Science.gov

Sample records for chemical shifts scs

  1. Chemical shift driven geometry optimization.

    PubMed

    Witter, Raiker; Priess, Wolfram; Sternberg, Ulrich

    2002-01-30

    A new method for refinement of 3D molecular structures by geometry optimization is presented. Prerequisites are a force field and a very fast procedure for the calculation of chemical shifts in every step of optimization. To the energy, provided by the force field (COSMOS force field), a pseudoenergy, depending on the difference between experimental and calculated chemical shifts, is added. In addition to the energy gradients, pseudoforces are computed. This requires the derivatives of the chemical shifts with respect to the coordinates. The pseudoforces are analytically derived from the integral expressions of the bond polarization theory. Single chemical shift values attributed to corresponding atoms are considered for structural correction. As a first example, this method is applied for proton position refinement of the D-mannitol X-ray structure. A crystal structure refinement with 13C chemical shift pseudoforces is carried out. PMID:11924742

  2. Chemical Vapor Deposited SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.

  3. A Short History of Three Chemical Shifts

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  4. NMR crystallography: the use of chemical shifts

    NASA Astrophysics Data System (ADS)

    Harris, Robin K.

    2004-10-01

    Measurements of chemical shifts obtained from magic-angle spinning NMR spectra (together with quantum mechanical computations of shielding) can provide valuable information on crystallography. Examples are given of the determination of crystallographic asymmetric units, of molecular symmetry in the solid-state environment, and of crystallographic space group assignment. Measurements of full tensor components for 199Hg have given additional coordination information. The nature of intermolecular hydrogen bonding in cortisone acetate polymorphs and solvates is obtained from chemical shift information, also involving measurement of the full tensor parameters. The resulting data have been used as restraints, built into the computation algorithm, in the analysis of powder diffraction patterns to give full crystal structures. A combination of quantum mechanical computation of shielding and measurement of proton chemical shifts (obtained by high-speed MAS) leads to the determination of the position of a proton in an intermolecular hydrogen bond. A recently-developed computer program specifically based on crystallographic repetition has been shown to give acceptable results. Moreover, NMR chemical shifts can distinguish between static and dynamic disorder in crystalline materials and can be used to determine modes and rates of molecular exchange motion.

  5. Accessible surface area from NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule's ASA requires three-dimensional coordinate data and the use of a "rolling ball" algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called "ShiftASA" that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation. PMID:26078090

  6. Calculation of Chemical Shift Anisotropy in Proteins

    PubMed Central

    Tang, Sishi; Case, David A.

    2011-01-01

    Individual peptide groups in proteins must exhibit some variation in the chemical shift anisotropy (CSA) of their constituent atoms, but not much is known about the extent or origins of this dispersion. Direct spectroscopic measurement of CSA remains technically challenging, and theoretical methods can help to overcome these limitations by estimating shielding tensors for arbitrary structures. Here we use an automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach to compute 15N, 13C′ and 1H chemical shift tensors for human ubiquitin and the GB1 and GB3 fragments of staphylococcal protein G. The average and range of variation of the anisotropies is in good agreement with experimental estimates from solid-state NMR, and the variation among residues is somewhat smaller than that estimated from solution-state measurements. Hydrogen-bond effects account for much of the variation, both between helix and sheet regions, and within elements of secondary structure, but other effects (including variations in torsion angles) may play a role as well. PMID:21866436

  7. Protein conformation and proton nuclear-magnetic-resonance chemical shifts.

    PubMed

    Pardi, A; Wagner, G; Wüthrich, K

    1983-12-15

    The nuclear magnetic resonance (NMR) chemical shifts of the polypeptide backbone protons in basic pancreatic trypsin inhibitor from bovine organs and the inhibitors E and K from the venom of Dendroaspis polylepis polylepis have been analyzed. Using the corresponding shifts in model peptides, the chemical shifts observed in the proteins were decomposed into random-coil shifts and conformation-dependent shifts. Correlations between contributions to the latter term and the polypeptide conformation were investigated by using the crystal structure of the bovine inhibitor. In addition to the well-known ring-current effects, a correlation was found between chemical shifts of amide and C alpha protons and the length of the hydrogen bonds formed by these protons with nearby oxygen atoms as acceptor groups. There remain sizeable and as yet unexplained residual conformation shifts. Overall, the present treatment provides a satisfactory qualitative explanation for the outstandingly large shifts of backbone hydrogen atoms in these diamagnetic proteins. PMID:6198174

  8. Comment on the reference compound for chemical shift and Knight shift determination of (209)Bi nuclei.

    PubMed

    Nowak, Bogdan

    2015-01-01

    Several groups exploring the (209)Bi NMR in solids, including usual insulators, metallic and magnetic materials and recently diamagnetic topological materials, use different standards (usually old and invalid) for chemical shift (Knight shift) determination, ignoring IUPAC recommendations. As a consequence the published shift values exhibit considerable differences (up to 17,500 ppm). PMID:25534279

  9. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  10. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  11. An isotropic chemical shift-chemical shift anisotropic correlation experiment using discrete magic angle turning.

    PubMed

    Hu, Jian Zhi; Sears, Jesse A; Kwak, Ja Hun; Hoyt, David W; Wang, Yong; Peden, Charles H F

    2009-05-01

    An isotropic-anisotropic shift 2D correlation spectroscopy is introduced that combines the advantages of both magic angle turning (MAT) and magic angle hopping (MAH) technologies. In this new approach, denoted DMAT for "discrete magic angle turning", the sample rotates clockwise followed by an anticlockwise rotation of exactly the same amount with each rotation less or equal than 360 degrees but greater than 240 degrees , with the rotation speed being constant only for times related to the evolution dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. For any spin-interaction of rank-2 such as chemical shift anisotropy, isotropic magnetic susceptibility interaction, and residual homo-nuclear dipolar interaction in biological fluid samples, the projection along the isotropic dimension is a high resolution spectrum. Since a less than 360 degrees sample rotation is involved, the design potentially allows for in situ control over physical parameters such as pressure, flow conditions, feed compositions, and temperature so that true in situ NMR investigations can be carried out. PMID:19246221

  12. Probabilistic validation of protein NMR chemical shift assignments.

    PubMed

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M; Cornilescu, Gabriel; Ulrich, Eldon L; Markley, John L

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data . ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/. PMID:26724815

  13. Theoretical and experimental NMR chemical shifts of norsanguinarine and norchelerythrine

    NASA Astrophysics Data System (ADS)

    Toušek, Jaromír.; Dostál, Jiří; Marek, Radek

    2004-02-01

    Norchelerythrine and norsanguinarine, tertiary benzo[ c]phenanthridine alkaloids, were examined by gradient-selected 2D NMR spectroscopy and the later also by extensive theoretical calculations. 1H, 13C and 15N chemical shifts assignments of the title isoquinoline alkaloids based on NOE and multiple-bond chemical-shift correlation experiments (GSQMBC) are reported. Various methods were used for the NMR chemical shifts calculations. Molecular mechanics (MM3 forcefield), AM1 method and Ab initio methods were used for optimizing the geometry. Chemical shielding constants were computed by density functional theory, GIAO and IGLO approaches were used. Chemical shifts calculated by all methods display good qualitative agreement with experimentally determined values. The best overall agreement was achieved when geometry was optimized by RHF/6-31G** method and chemical shielding constants were calculated by B3LYP/6-311G** method, GIAO approach.

  14. Prediction of Bioactive Compounds Using Computed NMR Chemical Shifts.

    PubMed

    Karthikeyan, Muthukumarasamy; Rajamohanan, Pattuparambil Ramanpillai; Vyas, Renu

    2015-01-01

    NMR based chemical shifts are an important diagnostic parameter for structure elucidation as they capture rich information related to conformational, electronic and stereochemical arrangement of functional groups in a molecule which is responsible for its activity towards any biological target. The present work discusses the importance of computing NMR chemical shifts from molecular structures. The NMR chemical shift data (experimental or computed) was used to generate fingerprints in binary formats for mapping molecular fragments (as descriptors) and correlating with the bioactivity classes. For this study, chemical shift data derived binary fingerprints were computed for 149 classes and 4800 bioactive molecules. The sensitivity and selectivity of fingerprints in discriminating molecules belonging to different therapeutic categories was assessed using a LibSVM based classifier. An accuracy of 82% for proton and 94% for carbon NMR fingerprints were obtained for anti-psoriatic and anti-psychotic molecules demonstrating the effectiveness of this approach for virtual screening. PMID:26138568

  15. Project SCS (Special Communication Services).

    ERIC Educational Resources Information Center

    Curtis, John A.

    This extensive report describes and provides documentation on Special Communications Services for the Sensory Impaired (SCS), a Virginia-based telecommunications delivery system developed by the Center for Excellence, Inc. (CenTex), to provide information and entertainment broadcasting services to the visually handicapped, the hearing impaired,…

  16. 93Nb NMR chemical shift scale for niobia systems.

    PubMed

    Lapina, Olga B; Khabibulin, Dzhalil F; Romanenko, Konstantin V; Gan, Zhehong; Zuev, Mikhail G; Krasil'nikov, Vladimir N; Fedorov, Vladimir E

    2005-09-01

    93Nb solid-state NMR spectra of a series of inorganic niobates with Nb in different oxygen coordination environments were measured. For all studied compounds the chemical shielding and quadrupole tensor parameters were determined using conventional and ultrahigh field NMR facilities, ultrahigh speed MAS, DQ STMAS, solid-echo and computer modeling. It has been demonstrated that the 93Nb isotropic chemical shift is sensitive to the coordination number of Nb sites. For the first time the 93Nb NMR chemical shift scale for NbOx polyhedra in solid materials has been proposed: for four-coordinated Nb sites, the isotropic shifts occur from -650 to -950 ppm; five-coordinated Nb sites have the isotropic shifts in the range of -900 to -980 ppm; for six-coordinated Nb sites the isotropic shifts vary from -900 to -1360 ppm; the shifts from -1200 to -1600 ppm are typical for seven-coordinated Nb sites; for eight-coordinated Nb sites the shifts are higher than -1400 ppm. The possible correlation between the value of the isotropic chemical shift and the ionic character of the NbOx-MOy polyhedra association has been suggested. The magnitude of the 93Nb quadrupole coupling constant depends on the local symmetry of Nb sites and may vary from hundreds of kHz to hundreds of MHz. PMID:16216475

  17. Chemical shift guided homology modeling of larger proteins

    PubMed Central

    Shen, Yang; Bax, Ad

    2015-01-01

    We describe an alternate approach to protein structure determination that relies on experimental NMR chemical shifts, plus sparse NOEs if available. The newly introduced alignment method, POMONA, directly exploits the powerful bioinformatics algorithms previously developed for sequence-based homology modeling, but does not require significant sequence similarity. Protein templates, generated by POMONA, are subsequently used as input for chemical shift based Rosetta comparative modeling (CS-RosettaCM) to generate reliable full atom models. PMID:26053889

  18. Chemical shift of hyperpolarized 129Xe dissolved in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Patton, B.; Kuzma, N. N.; Happer, W.

    2002-01-01

    We report NMR measurements of hyperpolarized xenon dissolved in liquid nitrogen. The dependence of the 129Xe frequency shift on liquid nitrogen temperature was measured along the nitrogen saturated vapor curve from 77 to 93 K. Plotted as a function of the liquid nitrogen density, the chemical shift of xenon is very well described by a simple proportionality relation, with a slope of 0.2135(15) ppm/amagat. The relationship between the chemical shift and the longitudinal spin relaxation is considered in terms of the spin-rotation interaction, and estimates of Xe relaxation time in liquid nitrogen are discussed.

  19. Counterion influence on chemical shifts in strychnine salts

    SciTech Connect

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  20. Bayesian inference of protein structure from chemical shift data

    PubMed Central

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  1. Counterion influence on chemical shifts in strychnine salts.

    PubMed

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. PMID:23495106

  2. Interpretation of chemical shifts and coupling constants in macromolecules.

    PubMed

    Case, D A

    2000-04-01

    Recent developments in NMR spectroscopy, along with advances in computational techniques, have produced new approaches to the interpretation of chemical shifts and spin-spin coupling constants in biomolecules. Quantum chemical studies of useful accuracy are now becoming more routine and are increasingly being used in conjunction with experimental studies to map out expected structural patterns for peptides and oligonucleotides. Topics of recent special interest include spin couplings across hydrogen bonds and patterns of chemical shift anisotropies, in both diamagnetic and paramagnetic proteins. PMID:10753812

  3. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  4. Determination of Relative Configuration from Residual Chemical Shift Anisotropy.

    PubMed

    Nath, Nilamoni; Schmidt, Manuel; Gil, Roberto R; Williamson, R Thomas; Martin, Gary E; Navarro-Vázquez, Armando; Griesinger, Christian; Liu, Yizhou

    2016-08-01

    Determination of relative configuration is frequently a rate-limiting step in the characterization of small organic molecules. Solution NMR-based nuclear Overhauser effect and scalar J-coupling constants can provide useful spatial information but often fail when stereocenters are separated by more than 4-5 Å. Residual dipolar couplings (RDCs) can provide a means of assigning relative configuration without limits of distance between stereocenters. However, sensitivity limits their application. Chemical shift is the most readily measured NMR parameter, and partial molecular alignment can reveal the anisotropic component of the chemical shift tensor, manifested as residual chemical shift anisotropy (RCSA). Hence, (13)C RCSAs provide information on the relative orientations of specific structural moieties including nonprotonated carbons and can be used for stereochemical assignment. Herein, we present two robust and sensitive methods to accurately measure and apply (13)C RCSAs for stereochemical assignment. The complementary techniques are demonstrated with five molecules representing differing structural classes. PMID:27294984

  5. Protein Structure Refinement Using 13Cα Chemical Shift Tensors

    PubMed Central

    Wylie, Benjamin J.; Schwieters, Charles D.; Oldfield, Eric; Rienstra, Chad M.

    2009-01-01

    We have obtained the 13Cα chemical shift tensors for each amino acid in the protein GB1. We then developed a CST force field and incorporated this into the Xplor-NIH structure determination program. GB1 structures obtained by using CST restraints had improved precision over those obtained in the absence of CST restraints, and were also more accurate. When combined with isotropic chemical shifts, distance and vector angle restraints, the root-mean squared error with respect to existing x-ray structures was better than ~1.0 Å. These results are of broad general interest since they show that chemical shift tensors can be used in protein structure refinement, improving both structural accuracy and precision, opening up the way to accurate de novo structure determination. PMID:19123862

  6. Molecular dynamics averaging of Xe chemical shifts in liquids

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Sears, Devin N.; Murad, Sohail

    2004-11-01

    The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.

  7. NMR chemical shifts in periodic systems from first principles

    NASA Astrophysics Data System (ADS)

    Sebastiani, Daniel; Goward, Gillian; Schnell, Ingo; Parrinello, Michele

    2002-08-01

    A recently developed ab-initio method for the calculation of NMR chemical shifts and magnetic susceptibilities in systems under periodic boundary conditions is presented and applied to a hydrogen-bonded molecular crystal. The calculations can unambiguously assign the chemical shifts to individual atoms in experimental spectra, and can further serve for the validation of simulated atomic trajectories and geometries. Apart from the example presented, the method can be applied to crystalline and amorphous insulators, as well as to isolated molecules using a supercell technique. The results are in good agreement with experiment.

  8. SHIFTX2: significantly improved protein chemical shift prediction.

    PubMed

    Han, Beomsoo; Liu, Yifeng; Ginzinger, Simon W; Wishart, David S

    2011-05-01

    A new computer program, called SHIFTX2, is described which is capable of rapidly and accurately calculating diamagnetic (1)H, (13)C and (15)N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain chemical shifts (up to 6×) than many other shift predictors. In particular, SHIFTX2 is able to attain correlation coefficients between experimentally observed and predicted backbone chemical shifts of 0.9800 ((15)N), 0.9959 ((13)Cα), 0.9992 ((13)Cβ), 0.9676 ((13)C'), 0.9714 ((1)HN), 0.9744 ((1)Hα) and RMS errors of 1.1169, 0.4412, 0.5163, 0.5330, 0.1711, and 0.1231 ppm, respectively. The correlation between SHIFTX2's predicted and observed side chain chemical shifts is 0.9787 ((13)C) and 0.9482 ((1)H) with RMS errors of 0.9754 and 0.1723 ppm, respectively. SHIFTX2 is able to achieve such a high level of accuracy by using a large, high quality database of training proteins (>190), by utilizing advanced machine learning techniques, by incorporating many more features (χ(2) and χ(3) angles, solvent accessibility, H-bond geometry, pH, temperature), and by combining sequence-based with structure-based chemical shift prediction techniques. With this substantial improvement in accuracy we believe that SHIFTX2 will open the door to many long-anticipated applications of chemical shift prediction to protein structure determination, refinement and validation. SHIFTX2 is available both as a standalone program and as a web server ( http://www.shiftx2.ca ). PMID:21448735

  9. Calculations of NMR chemical shifts with APW-based methods

    NASA Astrophysics Data System (ADS)

    Laskowski, Robert; Blaha, Peter

    2012-01-01

    We present a full potential, all electron augmented plane wave (APW) implementation of first-principles calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach [Pickard and Mauri, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.63.245101 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids and molecules with available published data.

  10. Ab initio theory of NMR chemical shifts in solids

    SciTech Connect

    Louie, S.G. |

    1997-12-31

    A new formalism for ab initio calculation of the orbital magnetic susceptibility and the NMR chemical shifts in solids and liquids is presented. The approach can be applied to periodic systems such as crystals, surfaces or polymers, and with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. The formalism is based on the density functional theory in the local density approximation and makes use of a generalized f-sum rule to eliminate the divergent terms that plagued previous theories. Calculations have been successfully carried out for the diamagnetic susceptibility of a number of insulators and for the NMR chemical shifts of a variety of systems including free molecules, ionic crystals, hydrogen-bonded materials and amorphous carbon.

  11. Chemical Shift Induced Phase Errors in Phase Contrast MRI

    PubMed Central

    Middione, Matthew J.; Ennis, Daniel B.

    2012-01-01

    Phase contrast magnetic resonance imaging (PC-MRI) is subject to numerous sources of error, which decrease clinical confidence in the reported measures. This work outlines how stationary perivascular fat can impart a significant chemical shift induced PC-MRI measurement error using computational simulations, in vitro, and in vivo experiments. This chemical shift error does not subtract in phase difference processing, but can be minimized with proper parameter selection. The chemical shift induced phase errors largely depend on both the receiver bandwidth (BW) and the TE. Both theory and an in vivo comparison of the maximum difference in net forward flow between vessels with and without perivascular fat indicated that the effects of chemically shifted perivascular fat are minimized by the use of high BW (814 Hz/px) and an in-phase TE (HBW-TEIN). In healthy volunteers (N=10) HBW-TEIN significantly improves intrapatient net forward flow agreement compared to low BW (401 Hz/px) and a mid-phase TE as indicated by significantly decreased measurement biases and limits of agreement for the ascending aorta (1.8±0.5 mL vs. 6.4±2.8 mL, P=0.01), main pulmonary artery (2.0±0.9 mL vs. 11.9±5.8 mL, P=0.04), the left pulmonary artery (1.3±0.9 mL vs. 5.4±2.5 mL, P=0.003), and all vessels (1.7±0.8 mL vs. 7.2±4.4 mL, P=0.001). PMID:22488490

  12. Chemical-shift MRI of exogenous lipoid pneumonia

    SciTech Connect

    Cox, J.E.; Choplin, R.H.; Chiles, C.

    1996-05-01

    Exogenous lipoid pneumonia results from the aspiration or inhalation of fatty substances, such as mineral oil found in laxatives or nasal medications containing liquid paraffin. We present standard and lipid-sensitive (chemical-shift) MR findings in a patient with histologically confirmed lipoid pneumonia. The loss of signal intensity in an area of airspace disease on opposed-phase imaging was considered specific for the presence of lipid. 14 refs., 3 figs.

  13. Chemical shift referencing in MAS solid state NMR

    NASA Astrophysics Data System (ADS)

    Morcombe, Corey R.; Zilm, Kurt W.

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than ±0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.

  14. Chemical shift referencing in MAS solid state NMR.

    PubMed

    Morcombe, Corey R; Zilm, Kurt W

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported. PMID:12810033

  15. Chemical shifts of small heterogeneous Ar/Xe clusters

    SciTech Connect

    Lindblad, A.; Rander, T.; Bradeanu, I.; Oehrwall, G.; Bjoerneholm, O.; Mucke, M.; Ulrich, V.; Lischke, T.; Hergenhahn, U.

    2011-03-15

    Heterogeneous rare-gas clusters produced by a coexpansion of an argon/xenon mixture have been studied using synchrotron-radiation-based photoelectron spectroscopy. Both valence and Xe 4d{sub 5/2} core-level photoelectron spectra were recorded for three different concentrations of the primary argon/xenon mixture and, for those mixtures, spectra were recorded at several different stagnation conditions. The studied size regime of the mixed clusters ranges from large, similar to those studied in an earlier paper [Phys. Rev. A 69, 031210(R) (2004)], to very small--as reflected in the cluster line shapes and chemical shifts. The chemical shifts obtained from a curve fitting procedure similar to that used in our earlier paper are discussed in terms of the mixed cluster structure which can be expected from equilibrium considerations and the Lennard-Jones parameters of the constituent atoms. Molecular dynamics simulations of the vertical polarization shifts allow more specific assignments of ''on-top'' sites and interfacial sites.

  16. Errors of fourier chemical-shift imaging and their corrections

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyue; Bolinger, Lizann; Subramanian, V. Harihara; Leigh, John S.

    From a finite and discrete Fourier transform point of view, we discuss the sources of localization errors in Fourier chemical-shift imaging, and demonstrate them explicitly by computer simulations for simple cases. Errors arise from intravoxel dephasing and the intravoxel asymmetry. The spectral leakage due to intravoxel dephasing is roughly 6-8% from one voxel to one of its nearest neighbors. Neighbors further away are influenced less significantly. The loss of localization due to intravoxel asymmetry effect is also severe. Fortunately, these errors can be corrected under certain conditions. The method for correcting the errors by postprocessing the data is described.

  17. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  18. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  19. Protein Dielectric Constants Determined from NMR Chemical Shift Perturbations

    PubMed Central

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P.; E., Bertrand García-Moreno; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2015-01-01

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatics calculations are essential for this purpose, but their use have been limited by a long-standing discussion on which value to use for the dielectric constants (εeff and εp) required in Coulombic models and Poisson-Boltzmann models. The currently used values for εeff and εp are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for εeff and εp by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in fourteen proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (εeff) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (εp) rangedsfrom 2-5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders, and how different it is from the εp of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of εp = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pKa values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable εp common to most folded proteins. PMID:24124752

  20. Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation

    PubMed Central

    Vila, Jorge A.; Aramini, James M.; Rossi, Paolo; Kuzin, Alexandre; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Tong, Liang; Montelione, Gaetano T.; Scheraga, Harold A.

    2008-01-01

    A recently determined set of 20 NMR-derived conformations of a 48-residue all-α-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed 13Cα chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed 13Cα chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed 13Cα chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-Å resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed 13Cα chemical shifts in solution than the 3BHP crystal structure. In addition, the 13Cα-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures. PMID:18787110

  1. A Simple and Fast Approach for Predicting 1H and 13C Chemical Shifts: Toward Chemical Shift-Guided Simulations of RNA

    PubMed Central

    2014-01-01

    We introduce a simple and fast approach for predicting RNA chemical shifts from interatomic distances that performs with an accuracy similar to existing predictors and enables the first chemical shift-restrained simulations of RNA to be carried out. Our analysis demonstrates that the applied restraints can effectively guide conformational sampling toward regions of space that are more consistent with chemical shifts than the initial coordinates used for the simulations. As such, our approach should be widely applicable in mapping the conformational landscape of RNAs via chemical shift-guided molecular dynamics simulations. The simplicity and demonstrated sensitivity to three-dimensional structure should also allow our method to be used in chemical shift-based RNA structure prediction, validation, and refinement. PMID:25255209

  2. Automated determination of chemical functionalisation addition routes based on magnetic susceptibility and nucleus independent chemical shifts

    NASA Astrophysics Data System (ADS)

    Van Lier, G.; Ewels, C. P.; Geerlings, P.

    2008-07-01

    We present a modified version of our previously reported meta-code SACHA, for systematic analysis of chemical addition. The code automates the generation of structures, running of quantum chemical codes, and selection of preferential isomers based on chosen selection rules. While the selection rules for the previous version were based on the total system energy, predicting purely thermodynamic addition patterns, we examine here the possibility of using other system parameters, notably magnetic susceptibility as a descriptor of global aromaticity, and nucleus independent chemical shifts (NICS) as local aromaticity descriptor.

  3. Pitfalls of adrenal imaging with chemical shift MRI.

    PubMed

    Schieda, N; Al Dandan, O; Kielar, A Z; Flood, T A; McInnes, M D F; Siegelman, E S

    2014-11-01

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors. PMID:25062926

  4. Applications of Chemical Shift Imaging to Marine Sciences

    PubMed Central

    Lee, Haakil; Tikunov, Andrey; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The successful applications of magnetic resonance imaging (MRI) in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT) or positron emission (PET) scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS). MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H) including carbon (13C) or phosphorus (31P). In vivo MR spectra can be obtained from single region of interest (ROI or voxel) or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI). Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism. PMID:20948912

  5. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets.

    PubMed

    Aeschbacher, Thomas; Schubert, Mario; Allain, Frédéric H-T

    2012-02-01

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of (13)C NMR data of RNAs. Our procedure uses five (13)C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the (13)C calibration and detect errors or inconsistencies in RNA (13)C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-(13)C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable (13)C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of (13)C chemical shift data. This is demonstrated by a clear relationship between ribose (13)C shifts and the sugar pucker, which can be used to predict a C2'- or C3'-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA. PMID:22252483

  6. Scanning acoustic microscopy of SCS-6 silicon carbide fiber

    SciTech Connect

    Sathish, S.; Cantrell, J.H.; Yost, W.T.

    1996-01-01

    Scanning acoustic microscopy of SCS-6 silicon carbide fiber reveals large radial variations in acoustic reflectivity associated with the chemical composition and microstructure of a given fiber region. Rayleigh wave fringe patterns observed in each of five subregions are used to calculate the average Young modulus of that subregion. The Young modulus is found to increase monotonically from 40 GPa in the carbon core to a value of 413 GPa in the stoichiometric SiC region. The effective Young modulus of the fiber as a whole is estimated from the moduli of the individual regions and it is compared with mechanical measurements reported in the literature.

  7. Microchemical analysis of the SCS-6 silicon carbide fiber

    SciTech Connect

    Ning, Xian Jie; Pirouz, P. . Dept. of Materials Science and Engineering); Farmer, S.C. )

    1993-08-01

    A detailed quantitative study of the microstructural variation of chemical composition of chemically vapor-deposited commercial SiC SCS-6 fiber is presented. Chemical etching and various electron-optical techniques including scanning electron microscopy, transmission electron microscopy scanning Auger microscopy, Auger electron spectroscopy, and parallel electron energy loss spectroscopy are used to analyze the chemical composition of the as-received fiber. In addition, some results on stereology of the high-temperature annealed fiber are presented. The results show that the carbon-to-silicon atom ratio in the SiC layers decreases in a stepwise fashion from [approximately] 3:2 to [approximately] 1:1 in going from the innermost layer to the outermost layer.

  8. Microchemical analysis of the SCS-6 silicon carbide fiber

    NASA Technical Reports Server (NTRS)

    Ning, Xian-Jie; Pirouz, Pirouz; Farmer, Serene C.

    1993-01-01

    A detailed quantitative study of the microstructural variation of chemical composition of chemically vapor-deposited commercial SiC SCS-6 fiber is presented. Chemical etching and various electron-optical techniques including SEM, TEM, scanning Auger microscopy, AES, and parallel electron energy loss spectroscopy are used to analyze the chemical composition of the as-received fiber. In addition, some results on stereology of the high-temperature annealed fiber are presented. The results show that the carbon-to-silicon atom ratio in the SiC layers decreases in a stepwise fashion from about 3:2 to about 1:1 in going from the innermost layer to the outermost layer.

  9. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  10. The nature and origin of chemical shift for intracellular water nuclei in artemia cysts.

    PubMed

    Kasturi, S R; Hazlewood, C F; Yamanashi, W S; Dennis, L W

    1987-08-01

    We investigated the possible existence of chemical shift of water nuclei in Artemia cysts using high resolution nuclear magnetic resonance (NMR) methods. The results conducted at 60, 200, and 500 MHz revealed an unusually large chemical shift for intracellular water protons. After correcting for bulk susceptibility effects, a residual downfield chemical shift of 0.11 ppm was observed in fully hydrated cysts. Similar results have been observed for the deuterium and (17)O nuclei.We have ruled out unusual intracellular pH, diamagnetic susceptibility of intracellular water, or interaction of water molecules with lipids, glycerol, and/or trehalose as possible origins of the residual chemical shift. We conclude that the residual chemical shift observed for water nuclei ((1)H, (2)H, and (17)O) is due to significant water-macromolecular interactions. PMID:19431702

  11. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  12. Relativistically corrected nuclear magnetic resonance chemical shifts calculated with the normalized elimination of the small component using an effective potential-NMR chemical shifts of molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-07-01

    A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.

  13. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  14. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of (129) Xe.

    PubMed

    Jeong, Keunhong; Slack, Clancy C; Vassiliou, Christophoros C; Dao, Phuong; Gomes, Muller D; Kennedy, Daniel J; Truxal, Ashley E; Sperling, Lindsay J; Francis, Matthew B; Wemmer, David E; Pines, Alexander

    2015-12-01

    Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca(2+) , Cu(2+) , Ce(3+) , Zn(2+) , Cd(2+) , Ni(2+) , Co(2+) , Cr(2+) , Fe(3+) , and Hg(2+) are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of (129) Xe. These sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs. PMID:26376768

  15. Generation of heteronuclear 13C 1H chemical-shift correlations using soft pulses

    NASA Astrophysics Data System (ADS)

    Doddrell, David M.; Brooks, William; Field, James; Lynden-Bell, R. M.

    Two multipulse sequences are analyzed which can be used to generate heteronuclear 13C, 1H chemical-shift correlations without 2D NMR techniques. Both sequences utilize polarization-transfer techniques and generate the required chemical-shift correlation using a single soft proton pulse. The most useful technique is an extension of the DEPT method of polarization transfer since not only are the chemical-shift correlations generated in an easy to interpret form, but depending on the specific form of the pulse train used, the method can be employed to obtain information on the CH n group multiplicity. The methods are illustrated by applying them to generate 13C, 1H chemical-shift correlation spectra for menthol and cholesterol.

  16. An Improved Experiment to Illustrate the Effect of Electronegativity on Chemical Shift.

    ERIC Educational Resources Information Center

    Boggess, Robert K.

    1988-01-01

    Describes a method for using nuclear magnetic resonance to observe the effect of electronegativity on the chemical shift of protons in similar compounds. Suggests the use of 1,3-dihalopropanes as samples. Includes sample questions. (MVL)

  17. Chemical shifts and coupling constants of C8H10N4O2

    NASA Astrophysics Data System (ADS)

    Jain, M.

    This document is part of Subvolume D3 `Chemical Shifts and Coupling Constants for Carbon-13: Heterocycles' of Volume 35 `Nuclear Magnetic Resonance (NMR) Data' of Landolt-Börnstein Group III `Condensed Matter'

  18. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    PubMed

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  19. An efficient amplification pulse sequence for measuring chemical shift anisotropy under fast magic-angle spinning.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2011-12-01

    A two-dimensional experiment for measuring chemical shift anisotropy (CSA) under fast magic-angle spinning (MAS) is presented. The chemical shift anisotropy evolution is amplified by a sequence of π-pulses that repetitively interrupt MAS averaging. The amplification generates spinning sideband manifolds in the indirect dimension separated by the isotropic shift along the direct dimension. The basic unit of the pulse sequence is designed based on the magic-angle turning experiment and can be concatenated for larger amplification factors. PMID:21962909

  20. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case. PMID:26574272

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  2. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    PubMed Central

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  3. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  4. Solvation chemical shifts of perylenic antenna molecules from molecular dynamics simulations.

    PubMed

    Özcan, Nergiz; Mareš, Jiří; Sundholm, Dage; Vaara, Juha

    2014-10-28

    Solvation-induced shifts in molecular properties can be realistically simulated by employing a dynamic model with explicit solvent molecules. In this work, (13)C NMR chemical shifts of various candidate antenna molecules for dye-sensitised solar cells have been studied by using density-functional theory calculations both in vacuo and by employing a dynamic solvation model. The solvent effects were investigated using instantaneous molecular dynamics snapshots containing the antenna molecule and surrounding acetonitrile solvent molecules. Such calculations take into account the main mechanisms of solvation-induced chemical shifts. We have analysed the contributions to the solvent shift due to the solvent susceptibility anisotropy, changes in the density of the virtual orbital space and the accessibility of the excited states to the pronouncedly local magnetic hyperfine operator. We present Lorentzian-broadened chemical shift stick spectra in which a comparison of the in vacuo and dynamic-solvation model results is graphically illustrated. The results show that the solvent-accessible atoms at the perimeter of the solute are influenced by the virtual states of the solvent molecules, which are visible to the hyperfine operators of the perimeter nuclei. This enables efficient coupling of the ground state of the solute to the magnetically allowed excited states, resulting in a positive chemical shift contribution of the perimeter nuclei. As a result of solvation, the chemical shift signals of perimeter nuclei are found to be displaced towards larger chemical shift values, whereas the nuclei of the inner region of the solute molecules show the opposite trend. The solvent susceptibility anisotropy is found to cause a small and practically constant contribution. PMID:25222796

  5. Method for evaluating chemical shifts of x-ray emission lines in molecules and solids

    NASA Astrophysics Data System (ADS)

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-12-01

    A method of evaluating chemical shifts of x-ray emission lines for period four and heavier elements is developed. This method is based on the relativistic pseudopotential model and one-center restoration approach [Int. J. Quantum Chem.IJQCB20020-760810.1002/qua.20418 104, 223 (2005)] to recover a proper electronic structure in heavy-atom cores after the pseudopotential simulation of chemical compounds. The approximations of instantaneous transition and frozen core are presently applied to derive an expression for chemical shift as a difference between mean values of certain effective operator. The method allows one to avoid evaluation of small quantities (chemical shifts ˜0.01-1 eV) as differences of very large values (transition energies ˜1-100 keV in various compounds). The results of our calculations of chemical shifts for the Kα1, Kα2, and L transitions of group-14 metal cations with respect to neutral atoms are presented. Calculations of Kα1-line chemical shifts for the Pb core transitions in PbO and PbF2 with respect to those in the Pb atom are also performed and discussed. The accuracy of approximations used is estimated and the quality of the calculations is analyzed.

  6. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.

    PubMed

    Neal, Stephen; Nip, Alex M; Zhang, Haiyan; Wishart, David S

    2003-07-01

    A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts--RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 A) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of approximately 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (<1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Halpha), 0.980 (13Calpha), 0.996 (13Cbeta), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http

  7. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  8. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2015-07-01

    The main factors affecting the accuracy and computational cost of the Second-order Möller-Plesset perturbation theory (MP2) calculation of (77) Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390-466 ppm) dominates over diamagnetic term (192-198 ppm) resulting in a total shielding relativistic correction of about 230-260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70-80 ppm. In the (77) Se NMR chemical shifts scale, relativistic corrections are about 20-30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of (77) Se NMR chemical shifts of the medium-sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of (77) Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. PMID:25998325

  9. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  10. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  11. The microstructures of SCS-6 and SCS-8 SiC reinforcing fibers

    SciTech Connect

    Sattler, M.L.; Kinney, J.H.; Zywicz, E. ); Alani, R. ); Nichols, M.C. )

    1992-01-01

    The microstructures of SCS-6 and SCS-8 SiC fibers have been examined and analyzed using high resolution transmission electron microscopy (HRTEM), microdiffraction, parallel electron energy loss spectroscopy (PEELS), x-ray diffraction and x-ray spectroscopy. The results of the study confirm findings from earlier studies wherein the microstructure of the fibers have been described as consisting of {beta}-SiC grown upon a monofilament turbostratic carbon core. The present study, however, provides much more detail regarding this microstructure. For example, PEELS spectroscopy and x-ray microscopy indicate that the composition of the SiC varies smoothly from SiC plus free C near the carbon core to SiC at the midradial boundary. The SiC stoichiometry is roughly preserved from the midradial boundary to the exterior interface. HRTEM, microdiffraction, and dark field images provide evidence that the excess carbon is amorphous free carbon which is most likely situated at the grain boundaries of the SiC. The x-ray microscopy results are also consistent with the presence of two phases near the core which consist of SiC and free carbon having density less than graphite (2.25 g/cc). This complex microstructure may explain the recent observations of nonplanar failure in composites fabricated with SCS fibers.

  12. NMR Hyperfine Shifts in Blue Copper Proteins: A Quantum Chemical Investigation

    PubMed Central

    Zhang, Yong; Oldfield, Eric

    2009-01-01

    We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or ~4.7% of the overall ~860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement. PMID:18314973

  13. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  14. (77)Se chemical shift tensor of L-selenocystine: experimental NMR measurements and quantum chemical investigations of structural effects.

    PubMed

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-03-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine's specialized biological roles, it is of interest to examine their (77)Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state (77)Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information on selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on (77)Se L-selenocystine's chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10-20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of -180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. -90°, the energy costs to alter the dihedral angle in the range from -120° to -60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. (77)Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272 ± 30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3-9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results suggest

  15. 77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects

    PubMed Central

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-01-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine’s specialized biological roles, it is of interest to examine their 77Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state 77Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information of selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on 77Se L-selenocystine’s chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10–20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of −180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. −90°, the energy costs to alter the dihedral angle in the range from −120° to −60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. 77Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272±30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3–9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results

  16. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.

    PubMed

    Vícha, Jan; Patzschke, Michael; Marek, Radek

    2013-05-28

    A methodology for optimizing the geometry and calculating the NMR shielding constants is calibrated for octahedral complexes of Pt(IV) and Ir(III) with modified nucleic acid bases. The performance of seven different functionals (BLYP, B3LYP, BHLYP, BP86, TPSS, PBE, and PBE0) in optimizing the geometry of transition-metal complexes is evaluated using supramolecular clusters derived from X-ray data. The effects of the size of the basis set (ranging from SVP to QZVPP) and the dispersion correction (D3) on the interatomic distances are analyzed. When structural deviations and computational demands are employed as criteria for evaluating the optimizations of these clusters, the PBE0/def2-TZVPP/D3 approach provides excellent results. In the next step, the PBE0/def2-TZVPP approach is used with the continuum-like screening model (COSMO) to optimize the geometry of single molecules for the subsequent calculation of the NMR shielding constants in solution. The two-component zeroth-order regular approximation (SO-ZORA) is used to calculate the NMR shielding constants (PBE0/TZP/COSMO). The amount of exact exchange in the PBE0 functional is validated for the nuclear magnetic shieldings of atoms in the vicinity of heavy transition metals. For the PBE0/TZP/COSMO setup, an exact exchange of 40% is found to accurately reproduce the experimental NMR shielding constants for both types of complexes. Finally, the effect of the amount of exact exchange on the NMR shielding calculations (which is capable of compensating for the structural deficiencies) is analyzed for various molecular geometries (SCS-MP2, BHLYP, and PBE0) and the influence of a trans-substituent on the NMR chemical shift of nitrogen is discussed. The observed dependencies for an iridium complex cannot be rationalized by visualizing the Fermi-contact (FC) induced spin density and probably originate from changes in the d-d transitions that modulate the spin-orbit (SO) part of the SO/FC term. PMID:23598437

  17. Sequential nearest-neighbor effects on computed 13Cα chemical shifts

    PubMed Central

    Vila, Jorge A.; Serrano, Pedro; Wüthrich, Kurt

    2010-01-01

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical 13Cα chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed 13Cα chemical shifts, Δca,i, for the individual residues along the sequence. This indicates that the Δca,i -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures. PMID:20644980

  18. Proton Magnetic Resonance and Human Thyroid Neoplasia III. Ex VivoChemical-Shift Microimaging

    NASA Astrophysics Data System (ADS)

    Rutter, Allison; Künnecke, Basil; Dowd, Susan; Russell, Peter; Delbridge, Leigh; Mountford, Carolyn E.

