?-transaminase reaction mechanism.

    PubMed

    Cassimjee, Karim Engelmark; Manta, Bianca; Himo, Fahmi

    2015-08-21

    ?-Transaminases are valuable tools in biocatalysis due to their stereospecificity and their broad substrate range. In the present study, the reaction mechanism of Chromobacterium violaceum ?-transaminase is investigated by means of density functional theory calculations. A large active site model is designed based on the recent X-ray crystal structure. The detailed energy profile for the half-transamination of (S)-1-phenylethylamine to acetophenone is calculated and the involved transition states and intermediates are characterized. The model suggests that the amino substrate forms an external aldimine with the coenzyme pyridoxal-5'-phosphate (PLP), through geminal diamine intermediates. The external aldimine is then deprotonated in the rate-determining step, forming a planar quinonoid intermediate. A ketimine is then formed, after which a hemiaminal is produced by the addition of water. Subsequently, the ketone product is obtained together with pyridoxamine-5'-phosphate (PMP). In the studied half-transamination reaction the ketone product is kinetically favored. The mechanism presented here will be valuable to enhance rational and semi-rational design of engineered enzyme variants in the development of ?-transaminase chemistry. PMID:26154047

  15. Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

    SciTech Connect

    Donald L. Thompson

    2009-09-30

    The objective of this research was to develop and apply methods for more accurate predictions of reaction rates based on high-level quantum chemistry. We have developed and applied efficient, robust methods for fitting global ab initio potential energy surfaces (PESs) for both spectroscopy and dynamics calculations and for performing direct dynamics simulations. Our approach addresses the problem that high-level quantum calculations are often too costly in computer time for practical applications resulting in the use of levels of theory that are often inadequate for reactions. A critical objective was to develop practical methods that require the minimum number of electronic structure calculations for acceptable fidelity to the ab initio PES. Our method does this by a procedure that determines the optimal configurations at which ab initio points are computed, and that ensures that the final fitted PES is uniformly accurate to a prescribed tolerance. Our fitting methods can be done automatically, with little or no human intervention, and with no prior knowledge of the topology of the PES. The methods are based on local fitting schemes using interpolating moving least-squares (IMLS). IMLS has advantages over the very effective modified-Shepard methods developed by Collins and others in that higher-order polynomials can be used and does not require derivatives but can benefit from them if available.

  16. A study of the effects of solid phase reactions on the thermal degradation and ballistic properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Schmidt, W. G.

    1974-01-01

    The thermal stability of perchlorate composite propellants was studied at 135 and 170 C. The experimental efforts were concentrated on determining the importance of heterogeneous oxidizer-fuel reactions in the thermal degradation process. The experimental approach used to elucidate the mechanisms by which the oxidizer fuel composites thermally degrade was divided into two parts: (1) keeping the fuel constant and varying the nature of the oxidizers, and (2) holding the oxidizer constant and varying the fuel components. The fuel component primarily utilized in the first phase was polyethylene. Oxidizers included KClO4, KClO3, NH4ClO4 and NH4ClO4 doped with materials such as chlorate, phosphate and arsenate. In the second phase the oxidizer used was primarily NH4ClO4 while the fuels included saturated and unsaturated polybutadiene prepolymers and a series of bonding agents. Techniques employed in the current study include thermogravimetric measurements, differential thermal analysis, infrared, mass spectrometry, electron microscopy, and appropriate wet chemical analysis.

  17. Chemical reactions at the single molecule level Two molecules may have greater stability as a complex or as

    E-print Network

    Albert, Réka

    Chemical reactions at the single molecule level · Two molecules may have greater stability is the more favorable one · For two molecules to undergo a chemical reaction, they must encounter each other. · In a gaseous mixture of two molecular species the average probability that a reaction takes place is = (c dt

  18. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution

    E-print Network

    Schiller, Stephan

    Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single images of the 9 Be+ ion ensemble. The observed reaction rates are in agreement with the Langevin ion-neutral. INTRODUCTION Chemical reactions between trapped molecular ions and neutral reactants are of significant

  19. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    NASA Astrophysics Data System (ADS)

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-01

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope 4He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O2. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  20. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    SciTech Connect

    Huisken, Friedrich; Krasnokutski, Serge A.

    2012-11-27

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  1. Solid phase synthesis of hydantoins by thermal cyclization and screening of reaction conditions using APOS 1200.

