Science.gov

Sample records for chemical shifts scs

  1. Chemical shift driven geometry optimization.

    PubMed

    Witter, Raiker; Priess, Wolfram; Sternberg, Ulrich

    2002-01-30

    A new method for refinement of 3D molecular structures by geometry optimization is presented. Prerequisites are a force field and a very fast procedure for the calculation of chemical shifts in every step of optimization. To the energy, provided by the force field (COSMOS force field), a pseudoenergy, depending on the difference between experimental and calculated chemical shifts, is added. In addition to the energy gradients, pseudoforces are computed. This requires the derivatives of the chemical shifts with respect to the coordinates. The pseudoforces are analytically derived from the integral expressions of the bond polarization theory. Single chemical shift values attributed to corresponding atoms are considered for structural correction. As a first example, this method is applied for proton position refinement of the D-mannitol X-ray structure. A crystal structure refinement with 13C chemical shift pseudoforces is carried out. PMID:11924742

  2. Chemical Vapor Deposited SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.

  3. A Short History of Three Chemical Shifts

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  4. NMR crystallography: the use of chemical shifts

    NASA Astrophysics Data System (ADS)

    Harris, Robin K.

    2004-10-01

    Measurements of chemical shifts obtained from magic-angle spinning NMR spectra (together with quantum mechanical computations of shielding) can provide valuable information on crystallography. Examples are given of the determination of crystallographic asymmetric units, of molecular symmetry in the solid-state environment, and of crystallographic space group assignment. Measurements of full tensor components for 199Hg have given additional coordination information. The nature of intermolecular hydrogen bonding in cortisone acetate polymorphs and solvates is obtained from chemical shift information, also involving measurement of the full tensor parameters. The resulting data have been used as restraints, built into the computation algorithm, in the analysis of powder diffraction patterns to give full crystal structures. A combination of quantum mechanical computation of shielding and measurement of proton chemical shifts (obtained by high-speed MAS) leads to the determination of the position of a proton in an intermolecular hydrogen bond. A recently-developed computer program specifically based on crystallographic repetition has been shown to give acceptable results. Moreover, NMR chemical shifts can distinguish between static and dynamic disorder in crystalline materials and can be used to determine modes and rates of molecular exchange motion.

  5. Accessible surface area from NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule's ASA requires three-dimensional coordinate data and the use of a "rolling ball" algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called "ShiftASA" that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation. PMID:26078090

  6. Calculation of Chemical Shift Anisotropy in Proteins

    PubMed Central

    Tang, Sishi; Case, David A.

    2011-01-01

    Individual peptide groups in proteins must exhibit some variation in the chemical shift anisotropy (CSA) of their constituent atoms, but not much is known about the extent or origins of this dispersion. Direct spectroscopic measurement of CSA remains technically challenging, and theoretical methods can help to overcome these limitations by estimating shielding tensors for arbitrary structures. Here we use an automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach to compute 15N, 13C′ and 1H chemical shift tensors for human ubiquitin and the GB1 and GB3 fragments of staphylococcal protein G. The average and range of variation of the anisotropies is in good agreement with experimental estimates from solid-state NMR, and the variation among residues is somewhat smaller than that estimated from solution-state measurements. Hydrogen-bond effects account for much of the variation, both between helix and sheet regions, and within elements of secondary structure, but other effects (including variations in torsion angles) may play a role as well. PMID:21866436

  7. Protein conformation and proton nuclear-magnetic-resonance chemical shifts.

    PubMed

    Pardi, A; Wagner, G; Wüthrich, K

    1983-12-15

    The nuclear magnetic resonance (NMR) chemical shifts of the polypeptide backbone protons in basic pancreatic trypsin inhibitor from bovine organs and the inhibitors E and K from the venom of Dendroaspis polylepis polylepis have been analyzed. Using the corresponding shifts in model peptides, the chemical shifts observed in the proteins were decomposed into random-coil shifts and conformation-dependent shifts. Correlations between contributions to the latter term and the polypeptide conformation were investigated by using the crystal structure of the bovine inhibitor. In addition to the well-known ring-current effects, a correlation was found between chemical shifts of amide and C alpha protons and the length of the hydrogen bonds formed by these protons with nearby oxygen atoms as acceptor groups. There remain sizeable and as yet unexplained residual conformation shifts. Overall, the present treatment provides a satisfactory qualitative explanation for the outstandingly large shifts of backbone hydrogen atoms in these diamagnetic proteins. PMID:6198174

  8. Comment on the reference compound for chemical shift and Knight shift determination of (209)Bi nuclei.

    PubMed

    Nowak, Bogdan

    2015-01-01

    Several groups exploring the (209)Bi NMR in solids, including usual insulators, metallic and magnetic materials and recently diamagnetic topological materials, use different standards (usually old and invalid) for chemical shift (Knight shift) determination, ignoring IUPAC recommendations. As a consequence the published shift values exhibit considerable differences (up to 17,500 ppm). PMID:25534279

  9. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  10. Relative Configuration of Natural Products Using NMR Chemical Shifts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...

  11. An isotropic chemical shift-chemical shift anisotropic correlation experiment using discrete magic angle turning.

    PubMed

    Hu, Jian Zhi; Sears, Jesse A; Kwak, Ja Hun; Hoyt, David W; Wang, Yong; Peden, Charles H F

    2009-05-01

    An isotropic-anisotropic shift 2D correlation spectroscopy is introduced that combines the advantages of both magic angle turning (MAT) and magic angle hopping (MAH) technologies. In this new approach, denoted DMAT for "discrete magic angle turning", the sample rotates clockwise followed by an anticlockwise rotation of exactly the same amount with each rotation less or equal than 360 degrees but greater than 240 degrees , with the rotation speed being constant only for times related to the evolution dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. For any spin-interaction of rank-2 such as chemical shift anisotropy, isotropic magnetic susceptibility interaction, and residual homo-nuclear dipolar interaction in biological fluid samples, the projection along the isotropic dimension is a high resolution spectrum. Since a less than 360 degrees sample rotation is involved, the design potentially allows for in situ control over physical parameters such as pressure, flow conditions, feed compositions, and temperature so that true in situ NMR investigations can be carried out. PMID:19246221

  12. Probabilistic validation of protein NMR chemical shift assignments.

    PubMed

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M; Cornilescu, Gabriel; Ulrich, Eldon L; Markley, John L

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data . ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/. PMID:26724815

  13. Theoretical and experimental NMR chemical shifts of norsanguinarine and norchelerythrine

    NASA Astrophysics Data System (ADS)

    Toušek, Jaromír.; Dostál, Jiří; Marek, Radek

    2004-02-01

    Norchelerythrine and norsanguinarine, tertiary benzo[ c]phenanthridine alkaloids, were examined by gradient-selected 2D NMR spectroscopy and the later also by extensive theoretical calculations. 1H, 13C and 15N chemical shifts assignments of the title isoquinoline alkaloids based on NOE and multiple-bond chemical-shift correlation experiments (GSQMBC) are reported. Various methods were used for the NMR chemical shifts calculations. Molecular mechanics (MM3 forcefield), AM1 method and Ab initio methods were used for optimizing the geometry. Chemical shielding constants were computed by density functional theory, GIAO and IGLO approaches were used. Chemical shifts calculated by all methods display good qualitative agreement with experimentally determined values. The best overall agreement was achieved when geometry was optimized by RHF/6-31G** method and chemical shielding constants were calculated by B3LYP/6-311G** method, GIAO approach.

  14. Prediction of Bioactive Compounds Using Computed NMR Chemical Shifts.

    PubMed

    Karthikeyan, Muthukumarasamy; Rajamohanan, Pattuparambil Ramanpillai; Vyas, Renu

    2015-01-01

    NMR based chemical shifts are an important diagnostic parameter for structure elucidation as they capture rich information related to conformational, electronic and stereochemical arrangement of functional groups in a molecule which is responsible for its activity towards any biological target. The present work discusses the importance of computing NMR chemical shifts from molecular structures. The NMR chemical shift data (experimental or computed) was used to generate fingerprints in binary formats for mapping molecular fragments (as descriptors) and correlating with the bioactivity classes. For this study, chemical shift data derived binary fingerprints were computed for 149 classes and 4800 bioactive molecules. The sensitivity and selectivity of fingerprints in discriminating molecules belonging to different therapeutic categories was assessed using a LibSVM based classifier. An accuracy of 82% for proton and 94% for carbon NMR fingerprints were obtained for anti-psoriatic and anti-psychotic molecules demonstrating the effectiveness of this approach for virtual screening. PMID:26138568

  15. Project SCS (Special Communication Services).

    ERIC Educational Resources Information Center

    Curtis, John A.

    This extensive report describes and provides documentation on Special Communications Services for the Sensory Impaired (SCS), a Virginia-based telecommunications delivery system developed by the Center for Excellence, Inc. (CenTex), to provide information and entertainment broadcasting services to the visually handicapped, the hearing impaired,…

  16. 93Nb NMR chemical shift scale for niobia systems.

    PubMed

    Lapina, Olga B; Khabibulin, Dzhalil F; Romanenko, Konstantin V; Gan, Zhehong; Zuev, Mikhail G; Krasil'nikov, Vladimir N; Fedorov, Vladimir E

    2005-09-01

    93Nb solid-state NMR spectra of a series of inorganic niobates with Nb in different oxygen coordination environments were measured. For all studied compounds the chemical shielding and quadrupole tensor parameters were determined using conventional and ultrahigh field NMR facilities, ultrahigh speed MAS, DQ STMAS, solid-echo and computer modeling. It has been demonstrated that the 93Nb isotropic chemical shift is sensitive to the coordination number of Nb sites. For the first time the 93Nb NMR chemical shift scale for NbOx polyhedra in solid materials has been proposed: for four-coordinated Nb sites, the isotropic shifts occur from -650 to -950 ppm; five-coordinated Nb sites have the isotropic shifts in the range of -900 to -980 ppm; for six-coordinated Nb sites the isotropic shifts vary from -900 to -1360 ppm; the shifts from -1200 to -1600 ppm are typical for seven-coordinated Nb sites; for eight-coordinated Nb sites the shifts are higher than -1400 ppm. The possible correlation between the value of the isotropic chemical shift and the ionic character of the NbOx-MOy polyhedra association has been suggested. The magnitude of the 93Nb quadrupole coupling constant depends on the local symmetry of Nb sites and may vary from hundreds of kHz to hundreds of MHz. PMID:16216475

  17. Chemical shift guided homology modeling of larger proteins

    PubMed Central

    Shen, Yang; Bax, Ad

    2015-01-01

    We describe an alternate approach to protein structure determination that relies on experimental NMR chemical shifts, plus sparse NOEs if available. The newly introduced alignment method, POMONA, directly exploits the powerful bioinformatics algorithms previously developed for sequence-based homology modeling, but does not require significant sequence similarity. Protein templates, generated by POMONA, are subsequently used as input for chemical shift based Rosetta comparative modeling (CS-RosettaCM) to generate reliable full atom models. PMID:26053889

  18. Chemical shift of hyperpolarized 129Xe dissolved in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Patton, B.; Kuzma, N. N.; Happer, W.