    1996-03-01

    Magnetic-resonance chemical-shift microimaging, with a spatial resolution of 40 × 40 μm, is a modality which can detect alterations to cellular chemistry and hence markers of pathological processes in human tissueex vivo.This technique was used as a chemical microscope to assess follicular thyroid neoplasms, lesions which are unsatisfactorily investigated using standard histopathological techiques or water-based magnetic-resonance imaging. The chemical-shift images at the methyl frequency (0.9 ppm) identify chemical heterogeneity in follicular tumors which are histologically homogeneous. The observed changes to cellular chemistry, detectable in foci of approximately 100 cells or less, support the existence of a preinvasive state hitherto unidentified by current pathological techniques.

  19. The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.

    PubMed

    Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M

    2016-07-18

    High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. PMID:27282319

  20. Use of 13Cα Chemical-Shifts in Protein Structure Determination

    PubMed Central

    Vila, Jorge A.; Ripoll, Daniel R.; Scheraga, Harold A.

    2008-01-01

    A physics-based method, aimed at determining protein structures by using NOE-derived distances together with observed and computed 13C chemical shifts, is proposed. The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to obtain torsional constraints for all backbone and side-chain torsional angles without making a priori use of the occupancy of any region of the Ramachandran map by the amino acid residues. The torsional constraints are not fixed but are changed dynamically in each step of the procedure, following an iterative self-consistent approach intended to identify a set of conformations for which the computed 13Cα chemical shifts match the experimental ones. A test is carried out on a 76-amino acid all-α-helical protein, namely the B. Subtilis acyl carrier protein. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than an existing NMR-derived structure model of this protein, in terms of both the agreement between predicted and observed 13Cα chemical shifts and some stereochemical quality indicators, and of similar accuracy as one of the protein models solved at a high level of resolution. The results provide evidence that this methodology can be used not only for structure determination but also for additional protein structure refinement of NMR-derived models deposited in the Protein Data Bank. PMID:17516673

  1. Chemical shifts in transition metal dithiocarbamates from infrared and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Payne, R.; Magee, R. J.; Liesegang, J.

    1982-11-01

    Measurements of the IR stretching frequencies of the NC and MS bonds in transition-metal (M) dithiocarbamates show significant correlation with measurement of core level XPS chemical shifts. This is believed to be the first demonstration of such a correlation for a series of solid-phase compounds.

  2. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  3. Compressed sensing for chemical shift-based water-fat separation.

    PubMed

    Doneva, Mariya; Börnert, Peter; Eggers, Holger; Mertins, Alfred; Pauly, John; Lustig, Michael

    2010-12-01

    Multi echo chemical shift-based water-fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water-fat separation from undersampled data (CS-WF), which combines compressed sensing and chemical shift-based water-fat separation. Undersampling was applied in the k-space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS-WF reconstruction to improve the water-fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three-echo water-fat imaging. The method is demonstrated on knee and abdominal in vivo data. PMID:20859998

  4. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts

    PubMed Central

    YongE, Feng; GaoShan, Kou

    2015-01-01

    Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew’s correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin. PMID:26422468

  5. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  6. A geometrical parametrization of C1'-C5' RNA ribose chemical shifts calculated by density functional theory

    NASA Astrophysics Data System (ADS)

    Suardíaz, Reynier; Sahakyan, Aleksandr B.; Vendruscolo, Michele

    2013-07-01

    It has been recently shown that NMR chemical shifts can be used to determine the structures of proteins. In order to begin to extend this type of approach to nucleic acids, we present an equation that relates the structural parameters and the 13C chemical shifts of the ribose group. The parameters in the equation were determined by maximizing the agreement between the DFT-derived chemical shifts and those predicted through the equation for a database of ribose structures. Our results indicate that this type of approach represents a promising way of establishing quantitative and computationally efficient analytical relationships between chemical shifts and structural parameters in nucleic acids.

  7. Experimental link between the /sup 13/C NMR chemical shift of carbonyl carbons and the energy shifts observed in the n. -->. 3s optical transition of cyclic ketones

    SciTech Connect

    Cornish, T.J.; Baer, T.

    1988-09-14

    The n ..-->.. 3s transition energies of cold methylcyclopentanones and -cyclohexanones, as well as those of some branched-chain and bicyclic ketones, have been measured with 2 + 1 resonance-enhanced multiphoton ionization (REMPI). The energy shifts of the n ..-->.. 3s transition origins are found to correlate in a linear fashion with reported /sup 13/C NMR chemical shifts of the carbonyl carbon atoms. Several possible explanations for the experimental connection to NMR are discussed including consideration of both the paramagnetic and diamagnetic shielding contributions to the total chemical shift. 31 references, 3 figures, 1 table.

  8. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts

    SciTech Connect

    Aquino, Fredy W.; Pritchard, Ben; Autschbach, Jochen

    2012-02-14

    A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on ¹⁹⁹Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF₃ and NpF₆. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni π back-donation dominates the result, whereas for vanadocene, V to Cp σ donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.

  9. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    PubMed

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations. PMID:25502373

  10. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.

    PubMed

    Kupka, Teobald; Stachów, Michal; Stobiński, Leszek; Kaminský, Jakub

    2016-06-01

    (13)C NMR chemical shifts of selected finite-size models of pristine zigzag single walled carbon nanotubes (SWCNTs) with a diameter of ∼0.4-0.8nm and length up to 2.2nm were studied theoretically. Results for finite SWCNTs models containing 1, 4 and 10 adjacent bamboo-type units were compared with data obtained for infinite tubes in order to estimate the reliability of small finite models in predicting magnetic properties of real-size nanotubes and to assess their tube-length dependence. SWCNTs were fully optimized using unrestricted density functional theory (DFT-UB3LYP/6-31G*). Cyclacenes, as the shortest models of open-ended zigzag SWCNTs, with systematically varying diameter were calculated as well. GIAO NMR calculations on the SWCNT and cyclacene models were performed using the BHandH density functional combined with relatively small STO-3Gmag basis set, developed by Leszczyński and coworkers for accurate description of magnetic properties. Regular changes of carbon (13)C chemical shifts along the tube axis of real size (6, 0) and (9, 0) zigzag carbon nanotubes were shown. The (13)C NMR shifts according to increasing diameter calculated for zigzag (n, 0, n=5-10) cyclacenes followed the trends observed for zigzag (n, 0) SWCNTs. The results for 4-units long SWCNTs match reasonably well with the data obtained for infinite zigzag (n, 0) SWCNTs, especially to those with bigger diameter (n=8-15). The presence of rim hydrogens obviously affects theoretical (13)C chemical shieldings and shifts in cyclacenes and thus cyclacenes can provide only approximate estimation of (13)C NMR parameters of real-size SWCNTs. The NMR properties predicted for the longest 10-units long models of SWCNTs reliably correspond to results obtained for infinite nanotubes. They were thus able to accurately predict also recently reported experimental chemical shift of chiral (6, 5) SWCNT. PMID:27155813

  11. Hydrography synthesis using LANDSAT remote sensing and the SCS models

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Jackson, T. J.

    1976-01-01

    The land cover requirements of the Soil Conservation Service (SCS) Model used for hydrograph synthesis in urban areas were modified to be LANDSAT compatible. The Curve Numbers obtained with these alternate land cover categories compare well with those obtained in published example problems using the conventional categories. Emergency spillway hydrographs and synthetic flood frequency flows computed for a 21.1 sq. mi. test area showed excellent agreement between the conventional aerial photo-based and the Landsat-based SCS approaches.

  12. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  13. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.

    PubMed

    Kono, Hiroyuki; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi; Tajima, Kenji

    2016-10-01

    The chemical shifts of the substituent groups of sodium carboxymethyl cellulose (CMC) were assigned by examining a series of CMC samples with different degrees of substitution. Comparative analysis of the (1)H-(13)C heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra allowed the complete assignment of the substituent groups at the 2-, 3-, and 6-positions of the seven substituted monomers comprising the CMC chains, namely, 2-mono-, 3-mono-, 6-mono-, 2,3-di-, 2,6-di-, 3,6-di-, and 2,3,6-tri-substituted anhydroglucose units (AGUs). In addition, the mole fractions of the monomers were determined by lineshape analysis of the carbonyl carbon resonances. The comparison between the chemical shifts of the substituents revealed strong interactions between 2- and 3-substituents in the same AGU, and showed that the steric hindrance by a substituent at the 2- or 3-position suppresses subsequent substitution at the adjacent position. PMID:27312635

  14. Assignment of protein backbone resonances using connectivity, torsion angles and 13Calpha chemical shifts.

    PubMed

    Morris, Laura C; Valafar, Homayoun; Prestegard, James H

    2004-05-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just (13)C(alpha) chemical shifts (delta((13)C(alpha))) and data restricting the phi and psi backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in delta((13)C(alpha)), phi, and psi space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and (13)C(alpha) chemical shift data are available. PMID:15017135

  15. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    PubMed

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  16. Characterization of Tricoordinate Boron Chemical Shift Tensors: Definitive High-Field

    SciTech Connect

    Bryce, David L.; Wasylishen, Roderick E.; Gee, Myrlene

    2001-01-01

    Despite the large known chemical shift (CS) range for boron and the large number of 11B NMR studies of glasses, no boron CS tensors have been characterized to date. We report the application of solid-state NMR techniques at moderate (9.4 T) and high (17.63 T) applied magnetic field strengths to the characterization of the boron CS tensors in trimesitylborane (BMes3) and triphenyl borate (B(OPh)3). The boron CS tensor of the former compound exhibits a remarkably large span,? 121 1 ppm, which encompasses the known range of isotropic chemical shifts for tricoordinate boron compounds. Conversely, the effect of the boron CS tensor on the 11B NMR spectra of B(OPh)3 is difficult to observe and quantify even at field strengths as high

  17. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  18. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Liu, Shuling; Zhang, Shengwan; Li, Shengshi Z.

    2007-07-01

    Quantitative relationships of the 31P NMR chemical shifts of the phosphorus atoms in 291 phosphines with the atomic ionicity index (INI) and stereoscopic effect parameters ( ɛα, ɛβ, ɛγ) were primarily investigated in this paper for modeling some fundamental quantitative structure-spectroscopy relationships (QSSR). The results indicated that the 31P NMR chemical shifts of phosphines can be described as the quantitative equation by multiple linear regression (MLR): δp (ppm) = -174.0197 - 2.6724 INI + 40.4755 ɛα + 15.1141 ɛβ - 3.1858 ɛγ, correlation coefficient R = 0.9479, root mean square error (rms) = 13.9, and cross-validated predictive correlation coefficient was found by using the leave-one-out procedure to be Q2 = 0.8919. Furthermore, through way of random sampling, the estimative stability and the predictive power of the proposed MLR model were examined by constructing data set randomly into both the internal training set and external test set of 261 and 30 compounds, respectively, and then the chemical shifts were estimated and predicted with the training correlation coefficient R = 0.9467 and rms = 13.4 and the external predicting correlation coefficient Qext = 0.9598 and rms = 10.8. A partial least square model was developed that produced R = 0.9466, Q = 0.9407 and Qext = 0.9599, respectively. Those good results provided a new, simple, accurate and efficient methodology for calculating 31P NMR chemical shifts of phosphines.

  19. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  20. Relativistic DFT Calculation of (119)Sn Chemical Shifts and Coupling Constants in Tin Compounds.

    PubMed

    Bagno, Alessandro; Casella, Girolamo; Saielli, Giacomo

    2006-01-01

    The nuclear shielding and spin-spin coupling constants of (119)Sn in stannane, tetramethylstannane, methyltin halides Me4-nSnXn (X = Cl, Br, I; n = 1-3), tin halides, and some stannyl cations have been investigated computationally by DFT methods and Slater all-electron basis sets, including relativistic effects by means of the zeroth order regular approximation (ZORA) method up to spin-orbit coupling. Calculated (119)Sn chemical shifts generally correlate well with experimental values, except when several heavy halogen atoms, especially iodine, are bound to tin. In such cases, calculated chemical shifts are almost constant at the scalar (spin-free) ZORA level; only at the spin-orbit level is a good correlation, which holds for all compounds examined, attained. A remarkable "heavy-atom effect", analogous to that observed for analogous alkyl halides, is evident. The chemical shift of the putative stannyl cation (SnH3(+)) has also been examined, and it is concluded that the spectrum of the species obtained in superacids is inconsistent with a simple SnH3(+) structure; strong coordination to even weak nucleophiles such as FSO3H leads to a very satisfactory agreement. On the contrary, the calculated (119)Sn chemical shift of the trimesitylstannyl cation is in very good agreement with the experimental value. Coupling constants between (119)Sn and halogen nuclei are also well-modeled in general (taking into account the large uncertainties in the experimental values); relativistic spin-orbit effects are again quite evident. Couplings to (13)C and (1)H also fall, on the average, on the same correlation line, but individual values show a significant deviation from the expected unit slope. PMID:26626377

  1. 14N Chemical Shifts and Quadrupole Coupling Constants of Inorganic Nitrates

    NASA Astrophysics Data System (ADS)

    Marburger, Simon P.; Fung, B. M.; Khitrin, A. K.

    2002-02-01

    The isotropic chemical shift and the nuclear quadrupole coupling constant for 14N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO3, Al(NO3)3, Ba(NO3)2, Ca(NO3)2, CsNO3, KNO3, LiNO3, Mg(NO3)2, NaNO3, Pb(NO3)2, RbNO3, Sr(NO3)2, Th(NO3)4·4H2O, and UO2(NO3)2·3H2O. Even though the spectra show broadening due to 14N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH4Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO3 to 993 kHz for LiNO3. These data are compared with those available in the literature.

  2. Modeling proteins using a super-secondary structure library and NMR chemical shift information

    PubMed Central

    Menon, Vilas; Vallat, Brinda; Dybas, Joseph M.; Fiser, Andras

    2013-01-01

    Summary A remaining challenge in protein modeling is to predict structures for sequences that do not share recognizable sequence similarity to any experimentally solved structure. This challenge can be addressed by hybrid algorithms that utilize easily obtainable experimental data and carry a limited amount of indirect structural information. Based on earlier observations, the library of protein super-secondary structure motifs (Smotifs) saturated about a decade ago, and new folds discovered since then are novel combinations of existing Smotifs. This observation suggests that it should be possible to build any structure, of either a known or yet to be discovered fold, from a combination of existing Smotifs derived from already known structures. In the absence of any sequence similarity signal, limited experimental data can be used to relate the backbone conformations of Smotifs between target proteins and known experimental structures. Here we present a modeling algorithm that relies on an exhaustive Smotif library and on NMR chemical shift patterns without any input of primary sequence information. In a test of 102 proteins with unique folds, the algorithm delivered 90 homology model quality models, among them 24 high quality ones, and a topologically correct solution for almost all cases. Detailed analysis of the method’s performance suggests that further improvement can be achieved by improving sampling algorithms and developing more precise tools that predict dihedral angle preferences from chemical shift assignments. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available. PMID:23685209

  3. Self-change strategies in smokers and former smokers: Spanish adaptation of the SCS-CS and SCS-FS.

    PubMed

    Carballo, José Luis; Secades-Villa, Roberto; Fernández-Hermida, José Ramón; García-Rodríguez, Olaya; Bobes-Bascarán, Ma Teresa

    2009-11-01

    The purpose of this study was to validate and adapt the Self-Change Strategies in Current Smokers (SCS-CS) and the Self-Change Strategies in Former Smokers (SCS-FS) (Christie & Etter, 2005) to the Spanish population. We also wished to analyze the differences in the self-change strategies used as a function of gender. Participants were 370 subjects (190 smokers and 180 former smokers) who were recruited by means of the "snowball" method. The alpha coefficients for the SCS-CS and the SCS-FS were .86 and .87, respectively. Both scales present satisfactory psychometric properties, so they are shown to be useful instruments to use in the Spanish population. The SCS-CS score showed that male smokers used more self-change strategies than females (46.6 vs. 11.9, p < .01), specifically, more cognitive strategies. In the SCS-CS, men scored higher than women (49 vs. 12.08, p < .01), in both the group of cognitive and behavioral strategies. The psychological mechanisms used to control the smoking habit are the same in men as in women, but the men tend to use a larger number of strategies. Treatments to quit smoking do not need to be substantially different, but they should be more intensive in the case of women smokers. PMID:19899681

  4. Measurement of proton chemical shifts in invisible states of slowly exchanging protein systems by chemical exchange saturation transfer.

    PubMed

    Bouvignies, Guillaume; Kay, Lewis E

    2012-12-13

    Chemical exchange saturation transfer (CEST) NMR spectroscopy has emerged as a powerful technique for studies of transiently formed, sparsely populated (excited) conformational states of protein molecules in slow exchange with a dominant structure. The most popular form of the experiment, and the version originally developed, uses a weak (1)H radio frequency field to perturb longitudinal magnetization of one state with the effect transferred to magnetization in the second conformation via chemical exchange. A significant limitation of the method for protein applications emerges from (1)H magnetization transfer via dipolar relaxation (NOE effect) that can severely complicate analysis of the resulting CEST profile. This is particularly an issue since the (1)H chemical shifts of the excited state, critical for structural studies of these elusive conformers, become difficult to extract. Here we present a method for measurement of these shifts via CEST experiments in which the NOE effect is not an issue. The methodology is illustrated through applications to a pair of exchanging systems where the results are cross-validated. PMID:23194058

  5. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules

    SciTech Connect

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T{sup 2}, which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T{sup n} with n = 2 and higher.

  6. Blue-shifted and picosecond amplified UV emission from aqueous chemical grown ZnO microrods

    NASA Astrophysics Data System (ADS)

    Empizo, Melvin John F.; Yamanoi, Kohei; Santos-Putungan, Alexandra B.; Arita, Ren; Minami, Yuki; Luong, Mui Viet; Shimizu, Toshihiko; Estacio, Elmer S.; Somintac, Armando S.; Salvador, Arnel A.; Sarmago, Roland V.; Sarukura, Nobuhiko

    2015-10-01

    Room-temperature amplified spontaneous emission (ASE) has been observed from aqueous chemical grown zinc oxide (ZnO) microrods. The well-faceted microrods have only a single narrow ultraviolet (UV) emission at 390 nm (3.2 eV) with average lifetimes as fast as 85-100 ps. The characteristic ASE also exhibits blue-shifted peaks and shortened lifetimes. At present, the peak shifting and the lifetime shortening are attributed to the band filling and photo-induced screening effects and to the nonradiative relaxation process, respectively. Results indicate that the ZnO microrods have good structural and optical quality which leads to their suitable use for optoelectronic applications.

  7. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  8. Direct detection of spin chemical potential shift through spin filtering effect

    NASA Astrophysics Data System (ADS)

    Miao, Guoxing; Moodera, Jagadeesh

    2010-03-01

    Spin filtering (SF) effect is a unique way to generate highly spin-polarized tunnel currents from nonmagnetic electrodes. Magnetic tunnel junctions based on pure SF effect have been realized recently [1] as a clear demonstration of principle for the spin manipulation through SF effect. The next challenge is the readout of spin information. In this work, we present the direct detection of the spin chemical potential shift in an Al nano cluster sandwiched between two SF EuS tunnel barriers. The spin channels are split by depositing Al directly onto EuS, and the indirect exchange interaction between the Al conduction electrons and the localized Eu 4f electrons gives rise to an effective Zeeman splitting with the strength of a few mV. EuS on the readout side is isolated from the Al clusters with a natural Al2O3 barrier. In a vertical measurement geometry with no transport current, we directly detected the spin dependent voltage levels by aligning the detection SF barrier parallel or antiparallel to the first SF barrier, corresponding to the equilibrium up- and down-spin chemical potentials. A simple analysis treating the barriers as a set of resistors revealed that the observed voltage difference is the actual chemical potential shift modulated by the SF efficiency.[4pt] [1] G.X. Miao, M. Muller, J.S. Moodera,PRL102,076601(2009)

  9. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    PubMed

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  10. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    PubMed Central

    Hong, Mei

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ~94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command

  11. Performance of Density Functional Models to Reproduce Observed 13Cα Chemical Shifts of Proteins in Solution

    PubMed Central

    Vila, Jorge A.; Baldoni, Héctor A.; Scheraga, Harold A.

    2009-01-01

    The purpose of this work is to test several density functional models (namely, OPBE, O3LYP, OPW91, BPW91, OB98, BPBE, B971, OLYP, PBE1PBE, and B3LYP) to determine their accuracy and speed for computing 13Cα chemical shifts in proteins. The test is applied to 10 NMR-derived conformations of the 76-residue α/β protein ubiquitin (protein data bank id 1D3Z). With each functional, the 13Cα shielding was computed for 760 amino acid residues by using a combination of approaches that includes, but is not limited to, treating each amino acid X in the sequence as a terminally blocked tripeptide with the sequence Ac-GXG-NMe in the conformation of the regularized experimental protein structure. As computation of the 13Cα chemical shifts, not their shielding, is the main goal of this work, a computation of the 13Cα shielding of the reference, namely, tetramethylsilane, is investigated here and an effective and a computed tetramethylsilane shielding value for each of the functionals is provided. Despite observed small differences among all functionals tested, the results indicate that four of them, namely, OPBE, OPW91, OB98, and OLYP, provide the most accurate functionals with which to reproduce observed 13Cα chemical shifts of proteins in solution, and are among the faster ones. This study also provides evidence for the applicability of these functionals to proteins of any size or class, and for the validation of our previous results and conclusions, obtained from calculations with the slower B3LYP functional. PMID:18780343

  12. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition.

    PubMed

    Taylor, Brian A; Hwang, Ken-Pin; Hazle, John D; Stafford, R Jason

    2009-03-01

    The authors investigated the performance of the iterative Steiglitz-McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (< or equal 16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer-Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR) > or =5 for echo train lengths (ETLs) > or =4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and/or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with > or =4 echoes and for T2*(<1.0%) with > or =7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire < or =16 echoes for one- and two-peak systems. Preliminary ex vivo

  13. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition

    PubMed Central

    Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2009-01-01

    The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo

  14. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    PubMed

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W A; Bultinck, Patrick

    2016-04-28

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is used that is derived from the current density. It is shown here that there is no simple one-to-one relationship that allows reconstructing current density maps from only NICS-values. NICS values should therefore not be used as aromaticity indices without analysis of the ab initio computed current density map. PMID:26762574

  15. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  16. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  17. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  18. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  19. Correlation between 19F environment and isotropic chemical shift in barium and calcium fluoroaluminates.

    PubMed

    Body, M; Silly, G; Legein, C; Buzaré, J-Y

    2004-04-19

    High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses. PMID:15074964

  20. High spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Wu, Tao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2015-09-01

    Raman spectroscopy has emerged as a promising tool for its noninvasive and nondestructive characterization of local chemical structures. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances, because of limitations in the spectral resolving power. The challenge is to find a way of preserving scattered photons and retrieving hidden/buried Raman signatures to take full advantage of its chemical specificity. Here, we demonstrate a multichannel acquisition framework based on shift-excitation and slit-modulation, followed by mathematical post-processing, which enables a significant improvement in the spectral specificity of Raman characterization. The present technique, termed shift-excitation blind super-resolution Raman spectroscopy (SEBSR), uses multiple degraded spectra to beat the dispersion-loss trade-off and facilitate high-resolution applications. It overcomes a fundamental problem that has previously plagued high-resolution Raman spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. Applicability is demonstrated by the perfect recovery of fine structure of the C-Cl bending mode as well as the clear discrimination of different polymorphs of mannitol. Due to its enhanced discrimination capability, this method offers a feasible route at encouraging a broader range of applications in analytical chemistry, materials and biomedicine.

  1. Density-functional computation of ⁹³Nb NMR chemical shifts.

    PubMed

    Bühl, Michael; Wrackmeyer, Bernd

    2010-12-01

    93Nb chemical shifts of [NbX6](-) (X = Cl, F, CO), [NbXCl4](-) (X = O, S), Nb2(OMe)10, Cp*2Nb(κ2-BH4), (Cp*Nb)2(µ-B2H6)2, CpNb(CO)4, and Cp2NbH3 are computed at the GIAO (gauge-including atomic orbitals)-, BPW91- and B3LYP-, and CSGT (continuous set of gauge transformations)-CAM-B3LYP, -ωB97, and -ωB97X levels, using BP86-optimized or experimental (X-ray) geometries. Experimental chemical shifts are best reproduced at the GIAO-BPW91 level when δ(93Nb) values of inorganic complexes are referenced directly relative to [NbCl6](-) and those of organometallic species are first calculated relative to [Nb(CO)6](-). An inadvertent error in the reported δ(93Nb) values of cyclopentadiene borane complexes (H. Brunner et al., J. Organomet. Chem.1992, 436, 313) is corrected. Trends in the observed 93Nb NMR linewidths for anionic niobates [Nb(CO)5](3-), [Nb(CO)5H](2-), and [Nb(CO)5(NH3)](-) are rationalized in terms of computed electric field gradients at the metal. PMID:20552575

  2. High spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy

    PubMed Central

    Chen, Kun; Wu, Tao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2015-01-01

    Raman spectroscopy has emerged as a promising tool for its noninvasive and nondestructive characterization of local chemical structures. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances, because of limitations in the spectral resolving power. The challenge is to find a way of preserving scattered photons and retrieving hidden/buried Raman signatures to take full advantage of its chemical specificity. Here, we demonstrate a multichannel acquisition framework based on shift-excitation and slit-modulation, followed by mathematical post-processing, which enables a significant improvement in the spectral specificity of Raman characterization. The present technique, termed shift-excitation blind super-resolution Raman spectroscopy (SEBSR), uses multiple degraded spectra to beat the dispersion-loss trade-off and facilitate high-resolution applications. It overcomes a fundamental problem that has previously plagued high-resolution Raman spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. Applicability is demonstrated by the perfect recovery of fine structure of the C-Cl bending mode as well as the clear discrimination of different polymorphs of mannitol. Due to its enhanced discrimination capability, this method offers a feasible route at encouraging a broader range of applications in analytical chemistry, materials and biomedicine. PMID:26350355

  3. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    PubMed

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution. PMID:25377116

  4. A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging.

    PubMed

    Wang, Jian-Xiong; Merritt, Matthew E; Sherry, Dean; Malloy, Craig R

    2016-08-01

    Metabolic imaging with hyperpolarized carbon-13 allows sequential steps of metabolism to be detected in vivo. Potential applications in cancer, brain, muscular, myocardial, and hepatic metabolism suggest that clinical applications could be readily developed. A primary concern in imaging hyperpolarized nuclei is the irreversible decay of the enhanced magnetization back to thermal equilibrium. Multiple methods for rapid imaging of hyperpolarized substrates and their products have been proposed with a multi-point Dixon method distinguishing itself as a robust protocol for imaging [1-(13) C]pyruvate. We describe here a generalized chemical shift decomposition method that incorporates a single-shot spiral imaging sequence plus a spectroscopic sequence to retain as much spin polarization as possible while allowing detection of metabolites that have a wide range of chemical shift values. The new method is demonstrated for hyperpolarized [1-(13) C]pyruvate, [1-(13) C]acetoacetate, and [2-(13) C]dihydroxyacetone. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27060361

  5. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2015-06-01

    Relativistic calculations of (29)Si NMR shielding constants (chemical shifts) in the series of halosilanes SiX(n)H(4-n) (X = F, Cl, Br and I) are performed within a full four-component relativistic Dirac's scheme using relativistic Dyall's basis sets. Three different theoretical levels are tested in the computation of (29)Si NMR chemical shifts in comparison with experiment: namely, four-component relativistic GIAO-DFT, four-component relativistic GIAO-RPA, and a hybrid scheme of a nonrelativistic GIAO-MP2 with taking into account relativistic corrections using the four-component relativistic GIAO-RPA. The DFT results give larger relativistic effects as compared to the RPA data which might be rationalized in terms of the manifestation of correlation effects taken into account at the DFT level and not accounted for at the uncorrelated RPA level. Taking into account solvent effects slightly improves agreement with experiment, however, being not a matter of principle. Generally, relativistic pure nonempirical wave function methods perform much better as compared to relativistic DFT methods when benchmarked to experiment. PMID:25946056

  6. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    PubMed

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. PMID:27510431

  7. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  8. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  9. Cuticular hydrocarbon divergence in the jewel wasp Nasonia: Evolutionary shifts in chemical communication channels?

    PubMed Central

    Buellesbach, Jan; Gadau, Jürgen; Beukeboom, Leo W.; Echinger, Felix; Raychoudhury, Rhitoban; Werren, John H.; Schmitt, Thomas

    2013-01-01

    The evolution and maintenance of intraspecific communication channels constitutes a key feature of chemical signaling and sexual communication. However, how divergent chemical communication channels evolve while maintaining their integrity for both sender and receiver is poorly understood. In the present study, we compare male and female cuticular hydrocarbon (CHC) profiles in the jewel wasp genus Nasonia, analyze their chemical divergence, and investigate their role as species-specific sexual signaling cues. Males and females of all four Nasonia species showed unique, non-overlapping CHC profiles unambiguously separating them. Surprisingly, male and female phylogenies based on the chemical distances between their CHC profiles differed dramatically, where only male CHC divergence parallels the molecular phylogeny of Nasonia. In particular, N. giraulti female CHC profiles were the most divergent from all other species and very different from its most closely related sibling species N. oneida. Furthermore, although our behavioural assays indicate that female CHC can generally be perceived as sexual cues attracting males in Nasonia, this function has apparently been lost in the highly divergent female N. giraulti CHC profiles. Curiously, N. giraulti males are still attracted to heterospecific, but not to conspecific female CHC profiles. We suggest that this striking discrepancy has been caused by an extensive evolutionary shift in female N. giraulti CHC profiles, which are no longer used as conspecific recognition cues. Our study constitutes the first report of an apparent abandonment of a sexual recognition cue that the receiver did not adapt to. PMID:24118588

  10. Water-fat imaging and general chemical shift imaging with spectrum modeling

    NASA Astrophysics Data System (ADS)

    An, Li

    Water-fat chemical shift imaging (CSI) has been an active research area in magnetic resonance imaging (MRI) since the early 1980's. There are two main reasons for water- fat imaging. First, water-fat imaging can serve as a fat- suppression method. Removing the usually bright fatty signals not only extends the useful dynamic range of an image, but also allows better visualization of lesions or injected contrast, and removes chemical shift artifacts, which may contribute to improved diagnosis. Second, quantification of water and fat provides useful chemical information for characterizing tissues such as bone marrow, liver, and adrenal masses. A milestone in water- fat imaging is the Dixon method that can produce separate water and fat images with only two data acquisitions. In practice, however, the Dixon method is not always successful due to field inhomogeneity problems. In recent years, many variations of the Dixon method have been proposed to overcome the field inhomogeneity problem. In general, these methods can at best separate water and fat without identifying the two because the water and fat magnetization vectors are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods usually depend on two-dimensional phase unwrapping which itself is sensitive to noise and artifacts, and becomes unreliable when the images have disconnected tissues in the field-of-view (FOV). We will first introduce the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the chemical shift information is achieved, which allows an unambiguous determination of water and fat on a pixel by pixel basis. Details of specific implementations and noise performance will be discussed. Representative results

  11. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    SciTech Connect

    Nagamura, Naoka Kitada, Yuta; Honma, Itaru; Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun; Horiba, Koji; Oshima, Masaharu

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  12. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  13. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    SciTech Connect

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  14. Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency.

    PubMed

    Nam, Joo-Won; Phansalkar, Rasika S; Lankin, David C; Bisson, Jonathan; McAlpine, James B; Leme, Ariene A; Vidal, Cristina M P; Ramirez, Benjamin; Niemitz, Matthias; Bedran-Russo, Ana; Chen, Shao-Nong; Pauli, Guido F

    2015-08-01

    The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3-4.5 nm wide space via protein-polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4β→8)-epicatechin-(2β→O→7,4β→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven (1)H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both (1)H and (13)C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules. PMID:26214362

  15. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  16. Quantum Chemical Calculations of Amide-15N Chemical Shift Anisotropy Tensors for a Membrane-Bound Cytochrome b5

    PubMed Central

    Pandey, Manoj Kumar; Ramamoorthy, Ayyalusamy

    2013-01-01

    There is considerable interest in determining amide-15N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-15N CSA tensor have been determined using density functional theory for a 16.7-kDa membrane-bound paramagnetic heme containing protein, cytochrome b5 (cytb5). All the calculations were performed by taking residues within 5Å distance from the backbone amide-15N nucleus of interest. The calculated amide-15N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance rN-H = 1.023 Å and a constant angle β = 18° that the least shielded component (δ11) makes with the N-H bond. The variation of amide-15N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450. PMID:23268659

  17. XPS Chemical Shifts for CO Adsorbed on Ni(100):. a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Pedocchi, L.; Rovida, G.; Russo, N.

    Starting from the observed chemical shift of C-1s and O-1s ionization potentials (IP), reported in the literature for the adsorption of CO on Ni(100), and correlated to the different CO adsorption sites at different coverages, we have carried out a theoretical investigation, using a first-principle density-functional method, to calculate ionization energies for adsorbed CO in the atop and bridge sites. In our approach, the Ni(100) surface was simulated with clusters of up to nine metal atoms of different geometry, in order to test the two adsorption sites. For each cluster, the CO adsorption geometry was optimized and the O-1s and C-1s ionizations were calculated. The main result was that the (O-1s-C-1s) difference was very well reproduced even with clusters of modest size, thus confirming the possibility to use this value as a structure-sensitive parameter.

  18. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  19. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    SciTech Connect

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  20. Experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning

    SciTech Connect

    Ryan, L.M.; Taylor, R.E.; Paff, A.J.; Gerstein, B.C.

    1980-01-01

    High-resolution nuclear magnetic resonance spectra of protons in rigid, randomly oriented solids have been measured using combined homonuclear dipolar decoupling (via multiple pulse techniques) and attenuation of chemical shift anisotropies (via magic-angle sample spinning). Under those conditions, isotropic proton chemical shifts were recorded for a variety of chemical species, with individual linewidths varying from about 55 to 110 Hz (1--2 ppm). Residual line broadening was due predominately to (i) magnetic-field instability and inhomogeneity, (ii) unresolved proton--proton spin couplings, (iii) chemical shift dispersion, (iv) residual dipolar broadening, and (v) lifetime broadening under the multiple pulse sequences used. The magnitudes of those effects and the current limits of resolution for this experiment in our spectrometer have been investigated. The compounds studied included organic solids (4, 4'-dimethylbenzophenone, 2, 6-dimethylbenzoic acid, and aspirin), polymers (polystyrene and polymethylmethacrylate), and the vitrain portion of a bituminous coal.

  1. Subchondral bone and cartilage thickness from MRI: effects of chemical-shift artifact.

    PubMed

    McGibbon, Chris A; Bencardino, Jenny; Palmer, William E

    2003-02-01

    Magnetic resonance imaging (MRI) is the modality of choice for visualizing and quantifying articular cartilage thickness. However, difficulties persist in MRI of subchondral bone using spoiled gradient-echo (SPGR) and other gradient-echo sequences, primarily due to the effects of chemical-shift artifact. Fat suppression techniques are often used to reduce these artifacts, but they prevent measurement of bone thickness. In this report, we assess the magnitude of chemical-shift effects (phase-cancellation and misregistration artifacts) on subchondral bone and cartilage thickness measurements in human femoral heads using a variety of pulse sequence parameters. Phase-cancellation effects were quantified by comparing measurements from in-phase images (TE=13.5 ms) to out-of-phase images (TE=15.8 ms). We also tested the assumption of the optimal in-phase TE by comparing thickness measures at small variations on TE (13.0, 13.5 and 14.0 ms). Misregistration effects were quantified by comparing measurements from water+fat images (water-only+fat-only images) to the measurements from in-phase (TE=13.5) images. A correction algorithm was developed and applied to the in-phase measurements and then compared to measurements from water+fat images. We also compared thickness measurements at different image resolutions. Results showed that both phase-cancellation artifact and misregistration artifact were significant for bone thickness measurement, but not for cartilage thickness measurement. Using an in-phase TE and correction algorithm for misregistration artifact, the errors in bone thickness relative to water+fat images were non-significant. This information may be useful for developing pulse sequences for optimal imaging of both cartilage and subchondral bone. PMID:12695880

  2. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin

    PubMed Central

    Gagné, Donald; Narayanan, Chitra; Doucet, Nicolas

    2015-01-01

    Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40–42) negatively affects the catalytic activity but also increases the angiogenic activity. 15N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin. PMID:25450558

  3. RFID - based Staff Control System (SCS) in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Saparkhojayev, N.

    2015-06-01

    RFID - based Staff Control System (SCS) will allow complete hands-free access control, monitoring the whereabouts of employee and record the attendance of the employee as well. Moreover, with a help of this system, it is possible to have a nice report at the end of the month and based on the total number of worked hours, the salary will be allocated to each personnel. The access tag can be read up to 10 centimeters from the RFID reader. The proposed system is based on UHF RFID readers, supported with antennas at gate and transaction sections, and employee identification cards containing RFID-transponders which are able to electronically store information that can be read / written even without the physical contact with the help of radio medium. This system is an innovative system, which describes the benefits of applying RFID- technology in the Education System process of Republic of Kazakhstan. This paper presents the experiments conducted to set up RFID based SCS.

  4. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

    PubMed

    Shaghaghi, Hoora; Ebrahimi, Hossein Pasha; Fathi, Fariba; Bahrami Panah, Niloufar; Jalali-Heravi, Mehdi; Tafazzoli, Mohsen

    2016-05-30

    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(α) chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(β) , and (1) H(α) chemical shifts nor on the variation of absolute deviation of (13) C(α) chemical shifts relative to ψ dihedral angle. The (13) C(α) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(α) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc. PMID:26940760

  5. A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins.

    PubMed

    Barraud, Pierre; Schubert, Mario; Allain, Frédéric H-T

    2012-06-01

    Zinc is the second most abundant metal ion incorporated in proteins, and is in many cases a crucial component of protein three-dimensional structures. Zinc ions are frequently coordinated by cysteine and histidine residues. Whereas cysteines bind to zinc via their unique S(γ) atom, histidines can coordinate zinc with two different coordination modes, either N(δ1) or N(ε2) is coordinating the zinc ion. The determination of this coordination mode is crucial for the accurate structure determination of a histidine-containing zinc-binding site by NMR. NMR chemical shifts contain a vast amount of information on local electronic and structural environments and surprisingly their utilization for the determination of the coordination mode of zinc-ligated histidines has been limited so far to (15)N nuclei. In the present report, we observed that the (13)C chemical shifts of aromatic carbons in zinc-ligated histidines represent a reliable signature of their coordination mode. Using a statistical analysis of (13)C chemical shifts, we show that (13)C(δ2) chemical shift is sensitive to the histidine coordination mode and that the chemical shift difference δ{(13)C(ε1)} - δ{(13)C(δ2)} provides a reference-independent marker of this coordination mode. The present approach allows the direct determination of the coordination mode of zinc-ligated histidines even with non-isotopically enriched protein samples and without any prior structural information. PMID:22528293

  6. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR.

    PubMed

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr; Nielsen, Anders B

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability. PMID:27608995

  7. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  8. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    SciTech Connect

    Hartman, Joshua D.; Beran, Gregory J. O.; Monaco, Stephen; Schatschneider, Bohdan

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  9. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study.