    PubMed

    Karnbrock, W; Deeg, M; Gerhardt, J; Rapp, W

    1998-01-01

    A novel strategy for solid-phase synthesis of hydantoins with high optical purity is described using a thermal pH-neutral cyclization and simultaneous release from resin. Hereby even hydantoins bearing a pH-sensitive side chain (protection) are available. The reaction conditions are well screened applying the parallel organic synthesizer APOS 1200. PMID:10729901

  2. Chemical reactions of conformationally selected 3-aminophenol molecules in a beam with Coulomb-crystallized Ca{sup +} ions

    SciTech Connect

    Rsch, Daniel; Willitsch, Stefan; Chang, Yuan-Pin; Kpper, Jochen; Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg; The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg

    2014-03-28

    Many molecules exhibit multiple conformers that often easily interconvert under thermal conditions. Therefore, single conformations are difficult to isolate which renders the study of their distinct chemical reactivities challenging. We have recently reported a new experimental method for the characterization of conformer-specific effects in chemical reactions [Y.-P. Chang, K. D?ugo??cki, J. Kpper, D. Rsch, D. Wild, and S. Willitsch, Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca{sup +} ions, Science 342, 98101 (2013)]. Different conformers are spatially separated using inhomogeneous electric fields and reacted with a Coulomb crystal of cold, spatially localized ions in a trap. As a first application, we studied reactions between the two conformers of 3-aminophenol and Ca{sup +}. We observed a twofold larger rate constant for the cis compared to the trans conformer which was rationalized in terms of the differences in the long-range ion-molecule interactions. The present article provides a detailed description of the new method and a full account of the experimental results as well as the accompanying theoretical calculations.

  3. Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars.

    PubMed

    Borzenkov, Mykola; Chirico, Giuseppe; D'Alfonso, Laura; Sironi, Laura; Collini, Maddalena; Cabrini, Elisa; Dacarro, Giacomo; Milanese, Chiara; Pallavicini, Piersandro; Taglietti, Angelo; Bernhard, Claire; Denat, Franck

    2015-07-28

    The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures lower than 40 C. Similar results were found when the temperature increase was obtained by laser excitation of the near-infrared (NIR) localized surface plasmon resonance of the GNSs, which are photothermally responsive. Besides the direct impact of temperature, an increased BDP-SH release was observed upon changing the chemical composition of the solvent from pure water to phosphate-buffered saline and culture media solutions. Moreover, also a significant fraction of PEG-SH was released from the GNS surface due to the increase in temperature. We monitored it with a different approach, that is, by using a coating of ?-mercapto-?-amino PEG labeled with tetramethylrhodamine isothiocyanate on the amino group, that after heating was separated from GNS by ultracentrifugation and the released PEG was determined by spectrofluorimetric techniques on the supernatant solution. These results suggest some specific limitations in the use of the gold-thiolate bond for coating of nanomaterials with organic compounds in biological environments. These limitations come from the duration and the intensity of the thermal treatment and from the medium composition and could also be exploited in biological media to modulate the in vivo release of drugs. PMID:26154493

  4. Thermal and chemical evolution of The Geysers geothermal system, California

    SciTech Connect

    Moore, J.N.

    1992-01-01

    Fluid inclusions and mineral assemblages provide a reward of the thermal and chemical changes that occurred during the evolution of The Geysers geothermal system. The data document the presence of an extensive liquid dominated geothermal system that developed in response to felsite intrusion and its evolution to a vapor-dominated regime. Temperatures within the early liquid-dominated system ranged from 175 C at a distance of 7200 feet from the felsite to more than 350 C near the contact while salinities varied from 5 equivalent weight percent NaCl (at a distance of 5500 feet) to more than 26 weight percent NaCl. As temperatures around the felsite declined, the liquid-dominated system collapsed upon itself. Downward migration of the low salinity waters resulted in dilution of the fluids present in regions now occupied by the caprock and normal vapor-dominated reservoir. In contrast, dilution was minor in rocks now hosting the high-temperature vapor-dominated reservoir. This suggests that low permeabilities are the primary reason for the development of the high-temperature reservoir. Boiling within the caprock produced late-stage veins of calcite and quartz. As the fluid boiled off, condensate was trapped as low salinity fluid inclusions. Within the main body of the reservoir, a liquid phase with salinities of up to 7 equivalent weight percent NaCl persisted to temperatures between 250 and 270 C. However, except for the presence of vapor-rich inclusions, little evidence of boiling within the reservoir rocks was preserved.

  5. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations

  6. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  7. Hydro-chemical specifications of thermal waters from different geographical regions in Turkey

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Aydin, S.; Sivri, N.; Bitik, E.; Cakir, Z.