    2002-01-01

    We report NMR measurements of hyperpolarized xenon dissolved in liquid nitrogen. The dependence of the 129Xe frequency shift on liquid nitrogen temperature was measured along the nitrogen saturated vapor curve from 77 to 93 K. Plotted as a function of the liquid nitrogen density, the chemical shift of xenon is very well described by a simple proportionality relation, with a slope of 0.2135(15) ppm/amagat. The relationship between the chemical shift and the longitudinal spin relaxation is considered in terms of the spin-rotation interaction, and estimates of Xe relaxation time in liquid nitrogen are discussed.

  19. Counterion influence on chemical shifts in strychnine salts.

    PubMed

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. PMID:23495106

  20. Counterion influence on chemical shifts in strychnine salts

    SciTech Connect

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  1. Bayesian inference of protein structure from chemical shift data

    PubMed Central

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  2. Interpretation of chemical shifts and coupling constants in macromolecules.

    PubMed

    Case, D A

    2000-04-01

    Recent developments in NMR spectroscopy, along with advances in computational techniques, have produced new approaches to the interpretation of chemical shifts and spin-spin coupling constants in biomolecules. Quantum chemical studies of useful accuracy are now becoming more routine and are increasingly being used in conjunction with experimental studies to map out expected structural patterns for peptides and oligonucleotides. Topics of recent special interest include spin couplings across hydrogen bonds and patterns of chemical shift anisotropies, in both diamagnetic and paramagnetic proteins. PMID:10753812

  3. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported. PMID:24746715

  4. Determination of Relative Configuration from Residual Chemical Shift Anisotropy.

    PubMed

    Nath, Nilamoni; Schmidt, Manuel; Gil, Roberto R; Williamson, R Thomas; Martin, Gary E; Navarro-Vázquez, Armando; Griesinger, Christian; Liu, Yizhou

    2016-08-01

    Determination of relative configuration is frequently a rate-limiting step in the characterization of small organic molecules. Solution NMR-based nuclear Overhauser effect and scalar J-coupling constants can provide useful spatial information but often fail when stereocenters are separated by more than 4-5 Å. Residual dipolar couplings (RDCs) can provide a means of assigning relative configuration without limits of distance between stereocenters. However, sensitivity limits their application. Chemical shift is the most readily measured NMR parameter, and partial molecular alignment can reveal the anisotropic component of the chemical shift tensor, manifested as residual chemical shift anisotropy (RCSA). Hence, (13)C RCSAs provide information on the relative orientations of specific structural moieties including nonprotonated carbons and can be used for stereochemical assignment. Herein, we present two robust and sensitive methods to accurately measure and apply (13)C RCSAs for stereochemical assignment. The complementary techniques are demonstrated with five molecules representing differing structural classes. PMID:27294984

  5. Protein Structure Refinement Using 13Cα Chemical Shift Tensors

    PubMed Central

    Wylie, Benjamin J.; Schwieters, Charles D.; Oldfield, Eric; Rienstra, Chad M.

    2009-01-01

    We have obtained the 13Cα chemical shift tensors for each amino acid in the protein GB1. We then developed a CST force field and incorporated this into the Xplor-NIH structure determination program. GB1 structures obtained by using CST restraints had improved precision over those obtained in the absence of CST restraints, and were also more accurate. When combined with isotropic chemical shifts, distance and vector angle restraints, the root-mean squared error with respect to existing x-ray structures was better than ~1.0 Å. These results are of broad general interest since they show that chemical shift tensors can be used in protein structure refinement, improving both structural accuracy and precision, opening up the way to accurate de novo structure determination. PMID:19123862

  6. Molecular dynamics averaging of Xe chemical shifts in liquids

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Sears, Devin N.; Murad, Sohail

    2004-11-01

    The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.

  7. NMR chemical shifts in periodic systems from first principles

    NASA Astrophysics Data System (ADS)

    Sebastiani, Daniel; Goward, Gillian; Schnell, Ingo; Parrinello, Michele

    2002-08-01

    A recently developed ab-initio method for the calculation of NMR chemical shifts and magnetic susceptibilities in systems under periodic boundary conditions is presented and applied to a hydrogen-bonded molecular crystal. The calculations can unambiguously assign the chemical shifts to individual atoms in experimental spectra, and can further serve for the validation of simulated atomic trajectories and geometries. Apart from the example presented, the method can be applied to crystalline and amorphous insulators, as well as to isolated molecules using a supercell technique. The results are in good agreement with experiment.

  8. SHIFTX2: significantly improved protein chemical shift prediction.

    PubMed

    Han, Beomsoo; Liu, Yifeng; Ginzinger, Simon W; Wishart, David S

    2011-05-01

    A new computer program, called SHIFTX2, is described which is capable of rapidly and accurately calculating diamagnetic (1)H, (13)C and (15)N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain chemical shifts (up to 6×) than many other shift predictors. In particular, SHIFTX2 is able to attain correlation coefficients between experimentally observed and predicted backbone chemical shifts of 0.9800 ((15)N), 0.9959 ((13)Cα), 0.9992 ((13)Cβ), 0.9676 ((13)C'), 0.9714 ((1)HN), 0.9744 ((1)Hα) and RMS errors of 1.1169, 0.4412, 0.5163, 0.5330, 0.1711, and 0.1231 ppm, respectively. The correlation between SHIFTX2's predicted and observed side chain chemical shifts is 0.9787 ((13)C) and 0.9482 ((1)H) with RMS errors of 0.9754 and 0.1723 ppm, respectively. SHIFTX2 is able to achieve such a high level of accuracy by using a large, high quality database of training proteins (>190), by utilizing advanced machine learning techniques, by incorporating many more features (χ(2) and χ(3) angles, solvent accessibility, H-bond geometry, pH, temperature), and by combining sequence-based with structure-based chemical shift prediction techniques. With this substantial improvement in accuracy we believe that SHIFTX2 will open the door to many long-anticipated applications of chemical shift prediction to protein structure determination, refinement and validation. SHIFTX2 is available both as a standalone program and as a web server ( http://www.shiftx2.ca ). PMID:21448735

  9. Calculations of NMR chemical shifts with APW-based methods

    NASA Astrophysics Data System (ADS)

    Laskowski, Robert; Blaha, Peter

    2012-01-01

    We present a full potential, all electron augmented plane wave (APW) implementation of first-principles calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach [Pickard and Mauri, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.63.245101 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids and molecules with available published data.

  10. Ab initio theory of NMR chemical shifts in solids

    SciTech Connect

    Louie, S.G. |

    1997-12-31

    A new formalism for ab initio calculation of the orbital magnetic susceptibility and the NMR chemical shifts in solids and liquids is presented. The approach can be applied to periodic systems such as crystals, surfaces or polymers, and with a supercell technique, to nonperiodic systems such as amorphous materials, liquids, or solids with defects. The formalism is based on the density functional theory in the local density approximation and makes use of a generalized f-sum rule to eliminate the divergent terms that plagued previous theories. Calculations have been successfully carried out for the diamagnetic susceptibility of a number of insulators and for the NMR chemical shifts of a variety of systems including free molecules, ionic crystals, hydrogen-bonded materials and amorphous carbon.

  11. Chemical Shift Induced Phase Errors in Phase Contrast MRI

    PubMed Central

    Middione, Matthew J.; Ennis, Daniel B.

    2012-01-01

    Phase contrast magnetic resonance imaging (PC-MRI) is subject to numerous sources of error, which decrease clinical confidence in the reported measures. This work outlines how stationary perivascular fat can impart a significant chemical shift induced PC-MRI measurement error using computational simulations, in vitro, and in vivo experiments. This chemical shift error does not subtract in phase difference processing, but can be minimized with proper parameter selection. The chemical shift induced phase errors largely depend on both the receiver bandwidth (BW) and the TE. Both theory and an in vivo comparison of the maximum difference in net forward flow between vessels with and without perivascular fat indicated that the effects of chemically shifted perivascular fat are minimized by the use of high BW (814 Hz/px) and an in-phase TE (HBW-TEIN). In healthy volunteers (N=10) HBW-TEIN significantly improves intrapatient net forward flow agreement compared to low BW (401 Hz/px) and a mid-phase TE as indicated by significantly decreased measurement biases and limits of agreement for the ascending aorta (1.8±0.5 mL vs. 6.4±2.8 mL, P=0.01), main pulmonary artery (2.0±0.9 mL vs. 11.9±5.8 mL, P=0.04), the left pulmonary artery (1.3±0.9 mL vs. 5.4±2.5 mL, P=0.003), and all vessels (1.7±0.8 mL vs. 7.2±4.4 mL, P=0.001). PMID:22488490

  12. Chemical-shift MRI of exogenous lipoid pneumonia

    SciTech Connect

    Cox, J.E.; Choplin, R.H.; Chiles, C.

    1996-05-01

    Exogenous lipoid pneumonia results from the aspiration or inhalation of fatty substances, such as mineral oil found in laxatives or nasal medications containing liquid paraffin. We present standard and lipid-sensitive (chemical-shift) MR findings in a patient with histologically confirmed lipoid pneumonia. The loss of signal intensity in an area of airspace disease on opposed-phase imaging was considered specific for the presence of lipid. 14 refs., 3 figs.

  13. Chemical shift referencing in MAS solid state NMR

    NASA Astrophysics Data System (ADS)

    Morcombe, Corey R.; Zilm, Kurt W.

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than ±0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.

  14. Chemical shift referencing in MAS solid state NMR.

    PubMed

    Morcombe, Corey R; Zilm, Kurt W

    2003-06-01

    Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported. PMID:12810033

  15. Chemical shifts of small heterogeneous Ar/Xe clusters

    SciTech Connect

    Lindblad, A.; Rander, T.; Bradeanu, I.; Oehrwall, G.; Bjoerneholm, O.; Mucke, M.; Ulrich, V.; Lischke, T.; Hergenhahn, U.

    2011-03-15

    Heterogeneous rare-gas clusters produced by a coexpansion of an argon/xenon mixture have been studied using synchrotron-radiation-based photoelectron spectroscopy. Both valence and Xe 4d{sub 5/2} core-level photoelectron spectra were recorded for three different concentrations of the primary argon/xenon mixture and, for those mixtures, spectra were recorded at several different stagnation conditions. The studied size regime of the mixed clusters ranges from large, similar to those studied in an earlier paper [Phys. Rev. A 69, 031210(R) (2004)], to very small--as reflected in the cluster line shapes and chemical shifts. The chemical shifts obtained from a curve fitting procedure similar to that used in our earlier paper are discussed in terms of the mixed cluster structure which can be expected from equilibrium considerations and the Lennard-Jones parameters of the constituent atoms. Molecular dynamics simulations of the vertical polarization shifts allow more specific assignments of ''on-top'' sites and interfacial sites.

  16. Errors of fourier chemical-shift imaging and their corrections

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyue; Bolinger, Lizann; Subramanian, V. Harihara; Leigh, John S.

    From a finite and discrete Fourier transform point of view, we discuss the sources of localization errors in Fourier chemical-shift imaging, and demonstrate them explicitly by computer simulations for simple cases. Errors arise from intravoxel dephasing and the intravoxel asymmetry. The spectral leakage due to intravoxel dephasing is roughly 6-8% from one voxel to one of its nearest neighbors. Neighbors further away are influenced less significantly. The loss of localization due to intravoxel asymmetry effect is also severe. Fortunately, these errors can be corrected under certain conditions. The method for correcting the errors by postprocessing the data is described.