    PubMed

    Holmes, Sean T; Dybowski, Cecil

    2015-11-01

    The principal components of the (13)C NMR chemical-shift tensors for the eight unique carbon sites of crystalline indigo have been measured using the ROCSA pulse sequence. The chemical shifts have been assigned unambiguously to their respective nuclear sites through comparison of the experimental data to the results of density-functional calculations employing a refined X-ray diffraction structure. These measurements expand the database of measured aromatic (13)C chemical-shift tensors to the indole ring. Magnetic shielding calculations for hypoxanthine and adenosine are also reported. Comparisons of calculations that include the effect of the crystalline lattice with calculations that model indigo as an isolated molecule give an estimate of the intermolecular contribution to the magnetic shielding. PMID:26344134

  10. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study

    PubMed Central

    Holmes, Sean T.; Dybowski, Cecil

    2016-01-01

    The principal components of the 13C NMR chemical-shift tensors for the eight unique carbon sites of crystalline indigo have been measured using the ROCSA pulse sequence. The chemical shifts have been assigned unambiguously to their respective nuclear sites through comparison of the experimental data to the results of density-functional calculations employing a refined X-ray diffraction structure. These measurements expand the database of measured aromatic 13C chemical-shift tensors to the indole ring. Magnetic shielding calculations for hypoxanthine and adenosine are also reported. Comparisons of calculations that include the effect of the crystalline lattice with calculations that model indigo as an isolated molecule give an estimate of the intermolecular contribution to the magnetic shielding. PMID:26344134

  11. [Evaluation of the Effect of Adiabatic Pulse and B1 Shim to the Radio Frequency Homogeneity in Chemical Shift Imaging].

    PubMed

    Kikuchi, Chie; Inoue, Mitsuhiro; Okawa, Kohei; Taguchi, Jyunichi; Hirota, Yoshifumi; Yanagiya, Yohei

    2016-04-01

    It is considered that the enhancement of chemical shift and the elevation of signal-to-noise ratio (SNR) induced by high magnetic fields are useful for the evaluation of metabolism using magnetic resonance spectroscopy (MRS). However, the reduction of the localization in MRS seems to be caused by the decreased homogeneity of radio frequency (RF) pulses, especially in chemical shift imaging (CSI). To search the influence of B1 shim mode and the significance of adiabatic pulses, we have examined the changes of RF homogeneity using 3 T magnetic resonance imaging (MRI) with the water phantom and the metabolites phantom (containing acetate and lactate) in CSI. The RF homogeneity and chemical shift artifact were obviously improved using the adiabatic pulses. Improvement of the homogeneity of RF pulses was observed when B1 shim was used. These results suggest the usefulness of CSI using adiabatic pulses and B1 shim when small amount of metabolites of target is measured in MRS. PMID:27097994

  12. CAESURA: Measurement of slow molecular dynamics by solid-state nuclear magnetic resonance chemical shift anisotropy modulation amplification

    NASA Astrophysics Data System (ADS)

    Shao, Limin; Titman, Jeremy J.

    2006-08-01

    An alternative magic angle spinning (MAS) exchange NMR experiment based on chemical shift anisotropy (CSA) amplification is described. The CSA amplification experiment correlates a standard MAS spectrum in the ω2 dimension with a sideband pattern in ω1 in which the intensities are identical to those expected for a sample spinning at some fraction 1/N of the actual rate ωr. In common with 2D-PASS, the isotropic shift appears only in the ω2 dimension, and long acquisition times can be avoided without loss of resolution of different chemical sites. The new CSA amplification exchange experiment provides information about the time scale and geometry of molecular motions via their effect on the sideband intensities in a one-dimensional pattern. The one-dimensional patterns from different chemical sites are separated across two frequency dimensions according to the isotropic shifts.

  13. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs

    PubMed Central

    Illich, Damir Jacob; Zhang, Miao; Ursu, Andrei; Osorno, Rodrigo; Kim, Kee-Pyo; Yoon, Juyong; Araúzo-Bravo, Marcos J.; Wu, Guangming; Esch, Daniel; Sabour, Davood; Colby, Douglas; Grassme, Kathrin S.; Chen, Jiayu; Greber, Boris; Höing, Susanne; Herzog, Wiebke; Ziegler, Slava; Chambers, Ian; Gao, Shaorong; Waldmann, Herbert; Schöler, Hans R.

    2016-01-01

    Summary It has previously been reported that mouse epiblast stem cell (EpiSC) lines comprise heterogeneous cell populations that are functionally equivalent to cells of either early- or late-stage postimplantation development. So far, the establishment of the embryonic stem cell (ESC) pluripotency gene regulatory network through the widely known chemical inhibition of MEK and GSK3beta has been impractical in late-stage EpiSCs. Here, we show that chemical inhibition of casein kinase 1alpha (CK1alpha) induces the conversion of recalcitrant late-stage EpiSCs into ESC pluripotency. CK1alpha inhibition directly results in the simultaneous activation of the WNT signaling pathway, together with inhibition of the TGFbeta/SMAD2 signaling pathway, mediating the rewiring of the gene regulatory network in favor of an ESC-like state. Our findings uncover a molecular mechanism that links CK1alpha to ESC pluripotency through the direct modulation of WNT and TGFbeta signaling. PMID:27149845

  14. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.

    PubMed

    Webster, Nicole S; Xavier, Joana R; Freckelton, Marnie; Motti, Cherie A; Cobb, Rose

    2008-12-01

    The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology. PMID:18783385

  15. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods

    NASA Astrophysics Data System (ADS)

    Arcisauskaite, Vaida; Melo, Juan I.; Hemmingsen, Lars; Sauer, Stephan P. A.

    2011-07-01

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ˜2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ˜500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ˜100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.

  16. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    PubMed

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  17. Multiparametric fat–water separation method for fast chemical-shift imaging guidance of thermal therapies

    PubMed Central

    Lin, Jonathan S.; Hwang, Ken-Pin; Jackson, Edward F.; Hazle, John D.; Jason Stafford, R.; Taylor, Brian A.

    2013-01-01

    Purpose: A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Methods: Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Results: Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively

  18. One-dimensional phosphorus-31 chemical shift imaging of human brain tumors

    SciTech Connect

    Rutter, A.; Hugenholtz, H.; Saunders, J.K.

    1995-06-01

    Phosphorus magnetic resonance spectroscopy has been used noninvasively to determine characteristic spectral parameters for untreated human brain tumors as a prelude to its use in clinical diagnosis. The spectra, which reflect the relative amounts of phosphorus-containing compounds, and the pH within and surrounding the tumors, were obtained in vivo using the the localization technique of one-dimensional chemical shift imaging applied with a surface coil. Phosphorus-31 chemical shift imaging was performed successfully in vivo on 9 volunteers and 27 patients with untreated brain tumors, including 7 with astrocytoma, 4 with glioblastoma, 3 with meningioma, and 11 with metastases. This study provides spectra from within and surrounding the brain tumors, and allows accountability for the heterogeneity of brain tumors by the selection of the maximum data point for each parameter. The ratios of resonance areas, phosphodiesters over nucleoside triphosphate (NTP), and phosphomonoesters over NTP, were found to be higher in glioblastomas (2.55 {plus_minus} 0.22, 1.06 {plus_minus} 0.09) and astorcytomas (3.04 {plus_minus} 0.36, 1.28 {plus_minus} 0.36) than in normal brain (2.00 {plus_minus} 0.32, 0.79 {plus_minus}0.22). The ratios of areas due to inorganic phosphate and NTP, and phosphocreatine and NTP, also were higher in astrocytomas (1.16 {plus_minus} 0.40, 1.17 {plus_minus} 0.41) compared with glioblastomas (0.68 {plus_minus} 0.01, 0.88 {plus_minus} 0.19) and normal brain (0.61 {plus_minus}0.03, 0.77 {plus_minus} 0.03). The pH of brain tumors ranged from alkaline to neutral, with meningiomas consistently having alkaline pH. These data show that there are statistically significant differences in the magnetic resonance parameters of the affected brain hemispheres of patients with astrocytomas, glioblastomas, meningiomas, and normal brain tissue, and underline the need for a multisite clinical trial to establish clinical criteria for diagnosis. 28 refs., 3 figs., 2 tabs.

  19. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  20. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  1. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  2. (39)K NMR of solid potassium salts at 21 T: effect of quadrupolar and chemical shift tensors.

    PubMed

    Moudrakovski, Igor L; Ripmeester, John A

    2007-01-25

    39K Solid State NMR spectra (static and magic angle spinning (MAS)) on a set of potassium salts measured at 21.14 T show that the chemical shift range for K(+) ions in diamagnetic salts is well in excess of 100 ppm contrary to previous assumptions that it was quite small. Inequivalent potassium sites in crystals can be resolved through differences in chemical shifts, with chemically similar sites showing differences of over 10 ppm. The quadrupolar coupling constants obtained from MAS and solid echo experiments on powders cover the range from zero for potassium in cubic environments in halides to over 3 MHz for the highly asymmetric sites in K2CO3. Although the quadrupolar effects generally dominate the 39K spectra, in several instances, we have observed subtle but significant contributions of chemical shift anisotropy with values up to 45 ppm, a first such observation. Careful analysis of static and MAS spectra allows the observation of the various chemical shift and quadrupole coupling tensor components as well as their relative orientations, thereby demonstrating that high-field 39K NMR spectroscopy in the solid state has a substantial sensitivity to the local environment with parameters that will be of considerable value in materials characterization and electronic structure studies. PMID:17228903

  3. Parallel-plate RF resonator imaging of chemical shift resolved capillary flow.

    PubMed

    Zhang, Jing; Balcom, Bruce J

    2010-07-01

    Magnetic resonance imaging has been introduced to study flow in microchannels using pure phase spatial encoding with a microfabricated parallel-plate nuclear magnetic resonance (NMR) probe. The NMR probe and pure phase spatial encoding enhance the sensitivity and resolution of the measurement. In this paper, (1)H NMR spectra and images were acquired at 100 MHz. The B(1) magnetic field is homogeneous and the signal-to-noise ratio of 30 microl doped water for a single scan is 8x10(4). The high sensitivity of the probe enables velocity mapping of the fluids in the micro-channel with a spatial resolution of 13x13 microm. The parallel-plate probe with pure phase encoding permits the acquisition of NMR spectra; therefore, chemical shift resolved velocity mapping was also undertaken. Results are presented which show separate velocity maps for water and methanol flowing through a straight circular micro-channel. Finally, future performance of these techniques for the study of microfluidics is extrapolated and discussed. PMID:20444567

  4. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  5. Heterogeneous living donor hepatic fat distribution on MRI chemical shift imaging

    PubMed Central

    Choi, YoungRok; Lee, Jeong Min; Yi, Nam-Joon; Kim, Hyeyoung; Park, Min-Su; Hong, Geun; Yoo, Tae; Suh, Suk-Won; Lee, Hae Won; Lee, Kwang-Woong

    2015-01-01

    Purpose We evaluated the heterogeneity of steatosis in living donor livers to determine its regional differences. Methods Between June 2011 and February 2012, 81 liver donors were selected. Fat fraction was estimated using magnetic resonance triple-echo chemical shifting gradient imaging in 13 different regions: segment 1 (S1), S2, S3, and each peripheral and deep region of S4, S5, S6, S7, and S8. Results There were differences (range, 3.2%-5.3%) in fat fractions between each peripheral and deep region of S4, S6, S7, and S8 (P < 0.001, P = 0.004, P < 0.001, and P = 0.006). Fat deposit amount in S1, S2, S3 and deep regions of S4-S8 were significantly different from one another (F [4.003, 58.032] = 8.684, P < 0.001), while there were no differences among the peripheral regions of S4-S8 (F [2.9, 5.3] = 1.3, P = 0.272) by repeated measure analysis of variance method. And regional differences of the amount of fat deposit in the whole liver increased as a peripheral fat fraction of S5 increased (R2 = 0.428, P < 0.001). Conclusion Multifocal fat measurements for the whole liver are needed because a small regional evaluation might not represent the remaining liver completely, especially in patients with severe hepatic steatosis. PMID:26131443

  6. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:26493308

  7. Light ion irradiation creep of Textron SCS-6™ silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.; Lesueur, D.

    2002-12-01

    Creep tests were conducted in torsion on Textron SCS-6™ fibers during an irradiation with light ions in the temperature range 500-1000 °C for doses up to 0.16 dpa. The fibers produced by chemical vapor deposition have a similar structure as a silicon carbide composite matrix produced by chemical vapor infiltration. At 600 °C, the irradiation creep curves were characterized by a continuous drop in creep rate with dose. There was approximately a square root relationship between irradiation creep strain and dose. The creep rate was a linear function of stress. On a decrease in temperature the creep rate increased. At 1000 °C, the creep rate dropped only slightly with dose and decreased if the temperature was lowered. The results are discussed in terms of concentration and mobility of point defects and the change of these quantities with temperature.

  8. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    PubMed

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases. PMID:23398371

  9. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    SciTech Connect

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  10. Detection of methylation, acetylation and glycosylation of protein residues by monitoring 13C chemical-shift changes: A quantum-chemical study

    PubMed Central

    Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using 13C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the 13C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used 13C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the 13Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable 13C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results. PMID:27547559

  11. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study.

    PubMed

    Garay, Pablo G; Martin, Osvaldo A; Scheraga, Harold A; Vila, Jorge A

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results. PMID:27547559

  12. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches

    SciTech Connect

    Burns, Lori A.; Marshall, Michael S.; Sherrill, C. David

    2014-12-21

    A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance.

  13. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  14. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    USGS Publications Warehouse

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  15. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  16. X-Ray Photoelectron and Anger Electron Spectroscopic Studies of Chemical Shifts in Amorphous Ge-Se System

    NASA Astrophysics Data System (ADS)

    Ueno, Tokihiro

    1983-09-01

    The chemical shifts of the Ge 3d, 3p3/2,1/2 and Se 3d, 3p3/2,1/2 photoelectron lines were measured for the amorphous Ge-Se system and those of the Ge photoelectron lines are corrected for Auger parameter shifts. According to the valence shell potential model, the ratio of the chemical shift in the amorphous Ge-Se system to that in stoichiometric GeSe2 can be approximated by the ratio of the Ge-Se bond number in the Ge-Se system to that in GeSe2. The chemical shift ratios evaluated from the experimental results reveal bond structures at non-stoichiometric compositions. In the excess-Ge range, GeSe is composed of atomic clusters of three-fold co-ordinated Ge and Se atoms, and Ge2Se3 contains atomic clusters of Se3Ge-GeSe3 units. In the excess-Se range, GeSe3 includes GeSe4 tetrahedral units, and Se-Se chains and/or Se8 rings.

  17. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  18. Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes?

    NASA Astrophysics Data System (ADS)

    Osuna, Sílvia; Poater, Jordi; Bofill, Josep M.; Alemany, Pere; Solà, Miquel

    2006-09-01

    We have analyzed the change of local aromaticity in a series of polyfluorene compounds with the increase of the number of π-stacked layers. The local aromaticity of the aromatic and non-aromatic rings of polyfluorenes remains unchanged when going from one to four layers of π-stacked rings according to HOMA, PDI, and FLU aromaticity descriptors. On the contrary, experimental 1H NMR chemical shifts indicate a reduction of the aromaticity of π-stacked rings with the increase of the number of layers. Calculated NICS also show a change of aromaticity, but opposite to the tendency given by the 1H NMR chemical shifts. We show that this increase (decrease) of local aromaticity in superimposed aromatic rings indicated by NICS ( 1H NMR) is not real but the result of the coupling between the magnetic fields generated by the π-stacked rings.

  19. De novo structure generation using chemical shifts for proteins with high-sequence identity but different folds

    PubMed Central

    Shen, Yang; Bryan, Philip N; He, Yanan; Orban, John; Baker, David; Bax, Ad

    2010-01-01

    Proteins with high-sequence identity but very different folds present a special challenge to sequence-based protein structure prediction methods. In particular, a 56-residue three-helical bundle protein (GA95) and an α/β-fold protein (GB95), which share 95% sequence identity, were targets in the CASP-8 structure prediction contest. With only 12 out of 300 submitted server-CASP8 models for GA95 exhibiting the correct fold, this protein proved particularly challenging despite its small size. Here, we demonstrate that the information contained in NMR chemical shifts can readily be exploited by the CS-Rosetta structure prediction program and yields adequate convergence, even when input chemical shifts are limited to just amide 1HN and 15N or 1HN and 1Hα values. PMID:19998407

  20. Deuterium-induced isotope effects on the 13C chemical shifts of α-D-glucose pentaacetate.

    PubMed

    Pérez-Hernández, Nury; Álvarez-Cisneros, Celina; Cerda-García-Rojas, Carlos M; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2013-03-01

    1,2,3,4,6-Penta-O-acetyl-α-D-glucopyranose and the corresponding [1-(2)H], [2-(2)H], [3-(2)H], [4-(2)H], [5-(2)H], and [6,6-(2)H(2)]-labeled compounds were prepared for measuring deuterium/hydrogen-induced effects on (13)C chemical shift (n)Δ (DHIECS) values. A conformational analysis of the nondeuterated compound was achieved using density functional theory (DFT) molecular models that allowed calculation of several structural properties as well as Boltzmann-averaged (13)C NMR chemical shifts by using the gauge-including atomic orbital method. It was found that the DFT-calculated C-H bond lengths correlate with (1)Δ DHIECS. PMID:23315885

  1. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    NASA Astrophysics Data System (ADS)

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  2. Computer programming for nucleic acid studies. II. Total chemical shifts calculation of all protons of double-stranded helices.

    PubMed

    Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O

    1981-01-01

    A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects. PMID:6274583

  3. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.

  4. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 6: Study issues report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload specialists and mission specialists to operate the wide variety of experiments that will be on-board the Freedom Space Station. This simulation Computer System (SCS) study issues report summarizes the analysis and study done as task 1-identify and analyze the CSC study issues- of the SCS study contract.This work was performed over the first three months of the SCS study which began in August of 1988. First issues were identified from all sources. These included the NASA SOW, the TRW proposal, and working groups which focused the experience of NASA and the contractor team performing the study-TRW, Essex, and Grumman. The final list is organized into training related issues, and SCS associated development issues. To begin the analysis of the issues, a list of all the functions for which the SCS could be used was created, i.e., when the computer is turned on, what will it be doing. Analysis was continued by creating an operational functions matrix of SCS users vs. SCS functions to insure all the functions considered were valid, and to aid in identification of users as the analysis progressed. The functions will form the basis for the requirements, which are currently being developed under task 3 of the SCS study.

  5. On reasons of 29Si NMR chemical shift/structure relations for silicon oxides, nitrides, and carbides: an individual-gauge-for-localized-orbitals study.

    PubMed

    Wolff, R; Jancke, H; Radeglia, R

    1997-12-01

    For alpha-quartz, monoclinic ZSM-5, alpha- and beta-Si3N4 and SiC-6H polytype, the silicon chemical shifts have been calculated using the IGLO (individual gauge for localized orbitals) method and models of different size in real crystal geometry. The result is a theoretical chemical shift scale, which is very similar to the corresponding experimental scale from 29Si MAS NMR experiments. It is shown that the assignment of isotropic silicon chemical shifts of crystallized solids based on theory is a method of practical applicability, also in cases where experimental methods or empirical relations fail. The two NMR spectral lines of alpha-Si3N4 are for the first time assigned to the crystallographic positions. The partition of the silicon chemical shifts into localized contributions from different parts of the model allows insight into the interactions around the resonance nucleus due to substituent and geometry variations leading to silicon chemical shifts. PMID:9477448

  6. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  7. Cellular thermal shift and clickable chemical probe assays for the determination of drug-target engagement in live cells.

    PubMed

    Xu, Hua; Gopalsamy, Ariamala; Hett, Erik C; Salter, Shores; Aulabaugh, Ann; Kyne, Robert E; Pierce, Betsy; Jones, Lyn H

    2016-07-14

    Proof of drug-target engagement in physiologically-relevant contexts is a key pillar of successful therapeutic target validation. We developed two orthogonal technologies, the cellular thermal shift assay (CETSA) and a covalent chemical probe reporter approach (harnessing sulfonyl fluoride tyrosine labeling and subsequent click chemistry) to measure the occupancy of the mRNA-decapping scavenger enzyme DcpS by a small molecule inhibitor in live cells. Enzyme affinity determined using isothermal dose response fingerprinting (ITDRFCETSA) and the concentration required to occupy 50% of the enzyme (OC50) using the chemical probe reporter assay were very similar. In this case, the chemical probe method worked well due to the long offset kinetics of the reversible inhibitor (determined using a fluorescent dye-tagged probe). This work suggests that CETSA could become the first choice assay to determine in-cell target engagement due to its simplicity. PMID:27216142

  8. Sub-electron-volt chemical shifts and strong interference effects measured in the resonance x-ray scattering spectra of aniline

    SciTech Connect

    Luo, Y.; Agren, H.; Guo, J.; Skytt, P.; Wassdahl, N.; Nordgren, J.

    1995-11-01

    By exploring the monosubstituted benzene compound aniline, we demonstrate that resonance inelastic x-ray spectroscopy of chemically shifted species is {ital site} {ital selective}. Core-excited levels with distinct, super-electron-volt shifts can be resonantly excited and their x-ray emission spectra analyzed separately. Core-excited levels referring to sites with small, sub-electron-volt, chemical shifts give resonant x-ray spectra that interfere strongly. It is demonstrated that this interference, which is manifested in the one-step model, can be used to monitor chemical shifts in the sub-electron-volt energy region. We show that in the limit when these chemical shifts go to zero some salient symmetry-selective features of the benzene resonant x-ray emission spectrum are restored in the aniline spectra.

  9. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean

    PubMed Central

    Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961

  10. Evolution of the SCS curve number method and its applications to continuous runoff simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Natural Resources Conservation Service (NRCS) [previously Soil Conservation Service (SCS)] developed the SCS runoff curve-number (CN) method for estimating direct runoff from storm rainfall. The NRCS uses the CN method for designing structures and for evaluating their effectiveness. Structural...

  11. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    PubMed

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation. PMID:24752730

  12. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated. PMID:27335085

  13. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  14. Influence of the chemical shift artifact on measurements of compact bone thickness in equine distal limb MR images.

    PubMed

    Dimock, Abigail N; Spriet, Mathieu

    2010-01-01

    The effect of the chemical shift artifact, resulting from misregistration or phase cancellation at the interface between compact and trabecular bone, on apparent bone thickness was quantified in six isolated equine limbs. Sagittal T1-weighted spin echo (SE) and in-phase three-dimensional spoiled gradient echo (SPGR) images were acquired twice with a 1.5 T magnetic resonance (MR) unit, switching the frequency encoding direction between acquisitions. Out-of-phase SPGR images were also obtained. MR images with different frequency encoding directions were compared with each other and to radiographs made from corresponding 3-mm-bone sections. Compact bone thickness was significantly different when comparing images acquired with different frequency encoding directions for both SE and SPGR sequences. Significant differences were identified in the frequency but not the phase encoding direction when measurements of compact bone in MR images were compared with measurements obtained from thin section radiographs for the majority of surfaces studied (P < 0.05). Correction of MR measurements with the calculated chemical shift abolished these differences (P > 0.05). Measurements of compact bone from out-of-phase SPGR sequences were significantly different than from in-phase sequences (P < 0.001) with out-of-phase measurements greater than in-phase measurements by an average of 0.38mm. These results indicate that the chemical shift artifact results in errors in MR evaluation of compact bone thickness when measurements are performed in the frequency encoding direction or in out-of-phase images. For better accuracy, measurements should be performed parallel to the phase encoding direction and avoiding out-of-phase gradient echo sequences. PMID:20806873

  15. Chemical shift and zone-folding effects on the energy gaps of GaAs-AlAs (001) superlattices

    SciTech Connect

    Zhang, S.B. Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304 ); Cohen, M.L.; Louie, S.G. )

    1991-04-15

    The chemical shift and zone-folding effects obtained from quasiparticle calculations for ultrathin GaAs-AlAs superlattices are incorporated within a Kronig-Penny model for superlattices of the arbitrary lattice period. We determine that superlattices with lattice periods in the range of 3{times}3 to 9{times}9 have an {ital X}-derived pseudodirect gap. This result explains both the results from first-principles calculations for ultrathin superlattices and those from experiments for a broader lattice period.

  16. A multiple pulse zero crossing NMR technique, and its application to F-19 chemical shift measurements in solids

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.-K.

    1978-01-01

    A simple multiple-pulse 'zero crossing technique' for accurately determining the first moment of a solid-state NMR spectrum is introduced. This technique was applied to obtain the F-19 chemical shift versus pressure curves up to 5 kbar for single crystals of CaF2 (0.29 + or - 0.02 ppm/kbar) and BaF2 (0.62 + or - 0.05 ppm/kbar). Results at ambient temperature and pressure are also reported for a number of other fluorine compounds. Because of its high data rate, this technique is potentially several orders of magnitude more sensitive than similar CW methods.

  17. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites. PMID:26963288

  18. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    PubMed

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding. PMID:17054116

  19. 13C and 199Hg nuclear magnetic resonance spectroscopic study of alkenemercurinium ions: Effect of methyl substituents on 199Hg chemical shifts

    PubMed Central

    Olah, George A.; Garcia-Luna, Armando

    1980-01-01

    The long-lived ethylene, cyclohexene, and norbornenemercurinium ions prepared in superacidic, low-nucleophilic media have been studied by 13C and 199Hg NMR spectroscopy. The norbornenemercurinium ion shows temperature-dependent 13C and 199Hg NMR spectra, consistent with equilibration via rapid hydride and Wagner-Meerwin shifts. The 199Hg NMR shifts of a series of alkylmercury bromides were also obtained in order to elucidate the effect of methyl substituents on 199Hg NMR chemical shifts. PMID:16592870

  20. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. PMID:27237841

  1. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  2. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  3. Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping.

    PubMed

    Dong, Jianwu; Liu, Tian; Chen, Feng; Zhou, Dong; Dimov, Alexey; Raj, Ashish; Cheng, Qiang; Spincemaille, Pascal; Wang, Yi

    2015-02-01

    Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique that reveals tissue magnetic susceptibility. It relies on having a high quality field map, typically acquired with a relatively long echo spacing and long final TE. Applications of QSM outside the brain require the removal of fat contributions to the total signal phase. However, current water/fat separation methods applied on typical data acquired for QSM suffer from three issues: inadequacy when using large echo spacing, over-smoothing of the field maps and high computational cost. In this paper, the general phase wrap and chemical shift problem is formulated using a single species fitting and is solved using graph cuts with conditional jump moves. This method is referred as simultaneous phase unwrapping and removal of chemical shift (SPURS). The result from SPURS is then used as the initial guess for a voxel-wise iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL). The estimated 3-D field maps are used to compute QSM in body regions outside of the brain, such as the liver. Experimental results show substantial improvements in field map estimation, water/fat separation and reconstructed QSM compared to two existing water/fat separation methods on 1.5T and 3T magnetic resonance human data with long echo spacing and rapid field map variation. PMID:25312917

  4. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  5. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints

    PubMed Central

    2015-01-01

    Knowledge of RNA structure is necessary to determine structure–function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5′ to 3′ directionality of base pairs in helices. The 5′ to 3′ directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure. PMID:26451676

  6. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  7. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.

    PubMed Central

    Schmiedeskamp, M.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis. PMID:9300483

  8. Observation of Optical Chemical Shift by Precision Nuclear Spin Optical Rotation Measurements and Calculations.

    PubMed

    Shi, Junhui; Ikäläinen, Suvi; Vaara, Juha; Romalis, Michael V

    2013-02-01

    Nuclear spin optical rotation (NSOR) is a recently developed technique for detection of nuclear magnetic resonance via rotation of light polarization, instead of the usual long-range magnetic fields. NSOR signals depend on hyperfine interactions with virtual optical excitations, giving new information about the nuclear chemical environment. We use a multipass optical cell to perform the first precision measurements of NSOR signals for a range of organic liquids and find clear distinction between proton signals for different compounds, in agreement with our earlier theoretical predictions. Detailed first-principles quantum mechanical NSOR calculations are found to be in agreement with the measurements. PMID:26281737

  9. Shifting chemical equilibria in flow--efficient decarbonylation driven by annular flow regimes.

    PubMed

    Gutmann, Bernhard; Elsner, Petteri; Glasnov, Toma; Roberge, Dominique M; Kappe, C Oliver

    2014-10-20

    To efficiently drive chemical reactions, it is often necessary to influence an equilibrium by removing one or more components from the reaction space. Such manipulation is straightforward in open systems, for example, by distillation of a volatile product from the reaction mixture. Herein we describe a unique high-temperature/high-pressure gas/liquid continuous-flow process for the rhodium-catalyzed decarbonylation of aldehydes. The carbon monoxide released during the reaction is carried with a stream of an inert gas through the center of the tubing, whereas the liquid feed travels as an annular film along the wall of the channel. As a consequence, carbon monoxide is effectively vaporized from the liquid phase into the gas phase and stripped from the reaction mixture, thus driving the equilibrium to the product and preventing poisoning of the catalyst. This approach enables the catalytic decarbonylation of a variety of aldehydes with unprecedented efficiency with a standard coil-based flow device. PMID:25196172

  10. Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wu, Yi fang; Wang, Xue liang

    2014-01-01

    We report here theoretical and experimental studies on the molecular structure and vibrational and NMR spectra of both natural enmein type diterpenoids molecule (6, 7-seco-ent-kaurenes enmein type), isolated from the leaves of Isodon japonica (Burm.f.) Hara var. galaucocalyx (maxin) Hara. The optimized geometry, total energy, NMR chemical shifts and vibrational wavenumbers of epinodosinol and epinodosin have been determined using B3LYP method with 6-311G (d,p) basis set. A complete vibrational assignment is provided for the observed IR spectra of studied compounds. The calculated wavenumbers and 13C c.s. are in an excellent agreement with the experimental values. Quantum chemical calculations at the B3LYP/6-311G (d,p) level of theory have been carried out on studied compounds to obtain a set of molecular electronic properties (MEP,HOMO, LUMO and gap energies ΔEg). Electrostatic potential surfaces have been mapped over the electron density isosurfaces to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecules.

  11. Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study.

    PubMed

    Wang, Tao; Wu, Yi fang; Wang, Xue liang

    2014-01-01

    We report here theoretical and experimental studies on the molecular structure and vibrational and NMR spectra of both natural enmein type diterpenoids molecule (6, 7-seco-ent-kaurenes enmein type), isolated from the leaves of Isodon japonica (Burm.f.) Hara var. galaucocalyx (maxin) Hara. The optimized geometry, total energy, NMR chemical shifts and vibrational wavenumbers of epinodosinol and epinodosin have been determined using B3LYP method with 6-311G (d,p) basis set. A complete vibrational assignment is provided for the observed IR spectra of studied compounds. The calculated wavenumbers and 13C c.s. are in an excellent agreement with the experimental values. Quantum chemical calculations at the B3LYP/6-311G (d,p) level of theory have been carried out on studied compounds to obtain a set of molecular electronic properties (MEP,HOMO, LUMO and gap energies ΔEg). Electrostatic potential surfaces have been mapped over the electron density isosurfaces to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecules. PMID:24013676

  12. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift

    NASA Astrophysics Data System (ADS)

    Tizei, L. H. G.; Chiaramonte, T.; Cotta, M. A.; Ugarte, D.

    2010-07-01

    We have studied the assessment of chemical composition changes in III-V heterostructured semiconductor nanowires (NWs) with nanometric spatial resolution using transmission electron microscopy methods. These materials represent a challenge for conventional spectroscopy techniques due to their high sensitivity to electron beam irradiation. Radiation damage strongly limits the exposure time to a few (5-10) s, which reduces the sensitivity of the traditionally used x-ray spectroscopy. The rather low counting statistics results in significant errors bars for EDS chemical quantification (5-10%) and interface width determination (few nanometers). Plasmon chemical shift is ideal in this situation, as its measurement requires very short exposure times (~100 ms) and the plasmon peak energy can be measured with high precision (~20 meV in this work). This high sensitivity allows the detection of subtle changes (1-2%) in composition or even the detection of a small plasmon energy (33 ± 7) meV change along usually assumed pure and homogeneous InAs segments. We have applied this approach to measure interface widths in heterostructure InAs/InP NWs grown using metal catalysts and also to determine the timescale (~10 s) in which beam irradiation induces material damage in these wires. In particular, we have detected small As concentrations (4.4 ± 0.5)% in the final InP segment close to the Au catalyst, which leads to the conclusion that As diffuses through the metal nanoparticle during growth.

  13. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift.

    PubMed

    Tizei, L H G; Chiaramonte, T; Cotta, M A; Ugarte, D

    2010-07-23

    We have studied the assessment of chemical composition changes in III-V heterostructured semiconductor nanowires (NWs) with nanometric spatial resolution using transmission electron microscopy methods. These materials represent a challenge for conventional spectroscopy techniques due to their high sensitivity to electron beam irradiation. Radiation damage strongly limits the exposure time to a few (5-10) s, which reduces the sensitivity of the traditionally used x-ray spectroscopy. The rather low counting statistics results in significant errors bars for EDS chemical quantification (5-10%) and interface width determination (few nanometers). Plasmon chemical shift is ideal in this situation, as its measurement requires very short exposure times (approximately 100 ms) and the plasmon peak energy can be measured with high precision (approximately 20 meV in this work). This high sensitivity allows the detection of subtle changes (1-2%) in composition or even the detection of a small plasmon energy (33 +/- 7) meV change along usually assumed pure and homogeneous InAs segments. We have applied this approach to measure interface widths in heterostructure InAs/InP NWs grown using metal catalysts and also to determine the timescale (approximately 10 s) in which beam irradiation induces material damage in these wires. In particular, we have detected small As concentrations (4.4 +/- 0.5)% in the final InP segment close to the Au catalyst, which leads to the conclusion that As diffuses through the metal nanoparticle during growth. PMID:20585172

  14. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.

  15. Beyond the SCS curve number: A new stochastic spatial runoff approach

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S., Jr.; Parolari, A.; McDonnell, J.; Porporato, A. M.

    2015-12-01

    The Soil Conservation Service curve number (SCS-CN) method is the standard approach in practice for predicting a storm event runoff response. It is popular because its low parametric complexity and ease of use. However, the SCS-CN method does not describe the spatial variability of runoff and is restricted to certain geographic regions and land use types. Here we present a general theory for extending the SCS-CN method. Our new theory accommodates different event based models derived from alternative rainfall-runoff mechanisms or distributions of watershed variables, which are the basis of different semi-distributed models such as VIC, PDM, and TOPMODEL. We introduce a parsimonious but flexible description where runoff is initiated by a pure threshold, i.e., saturation excess, that is complemented by fill and spill runoff behavior from areas of partial saturation. To facilitate event based runoff prediction, we derive simple equations for the fraction of the runoff source areas, the probability density function (PDF) describing runoff variability, and the corresponding average runoff value (a runoff curve analogous to the SCS-CN). The benefit of the theory is that it unites the SCS-CN method, VIC, PDM, and TOPMODEL as the same model type but with different assumptions for the spatial distribution of variables and the runoff mechanism. The new multiple runoff mechanism description for the SCS-CN enables runoff prediction in geographic regions and site runoff types previously misrepresented by the traditional SCS-CN method. In addition, we show that the VIC, PDM, and TOPMODEL runoff curves may be more suitable than the SCS-CN for different conditions. Lastly, we explore predictions of sediment and nutrient transport by applying the PDF describing runoff variability within our new framework.

  16. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    PubMed

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds. PMID:24655374

  17. 13C and 1H chemical shift assignments and conformation confirmation of trimedlure-Y via 2-D NMR

    NASA Astrophysics Data System (ADS)

    Warthen, J. D.; Waters, R. M.; McGovern, T. P.

    The conformation of 1,1-dimethylethyl 5-chloro- cis-2-methylcyclohexane-1-carboxylate (trimedlure-Y) was confirmed as 1,2,5 equatorial, axial, equatorial via 13C, 1H, APT, CSCM and COSY NMR analyses. The carbon and proton nuclei in trimedlure-Y and the previously unassigned eight cyclohexyl protons (1.50-2.60 ppm) in 1,1-dimethylethyl 5-chloro- trans-2-methylcyclohexane-1-carboxylate (trimedlure-B 1; 1,2,5 equatorial, equatorial, equatorial) were also characterized by these methods. The effects of the 2-CH 3 in the axial or equatorial conformation upon the chemical shifts of the other nuclei in the molecule are discussed.

  18. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    PubMed

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  19. Non‐invasive Localization of Thymol Accumulation in Carum copticum (Apiaceae) Fruits by Chemical Shift Selective Magnetic Resonance Imaging

    PubMed Central

    GERSBACH, P. V.; REDDY, N.

    2002-01-01

    Magnetic resonance imaging was used to localize the site of essential oil accumulation in fruit of Carum copticum L. (Apiaceae). A chemical shift method is described that utilized the spectral properties of the aromatic monoterpene thymol, the major component of the essential oil, to image thymol selectively. The presence of essential oil secretory structures in the fruit and an essential oil containing a high proportion of thymol were confirmed with optical microscopy and gas chromatography‐mass spectrometry, respectively. Selective imaging of whole C. copticum fruits showed that thymol accumulation was localized to the secretory structures (canals) situated in the fruit wall. The technique was considered non‐invasive as the seeds used in the imaging experiments remained intact and viable. PMID:12197523

  20. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    PubMed

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W. PMID:24496608

  1. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-01

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools. PMID:27273377

  2. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof; Daszkiewicz, Zdzislaw; Sauer, Stephan P A

    2013-10-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory, and their (13) C nuclear magnetic resonance (NMR) isotropic shieldings were predicted using density functional theory (DFT). The model compounds contained 9H, N-methyl and N-ethyl derivatives. The relativistic effect of Br and I atoms on nuclear shieldings was modeled using the spin-orbit zeroth-order regular approximation (ZORA) method. Significant heavy atom shielding effects for the carbon atom directly bonded with Br and I were observed (~-10 and ~-30 ppm while the other carbon shifts were practically unaffected). The decreasing electronegativity of the halogen substituent (F, Cl, Br, and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions of the carbazole ring. The predicted NMR data correctly reproduce the available experimental data for unsubstituted N-alkylcarbazoles. PMID:23922027

  3. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  4. SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230

    SciTech Connect

    DEARING JI; EPSTEIN M; PLYS MG

    2009-07-16

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  5. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    PubMed

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts. PMID:27488185

  6. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  7. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  8. Correlation between the Temperature Dependence of Intrsinsic Mr Parameters and Thermal Dose Measured by a Rapid Chemical Shift Imaging Technique

    PubMed Central

    Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2011-01-01

    In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063

  9. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    PubMed

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique. PMID:25113928

  10. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  11. Inverted cucurbit[n]urils: density functional investigations on the electronic structure, electrostatic potential, and NMR chemical shifts.

    PubMed

    Pinjari, Rahul V; Gejji, Shridhar P

    2009-02-19

    Inverted cucurbit[n]uril (i(x)CB[n], x = 1, 2; n = 6-8), the enantiomers of cucurbit[n]uril (CB[n]) comprising one or more inverted glycouril units, show distinct selectivity in recognition toward the guest by the virtue of shape and dimensions of its cavity. The iCB[n] (x = 1 and n = 6, 7) are isolated as intermediates during the synthesis of CB[n]. In this work, density functional theory using the hybrid B3LYP functional has been employed to derive the electronic structure and the NMR chemical shifts in the i(x)CB[n] hosts. The present calculations have shown that the inversion of the glycouril unit of CB[6] and CB[7] engenders a destabilization by 4.2 and 5.7 kJ mol(-1), respectively, and, as opposed to this, the iCB[8] is favored by 18.6 kJ mol(-1) over the corresponding CB[8] host. Likewise, i2CB[7] possessing two inverted glycourils are highly destabilized over CB[7]. A large separation of the inverted glycouril units reduces the repulsion between methine protons inside the cavity, rendering the 1,4-i2CB[n] (n = 7 or 8) to be of lowest energy. Stabilization energies from the self-consistent reaction field (SCRF) theory are calculated with water, ethanol, and tetrahydrofuran (THF) as solvents. Unlike in gas phase and other solvents, the stabilization hierarchy iCB[6] < iCB[7] < iCB[8] has been predicted in THF. Molecular electrostatic potential (MESP) was used to gauge the cavity shape of these hosts. Consequently the iCB[6] reveals a half-sprocket-like cavity; an additional tooth for each glycouril in the succeeding iCB[n] homologue was noticed. In the case of the 1,5-i2CB[8] enantiomer, the cavity turns out to be rectangular. The deeper MESP minima near the ureido oxygens suggest strong electrostatic interactions with the guest at the iCB[6] portals. The electron-rich region within the cavity explains the large affinity of CB[n] toward the electron deficient guests. The electronic distribution and shape and size of the cavity thus derived provide insights

  12. Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration.