    2014-12-01

    In many countries thermal springs are utilized for a variety of purposes, such as the generation of power, direct space heating, industrial processes, aquaculture and many more. The optimal use of a thermal spring is largely dependent upon its physical and chemical characteristics. The physical and chemical parameters of groundwater play a significant role in classifying and assessing water quality. Major ions constitute the most significant part of the total dissolved solids present in the groundwater and the concentration of these ions in ground water depends mainly on the hydro chemical processes that place in the aquifer system. This article focuses on the thermal and chemical features of 21 thermal springs located in the overall of the Turkey. Field data and water samples were collected for analysis of physical and chemical parameters. Thermal springs and thermal wells have temperatures ranging from 35 to 95C. The pH values of the thermal waters change between 6.3 and 9.6. A Piper trilinear diagram and Schoeller diagram show that all the thermal waters are characterized by the dominance of anion-cation. Thermal waters display various chemical compositions and high temperature waters have Na-SO4, Na-HCO3, Na-Cl, Ca-SO4, Ca-HCO3 type. The springs are associated with faults and impermeable dykes and are assumed to be of meteoric origin. The mineral composition of the thermal waters reflects the geological formations found at the depth of origin. All thermal water springs are suitable for use in terms balneology since they contain high levels of mineral content and temperature. At the same time, some samples can be consumed by humans as soda water and mineral water. However, it is important to keep such limitations in mind when determining the ultimate use of the thermal springs.

  8. Electric field suppression of ultracold confined chemical reactions

    SciTech Connect

    Quemener, Goulven; Bohn, John L.

    2010-06-15

    We consider ultracold collisions of polar molecules confined in a one-dimensional optical lattice. Using a quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching rate constants for fermionic molecules. Taking {sup 40}K{sup 87}Rb molecules as a prototype, we find that the rate of quenching collisions is enhanced at zero electric field as the confinement is increased but that this rate is suppressed when the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities, and for achievable experimental electric fields and trap confinements, we predict lifetimes for KRb molecules to be 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve efficient evaporative cooling of polar KRb molecules.

  9. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  10. On the Influence of Uncertainties in Chemical Reaction Rates on Results of the Astrochemical Modelling

    E-print Network

    A. I. Vasyunin; A. M. Sobolev; D. S. Wiebe; D. A. Semenov

    2003-11-19

    With the chemical reaction rate database UMIST95 (Millar et al. 1997) we analyze how uncertainties in rate constants of gas-phase chemical reactions influence the modelling of molecular abundances in the interstellar medium. Random variations are introduced into the rate constants to estimate the scatter in theoretical abundances. Calculations are performed for dark and translucent molecular clouds where gas phase chemistry is adequate. Similar approach was used by Pineau des Forets & Roueff (2000) for the study of chemical bistability. All the species are divided into 6 sensitivity groups according to the value of the scatter in their model abundances computed with varied rate constants. It is shown that the distribution of species within these groups depends on the number of atoms in a molecule and on the adopted physical conditions. The simple method is suggested which allows to single out reactions that are most important for the evolution of a given species.

  11. The Role of Comprehensive Detailed Chemical Kinetic Reaction Mechanisms in Combustion Research

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-07-16

    Recent developments by the authors in the field of comprehensive detailed chemical kinetic reaction mechanisms for hydrocarbon fuels are reviewed. Examples are given of how these mechanisms provide fundamental chemical insights into a range of combustion applications. Practical combustion consists primarily of chemical heat release from reactions between a fuel and an oxidizer, and computer simulations of practical combustion systems have become an essential tool of combustion research (Westbrook et al., 2005). At the heart of most combustion simulations, the chemical kinetic submodel frequently is the most detailed, complex and computationally costly part of a system model. Historically, the chemical submodel equations are solved using time-implicit numerical algorithms, due to the extreme stiffness of the coupled rate equations, with a computational cost that varies roughly with the cube of the number of chemical species in the model. While early mechanisms (c. 1980) for apparently simple fuels such as methane (Warnatz, 1980) or methanol (Westbrook and Dryer, 1979) included perhaps 25 species, current detailed mechanisms for much larger, more complex fuels such as hexadecane (Fournet et al., 2001; Ristori et al., 2001; Westbrook et al., 2008) or methyl ester methyl decanoate (Herbinet et al., 2008) have as many as 2000 or even 3000 species. Rapid growth in capabilities of modern computers has been an essential feature in this rapid growth in the size and complexity of chemical kinetic reaction mechanisms.

  12. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-01

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms-the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes. PMID:26575920

  13. Characterization of plastic deformation and chemical reaction in titanium-polytetrafluoroethylene mixture

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery Jon

    1998-09-01

    The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C ? TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.