  17. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    SciTech Connect

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  18. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    PubMed

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  19. Protein Dielectric Constants Determined from NMR Chemical Shift Perturbations

    PubMed Central

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P.; E., Bertrand García-Moreno; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2015-01-01

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatics calculations are essential for this purpose, but their use have been limited by a long-standing discussion on which value to use for the dielectric constants (εeff and εp) required in Coulombic models and Poisson-Boltzmann models. The currently used values for εeff and εp are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for εeff and εp by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in fourteen proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (εeff) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (εp) rangedsfrom 2-5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders, and how different it is from the εp of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of εp = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pKa values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable εp common to most folded proteins. PMID:24124752

  20. Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation

    PubMed Central

    Vila, Jorge A.; Aramini, James M.; Rossi, Paolo; Kuzin, Alexandre; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Tong, Liang; Montelione, Gaetano T.; Scheraga, Harold A.

    2008-01-01

    A recently determined set of 20 NMR-derived conformations of a 48-residue all-α-helical protein, (PDB ID code 2JVD), is validated here by comparing the observed 13Cα chemical shifts with those computed at the density functional level of theory. In addition, a recently introduced physics-based method, aimed at determining protein structures by using NOE-derived distance constraints together with observed and computed 13Cα chemical shifts, was applied to determine a new set of 10 conformations, (Set-bt), as a blind test for the same protein. A cross-validation of these two sets of conformations in terms of the agreement between computed and observed 13Cα chemical shifts, several stereochemical quality factors, and some NMR quality assessment scores reveals the good quality of both sets of structures. We also carried out an analysis of the agreement between the observed and computed 13Cα chemical shifts for a slightly longer construct of the protein solved by x-ray crystallography at 2.0-Å resolution (PDB ID code 3BHP) with an identical amino acid residue sequence to the 2JVD structure for the first 46 residues. Our results reveal that both of the NMR-derived sets, namely 2JVD and Set-bt, are somewhat better representations of the observed 13Cα chemical shifts in solution than the 3BHP crystal structure. In addition, the 13Cα-based validation analysis appears to be more sensitive to subtle structural differences across the three sets of structures than any other NMR quality-assessment scores used here, and, although it is computationally intensive, this analysis has potential value as a standard procedure to determine, refine, and validate protein structures. PMID:18787110

  1. A Simple and Fast Approach for Predicting 1H and 13C Chemical Shifts: Toward Chemical Shift-Guided Simulations of RNA

    PubMed Central

    2014-01-01

    We introduce a simple and fast approach for predicting RNA chemical shifts from interatomic distances that performs with an accuracy similar to existing predictors and enables the first chemical shift-restrained simulations of RNA to be carried out. Our analysis demonstrates that the applied restraints can effectively guide conformational sampling toward regions of space that are more consistent with chemical shifts than the initial coordinates used for the simulations. As such, our approach should be widely applicable in mapping the conformational landscape of RNAs via chemical shift-guided molecular dynamics simulations. The simplicity and demonstrated sensitivity to three-dimensional structure should also allow our method to be used in chemical shift-based RNA structure prediction, validation, and refinement. PMID:25255209

  2. Automated determination of chemical functionalisation addition routes based on magnetic susceptibility and nucleus independent chemical shifts

    NASA Astrophysics Data System (ADS)

    Van Lier, G.; Ewels, C. P.; Geerlings, P.

    2008-07-01

    We present a modified version of our previously reported meta-code SACHA, for systematic analysis of chemical addition. The code automates the generation of structures, running of quantum chemical codes, and selection of preferential isomers based on chosen selection rules. While the selection rules for the previous version were based on the total system energy, predicting purely thermodynamic addition patterns, we examine here the possibility of using other system parameters, notably magnetic susceptibility as a descriptor of global aromaticity, and nucleus independent chemical shifts (NICS) as local aromaticity descriptor.

  3. Pitfalls of adrenal imaging with chemical shift MRI.

    PubMed

    Schieda, N; Al Dandan, O; Kielar, A Z; Flood, T A; McInnes, M D F; Siegelman, E S

    2014-11-01

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors. PMID:25062926

  4. Applications of Chemical Shift Imaging to Marine Sciences

    PubMed Central

    Lee, Haakil; Tikunov, Andrey; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The successful applications of magnetic resonance imaging (MRI) in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT) or positron emission (PET) scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS). MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H) including carbon (13C) or phosphorus (31P). In vivo MR spectra can be obtained from single region of interest (ROI or voxel) or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI). Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism. PMID:20948912

  5. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets.

    PubMed

    Aeschbacher, Thomas; Schubert, Mario; Allain, Frédéric H-T

    2012-02-01

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of (13)C NMR data of RNAs. Our procedure uses five (13)C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the (13)C calibration and detect errors or inconsistencies in RNA (13)C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-(13)C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable (13)C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of (13)C chemical shift data. This is demonstrated by a clear relationship between ribose (13)C shifts and the sugar pucker, which can be used to predict a C2'- or C3'-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA. PMID:22252483

  6. Scanning acoustic microscopy of SCS-6 silicon carbide fiber

    SciTech Connect

    Sathish, S.; Cantrell, J.H.; Yost, W.T.

    1996-01-01

    Scanning acoustic microscopy of SCS-6 silicon carbide fiber reveals large radial variations in acoustic reflectivity associated with the chemical composition and microstructure of a given fiber region. Rayleigh wave fringe patterns observed in each of five subregions are used to calculate the average Young modulus of that subregion. The Young modulus is found to increase monotonically from 40 GPa in the carbon core to a value of 413 GPa in the stoichiometric SiC region. The effective Young modulus of the fiber as a whole is estimated from the moduli of the individual regions and it is compared with mechanical measurements reported in the literature.

  7. Microchemical analysis of the SCS-6 silicon carbide fiber

    SciTech Connect

    Ning, Xian Jie; Pirouz, P. . Dept. of Materials Science and Engineering); Farmer, S.C. )

    1993-08-01

    A detailed quantitative study of the microstructural variation of chemical composition of chemically vapor-deposited commercial SiC SCS-6 fiber is presented. Chemical etching and various electron-optical techniques including scanning electron microscopy, transmission electron microscopy scanning Auger microscopy, Auger electron spectroscopy, and parallel electron energy loss spectroscopy are used to analyze the chemical composition of the as-received fiber. In addition, some results on stereology of the high-temperature annealed fiber are presented. The results show that the carbon-to-silicon atom ratio in the SiC layers decreases in a stepwise fashion from [approximately] 3:2 to [approximately] 1:1 in going from the innermost layer to the outermost layer.

  8. Microchemical analysis of the SCS-6 silicon carbide fiber

    NASA Technical Reports Server (NTRS)

    Ning, Xian-Jie; Pirouz, Pirouz; Farmer, Serene C.

    1993-01-01

    A detailed quantitative study of the microstructural variation of chemical composition of chemically vapor-deposited commercial SiC SCS-6 fiber is presented. Chemical etching and various electron-optical techniques including SEM, TEM, scanning Auger microscopy, AES, and parallel electron energy loss spectroscopy are used to analyze the chemical composition of the as-received fiber. In addition, some results on stereology of the high-temperature annealed fiber are presented. The results show that the carbon-to-silicon atom ratio in the SiC layers decreases in a stepwise fashion from about 3:2 to about 1:1 in going from the innermost layer to the outermost layer.

  9. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  10. The nature and origin of chemical shift for intracellular water nuclei in artemia cysts.

    PubMed

    Kasturi, S R; Hazlewood, C F; Yamanashi, W S; Dennis, L W

    1987-08-01

    We investigated the possible existence of chemical shift of water nuclei in Artemia cysts using high resolution nuclear magnetic resonance (NMR) methods. The results conducted at 60, 200, and 500 MHz revealed an unusually large chemical shift for intracellular water protons. After correcting for bulk susceptibility effects, a residual downfield chemical shift of 0.11 ppm was observed in fully hydrated cysts. Similar results have been observed for the deuterium and (17)O nuclei.We have ruled out unusual intracellular pH, diamagnetic susceptibility of intracellular water, or interaction of water molecules with lipids, glycerol, and/or trehalose as possible origins of the residual chemical shift. We conclude that the residual chemical shift observed for water nuclei ((1)H, (2)H, and (17)O) is due to significant water-macromolecular interactions. PMID:19431702

  11. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  12. Relativistically corrected nuclear magnetic resonance chemical shifts calculated with the normalized elimination of the small component using an effective potential-NMR chemical shifts of molybdenum and tungsten

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-07-01

    A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.

  13. Quantum-chemical analyses of aromaticity, UV spectra, and NMR chemical shifts in plumbacyclopentadienylidenes stabilized by Lewis bases.

    PubMed

    Kawamura, Toshiaki; Abe, Minori; Saito, Masaichi; Hada, Masahiko

    2014-04-30

    We carried out a series of zeroth-order regular approximation (ZORA)-density functional theory (DFT) and ZORA-time-dependent (TD)-DFT calculations for molecular geometries, NMR chemical shifts, nucleus-independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2 ((t) BuMe2 Si)2 C4 PbL1 L2 (L1, L2 = tetrahydrofuran, Pyridine, N-heterocyclic carbene), and their model molecules. We mainly discussed the Lewis-base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n-Huckel rule is applied to the fractional π-electron number. The calculated (13)C- and (207)Pb-NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the (13)C-NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the (207)Pb-NMR chemical shifts and J[Pb-C] but also in the (13)C-NMR chemical shifts of carbons adjacent to the lead atom. PMID:24643814

  14. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of (129) Xe.

    PubMed

    Jeong, Keunhong; Slack, Clancy C; Vassiliou, Christophoros C; Dao, Phuong; Gomes, Muller D; Kennedy, Daniel J; Truxal, Ashley E; Sperling, Lindsay J; Francis, Matthew B; Wemmer, David E; Pines, Alexander

    2015-12-01

    Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca(2+) , Cu(2+) , Ce(3+) , Zn(2+) , Cd(2+) , Ni(2+) , Co(2+) , Cr(2+) , Fe(3+) , and Hg(2+) are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of (129) Xe. These sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs. PMID:26376768

  15. Chemical shifts and coupling constants of C8H10N4O2

    NASA Astrophysics Data System (ADS)

    Jain, M.

    This document is part of Subvolume D3 `Chemical Shifts and Coupling Constants for Carbon-13: Heterocycles' of Volume 35 `Nuclear Magnetic Resonance (NMR) Data' of Landolt-Börnstein Group III `Condensed Matter'

  16. Generation of heteronuclear 13C 1H chemical-shift correlations using soft pulses

    NASA Astrophysics Data System (ADS)

    Doddrell, David M.; Brooks, William; Field, James; Lynden-Bell, R. M.

    Two multipulse sequences are analyzed which can be used to generate heteronuclear 13C, 1H chemical-shift correlations without 2D NMR techniques. Both sequences utilize polarization-transfer techniques and generate the required chemical-shift correlation using a single soft proton pulse. The most useful technique is an extension of the DEPT method of polarization transfer since not only are the chemical-shift correlations generated in an easy to interpret form, but depending on the specific form of the pulse train used, the method can be employed to obtain information on the CH n group multiplicity. The methods are illustrated by applying them to generate 13C, 1H chemical-shift correlation spectra for menthol and cholesterol.