    PubMed

    Widdifield, Cory M; Moudrakovski, Igor; Bryce, David L

    2014-07-14

    Calcium is the 5th most abundant element on earth, and is found in numerous biological tissues, proteins, materials, and increasingly in catalysts. However, due to a number of unfavourable nuclear properties, such as a low magnetogyric ratio, very low natural abundance, and its nuclear electric quadrupole moment, development of solid-state (43)Ca NMR has been constrained relative to similar nuclides. In this study, 12 commonly-available calcium compounds are analyzed via(43)Ca solid-state NMR and the information which may be obtained by the measurement of both the (43)Ca electric field gradient (EFG) and chemical shift tensors (the latter of which are extremely rare with only a handful of literature examples) is discussed. Combined with density functional theory (DFT) computations, this 'tensor interplay' is, for the first time for (43)Ca, illustrated to be diagnostic in distinguishing polymorphs (e.g., calcium formate), and the degree of hydration (e.g., CaCl2·2H2O and calcium tartrate tetrahydrate). For Ca(OH)2, we outline the first example of (1)H to (43)Ca cross-polarization on a sample at natural abundance in (43)Ca. Using prior knowledge of the relationship between the isotropic calcium chemical shift and the calcium quadrupolar coupling constant (CQ) with coordination number, we postulate the coordination number in a sample of calcium levulinate dihydrate, which does not have a known crystal structure. Natural samples of CaCO3 (aragonite polymorph) are used to show that the synthetic structure is present in nature. Gauge-including projector augmented-wave (GIPAW) DFT computations using accepted crystal structures for many of these systems generally result in calculated NMR tensor parameters which are in very good agreement with the experimental observations. This combination of (43)Ca NMR measurements with GIPAW DFT ultimately allows us to establish clear correlations between various solid-state (43)Ca NMR observables and selected structural parameters

  13. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  14. DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers.

    PubMed

    Muñoz, Marcelo A; Joseph-Nathan, Pedro

    2009-07-01

    (1)H and (13)C NMR chemical shift calculations using the density functional theory-gauge including/invariant atomic orbitals (DFT-GIAO) approximation at the B3LYP/6-311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6beta-hydroxyhyoscyamine. The theoretical chemical shifts of the (1)H and (13)C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross-compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6beta-hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2'S) and (3S,6S,2'S) configurations, respectively, whereas for (13)C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one. PMID:19373852

  15. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  16. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  17. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets.

    PubMed

    Fusch, C; Slotboom, J; Fuehrer, U; Schumacher, R; Keisker, A; Zimmermann, W; Moessinger, A; Boesch, C; Blum, J

    1999-10-01

    An animal study to evaluate dual-energy x-ray absorptiometry (DXA) and magnetic resonance (MR) imaging and spectroscopy for measurement of neonatal body composition was performed. Twenty-three piglets with body weights ranging from 848 to 7550 g were used. After measuring total body water, animals were killed and body composition was assessed using DXA and MR (1.5 T; MR imaging, T1-weighted sagittal spin-echo sequence; MR spectroscopy, three-dimensional chemical shift imaging) as well as chemical carcass analysis (standard methods) after homogenization. Body composition by chemical analysis (percent of body weight, mean +/- SD) was as follows: body water, 75.3 +/- 3.9%; total protein, 13.9 +/- 8.8%; and total fat, 6.5 +/- 3.7%. Absolute content of fat and total ash was 7-674 and 35-237 g, respectively. Mean hydration of fat-free mass was 0.804 +/- 0.011 g/kg and decreased with increasing body weight (r2 = 0.419) independent of age. Using DXA, bone mineral content was highly correlated with calcium content (r2 = 0.992), and calcium per bone mineral content was 44.1 +/- 4.2%. DXA fat mass correlated with total fat (r2 = 0.961). Using MR, spectroscopy and chemical analysis were highly correlated with fat-to-water ratio (r2 = 0.984) and absolute fat content (r2 = 0.988). Total fat by MR imaging volumetry showed a lower correlation (r2 = 0.913) and overestimated total fat by a factor of 2.46. Conversion equations for DXA were developed (total fat = 1.31 x fat mass measured by DXA--68.8; calcium = 0.402 x bone mineral content + 1.7), which improved precision and accuracy of DXA measurements. In conclusion, both DXA and MR spectroscopy give accurate and precise estimates of neonatal body composition and may become valuable tools for the noninvasive assessment of neonatal growth and nutritional status. PMID:10509370

  18. Centerband-only analysis of rotor-unsynchronized spin echo for measurement of lipid (31) P chemical shift anisotropy.

    PubMed

    Umegawa, Yuichi; Yamaguchi, Toshiyuki; Murata, Michio; Matsuoka, Shigeru

    2015-07-01

    Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies. PMID:26017552

  19. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    PubMed

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory. PMID:25468435

  20. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    NASA Astrophysics Data System (ADS)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  1. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging

    PubMed Central

    Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed

    2014-01-01

    19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725

  2. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  3. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  4. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  5. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  6. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  7. Estimating the SCS runoff curve number in forest catchments of Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Tae; Kim, Jaehoon; Lim, Hong-geun

    2016-04-01

    To estimate flood runoff discharge is a very important work in design for many hydraulic structures in streams, rivers and lakes such as dams, bridges, culverts, and so on. So, many researchers have tried to develop better methods for estimating flood runoff discharge. The SCS runoff curve number is an empirical parameter determined by empirical analysis of runoff from small catchments and hillslope plots monitored by the USDA. This method is an efficient method for determining the approximate amount of runoff from a rainfall even in a particular area, and is very widely used all around the world. However, there is a quite difference between the conditions of Korea and USA in topography, geology and land use. Therefore, examinations in adaptability of the SCS runoff curve number need to raise the accuracy of runoff prediction using SCS runoff curve number method. The purpose of this study is to find the SCS runoff curve number based on the analysis of observed data from several experimental forest catchments monitored by the National Institute of Forest Science (NIFOS), as a pilot study to modify SCS runoff curve number for forest lands in Korea. Rainfall and runoff records observed in Gwangneung coniferous and broad leaves forests, Sinwol, Hwasoon, Gongju and Gyeongsan catchments were selected to analyze the variability of flood runoff coefficients during the last 5 years. This study shows that runoff curve numbers of the experimental forest catchments range from 55 to 65. SCS Runoff Curve number method is a widely used method for estimating design discharge for small ungauged watersheds. Therefore, this study can be helpful technically to estimate the discharge for forest watersheds in Korea with more accuracy.

  8. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  9. 13C NMR chemical shift correlations in application of “tool of increasing electron demand” to stable long-lived carbocations: Comprehensive evaluation*

    PubMed Central

    Olah, George A.; Berrier, Arthur L.; Prakash, G. K. Surya

    1981-01-01

    The reliability of 13C NMR chemical shift correlations in the application of the “tool of increasing electron demand” to stable long-lived carbocationic systems is demonstrated by a comprehensive analysis of 22 stable aryl-substituted carbocationic systems. The observation of slopes of less than unity in such chemical shift correlations for several cationic systems has been attributed to additional charge delocalizing mechanisms present in the system (such as homoallylic, cyclopropyl, and π conjugations). The onset of nonclassical σ-delocalization in 2-aryl-2-norbornyl cations with electron withdrawing-substituents previously observed was further verified by using σC+ substituent constants. Difficulties in relating the CαNMR shifts in different carbocationic systems are also discussed. PMID:16593000

  10. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.

    PubMed

    de Albuquerque, Ana Carolina Ferreira; Ribeiro, Daniel Joras; de Amorim, Mauro Barbosa

    2016-08-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for (13)C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes. PMID:27424297

  11. Nuclear magnetic resonance chemical shifts with the statistical average of orbital-dependent model potentials in Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Poater, Jordi; van Lenthe, Erik; Baerends, Evert Jan

    2003-05-01

    In this paper, an orbital-dependent Kohn-Sham exchange-correlation potential, the so-called statistical average of (model) orbital potentials, is applied to the calculation of nuclear magnetic resonance chemical shifts of a series of simple molecules containing H, C, N, O, and F. It is shown that the use of this model potential leads to isotropic chemical shifts which are substantially improved over both local and gradient-corrected functionals, especially for nitrogen and oxygen atoms. This improvement in the chemical shift calculations can be attributed to the increase in the gap between highest occupied and lowest unoccupied orbitals, thus correcting the excessively large paramagnetic contributions, which have been identified to give deficient chemical shifts with both the local-density approximation and with gradient-corrected functionals. This is in keeping with the improvement by the statitical average of orbital model potentials for response properties in general and for excitation energies in particular. The present results are comparable in accuracy to those previously reported with self-interaction corrected functionals by Patchovskii et al., but still inferior to those obtained with accurate Kohn-Sham potentials by Wilson and Tozer. However, the present approach is computationally expedient and routinely applicable to all systems, requiring virtually the same computational effort as local-density and generalized-gradient calculations.

  12. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.

    PubMed

    Truflandier, Lionel A; Autschbach, Jochen

    2010-03-17

    Ab initio molecular dynamics (aiMD) simulations based on density functional theory (DFT) were performed on a set of five anionic platinum complexes in aqueous solution. (195)Pt nuclear magnetic shielding constants were computed with DFT as averages over the aiMD trajectories, using the two-component relativistic zeroth-order regular approximation (ZORA) in order to treat relativistic effects on the Pt shielding tensors. The chemical shifts obtained from the aiMD averages are in good agreement with experimental data. For Pt(II) and Pt(IV) halide complexes we found an intermediate solvent shell interacting with the complexes that causes pronounced solvent effects on the Pt chemical shifts. For these complexes, the magnitude of solvent effects on the Pt shielding constant can be correlated with the surface charge density. For square-planar Pt complexes the aiMD simulations also clearly demonstrate the influence of closely coordinated non-equatorial water molecules on the Pt chemical shift, relating the structure of the solution around the complex to the solvent effects on the metal NMR chemical shift. For the complex [Pt(CN)(4)](2-), the solvent effects on the Pt shielding constant are surprisingly small. PMID:20166712

  13. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction.

    PubMed

    Lehtivarjo, Juuso; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino; Peräkylä, Mikael

    2012-03-01

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein (1)H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6-17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for (1)Hα, (1)HN, (13)Cα, (13)Cβ, (13)CO and backbone (15)N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspot. PMID:22314705

  14. The recognition of multi-class protein folds by adding average chemical shifts of secondary structure elements

    PubMed Central

    Feng, Zhenxing; Hu, Xiuzhen; Jiang, Zhuo; Song, Hangyu; Ashraf, Muhammad Aqeel

    2015-01-01

    The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak. PMID:26980999

  15. Accuracy of Calculated Chemical Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density Functional Theory.

    PubMed

    Holme, Alf; Børve, Knut J; Sæthre, Leif J; Thomas, T Darrah

    2011-12-13

    A database of 77 adiabatic carbon 1s ionization energies has been prepared, covering linear and cyclic alkanes and alkenes, linear alkynes, and methyl- or fluoro-substituted benzenes. Individual entries are believed to carry uncertainties of less than 30 meV in ionization energies and less than 20 meV for shifts in ionization energies. The database provides an unprecedented opportunity for assessing the accuracy of theoretical schemes for computing inner-shell ionization energies and their corresponding chemical shifts. Chemical shifts in carbon 1s ionization energies have been computed for all molecules in the database using Hartree-Fock, Møller-Plesset (MP) many-body perturbation theory of order 2 and 3 as well as various approximations to full MP4, and the coupled-cluster approximation with single- and double-excitation operators (CCSD) and also including a perturbational estimate of the energy effect of triple-excitation operators (CCSD(T)). Moreover, a wide range of contemporary density functional theory (DFT) methods are also evaluated with respect to computing experimental shifts in C1s ionization energies. Whereas the top ab initio methods reproduce the observed shifts almost to within the experimental uncertainty, even the best-performing DFT approaches meet with twice the root-mean-squared error and thrice the maximum error compared to CCSD(T). However, a number of different density energy functionals still afford sufficient accuracy to become tools in the analysis of complex C1s photoelectron spectra. PMID:26598356

  16. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  17. Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio

    NASA Astrophysics Data System (ADS)

    Wu, Chong-Rong; Chang, Xiang-Rui; Chang, Shu-Wei; Chang, Chung-En; Wu, Chao-Hsin; Lin, Shih-Yen

    2015-11-01

    We show that multilayer molybdenum disulfide (MoS2) grown with the chemical vapor deposition (CVD) may exhibit quite distinct behaviors of Raman shifts from those of exfoliated ones. The anomalous Raman shifts depend on CVD growth modes and are attributed to the modified dielectric screening and interlayer coupling of MoS2 in various growth conditions. With repeated CVD growths, we demonstrated the precise control over the layer number of MoS2. A decently large drain current, high ON/OFF ratio of 105, and enhanced field-effect mobility can be achieved in transistors fabricated on the six-layer MoS2.

  18. Detailed mapping of the species cytoplasm-specific (scs) gene in durum wheat.

    PubMed Central

    Simons, Kristin J; Gehlhar, Sarah B; Maan, Shivcharan S; Kianian, Shahryar F

    2003-01-01

    The compatibility-inducing action of the scs(ti) (species cytoplasm-specific gene derived from Triticum timopheevii) and Vi (vitality) genes can be observed when a durum (T. turgidum) nucleus is placed in T. longissimum cytoplasm. These two genes restore compatibility between an otherwise incompatible nucleus and cytoplasm. The objective of this study was to localize the scs(ti) gene on a linkage map of chromosome 1A, which could eventually be used to clone the gene. The mapping population consisted of 110 F2 individuals derived from crossing a Langdon-T. dicoccoides chromosome 1A substitution line with a euplasmic (normal cytoplasm) line homozygous for the scs(ti) gene. Through a series of testcrosses the genotypes of the 110 individuals were determined: 22 had two copies, 59 had one copy, and 29 had no copy of the scs(ti) gene. Data from RFLP, AFLP, and microsatellite analysis were used to create a linkage map. The flanking marker loci found for the scs(ti) gene were Xbcd12 and Xbcd1449-1A.2 with distances of 2.3 and 0.6 cM, respectively. Nearly 10% of individuals in this population were double recombinant for a genetic interval of <3 cM. A blistering phenotype reminiscent of the phenotype observed in maize brittle-1 mutable was also evident in these individuals. The higher frequency of double recombination within this region and seed-blistering phenotype could be an indication of a transposable element(s) in this locus. PMID:14704192

  19. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-06-01

    Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.

  20. Cytochrome-P450-Cytochrome-b5 Interaction in a Membrane Environment Changes 15N Chemical Shift Anisotropy Tensors

    PubMed Central

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Huang, Rui; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, here we report the experimentally measured backbone amide-15N CSA tensors for a membrane-bound 16.7-kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8-kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The 15N-CSAs, determined using the 15N CSA/15N-1H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with that for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-15N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex was observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we were able to measure amide-15N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in 15N CSA for most residues of cytb5 in the complex, when compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of 15N CSA determined for residues in helical, sheet and turn regions of cytb5 in the complex are −184.5, −146.8, and −146.2 ppm, respectively, with an overall average value of −165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5. PMID:24107224

  1. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.

    PubMed

    Lomas, John S

    2014-12-01

    Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result. PMID:25199903

  2. Correlation between 1H NMR chemical shifts of hydroxyl protons in n-hexanol/cyclohexane and molecular association properties investigated using density functional theory

    NASA Astrophysics Data System (ADS)

    Flores, Mario E.; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2016-01-01

    Association of n-hexanol molecules in cyclohexane forming clusters is studied by DFT and 1H NMR. Geometry optimization, corrected binding energies, charge distributions, charge transfer energies, and 1H NMR chemical shifts have been obtained. The calculated chemical shifts of hydroxyl protons have been correlated to experimental data obtained in the range of n-hexanol molar fraction between 0.002 and 0.2, showing that n-hexanol molecules at a molar fraction around 0.1, where well-structured hydrogen bond networks are observed, tend to form linear pentamers and hexamers. The experimental data are consistent with the continuous linear association thermodynamic model, showing a dimensionless association constant of 284.

  3. Use of chemical shift encoded magnetic resonance imaging (CSE-MRI) for high resolution fat-suppressed imaging of the brachial and lumbosacral plexuses

    PubMed Central

    Grayev, Allison; Reeder, Scott; Hanna, Amgad

    2016-01-01

    Purpose In the era of increasingly complex surgical techniques for peripheral nerve repair, there is a need for high spatial resolution imaging of the neural plexuses in the body. We describe our experience with chemical shift encoded MRI and its implications for patient management. Materials and methods IDEAL water-fat separation is a chemical shift based method of homogeneously suppressing signal from fat, while maintaining adequate signal. This technique was used in clinical practice and the patient images reviewed. Results IDEAL water-fat separation was shown to improve visualization of the brachial and lumbosacral plexuses with good fat suppression and high signal to noise ratio. Conclusion IDEAL water − fat separation is an excellent technique to use in the imaging of the brachial and lumbosacral plexuses as it balances the need for homogeneous fat suppression with maintenance of excellent signal to noise ratio. PMID:27161071

  4. Deciphering Noncovalent Interactions Accompanying 7,7,8,8-Tetracyanoquinodimethane Encapsulation within Biphene[n]arenes: Nucleus-Independent Chemical Shifts Approach.

    PubMed

    Lande, Dipali N; Rao, Soniya S; Gejji, Shridhar P

    2016-07-18

    Binding of novel biphene[n]arene hosts to antiaromatic 7,7,8,8-tetracyanoquinodimethane (TCNQ) are investigated by DFT. Biphene[4]arene favors the inclusion complex through noncovalent interactions, such as hydrogen bonding, π-π stacking, C-H⋅⋅⋅π, and C-H⋅⋅⋅H-C dihydrogen bonding. Donor-acceptor complexation renders aromatic character to the guest through charge transfer. The formation of TCNQ anionic radicals through supramolecular π stacking significantly influences its chemical and photophysical behavior. Electron density reorganization consequent to encapsulation of TCNQ reflects in the shift of characteristic vibrations in the IR spectra. The accompanying aromaticities arising from the induced ring currents are analyzed by employing nucleus-independent chemical shifts based profiles. PMID:27028656

  5. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches.

    PubMed

    Vícha, Jan; Novotný, Jan; Straka, Michal; Repisky, Michal; Ruud, Kenneth; Komorovsky, Stanislav; Marek, Radek

    2015-10-14

    The role of various factors (structure, solvent, and relativistic treatment) was evaluated for square-planar 4d and 5d transition-metal complexes. The DFT method for calculating the structures was calibrated using a cluster approach and compared to X-ray geometries, with the PBE0 functional (def2-TZVPP basis set) providing the best results, followed closely by the hybrid TPSSH and the MN12SX functionals. Calculations of the NMR chemical shifts using the two-component (2c, Zeroth-Order Regular Approximation as implemented in the ADF package) and four-component (4c, Dirac-Coulomb as implemented in the ReSpect code) relativistic approaches were performed to analyze and demonstrate the importance of solvent corrections (2c) as well as a proper treatment of relativistic effects (4c). The importance of increased exact-exchange admixture in the functional (here PBE0) for reproducing the experimental data using the current implementation of the 2c approach is partly rationalized as a compensation for the missing exchange-correlation response kernel. The kernel contribution was identified to be about 15-20% of the spin-orbit-induced NMR chemical shift, ΔδSO, which roughly corresponds to an increase in ΔδSO introduced by the artificially increased exact-exchange admixture in the functional. Finally, the role of individual effects (geometry, solvent, relativity) in the NMR chemical shift is discussed in selected complexes. Although a fully relativistic DFT approach is still awaiting the implementation of GIAOs for hybrid functionals and an implicit solvent model, it nevertheless provides reliable NMR chemical shift data at an affordable computational cost. It is expected to outperform the 2c approach, in particular for the calculation of NMR parameters in heavy-element compounds. PMID:26344822

  6. The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts.

    PubMed

    Smith, David C

    2005-08-01

    The "RAMANITA" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different. PMID:16029851

  7. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    PubMed

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. PMID:26503739

  8. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  9. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions.

    PubMed

    Pucci, Ferdinando; Garris, Christopher; Lai, Charles P; Newton, Andita; Pfirschke, Christina; Engblom, Camilla; Alvarez, David; Sprachman, Melissa; Evavold, Charles; Magnuson, Angela; von Andrian, Ulrich H; Glatz, Katharina; Breakefield, Xandra O; Mempel, Thorsten R; Weissleder, Ralph; Pittet, Mikael J

    2016-04-01

    Tumor-derived extracellular vesicles (tEVs) are important signals in tumor-host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169(+) macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169(+) macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169(+) macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity. PMID:26989197

  10. Additive non-Gaussian noise attacks on the scalar Costa scheme (SCS)

    NASA Astrophysics Data System (ADS)

    Tzschoppe, Roman; Bauml, Robert; Fischer, Robert; Huber, Johannes; Kaup, Andre

    2005-03-01

    The additive attack public mutual information game is explicitly solved for one of the simplest quantization based watermarking schemes, the scalar Costa scheme (SCS). It is a zero-sum game played between the embedder and the attacker, and the payoff function is the mutual information. The solution of the game, a subgame perfect nash equilibrium, is found by backward induction. Therefore, the Blahut-Arimoto algorithm is employed for numerically optimizing the mutual information over noise distributions. Although the worst case distribution is in general strongly non-Gaussian, the capacity degradation compared to a suboptimal Gaussian noise attack is quite small. The loss, if the embedder optimizes SCS for a Gaussian attack but the worst case attack is employed, is negligible.

  11. GIS Based Distributed Runoff Predictions in Variable Source Area Watersheds Employing the SCS-Curve Number

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.

    2003-04-01

    Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.

  12. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.

  13. Gas Hydrate at the Formosa Ridge in the Northernmost SCS Imaged from OBS Data

    NASA Astrophysics Data System (ADS)

    Deng, J.; Wang, T. K.; Chen, T.; Chi, W.; Lin, S.

    2013-12-01

    Gas hydrate at the Formosa Ridge off SW Taiwan in the passive margin of the northernmost South China Sea (SCS) was investigated by using 6 Taiwan ocean-bottom seismometers (OBS) and 12 German OBS along several P-cable profiles shooting by GI guns from the German research vessel SONNE in 2013. Firstly, initial models were built based on the P-cable profiles. Secondly, the reflected, refracted and head-wave arrivals, propagating from the shallow sedimentary layers, hydrate- and gas-bearing sediments, were picked from OBS data to invert the initial models. Finally, we obtain the P-wave velocity models by reducing the travel-time errors. Based on the P-wave velocity models, the depth of bottom-simulating reflector (BSR) beneath the Formosa Ridge in the passive margin of the northernmost SCS off SW Taiwan is about 400 meter below the sea floor. Furthermore, P-wave velocities of hydrate- and gas-bearing sediments are about 2000 m/s and 1450 m/s, respectively. We suggested that normal faults have provided conduits for gas migrated upward so that hydrate was accumulated above the BSR at the anticline of the Formosa Ridge off SW Taiwan in the passive margin of the SCS.

  14. SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein.

    PubMed Central

    Shu, Y; Hallberg, R L

    1995-01-01

    We identified and isolated a Saccharomyces cerevisiae gene which, when overexpressed, suppressed the temperature-sensitive phenotype of cells expressing a mutant allele of the gene encoding the mitochondrial chaperonin, Hsp60. This gene, SCS1 (suppressor of chaperonin sixty-1), encodes a 757-amino-acid protein of as yet unknown function which, nonetheless, has human, rice, and Caenorhabditis elegans homologs with high degrees (ca. 60%) of amino acid sequence identity. SCS1 is not an essential gene, but SCS1-null strains do not grow above 37 degrees C and show some growth-related defects at 30 degrees C as well. This gene is expressed at both 30 and 38 degrees C, producing little or no differences in mRNA levels at these two temperatures. Overexpression of SCS1 could not complement an HSP60-null allele, indicating that suppression was not due to the bypassing of Hsp60 activity. Of 10 other hsp60-ts alleles tested, five could also be suppressed by SCS1 overexpression. There were no common mutant phenotypes of the strains expressing these alleles that give any clue as to why they were suppressible while others were not. An epitope (influenza virus hemagglutinin)-tagged form of SCS1 in single copy complemented an SCS1-null allele. The Scs1-hemagglutinin protein was found to be at comparable levels and in similar multiply modified forms in cells growing at both 30 and 38 degrees C. Surprisingly, when localized either by cell fractionation procedures or by immunocytochemistry, these proteins were found not in mitochondria but in the cytosol. The overexpression of SCS1 had significant effects on the cellular levels of mRNAs encoding the proteins Cpn10 and Mgel, two other mitochondrial protein cochaperones, but not on mRNAs encoding a number of other mitochondrial or cytosolic proteins analyzed. The implications of these findings are discussed. PMID:7565713

  15. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  16. Hydrogen bonding between acetate-based ionic liquids and water: Three types of IR absorption peaks and NMR chemical shifts change upon dilution

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Cao, Yuanyuan; Zhang, Yuwei; Mu, Tiancheng

    2014-01-01

    The hydrogen-bonding interaction between acetate-based ionic liquids (AcIL) and water was investigated by attenuated total reflection infrared (ATR-IR) and 1H NMR. Interestingly, the relative change of chemical shift δ of 1H NMR upon dilution could be divided into three regions. All the H show an upfield shift in Regions 1 and 2 while a different tendency in Region 3 (upfield, no, and downfield shift classified as Types 1, 2, 3, respectively). For ATR-IR, the red, no, or blue shift of νOD (IR absorption peak of OD in D2O) and ν± (IR absorption peak of AcILs) also have three types, respectively. Two-Times Explosion Mechanism (TTEM) was proposed to interpret the dynamic processes of AcILs upon dilution macroscopically, meanwhile an Inferior Spring Model (ISM) was proposed to help to understand the TTEM microscopically, All those indicate that AcILs present the state of network, sub-network, cluster, sub-cluster, ion pairs and sub-ion pairs in sequence upon dilution by water and the elongation of hydrogen bonding between AcILs-water, between cation-anion of AcILs is plastic deformation rather than elastic deformation.

  17. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated “Safe Sites”?

    PubMed Central

    Manda, Hortance; Arce, Luana M.; Foggie, Tarra; Shah, Pankhil; Grieco, John P.; Achee, Nicole L.

    2011-01-01

    Background Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated “safe sites” contribute to overall impact. Methods Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated against two material types (cotton and polyester) at various dark:light surface area coverage (SAC) ratio and contrast configuration (horizontal and vertical) under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. Results Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or “safe sites”) in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. Conclusions/Significance When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas) following contact with the treated material. Instead, they become agitated, using

  18. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  19. Shift of optical absorption edge in SnO2 films with high concentrations of nitrogen grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Lu, Yinmei; Meyer, Bruno K.; Hofmann, Detlev M.; Eickhoff, Martin

    2016-06-01

    The optical and electrical properties of n-type SnO2 films with high concentrations of nitrogen (SnO2:N) grown by chemical vapor deposition are studied. The carrier concentration increases from 4.1 × 1018 to 3.9 × 1019 cm-3 and the absorption edge shifts from 4.26 to 4.08 eV with increasing NH3 flow rate. Typical Urbach tails were observed from the absorption spectra and the Urbach energy increases from 0.321 to 0.526 eV with increasing NH3 flow rate. An "effective" absorption edge of about 4.61 eV was obtained for all investigated samples from fitting the extrapolations of the Urbach tails. Burstein-Moss effect, electron-impurity, and electron-electron interactions are shown to play a minor role for the shift of the absorption edges in SnO2:N thin films.

  20. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is

  1. Structural and Functional Characterization of ScsC, a Periplasmic Thioredoxin-Like Protein from Salmonella enterica Serovar Typhimurium

    PubMed Central

    Shepherd, Mark; Heras, Begoña; Achard, Maud E. S.; King, Gordon J.; Argente, M. Pilar; Kurth, Fabian; Taylor, Samantha L.; Howard, Mark J.; King, Nathan P.

    2013-01-01

    Abstract Aims: The prototypical protein disulfide bond (Dsb) formation and protein refolding pathways in the bacterial periplasm involving Dsb proteins have been most comprehensively defined in Escherichia coli. However, genomic analysis has revealed several distinct Dsb-like systems in bacteria, including the pathogen Salmonella enterica serovar Typhimurium. This includes the scsABCD locus, which encodes a system that has been shown via genetic analysis to confer copper tolerance, but whose biochemical properties at the protein level are not defined. The aim of this study was to provide functional insights into the soluble ScsC protein through structural, biochemical, and genetic analyses. Results: Here we describe the structural and biochemical characterization of ScsC, the soluble DsbA-like component of this system. Our crystal structure of ScsC reveals a similar overall fold to DsbA, although the topology of β-sheets and α-helices in the thioredoxin domains differ. The midpoint reduction potential of the CXXC active site in ScsC was determined to be −132 mV versus normal hydrogen electrode. The reactive site cysteine has a low pKa, typical of the nucleophilic cysteines found in DsbA-like proteins. Deletion of scsC from S. Typhimurium elicits sensitivity to copper (II) ions, suggesting a potential involvement for ScsC in disulfide folding under conditions of copper stress. Innovation and Conclusion: ScsC is a novel disulfide oxidoreductase involved in protection against copper ion toxicity. Antioxid. Redox Signal. 19, 1494–1506. PMID:23642141

  2. On the warm/cold regime shift in the South China Sea: Observation and modeling study

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Gan, Jianping; Lau, Alexis; Fung, Jimmy

    2009-07-01

    Remote sensing data sets and a high-resolution three-dimensional regional ocean model were utilized to investigate the shifting of warm/cold regime and the associated sea level variation in the South China Sea (SCS) during 2000-2003. Both the altimetry data and the model results showed an increase in the sea level (warm phase) followed by an abrupt decrease (cold phase) in the SCS during 2000-2003. Heat budget calculations performed with the model revealed excess heat advection from the western Pacific warm pool into the SCS during the warm phase than the cold phase. The warm phase, which occurred during La Niña episodes, resulted from the intrusion of abnormally warmer western Pacific water that increased the heat content and thus sea level in the SCS. The cold phase, which occurred during El Niño episodes, was triggered by a reduction in the net atmospheric heat flux followed by cold water advection into the SCS. Decrease in the rate of precipitation minus evaporation ( P-E) also accounted for the falling of sea level during cold phase. The present study integrated the available remote sensing data and advanced numerical model to identify the time-dependent three-dimensional dynamic and thermodynamic forcing that are important in governing the warm/cold regime shift in the SCS.

  3. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Association of Quadriceps Muscle Fat With Isometric Strength Measurements in Healthy Males Using Chemical Shift Encoding-Based Water-Fat Magnetic Resonance Imaging

    PubMed Central

    Baum, Thomas; Inhuber, Stephanie; Dieckmeyer, Michael; Cordes, Christian; Ruschke, Stefan; Klupp, Elisabeth; Jungmann, Pia M.; Farlock, Rosanna; Eggers, Holger; Kooijman, Hendrik; Rummeny, Ernst J.; Schwirtz, Ansgar; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Abstract Magnetic resonance–based assessment of quadriceps muscle fat has been proposed as surrogate marker in sarcopenia, osteoarthritis, and neuromuscular disorders. We presently investigated the association of quadriceps muscle fat with isometric strength measurements in healthy males using chemical shift encoding-based water-fat magnetic resonance imaging. Intermuscular adipose tissue fraction and intramuscular proton density fat fraction correlated significantly (P < 0.05) with isometric strength (up to r = −0.83 and −0.87, respectively). Reproducibility of intermuscular adipose tissue fraction and intramuscular proton density fat fraction was 1.5% and 5.7%, respectively. PMID:26953765

  5. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface.

    PubMed

    Buchko, Garry W; Edwards, Thomas E; Hewitt, Stephen N; Phan, Isabelle Q H; Van Voorhis, Wesley C; Miller, Samuel I; Myler, Peter J

    2015-10-01

    Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto α-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (μs-ms) and/or is heterogeneous. PMID:25957069

  6. (1)H, (13)C, and (15)N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.

    PubMed

    Lim, Sunghyuk; Yu, Qinhong; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Ames, James B

    2016-04-01

    Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure. PMID:26537963

  7. NMR structure note: Structure of the Membrane Protein MerF, a Bacterial Mercury Transporter, Improved by the Inclusion of Chemical Shift Anisotropy Constraints

    PubMed Central

    Tian, Ye; Lu, George J.; Marassi, Francesca M.; Opella, Stanley J.

    2014-01-01

    SUMMARY MerF is a mercury transport membrane protein from the bacterial mercury detoxification system. By performing a solid-state INEPT experiment and measuring chemical shift anisotropy frequencies in aligned samples, we are able to improve on the accuracy and precision of the initial structure that we presented. MerF has four N-terminal and eleven C-terminal residues that are mobile and unstructured in phospholipid bilayers. The structure presented here has average pairwise RMSDs of 1.78 Å for heavy atoms and 0.92 Å for backbone atoms. PMID:25103921

  8. The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity

    SciTech Connect

    Kagiwada, Satoshi Hashimoto, Misa

    2007-12-28

    The yeast VAMP-associated protein (VAP) homolog Scs2p is an endoplasmic reticulum (ER)/nuclear membrane protein that binds to an FFAT (diphenylalanine in an acidic tract) motif found in various lipid-metabolic proteins, including Opi1p, a negative regulator of phospholipid biosynthesis. Here, we show that Scs2p is a novel phosphoinositide-binding protein that can bind to phosphatidylinositol monophosphates and bisphosphates in vitro. The phosphoinositide-binding domain was assigned to the N-terminal major sperm protein (MSP) domain which also contains the FFAT-binding domain. When several lysine residues in the MSP domain were substituted for alanine, the resulting mutant Scs2 proteins lost the phosphoinositide-binding ability and failed to complement the inositol auxotrophy of an scs2 deletion strain. However, the mutant proteins still localized in the ER/nuclear membrane, in a similar manner to wild-type Scs2p. These results suggest the possibility that Scs2p activity is regulated by phosphoinositides to coordinate phospholipid biosynthesis in response to changes in phospholipid composition.

  9. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    PubMed

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment

  10. Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1990-01-01

    In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch a uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.

  11. Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1990-01-01

    In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.

  12. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC

    NASA Technical Reports Server (NTRS)

    Newaz, Golam M.; Majumdar, Bhaskar S.

    1995-01-01

    The objective of this investigation was to identify the inelastic deformation and damage mechanisms under in-phase (IP) thermomechanical fatigue (TMF) in a unidirectional SCS-6/Ti 15-3 metal matrix composite (MMC). Load-controlled IP TMF tests were conducted at 300-538 C at various stress ranges in high-purity argon. A major emphasis of this work was to identify damage mechanism well before final fracture of specimens, rather than to generate life diagrams, to aid development of a realistic deformation/damage and life model.

  13. Double-Layer ULVZ Shear Velocity Structure Imaged With Stacked ScS Data

    NASA Astrophysics Data System (ADS)

    Avants, M.; Lay, T.; Garnero, E.

    2005-12-01

    The ultra-low velocity zone (ULVZ) has been imaged as a thin (5-40 km thick) layer just above the core-mantle boundary (CMB), with P and S velocities reduced by up to 10 and 30%, respectively. Accurate characterization of the ULVZ is important, as it may relate to, for example, the role of the lowermost mantle in Earth's evolution, mantle and outer core convection, the geodynamo, and heat flux into the mantle. A direct measurement of S velocity in the ULVZ, independent of the P-wave velocity, is needed to better constrain ULVZ properties. We establish tangential component ScS data as a new probe of ULVZ shear velocity properties. Lowermost mantle structure beneath the central Pacific is studied using data from 38 deep focus Tonga-Fiji earthquakes, recorded by dense broadband seismic networks in western North America. Our data set consists of 442 instrument-deconvolved displacement seismograms, which are additionally deconvolved by average source-time functions (source wavelets) constructed for each event, in order to equalize the signals and to extend the signal bandwidth to high frequencies. The resulting traces are used in a double-beam stacking approach to enhance the signal-to-noise ratio of any coherent precursory reflections of the wide-angle transverse component ScS data, which should be detectable if ULVZ structure is present beneath our central Pacific study region. Our stacks reveal two distinct ScS precursors, which indicate a double layer ULVZ structure in this region. Both layers show strong lateral variations in shear velocity reduction (dVs) and thickness. The deeper ULVZ layer is well modeled by dVs drops varying from 3.3-7.4% (relative to PREM) with a thickness range of 24-30 km. The overlying layer has dVs reductions from 0.8-2.0% (relative to PREM), and 60-86 km thickness. Thus the imaged 2-layered ULVZ has dVs reductions far milder than previous studies (10-30%), which have argued for a partial melt origin to the ULVZ. Finer subdivisions of data

  14. Novel SCS-IL-MP2 and SOS-IL-MP2 Methods for Accurate Energetics of Large-Scale Ionic Liquid Clusters.

    PubMed

    Rigby, Jason; Barrera Acevedo, Santiago; Izgorodina, Ekaterina I

    2015-08-11

    Accurate energetics of intermolecular interactions in condensed systems are challenging to predict using highly correlated quantum chemical methods due to their great computational expense. Semi-Coulomb systems such as ionic liquids, in which electrostatic, dispersion, and induction forces are equally important, represent a further challenge for wave function-based methods. Here, the application of our recently developed SCS-IL-MP2 and SOS-IL-MP2 methods is reported for ionic liquid clusters of two and four ion pairs. Correlation interaction energies were found to be within 1.5 kJ mol(-1), on average, per ion pair of the CCSD(T)/CBS benchmark, thus introducing a marked improvement by a factor of 4 to conventional MP2 within the complete basis set. The fragment molecular orbital (FMO) approach in combination with both SCS-IL-MP2 and SOS-IL-MP2 has been shown to provide a reliable and computationally inexpensive alternative to CCSD(T)/CBS for large-scale calculations of ionic liquids, thus paving the way toward feasible ab initio molecular dynamics and development of reliable force fields for these condensed systems. PMID:26574444

  15. Final Technical Report: A Paradigm Shift in Chemical Processing: New Sustainable Chemistries for Low-VOC Coatings

    SciTech Connect

    Smith, Kenneth F.

    2006-07-26

    The project employed new processes to make emulsion polymers from reduced levels of petroleum-derived chemical feedstocks. Most waterborne paints contain spherical, emulsion polymer particles that serve as the film-forming binder phase. Our goal was to make emulsion polymer particles containing 30 percent feedstock that would function as effectively as commercial emulsions made from higher level feedstock. The processes developed yielded particles maintained their film formation capability and binding capacity while preserving the structural integrity of the particles after film formation. Rohm and Haas Company (ROH) and Archer Daniels Midland Company (ADM) worked together to employ novel polymer binders (ROH) and new, non-volatile, biomass-derived coalescing agents (ADM). The University of Minnesota Department of Chemical Engineering and Material Science utilized its unique microscopy capabilities to characterize films made from the New Emulsion Polymers (NEP).

  16. Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    The focus of the present article is on understanding the insight that X-ray photoelectron spectroscopy (XPS) measurements can provide when studying self-assembled monolayers. Comparing density functional theory calculations to experimental data on deliberately chosen model systems, we show that both the chemical environment and electrostatic effects arising from a superposition of molecular dipoles influence the measured core-level binding energies to a significant degree. The crucial role of the often overlooked electrostatic effects in polar self-assembled monolayers (SAMs) is unambiguously demonstrated by changing the dipole density through varying the SAM coverage. As a consequence of this effect, care has to be taken when extracting chemical information from the XP spectra of ordered organic adsorbate layers. Our results, furthermore, imply that XPS is a powerful tool for probing local variations in the electrostatic energy in nanoscopic systems, especially in SAMs. PMID:26937264

  17. Comparison of the solution and crystal structures of staphylococcal nuclease with /sup 13/C and /sup 15/N chemical shifts used as structural fingerprints

    SciTech Connect

    Cole, H.B.R.; Sparks, S.W.; Torchia, D.A.