  14. Provenance matters: thermal reaction norms for embryo survival among sockeye salmon Oncorhynchus nerka populations.

    PubMed

    Whitney, C K; Hinch, S G; Patterson, D A

    2013-04-01

    Differences in thermal tolerance during embryonic development in Fraser River sockeye salmon Oncorhynchus nerka were examined among nine populations in a controlled common-garden incubation experiment. Forcing embryonic development at an extreme temperature (relative to current values) of 16 C, representing a future climate change scenario, significantly reduced survival compared to the more ecologically moderate temperature of 10 C (55% v. 93%). Survival at 14 C was intermediate between the other two temperatures (85%). More importantly, this survival response varied by provenance within and between temperature treatments. Thermal reaction norms showed an interacting response of genotype and environment (temperature), suggesting that populations of O. nerka may have adapted differentially to elevated temperatures during incubation and early development. Moreover, populations that historically experience warmer incubation temperatures at early development displayed a higher tolerance for warm temperatures. In contrast, thermal tolerance does not appear to transcend life stages as adult migration temperatures were not related to embryo thermal tolerance. The intra-population variation implies potential for thermal tolerance at the species level. The differential inter-population variation in thermal tolerance that was observed suggests, however, limited adaptive potential to thermal shifts for some populations. This infers that the intergenerational effects of increasing water temperatures may affect populations differentially, and that such thermally mediated adaptive selection may drive population, and therefore species, persistence. PMID:23557297

  15. Persistence of transition state structure in chemical reactions driven by fields oscillating in time

    E-print Network

    Galen T. Craven; Thomas Bartsch; Rigoberto Hernandez

    2014-04-29

    Chemical reactions subjected to time-varying external forces cannot generally be described through a fixed bottleneck near the transition state barrier or dividing surface. A naive dividing surface attached to the instantaneous, but moving, barrier top also fails to be recrossing-free. We construct a moving dividing surface in phase space over a transition state trajectory. This surface is recrossing-free for both Hamiltonian and dissipative dynamics. This is confirmed even for strongly anharmonic barriers using simulation. The power of transition state theory is thereby applicable to chemical reactions and other activated processes even when the bottlenecks are time-dependent and move across space.

  16. THE LIFETIME OF AEROSOLS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS

    SciTech Connect

    Toossi, R.; Novakov, T.

    1984-04-01

    The relatively long lifetime of droplets in atmospheric haze and fog in comparison with similar droplets of pure water is attributed to the presence of a monolayer of surfactant film and to the accumulation Of soluble salts from chemical reactions. The lifetime of these droplets is a significant factor in the evaluation of the role of heterogeneous aqueous chemical reactions occurring in the troposphere. Several mechanisms of SO{sub 2} oxidation in the presence of liquid water are investigated. It is shown that soot-catalyzed oxidation of sulfur dioxide could be responsible for the high level of sulfate concentration observed in the coastal industrial areas.

  17. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  18. New chemical reactions in methane at high temperatures and pressures

    SciTech Connect

    Culler, T.S.; Schiferl, D. )

    1993-01-21

    The authors have used a Merrill-Bassett diamond anvil cell and Raman spectroscopy to study methane at high pressures (up to 13 GPa) and high temperatures (up to 912 K). At 2.5-5.0 GPa and 912 K, methane photoreacts with the laser light used for Raman spectroscopy and forms a graphitelike soot compound. At room temperature and pressure the Raman spectrum of the new material has an intense peak with a frequency of 1597 cm[sup [minus]1]. At higher pressures and temperatures (10-13 GPa and 948 K) a sample of [sup 13]CD[sub 4] methane photoreacted with the laser light and formed a hard, clear, solid film. At 0.34 GPa and 300 K, this film had Raman peaks at 541 and 1605 cm[sup [minus]1]. The 541-cm[sup [minus]1] peak may correspond to the 550-cm[sup [minus]1] peak found in some diamondlike carbon (DLC) films formed by chemical vapor deposition (CVD), but the 1605-cm[sup [minus]1] peak does not appear to have any such counterpart. Other possible Raman peaks were masked by interference from the diamond anvils. Thus, while the hard, clear film has some similarities to CVD DLC films, some important differences and questions remain. 35 refs., 5 figs.

  19. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.

  20. Equilibrium-like behavior in far-from-equilibrium chemical reaction networks

    E-print Network

    David K. Lubensky

    2008-07-04

    In an equilibrium chemical reaction mixture, the number of molecules present obeys a Poisson distribution. We ask when the same is true of the steady state of a nonequilibrium reaction network and obtain an essentially complete answer. In particular, we show that networks with certain topological features must have a Poisson distribution, whatever the reaction rates. Such driven systems also obey an analog of the fluctuation-dissipation theorem. Our results may be relevant to biological systems and to the larger question of how equilibrium concepts might apply to nonequilibrium systems.