  17. An Improved Experiment to Illustrate the Effect of Electronegativity on Chemical Shift.

    ERIC Educational Resources Information Center

    Boggess, Robert K.

    1988-01-01

    Describes a method for using nuclear magnetic resonance to observe the effect of electronegativity on the chemical shift of protons in similar compounds. Suggests the use of 1,3-dihalopropanes as samples. Includes sample questions. (MVL)

  18. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    PubMed

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  19. An efficient amplification pulse sequence for measuring chemical shift anisotropy under fast magic-angle spinning.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2011-12-01

    A two-dimensional experiment for measuring chemical shift anisotropy (CSA) under fast magic-angle spinning (MAS) is presented. The chemical shift anisotropy evolution is amplified by a sequence of π-pulses that repetitively interrupt MAS averaging. The amplification generates spinning sideband manifolds in the indirect dimension separated by the isotropic shift along the direct dimension. The basic unit of the pulse sequence is designed based on the magic-angle turning experiment and can be concatenated for larger amplification factors. PMID:21962909

  20. Magnetic couplings in the chemical shift of paramagnetic NMR.

    PubMed

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case. PMID:26574272

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  2. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

    PubMed Central

    Nielsen, Jakob T.; Eghbalnia, Hamid R.; Nielsen, Niels Chr.

    2011-01-01

    The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structure-chemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field. PMID:22293396

  3. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  4. Solvation chemical shifts of perylenic antenna molecules from molecular dynamics simulations.

    PubMed

    Özcan, Nergiz; Mareš, Jiří; Sundholm, Dage; Vaara, Juha

    2014-10-28

    Solvation-induced shifts in molecular properties can be realistically simulated by employing a dynamic model with explicit solvent molecules. In this work, (13)C NMR chemical shifts of various candidate antenna molecules for dye-sensitised solar cells have been studied by using density-functional theory calculations both in vacuo and by employing a dynamic solvation model. The solvent effects were investigated using instantaneous molecular dynamics snapshots containing the antenna molecule and surrounding acetonitrile solvent molecules. Such calculations take into account the main mechanisms of solvation-induced chemical shifts. We have analysed the contributions to the solvent shift due to the solvent susceptibility anisotropy, changes in the density of the virtual orbital space and the accessibility of the excited states to the pronouncedly local magnetic hyperfine operator. We present Lorentzian-broadened chemical shift stick spectra in which a comparison of the in vacuo and dynamic-solvation model results is graphically illustrated. The results show that the solvent-accessible atoms at the perimeter of the solute are influenced by the virtual states of the solvent molecules, which are visible to the hyperfine operators of the perimeter nuclei. This enables efficient coupling of the ground state of the solute to the magnetically allowed excited states, resulting in a positive chemical shift contribution of the perimeter nuclei. As a result of solvation, the chemical shift signals of perimeter nuclei are found to be displaced towards larger chemical shift values, whereas the nuclei of the inner region of the solute molecules show the opposite trend. The solvent susceptibility anisotropy is found to cause a small and practically constant contribution. PMID:25222796

  5. Method for evaluating chemical shifts of x-ray emission lines in molecules and solids

    NASA Astrophysics Data System (ADS)

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-12-01

    A method of evaluating chemical shifts of x-ray emission lines for period four and heavier elements is developed. This method is based on the relativistic pseudopotential model and one-center restoration approach [Int. J. Quantum Chem.IJQCB20020-760810.1002/qua.20418 104, 223 (2005)] to recover a proper electronic structure in heavy-atom cores after the pseudopotential simulation of chemical compounds. The approximations of instantaneous transition and frozen core are presently applied to derive an expression for chemical shift as a difference between mean values of certain effective operator. The method allows one to avoid evaluation of small quantities (chemical shifts ˜0.01-1 eV) as differences of very large values (transition energies ˜1-100 keV in various compounds). The results of our calculations of chemical shifts for the Kα1, Kα2, and L transitions of group-14 metal cations with respect to neutral atoms are presented. Calculations of Kα1-line chemical shifts for the Pb core transitions in PbO and PbF2 with respect to those in the Pb atom are also performed and discussed. The accuracy of approximations used is estimated and the quality of the calculations is analyzed.

  6. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.

    PubMed

    Neal, Stephen; Nip, Alex M; Zhang, Haiyan; Wishart, David S

    2003-07-01

    A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts--RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 A) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of approximately 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (<1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Halpha), 0.980 (13Calpha), 0.996 (13Cbeta), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http

  7. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  8. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  9. NMRDSP: An Accurate Prediction of Protein Shape Strings from NMR Chemical Shifts and Sequence Data

    PubMed Central

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp. PMID:24376713

  10. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2015-07-01

    The main factors affecting the accuracy and computational cost of the Second-order Möller-Plesset perturbation theory (MP2) calculation of (77) Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390-466 ppm) dominates over diamagnetic term (192-198 ppm) resulting in a total shielding relativistic correction of about 230-260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70-80 ppm. In the (77) Se NMR chemical shifts scale, relativistic corrections are about 20-30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of (77) Se NMR chemical shifts of the medium-sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of (77) Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%. PMID:25998325

  11. The microstructures of SCS-6 and SCS-8 SiC reinforcing fibers

    SciTech Connect

    Sattler, M.L.; Kinney, J.H.; Zywicz, E. ); Alani, R. ); Nichols, M.C. )

    1992-01-01

    The microstructures of SCS-6 and SCS-8 SiC fibers have been examined and analyzed using high resolution transmission electron microscopy (HRTEM), microdiffraction, parallel electron energy loss spectroscopy (PEELS), x-ray diffraction and x-ray spectroscopy. The results of the study confirm findings from earlier studies wherein the microstructure of the fibers have been described as consisting of {beta}-SiC grown upon a monofilament turbostratic carbon core. The present study, however, provides much more detail regarding this microstructure. For example, PEELS spectroscopy and x-ray microscopy indicate that the composition of the SiC varies smoothly from SiC plus free C near the carbon core to SiC at the midradial boundary. The SiC stoichiometry is roughly preserved from the midradial boundary to the exterior interface. HRTEM, microdiffraction, and dark field images provide evidence that the excess carbon is amorphous free carbon which is most likely situated at the grain boundaries of the SiC. The x-ray microscopy results are also consistent with the presence of two phases near the core which consist of SiC and free carbon having density less than graphite (2.25 g/cc). This complex microstructure may explain the recent observations of nonplanar failure in composites fabricated with SCS fibers.

  12. NMR Hyperfine Shifts in Blue Copper Proteins: A Quantum Chemical Investigation

    PubMed Central

    Zhang, Yong; Oldfield, Eric

    2009-01-01

    We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or ~4.7% of the overall ~860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement. PMID:18314973

  13. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence. PMID:27586953

  14. 77Se Chemical Shift Tensor of L-selenocystine: Experimental NMR Measurements and Quantum Chemical Investigations of Structural Effects

    PubMed Central

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-01-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine’s specialized biological roles, it is of interest to examine their 77Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state 77Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information of selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on 77Se L-selenocystine’s chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10–20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of −180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. −90°, the energy costs to alter the dihedral angle in the range from −120° to −60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. 77Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272±30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3–9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results

  15. (77)Se chemical shift tensor of L-selenocystine: experimental NMR measurements and quantum chemical investigations of structural effects.

    PubMed

    Struppe, Jochem; Zhang, Yong; Rozovsky, Sharon

    2015-03-01

    The genetically encoded amino acid selenocysteine and its dimeric form, selenocystine, are both utilized by nature. They are found in active sites of selenoproteins, enzymes that facilitate a diverse range of reactions, including the detoxification of reactive oxygen species and regulation of redox pathways. Due to selenocysteine and selenocystine's specialized biological roles, it is of interest to examine their (77)Se NMR properties and how those can in turn be employed to study biological systems. We report the solid-state (77)Se NMR measurements of the L-selenocystine chemical shift tensor, which provides the first experimental chemical shift tensor information on selenocysteine-containing systems. Quantum chemical calculations of L-selenocystine models were performed to help understand various structural effects on (77)Se L-selenocystine's chemical shift tensor. The effects of protonation state, protein environment, and substituent of selenium-bonded carbon on the isotropic chemical shift were found to be in a range of ca. 10-20 ppm. However, the conformational effect was found to be much larger, spanning ca. 600 ppm for the C-Se-Se-C dihedral angle range of -180° to +180°. Our calculations show that around the minimum energy structure with a C-Se-Se-C dihedral angle of ca. -90°, the energy costs to alter the dihedral angle in the range from -120° to -60° are within only 2.5 kcal/mol. This makes it possible to realize these conformations in a protein or crystal environment. (77)Se NMR was found to be a sensitive probe to such changes and has an isotropic chemical shift range of 272 ± 30 ppm for this energetically favorable conformation range. The energy-minimized structures exhibited calculated isotropic shifts that lay within 3-9% of those reported in previous solution NMR studies. The experimental solid-state NMR isotropic chemical shift is near the lower bound of this calculated range for these readily accessible conformations. These results suggest

  16. Sequential nearest-neighbor effects on computed 13Cα chemical shifts

    PubMed Central

    Vila, Jorge A.; Serrano, Pedro; Wüthrich, Kurt

    2010-01-01

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical 13Cα chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed 13Cα chemical shifts, Δca,i, for the individual residues along the sequence. This indicates that the Δca,i -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures. PMID:20644980

  17. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.

    PubMed

    Vícha, Jan; Patzschke, Michael; Marek, Radek

    2013-05-28

    A methodology for optimizing the geometry and calculating the NMR shielding constants is calibrated for octahedral complexes of Pt(IV) and Ir(III) with modified nucleic acid bases. The performance of seven different functionals (BLYP, B3LYP, BHLYP, BP86, TPSS, PBE, and PBE0) in optimizing the geometry of transition-metal complexes is evaluated using supramolecular clusters derived from X-ray data. The effects of the size of the basis set (ranging from SVP to QZVPP) and the dispersion correction (D3) on the interatomic distances are analyzed. When structural deviations and computational demands are employed as criteria for evaluating the optimizations of these clusters, the PBE0/def2-TZVPP/D3 approach provides excellent results. In the next step, the PBE0/def2-TZVPP approach is used with the continuum-like screening model (COSMO) to optimize the geometry of single molecules for the subsequent calculation of the NMR shielding constants in solution. The two-component zeroth-order regular approximation (SO-ZORA) is used to calculate the NMR shielding constants (PBE0/TZP/COSMO). The amount of exact exchange in the PBE0 functional is validated for the nuclear magnetic shieldings of atoms in the vicinity of heavy transition metals. For the PBE0/TZP/COSMO setup, an exact exchange of 40% is found to accurately reproduce the experimental NMR shielding constants for both types of complexes. Finally, the effect of the amount of exact exchange on the NMR shielding calculations (which is capable of compensating for the structural deficiencies) is analyzed for various molecular geometries (SCS-MP2, BHLYP, and PBE0) and the influence of a trans-substituent on the NMR chemical shift of nitrogen is discussed. The observed dependencies for an iridium complex cannot be rationalized by visualizing the Fermi-contact (FC) induced spin density and probably originate from changes in the d-d transitions that modulate the spin-orbit (SO) part of the SO/FC term. PMID:23598437

  18. Proton Magnetic Resonance and Human Thyroid Neoplasia III. Ex VivoChemical-Shift Microimaging

    NASA Astrophysics Data System (ADS)

    Rutter, Allison; Künnecke, Basil; Dowd, Susan; Russell, Peter; Delbridge, Leigh; Mountford, Carolyn E.