    1988-09-01

    The authors report high-resolution /sup 13/C and /sup 15/N NMR spectra of crystalline staphylococcal nuclease (Nase) complexed to thymidine 3',5'-diphosphate and Ca/sup 2+/. High sensitivity and resolution are obtained by applying solid-state NMR techniques-high power proton decoupling and cross-polarization magic angle sample spinning (CPMASS)-to protein samples that have been efficiently synthesized and labeled by an overproducing strain of Escherichia coli. A comparison of CPMASS and solution spectra of Nase labeled with either (methyl-/sup 13/C)methionine or (/sup 15/)valine shows that the chemical shifts in the crystalline and solution states are virtually identical. This result is strong evidence that the protein conformations in the solution and crystalline states are nearly the same. Because of the close correspondence of the crystal and solution chemical shifts, sequential assignments obtained in solution apply to the crystal spectra. It should therefore be possible to study the molecular structure and dynamics of many sequentially assigned atomic sites in Nase crystals. Similar experiments are applicable to the growing number of proteins that can be obtained from efficient expression systems.

  18. Stored waveform inverse fourier-transform (SWIFT) excitation for water-suppressed whole-body slice-selected proton chemical shift spectra at 1.5 tesla

    NASA Astrophysics Data System (ADS)

    Hsu, Annjia T.; Hunter, William W.; Schmalbrock, Petra; Marshall, Alan G.

    Proton NMR spectroscopy for the in vivo study of metabolites in a spatially resolved region with a clinical NMR imaging device must contend with the 70% hydration of normal man. Theoretical and experimental comparisons of several excitation waveforms designed to suppress the H 2O signal in proton NMR spectroscopy and chemical shift imaging have been conducted. In particular, we have compared the 1 overline33 overline1 and 1 overline1 pulse sequences with those obtained via a stored waveform inverse Fourier-transform (SWIFT) time-domain apodized waveform generated by inverse Fourier transformation of a quadratically phase-encoded excitation magnitude spectrum. Theoretical excitation profiles are compared to those measured in a slice selected with a General Electric Signa 1.5 T whole-body imaging system, and demonstrated for a phantom (toluene, dioxane, and dichloromethane). The SWIFT waveform is theoretically and experimentally superior to 1 overline1 and 1 overline33 overline1 for selective suppression of one spectral segment with simultaneous uniform excitation over the rest of the spectral frequency range. SWIFT-excited water-suppressed depth-resolved chemical shift spectra are demonstrated for human brain and human calf muscle of normal volunteers.

  19. Free variable selection QSPR study to predict 19F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Nasser

    2016-04-01

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  20. Solid-state NMR chemical-shift perturbations indicate domain reorientation of the DnaG primase in the primosome of Helicobacter pylori.

    PubMed

    Gardiennet, Carole; Wiegand, Thomas; Bazin, Alexandre; Cadalbert, Riccardo; Kunert, Britta; Lacabanne, Denis; Gutsche, Irina; Terradot, Laurent; Meier, Beat H; Böckmann, Anja

    2016-03-01

    We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained. PMID:26961129

  1. Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR.

    PubMed

    Abramov, Gili; Goldbourt, Amir

    2014-08-01

    The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly (13)C and (15)N labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete (13)C and a near-complete (15)N nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional (13)C-(13)C and (15)N-(13)C correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing (13)C and (15)N chemical shift database. This work therefore expands the (13)C and (15)N database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR. PMID:24875850

  2. 4D non-uniformly sampled HCBCACON and ¹J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins.

    PubMed

    Nováček, Jiří; Haba, Noam Y; Chill, Jordan H; Zídek, Lukáš; Sklenář, Vladimír

    2012-06-01

    A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit (13)C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (H(α), and H(β)) and carbon (C(α), C(β)) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient secondary structure motifs in the intrinsically disordered proteins (H(α), C(α), C(β), C', and N) can be extracted from each spectrum. Compared to the commonly used assignment strategy based on matching the C(α) and C(β) chemical shifts, inclusion of the H(α) and H(β) provides up to three extra resonance frequencies that decrease the chance of ambiguous assignment. The experiments were successfully applied to the original assignment of a 12.8 kDa intrinsically disordered protein having a high content of proline residues (26 %) in the sequence. PMID:22580891

  3. Comparative molecular field analysis and comparative molecular similarity index analysis studies on 1H NMR chemical shift of NH group of diaryl triazene derivatives.

    PubMed

    Rofouie, M K; Salahinejad, M; Ghasemi, J B; Aghaei, A

    2013-05-01

    Comparative molecular field analysis (CoMFA), comparative molecular field analysis region focusing (CoMFA-RF) for optimizing the region for the final partial least square analysis, and comparative molecular similarity indices analysis (CoMSIA) methods were employed to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) models of (1)H NMR chemical shift of NH proton of diaryl triazene derivatives. The best orientation was searched by all-orientation search (AOS) strategy to minimize the effect of the initial orientation of the structures. The predictive abilities of CoMFA-RF and CoMSIA models were determined using a test set of ten compounds affording predictive correlation coefficients of 0.721 and 0.754, respectively, indicating good predictive power. For further model validation, cross validation (leave one out), progressive scrambling, and bootstrapping were also applied. The accuracy and speed of obtained 3D-QSAR models for the prediction of (1)H NMR chemical shifts of NH group of diaryl triazene derivatives were greater compared to some computational well-known procedures. PMID:23456682

  4. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.

    PubMed

    Pawlak, Tomasz; Munzarová, Markéta L; Pazderski, Leszek; Marek, Radek

    2011-12-13

    Recently implemented hybrid density functional methods of calculating nuclear magnetic shielding using the two-component zeroth-order regular approximation approach (J. Phys. Chem. A2009, 113, 11495) have been employed for a series of compounds containing heavy transition-metal atoms. These include Pt(2+), Pd(2+), and Au(3+) organometallics and metal complexes with azines, some of which exhibit interesting biological and catalytic activities. In this study we investigate the effects of geometry, exchange-correlation functional, solvent, and scalar relativistic and spin-orbit corrections on the nuclear magnetic shielding-mainly for (13)C and (15)N atoms connected to a heavy-atom center. Our calculations demonstrate that the B3LYP method using effective core potentials and a cc-pwCVTZ-PP/6-31G** basis set augmented with the polarizable continuum model of the dimethylsulfoxide solvent provides geometries for the complexes in question which are compatible with the experimental NMR results in terms of both the trends and the absolute values of the (13)C shifts. The important role of the exact exchange admixture parameter for hybrid functionals based on B3LYP and PBE0 is investigated systematically for selected Pt(2+) and Au(3+) complexes. The (13)C and (15)N NMR chemical shifts are found to be best reproduced by using a B3LYP or PBE0 approach with 30% and 40-50% exact exchange admixtures for the Pt(2+) and Au(3+) complexes, respectively. The spin-orbit contributions to the (15)N NMR chemical shifts reflect metal-ligand bonding that is much more ionic for the Au(3+) than for the Pt(2+) complex. Finally, an optimized density functional method is applied to a series of transition-metal complexes to estimate the scope and the limitations of the current approach. PMID:26598337

  5. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.

    PubMed

    Hong, Mei; Mishanina, Tatiana V; Cady, Sarah D

    2009-06-10

    The use of side chain methyl (13)C chemical shifts for the determination of the rotameric conformation of Val and Leu residues in proteins by solid-state NMR spectroscopy is described. Examination of the solution NMR stereospecifically assigned methyl groups shows significant correlation between the difference in the two methyl carbons' chemical shifts and the side chain conformation. It is found that alpha-helical and beta-sheet backbones cause different side chain methyl chemical shift trends. In alpha-helical Leu's, a relatively large absolute methyl (13)C shift difference of 2.89 ppm is found for the most populated mt rotamer (chi(1) = -60 degrees, chi(2) = 180 degrees), while a much smaller value of 0.73 ppm is found for the next populated tp rotamer (chi(1) = 180 degrees, chi(2) = 60 degrees). For alpha-helical Val residues, the dominant t rotamer (chi(1) = 180 degrees) has more downfield Cgamma2 chemical shifts than Cgamma1 by 1.71 ppm, while the next populated m rotamer (chi(1) = -60 degrees) shows the opposite trend of more downfield Cgamma1 chemical shift by 1.23 ppm. These significantly different methyl (13)C chemical shifts exist despite the likelihood of partial rotameric averaging at ambient temperature. We show that these conformation-dependent methyl (13)C chemical shifts can be utilized for side chain structure determination once the methyl (13)C resonances are accurately measured by double-quantum (DQ) filtered 2D correlation experiments, most notably the dipolar DQ to single-quantum (SQ) correlation technique. The advantage of the DQ-SQ correlation experiment over simple 2D SQ-SQ correlation experiments is demonstrated on the transmembrane peptide of the influenza A M2 proton channel. The methyl chemical shifts led to predictions of the side chain rotameric states for several Val and Leu residues in this tetrameric helical bundle. The predicted Val rotamers were further verified by dipolar correlation experiments that directly measure the chi(1

  6. Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Norouzi Javidan, Abbas; Saberi, Hoshangh; Joghataei, Mohammad Tghi; Rahbarghazi, Reza; Mirzaei, Esmaeil; Faghihi, Faezeh; Shirian, Sadegh; Ai, Armin; Ai, Jafar

    2015-12-01

    Human endometrium is a high-dynamic tissue that contains human endometrial stem cells (hEnSCs) which can be differentiated into a number of cell lineages. The differentiation of hEnSCs into many cell lineages such as osteoblast, adipocyte, and neural cells has been investigated previously. However, the differentiation of these stem cells into motor neuron-like cells has not been investigated yet. Different biochemical and topographical cues can affect the differentiation of stem cells into a specific cell. The aim of this study was to investigate the capability of hEnSCs to be differentiated into motor neuron-like cells under biochemical and topographical cues. The biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibrous scaffold was used as a topographical cue. Human EnSCs were cultured on the PLGA scaffold and tissue culture polystyrene (TCP), then differentiation of hEnSCs into motor neuron-like cells under induction media including retinoic acid (RA) and sonic hedgehog (Shh) were evaluated for 15 days. The proliferation rate of cells was assayed by using MTT assay. The morphology of cells was studied by scanning electron microscopy imaging, and the expression of motor neuron-specific markers by real-time PCR and immunocytochemistry. Results showed that survival and differentiation of hEnSCs into motor neuron-like cells on the PLGA scaffold were better than those on the TCP group. Taken together, the results suggest that differentiated hEnSCs on PLGA can provide a suitable, three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system, and these cells may be a potential candidate in cellular therapy for motor neuron diseases. PMID:25377792

  7. The scs' boundary element: characterization of boundary element-associated factors.

    PubMed

    Hart, C M; Zhao, K; Laemmli, U K

    1997-02-01

    Boundary elements are thought to define the peripheries of chromatin domains and to restrict enhancer-promoter interactions to their target genes within their domains. We previously characterized a cDNA encoding the BEAF-32A protein (32A), which binds with high affinity to the scs' boundary element from the Drosophila melanogaster 87A7 hsp70 locus. Here, we report a second protein, BEAF-32B, that differs from 32A only in its amino terminus. Unlike 32A, it has the same DNA binding specificity as the complete BEAF activity affinity purified from Drosophila. We characterize three domains in these proteins. Heterocomplex formation is mediated by their identical carboxy-terminal domains, and DNA binding is mediated by their unique amino-terminal domains. The identical middle domains of 32A and 32B are dispensable for the functions described here, although they may be important for boundary element function. 32A and 32B apparently form trimers, and the ratio of 32A to 32B varies at different loci on polytene chromosomes as judged by immunofluorescence. The scs' element contains a high- and low-affinity binding site for BEAF. We observed that interaction with the low-affinity site is facilitated by binding to the high-affinity site some 200 bp distant. PMID:9001253

  8. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  9. Analysis of the explosion of gas mixtures with a shift in the chemical equilibrium of the products taken into account

    SciTech Connect

    Zhdan, S.A.

    1983-07-01

    Starting from a representation of the detonation products as a reacting medium with an equilibrium chemical composition at each point, a generalized formulation of the problem on the explosion of a reacting gas mixture in air is given. Methaneoxygen and hydrogen-oxygen systems are considered. It is seen that almost half the energy is in the chemical component of the total internal energy behind the detonation wave front. The results of computations by the mathematical model yield greater values of the excess pressures on the shock front. Experimental data and numerical solutions are compared for the dependence of the excess pressures on the shock front radius, and are found to be in good agreement for the hydrogen-oxygen system. The methane-oxygen system shows a systematic excess in the experimental data which is apparently associated with non-one-dimensional effects in formulation of the experiment. The magnitude of the efficiency of an explosion, defined as the energy transferred to the wave during maximal detonation product expansion and the total energy initially included in the mixture, is of interest. For oxygen mixtures, only a third of the total explosion energy performs work on the surrounding air.

  10. Chemical potential shift and gap-state formation in SrTiO{sub 3−δ} revealed by photoemission spectroscopy

    SciTech Connect

    Pal, Prabir Kumar, Pramod; Aswin, V.; Dogra, Anjana; Joshi, Amish G.

    2014-08-07

    In this study, we report on investigations of the electronic structure of SrTiO{sub 3} annealed at temperature ranging between 550 and 840 °C in an ultrahigh vacuum. Annealing induced oxygen vacancies (O{sub vac}) impart considerable changes in the electronic structure of SrTiO{sub 3}. Using core-level photoemission spectroscopy, we have studied the chemical potential shift (Δμ) as a function of annealing temperature. The result shows that the chemical potential monotonously increases with electron doping in SrTiO{sub 3−δ}. The monotonous increase of the chemical potential rules out the existence of electronic phase separation in the sample. Using valence band photoemission, we have demonstrated the formation of a low density of states at the near Fermi level electronic spectrum of SrTiO{sub 3−δ}. The gap-states were observed by spectral weight transfer over a large energy scale of the stoichiometric band gap of SrTiO{sub 3} system leading finally to an insulator-metal transition. We have interpreted our results from the point of structural distortions induced by oxygen vacancies.

  11. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    PubMed Central

    Domínguez, Humberto J.; Crespín, Guillermo D.; Santiago-Benítez, Adrián J.; Gavín, José A.; Norte, Manuel; Fernández, José J.; Hernández Daranas, Antonio

    2014-01-01

    Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance) plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory) calculations to predict the correct stereoisomer has been studied. PMID:24402177

  12. Examination of anticipated chemical shift and shape distortion effect on materials commonly used in prosthetic socket fabrication when measured using MRI: a validation study.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2013-01-01

    The quality of lower-limb prosthetic socket fit is influenced by shape and volume consistency during the residual limb shape-capturing process (i.e., casting). Casting can be quantified with magnetic resonance imaging (MRI) technology. However, chemical shift artifact and image distortion may influence the accuracy of MRI when common socket/casting materials are used. We used a purpose-designed rig to examine seven different materials commonly used in socket fabrication during exposure to MRI. The rig incorporated glass marker tubes filled with water doped with 1 g/L copper sulfate (CS) and 9 plastic sample vials (film containers) to hold the specific material specimens. The specimens were scanned 9 times in different configurations. The absolute mean difference of the glass marker tube length was 1.39 mm (2.98%) (minimum = 0.13 mm [0.30%], maximum = 5.47 mm [14.03%], standard deviation = 0.89 mm). The absolute shift for all materials was <1.7 mm. This was less than the measurement tolerance of +/-2.18 mm based on voxel (three-dimensional pixel) dimensions. The results show that MRI is an accurate and repeatable method for dimensional measurement when using matter containing water. Additionally, silicone and plaster of paris plus 1 g/L CS do not show a significant shape distortion nor do they interfere with the MRI image of the residual limb. PMID:23516081

  13. Nuclear magnetic resonance studies of guest species in clathrate hydrates: Line-shape anisotropies, chemical shifts, and the determination of cage occupancy ratios and hydration numbers

    SciTech Connect

    Collins, M.J.; Ratcliffe, C.I.; Ripmeester, J.A. )

    1990-01-11

    NMR spectra of the guest molecules PH{sub 3}, H{sub 2}Se, D{sub 2}Se, D{sub 2}S, CD{sub 3}F, CD{sub 3}Cl, CD{sub 3}Br, C{sub 2}D{sub 2}, and C{sub 2}D{sub 4} in their structure I clathrate hydrates have been obtained by use of {sup 2}H, {sup 19}F, {sup 31}P, and {sup 77}Se nuclei. Components due to guests in the small and large cages have been distinguished by using isotropic chemical shift and static line-shape anisotropy differences. Low-temperature magic angle spinning was used in some cases to resolve the two components. Guests in the small cages are invariably found to have a lower field isotropic shift than those in the large cage. The static line shapes are isotropic for guests in the small spherical cages, whereas in the large oblate cages they have a residual anisotropy. Relative cage occupancy ratios {theta}{sub S}/{theta}{sub L} have been obtained from the observed NMR intensities, and together with similar results from previous NMR studies, these have been used to derive hydration numbers. This represents a new and nondestructive method of determining structure I hydrate compositions.

  14. A benchmark of the SCS-40 computer: A mini supercomputer compatible with the Cray X-MP/24

    SciTech Connect

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1987-01-01

    An accurate benchmark of the SCS-40 mini supercomputer manufactured by Scientific Computer Systems Corporation has been carried out. A new, revised set of standard ANSI77 Fortran benchmark codes were run on the SCS-40 in a dedicated environment, using Version 1.13 of the CFT compiler. The results are compared with those obtained on one processor of a CRAY X-MP/24 computer using the Cray Research Inc. version of the same compiler. The results suggest that for a typical Los Alamos National Laboratory computational workload, the SCS-40 is equivalent to one-quarter to one-third of a single processor of the CRAY X-MP/24. 15 refs., 5 tabs.

  15. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  16. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Astrophysics Data System (ADS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-07-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  17. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects.

    PubMed

    Bakker, Chris J G; de Leeuw, Hendrik; van de Maat, Gerrit H; van Gorp, Jetse S; Bouwman, Job G; Seevinck, Peter R

    2013-01-01

    Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates. Experiments were done on a clinical system with standard facilities for imaging and spectroscopy. Images were acquired with a regular spin echo sequence and a corresponding spectroscopic imaging sequence. In the latter, successive samples of the acquired echo were used for the reconstruction of a series of evenly spaced images in the time and frequency domain. Experiments were done with a spatial linearity phantom and a series of test objects representing a wide range of susceptibility- and chemical-shift-induced off-resonance conditions. In contrast to regular spin echo imaging, spectroscopic imaging was shown to be immune to off-resonance effects, such as those caused by field inhomogeneity, susceptibility, chemical shift, f(0) offset and field drift, and to yield geometrically accurate images and parameter maps that allowed object structures to be localized in world coordinates. From these illustrative examples and a discussion of the limitations of purely phase-encoded imaging techniques, it is concluded that spectroscopic imaging offers a fundamental solution to the geometric deficiencies of MRI which may evolve toward a practical solution when full advantage will be taken of current developments with regard to scan time reduction. This perspective is backed up by a demonstration of the significant scan time reduction that may be achieved by the use of compressed sensing for a simple phantom. PMID:22898694

  18. A solid-state (11)b NMR and computational study of boron electric field gradient and chemical shift tensors in boronic acids and boronic esters.

    PubMed

    Weiss, Joseph W E; Bryce, David L

    2010-04-22

    The results of a solid-state (11)B NMR study of a series of 10 boronic acids and boronic esters with aromatic substituents are reported. Boron-11 electric field gradient (EFG) and chemical shift (CS) tensors obtained from analyses of spectra acquired in magnetic fields of 9.4 and 21.1 T are demonstrated to be useful for gaining insight into the molecular and electronic structure about the boron nucleus. Data collected at 21.1 T clearly show the effects of chemical shift anisotropy (CSA), with tensor spans (Omega) on the order of 10-40 ppm. Signal enhancements of up to 2.95 were achieved with a DFS-modified QCPMG pulse sequence. To understand the relationship between the measured tensors and the local structure better, calculations of the (11)B EFG and magnetic shielding tensors for these compounds were conducted. The best agreement was found between experimental results and those obtained from GGA revPBE DFT calculations. A positive correlation was found between Omega and the dihedral angle (phi(CCBO)), which describes the orientation of the boronic acid/ester functional group relative to an aromatic system bound to boron. The small boron CSA is discussed in terms of paramagnetic shielding contributions as well as diamagnetic shielding contributions. Although there is a region of overlap, both Omega and the (11)B quadrupolar coupling constants tend to be larger for boronic acids than for the esters. We conclude that the span is generally the most characteristic boron NMR parameter of the molecular and electronic environment for boronic acids and esters, and show that the values result from a delicate interplay of several competing factors, including hydrogen bonding, the value of phi(CCBO), and the electron-donating or withdrawing substituents bound to the aromatic ring. PMID:20337440

  19. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested. PMID:26278514

  20. Radial variation of elastic properties of SCS-6 silicon carbide fiber

    SciTech Connect

    Sathish, S.; Cantrell, J.H.; Yost, W.T.

    1994-01-01

    The upper and lower bounds of the bulk, shear, and Young`s moduli are calculated point-by-point along the radius of SCS-6 silicon carbide fibers using the Hashin-Shtrikman equations from considerations of the Auger spectra along the fiber radius. The calculated values are in agreement with measurements of the average Young modulus obtained over relatively large radial regions of the fiber using scanning acoustic microscopy (SAM). The validity of the Hashin-Shtrikman bounds calculations is enhanced by the agreement found between experimental SAM V(z) curves for fixed z along the fiber radius and the theoretical bounds of such curves obtained from the bounds of the calculated bulk and shear moduli.

  1. Radial Variation of Elastic Properties of SCS-6 Silicon Carbide Fiber

    NASA Technical Reports Server (NTRS)

    Sathish, Shamachary; Cantrell, John H.; Yost, William T.

    1994-01-01

    The upper and lower bounds of the bulk, shear, and Young's moduli are calculated point-by-point along the radius of SCS-6 silicon carbide fibers using the Hashin-Shtrikman equations from considerations of the Auger spectra along the fiber radius. The calculated values are in agreement with measurements of the average Young modulus obtained over relatively large radial regions of the fiber using scanning acoustic microscopy (SAM). The validity of the Hashin-Shtrikman bounds calculations is enhanced by the agreement found between experimental SAM V(z) curves for fixed z along the fiber radius and the theoretical bounds of such curves obtained from the bounds of the calculated bulk and shear moduli.

  2. Radial variation of elastic properties of SCS-6 silicon carbide fiber

    NASA Technical Reports Server (NTRS)

    Sathish, Shamachary; Cantrell, John H.; Yost, William T.

    1994-01-01

    The upper and lower bounds of the bulk, shear, and Young's moduli are calculated point-by-point along the radius of SCS-6 silicon carbide fibers using the Hashin-Shtrikman equations from considerations of the Auger spectra along the fiber radius. The calculated values are in agreement with measurements of the average Young modulus obtained over relatively large radial regions of the fiber using scanning acoustic microscopy (SAM). The validity of the Hashin-Shtrikman bounds calculations is enhanced by the agreement found between experimental SAM V(z) curves for fixed z along the fiber radius and the theoretical bounds of such curves obtained from the bounds of the calculated bulk and shear moduli.

  3. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  4. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  5. Thermal fatigue behavior of a unidirectional SCS6/Ti-15-3 metal matrix composite

    SciTech Connect

    Mall, S.; Ermer, P.G. USAF, Washington, DC )

    1991-12-01

    Damage mechanisms in a unidirectional titanium matrix composite with silicon carbide fibers (SCS6/Ti-15-3) subjected to thermal cycling from 149 C to 427 C and 149 C to 649 C were investigated. The degradation of the reaction zone was the first sign of damage due to thermal cycling. It initiated at 500 cycles and continued to grow with increase of thermal cycles. The Young's modulus, Poisson's ratio and residual tensile strength did not change due to thermal cycling up to 15,000 cycles for both temperature ranges. However, the observed internal damage as the degradation of the reaction zone manifested in the form of linear stress-strain response during residual tensile test. A simplified micromechanics analysis was also conducted to assess the state of stress to interpret the experimentally observed response of the tested metal matrix composite. 8 refs.

  6. Theoretical 13C chemical shift, 14N, and 2H quadrupole coupling- constant studies of hydrogen bonding in L-alanylglycine dipeptide.

    PubMed

    Tafazzoli, M; Amini, S K

    2008-04-01

    (13)C chemical shieldings and (14)N and (2)H electric field gradient (EFG) tensors of L-alanylglycine (L-alagly) dipeptide were calculated at RHF/6-31 + + G** and B3LYP/6-31 + + G** levels of theory respectively. For these calculations a crystal structure of this dipeptide obtained from X-ray crystallography was used. Atomic coordinates of different clusters containing several L-alagly molecules were used as input files for calculations. These clusters consist of central and surrounding L-alagly molecules, the latter forming short, strong, hydrogen bonds with the central molecule. Since the calculations did not converge for these clusters, the surrounding L-alagly molecules were replaced by glycine molecules. In order to improve the accuracy of calculated chemical shifts and nuclear quadrupole coupling constants (NQCCs), different geometry-optimization strategies were applied for hydrogen nuclei. Agreement between calculated and experimental data confirms that our optimized coordinates for hydrogen nuclei are more accurate than those obtained by X-ray diffraction. PMID:18273875

  7. Regime shift of the South China Sea SST in the late 1990s

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Tkalich, Pavel; Malanotte-Rizzoli, Paola

    2016-05-01

    Decadal variability of the South China Sea (SCS) sea surface temperature (SST) during 1982-2014 is investigated using observations and ocean reanalysis datasets. The SCS SST shows an abrupt transition from a cold-to-warm regime in the late 1990s. Based on the long-term SST variability two epochs are defined, 1982-1996 and 2000-2014 as cold and warm regimes respectively, spanning on either side of the 1997-1999 SCS warming. Despite the occurrence of strong El Nino induced warming events, the SST anomalies tend to be negative in the cold regime. Conversely during the warm regime, the positive SST anomalies have dominated over the La Nina driven cooling events. The cold (warm) SST regime is marked by net heat gain (loss) by the SCS. The long-term variations of net surface heat flux are mainly driven by the latent heat flux anomalies while the short wave flux plays a secondary role. Low-frequency variability of the South China Sea throughflow (SCSTF) appears to be closely related to the SCS SST regime shift. The SCSTF shows reversing trends during the cold and warm epochs. The weakened SCSTF in the warm regime has promoted the SCS warming by limiting the outward flow of warm water from the SCS. Meanwhile, enhanced SCSTF during the cold regime acts as a cooling mechanism and lead to persistent negative SST anomalies. The change in trend of the SCSTF and SST regime shift coincides with the switching of pacific decadal oscillation from a warm to cold phase in the late 1990s.

  8. Mechanism of Spin-Orbit Effects on the Ligand NMR Chemical Shift in Transition-Metal Complexes: Linking NMR to EPR.

    PubMed

    Vícha, Jan; Straka, Michal; Munzarová, Markéta L; Marek, Radek

    2014-04-01

    Relativistic effects play an essential role in understanding the nuclear magnetic resonance (NMR) chemical shifts in heavy-atom compounds. Particularly interesting from the chemical point of view are the relativistic effects due to heavy atom (HA) on the NMR chemical shifts of the nearby light atoms (LA), referred to as the HALA effects. The effect of Spin-Orbit (SO) interaction originating from HA on the nuclear magnetic shielding at a neighboring LA, σ(SO), is explored here in detail for a series of d(6) complexes of iridium. Unlike the previous findings, the trends in σ(SO) observed in this study can be fully explained neither in terms of the s-character of the HA-LA bonding nor by trends in the energy differences between occupied and virtual molecular orbitals (MOs). Rather, the σ(SO) contribution to the total NMR shielding is found to be modulated by the d-orbital participation of the heavy atom (Ir) in the occupied and virtual spin-orbit active MOs, i.e., those which contribute significantly to the σ(SO). The correlation between the d-character of σ(SO)-active MOs and the size of the corresponding SO contribution to the nuclear magnetic shielding constant at LA is so tight that the magnitude of σ(SO) can be predicted in a given class of compounds on the basis of d-orbital character of relevant MO with relative error smaller than 15%. This correspondence is supported by an analogy between the perturbation theory expressions for the spin-orbit induced NMR σ-tensor and those for the EPR g-tensor as well as the A-tensor of the ligand. This correlation is demonstrated on a series of d(5) complexes of iridium. Thus, known qualitative relationships between electronic structure and EPR parameters can be newly applied to reproduce, predict, and understand the SO-induced contributions to NMR shielding constants of light atoms in heavy-atom compounds. PMID:26580365

  9. Shifting tools

    SciTech Connect

    Fisher, E.P.; Welch, W.R.

    1984-03-13

    An improved shifting tool connectable in a well tool string and useful to engage and position a slidable sleeve in a sliding sleeve device in a well flow conductor. The selectively profiled shifting tool keys provide better fit with and more contact area between keys and slidable sleeves. When the engaged slidable sleeve cannot be moved up and the shifting tool is not automatically disengaged, emergency disengagement means may be utilized by applying upward force to the shifting tool sufficient to shear pins and cause all keys to be cammed inwardly at both ends to completely disengage for removal of the shifting tool from the sliding sleeve device.

  10. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  11. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    PubMed

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-01

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed. PMID:26849066

  12. Zonation of flood production potential in Kabutar Ali Chai watershed using SCS model

    NASA Astrophysics Data System (ADS)

    Jananeh, Keristineh

    2015-04-01

    Kabutar Ali Chai watershed is located on the southern hillsides of Mishow mountains, 75 km northwest of Tabriz, NW Iran. This watershed is confined to 1390 and 3230 m elevation levels, where the general dip is from north to south. The watershed area is 67.46 km2 and the length of the main stream is about 24.5 km. This is one of the flood basins in the region and considering the availability of precipitation data for the 20 year interval and the possibility of flood occurrence threatening the downstream villages, the flood production investigations in order to prioritize the sub-basins regarding their flood-potential were carried out using the SCS method. In this regard, the watershed area was divided into 4 sections based on physiographic and topographic characteristics and the existing stream network: A1 (the southern and the low-height end of the watershed), A2 (the mid-western half), A3 (the mid-eastern half) and A4 (the northern and highest part). The precipitation data for 20 year interval were gathered from the nearby weather stations of Tabriz, Sahand, Marand and Sharafkhaneh based on which, the average annual precipitation is about 294 mm, with the highest amounts of 415 to 450 mm in A4 sub-basin and the lowest value of 253 mm in the southern A1 sub-basin. According to the time of concentration estimates based on the stream lengths and the elevation differences, this parameter is highest in A1 sub-basin with the rate of 1.64 h and lowest at A3 sub-basin with the rate of 0.35 h. This parameter has negative correlation with the flood production potential. The runoff height is estimated using the SCS method. In order to determine the CN curve Number, the maps of hydrologic groups of soil, land use and vegetation were prepared and combined with each other and then, by taking into account the area of each homogeneous unit, the CN number was calculated for the watershed and the related CN map was prepared. The peak discharge of the hydrologic units across the

  13. Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation

    NASA Astrophysics Data System (ADS)

    Lyon, Steve W.; Walter, M. Todd; Gérard-Marchant, Pierre; Steenhuis, Tammo S.

    2004-10-01

    Because the traditional Soil Conservation Service curve-number (SCS-CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point-source pollution. The method presented here used the traditional SCS-CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south-eastern Australia to produce runoff-probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN-VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS-CN method, the distributed CN-VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN-VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS-CN method, while still adhering to the principles of VSA hydrology.

  14. Understanding the effect of watershed characteristic on the runoff using SCS curve number

    NASA Astrophysics Data System (ADS)

    Damayanti, Frieta; Schneider, Karl

    2015-04-01

    Runoff modeling is a key component in watershed management. The temporal course and amount of runoff is a complex function of a multitude of parameters such as climate, soil, topography, land use, and water management. Against the background of the current rapid environmental change, which is due to both i) man-made changes (e.g. urban development, land use change, water management) as well as ii) changes in the natural systems (e.g. climate change), understanding and predicting the impacts of these changes upon the runoff is very important and affects the wellbeing of many people living in the watershed. A main tool for predictions is hydrologic models. Particularly process based models are the method of choice to assess the impact of land use and climate change. However, many regions which experience large changes in the watersheds can be described as rather data poor, which limits the applicability of such models. This is particularly also true for the Telomoyo Watershed (545 km2) which is located in southern part of Central Java province. The average annual rainfall of the study area reaches 2971 mm. Irrigated paddy field are the dominating land use (35%), followed by built-up area and dry land agriculture. The only available soil map is the FAO soil digital map of the world, which provides rather general soil information. A field survey accompanied by a lab analysis 65 soil samples of was carried out to provide more detailed soil texture information. The soil texture map is a key input in the SCS method to define hydrological soil groups. In the frame of our study on 'Integrated Analysis on Flood Risk of Telomoyo Watershed in Response to the Climate and Land Use Change' funded by the German Academic Exchange service (DAAD) we analyzed the sensitivity of the modeled runoff upon the choice of the method to estimate the CN values using the SCS-CN method. The goal of this study is to analyze the impact of different data sources on the curve numbers and the

  15. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation.

    PubMed

    Masuda, Miki; Oshima, Ayaka; Noguchi, Tetsuko; Kagiwada, Satoshi

    2016-03-01

    In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes is suppressed by the Opi1p negative regulator. Opi1p enters into the nucleoplasm from the nuclear membrane to suppress the gene expression under repressing conditions. The binding of Opi1p to the nuclear membrane requires an integral membrane protein, Scs2p and phosphatidic acid (PA). Although it is demonstrated that the association of Opi1p with membranes is affected by PA levels, how Opi1p dissociates from Scs2p is unknown. Here, we found that fluorescently labelled Opi1p accumulated on a perinuclear region in an Scs2p-dependent manner. Electron microscopic analyses indicated that the perinuclear region consists of intranuclear membranes, which may be formed by the invagination of the nuclear membrane due to the accumulation of Opi1p and Scs2p in a restricted area. As expected, localization of Opi1p and Scs2p in the intranuclear membranes was detected by immunoelectron microscopy. Biochemical analysis showed that Opi1p recovered in the membrane fraction was detergent insoluble while Scs2p was soluble, implying that Opi1p behaves differently from Scs2p in the fraction. We hypothesize that Opi1p dissociates from Scs2p after targeting to the nuclear membrane, making it possible to be released from the membrane quickly when PA levels decrease. PMID:26590299

  16. Characterizing the Microstructure of Heparin and Heparan Sulfate using N-sulfoglucosamine 1H and 15N NMR Chemical Shift Analysis

    PubMed Central

    Langeslay, Derek J.; Beecher, Consuelo N.; Naggi, Annamaria; Guerrini, Marco; Torri, Giangiacomo; Larive, Cynthia K.

    2014-01-01

    Heparin and heparan sulfate (HS) are members of a biologically important group of highly anionic linear polysaccharides called glycosaminoglycans (GAGs). Because of their structural complexity, the molecular-level characterization of heparin and HS continues to be a challenge. The work presented herein describes an emerging approach for the analysis of unfractionated and low molecular weight heparins as well as porcine and human-derived HS. This approach utilizes the untapped potential of 15N NMR to characterize these preparations through detection of the NH resonances of N-sulfo-glucosamine residues. The sulfamate group 1H and 15N chemical shifts of six GAG microenvironments were assigned based on the critical comparison of selectively modified heparin derivatives, NMR measurements for a library of heparin-derived oligosaccharide standards, and an in-depth NMR analysis of the low molecular weight heparin enoxaparin through systematic investigation of the chemical exchange properties of NH resonances and residue-specific assignments using the [1H, 15N] HSQC-TOCSY experiment. The sulfamate microenvironments characterized in this study include GlcNS(6S)-UA(2S), ΔUA(2S)-GlcNS(6S), GlcNS(3S)(6S)-UA(2S), GlcNS-UA, GlcNS(6S)-redα, and 1,6-anhydro GlcNS demonstrate the utility of [1H, 15N] HSQC NMR spectra to provide a spectroscopic fingerprint reflecting the composition of intact GAGs and low molecular weight heparin preparations. PMID:23240897

  17. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  18. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    PubMed Central

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  19. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  20. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    PubMed

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  1. Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems

    NASA Astrophysics Data System (ADS)

    Chan, Jerry C. C.; Tycko, Robert

    2003-05-01

    We demonstrate the possibility of recoupling chemical shift anisotropy (CSA) interactions in solid-state nuclear magnetic resonance (NMR) under high-speed magic-angle spinning (MAS) while retaining a static CSA powder pattern line shape and simultaneously attenuating homonuclear dipole-dipole interactions. CSA recoupling is accomplished by a rotation-synchronized radio-frequency pulse sequence with symmetry properties that permit static CSA line shapes to be obtained. We suggest a specific recoupling sequence, which we call ROCSA, for which the scaling factors for CSA and homonuclear dipole-dipole interactions are 0.272 and approximately 0.05, respectively. This sequence is suitable for high-speed 13C MAS NMR experiments on uniformly 13C-labeled organic compounds, including biopolymers. We demonstrate the ROCSA sequence experimentally by measuring the 13C CSA patterns of the uniformly labeled, polycrystalline compounds L-alanine and N-acetyl-D,L-valine at MAS frequencies of 11 and 20 kHz. We also present experimental data for amyloid fibrils formed by a 15-residue fragment of the β-amyloid peptide associated with Alzheimer's disease, in which four amino acid residues are uniformly labeled, demonstrating the applicability to biochemical systems of high molecular weight and significant complexity. Analysis of the CSA patterns in the amyloid fibril sample demonstrates the utility of ROCSA measurements as probes of peptide and protein conformation in noncrystalline solids.

  2. Chemical-shift X-ray standing wavefield determination of the local structure of methanethiolate phases on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Fisher, C. J.; Woodruff, D. P.; Jones, R. G.; Cowie, B. C. C.; Formoso, V.

    2002-01-01

    By monitoring the X-ray absorption through the chemically-shifted components of the S 1s photoemission signal, normal-incidence X-ray standing wavefield absorption at the (1 1 1) and ( 1¯ 1 1) scatterer planes has been used to determine the local adsorption geometry of the two distinct methanethiolate (CH 3S-) species which occur on Ni(1 1 1) following exposure to methanethiol. The species which is favoured at low temperatures is found to occupy either mixed hollow or bridge sites on a non-reconstructed Ni(1 1 1) surface, whereas that seen at higher temperatures is shown to involve Ni surface layer reconstruction and the data are consistent with hollow site adsorption on a reduced density outermost Ni layer. The relative merits of alternative reconstruction models based on that which occurs due to methanethiolate adsorption on Cu(1 1 1), or the (5√3×2)rect. phase formed by atomic S on Ni(1 1 1), are discussed. Both of these models are based on local square or `pseudo-(1 0 0)' outermost Ni layers. Co-adsorbed atomic sulphur, to which the methanethiolate species decompose at higher temperatures, appears to occupy mainly fcc hollow sites at low temperatures, but is partially converted to the local geometry of the ordered reconstructed (5√3×2)rect.-S phase after higher temperature annealing.

  3. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.

    PubMed

    Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal

    2013-08-15

    The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. PMID:23703381

  4. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    SciTech Connect

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J; Rupasinghe, Sanjeewa; Tang, Ming; Harris, Jason B; Baudry, Jerome Y; Schuler, Mary A; Rienstra, Chad M

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  5. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  6. Runoff potentiality of a watershed through SCS and functional data analysis technique.

    PubMed

    Adham, M I; Shirazi, S M; Othman, F; Rahman, S; Yusop, Z; Ismail, Z

    2014-01-01

    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling. PMID:25152911

  7. Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyo; Okano, Satoshi; Kuwano, Hisashi

    2006-03-01

    The aging behavior, especially saturation, of JIS SCS14A cast duplex stainless steels was investigated on the basis of the mechanical properties and microstructural changes during accelerated aging at 350 °C and 400 °C. The aging behavior of the materials mainly proceeds via two stages. During the first stage, the generation and concentration of the iron-rich and chromium-enriched phase in ferrite occurs by phase decomposition. The first stage corresponds to aging times of up to 3000 h at 400 °C. During the first stage, the ferrite hardness achieved is approximately 600 VHN, and the Charpy impact energy is almost saturated. During the second stage, the precipitated chromium-enriched phase aggregates and coarsens, and the G phase precipitation also occurs. The second stage corresponds to the aging times range of 3000-30 000 h at 400 °C. During the second stage, the ferrite hardness achieved is about 800 VHN; however, further hardening exceeding 600 VHN does not influence the Charpy impact energy.

  8. Characterization of unnotched SCS-6/Ti-15-3 metal matrix composites at 650 C

    NASA Technical Reports Server (NTRS)

    Pollock, W. D.; Johnson, W. Steven

    1990-01-01

    Ti-15-3 reinforced with SCS-6 silicon carbide fibers, in five different layups, was tested at 650 C to determine monotonic and fatigue strengths, basic mechanical properties, and damage initiation and progression. The elevated temperature results were compared to those obtained at room temperature. Analytical predictions were made of the monotonic stress-strain response as well as cyclic stress-strain hysteresis. The fiber reinforcement was found to significantly increase the static and fatigue strengths of the laminates over that of the matrix material at elevated temperature while the increase was insignificant at room temperature. Initial damage, in either the fibers or the matrix, was partitioned as a function of the life and applied strain range in the constituents. High strains and short lives resulted in multiple fiber failure with no signs of matrix fatigue cracking. Low strains and long lives resulted in extensive matrix cracking and no fiber breaks away from the fracture surface. At 650 C the matrix was too weak to cause fiber-matrix interface failure prior to matrix yielding. Laminate fatigue lives were hypothesized to be a function of the 0 deg fiber stress. More scatter was found in the 0 deg fiber stress vs. high temperature fatigue life data than for the room temperature data. An initial unloading modulus that was greater than the initial loading modulus was observed in the elevated temperature fatigue tests.

  9. Environmental effects on the isothermal and thermomechanical fatigue of SCS-6/TIMETAL 21S unidirectional composites

    SciTech Connect

    Rosenberger, A.H.; Nicholas, T.

    1997-12-31

    The effect of environment on the fatigue behavior of SCS-6/TIMETAL 21S [0]{sub 4} composites is examined through a comparison of fatigue lives and damage progression for tests performed in air and high-purity helium. Isothermal and thermomechanical tests were conducted at 650 C and 150 to 650 C, respectively. Out-of-phase thermomechanical fatigue (TMF) lives of specimens tested in the inert environment show a {times}2 increase in life. In-phase TMF lives in inert and air environments, which are governed primarily by fiber bundle strength and matrix stress relaxation, are comparable. Isothermal fatigue tests in the inert environment performed at 1.0 Hz show that at high stresses the life is not affected by the environment but at lower stresses a {times}3.5 increase in life is observed. Reducing the fatigue frequency to 0.01 Hz causes no change in life at low stresses in the inert condition as compared to the low-frequency air condition. At high stresses, the behavior is governed primarily by the statistics of fiber bundle strength. Life fraction models that consider time-dependent and cycle-dependent behavior as well as fiber- and matrix-dominated failure modes are used to correlate observed behavior in these experiments.

  10. Fatigue crack growth study of SCS6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Kantzos, Peter; Telesman, Jack

    1989-01-01

    A study was performed to determine the fatigue crack growth (FCG) behavior and the associated fatigue damage processes in a (0)(8) and (90)(8) oriented SCS(6)/Ti-15-3 composite. Companion testing (CT) was also done on identically processed Ti-15-3 unreinforced material. The active fatigue crack growth failure processes were very similar for both composite orientations tested. For both orientations, fatigue crack growth was along the fiber direction. It was found that the composite constituent most susceptible to fatigue damage was the interface region and in particular the carbon coating surrounding the fiber. The failure of the interface region lead to crack initiation and also strongly influenced the FCG behavior in this composite. The failure of the interface region was apparently driven by normal stresses perpendicular to the fiber direction. The FCG rates were considerably higher for the (90)(8) oriented CT specimens in comparison to the unreinforced material. This is consistent with the scenario in which the interface has lower fatigue resistance than the matrix, causing lower composite fatigue resistance. The FCG rates of the (0)(8) composite could not be directly compared to the (90)(8) composite but were shown to increase with an increase in the crack length.

  11. Fatigue Crack Growth and Crack Bridging in SCS-6/Ti-24-11

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1995-01-01

    Interfacial damage induced by relative fiber/matrix sliding was found to occur in the bridged zone of unidirectional SCS-6/Ti-24Al-11Nb intermetallic matrix composite specimens subjected to fatigue crack growth conditions. The degree of interfacial damage was not uniform along the bridged crack wake. Higher damage zones were observed near the machined notch in comparison to the crack tip. The interfacial friction shear strength tau(sub f) measured in the crack wake using pushout testing revealed lower values than the as-received interface. Interfacial wear also reduced the strength of the bridging fibers. The reduction in fiber strength is thought to be a function of the magnitude of relative fiber/matrix displacements ind the degree of interfacial damage. Furthermore, two different fiber bridging models were used to predict the influence of bridging on the fatigue crack driving force. The shear lag model required a variable tau(sub f) in the crack wake (reflecting the degradation of the interface) before its predictions agreed with trends exhibited by the experimental data. The fiber pressure model did an excellent job in predicting both the FCG data and the DeltaCOD in the bridged zone even though it does not require a knowledge of tau(sub f).

  12. Degradation of residual strength in SCS-6/Ti-15-3 Due to fully reversed fatigue

    NASA Astrophysics Data System (ADS)

    Calcaterra, J. R.; Mall, S.; Coghlan, S. C.

    1999-02-01

    Little attention has been given to residual strength degradation in titanium matrix composites (TMCs) after exposure to fatigue loading. To address this problem, fatigue tests on SCS-6/Ti-15-3 were performed to investigate the fatigue life and residual strength behavior of TMCs with different fiber volume fractions. Results indicate that fiber volume fraction seems to have an effect on both of these quantities. Lower fiber percentages result in a material where the characteristics of the matrix, such as hardening or cracking, play a much larger role in the composite response. Fatigue lives were not affected by fiber volume fraction at higher strain ranges, but lower fiber volume fractions resulted in shorter fatigue lives at lower strain values. Also, a slight increase in residual strength occurred up to 75 pct of fatigue life, for the lower-fiber volume fraction material. Despite these distinctions between specimens with different fiber contents, all specimens tested retained the majority of their strength prior to failure.

  13. Infrared transient-liquid-phase joining of SCS-6/{beta}21S titanium matrix composite

    SciTech Connect

    Blue, C.A.; Sikka, V.K.; Blue, R.A.; Lin, R.Y.

    1996-02-01

    Fiber-reinforced titanium matrix composites (TMCs) are among the advanced materials being considered for use in the aerospace industry due to their light weight, high strength, and high modulus. A rapid infrared joining process has been developed for the joining of composites and advanced materials. Rapid infrared joining has been shown not to have many of the problems associated with conventional joining methods. Two models were utilized to predict the joint evolution and fiber reaction zone growth. TMC, 16-ply SCS-6/{beta}21S, has been successfully joined with total processing times of under 2 min utilizing the rapid infrared joining technique. The process utilizes a 50 C/sec ramping rate, 17-{micro}m Ti-15Cu-15Ni wt % filler material between the faying surfaces; a joining temperature of 1,100 C; and 120 sec of time to join the composite material. Joint shear strength testing of the rapid infrared joints at temperatures as high as 800 C has revealed no joint failures. Also, due to the rapid cooling of the process, no poststabilization of the matrix material is necessary to prevent the formation of a brittle omega phase during subsequent use of the TMC at intermediate temperatures, 270 to 430 C, for up to 20 h.

  14. Inelastic deformation mechanisms in SCS-6/Ti 15-3 MMC lamina under compression

    NASA Technical Reports Server (NTRS)

    Newaz, Golam M.; Majumdar, Bhaskar S.

    1993-01-01

    An investigation was undertaken to study the inelastic deformation mechanisms in (0)(sub 8) and (90)(sub 8) Ti 15-3/SCS-6 lamina subjected to pure compression. Monotonic tests were conducted at room temperature (RT), 538 C and 650 C. Results indicate that mechanical response and deformation characteristics were different in monotonic tension and compression loading whereas some of those differences could be attributed to residual stress effects. There were other differences because of changes in damage and failure modes. The inelastic deformation in the (0)(sub 8) lamina under compression was controlled primarily by matrix plasticity, although some evidence of fiber-matrix debonding was observed. Failure of the specimen in compression was due to fiber buckling in a macroscopic shear zone (the failure plane). The inelastic deformation mechanisms under compression in (90)(sub 8) lamina were controlled by radial fiber fracture, matrix plasticity, and fiber-matrix debonding. The radial fiber fracture was a new damage mode observed for MMC's. Constitutive response was predicted for both the (0)(sub 8) and (90)(sub 8) laminae, using AGLPLY, METCAN, and Battelle's Unit Cell FEA model. Results from the analyses were encouraging.

  15. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  16. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database.

    PubMed

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L; Markley, John L; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-08-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including (1)H, (13)C and (15)N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001-2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies. PMID:22689068

  17. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Hargens, Alan R.; Dulchavsky, Scott A.; Ebert, Douglas J.; Lee, Stuart M. C.; Laurie, Steven S.; Garcia, Kathleen M.; Sargsyan, Ashot E.; Martin, David S.; Liu, John; Macias, Brandon R.; Arbeille, Philippe; Danielson, Richard; Chang, Douglas; Gunga, Hanns-Christian; Johnston, Smith L.; Westby, Christian M.; Ploutz-Snyder, Robert J.; Smith, Scott M.

    2016-01-01

    We hypothesize that microgravity-induced cephalad fluid shifts elevate intracranial pressure (ICP) and contribute to VIIP. We will test this hypothesis and a possible countermeasure in ISS astronauts.

  18. Precursors to ScS Phases and dipping interface in the upper mantle beneath southwestern Japan

    NASA Astrophysics Data System (ADS)

    Nakanishi, Ichiro

    1980-10-01

    Longitudinally polarized precursors to ScS phases observed in the Shikoku and Chugoku districts, southwestern Japan, are interpreted as ScSp arrivals, resulting from ScSto-P conversions at a dipping interface in the upper mantle. An ScSp phase recorded in the Tohoku district, northeastern Japan, also is examined. The location of the conversion interface, beneath the Shikoku district, determined from the ScSp observations agrees with the upper boundary of the descending Philippine Sea plate inferred from the seismicity pattern of subcrustal earthquakes. It has been proposed on the basis of no seismic activity in the upper mantle that the leading edge of the downgoing Philippine Sea plate has not reached the upper mantle beneath the Chugoku district. The ScSp observations, however, present a possibility of the existence of an aseismic continuation of the Philippine Sea plate in the upper mantle beneath the Chugoku district. An alternative interpretation of the conversion interface may be possible. The interface inferred in the present study may correspond to a boundary between the asthenosphere and an aseismic dead slab which had descended from the Nankai trough at the previous cycle of plate convergence. This ScS-to-P conversion interface may be closely related to the late Quaternary volcanism in the Chugoku district. Low-velocity zones are required in the vicinity of the inclined ScS-to-P conversion interfaces in the upper mantle beneath southwestern and northeastern Japan in order to explain the observed relative polarity between the ScSp and ScS phases. The first-order discontinuity of the velocity contrast of about 6%, which has been suggested between the lithosphere and overlying asthenosphere, cannot simultaneously explain all of the observed amplitudes, periods, and polarity of the ScSp phases. The simplest model which explains these observations is the low-velocity zone with the sharp upper and transitional lower boundaries. This low-velocity zone may be

  19. The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: implication for structure determination/refinement in paramagnetic metalloproteins.

    PubMed

    Xia, Z; Nguyen, B D; La Mar, G N

    2000-06-01

    The use of dipolar shifts as important constraints in refining molecular structure of paramagnetic metalloproteins by solution NMR is now well established. A crucial initial step in this procedure is the determination of the orientation. of the anisotropic paramagnetic susceptibility tensor in the molecular frame which is generated interactively with the structure refinement. The use of dipolar shifts as constraints demands knowledge of the diamagnetic shift. which, however, is very often not directly and easily accessible. We demonstrate that temperature gradients of dipolar shifts can serve as alternative constraints for determining the orientation of the magnetic axes, thereby eliminating the need to estimate the diamagnetic shifts. This approach is tested on low-spin, ferric sperm whale cyanometmyoglobin by determining the orientation, anisotropies and anisotropy temperature gradients by the alternate routes of using dipolar shifts and dipolar shift gradients as constraints. The alternate routes ultimately lead to very similar orientation of the magnetic axes, magnetic anisotropies and magnetic anisotropy temperature gradients which, by inference, would lead to an equally valid description of the molecular structure. It is expected that the use of the dipolar shift temperature gradients, rather than the dipolar shifts directly, as constraints will provide an accurate shortcut in a solution structure determination of a paramagnetic metalloprotein. PMID:10921780

  20. Characterization Data Package for Containerized Sludge Samples Collected from Engineered Container SCS-CON-210

    SciTech Connect

    Fountain, Matthew S.; Fiskum, Sandra K.; Baldwin, David L.; Daniel, Richard C.; Bos, Stanley J.; Burns, Carolyn A.; Carlson, Clark D.; Coffey, Deborah S.; Delegard, Calvin H.; Edwards, Matthew K.; Greenwood, Lawrence R.; Neiner, Doinita; Oliver, Brian M.; Pool, Karl N.; Schmidt, Andrew J.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.; Soderquist, Chuck Z.; Thompson, Christopher J.; Trang-Le, Truc LT; Urie, Michael W.

    2013-09-10

    This data package contains the K Basin sludge characterization results obtained by Pacific Northwest National Laboratory during processing and analysis of four sludge core samples collected from Engineered Container SCS-CON-210 in 2010 as requested by CH2M Hill Plateau Remediation Company. Sample processing requirements, analytes of interest, detection limits, and quality control sample requirements are defined in the KBC-33786, Rev. 2. The core processing scope included reconstitution of a sludge core sample distributed among four to six 4-L polypropylene bottles into a single container. The reconstituted core sample was then mixed and subsampled to support a variety of characterization activities. Additional core sludge subsamples were combined to prepare a container composite. The container composite was fractionated by wet sieving through a 2,000 micron mesh and a 500-micron mesh sieve. Each sieve fraction was sampled to support a suite of analyses. The core composite analysis scope included density determination, radioisotope analysis, and metals analysis, including the Waste Isolation Pilot Plant Hazardous Waste Facility Permit metals (with the exception of mercury). The container composite analysis included most of the core composite analysis scope plus particle size distribution, particle density, rheology, and crystalline phase identification. A summary of the received samples, core sample reconstitution and subsampling activities, container composite preparation and subsampling activities, physical properties, and analytical results are presented. Supporting data and documentation are provided in the appendices. There were no cases of sample or data loss and all of the available samples and data are reported as required by the Quality Assurance Project Plan/Sampling and Analysis Plan.

  1. Multiple ScS travel times in the western pacific: Implications for mantle heterogeneity

    SciTech Connect

    Sipkin, S.A.; Jordan, T.H.

    1980-02-10

    Multiple ScS travel times have been obtained by wave form cross correlation from seismograms digitally recorded by the High Gain Long Period (HGLP) and Seismic Research Observatory (SRO) networks. The surface projections of the paths corresponding to these data cross the western Pacific on oceanic crust greater than 100 m.y. old or traverse continental regions. The difference between the median ScS/sub n/--ScS/sub n-1/ residuals for all western Pacific paths and all continental paths is +5.2 s, in agreement with our World Wide Standardized Seismograph Network (WWSSN) data (Sipkin and Jordan, 1976). These results support the hypothesis that the average mantle shear velocity of old ocean basins is significantly less than that of old continental nuclei. The medians of both the oceanic and continental residuals for the HGLP and SRO data are more positive than those for the higher-frequency WWSSN data by amounts consistent with attenuative dispersion, which we take to be direct evidence for such dispersion. The residuals for paths crossing China have a median 2 s greater than the median for all continental paths, supporting the inference from dispersion studies that the upper mantle beneath China is characterized by anomalously low shear velocities. The residuals for western Pacific paths show lateral variations of 5 s or more not correlated in any systematic way with crustal ages along the paths. An analysis of these variations suggests that for horizontal scale lengths of the order of 10/sup 3/ km the amplitude of lateral variability is greater along a SW-NE axis than along a SE-NW axis. Mesoscale heterogeneity in the western Pacific may thus consist of predominantly NW trending structures.

  2. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1986-01-01

    Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.

  3. Alkaline earth chloride hydrates: chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations.

    PubMed

    Bryce, David L; Bultz, Elijah B

    2007-01-01

    A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride. PMID:17385204

  4. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise

    PubMed Central

    Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.

    2013-01-01

    The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534

  5. The analysis of SCS return momentum effects on the RCS water level during mid-loop operations

    SciTech Connect

    swang Seo, J.; Young Yang, J.; Tack Hwang, S.

    1995-09-01

    An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels.

  6. A frequency-based linguistic approach to protein decoding and design: Simple concepts, diverse applications, and the SCS Package

    PubMed Central

    Motomura, Kenta; Nakamura, Morikazu; Otaki, Joji M.

    2013-01-01

    Protein structure and function information is coded in amino acid sequences. However, the relationship between primary sequences and three-dimensional structures and functions remains enigmatic. Our approach to this fundamental biochemistry problem is based on the frequencies of short constituent sequences (SCSs) or words. A protein amino acid sequence is considered analogous to an English sentence, where SCSs are equivalent to words. Availability scores, which are defined as real SCS frequencies in the non-redundant amino acid database relative to their probabilistically expected frequencies, demonstrate the biological usage bias of SCSs. As a result, this frequency-based linguistic approach is expected to have diverse applications, such as secondary structure specifications by structure-specific SCSs and immunological adjuvants with rare or non-existent SCSs. Linguistic similarities (e.g., wide ranges of scale-free distributions) and dissimilarities (e.g., behaviors of low-rank samples) between proteins and the natural English language have been revealed in the rank-frequency relationships of SCSs or words. We have developed a web server, the SCS Package, which contains five applications for analyzing protein sequences based on the linguistic concept. These tools have the potential to assist researchers in deciphering structurally and functionally important protein sites, species-specific sequences, and functional relationships between SCSs. The SCS Package also provides researchers with a tool to construct amino acid sequences de novo based on the idiomatic usage of SCSs. PMID:24688703

  7. Electrochemical Characterization of a Novel Exoelectrogenic Bacterium Strain SCS5, Isolated from a Mediator-Less Microbial Fuel Cell and Phylogenetically Related to Aeromonas jandaei

    PubMed Central

    Sharma, Subed Chandra Dev; Feng, Cuijie; Li, Jiangwei; Hu, Anyi; Wang, Han; Qin, Dan; Yu, Chang-Ping

    2016-01-01

    A facultative anaerobic bacterium, designated as strain SCS5, was isolated from the anodic biofilm of a mediator-less microbial fuel cell using acetate as the electron donor and α-FeOOH as the electron acceptor. The isolate was Gram-negative, motile, and shaped as short rods (0.9–1.3 μm in length and 0.4–0.5 μm in width). A phylogenetic analysis of the 16S rRNA, gyrB, and rpoD genes suggested that strain SCS5 belonged to the Aeromonas genus in the Aeromonadaceae family and exhibited the highest 16S rRNA gene sequence similarity (99.45%) with Aeromonas jandaei ATCC 49568. However, phenotypic, cellular fatty acid profile, and DNA G+C content analyses revealed that there were some distinctions between strain SCS5 and the type strain A. jandaei ATCC 49568. The optimum growth temperature, pH, and NaCl (%) for strain SCS5 were 35°C, 7.0, and 0.5% respectively. The DNA G+C content of strain SCS5 was 59.18%. The isolate SCS5 was capable of reducing insoluble iron oxide (α-FeOOH) and transferring electrons to extracellular material (the carbon electrode). The electrochemical activity of strain SCS5 was corroborated by cyclic voltammetry and a Raman spectroscopic analysis. The cyclic voltammogram of strain SCS5 revealed two pairs of oxidation-reduction peaks under anaerobic and aerobic conditions. In contrast, no redox pair was observed for A. jandaei ATCC 49568. Thus, isolated strain SCS5 is a novel exoelectrogenic bacterium phylogenetically related to A. jandaei, but shows distinct electrochemical activity from its close relative A. jandaei ATCC 49568. PMID:27396922

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  9. Fatigue crack growth in a unidirectional SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Kantzos, Peter; Telesman, Jack; Ghosn, Louis

    1989-01-01

    An investigation was conducted to characterize and model the fatigue crack growth (FCG) behavior of a SCS-6/Ti-15-3 metal matrix composite. Part of the study was conducted using a fatigue loading stage mounted inside a scanning electron microscope (SEM). This unique facility allowed high magnification viewing of the composite fatigue processes and measurement of the near crack tip displacements. The unidirectional composite was tested in the (0)8 (i.e., longitudinal) and (90)8 (i.e., transverse) orientations. For comparison purposes unreinforced matrix material produced by the identical process as the reinforced material was also tested. The results of the study reveal that the fatigue crack growth behavior of the composite is a function of specimen geometry, fiber orientation and the interaction of local stress fields with the highly anisotropic composite. In the case of (0)8 oriented single edge notch (SEN) specimens and (90)8 oriented compact tension (CT) specimens, the crack growth was normal to the loading direction. However, for the (0)8 CT specimens the crack grew mostly parallel to the loading and the fiber direction. The unusual fatigue behavior of the (0)8 CT specimens was attributed to the specimen geometry and the associated high tensile bending stresses perpendicular to the fiber direction. These stresses resulted in preferential cracking in the weak interface region perpendicular to the fiber direction. The interface region, and in particular the carbon coating surrounding the fiber proved to be the composites weakest link. In the (0)8 SEN the crack growth was confined to the matrix leaving behind unbroken fibers which bridged the cracked surfaces. As the crack grew longer, more fibers bridged the crack resulting in a progressive decrease in the crack growth rates and eventual crack arrest. The actual near crack tip displacement measurements were used in a proposed formulation for a bridging-corrected effective crack driving force, delta K(sub eff

  10. Cardiac high-energy phosphate metabolism alters with age as studied in 196 healthy males with the help of 31-phosphorus 2-dimensional chemical shift imaging.

    PubMed

    Esterhammer, Regina; Klug, Gert; Wolf, Christian; Mayr, Agnes; Reinstadler, Sebastian; Feistritzer, Hans-Josef; Metzler, Bernhard; Schocke, Michael F H

    2014-01-01

    Recently published studies have elucidated alterations of mitochondrial oxidative metabolism during ageing. The intention of the present study was to evaluate the impact of ageing on cardiac high-energy phosphate metabolism and cardiac function in healthy humans. 31-phosphorus 2-dimensional chemical shift imaging (31P 2D CSI) and echocardiography were performed in 196 healthy male volunteers divided into groups of 20 to 40 years (I, n = 43), 40 to 60 years (II, n = 123) and >60 years (III, n = 27) of age. Left ventricular PCr/β-ATP ratio, myocardial mass (MM), ejection fraction and E/A ratio were assessed. Mean PCr/β-ATP ratios were significantly different among the three groups of volunteers (I, 2.10 ± 0.37; II, 1.77 ± 0.37; III, 1.45 ± 0.28; all p<0.001). PCr/β-ATP ratios were inversely related to age (r(2)  =  -0.25; p<0.001) with a decrease from 2.65 by 0.02 per year of ageing. PCr/β-ATP ratios further correlated with MM (r =  -0.371; p<0.001) and E/A ratios (r = 0.213; p<0.02). Moreover, E/A ratios (r =  -0.502, p<0.001), MM (r = 0.304, p<0.001), glucose-levels (r = 0.157, p<0.05) and systolic blood pressure (r = 0.224, p<0.005) showed significant correlations with age. The ejection fraction did not significantly differ between the groups. This study shows that cardiac PCr/β-ATP ratios decrease moderately with age indicating an impairment of mitochondrial oxidative metabolism due to age. Furthermore, MM increases, and E/A ratio decreases with age. Both correlate with left-ventricular PCr/β-ATP ratios. The findings of the present study confirm numerous experimental studies showing an impairment of cardiac mitochondrial function with age. PMID:24940736

  11. Assessment of Lung Function in Asthma and COPD using Hyperpolarized 129Xe Chemical Shift Saturation Recovery Spectroscopy and Dissolved-Phase MR Imaging

    PubMed Central

    Qing, Kun; Mugler, John P.; Altes, Talissa A.; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Ruset, Iulian C.; Hersman, F. William; Ruppert, Kai

    2014-01-01

    Magnetic-resonance spectroscopy and imaging using hyperpolarized xenon-129 show great potential for evaluation of the most important function of the human lung -- gas exchange. In particular, Chemical Shift Saturation Recovery (CSSR) xenon-129 spectroscopy provides important physiological information for the lung as a whole by characterizing the dynamic process of gas exchange, while dissolved-phase xenon-129 imaging captures the time-averaged regional distribution of gas uptake by lung tissue and blood. Herein, we present recent advances in assessing lung function using CSSR spectroscopy and dissolved-phase imaging in a total of 45 subjects (23 healthy, 13 chronic obstructive pulmonary disease (COPD) and 9 asthma). From CSSR acquisitions, the COPD subjects showed red blood cell to tissue/plasma (RBC-to-TP) ratios below the average for the healthy subjects (p<0.001), but significantly higher septal wall thicknesses, as compared with the healthy subjects (p<0.005); the RBC-to-TP ratios for the asthmatics fell outside 2 standard deviations (either higher or lower) from the mean of the healthy subjects although there was no statistically significant difference for the average ratio of the study group as a whole. Similarly, from the 3D DP imaging acquisitions, we found all the ratios (TP-to-GP, RBC-to-GP, RBC-to-TP) measured in the COPD subjects were lower than those from the healthy subjects (p<0.05 for all ratios), while these ratios in the asthmatics differed considerably between subjects. Despite having been performed at different lung inflation levels, the RBC-to-TP ratios measured by CSSR and 3D DP imaging were fairly consistent with each other, with a mean difference of 0.037 (ratios from 3D DP imaging larger). In ten subjects the RBC-to-GP ratios obtained from the 3D DP imaging acquisitions were also highly correlated with their DLCO/Va ratios measured by pulmonary function testing (R=0.91). PMID:25146558

  12. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  13. Arginine Interactions with Anatase TiO2 (100) Surface and the Perturbation of 49Ti NMR Chemical Shifts - A DFT Investigation: Relevance to Renu-Seeram Bio Solar Cell

    SciTech Connect

    Koch, Rainer; Lipton, Andrew S.; Filipek, S.; Renugopalakrishnan, Venkatesan M.

    2011-06-01

    Density functional theoretical calculations have been utilized to investigate the interaction of the amino acid arginine with the (100) surface of anatase and the reproduction of experimentally measured 49Ti NMR chemical shifts of anatase. Significant binding of arginine through electrostatic interaction and hydrogen bonds of the arginine guanidinium protons to the TiO2 surface oxygen atoms is observed, allowing attachment of proteins to titania surfaces in the construction of bio-sensitized solar cells. GIAO-B3LYP/6-31G(d) NMR calculation of a three-layer model based on the experimental structure of this TiO2 modification gives an excellent reproduction of the experimental value (-927 ppm) within +/- 7 ppm, however, the change in relative chemical shifts, EFGs and CSA suggest that the effect of the electrostatic arginine binding might be too small for experimental detection.

  14. Proton Resonance Frequency Chemical Shift Thermometry: Experimental Design and Validation Towards High-Resolution Non-Invasive Temperature Monitoring, and in vivo Experience in a Non-human Primate Model of Acute Ischemic Stroke

    PubMed Central

    Mao, Hui; Howell, Leonard; Zhang, Xiaodong; Pate, K S; Magrath, P R; Tong, Frank; Wei, L; Qiu, D; Fleischer, C; Oshinski, J N

    2016-01-01

    BACKGROUND AND PURPOSE Applications for non-invasive biological temperature monitoring are widespread in biomedicine, and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation therefore remains controversial, motivating the development of non-invasive approaches such as temperature-sensitive NMR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry (MRT) employing proton resonance frequency chemical shift. Three methodologies were tested, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3.0 Tesla. MATERIALS AND METHODS A conventional, paired approach (DIFF-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MRT derived simultaneously from temperature-sensitive changes in the water proton chemical shift (~0.01 ppm/°C). MRT was subsequently performed in a series of in vivo non-human primate experiments under physiologic and ischemic conditions testing its reproducibility and overall performance. RESULTS Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all three approaches (DIFF-1 linear regression R2=0.994, p<0.001, acquisition time 4 min 40 s; DIFF-2 R2=0.996, p<0.001, acquisition time 4 min; DIFF-3 R2=0.998, p<0.001, acquisition time 40 s). CONCLUSION These findings confirm the comparability in performance of three competing approaches MRT, and present in vivo applications under physiologic and ischemic conditions in a primate stroke model. PMID:25655874

  15. Application of ChemDraw NMR Tool: Correlation of Program-Generated (Super 13)C Chemical Shifts and pK[subscript a] Values of Para-Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Hongyi Wang

    2005-01-01

    A study uses the ChemDraw nuclear magnetic resonance spectroscopy (NMR) tool to process 15 para-substituted benzoic acids and generate (super 13)C NMR chemical shifts of C1 through C5. The data were plotted against their pK[subscript a] value and a fairly good linear fit was found for pK[subscript a] versus delta[subscript c1].

  16. 129Xe NMR of xenon adsorbed on the molecular sieves AlPO 4-11 and SAPO-11. Chemical shift anisotropy related to the asymmetry of the adsorption zones

    NASA Astrophysics Data System (ADS)

    Springuel-Huet, M. A.; Fraissard, J.

    1989-01-01

    The form of the 129Xe NMR signal of xenon adsorbed at low concentration on the molecular sieves SAPO-11 and AlPO 4-11 corresponds to a highly anisotropic chemical shift which expresses the asymmetry of the channels in which the xenon is located. To the asymmetry of the xenon-wall interaction is added that of the xenon-xenon interaction when the channels are largely filled.

  17. Determination of the tautomeric equilibria of pyridoyl benzoyl β-diketones in the liquid and solid state through the use of deuterium isotope effects on (1)H and (13)C NMR chemical shifts and spin coupling constants.

    PubMed

    Hansen, Poul Erik; Borisov, Eugeny V; Lindon, John C

    2015-02-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on (1)H and (13)C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in the solution state the 2-bond and 3-bond J((1)H-(13)C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound. PMID:24070650

  18. A Series of Diamagnetic Pyridine Monoimine Rhenium Complexes with Different Degrees of Metal-to-Ligand Charge Transfer: Correlating (13) C NMR Chemical Shifts with Bond Lengths in Redox-Active Ligands.

    PubMed

    Sieh, Daniel; Kubiak, Clifford P

    2016-07-18

    A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single-crystal X-ray diffraction analyses of these complexes showed that the redox-active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One- and two-electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X-ray diffraction. The final product of a one-electron reduction in THF is a diamagnetic metal-metal-bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two-electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and (13) C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the (13) C NMR chemical shifts with the relevant bond lengths in redox-active ligands over a full redox series. PMID:27319753

  19. Polymorphisms of the IL8 gene correlate with milking traits, SCS and mRNA level in Chinese Holstein.

    PubMed

    Chen, Renjin; Yang, Zhangping; Ji, Dejun; Mao, Yongjiang; Chen, Ying; Li, Yunlong; Wu, Haitao; Wang, Xiaolong; Chang, Lingling

    2011-08-01

    To explore the relation of Interleukin-8 (IL8) gene polymorphism with immunity against mastitis in dairy cow, the polymorphism of IL8 gene was investigated in 610 Chinese Holstein cow from 30 bull families in a dairy farm in Shanghai using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, and milk yield, milk fat percentage, milk protein percentage, 305 day corrected milk yield, 305 day milk fat yield, 305 day milk protein yield and somatic cell score (SCS) were measured and analyzed, and the mRNA levels of IL8 genotypes in blood were detected by real-time PCR. The results showed that three genotypes, KK, KA and AA were detected with frequencies of 0.187, 0.451, and 0.362, respectively. The gene frequencies of K and A were 0.412 and 0.588, respectively. The significant association of the IL8 mutations with milk yield, 305 day milk protein yield, 305 day corrected milk yield and 305 day milk fat yield, SCS, and significant association with milk protein percentage were identified, while their association with milk fat percentage were not significant. KK had higher milk yield, 305 day milk protein yield, 305 day corrected milk yield and 305 day milk fat yield than AA or KA, and the least square mean of SCS of KK was significantly lower than that of AA or KA. AA had significant lower milk protein yield than KK or KA. The relative IL8 mRNA level of KK in blood was the highest. These findings demonstrated that IL8 genotype significantly correlated with mastitis resistance and the locus could be a useful genetic marker for mastitis resistance selection and breeding in Chinese Holstein. PMID:21113675

  20. Prediction of matrix fatigue crack initiation in notched SCS-6/Ti-15-3 metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1991-01-01

    Several lay-ups of SCS-6/Ti-15-3 metal matrix composites were tested in either a center hole or a double edge notched geometry. At different cyclic strss levels, the number of cycles required to develop matrix fatigue cracks at the notches was recorded. A fatigue strat-life curve was developed for the Ti-15-3 matrix material. This modified parameter predicted the number of cycles required for matrix crack initiation at the notches. The predictions were in good agreement with the experimental data.

  1. Catalytic Y-tailed amphiphilic homopolymers – aqueous nanoreactors for high activity, low loading SCS pincer catalysts

    PubMed Central

    Patterson, Joseph P.; Cotanda, Pepa; Kelley, Elizabeth G.; Moughton, Adam O.; Lu, Annhelen; Epps, Thomas H.; O’Reilly, Rachel K.

    2013-01-01

    A new amphiphilic homopolymer bearing an SCS pincer palladium complex has been synthesized by reversible addition fragmentation chain transfer polymerization. The amphiphile has been shown to form spherical and worm-like micelles in water by cryogenic transmission electron microscopy and small angle neutron scattering. Segregation of reactive components within the palladium containing core results in increased catalytic activity of the pincer compound compared to small molecule analogues. This allows carbon-carbon bond forming reactions to be performed in water with reduced catalyst loadings and enhanced activity. PMID:23539324

  2. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  3. Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction

    PubMed Central

    Zuba-Surma, Ewa K; Guo, Yiru; Taher, Hisham; Sanganalmath, Santosh K; Hunt, Greg; Vincent, Robert J; Kucia, Magda; Abdel-Latif, Ahmed; Tang, Xian-Liang; Ratajczak, Mariusz Z; Dawn, Buddhadeb; Bolli, Roberto

    2011-01-01

    Abstract Adult bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) exhibit a Sca-1+/Lin–/CD45– phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 106) of freshly isolated, non-expanded VSEL-SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL-SCs in the marrow is very low, we examined whether VSEL-SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n= 11), 1 × 105 enhanced green fluorescent protein (EGFP)-labelled expanded untreated VSEL-SCs (group II, n= 7), or 1 × 105 EGFP-labelled expanded VSEL-SCs pre-incubated in a cardiogenic medium (group III, n= 8). At 35 days after myocardial infarction (MI), mice treated with pre-incubated VSEL-SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle-treated controls. In contrast, transplantation of expanded but untreated VSEL-SCs did not produce appreciable reparative benefits. Scattered EGFP+ cells expressing α-sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)-1, or von Willebrand factor were present in VSEL-SC-treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL-SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre-incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results

  4. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  5. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?

    PubMed

    Tsipis, Athanassios C; Karapetsas, Ioannis N

    2016-08-01

    (195) Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3 )n (OH)6 - n ](2-) , [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 1-6), and [Pt(NO3 )6 - n  - m (OH)m (OH2 )n ](-2 + n - m) formed by dissolution of platinic acid, H2 [Pt(OH)6 ], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge-including atomic orbitals (GIAO)-PBE0/segmented all-electron relativistically contracted-zeroth-order regular approximation (SARC-ZORA)(Pt) ∪ 6-31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second-order polynomial plots of δcalcd ((195) Pt) versus δexptl ((195) Pt) chemical shifts and δcalcd ((195) Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ (195) Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σ(iso) (195) Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ (195) Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter-ion effects on the (195) Pt NMR chemical shifts of the anionic [Pt(NO3 )n (OH)6 - n ](2-) and cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 0-3) complexes we calculated the (195) Pt NMR chemical shifts of the neutral (PyH)2 [Pt(NO3 )n (OH)6 - n ] (n = 1-6; PyH = pyridinium cation, C5 H5 NH(+) ) and [Pt(NO3 )n (H2 O)6 - n ](NO3 )4 - n (n = 0-3) complexes. Counter-anion effects are very important for the accurate prediction of the (195) Pt NMR chemical shifts of the cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) complexes, while counter-cation effects are less important for the anionic [Pt(NO3 )n (OH)6

  6. Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift

    PubMed Central

    Hayashi, Tomohiko; Matsuura, Azuma; Sato, Hiroyuki; Sakurai, Minoru

    2012-01-01

    Herein, the absorption maximum of bacteriorhodopsin (bR) is calculated using our recently developed method in which the whole protein can be treated quantum mechanically at the level of INDO/S-CIS//ONIOM (B3LYP/6-31G(d,p): AMBER). The full quantum mechanical calculation is shown to reproduce the so-called opsin shift of bR with an error of less than 0.04 eV. We also apply the same calculation for 226 different bR mutants, each of which was constructed by replacing any one of the amino acid residues of the wild-type bR with Gly. This substitution makes it possible to elucidate the extent to which each amino acid contributes to the opsin shift and to estimate the inter-residue synergistic effect. It was found that one of the most important contributions to the opsin shift is the electron transfer from Tyr185 to the chromophore upon excitation. We also indicate that some aromatic (Trp86, Trp182) and polar (Ser141, Thr142) residues, located in the vicinity of the retinal polyene chain and the β-ionone ring, respectively, play an important role in compensating for the large blue-shift induced by both the counterion residues (Asp85, Asp212) and an internal water molecule (W402) located near the Schiff base linkage. In particular, the effect of Trp86 is comparable to that of Tyr185. In addition, Ser141 and Thr142 were found to contribute to an increase in the dipole moment of bR in the excited state. Finally, we provide a complete energy diagram for the opsin shift together with the contribution of the chromophore-protein steric interaction. PMID:27493528

  7. High-Frequency (13)C and (29)Si NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of Tl(I) and Pb(II): Decisive Role of Relativistic Effects.

    PubMed

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-02-15

    The (13)C and (29)Si NMR signals of ligand atoms directly bonded to Tl(I) or Pb(II) heavy-element centers are predicted to resonate at very high frequencies, up to 400 ppm for (13)C and over 1000 ppm for (29)Si, outside the typical experimental NMR chemical-shift ranges for a given type of nuclei. The large (13)C and (29)Si NMR chemical shifts are ascribed to sizable relativistic spin-orbit effects, which can amount to more than 200 ppm for (13)C and more than 1000 ppm for (29)Si, values unexpected for diamagnetic compounds of the main group elements. The origin of the vast spin-orbit contributions to the (13)C and (29)Si NMR shifts is traced to the highly efficient 6p → 6p* metal-based orbital magnetic couplings and related to the 6p orbital-based bonding together with the low-energy gaps between the occupied and virtual orbital subspaces in the subvalent Tl(I) and Pb(II) compounds. New NMR spectral regions for these compounds are suggested based on the fully relativistic density functional theory calculations in the Dirac-Coulomb framework carefully calibrated on the experimentally known NMR data for Tl(I) and Pb(II) complexes. PMID:26820039

  8. Experimental and quantum-chemical studies of 15N NMR coordination shifts in palladium and platinum chloride complexes with pyridine, 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Szłyk, Edward; Sitkowski, Jerzy; Kamieński, Bohdan; Kozerski, Lech; Tousek, Jaromír; Marek, Radek

    2006-02-01

    A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure. PMID:16392105

  9. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  10. The viscoplastic behavior of SCS6/Ti-15-3 metal matrix composite materials at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, Mark E.