    1996-03-01

    Magnetic-resonance chemical-shift microimaging, with a spatial resolution of 40 × 40 μm, is a modality which can detect alterations to cellular chemistry and hence markers of pathological processes in human tissueex vivo.This technique was used as a chemical microscope to assess follicular thyroid neoplasms, lesions which are unsatisfactorily investigated using standard histopathological techiques or water-based magnetic-resonance imaging. The chemical-shift images at the methyl frequency (0.9 ppm) identify chemical heterogeneity in follicular tumors which are histologically homogeneous. The observed changes to cellular chemistry, detectable in foci of approximately 100 cells or less, support the existence of a preinvasive state hitherto unidentified by current pathological techniques.

  19. The Chemical Shift Baseline for High-Pressure NMR Spectra of Proteins.

    PubMed

    Frach, Roland; Kibies, Patrick; Böttcher, Saraphina; Pongratz, Tim; Strohfeldt, Steven; Kurrmann, Simon; Koehler, Joerg; Hofmann, Martin; Kremer, Werner; Kalbitzer, Hans Robert; Reiser, Oliver; Horinek, Dominik; Kast, Stefan M

    2016-07-18

    High-pressure (HP) NMR spectroscopy is an important method for detecting rare functional states of proteins by analyzing the pressure response of chemical shifts. However, for the analysis of the shifts it is mandatory to understand the origin of the observed pressure dependence. Here we present experimental HP NMR data on the (15) N-enriched peptide bond model, N-methylacetamide (NMA), in water, combined with quantum-chemical computations of the magnetic parameters using a pressure-sensitive solvation model. Theoretical analysis of NMA and the experimentally used internal reference standard 4,4-dimethyl-4-silapentane-1-sulfonic (DSS) reveal that a substantial part of observed shifts can be attributed to purely solvent-induced electronic polarization of the backbone. DSS is only marginally responsive to pressure changes and is therefore a reliable sensor for variations in the local magnetic field caused by pressure-induced changes of the magnetic susceptibility of the solvent. PMID:27282319

  20. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts

    PubMed Central

    YongE, Feng; GaoShan, Kou

    2015-01-01

    Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew’s correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin. PMID:26422468

  1. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    PubMed

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  2. Chemical shifts in transition metal dithiocarbamates from infrared and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Payne, R.; Magee, R. J.; Liesegang, J.

    1982-11-01

    Measurements of the IR stretching frequencies of the NC and MS bonds in transition-metal (M) dithiocarbamates show significant correlation with measurement of core level XPS chemical shifts. This is believed to be the first demonstration of such a correlation for a series of solid-phase compounds.

  3. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  4. Use of 13Cα Chemical-Shifts in Protein Structure Determination

    PubMed Central

    Vila, Jorge A.; Ripoll, Daniel R.; Scheraga, Harold A.

    2008-01-01

    A physics-based method, aimed at determining protein structures by using NOE-derived distances together with observed and computed 13C chemical shifts, is proposed. The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to obtain torsional constraints for all backbone and side-chain torsional angles without making a priori use of the occupancy of any region of the Ramachandran map by the amino acid residues. The torsional constraints are not fixed but are changed dynamically in each step of the procedure, following an iterative self-consistent approach intended to identify a set of conformations for which the computed 13Cα chemical shifts match the experimental ones. A test is carried out on a 76-amino acid all-α-helical protein, namely the B. Subtilis acyl carrier protein. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than an existing NMR-derived structure model of this protein, in terms of both the agreement between predicted and observed 13Cα chemical shifts and some stereochemical quality indicators, and of similar accuracy as one of the protein models solved at a high level of resolution. The results provide evidence that this methodology can be used not only for structure determination but also for additional protein structure refinement of NMR-derived models deposited in the Protein Data Bank. PMID:17516673

  5. Compressed sensing for chemical shift-based water-fat separation.

    PubMed

    Doneva, Mariya; Börnert, Peter; Eggers, Holger; Mertins, Alfred; Pauly, John; Lustig, Michael

    2010-12-01

    Multi echo chemical shift-based water-fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water-fat separation from undersampled data (CS-WF), which combines compressed sensing and chemical shift-based water-fat separation. Undersampling was applied in the k-space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS-WF reconstruction to improve the water-fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three-echo water-fat imaging. The method is demonstrated on knee and abdominal in vivo data. PMID:20859998

  6. A geometrical parametrization of C1'-C5' RNA ribose chemical shifts calculated by density functional theory

    NASA Astrophysics Data System (ADS)

    Suardíaz, Reynier; Sahakyan, Aleksandr B.; Vendruscolo, Michele

    2013-07-01

    It has been recently shown that NMR chemical shifts can be used to determine the structures of proteins. In order to begin to extend this type of approach to nucleic acids, we present an equation that relates the structural parameters and the 13C chemical shifts of the ribose group. The parameters in the equation were determined by maximizing the agreement between the DFT-derived chemical shifts and those predicted through the equation for a database of ribose structures. Our results indicate that this type of approach represents a promising way of establishing quantitative and computationally efficient analytical relationships between chemical shifts and structural parameters in nucleic acids.

  7. Experimental link between the /sup 13/C NMR chemical shift of carbonyl carbons and the energy shifts observed in the n. -->. 3s optical transition of cyclic ketones

    SciTech Connect

    Cornish, T.J.; Baer, T.

    1988-09-14

    The n ..-->.. 3s transition energies of cold methylcyclopentanones and -cyclohexanones, as well as those of some branched-chain and bicyclic ketones, have been measured with 2 + 1 resonance-enhanced multiphoton ionization (REMPI). The energy shifts of the n ..-->.. 3s transition origins are found to correlate in a linear fashion with reported /sup 13/C NMR chemical shifts of the carbonyl carbon atoms. Several possible explanations for the experimental connection to NMR are discussed including consideration of both the paramagnetic and diamagnetic shielding contributions to the total chemical shift. 31 references, 3 figures, 1 table.

  8. Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts

    SciTech Connect

    Aquino, Fredy W.; Pritchard, Ben; Autschbach, Jochen

    2012-02-14

    A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on ¹⁹⁹Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF₃ and NpF₆. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni π back-donation dominates the result, whereas for vanadocene, V to Cp σ donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.

  9. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    PubMed

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations. PMID:25502373

  10. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.

    PubMed

    Kupka, Teobald; Stachów, Michal; Stobiński, Leszek; Kaminský, Jakub

    2016-06-01

    (13)C NMR chemical shifts of selected finite-size models of pristine zigzag single walled carbon nanotubes (SWCNTs) with a diameter of ∼0.4-0.8nm and length up to 2.2nm were studied theoretically. Results for finite SWCNTs models containing 1, 4 and 10 adjacent bamboo-type units were compared with data obtained for infinite tubes in order to estimate the reliability of small finite models in predicting magnetic properties of real-size nanotubes and to assess their tube-length dependence. SWCNTs were fully optimized using unrestricted density functional theory (DFT-UB3LYP/6-31G*). Cyclacenes, as the shortest models of open-ended zigzag SWCNTs, with systematically varying diameter were calculated as well. GIAO NMR calculations on the SWCNT and cyclacene models were performed using the BHandH density functional combined with relatively small STO-3Gmag basis set, developed by Leszczyński and coworkers for accurate description of magnetic properties. Regular changes of carbon (13)C chemical shifts along the tube axis of real size (6, 0) and (9, 0) zigzag carbon nanotubes were shown. The (13)C NMR shifts according to increasing diameter calculated for zigzag (n, 0, n=5-10) cyclacenes followed the trends observed for zigzag (n, 0) SWCNTs. The results for 4-units long SWCNTs match reasonably well with the data obtained for infinite zigzag (n, 0) SWCNTs, especially to those with bigger diameter (n=8-15). The presence of rim hydrogens obviously affects theoretical (13)C chemical shieldings and shifts in cyclacenes and thus cyclacenes can provide only approximate estimation of (13)C NMR parameters of real-size SWCNTs. The NMR properties predicted for the longest 10-units long models of SWCNTs reliably correspond to results obtained for infinite nanotubes. They were thus able to accurately predict also recently reported experimental chemical shift of chiral (6, 5) SWCNT. PMID:27155813

  11. Hydrography synthesis using LANDSAT remote sensing and the SCS models

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Jackson, T. J.

    1976-01-01

    The land cover requirements of the Soil Conservation Service (SCS) Model used for hydrograph synthesis in urban areas were modified to be LANDSAT compatible. The Curve Numbers obtained with these alternate land cover categories compare well with those obtained in published example problems using the conventional categories. Emergency spillway hydrographs and synthetic flood frequency flows computed for a 21.1 sq. mi. test area showed excellent agreement between the conventional aerial photo-based and the Landsat-based SCS approaches.

  12. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  13. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.

    PubMed

    Kono, Hiroyuki; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi; Tajima, Kenji

    2016-10-01

    The chemical shifts of the substituent groups of sodium carboxymethyl cellulose (CMC) were assigned by examining a series of CMC samples with different degrees of substitution. Comparative analysis of the (1)H-(13)C heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra allowed the complete assignment of the substituent groups at the 2-, 3-, and 6-positions of the seven substituted monomers comprising the CMC chains, namely, 2-mono-, 3-mono-, 6-mono-, 2,3-di-, 2,6-di-, 3,6-di-, and 2,3,6-tri-substituted anhydroglucose units (AGUs). In addition, the mole fractions of the monomers were determined by lineshape analysis of the carbonyl carbon resonances. The comparison between the chemical shifts of the substituents revealed strong interactions between 2- and 3-substituents in the same AGU, and showed that the steric hindrance by a substituent at the 2- or 3-position suppresses subsequent substitution at the adjacent position. PMID:27312635

  14. Assignment of protein backbone resonances using connectivity, torsion angles and 13Calpha chemical shifts.

    PubMed

    Morris, Laura C; Valafar, Homayoun; Prestegard, James H

    2004-05-01

    A program is presented which will return the most probable sequence location for a short connected set of residues in a protein given just (13)C(alpha) chemical shifts (delta((13)C(alpha))) and data restricting the phi and psi backbone angles. Data taken from both the BioMagResBank and the Protein Data Bank were used to create a probability density function (PDF) using a multivariate normal distribution in delta((13)C(alpha)), phi, and psi space for each amino acid residue. Extracting and combining probabilities for particular amino acid residues in a short proposed sequence yields a score indicative of the correctness of the proposed assignment. The program is illustrated using several proteins for which structure and (13)C(alpha) chemical shift data are available. PMID:15017135

  15. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    PubMed

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  16. Characterization of Tricoordinate Boron Chemical Shift Tensors: Definitive High-Field

    SciTech Connect

    Bryce, David L.; Wasylishen, Roderick E.; Gee, Myrlene

    2001-01-01

    Despite the large known chemical shift (CS) range for boron and the large number of 11B NMR studies of glasses, no boron CS tensors have been characterized to date. We report the application of solid-state NMR techniques at moderate (9.4 T) and high (17.63 T) applied magnetic field strengths to the characterization of the boron CS tensors in trimesitylborane (BMes3) and triphenyl borate (B(OPh)3). The boron CS tensor of the former compound exhibits a remarkably large span,? 121 1 ppm, which encompasses the known range of isotropic chemical shifts for tricoordinate boron compounds. Conversely, the effect of the boron CS tensor on the 11B NMR spectra of B(OPh)3 is difficult to observe and quantify even at field strengths as high

  17. Prediction of 31P nuclear magnetic resonance chemical shifts for phosphines

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Liu, Shuling; Zhang, Shengwan; Li, Shengshi Z.