    1988-01-01

    Titanium-based metal matrix composite materials (MMC'S) are being considered for use in the National Aerospace Plane. It is expected that these materials will be subjected to temperatures ranging up to about 820 C (1500 F). The present study was a preliminary investigation intended to quantify the level of viscoplastic behavior exhibited by SCS6/Ti-15-3 MMC's at elevated temperatures. The study consisted of a series of uniaxial creep/creep recovery tests. These tests were conducted in air at a temperature of 535 C (1000 F). Three distinct types of specimens were tested: Ti-15-3 heat matrix specimens (O2/plus or minus 45) sub s composite specimens, and (90 sub 2/plus or minus 45) sub s composite specimens. Tensile loads were applied to the specimens using a lever-arm creep frame equipped with a high temperature furnace. Specimen creep stains were monitored using an LVDT-based extensometer.

  11. Oxidation and temperature effects on the interfacial shear strength in SCS-6 fiber-reinforced reaction-bonded silicon nitride

    SciTech Connect

    Guermazi, M.

    1995-01-01

    The fiber/matrix interfacial shear strength of Textron SCS-6 SiC-fiber-reinforced reaction-bonded Si{sub 3}N{sub 4} (RBSN) was studied as a function of temperature after oxidation for 24 h at 600 C. Fiber push-out experiments were conducted using a diamond indenter in a high-temperature microhardness tester under vacuum. The interfacial shear strength increased with temperature because of the relief of residual tensile stresses arising from the difference in thermal expansion coefficients between the fiber and the matrix. Most of sublayer 2 of the fiber outer coating, which mainly consisted of carbon in the form of BSU (basic structure unit) aggregates, had disappeared after the heat treatment of the composite. Oxidation resulted in severe changes in the fiber outer coating and caused a lower interfacial shear strength with respect to that of the unoxidized composite.

  12. Prediction of stress-strain response of SCS-6/Timetal-21S subjected to a hypersonic flight profile

    NASA Technical Reports Server (NTRS)

    Mirdamadi, Massoud; Johnson, W. Steven

    1994-01-01

    Thermomechanical response of a cross-ply SCS-6/Timetal-21S composite subjected to a generic hypersonic flight profile with the temperature ranging from -130 C to 816 C was evaluated experimentally and analytically. A two dimensional micromechanical anlaysis, VISCOPLY, was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions. In the analysis, the fiber was modeled as elastic with transverse orthotropic and temperature dependent properties and the matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate fiber-matrix interface failure. Reasonable agreement was found between measured and predicted laminate stress-strain response when fiber-matrix debonding was modeled.

  13. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    SciTech Connect

    Shvarts, Maxim Z. Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh.; Gudovskikh, Alexander S.; Luque, Antonio

    2014-09-26

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to −190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from −20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  14. Investigation of fatigue damage mechanisms in SCS-6/Ti-15-3 metal matrix composite at elevated temperature

    NASA Astrophysics Data System (ADS)

    Mall, S.; Portner, B. D.

    A study was conducted to study the fatigue behavior of cross-ply, (0/90)2s, laminate of silicon fiber reinforced titanium matrix composite, SCS-6/Ti-15-3 at an elevated temperature of 427 C. Two sets of tests, at frequencies 0.02 and 2 Hz, were run at different stress levels which were either below or above the static first ply failure strength of laminate. Crack initiation locations and growth patterns were dependent on to specific test conditions of frequency and stress level. Also, microscopic analysis of the fatigued specimens revealed matrix failure mechanisms ranging from ductile failure to cleavage fracture. The results of this study clearly showed that temperature, frequency as well as stress levels are important design considerations for this composite in fatigue loading applications.

  15. Nuclear magnetic resonance studies of phosphorus(v) pesticides. Part I. Chemical shifts of protons as a means of identification of pesticides

    USGS Publications Warehouse

    Babad, H.; Herbert, W.; Goldberg, M.C.

    1968-01-01

    Correlations of structural and proton chemical-hift data for 40 commercial phosphorus(V) pesticides are reported. Correlations of structure with the phosphorus coupling constants are discussed, and general trends are noted which aid in the use of NMR as a tool for identification and analysis of phosphorus(V) compounds. ?? 1968.

  16. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2007-12-01

    1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution. PMID:18044805

  17. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with picolines.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Malináková, Katerina; Kozerski, Lech; Szłyk, Edward

    2009-03-01

    (1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl(3)], trans-[Pd(PIC)(2)Cl(2)], trans/cis-[Pt(PIC)(2)Cl(2)] and [Pt(PIC)(4)]Cl(2), were performed. After complexation, the (1)H and (13)C signals were shifted to higher frequency, whereas the (15)N ones to lower (by ca 80-110 ppm), with respect to the free ligands. The (15)N shielding phenomenon was enhanced in the series [Au(PIC)Cl(3)] < trans-[Pd(PIC)(2)Cl(2)] < cis-[Pt(PIC)(2)Cl(2)] < trans-[Pt(PIC)(2)Cl(2)]; it increased following the Pd(II) --> Pt(II) replacement, but decreased upon the trans --> cis-transition. Experimental (1)H, (13)C and (15)N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ + 6-31G**//B3LYP/LanL2DZ + 6-31G*. PMID:19097135

  18. Hyperfine-shifted 13C resonance assignments in an iron-sulfur protein with quantum chemical verification: aliphatic C-H···S 3-center-4-electron interactions.

    PubMed

    Westler, William M; Lin, I-Jin; Perczel, András; Weinhold, Frank; Markley, John L

    2011-02-01

    Although the majority of noncovalent interactions associated with hydrogen and heavy atoms in proteins and other biomolecules are classical hydrogen bonds between polar N-H or O-H moieties and O atoms or aromatic π electrons, high-resolution X-ray crystallographic models deposited in the Protein Data Bank show evidence for weaker C-H···O hydrogen bonds, including ones involving sp(3)-hybridized carbon atoms. Little evidence is available in proteins for the (even) weaker C-H···S interactions described in the crystallographic literature on small molecules. Here, we report experimental evidence and theoretical verification for the existence of nine aliphatic (sp(3)-hybridized) C-H···S 3-center-4-electron interactions in the protein Clostridium pasteurianum rubredoxin. Our evidence comes from the analysis of carbon-13 NMR chemical shifts assigned to atoms near the iron at the active site of this protein. We detected anomalous chemical shifts for these carbon-13 nuclei and explained their origin in terms of unpaired spin density from the iron atom being delocalized through interactions of the type: C-H···S-Fe, where S is the sulfur of one of the four cysteine side chains covalently bonded to the iron. These results suggest that polarized sulfur atoms in proteins can engage in multiple weak interactions with surrounding aliphatic groups. We analyze the strength and angular dependence of these interactions and conclude that they may contribute small, but significant, stabilization to the molecule. PMID:21207994

  19. Molecular structure and vibrational and chemical shift assignments of 3-(2-Hydroxyphenyl)-4-phenyl-1 H-1,2,4-triazole-5-(4 H)-thione by DFT and ab initio HF calculations

    NASA Astrophysics Data System (ADS)

    Avcı, Davut; Atalay, Yusuf; Şekerci, Mehmet; Dinçer, Muharrem

    2009-07-01

    The molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values and several thermodynamic parameters of 3-(2-Hydroxyphenyl)-4-phenyl-1 H-1,2,4-triazole-5-(4 H)-thione in the ground state have been calculated by using the Hartree-Fock (HF) and density functional methods (BLYP and B3LYP) with 6-31G(d) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains one O-H···N and one C-H···π (phenyl) intramolecular interactions. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Data of the title compound display significant structure-correlation and provide the basis for future design of efficient materials having the derivatives of 1,2,4-triazole. Also, calculated 1H chemical shift values compared with the experimental ones.

  20. The influence of Mg(2+) coordination on (13) C and (15) N chemical shifts in CKI1RD protein domain from experiment and molecular dynamics/density functional theory calculations.

    PubMed

    Vícha, Jan; Babinský, Martin; Demo, Gabriel; Otrusinová, Olga; Jansen, Séverine; Pekárová, Blanka; Žídek, Lukáš; Munzarová, Markéta L

    2016-05-01

    Sequence dependence of (13) C and (15) N chemical shifts in the receiver domain of CKI1 protein from Arabidopsis thaliana, CKI1RD , and its complexed form, CKI1RD •Mg(2+) , was studied by means of MD/DFT calculations. MD simulations of a 20-ns production run length were performed. Nine explicitly hydrated structures of increasing complexity were explored, up to a 40-amino-acid structure. The size of the model necessary depended on the type of nucleus, the type of amino acid and its sequence neighbors, other spatially close amino acids, and the orientation of amino acid NH groups and their surface/interior position. Using models covering a 10 and a 15 Å environment of Mg(2+) , a semi-quantitative agreement has been obtained between experiment and theory for the V67-I73 sequence. The influence of Mg(2+) binding was described better by the 15 Å as compared to the 10 Å model. Thirteen chemical shifts were analyzed in terms of the effect of Mg(2+) insertion and geometry preparation. The effect of geometry was significant and opposite in sign to the effect of Mg(2+) binding. The strongest individual effects were found for (15) N of D70, S74, and V68, where the electrostatics dominated; for (13) Cβ of D69 and (15) N of K76, where the influences were equal, and for (13) Cα of F72 and (13) Cβ of K76, where the geometry adjustment dominated. A partial correlation between dominant geometry influence and torsion angle shifts upon the coordination has been observed. Proteins 2016; 84:686-699. © 2016 Wiley Periodicals, Inc. PMID:26879585

  1. On the choice of optimal methodology for calculation of (13)C and (1)H NMR isotropic chemical shifts in cagelike systems. Case studies of adamantane, 2-adamantanone, and 2,4-methano-2,4-dehydroadamantane.

    PubMed

    Vikić-Topić, D; Pejov, L

    2001-01-01

    The (13)C and (1)H isotropic chemical shift values computed at HF, BLYP, B3LYP, and MPW1PW91/6-311+G(2d,p) levels of theory, for the BLYP and B3LYP/6-31G(d,p) optimized geometries of adamantane, 2-adamantanone, and 2,4-methano-2,4-dehydroadamantane ([3.1.1] propellane) are reported and compared with the experimental data. Except for the "inverted" carbon atoms and some of their nearest neighbors, the HF values are superior over the DFT ones, when the isotropic shifts with respect to TMS are in question. However, in case of the relative shifts computed with respect to the most deshielded center within the molecule, the DFT methods yield significantly better agreement with the experimental data than the HF method, the hybrid DFT methods being superior over "pure" DFT ones. The most probable reason for these findings may be the cancellation of errors arising from the inappropriate description of the paramagnetic contributions to the overall shielding tensor within the Kohn-Sham approach when an internal standard (within a molecule) is chosen, instead of an external one. Almost excellent linear correlation was found between the calculated and experimental relative shift values, which is significantly superior at DFT levels than at HF level, further proving the more systematical nature of errors in predicting the second-order magnetic response properties at DFT levels of theory. Among all DFT methods employed, the MPW1PW91 showed the best performance, in line with the significantly improved long-range behavior of this functional, as compared to the B3LYP one. PMID:11749572

  2. Synthesis, antimicrobial evaluation and theoretical prediction of NMR chemical shifts of thiazole and selenazole derivatives with high antifungal activity against Candida spp.

    NASA Astrophysics Data System (ADS)

    Łączkowski, Krzysztof Z.; Motylewska, Katarzyna; Baranowska-Łączkowska, Angelika; Biernasiuk, Anna; Misiura, Konrad; Malm, Anna; Fernández, Berta

    2016-03-01

    Synthesis and investigation of antimicrobial activities of novel thiazoles and selenazoles is presented. Their structures were determined using NMR, FAB(+)-MS, HRMS and elemental analyses. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out for representative systems within the DFT B3LYP/6-311++G** approximation which additionally confirmed the structure of investigated compounds. Among the derivatives, compounds 4b, 4h, 4j and 4l had very strong activity against reference strains of Candida albicans ATCC and Candida parapsilosis ATCC 22019 with MIC = 0.49-7.81 μg/ml. In the case of compounds 4b, 4c, 4h - 4j and 4l, the activity was very strong against of Candida spp. isolated from clinical materials, i.e. C. albicans, Candida krusei, Candida inconspicua, Candida famata, Candida lusitaniae, Candida sake, C. parapsilosis and Candida dubliniensis with MIC = 0.24-15.62 μg/ml. The activity of several of these was similar to the activity of commonly used antifungal agent fluconazole. Additionally, compounds 4m - 4s were found to be active against Gram-positive bacteria, both pathogenic staphylococci Staphylococcus aureus ATCC with MIC = 31.25-125 μg/ml and opportunistic bacteria, such as Staphylococcus epidermidis ATCC 12228 and Micrococcus luteus ATCC 10240 with MIC = 7.81-31.25 μg/ml.

  3. Self-Compassion Scale (SCS): Psychometric Properties of The French Translation and Its Relations with Psychological Well-Being, Affect and Depression

    PubMed Central

    Kotsou, Ilios; Leys, Christophe

    2016-01-01

    Over the past few years, the topic of self-compassion has attracted increasing attention from both scientific and clinical fields. The Self-Compassion Scale (SCS) was created to specifically capture this way of being kind and understanding towards oneself in moments of turmoil. In this article, we present a French adaptation of the SCS. We first explore the psychometric properties of this adaptation and then investigate its relation to psychological well-being. As in the original version of the SCS, the French adaptation has a strong 6-factor structure but a weaker hierarchical second order structure. However the bi-factor model yields a good omega index suggesting the relevance of a single score accounting for self-compassion. Moreover, there was a relation between the SCS and classical outcomes such as a positive relation with psychological well-being and negative relation with depressive symptoms. We then hypothesized that self-compassion would have a moderating role on the relation between affect and depression. This hypothesis was confirmed: expressing negative affect is correlated with depressive symptoms; however, being kind with oneself lowers depressive symptoms even when expressing negative affect. In conclusion, this research presents a valid self-compassion measure for French-speaking researchers and clinicians and outlines the need for further research on the concept of self-compassion. PMID:27078886

  4. Self-Compassion Scale (SCS): Psychometric Properties of The French Translation and Its Relations with Psychological Well-Being, Affect and Depression.

    PubMed

    Kotsou, Ilios; Leys, Christophe

    2016-01-01

    Over the past few years, the topic of self-compassion has attracted increasing attention from both scientific and clinical fields. The Self-Compassion Scale (SCS) was created to specifically capture this way of being kind and understanding towards oneself in moments of turmoil. In this article, we present a French adaptation of the SCS. We first explore the psychometric properties of this adaptation and then investigate its relation to psychological well-being. As in the original version of the SCS, the French adaptation has a strong 6-factor structure but a weaker hierarchical second order structure. However the bi-factor model yields a good omega index suggesting the relevance of a single score accounting for self-compassion. Moreover, there was a relation between the SCS and classical outcomes such as a positive relation with psychological well-being and negative relation with depressive symptoms. We then hypothesized that self-compassion would have a moderating role on the relation between affect and depression. This hypothesis was confirmed: expressing negative affect is correlated with depressive symptoms; however, being kind with oneself lowers depressive symptoms even when expressing negative affect. In conclusion, this research presents a valid self-compassion measure for French-speaking researchers and clinicians and outlines the need for further research on the concept of self-compassion. PMID:27078886

  5. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Martınez-Arias, A.; Hanson, J.C.; Fernandez-Garcıa, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  6. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  7. Synthesis, structural characterization and study of blue shift in optical properties of zinc oxide nano particles prepared by chemical route method

    NASA Astrophysics Data System (ADS)

    Taunk, P. B.; Das, R.; Bisen, D. P.; Tamrakar, Raunak Kumar

    2015-12-01

    We report the synthesis and optical properties of ZnO nano particle using TEA (Tri Ethanol Amine) and without TEA by chemical route method. By decreasing the concentration of TEA, reaction rate is decreases and inter planner spacing d is increases, band gap is increased from 4.1 to 4.8 eV. In case of without TEA band gap is obtained 3.4 eV. Morphology, growth and the nature of crystalline of the powder samples were performed by X- ray Diffraction (XRD); UV spectrophotometer, scanning electron microscope (SEM) and Photoluminescence (PL). Luminescence properties are discussed by probing the photoluminescence properties of ZnO nano particles with TEA at different molar concentrations.

  8. /sup 13/C and /sup 17/O NMR and IR spectroscopic study of a series of carbonyl(4-substituted pyridine)(meso-tetraphenylporphinato)iron(II) complexes. Correlations between NMR chemical shifts and IR stretching frequencies of the carbonyl ligand and Taft parameters of the pyridine substituent

    SciTech Connect

    Box, J.W.; Gray, G.M.

    1987-08-26

    The results of a /sup 13/C and /sup 17/O NMR and IR spectroscopic study of a series of carbonyl(4 substituted pyridine)(meso-tetraphenylporphinato)iron(II) (Fe(TPP)(CO)(py-4-X)) complexes are presented. Good to excellent linear correlations between the /sup 13/ and /sup 17/O NMR chemical shifts and the IR stretching frequencies of the carbonyl ligand are observed as the pyridine substituent is varied. Good to excellent linear correlations are also observed between these NMR chemical shifts and IR stretching frequencies and the NMR chemical shifts and IR stretching force constants for the trans carbonyls of a series of cis-Mo(CO)/sub 4/(py-4-X)/sub 2/ complexes as the pyridine substituent is varied. The relationship between the donor ability of the pyridine ligands and the /sup 13/C and /sup 17/O NMR chemical shifts and the IR stretching frequencies of the carbonyl ligands in the Fe(TPP)(CO)(py-4-X) complexes has been quantitated by fitting the spectroscopic data to the single and the dual Taft substituent parameters of the pyridine substituent. Good to excellent correlations are observed. The upfield shift in the /sup 13/C NMR resonance of the carbonyl ligand as the electron-donor ability of the pyridine increases is unique. This has been rationalized by using the Buchner and Schenk description of metal carbonyl /sup 13/C NMR chemical shifts. 49 references, 3 figures, 6 tables.

  9. Towards the design of cyclooxygenase (COX) inhibitors based on 4',5 di-substituted biphenyl acetic acid molecules: a QSAR study with a new DFT based descriptor - nucleus independent chemical shift.

    PubMed

    Sarkar, Ananda; Mostafa, Golam

    2009-10-01

    Cyclooxygenase (COX) is a well-known enzyme, which converts arachidonic acid to prostaglandins H(2) (PGH(2)), which are the effective mediators of inflammation. 4', 5 di-substituted 3-biphenyl acetic acids (BPA) and several alpha-methyl derivatives (MBPA) of it are widely used as powerful nonsteroidal anti-inflammatory and analgesic agents. We have chosen these activity data because the relation between the substituents and activity is not obvious and is hard to explain and also to show the superiority of DFT method. From the DFT results, various quantum chemical based descriptors were computed but the QSAR results showed that the descriptors based on frontier electron density and a new DFT based quantum chemical descriptor, nucleus independent chemical shift (NICS) are likely to be responsible for the in vitro inhibiting activity of BPA and MPBA. It has been proposed that NICS accounts for pi...pi interaction and indeed leads to a better result. To the best of our knowledge, this is the first use of NICS as a descriptor to get a better relationship to facilitate the design of COX inhibitors with potentially higher biological activity. PMID:19266221

  10. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.

    PubMed

    Widdifield, Cory M; Perras, Frédéric A; Bryce, David L

    2015-04-21

    Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ηQ) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also

  11. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  12. Thermomechanical testing techniques for high-temparature composites: TMF behavior of SiC(SCS-6)/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Ellis, J. Rodney; Bartolotta, Paul A.

    1990-01-01

    Thermomechanical testing techniques recently developed for monolithic structural alloys were successfully extended to continuous fiber reinforced composite materials in plate form. The success of this adaptation was verified on a model metal matrix composite (MMC) material, namely SiC(SCS-6)/Ti-15V-3Cr-3Al-3Sn. Effects of heating system type and specimen preparation are also addressed. Cyclic lives determined under full thermo-mechanical conditions were shown to be significantly reduced from those obtained under comparable isothermal and in-phase bi-thermal conditions. Fractography and metallography from specimens subjected to isothermal, out-of-phase and in-phase conditions reveal distinct differences in damage-failure modes. Isothermal metallography revealed extensive matrix cracking associated with fiber damage throughout the entire cross-section of the specimen. Out-of-phase metallography revealed extensive matrix damage associated with minimal (if any) fiber cracking. However, the damage was located exclusively at surface and near-surface locations. In-phase conditions produced extensive fiber cracking throughout the entire cross-section, associated with minimal (if any) matrix damage.

  13. 3D ¹⁵N/¹⁵N/¹H chemical shift correlation experiment utilizing an RFDR-based ¹H/¹H mixing period at 100 kHz MAS.

    PubMed

    Nishiyama, Yusuke; Malon, Michal; Ishii, Yuji; Ramamoorthy, Ayyalusamy

    2014-07-01

    Homonuclear correlation NMR experiments are commonly used in the high-resolution structural studies of proteins. While (13)C/(13)C chemical shift correlation experiments utilizing dipolar recoupling techniques are fully utilized under MAS, correlation of the chemical shifts of (15)N nuclei in proteins has been a challenge. Previous studies have shown that the negligible (15)N-(15)N dipolar coupling in peptides or proteins necessitates the use of a very long mixing time (typically several seconds) for effective spin diffusion to occur and considerably slows down a (15)N/(15)N correlation experiment. In this study, we show that the use of mixing proton magnetization, instead of (15)N, via the recoupled (1)H-(1)H dipolar couplings enable faster (15)N/(15)N correlation. In addition, the use of proton-detection under ultrafast MAS overcomes the sensitivity loss due to multiple magnetization transfer (between (1)H and (15)N nuclei) steps. In fact, less than 300 nL (∼1.1 micromole quantity) sample is sufficient to acquire the 3D spectrum within 5 h. Our results also demonstrate that a 3D (15)N/(15)N/(1)H experiment can render higher resolution spectra that will be useful in the structural studies of proteins at ultrafast MAS frequencies. 3D (15)N/(15)N/(1)H and 2D radio frequency-driven dipolar recoupling (RFDR)-based (1)H/(1)H experimental results obtained from a powder sample of N-acetyla-L-(15)N-valyl-L-(15)N-leucine at 70 and 100kHz MAS frequencies are presented. PMID:24801998

  14. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  15. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): An ocean model study

    NASA Astrophysics Data System (ADS)

    Xu, Danya; Malanotte-Rizzoli, Paola

    2013-09-01

    The upper layer, wind-driven circulation of the South China Sea (SCS), its through-flow (SCSTF) and the Indonesian through flow (ITF) are simulated using a high resolution model, FVCOM (finite volume coastal ocean model) in a regional domain comprising the Maritime Continent. The regional model is embedded in the MIT global ocean general circulation model (ogcm) which provides surface forcing and boundary conditions of all the oceanographic variables at the lateral open boundaries in the Pacific and Indian oceans. A five decade long simulation is available from the MITgcm and we choose to investigate and compare the climatologies of two decades, 1960-1969 and 1990-1999. The seasonal variability of the wind-driven circulation produced by the monsoon system is realistically simulated. In the SCS the dominant driving force is the monsoon wind and the surface circulation reverses accordingly, with a net cyclonic tendency in winter and anticyclonic in summer. The SCS circulation in the 90s is weaker than in the 60s because of the weaker monsoon system in the 90s. In the upper 50 m the interaction between the SCSTF and ITF is very important. The southward ITF can be blocked by the SCSTF at the Makassar Strait during winter. In summer, part of the ITF feeds the SCSTF flowing into the SCS through the Karimata Strait. Differently from the SCS, the ITF is primarily controlled by the sea level difference between the western Pacific and eastern Indian Ocean. The ITF flow, consistently southwestward below the surface layer, is stronger in the 90s. The volume transports for winter, summer and yearly are estimated from the simulation through all the interocean straits. On the annual average, there is a ∼5.6 Sv of western Pacific water entering the SCS through the Luzon Strait and ∼1.4 Sv exiting through the Karimata Strait into the Java Sea. Also, ∼2 Sv of SCS water enters the Sulu Sea through the Mindoro Strait, while ∼2.9 Sv flow southwards through the Sibutu Strait

  16. Thermomechanical Fatigue Damage/Failure Mechanisms in SCS-6/Timetal 21S [0/90](Sub S) Composite

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The thermomechanical fatigue (TMF) deformation, damage, and life behaviors of SCS6/Timetal 21S (0/90)s were investigated under zero-tension conditions. In-phase (IP) and out-of-phase (OP) loadings were investigated with a temperature cycle from 150 to 650 deg C. An advanced TMF test technique was used to quantify mechanically damage progression. The technique incorporated explicit measurements of the macroscopic (1) isothermal static moduli at the temperature extremes of the TMF cycle and (2) coefficient of thermal expansion (CTE) as functions of the TMF cycles. The importance of thermal property degradation and its relevance to accurate post-test data analysis and interpretation is briefly addressed. Extensive fractography and metallography were conducted on specimens from failed and interrupted tests to characterize the extent of damage at the microstructure level. Fatigue life results indicated trends analogous to those established for similar unidirectional(0) reinforced titanium matrix composite systems. High stress IP and mid to low stress OP loading conditions were life-limiting in comparison to maximum temperature isothermal conditions. Dominant damage mechanisms changed with cycle type. Damage resulting from IP TMF conditions produced measurable decreases in static moduli but only minimal changes in the CTE. Metallography on interrupted and failed specimens revealed extensive (0) fiber cracking with sparse matrix damage. No surface initiated matrix cracks were present. Comparable OP TMF conditions initiated environment enhanced surface cracking and matrix cracking initiated at (90) fiber/matrix (F/M) interfaces. Notable static moduli and CTE degradations were measured. Fractography and metallography revealed that the transverse cracks originating from the surface and (90) F/M interfaces tended to converge and coalesce at the (0) fibers.

  17. Impact damage resistance and residual property assessment of (0/+/-45/90)s SCS-6/Timetal 21S

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer L.; Portanova, Marc A.; Johnson, W. Steven

    1995-01-01

    The impact damage resistance and residual mechanical properties of (0/ +/- 45/90)s SCS-6/Timetal 21S composites were evaluated. Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels (5.5 and 8.4 J) and determine the onset of internal damage. Through x-ray inspection, the extent of internal damage was characterized non-destructively. The composite strength and constant amplitude fatigue response were evaluated to assess the effects of the sustained damage. Scanning electron microscopy was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel (longitudinal) and perpendicular (transverse) to the 0 deg fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims and it appeared to depend on the surface quality of composite. At low impact energies, little damage has been incurred by the composite and the residual strength and residual life is not greatly reduced as compared to an undamaged composite. At higher impact energies, more damage occurred and a greater effect of the impact damage was observed.

  18. Impact damage resistance and residual property assessment of [0/{+-}45/90]{sub s} SCS-6/TIMETAL 21S

    SciTech Connect

    Miller, J.L.; Portanova, M.A.; Johnson, W.S.

    1997-12-31

    Titanium-matrix composites (TMCs) are candidate materials for high-temperature structural applications, such as gas turbine engines, where their high specific strength at elevated temperatures and good general corrosion resistance are beneficial. Here, the impact damage resistance and residual mechanical properties of [0/{+-}45/90]{sub s} SCS-6/TIMETAL 21S composites were evaluated.Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels and to determine the onset of internal damage. Through X-ray inspection, the extent of internal damage was characterized nondestructively. The composite strength and constant-amplitude fatigue response were evaluated to assess the effects of the sustained damage. SEM was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel and perpendicular to the 0{degree} fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims, and it appeared to depend on the surface quality of the composite. At low impact energies, little damage had been incurred by the composite and the residual strength and residual life was not greatly reduced as compared to an undamaged composite.

  19. Interpreting the South China Sea (SCS) spreading history through tectonic analysis of the Nansha-Dangerous Ground

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Zhou, D.; Li, J.; Zhao, Z.

    2011-12-01

    Constrained by drilling data, long profiles across the Nansha-Dangerous Ground were interpreted to reconstruct the evolutionary history of the Southern South China Sea. Two important sequence boundaries were identified, Breakup Unconformity (B.U.) related to the SCS spreading and Collision Unconformity(C.U.) caused by Nansha-Borneo collision. In the western part of Nansha, B.U. is same as C.U. and dated at Mid-Miocene around 16Ma through the post-rift draping sediments. Mild folding, uplifting and erosion were seen in the strata of early Miocene. To the east, B.U. is proved to be located at early Miocene, while the C.U. still occurred around mid-Miocene. We can conclude that the B.U. is diachronous from middle Miocene in the west to early Miocene in the east. From the B.U. age of the basins and the spreading pattern, we conclude that Liyue basin should break apart from Zhongsha (Macclesfield) along with the spreading of the SW sub sea basin. From topography simulation, we see that the forearc uplift of Nansha decreases from SW to NE, which might suggest that the cessation of seafloor spreading in the South China Sea propagate northeastward, that's why the central sub sea basin has a wider floor area near the ridge than its western counterpart. Combined with the remnant Mesozoic oceanic crust under the northeastern margin of the South China Sea, we can see that the present South China Sea were formed through breakup of Mesozoic oceanic crust in the eastern part.

  20. Characterization of Damage Progression in SCS-6/timetal 21S (0)4 Under Thermomechanical Fatigue Loadings

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    A detailed experimental investigation was performed at a single maximum cyclic stress (sigma max) level to physically characterize the progression of thermomechanical fatigue (lW) damage in continuously reinforced (0 deg) SCS-6/Timetal 21S, a titanium matrix composite. In-phase (IP) and out of-phase (OP) loadings were investigated at sigma max = 1000 MPa with a temperature cycle from 150 to 6500 C. Damage progression, in terms of macroscopic property degradation, was experimentally quantified through an advanced TMF test methodology which incorporates explicit measurements of the isothermal static moduli at the TMF temperature extremes and the coefficient of thermal expansion (CTE) as functions of the TMF cycles. Detailed characterization of the physical damage progression at the microstructural level was performed by interrupting multiple TMF tests at various stages of mechanical property degradation and analyzing the microstructure through extensive destructive metallography. Further, the extent of damage was also quantified through residual static strength measurements. Results indicated that damage initiation occurred very early in cyclic life (N less than 0.1Nf) for both the IP and OP TMF loadings. IP TMF damage was found to be dominated by fiber breakage with a physical damage progression in the microstructure which was difficult to quantify. OP TMF loadings produced matrix cracking exclusively associated with surface initiations. Here, damage progression was easily distinguished in terms of both the number of cracks and their relative inward progressions toward the outer fiber rows with increased cycling. The point at which the leading cracks reached the outer fiber rows (when localized fiber/matrix de-bonding and matrix crack bridging occurred) appeared to be reflected in the macroscopic property degradation curves.

  1. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    SciTech Connect

    Friese, Daniel H.; Törk, Lisa; Hättig, Christof

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  2. Desumoylation of the Endoplasmic Reticulum Membrane VAP Family Protein Scs2 by Ulp1 and SUMO Regulation of the Inositol Synthesis Pathway

    PubMed Central

    Felberbaum, Rachael; Wilson, Nicole R.; Cheng, Dongmei; Peng, Junmin

    2012-01-01

    Posttranslational protein modification by the ubiquitin-like SUMO protein is critical to eukaryotic cell regulation, but much remains unknown regarding its operation and substrates. Here we report that specific mutations in the Saccharomyces cerevisiae Ulp1 SUMO protease, including its coiled-coil (CC) domain, lead to the accumulation of distinct sumoylated proteins in vivo. A prominent ∼50-kDa sumoylated protein accumulates in a Ulp1 CC mutant. The protein was identified as Scs2, an endoplasmic reticulum (ER) membrane protein that regulates phosphatidylinositol synthesis and lipid trafficking. Mutation of lysine 180 of Scs2 abolishes its sumoylation. Notably, impairment of either cellular sumoylation or cellular desumoylation mechanisms inhibits cell growth in the absence of inositol and exacerbates the inositol auxotrophy caused by deletion of SCS2. Mutants lacking the Ulp2 SUMO protease are the most severely affected, and this defect was traced to the mutants' impaired ability to induce transcription of INO1, which encodes the rate-limiting enzyme of inositol biosynthesis. Conversely, inositol starvation induces a striking change in the profiles of total cellular SUMO conjugates. These results provide the first evidence of cross-regulation between the SUMO and inositol pathways, including the sumoylation of an ER membrane protein central to phospholipid synthesis and phosphoinositide signaling. PMID:22025676

  3. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method

    NASA Astrophysics Data System (ADS)

    Izsák, Róbert; Neese, Frank

    2013-07-01

    The 'chain of spheres' approximation, developed earlier for the efficient evaluation of the self-consistent field exchange term, is introduced here into the evaluation of the external exchange term of higher order correlation methods. Its performance is studied in the specific case of the spin-component-scaled third-order Møller--Plesset perturbation (SCS-MP3) theory. The results indicate that the approximation performs excellently in terms of both computer time and achievable accuracy. Significant speedups over a conventional method are obtained for larger systems and basis sets. Owing to this development, SCS-MP3 calculations on molecules of the size of penicillin (42 atoms) with a polarised triple-zeta basis set can be performed in ∼3 hours using 16 cores of an Intel Xeon E7-8837 processor with a 2.67 GHz clock speed, which represents a speedup by a factor of 8-9 compared to the previously most efficient algorithm. Thus, the increased accuracy offered by SCS-MP3 can now be explored for at least medium-sized molecules.

  4. Exotic open-flavor bcq¯q¯, bcs¯s¯ and qcq¯b¯, scs¯b¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Steele, T. G.; Zhu, Shi-Lin

    2014-03-01

    We study the exotic bcq¯q¯, bcs¯s¯ and qcq¯b¯, scs¯b¯ systems by constructing the corresponding tetraquark currents with JP=0+ and 1+. After investigating the two-point correlation functions and the spectral densities, we perform QCD sum rule analysis and extract the masses of these open-flavor tetraquark states. Our results indicate that the masses of both the scalar and axial vector tetraquark states are about 7.1-7.2 GeV for the bcq¯q¯ system and 7.2-7.3 GeV for the bcs¯s¯ system. For the qcq¯b¯ tetraquark states with JP=0+ and 1+, their masses are extracted to be around 7.1 GeV. The masses for the scalar and axial vector scs¯b¯ states are 7.1 and 6.9-7.1 GeV, respectively. The tetraquark states qcq¯b¯ and scs¯b¯ lie below the thresholds of D(*)B(*) and Ds(*)Bs(*) respectively, but they can decay into Bc plus a light meson. However, the tetraquark states bcq¯q¯ and bcs¯s¯ lie below the D(*)B¯(*) and Ds(*)B¯s(*) thresholds, suggesting dominantly weak decay mechanisms.

  5. Psychopathology of Shift Work.

    ERIC Educational Resources Information Center

    Akinnawo, Ebenezer Olutope

    1989-01-01

    Examined incidence and nature of general psychopathology among Nigerian shift workers (N=320). Found shift workers more significantly psychopathological than non-shift workers (p<0.001). Prominent disorders among shift workers were intellectual, sleep, mood, and general somatic disorders. No significant difference could be attributed to gender and…

  6. Synthesis, molecular conformation, vibrational and electronic transition, isometric chemical shift, polarizability and hyperpolarizability analysis of 3-(4-Methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah Mohamed; Karabacak, Mehmet; Kurt, Mustafa; Alamry, Khalid A.

    2011-11-01

    This work presents the synthesis and characterization of a novel compound, 3-(4-Methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile (abbreviated as 3-(4MP)-2-(4-NP)-AN, C 16H 12N 2O 3). The spectroscopic properties of the compound were examined by FT-IR, UV-vis and NMR ( 1H and 13C) techniques. FT-IR spectrum in solid state was observed in the region 4000-400 cm -1. The UV-vis absorption spectrum of the compound which dissolved in chloroform was recorded in the range of 200-800 nm. The 1H and 13C NMR spectra were recorded in CDCl 3 solution. To determine lowest-energy molecular conformation of the title molecule, the selected torsion angle is varied every 10° and molecular energy profile is calculated from 0° to 360°. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP/6-31G(d,p) basis set. The dipole moment, linear polarizability and first hyperpolarizability values were also computed using the same basis set. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analysis were used to elucidate information regarding charge transfer within the molecule. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT and TD-DFT method produce good results. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the title compound can be used as a good nonlinear optical material

  7. Synthesis, molecular conformation, vibrational and electronic transition, isometric chemical shift, polarizability and hyperpolarizability analysis of 3-(4-methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile: a combined experimental and theoretical analysis.

    PubMed

    Asiri, Abdullah Mohamed; Karabacak, Mehmet; Kurt, Mustafa; Alamry, Khalid A

    2011-11-01

    This work presents the synthesis and characterization of a novel compound, 3-(4-methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile (abbreviated as 3-(4MP)-2-(4-NP)-AN, C(16)H(12)N(2)O(3)). The spectroscopic properties of the compound were examined by FT-IR, UV-vis and NMR ((1)H and (13)C) techniques. FT-IR spectrum in solid state was observed in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound which dissolved in chloroform was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. To determine lowest-energy molecular conformation of the title molecule, the selected torsion angle is varied every 10° and molecular energy profile is calculated from 0° to 360°. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP/6-31G(d,p) basis set. The dipole moment, linear polarizability and first hyperpolarizability values were also computed using the same basis set. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analysis were used to elucidate information regarding charge transfer within the molecule. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT and TD-DFT method produce good results. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the title compound can be used as a good nonlinear

  8. Modeling the Impact of Soil and Water Conservation on Surface and Ground Water Based on the SCS and Visual Modflow

    PubMed Central

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model–the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10−2 m3/m2/h in the bare slope scenario, while the observed values were 1.54×10−2 m3/m2/h and 0.12×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10−2 m3/m2/h in the bare slope scenario, while the observed volumes were 3.46×10−2 m3/m2/h and 4.91×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources. PMID:24244427

  9. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    PubMed

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources. PMID:24244427

  10. Gear shift control mechanism

    SciTech Connect

    Janson, D.A.

    1987-03-10

    A gear shift control mechanism is described comprising: multiple shift rods directed substantially parallel to one another, each rod carrying a shift fork for axial movement; a shift lever supported for pivotal movement about a first axis directed parallel to the axes of the shift rods and for pivotal movement about a second axis directed substantially perpendicular to the axes of the shift rods. The lever is moveable about the first axis and the second axis into engagement with a selected shift fork; interlock means located on each lateral side of the shift lever and mounted for pivotal movement about the first axis for blocking engagement with the shift forks; detent means for holding the shift lever in multiple predetermined angular positions about the second axis; and spring means located on a lateral side of the shift lever and mounted for pivotal movement about the first axis into interference contact with the shift forks for producing a force tending to resiliently bias the shift lever out of engagement with the selected shift fork.

  11. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    NASA Astrophysics Data System (ADS)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  12. Molecular structure and vibrational bands and chemical shift assignments of 4-allyl-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione by DFT and ab initio HF calculations

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Dinçer, Muharrem; Çetin, Ahmet; Şekerci, Memet

    2010-09-01

    The title molecule, 4-allyl-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (C 11H 11N 3OS), was synthesized and characterized by IR-NMR spectroscopy and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group is P2 1/ c, a = 9.0907(5) Å, b = 9.1288(7) Å, c = 13.6222(7) Å, α = 90°, β = 98.442 (4), γ = 90° and V = 2683.7(6) Å 3, F(000) = 488, Dx = 1.386 g/cm 3. In addition to the molecular geometry from X-ray experiment, the molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values of the title compound in the ground state have been calculated using the Hartree-Fock (HF) and density functional method (DFT/BLYP and DFT/B3LYP) with 6-31G(d) basis set. To determine conformational flexibility, molecular energy profile of the title compound was obtained by HF/6-31G(d) calculations with respect to selected degree of torsional freedom, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO), and several thermodynamic properties were performed by the HF and DFT methods.

  13. Host shifts and evolutionary radiations of butterflies

    PubMed Central

    Fordyce, James A.

    2010-01-01

    Ehrlich and Raven proposed a model of coevolution where major host plant shifts of butterflies facilitate a burst of diversification driven by their arrival to a new adaptive zone. One prediction of this model is that reconstructions of historical diversification of butterflies should indicate an increase in diversification rate following major host shifts. Using reconstructed histories of 15 butterfly groups, I tested this prediction and found general agreement with Ehrlich and Raven's model. Butterfly lineages with an inferred major historical host shift showed evidence of diversification rate variation, with a significant acceleration following the host shift. Lineages without an inferred major host shift generally agreed with a constant-rate model of diversification. These results are consistent with the view that host plant associations have played a profound role in the evolutionary history of butterflies, and show that major shifts to chemically distinct plant groups leave a historical footprint that remains detectable today. PMID:20610430

  14. Layer Stripping Forward Tomography with S, ScS, and Sdiff phases to sharpen images of deep mantle shear velocity heterogeneity

    NASA Astrophysics Data System (ADS)

    Lai, H.; Garnero, E.; Zhao, C.

    2014-12-01

    The Earth's deep mantle has been shown to be heterogeneous at a wide spectrum of scales, from fine scale (e.g.,1-10 km) to degree 2 low velocity provinces (1000's of km lateral scale). Principle structures include large low shear velocity provinces (LLSVPs) beneath the Pacific Ocean and Africa and southern Atlanic Ocean, and a circum-Pacific higher velocity band. At intermediate scales, structures include D" discontinuities and details associated with LLSVPs, such as sharp sides. Shorter scales include ultra-low velocity zones (ULVZs) and regions of scattering of high frequency waves. In this study we seek to improve upon our knowledge of global intermediate and small-scale shear wave structure in the lower mantle with an iterative Layer-Stripping Forward Tomography approach. This approach iteratively updates a starting tomographic model by mapping travel time residuals (between observations and predictions) from the surface (using shallow S wave phase) down to lowermost mantle depths (using deep S waves, ScS waves, and Sdiff waves). Modifications to the uppermost mantle are primarily aimed at properly correcting deep phases for shallow heterogeneity. Relatively uniform coverage of the deepest mantle is achieved with Sdiff. The core-reflected ScS contributes most strongly to our knowledge of shorter scale heterogeneity, but coverage is more limited that with Sdiff. Deep mantle S waves provide information on the vertical extent of lowermost mantle heterogeneity (e.g., LLSVPs), but similar to ScS, coverage is limited to source-receiver pairs with the proper distance range. We collected near 1200 global earthquakes global earthquakes from the last two decades, with depths greater than 30 km, and focused on data with clear and impulsive phases. In a semi-automatic scheme, we measured all S, ScS, and Sdiff times and document waveshape stability by constructing a mean shape of each phase for each event. Cross-correlation coefficients between individual records and the

  15. Surface Runoff Variability on two Slope Positions and Land Use in Koupendri Catchment, Benin, West Africa: Observation and Modeling using SCS_CN Approach

    NASA Astrophysics Data System (ADS)

    Azuka, C. V.; Diekkrüger, B.; Igué, A. M.; Bossa, A. Y.

    2015-12-01

    Surface runoff contributes significantly to soil erosion by water which is a serious worldwide problem causing decline in water resources quality, agricultural and forest land productivity, alongside environmental and ecological degradations. A field experiment was carried out on two hillslope (2-7 %) positions (downslope (2.3%), upslope (5.8%)) and two land use types; maize-beans intercrop (MB); fallow shrub-grassland (SG) in Koupendri catchment in north-western part of Benin, West Africa using microplots. The objective was to evaluate the influence of slope positions and land use on surface runoff and their variability, and the ability of Soil Conservation Service Curve Number (SCS-CN) approach to simulate the measured runoff on both slope positions and land use types in Koupendri catchment. Six microplots (1m x 1m) were installed at 0.5m spacing, and on the same soil type in each slope positions and land use giving a total of 24 microplots. Surface runoff was measured after each rain event from September - October, 2014 and major runoff producing rain events were selected for analysis. The data obtained was subjected to analysis of variance (ANOVA) in RCBD. The results showed a very low variability (CV= 9%) for measured surface runoff on both slope positions and land use respectively. The surface runoff measured was significantly (p < 0.05) influenced by the land use with a total surface runoff of 340.1 mm in MB as against 250.3 mm in SG. However, the higher surface runoff depth obtained at the downslope (299.9 mm) compared to the upslope (290.5 mm) was due to shallow soil depth and saturation of the soil downslope but not slope position. Thus, land use must be given greater priority in future surface runoff and soil erosion related studies in the catchment or region. A good simulation (R2= 0.92 - 0.97) of the measured runoff depth was obtained using the SCS-CN approach on both slopes and land use types. A better simulation was obtained under the cultivated plot

  16. Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis.

    PubMed

    Ash, E L; Sudmeier, J L; Day, R M; Vincent, M; Torchilin, E V; Haddad, K C; Bradshaw, E M; Sanford, D G; Bachovchin, W W

    2000-09-12

    13C-selective NMR, combined with inhibitor perturbation experiments, shows that the C(epsilon)(1)H proton of the catalytic histidine in resting alpha-lytic protease and subtilisin BPN' resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and approximately 0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous alpha-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31-61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pK(a) values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true C(epsilon)(1)H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine C(epsilon)(1)H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83-93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates. PMID:10984533

  17. Unusual 1H NMR chemical shifts support (His) Cɛ1—H⋅⋅⋅O⩵C H-bond: Proposal for reaction-driven ring flip mechanism in serine protease catalysis

    PubMed Central

    Ash, Elissa L.; Sudmeier, James L.; Day, Regina M.; Vincent, Matthew; Torchilin, Ekaterina V.; Haddad, Kristin Coffman; Bradshaw, Elizabeth M.; Sanford, David G.; Bachovchin, William W.

    2000-01-01

    13C-selective NMR, combined with inhibitor perturbation experiments, shows that the Cɛ1—H proton of the catalytic histidine in resting α-lytic protease and subtilisin BPN′ resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and ≈0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous α-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31–61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pKa values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true Cɛ1—H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine Cɛ1—H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83–93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates. PMID:10984533

  18. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    PubMed Central

    Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M.

    2013-01-01

    Objective The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Methods Sixty-two women (age 61±6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. Results A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P<0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0–4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Conclusion Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. PMID:22411305

  19. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    SciTech Connect

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S.; Chemical Engineering

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper the authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is

  20. Shifting scintillator neutron detector

    SciTech Connect

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  1. Surface core-level shifts and atomic coordination at a stepped W(110) surface

    SciTech Connect

    Riffe, D.M.; Kim, B.; Erskine, J.L. ); Shinn, N.D. )

    1994-11-15

    Core-level 4[ital f][sub 7/2] photoemission spectra have been measured from a single, bifacial W crystal, which has both a flat W(110) and a vicinal, stepped W(110) [W(320)] surface. This procedure reduces uncertainties in the quantitative description of peaks in the spectra from W(320). Various analyses, including nonlinear least-squares curve fitting, show that the average surface core-level shift (SCS) for W(320) is only [similar to][minus]140 meV, compared to [minus]310 meV for W(110) and that, at a maximum, only two of five terrace rows are isoelectronic to W(110) surface atoms. The absence of a large SCS for the step-edge atoms contradicts earlier interpretations of W(320) core-level spectra and departs significantly from expectations based on atomic-coordination models or tight-binding calculations of a bulk truncated surface. We suggest that systematic errors are responsible for the differences in reported core-level shifts for W(320). Implications of possible step-edge-driven atomic rearrangements are discussed.

  2. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

    PubMed Central

    Huang, Yuegao; Coman, Daniel; Ali, Meser M.; Hyder, Fahmeed

    2014-01-01

    Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd3+) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CHx, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NHy, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) chelated with thulium (Tm3+) and ytterbium (Yb3+). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP5− than with TmDOTA-4AmP5−. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. PMID:24801742

  3. Our World: Fluid Shift

    NASA Video Gallery

    Learn about the circulatory system and how gravity aids blood flow in our bodies here on Earth. Find out how NASA flight surgeons help the astronauts deal with the fluid shift that happens during s...

  4. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  5. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  6. Protein structure prediction using global optimization by basin-hopping with NMR shift restraints

    NASA Astrophysics Data System (ADS)

    Hoffmann, Falk; Strodel, Birgit

    2013-01-01

    Computational methods that utilize chemical shifts to produce protein structures at atomic resolution have recently been introduced. In the current work, we exploit chemical shifts by combining the basin-hopping approach to global optimization with chemical shift restraints using a penalty function. For three peptides, we demonstrate that this approach allows us to find near-native structures from fully extended structures within 10 000 basin-hopping steps. The effect of adding chemical shift restraints is that the α and β secondary structure elements form within 1000 basin-hopping steps, after which the orientation of the secondary structure elements, which produces the tertiary contacts, is driven by the underlying protein force field. We further show that our chemical shift-restraint BH approach also works for incomplete chemical shift assignments, where the information from only one chemical shift type is considered. For the proper implementation of chemical shift restraints in the basin-hopping approach, we determined the optimal weight of the chemical shift penalty energy with respect to the CHARMM force field in conjunction with the FACTS solvation model employed in this study. In order to speed up the local energy minimization procedure, we developed a function, which continuously decreases the width of the chemical shift penalty function as the minimization progresses. We conclude that the basin-hopping approach with chemical shift restraints is a promising method for protein structure prediction.

  7. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  8. Predicting catastrophic shifts.

    PubMed

    Weissmann, Haim; Shnerb, Nadav M

    2016-05-21

    Catastrophic shifts are known to pose a serious threat to ecology, and a reliable set of early warning indicators is desperately needed. However, the tools suggested so far have two problems. First, they cannot discriminate between a smooth transition and an imminent irreversible shift. Second, they aimed at predicting the tipping point where a state loses its stability, but in noisy spatial system the actual transition occurs when an alternative state invades. Here we suggest a cluster tracking technique that solves both problems, distinguishing between smooth and catastrophic transitions and to identify an imminent shift in both cases. Our method may allow for the prediction, and thus hopefully the prevention of such transitions, avoiding their destructive outcomes. PMID:26970446

  9. Isotope shift in chromium

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Jarosz, A.; Stefańska, D.; Dembczyński, J.; Stachowska, E.

    2005-01-01

    Thirty-three spectral lines of chromium atom in the blue-violet region (425-465 nm) have been investigated with the method of laser-induced resonance fluorescence on an atomic beam. For all the lines, the isotope shifts for every pair of chromium isotopes have been determined. The lines can be divided into six groups, according to the configuration of the upper and lower levels. Electronic factors of the field shift and the specific mass shift ( Fik and MikSMS, respectively) have been evaluated and the values for each pure configuration involved have been determined. Comparison of the values Fik and MikSMS to the ab initio calculations results has been performed. The presence of crossed second order (CSO) effects has been observed.

  10. Shifting Up a Gear.

    ERIC Educational Resources Information Center

    Palmer, Martin

    1997-01-01

    Shift workers are often excluded from educational opportunities on and off the job. General education and leisure learning needs are addressed less than job-specific training needs. Providers should consider open/distance learning, creative marketing, targeted funding, and consortia of employer-developed programs. (SK)

  11. Eluding catastrophic shifts

    PubMed Central

    Villa Martín, Paula; Bonachela, Juan A.; Levin, Simon A.; Muñoz, Miguel A.

    2015-01-01

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences. PMID:25825772

  12. Eluding catastrophic shifts.

    PubMed

    Villa Martín, Paula; Bonachela, Juan A; Levin, Simon A; Muñoz, Miguel A

    2015-04-14

    Transitions between regimes with radically different properties are ubiquitous in nature. Such transitions can occur either smoothly or in an abrupt and catastrophic fashion. Important examples of the latter can be found in ecology, climate sciences, and economics, to name a few, where regime shifts have catastrophic consequences that are mostly irreversible (e.g., desertification, coral reef collapses, and market crashes). Predicting and preventing these abrupt transitions remains a challenging and important task. Usually, simple deterministic equations are used to model and rationalize these complex situations. However, stochastic effects might have a profound effect. Here we use 1D and 2D spatially explicit models to show that intrinsic (demographic) stochasticity can alter deterministic predictions dramatically, especially in the presence of other realistic features such as limited mobility or spatial heterogeneity. In particular, these ingredients can alter the possibility of catastrophic shifts by giving rise to much smoother and easily reversible continuous ones. The ideas presented here can help further understand catastrophic shifts and contribute to the discussion about the possibility of preventing such shifts to minimize their disruptive ecological, economic, and societal consequences. PMID:25825772

  13. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  14. E-2-Benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones

    NASA Astrophysics Data System (ADS)

    Perjési, Pál; Linnanto, Juha; Kolehmainen, Erkki; Ősz, Erzsébet; Virtanen, Elina

    2005-04-01

    Single substituent parameter (SSP) and dual substituent parameter (DSP) analyses were applied to study the transmission of substituent effects on selected 13C NMR chemical shifts of the cyclic chalcone analogues, E-2-(4'-X-benzylidene)-1-tetralones ( 2) and E-2-(4'-X-benzylidene)-1-benzosuberones ( 3). In order to study how the geometry of the cyclic chalcone analogues affects the transmission of substituent effects similar investigations with the respective chalcones ( 4) were also performed. The results obtained earlier with the five-membered analogue E-2-(4'-X-benzylidene)-1-indanones ( 1) were also involved in the comparisons. Geometry optimization of the unsubstituted 1a, 2a, 3a and 4a as well as the substituted 2 and 3 was performed by ab initio quantum chemical calculations. Both SSP and DSP analyses reflected that resonance effects contribute more to the chemical shift of C-α (C2), while inductive effects primarily affect that of C-β (C10) of the enone moiety of all the four series. This latter effect, however, is far not as pronounced as that of the former one. It was found that DSP analysis data ( ρF and ρR values) of transmission of substituent effects on the δC2 data can serve as a measure of choice to study the conformation (planarity) of the investigated enones in the four series.

  15. Energy phase shift as mechanism for catalysis

    NASA Astrophysics Data System (ADS)

    Beke-Somfai, Tamás; Feng, Bobo; Nordén, Bengt

    2012-05-01

    Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-shifted relative to each other provides a possibility to sustain the overall reaction by internal 'energy recycling', bypassing the need for thermal activation, and in principle allowing the system to work adiabatically. Using an analytical model for superimposed, phase-shifted potentials of F1-ATP synthase provides a description integrating main characteristics of this rotary enzyme complex.

  16. Effect of interfacial debonding and sliding on matrix crack initiation during isothermal fatigue of SCS-6/Ti-15-3 composites

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Fu; Tanaka, Yoshihisa; Masuda, Chitoshi

    2000-10-01

    Direct observation of initial damage-evolution processes occurring during cyclic testing of an unnotched SCS-6 fiber-reinforced Ti-15-3 composite has been carried out. The aligned fibers break at an early stage, followed by debonding and subsequent sliding along the interface between the reaction layer (RL) and Ti-15-3 alloy matrix. Matrix cracking initiation from the initial broken fiber and RL was avoided. This fracture behavior during cyclic loading is modeled and analyzed by the finite-element method, with plastic deformation of the matrix being considered. The plastic strain in the matrix at the initial crack and at the deflected crack tips, when the interface crack is deflected into the RL after extensive interface debonding propagation, is characterized. The effects of interfacial debond lengths and test temperatures on the matrix cracking mechanism are discussed, based on a fatigue-damage summation rule under low-cycle fatigue conditions. The numerical results provide a rationale for experimental observations regarding the avoidance and occurrence of the matrix cracking found in fiber-reinforced titanium composites.

  17. Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1994-01-01

    The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.

  18. Problematic chemical shifts of a fluorine-labeled surfactant and oil in some microemulsion systems. [Soap is potassium 11-(2,2,2-trifluoroethoxy)undecanoate oil is 1-(2,2,2-trifluoroethoxy)hexane or a mixture of this material with heptane

    SciTech Connect

    Muller, N.

    1982-05-27

    Fluorine chemical shifts are reported for water/oil/soap/butanol microemulsions in which the soap is potassium 11-(2,2,2-trifluoroethoxy)undecanoate and the oil is 1-(2,2,2-trifluoroethoxy)hexane or a mixture of this material with heptane. In many of the solutions the two fluorinated compounds appear to have identical microenvironments. This reinforces arguments presented recently by others to the effect that microemulsions do not always contain distinct oil-rich and water-rich domains separated by a well-defined interfacial layer.

  19. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c

    SciTech Connect

    Feng, Yiquing; Roder, H.; Englander, S.W. )

    1990-04-10

    Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences for structure change, the authors removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor calculation, when repeated using only 12 available C{sub {alpha}}H proton resonances for cytochrom c from tuna, proved to be remarkably stable. The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, where are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impressions one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.

  20. Ambiguous red shifts

    NASA Astrophysics Data System (ADS)

    Wulfman, Carl E.

    2010-12-01

    A one-parameter conformal invariance of Maxwell's equations allows the wavelengths of electromagnetic waves to change as they propagate, and do so even in otherwise field-free space. This produces an ambiguity in interpretations of stellar red shifts. Experiments that will determine the value of the group parameter, and thereby remove the ambiguity, are proposed. They are based on an analysis of the anomalous frequency shifts uncovered in the Pioneer 10 and 11 spacecraft studies, and physical interpretation of an isomorphism discovered by E.L. Hill. If the group parameter is found to be non-zero, Hubble's relations will have to be reinterpreted and space-time metrics will have to be altered. The cosmological consequences of the transformations are even more extensive because, though they change frequencies they do not alter the energy and momentum conservation laws of classical and quantum-electrodynamical fields established by Cunningham and by Białynicki-Birula.

  1. Shifts that divide population

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Rachata; Qubbaj, Murad; Aggarwal, Rimjhim; Anderies, John M.; Janssen, Marco

    2014-05-01

    How does a population of organisms in an ecosystem or of people in a society respond to rapid shifts in the environment? Answers to this question are critical to our ability to anticipate and cope with a changing ecohydrological system. We have developed a generic model of adaptation mechanisms, based on replicator dynamics, in which we derive a simple and insightful threshold condition that separates two important types of responses: 'cohesive transition' in which the whole population changes gradually together, and 'population-dividing transition' in which the population splits into two groups with one eventually dominating the other. The threshold depends on the magnitude of the shift and the shape of the fitness landscape. Division in populations can fundamentally alter the functioning of and induce subsequent feedbacks within the system; knowing the condition that gives rise to such division is thus fundamentally important.

  2. The shifted penalty method

    NASA Astrophysics Data System (ADS)

    Zavarise, Giorgio

    2015-07-01

    The method presented here is a variation of the classical penalty one, suited to reduce penetration of the contacting surfaces. The slight but crucial modification concerns the introduction of a shift parameter that moves the minimum point of the constrained potential toward the exact value, without any penalty increase. With respect to the classical augmentation procedures, the solution improvement is embedded within the original penalty contribution. The problem is almost consistently linearized, and the shift is updated before each Newton's iteration. However, adding few iterations, with respect to the original penalty method, a reduction of the penetration of several orders of magnitude can be achieved. The numerical tests have shown very attractive characteristics and very stable solution paths. This permits to foresee a wide area of applications, not only in contact mechanics, but for any problem, like e.g. incompressible materials, where a penalty contribution is required.

  3. Label-free surface-enhanced infrared spectro-electro-chemical analysis of the Redox potential shift of cytochrome c complexed with a cardiolipin-containing lipid membrane of varied composition

    NASA Astrophysics Data System (ADS)

    Liu, Li; Wu, Lie; Zeng, Li; Jiang, Xiu-E.

    2015-12-01

    In this study, a lipid membrane was fabricated by fusing cardiolipin-phosphatidylcholine (CL_PC, 1:4) vesicles onto a hydrophobic surface of 1-dodecanethiol (DT) preadsorbed on a nanostructured gold film. By changing the concentration of the DT adsorption solution, we constructed a series of CL_PC-DT bilayers with different hydrophobicity to study the effects of lipid membrane characteristics on the adsorption conformation of cytochrome c (Cyt c). Electrochemical analysis showed that the formal potential is 0.24 V for Cyt c-CL_PC-DT(10), 0.2 V for Cyt c-CL_PC-DT(20), and 0.16 V for Cyt c-CL_PC-DT(40) — a gradual positive shift with the decreasing DT concentration — relative to the potential of native cyt c (0.02 V). Potential-induced surface-enhanced infrared adsorption difference spectroscopy revealed that the gradual positive shift of the formal potential of CL-bound cyt c is determined by the environment with the gradually lowered dielectric constant for the heme cofactor in CL-bound cyt c (Fe3+). Project supported by the National Natural Science Foundation of China (Grant Nos. 91227114, 21322510, and 21105097), the China Postdoctoral Science Foundation (Grant No. 2013M530998), the Natural Science Foundation of Jilin Province, China (Grant No. 201215092), and the President Funds of the Chinese Academy of Sciences.

  4. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2007-12-01

    1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution. PMID:18044804

  5. Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Zheng, Quan

    2016-05-01

    We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.

  6. Final results for the EPRI-DOE-SCS Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    SciTech Connect

    Burford, D.P.

    1997-12-31

    The Yates Clean Coal Project was a co-funded Clean Coal Technology effort, sponsored by the US Department of Energy, the Electric Power Research Institute and Southern Company Services (EPRI-DOE-SCS) to evaluate a retrofit wet-limestone-based, sulfur dioxide (SO{sub 2}) scrubbing system in treating the hot flue gases of a coal-fired, 110MW electric utility boiler. This Project tested the operational limits of Chiyoda`s CT-121 Jet Bubbling Reactor System (JBR ) at Georgia Power`s Plant Yates from 1992 through 1994. Although the original test plan called for a very conservative assessment, the CT-121 system proved robust, so it was tested at widely varying conditions. Fuel sulfur content was varied between 1.5% to 4.3%, various limestone sources at several grind sizes were used, particulate removal and air toxics performance were measured and by-product gypsum soil amendment experimentation was conducted. In all cases, the CT-121 system gave encouraging results with predictably high SO{sub 2} removals (95--99%) and particulate removals (99+%) at all conditions with high reliability. Closed loop operations (no liquids treated, none discharged) called for the extensive application of corrosion impervious, fiberglass reinforced plastics (FRP) that was also very successful. Gypsum by-product proved to be significant as a soil enhancement and was granted a plant food license by the State of Georgia. So far, the Yates Project has received several awards from industry and environmental groups for its performance including Power Plant of the Year in 1994 from Power magazine.

  7. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph. D. Thesis Final Report

    SciTech Connect

    Covey, S.J.

    1993-09-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip.

  8. Transmission shift control assembly

    SciTech Connect

    Dzioba, D.L.

    1989-04-18

    This patent describes a transmission shift control assembly mounted on a steering column having a longitudinal axis comprising: bracket means secured to the steering column; transmission shift cable means having a portion secured to the bracket means and a portion linearly movable relative to the secured portion; mounting means on the bracket cable drive arm means having an axis and being rotatably mounted on the rotary axis on the mounting means oblique to the longitudinal axis and including a cable connecting portion secured to the movable portion of the cable means and lever mounting means adjacent the mounting means; operator control means including lever means, pin means for pivotally mounting the lever means on the lever mounting means on an axis substantially perpendicular to the rotary axis and positioning arm means formed on the lever means and extending from the pin means; and detent gate means disposed on the bracket means in position to abut the positioning arm means for limiting the extent of pivotal movement of the lever means.

  9. Shifted nondiffractive Bessel beams

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.; Porfirev, Alexey A.

    2015-05-01

    Nondiffractive Bessel beams are well known to have infinite energy and infinite orbital angular momentum (OAM). However, when normalized to unity of energy, their OAM is finite. In this work, we derive an analytical relationship for calculating the normalized OAM of the superposition of off-axis Bessel beams characterized by the same topological charge. We show that if the constituent beams of the superposition have real-valued weight coefficients, the total OAM of the superposition of the Bessel beams equals that of an individual nonshifted Bessel beam. This property enables generating nondiffractive beams with different intensity distributions but identical OAM. The superposition of a set of identical Bessel beams centered on an arbitrary-radius circle is shown to be equivalent to an individual constituent Bessel beam put in the circle center. As a result of a complex shift of the Bessel beam, the transverse intensity distribution and OAM of the beam are also shown to change. We show that, in the superposition of two or more complex-shifted Bessel beams, the OAM may remain unchanged, while the intensity distribution is changed. Numerical simulation is in good agreement with theory.

  10. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    SciTech Connect

    Thonhauser, Timo; Ceresoli, Davide; Marzari, Nicola N.

    2009-09-03

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  11. Shifting epidemiology of Flaviviridae.

    PubMed

    Petersen, Lyle R; Marfin, Anthony A

    2005-04-01

    The dengue, West Nile, Japanese encephalitis and yellow fever viruses are important mosquito-borne viruses whose epidemiology is shifting in response to changing societal factors, such as increasing commerce, urbanization of rural areas, and population growth. All four viruses are expanding geographically, as exemplified by the emergence of West Nile virus in the Americas and Japanese encephalitis virus in Australasia. The large, recent global outbreaks of severe neurological disease caused by West Nile virus, the increasing frequency of dengue hemorrhagic fever outbreaks in the Americas, and the emergence of yellow fever virus vaccination-associated viscerotropic disease, are new clinical epidemiologic trends. These worrisome epidemiologic trends will probably continue in coming decades, as a reversal of their societal and biological drivers is not in sight. Nevertheless, the substantial reductions in Japanese encephalitis virus incidence resulting from vaccination programs and economic development in some Asian countries provide some encouragement within this overall guarded outlook. PMID:16225801

  12. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  13. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  14. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  15. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  16. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  17. Quantized beam shifts in graphene

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, Wilton; Sinitsyn, Nikolai; Dalvit, Diego

    We show that the magneto-optical response of a graphene-on-substrate system in the presence of an external magnetic field strongly affects light beam shifts. In the quantum Hall regime, we predict quantized Imbert-Fedorov, Goos-Hänchen, and photonic spin Hall shifts. The Imbert-Fedorov and photonic spin Hall shifts are given in integer multiples of the fine structure constant α, while the Goos-Hänchen ones in discrete multiples of α2. Due to time-reversal symmetry breaking the IF shifts change sign when the direction of the applied magnetic field is reversed, while the other shifts remain unchanged. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field. We acknowledge the LANL LDRD program for financial support.

  18. Shift work in a security environment

    SciTech Connect

    Longhouser, G.A. Jr.

    1993-12-31

    Human beings are diurnal species, normally active by day and asleep by night. Yet over thirty million Americans struggle with work schedules that include an off-normal work effort. The railroads, law enforcement, health services, Department of Defense, factory workers, chemical plants and public services, communications and utility workers must provide some form of around-the-clock effort. Shift work has been around since the advent of recorded history. There has always been a need for some type of off-normal service and assistance. The impact of shift work is replete with tales and factual evidence of an increased personnel error rate; disorders, both personal and family, and of course, increased accident events. In recent memory, the Three Mile Island Nuclear Plant incident, Union Carbide`s explosion in Bhopal, and the Chernobyl Nuclear Plant catastrophe all occurred during off-normal working hours. Yet management overall has done little to correct the production-driven twelve hour, seven day week shift mentality of the nineteenth century. Most schedules in use today are nothing more than cosmetic variations of the old production schedules. This could be driven by a management consideration of the worker`s response to change coupled with a reluctant buy-in of responsibility for the effects of change. Florida Power Corporation has developed for its nuclear security force, a unique work schedule which attempts to employ the sound principles of circadian rhythms coupled with a comprehensive training program to counter the problems associated with shift work. The results over the last four years have seen a marked reduction in the generic problems of personnel errors, absenteeism, unscheduled overtime and turnover rates. Utilization and understanding of this scheduling process for rotational shift work needs to be assessed to determine if the benefits are site specific or provide an expected response to the problems of shift work.

  19. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses

  20. Antiretroviral therapy: Shifting sands.

    PubMed

    Sashindran, V K; Chauhan, Rajeev

    2016-01-01

    HIV/AIDS has been an extremely difficult pandemic to control. However, with the advent of antiretroviral therapy (ART), HIV has now been transformed into a chronic illness in patients who have continued treatment access and excellent long-term adherence. Existing indications for ART initiation in asymptomatic patients were based on CD4 levels; however, recent evidence has broken the shackles of CD4 levels. Early initiation of ART in HIV patients irrespective of CD4 counts can have profound positive impact on morbidity and mortality. Early initiation of ART has been found not only beneficial for patients but also to community as it reduces the risk of transmission. There have been few financial concerns about providing ART to all HIV-positive people but various studies have proven that early initiation of ART not only proves to be cost-effective but also contributes to economic and social growth of community. A novel multidisciplinary approach with early initiation and availability of ART at its heart can turn the tide in our favor in future. Effective preexposure prophylaxis and postexposure prophylaxis can also lower transmission risk of HIV in community. New understanding of HIV pathogenesis is opening new vistas to cure and prevention. Various promising candidate vaccines and drugs are undergoing aggressive clinical trials, raising optimism for an ever-elusive cure for HIV. This review describes various facets of tectonic shift in management of HIV. PMID:26900224

  1. Portable shift register

    SciTech Connect

    Halbig, J.K.; Bourret, S.C.; Hansen, W.J.; Hicks, D.V.; Klosterbuer, S.F.; Krick, M.S.

    1994-01-01

    An electronics package for a small, battery-operated, self-contained, neutron coincidence counter based on a portable shift-register (PSR) has been developed. The counter was developed for applications not adequately addressed by commercial packages, including in-plant measurements to demonstrate compliance with regulations (domestic and international), in-plant process control, and in-field measurements (environmental monitoring or safeguards). Our package's features, which address these applications, include the following: Small size for portability and ease of installation;battery or mains operation; a built-in battery to power the unit and a typical detector such as a small sample counter, for over 6 h if power lines are bad or noisy, if there is a temporary absence of power, or if portability is desired; complete support, including bias, for standard neutron detectors; a powerful communications package to easily facilitate robust external control over a serial port; and a C-library to simplify creating external control programs in computers or other controllers. Whereas the PSR specifically addresses the applications mentioned above, it also performs all the measurements made by previous electronics packages for neutron coincidence counters developed at Los Alamos and commercialized. The PSR electronics package, exclusive of carrying handle, is 8 by 10 by 20 cm; it contains the circuit boards, battery, and bias supply and weighs less than 2 kg. This instrument package is the second in an emerging family of portable measurement instruments being developed; the first was the Miniature and Modular Multichannel Analyzer (M[sup 3]CA). The PSR makes extensive use of hardware and software developed for the M[sup 3]CA; like the M[sup 3]CA, it is intended primarily for use with an external controller interfaced over a serial channel.

  2. Shape-shifting colloids via stimulated dewetting

    NASA Astrophysics Data System (ADS)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  3. Shape-shifting colloids via stimulated dewetting.

    PubMed

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  4. Shape-shifting colloids via stimulated dewetting

    PubMed Central

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  5. Zero-shifted accelerometer outputs

    NASA Astrophysics Data System (ADS)

    Galef, Arnold

    1986-08-01

    It is claimed that the commonly appearing zero-shift in pyroshock data is usually a symptom of a malfunctioning measurement system, so that the data can not be repaired (by high-pass filtering or equivalent) unless tests can be devised that permit the demonstration that the system is operating in a linear mode in all respects other than the shift. The likely cause of the zero-shift and its prevention are discussed.

  6. Instrument Measures Shift In Focus

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J.

    1992-01-01

    Optical components tested at wavelengths from ultraviolet to infrared. Focus-shift-measuring instrument easy to use. Operated in lighted room, without having to make delicate adjustments while peering through microscope. Measures distance along which focal point of converging beam of light shifted by introduction of nominally plane parallel optical component into beam. Intended primarily for measuring focus shifts produced by windows and filters at wavelengths from 120 to 1,100 nanometers. Portable, compact, and relatively inexpensive for degree of precision.

  7. Quantized beam shifts in graphene

    SciTech Connect

    de Melo Kort-Kamp, Wilton Junior; Sinitsyn, Nikolai; Dalvit, Diego Alejandro Roberto

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  8. Part 1. Application of CVD-yttria for the protection of SCS-6 silicon carbide fibers in a reactively sintered nickel aluminide matrix composite. Part 2. CVC pyrolysis studies of various 1,3-substituted 1,3-disilacyclobutanes and application as single-source CVD precursors to silicon carbide

    SciTech Connect

    Larkin, D.J.

    1991-01-01

    A CVD process was developed for coating Textron-Avco SCS-6 SiC fiber with yttria, examining various potential Y[sub 2]O[sub 3] CVD precursors. The coated fibers were incorporated into a nickel aluminide (Ni[sub 3]Al) matrix by reactive sintering, with yttria affording protection from the known SiC + 2Ni [yields] Ni[sub 2]Si + C degradation process. The SiC/Ni[sub 3]Al composites, before and after annealing at 1000[degree]C for up to 100 h, were studied by using SEM and EMPA to determine the extent of reaction. Exception for certain portions of the fibers that were inadequately coated with yttria, complete protection of the fibers was indicated. Low-pressure chemical vapor deposition (LPCVD) of silicon carbide on Si(100) was investigated between 700 and 1100[degree]C at ca. 1.0 torr total pressure using a flow or argon as a carrier gas in a cold-wall total pressure using a flow of argon as a carrier gas in a cold-wall LPCVD system. The gaseous byproducts were determined for each compound, surface and cross sectional morphology was determined and film composition and crystallinity were monitored as a function of deposition temperature. These silicon carbide coatings exhibited preferred crystal growth in the SiC(111) which was quantified for two such coatings via a texture study.

  9. Shifts in fisheries management: adapting to regime shifts

    PubMed Central

    King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.

    2015-01-01

    For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.

  10. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    A review covers the industrial applications of the water-gas shift reaction in hydrogen manufacturing, removing CO from ammonia synthesis feeds, and detoxifying town gas; and the catalyst characteristics, reaction kinetics, and reaction mechanisms of the water-gas shift reactions catalyzed by iron-based, copper-based, or sulfided cobalt-molybdenum catalysts.

  11. The Compton Effect Red Shift

    NASA Astrophysics Data System (ADS)

    Kierein, John

    2004-05-01

    In 1923 (Phil Mag. 46, 897.) A. H. Compton noted that the Compton effect produces a red shift for all wavelengths when the scattered electron is free and not bound to an atom or molecule. He suggested that the red shift in the visible spectrum at the limb of the sun is larger than that at the center due to the Compton effect from the greater number of free electrons in the sun's atmosphere along the line of sight. Kierein and Sharp (1968, Solar Physics 3, 450) quantified this and showed a good correlation of red shift observations with the variation in the number of these electrons along the line of sight from center to limb and suggested that the quasar red shift and cosmological red shift could be similarly explained. Grote Reber mapped and measured the background hectometric radiation and found it to be unexpectedly bright. In 1968 (J. Franklin Inst. 285,1), while describing these measurements and maps he explained this brightness as being due to the Compton effect causing the cosmological red shift and accelerating intergalactic electrons. The resulting universe is static. The predicted red shift from the Compton effect deviates from Hubble's law only at large red shifts.

  12. Flexible Schedules and Shift Work.

    ERIC Educational Resources Information Center

    Beers, Thomas M.

    2000-01-01

    Flexible work hours have gained prominence, as more than 25 million workers (27.6% of all full-time workers) can now vary their schedules. However, there has been little change since the mid-1980s in the proportion who work a shift other than a regular daytime shift. (JOW)

  13. Chemical surface modification of poly-ε-caprolactone improves Schwann cell proliferation for peripheral nerve repair.

    PubMed

    de Luca, Alba C; Terenghi, Giorgio; Downes, Sandra

    2014-02-01

    Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility. PMID:22508573

  14. Dynamic phase-shifting photoelasticity.

    PubMed

    Asundi, A; Tong, L; Boay, C G

    2001-08-01

    The application of phase-shifting photoelasticity to a real-time dynamic event involves simultaneous recording of the four phase-shifted images. Here an instrument, believed to be novel, is developed and described for this purpose. Use of a Multispec Imager is introduced into digital photoelasticity for the first time to our knowledge. This device enables splitting the optical energy of an object into four identical paths, thus permitting recording of the required four phase-shifted images. Experimental demonstration is provided for validation. PMID:18360395

  15. Interpretations of cosmological spectral shifts

    NASA Astrophysics Data System (ADS)

    Østvang, Dag

    2013-03-01

    It is shown that for Robertson-Walker models with flat or closed space sections, all of the cosmological spectral shift can be attributed to the non-flat connection (and thus indirectly to space-time curvature). For Robertson-Walker models with hyperbolic space sections, it is shown that cosmological spectral shifts uniquely split up into "kinematic" and "gravitational" parts provided that distances are small. For large distances no such unique split-up exists in general. A number of common, but incorrect assertions found in the literature regarding interpretations of cosmological spectral shifts, is pointed out.

  16. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-01

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes. PMID:27074500

  17. Chemical shift imprint of intersubunit communication in a symmetric homodimer.

    PubMed

    Falk, Bradley T; Sapienza, Paul J; Lee, Andrew L

    2016-08-23

    Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein-ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer. A primary reason why study of interdomain signaling is challenging in oligomeric proteins is the difficulty in characterizing intermediate, singly bound species. Here, we use an NMR approach to isolate and characterize a singly ligated state ("lig1") of a homodimeric enzyme that is otherwise obscured by rapid exchange with apo and saturated forms. Mixed labeled dimers were prepared that simultaneously permit full population of the lig1 state and isotopic labeling of either protomer. Direct visualization of peaks from lig1 yielded site-specific ligand-state multiplets that provide a convenient format for assessing mechanisms of intersubunit communication from a variety of NMR measurements. We demonstrate this approach on thymidylate synthase from Escherichia coli, a homodimeric enzyme known to be half-the-sites reactive. Resolving the dUMP1 state shows that active site communication occurs not upon the first dUMP binding, but upon the second. Surprisingly, for many sites, dUMP1 peaks are found beyond the limits set by apo and dUMP2 peaks, indicating that binding the first dUMP pushes the enzyme ensemble to further conformational extremes than the apo or saturated forms. The approach used here should be generally applicable to homodimers. PMID:27466406

  18. 15N NMR chemical shifts in papaverine decomposition products

    NASA Astrophysics Data System (ADS)

    Czyrski, Andrzej; Girreser, Ulrich; Hermann, Tadeusz

    2013-03-01

    Papaverine can be easily oxidized to papaverinol, papaveraldine and 2,3,9,10-tetramethoxy-12-oxo-12H-indolo[2,1-a]isoquinolinium chloride. On addition of alkali solution the latter compound forms 2-(2-carboxy-4,5-dimethoxyphenyl)-6,7-dimethoxyisoquinolinium inner salt. Together with these structures the interesting 13-(3,4-dimethoxyphenyl)-2,3,8,9-tetramethoxy-6a-12a-diazadibenzo[a,g]fluorenylium chloride is discussed, which is formed in the Gadamer-Schulemann reaction of papaverine as a side product. This letter reports the 15N NMR spectra of the above mentioned compounds.

  19. Refining the shifted topological vertex

    SciTech Connect

    Drissi, L. B.; Jehjouh, H.; Saidi, E. H.

    2009-01-15

    We study aspects of the refining and shifting properties of the 3d MacMahon function C{sub 3}(q) used in topological string theory and BKP hierarchy. We derive the explicit expressions of the shifted topological vertex S{sub {lambda}}{sub {mu}}{sub {nu}}(q) and its refined version T{sub {lambda}}{sub {mu}}{sub {nu}}(q,t). These vertices complete results in literature.

  20. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.