    2007-07-01

    Quantitative relationships of the 31P NMR chemical shifts of the phosphorus atoms in 291 phosphines with the atomic ionicity index (INI) and stereoscopic effect parameters ( ɛα, ɛβ, ɛγ) were primarily investigated in this paper for modeling some fundamental quantitative structure-spectroscopy relationships (QSSR). The results indicated that the 31P NMR chemical shifts of phosphines can be described as the quantitative equation by multiple linear regression (MLR): δp (ppm) = -174.0197 - 2.6724 INI + 40.4755 ɛα + 15.1141 ɛβ - 3.1858 ɛγ, correlation coefficient R = 0.9479, root mean square error (rms) = 13.9, and cross-validated predictive correlation coefficient was found by using the leave-one-out procedure to be Q2 = 0.8919. Furthermore, through way of random sampling, the estimative stability and the predictive power of the proposed MLR model were examined by constructing data set randomly into both the internal training set and external test set of 261 and 30 compounds, respectively, and then the chemical shifts were estimated and predicted with the training correlation coefficient R = 0.9467 and rms = 13.4 and the external predicting correlation coefficient Qext = 0.9598 and rms = 10.8. A partial least square model was developed that produced R = 0.9466, Q = 0.9407 and Qext = 0.9599, respectively. Those good results provided a new, simple, accurate and efficient methodology for calculating 31P NMR chemical shifts of phosphines.

  18. Relativistic DFT Calculation of (119)Sn Chemical Shifts and Coupling Constants in Tin Compounds.

    PubMed

    Bagno, Alessandro; Casella, Girolamo; Saielli, Giacomo

    2006-01-01

    The nuclear shielding and spin-spin coupling constants of (119)Sn in stannane, tetramethylstannane, methyltin halides Me4-nSnXn (X = Cl, Br, I; n = 1-3), tin halides, and some stannyl cations have been investigated computationally by DFT methods and Slater all-electron basis sets, including relativistic effects by means of the zeroth order regular approximation (ZORA) method up to spin-orbit coupling. Calculated (119)Sn chemical shifts generally correlate well with experimental values, except when several heavy halogen atoms, especially iodine, are bound to tin. In such cases, calculated chemical shifts are almost constant at the scalar (spin-free) ZORA level; only at the spin-orbit level is a good correlation, which holds for all compounds examined, attained. A remarkable "heavy-atom effect", analogous to that observed for analogous alkyl halides, is evident. The chemical shift of the putative stannyl cation (SnH3(+)) has also been examined, and it is concluded that the spectrum of the species obtained in superacids is inconsistent with a simple SnH3(+) structure; strong coordination to even weak nucleophiles such as FSO3H leads to a very satisfactory agreement. On the contrary, the calculated (119)Sn chemical shift of the trimesitylstannyl cation is in very good agreement with the experimental value. Coupling constants between (119)Sn and halogen nuclei are also well-modeled in general (taking into account the large uncertainties in the experimental values); relativistic spin-orbit effects are again quite evident. Couplings to (13)C and (1)H also fall, on the average, on the same correlation line, but individual values show a significant deviation from the expected unit slope. PMID:26626377

  19. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    NASA Astrophysics Data System (ADS)

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  20. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  1. 14N Chemical Shifts and Quadrupole Coupling Constants of Inorganic Nitrates

    NASA Astrophysics Data System (ADS)

    Marburger, Simon P.; Fung, B. M.; Khitrin, A. K.

    2002-02-01

    The isotropic chemical shift and the nuclear quadrupole coupling constant for 14N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO3, Al(NO3)3, Ba(NO3)2, Ca(NO3)2, CsNO3, KNO3, LiNO3, Mg(NO3)2, NaNO3, Pb(NO3)2, RbNO3, Sr(NO3)2, Th(NO3)4·4H2O, and UO2(NO3)2·3H2O. Even though the spectra show broadening due to 14N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH4Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO3 to 993 kHz for LiNO3. These data are compared with those available in the literature.

  2. Modeling proteins using a super-secondary structure library and NMR chemical shift information

    PubMed Central

    Menon, Vilas; Vallat, Brinda; Dybas, Joseph M.; Fiser, Andras

    2013-01-01

    Summary A remaining challenge in protein modeling is to predict structures for sequences that do not share recognizable sequence similarity to any experimentally solved structure. This challenge can be addressed by hybrid algorithms that utilize easily obtainable experimental data and carry a limited amount of indirect structural information. Based on earlier observations, the library of protein super-secondary structure motifs (Smotifs) saturated about a decade ago, and new folds discovered since then are novel combinations of existing Smotifs. This observation suggests that it should be possible to build any structure, of either a known or yet to be discovered fold, from a combination of existing Smotifs derived from already known structures. In the absence of any sequence similarity signal, limited experimental data can be used to relate the backbone conformations of Smotifs between target proteins and known experimental structures. Here we present a modeling algorithm that relies on an exhaustive Smotif library and on NMR chemical shift patterns without any input of primary sequence information. In a test of 102 proteins with unique folds, the algorithm delivered 90 homology model quality models, among them 24 high quality ones, and a topologically correct solution for almost all cases. Detailed analysis of the method’s performance suggests that further improvement can be achieved by improving sampling algorithms and developing more precise tools that predict dihedral angle preferences from chemical shift assignments. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available. PMID:23685209

  3. Self-change strategies in smokers and former smokers: Spanish adaptation of the SCS-CS and SCS-FS.

    PubMed

    Carballo, José Luis; Secades-Villa, Roberto; Fernández-Hermida, José Ramón; García-Rodríguez, Olaya; Bobes-Bascarán, Ma Teresa

    2009-11-01

    The purpose of this study was to validate and adapt the Self-Change Strategies in Current Smokers (SCS-CS) and the Self-Change Strategies in Former Smokers (SCS-FS) (Christie & Etter, 2005) to the Spanish population. We also wished to analyze the differences in the self-change strategies used as a function of gender. Participants were 370 subjects (190 smokers and 180 former smokers) who were recruited by means of the "snowball" method. The alpha coefficients for the SCS-CS and the SCS-FS were .86 and .87, respectively. Both scales present satisfactory psychometric properties, so they are shown to be useful instruments to use in the Spanish population. The SCS-CS score showed that male smokers used more self-change strategies than females (46.6 vs. 11.9, p < .01), specifically, more cognitive strategies. In the SCS-CS, men scored higher than women (49 vs. 12.08, p < .01), in both the group of cognitive and behavioral strategies. The psychological mechanisms used to control the smoking habit are the same in men as in women, but the men tend to use a larger number of strategies. Treatments to quit smoking do not need to be substantially different, but they should be more intensive in the case of women smokers. PMID:19899681

  4. Measurement of proton chemical shifts in invisible states of slowly exchanging protein systems by chemical exchange saturation transfer.

    PubMed

    Bouvignies, Guillaume; Kay, Lewis E

    2012-12-13

    Chemical exchange saturation transfer (CEST) NMR spectroscopy has emerged as a powerful technique for studies of transiently formed, sparsely populated (excited) conformational states of protein molecules in slow exchange with a dominant structure. The most popular form of the experiment, and the version originally developed, uses a weak (1)H radio frequency field to perturb longitudinal magnetization of one state with the effect transferred to magnetization in the second conformation via chemical exchange. A significant limitation of the method for protein applications emerges from (1)H magnetization transfer via dipolar relaxation (NOE effect) that can severely complicate analysis of the resulting CEST profile. This is particularly an issue since the (1)H chemical shifts of the excited state, critical for structural studies of these elusive conformers, become difficult to extract. Here we present a method for measurement of these shifts via CEST experiments in which the NOE effect is not an issue. The methodology is illustrated through applications to a pair of exchanging systems where the results are cross-validated. PMID:23194058

  5. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules

    SciTech Connect

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T{sup 2}, which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T{sup n} with n = 2 and higher.

  6. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  7. Blue-shifted and picosecond amplified UV emission from aqueous chemical grown ZnO microrods

    NASA Astrophysics Data System (ADS)

    Empizo, Melvin John F.; Yamanoi, Kohei; Santos-Putungan, Alexandra B.; Arita, Ren; Minami, Yuki; Luong, Mui Viet; Shimizu, Toshihiko; Estacio, Elmer S.; Somintac, Armando S.; Salvador, Arnel A.; Sarmago, Roland V.; Sarukura, Nobuhiko

    2015-10-01

    Room-temperature amplified spontaneous emission (ASE) has been observed from aqueous chemical grown zinc oxide (ZnO) microrods. The well-faceted microrods have only a single narrow ultraviolet (UV) emission at 390 nm (3.2 eV) with average lifetimes as fast as 85-100 ps. The characteristic ASE also exhibits blue-shifted peaks and shortened lifetimes. At present, the peak shifting and the lifetime shortening are attributed to the band filling and photo-induced screening effects and to the nonradiative relaxation process, respectively. Results indicate that the ZnO microrods have good structural and optical quality which leads to their suitable use for optoelectronic applications.

  8. Direct detection of spin chemical potential shift through spin filtering effect

    NASA Astrophysics Data System (ADS)

    Miao, Guoxing; Moodera, Jagadeesh

    2010-03-01

    Spin filtering (SF) effect is a unique way to generate highly spin-polarized tunnel currents from nonmagnetic electrodes. Magnetic tunnel junctions based on pure SF effect have been realized recently [1] as a clear demonstration of principle for the spin manipulation through SF effect. The next challenge is the readout of spin information. In this work, we present the direct detection of the spin chemical potential shift in an Al nano cluster sandwiched between two SF EuS tunnel barriers. The spin channels are split by depositing Al directly onto EuS, and the indirect exchange interaction between the Al conduction electrons and the localized Eu 4f electrons gives rise to an effective Zeeman splitting with the strength of a few mV. EuS on the readout side is isolated from the Al clusters with a natural Al2O3 barrier. In a vertical measurement geometry with no transport current, we directly detected the spin dependent voltage levels by aligning the detection SF barrier parallel or antiparallel to the first SF barrier, corresponding to the equilibrium up- and down-spin chemical potentials. A simple analysis treating the barriers as a set of resistors revealed that the observed voltage difference is the actual chemical potential shift modulated by the SF efficiency.[4pt] [1] G.X. Miao, M. Muller, J.S. Moodera,PRL102,076601(2009)

  9. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    PubMed

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  10. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    PubMed Central

    Hong, Mei

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ~94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command

  11. Performance of Density Functional Models to Reproduce Observed 13Cα Chemical Shifts of Proteins in Solution

    PubMed Central

    Vila, Jorge A.; Baldoni, Héctor A.; Scheraga, Harold A.

    2009-01-01

    The purpose of this work is to test several density functional models (namely, OPBE, O3LYP, OPW91, BPW91, OB98, BPBE, B971, OLYP, PBE1PBE, and B3LYP) to determine their accuracy and speed for computing 13Cα chemical shifts in proteins. The test is applied to 10 NMR-derived conformations of the 76-residue α/β protein ubiquitin (protein data bank id 1D3Z). With each functional, the 13Cα shielding was computed for 760 amino acid residues by using a combination of approaches that includes, but is not limited to, treating each amino acid X in the sequence as a terminally blocked tripeptide with the sequence Ac-GXG-NMe in the conformation of the regularized experimental protein structure. As computation of the 13Cα chemical shifts, not their shielding, is the main goal of this work, a computation of the 13Cα shielding of the reference, namely, tetramethylsilane, is investigated here and an effective and a computed tetramethylsilane shielding value for each of the functionals is provided. Despite observed small differences among all functionals tested, the results indicate that four of them, namely, OPBE, OPW91, OB98, and OLYP, provide the most accurate functionals with which to reproduce observed 13Cα chemical shifts of proteins in solution, and are among the faster ones. This study also provides evidence for the applicability of these functionals to proteins of any size or class, and for the validation of our previous results and conclusions, obtained from calculations with the slower B3LYP functional. PMID:18780343

  12. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    PubMed

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W A; Bultinck, Patrick

    2016-04-28

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is used that is derived from the current density. It is shown here that there is no simple one-to-one relationship that allows reconstructing current density maps from only NICS-values. NICS values should therefore not be used as aromaticity indices without analysis of the ab initio computed current density map. PMID:26762574

  13. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    NASA Astrophysics Data System (ADS)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  14. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition.

    PubMed

    Taylor, Brian A; Hwang, Ken-Pin; Hazle, John D; Stafford, R Jason

    2009-03-01

    The authors investigated the performance of the iterative Steiglitz-McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (< or equal 16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer-Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR) > or =5 for echo train lengths (ETLs) > or =4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and/or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with > or =4 echoes and for T2*(<1.0%) with > or =7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire < or =16 echoes for one- and two-peak systems. Preliminary ex vivo

  15. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition

    PubMed Central

    Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2009-01-01

    The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo

  16. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  17. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  18. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  19. Density-functional computation of ⁹³Nb NMR chemical shifts.

    PubMed

    Bühl, Michael; Wrackmeyer, Bernd

    2010-12-01

    93Nb chemical shifts of [NbX6](-) (X = Cl, F, CO), [NbXCl4](-) (X = O, S), Nb2(OMe)10, Cp*2Nb(κ2-BH4), (Cp*Nb)2(µ-B2H6)2, CpNb(CO)4, and Cp2NbH3 are computed at the GIAO (gauge-including atomic orbitals)-, BPW91- and B3LYP-, and CSGT (continuous set of gauge transformations)-CAM-B3LYP, -ωB97, and -ωB97X levels, using BP86-optimized or experimental (X-ray) geometries. Experimental chemical shifts are best reproduced at the GIAO-BPW91 level when δ(93Nb) values of inorganic complexes are referenced directly relative to [NbCl6](-) and those of organometallic species are first calculated relative to [Nb(CO)6](-). An inadvertent error in the reported δ(93Nb) values of cyclopentadiene borane complexes (H. Brunner et al., J. Organomet. Chem.1992, 436, 313) is corrected. Trends in the observed 93Nb NMR linewidths for anionic niobates [Nb(CO)5](3-), [Nb(CO)5H](2-), and [Nb(CO)5(NH3)](-) are rationalized in terms of computed electric field gradients at the metal. PMID:20552575

  20. High spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy

    PubMed Central

    Chen, Kun; Wu, Tao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2015-01-01

    Raman spectroscopy has emerged as a promising tool for its noninvasive and nondestructive characterization of local chemical structures. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances, because of limitations in the spectral resolving power. The challenge is to find a way of preserving scattered photons and retrieving hidden/buried Raman signatures to take full advantage of its chemical specificity. Here, we demonstrate a multichannel acquisition framework based on shift-excitation and slit-modulation, followed by mathematical post-processing, which enables a significant improvement in the spectral specificity of Raman characterization. The present technique, termed shift-excitation blind super-resolution Raman spectroscopy (SEBSR), uses multiple degraded spectra to beat the dispersion-loss trade-off and facilitate high-resolution applications. It overcomes a fundamental problem that has previously plagued high-resolution Raman spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. Applicability is demonstrated by the perfect recovery of fine structure of the C-Cl bending mode as well as the clear discrimination of different polymorphs of mannitol. Due to its enhanced discrimination capability, this method offers a feasible route at encouraging a broader range of applications in analytical chemistry, materials and biomedicine. PMID:26350355

  1. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    PubMed

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution. PMID:25377116

  2. Correlation between 19F environment and isotropic chemical shift in barium and calcium fluoroaluminates.

    PubMed

    Body, M; Silly, G; Legein, C; Buzaré, J-Y

    2004-04-19

    High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses. PMID:15074964

  3. High spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Wu, Tao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2015-09-01

    Raman spectroscopy has emerged as a promising tool for its noninvasive and nondestructive characterization of local chemical structures. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances, because of limitations in the spectral resolving power. The challenge is to find a way of preserving scattered photons and retrieving hidden/buried Raman signatures to take full advantage of its chemical specificity. Here, we demonstrate a multichannel acquisition framework based on shift-excitation and slit-modulation, followed by mathematical post-processing, which enables a significant improvement in the spectral specificity of Raman characterization. The present technique, termed shift-excitation blind super-resolution Raman spectroscopy (SEBSR), uses multiple degraded spectra to beat the dispersion-loss trade-off and facilitate high-resolution applications. It overcomes a fundamental problem that has previously plagued high-resolution Raman spectroscopy: fine spectral resolution requires large dispersion, which is accompanied by extreme optical loss. Applicability is demonstrated by the perfect recovery of fine structure of the C-Cl bending mode as well as the clear discrimination of different polymorphs of mannitol. Due to its enhanced discrimination capability, this method offers a feasible route at encouraging a broader range of applications in analytical chemistry, materials and biomedicine.

  4. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2015-06-01

    Relativistic calculations of (29)Si NMR shielding constants (chemical shifts) in the series of halosilanes SiX(n)H(4-n) (X = F, Cl, Br and I) are performed within a full four-component relativistic Dirac's scheme using relativistic Dyall's basis sets. Three different theoretical levels are tested in the computation of (29)Si NMR chemical shifts in comparison with experiment: namely, four-component relativistic GIAO-DFT, four-component relativistic GIAO-RPA, and a hybrid scheme of a nonrelativistic GIAO-MP2 with taking into account relativistic corrections using the four-component relativistic GIAO-RPA. The DFT results give larger relativistic effects as compared to the RPA data which might be rationalized in terms of the manifestation of correlation effects taken into account at the DFT level and not accounted for at the uncorrelated RPA level. Taking into account solvent effects slightly improves agreement with experiment, however, being not a matter of principle. Generally, relativistic pure nonempirical wave function methods perform much better as compared to relativistic DFT methods when benchmarked to experiment. PMID:25946056

  5. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    PubMed

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. PMID:27510431

  6. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  7. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  8. A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging.

    PubMed

    Wang, Jian-Xiong; Merritt, Matthew E; Sherry, Dean; Malloy, Craig R

    2016-08-01

    Metabolic imaging with hyperpolarized carbon-13 allows sequential steps of metabolism to be detected in vivo. Potential applications in cancer, brain, muscular, myocardial, and hepatic metabolism suggest that clinical applications could be readily developed. A primary concern in imaging hyperpolarized nuclei is the irreversible decay of the enhanced magnetization back to thermal equilibrium. Multiple methods for rapid imaging of hyperpolarized substrates and their products have been proposed with a multi-point Dixon method distinguishing itself as a robust protocol for imaging [1-(13) C]pyruvate. We describe here a generalized chemical shift decomposition method that incorporates a single-shot spiral imaging sequence plus a spectroscopic sequence to retain as much spin polarization as possible while allowing detection of metabolites that have a wide range of chemical shift values. The new method is demonstrated for hyperpolarized [1-(13) C]pyruvate, [1-(13) C]acetoacetate, and [2-(13) C]dihydroxyacetone. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27060361

  9. Cuticular hydrocarbon divergence in the jewel wasp Nasonia: Evolutionary shifts in chemical communication channels?

    PubMed Central

    Buellesbach, Jan; Gadau, Jürgen; Beukeboom, Leo W.; Echinger, Felix; Raychoudhury, Rhitoban; Werren, John H.; Schmitt, Thomas

    2013-01-01

    The evolution and maintenance of intraspecific communication channels constitutes a key feature of chemical signaling and sexual communication. However, how divergent chemical communication channels evolve while maintaining their integrity for both sender and receiver is poorly understood. In the present study, we compare male and female cuticular hydrocarbon (CHC) profiles in the jewel wasp genus Nasonia, analyze their chemical divergence, and investigate their role as species-specific sexual signaling cues. Males and females of all four Nasonia species showed unique, non-overlapping CHC profiles unambiguously separating them. Surprisingly, male and female phylogenies based on the chemical distances between their CHC profiles differed dramatically, where only male CHC divergence parallels the molecular phylogeny of Nasonia. In particular, N. giraulti female CHC profiles were the most divergent from all other species and very different from its most closely related sibling species N. oneida. Furthermore, although our behavioural assays indicate that female CHC can generally be perceived as sexual cues attracting males in Nasonia, this function has apparently been lost in the highly divergent female N. giraulti CHC profiles. Curiously, N. giraulti males are still attracted to heterospecific, but not to conspecific female CHC profiles. We suggest that this striking discrepancy has been caused by an extensive evolutionary shift in female N. giraulti CHC profiles, which are no longer used as conspecific recognition cues. Our study constitutes the first report of an apparent abandonment of a sexual recognition cue that the receiver did not adapt to. PMID:24118588

  10. Water-fat imaging and general chemical shift imaging with spectrum modeling

    NASA Astrophysics Data System (ADS)

    An, Li

    Water-fat chemical shift imaging (CSI) has been an active research area in magnetic resonance imaging (MRI) since the early 1980's. There are two main reasons for water- fat imaging. First, water-fat imaging can serve as a fat- suppression method. Removing the usually bright fatty signals not only extends the useful dynamic range of an image, but also allows better visualization of lesions or injected contrast, and removes chemical shift artifacts, which may contribute to improved diagnosis. Second, quantification of water and fat provides useful chemical information for characterizing tissues such as bone marrow, liver, and adrenal masses. A milestone in water- fat imaging is the Dixon method that can produce separate water and fat images with only two data acquisitions. In practice, however, the Dixon method is not always successful due to field inhomogeneity problems. In recent years, many variations of the Dixon method have been proposed to overcome the field inhomogeneity problem. In general, these methods can at best separate water and fat without identifying the two because the water and fat magnetization vectors are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods usually depend on two-dimensional phase unwrapping which itself is sensitive to noise and artifacts, and becomes unreliable when the images have disconnected tissues in the field-of-view (FOV). We will first introduce the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the chemical shift information is achieved, which allows an unambiguous determination of water and fat on a pixel by pixel basis. Details of specific implementations and noise performance will be discussed. Representative results

  11. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  12. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    SciTech Connect

    Nagamura, Naoka Kitada, Yuta; Honma, Itaru; Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun; Horiba, Koji; Oshima, Masaharu

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  13. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    SciTech Connect

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  14. Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency.

    PubMed

    Nam, Joo-Won; Phansalkar, Rasika S; Lankin, David C; Bisson, Jonathan; McAlpine, James B; Leme, Ariene A; Vidal, Cristina M P; Ramirez, Benjamin; Niemitz, Matthias; Bedran-Russo, Ana; Chen, Shao-Nong; Pauli, Guido F

    2015-08-01

    The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3-4.5 nm wide space via protein-polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4β→8)-epicatechin-(2β→O→7,4β→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven (1)H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both (1)H and (13)C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules. PMID:26214362

  15. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  16. Quantum Chemical Calculations of Amide-15N Chemical Shift Anisotropy Tensors for a Membrane-Bound Cytochrome b5

    PubMed Central

    Pandey, Manoj Kumar; Ramamoorthy, Ayyalusamy

    2013-01-01

    There is considerable interest in determining amide-15N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-15N CSA tensor have been determined using density functional theory for a 16.7-kDa membrane-bound paramagnetic heme containing protein, cytochrome b5 (cytb5). All the calculations were performed by taking residues within 5Å distance from the backbone amide-15N nucleus of interest. The calculated amide-15N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance rN-H = 1.023 Å and a constant angle β = 18° that the least shielded component (δ11) makes with the N-H bond. The variation of amide-15N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450. PMID:23268659

  17. XPS Chemical Shifts for CO Adsorbed on Ni(100):. a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Pedocchi, L.; Rovida, G.; Russo, N.

    Starting from the observed chemical shift of C-1s and O-1s ionization potentials (IP), reported in the literature for the adsorption of CO on Ni(100), and correlated to the different CO adsorption sites at different coverages, we have carried out a theoretical investigation, using a first-principle density-functional method, to calculate ionization energies for adsorbed CO in the atop and bridge sites. In our approach, the Ni(100) surface was simulated with clusters of up to nine metal atoms of different geometry, in order to test the two adsorption sites. For each cluster, the CO adsorption geometry was optimized and the O-1s and C-1s ionizations were calculated. The main result was that the (O-1s-C-1s) difference was very well reproduced even with clusters of modest size, thus confirming the possibility to use this value as a structure-sensitive parameter.

  18. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  19. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    SciTech Connect

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  20. Experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning

    SciTech Connect

    Ryan, L.M.; Taylor, R.E.; Paff, A.J.; Gerstein, B.C.

    1980-01-01

    High-resolution nuclear magnetic resonance spectra of protons in rigid, randomly oriented solids have been measured using combined homonuclear dipolar decoupling (via multiple pulse techniques) and attenuation of chemical shift anisotropies (via magic-angle sample spinning). Under those conditions, isotropic proton chemical shifts were recorded for a variety of chemical species, with individual linewidths varying from about 55 to 110 Hz (1--2 ppm). Residual line broadening was due predominately to (i) magnetic-field instability and inhomogeneity, (ii) unresolved proton--proton spin couplings, (iii) chemical shift dispersion, (iv) residual dipolar broadening, and (v) lifetime broadening under the multiple pulse sequences used. The magnitudes of those effects and the current limits of resolution for this experiment in our spectrometer have been investigated. The compounds studied included organic solids (4, 4'-dimethylbenzophenone, 2, 6-dimethylbenzoic acid, and aspirin), polymers (polystyrene and polymethylmethacrylate), and the vitrain portion of a bituminous coal.

  1. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin

    PubMed Central

    Gagné, Donald; Narayanan, Chitra; Doucet, Nicolas

    2015-01-01

    Molecular recognition models of both induced fit and conformational selection rely on coupled networks of flexible residues and/or structural rearrangements to promote protein function. While the atomic details of these motional events still remain elusive, members of the pancreatic ribonuclease superfamily were previously shown to depend on subtle conformational heterogeneity for optimal catalytic function. Human angiogenin, a structural homologue of bovine pancreatic RNase A, induces blood vessel formation and relies on a weak yet functionally mandatory ribonucleolytic activity to promote neovascularization. Here, we use the NMR chemical shift projection analysis (CHESPA) to clarify the mechanism of ligand binding in human angiogenin, further providing information on long-range intramolecular residue networks potentially involved in the function of this enzyme. We identify two main clusters of residue networks displaying correlated linear chemical shift trajectories upon binding of substrate fragments to the purine- and pyrimidine-specific subsites of the catalytic cleft. A large correlated residue network clusters in the region corresponding to the V1 domain, a site generally associated with the angiogenic response and structural stability of the enzyme. Another correlated network (residues 40–42) negatively affects the catalytic activity but also increases the angiogenic activity. 15N-CPMG relaxation dispersion experiments could not reveal the existence of millisecond timescale conformational exchange in this enzyme, a lack of flexibility supported by the very low-binding affinities and catalytic activity of angiogenin. Altogether, the current report potentially highlights the existence of long-range dynamic reorganization of the structure upon distinct subsite binding events in human angiogenin. PMID:25450558

  2. Subchondral bone and cartilage thickness from MRI: effects of chemical-shift artifact.

    PubMed

    McGibbon, Chris A; Bencardino, Jenny; Palmer, William E

    2003-02-01

    Magnetic resonance imaging (MRI) is the modality of choice for visualizing and quantifying articular cartilage thickness. However, difficulties persist in MRI of subchondral bone using spoiled gradient-echo (SPGR) and other gradient-echo sequences, primarily due to the effects of chemical-shift artifact. Fat suppression techniques are often used to reduce these artifacts, but they prevent measurement of bone thickness. In this report, we assess the magnitude of chemical-shift effects (phase-cancellation and misregistration artifacts) on subchondral bone and cartilage thickness measurements in human femoral heads using a variety of pulse sequence parameters. Phase-cancellation effects were quantified by comparing measurements from in-phase images (TE=13.5 ms) to out-of-phase images (TE=15.8 ms). We also tested the assumption of the optimal in-phase TE by comparing thickness measures at small variations on TE (13.0, 13.5 and 14.0 ms). Misregistration effects were quantified by comparing measurements from water+fat images (water-only+fat-only images) to the measurements from in-phase (TE=13.5) images. A correction algorithm was developed and applied to the in-phase measurements and then compared to measurements from water+fat images. We also compared thickness measurements at different image resolutions. Results showed that both phase-cancellation artifact and misregistration artifact were significant for bone thickness measurement, but not for cartilage thickness measurement. Using an in-phase TE and correction algorithm for misregistration artifact, the errors in bone thickness relative to water+fat images were non-significant. This information may be useful for developing pulse sequences for optimal imaging of both cartilage and subchondral bone. PMID:12695880

  3. RFID - based Staff Control System (SCS) in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Saparkhojayev, N.

    2015-06-01

    RFID - based Staff Control System (SCS) will allow complete hands-free access control, monitoring the whereabouts of employee and record the attendance of the employee as well. Moreover, with a help of this system, it is possible to have a nice report at the end of the month and based on the total number of worked hours, the salary will be allocated to each personnel. The access tag can be read up to 10 centimeters from the RFID reader. The proposed system is based on UHF RFID readers, supported with antennas at gate and transaction sections, and employee identification cards containing RFID-transponders which are able to electronically store information that can be read / written even without the physical contact with the help of radio medium. This system is an innovative system, which describes the benefits of applying RFID- technology in the Education System process of Republic of Kazakhstan. This paper presents the experiments conducted to set up RFID based SCS.

  4. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

    PubMed

    Shaghaghi, Hoora; Ebrahimi, Hossein Pasha; Fathi, Fariba; Bahrami Panah, Niloufar; Jalali-Heravi, Mehdi; Tafazzoli, Mohsen

    2016-05-30

    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(α) chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(β) , and (1) H(α) chemical shifts nor on the variation of absolute deviation of (13) C(α) chemical shifts relative to ψ dihedral angle. The (13) C(α) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(α) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc. PMID:26940760

  5. A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins.

    PubMed

    Barraud, Pierre; Schubert, Mario; Allain, Frédéric H-T

    2012-06-01

    Zinc is the second most abundant metal ion incorporated in proteins, and is in many cases a crucial component of protein three-dimensional structures. Zinc ions are frequently coordinated by cysteine and histidine residues. Whereas cysteines bind to zinc via their unique S(γ) atom, histidines can coordinate zinc with two different coordination modes, either N(δ1) or N(ε2) is coordinating the zinc ion. The determination of this coordination mode is crucial for the accurate structure determination of a histidine-containing zinc-binding site by NMR. NMR chemical shifts contain a vast amount of information on local electronic and structural environments and surprisingly their utilization for the determination of the coordination mode of zinc-ligated histidines has been limited so far to (15)N nuclei. In the present report, we observed that the (13)C chemical shifts of aromatic carbons in zinc-ligated histidines represent a reliable signature of their coordination mode. Using a statistical analysis of (13)C chemical shifts, we show that (13)C(δ2) chemical shift is sensitive to the histidine coordination mode and that the chemical shift difference δ{(13)C(ε1)} - δ{(13)C(δ2)} provides a reference-independent marker of this coordination mode. The present approach allows the direct determination of the coordination mode of zinc-ligated histidines even with non-isotopically enriched protein samples and without any prior structural information. PMID:22528293

  6. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR.

    PubMed

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr; Nielsen, Anders B

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability. PMID:27608995

  7. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  8. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    SciTech Connect

    Hartman, Joshua D.; Beran, Gregory J. O.; Monaco, Stephen; Schatschneider, Bohdan

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  9. [Evaluation of the Effect of Adiabatic Pulse and B1 Shim to the Radio Frequency Homogeneity in Chemical Shift Imaging].

    PubMed

    Kikuchi, Chie; Inoue, Mitsuhiro; Okawa, Kohei; Taguchi, Jyunichi; Hirota, Yoshifumi; Yanagiya, Yohei

    2016-04-01

    It is considered that the enhancement of chemical shift and the elevation of signal-to-noise ratio (SNR) induced by high magnetic fields are useful for the evaluation of metabolism using magnetic resonance spectroscopy (MRS). However, the reduction of the localization in MRS seems to be caused by the decreased homogeneity of radio frequency (RF) pulses, especially in chemical shift imaging (CSI). To search the influence of B1 shim mode and the significance of adiabatic pulses, we have examined the changes of RF homogeneity using 3 T magnetic resonance imaging (MRI) with the water phantom and the metabolites phantom (containing acetate and lactate) in CSI. The RF homogeneity and chemical shift artifact were obviously improved using the adiabatic pulses. Improvement of the homogeneity of RF pulses was observed when B1 shim was used. These results suggest the usefulness of CSI using adiabatic pulses and B1 shim when small amount of metabolites of target is measured in MRS. PMID:27097994

  10. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study.

    PubMed

    Holmes, Sean T; Dybowski, Cecil

    2015-11-01

    The principal components of the (13)C NMR chemical-shift tensors for the eight unique carbon sites of crystalline indigo have been measured using the ROCSA pulse sequence. The chemical shifts have been assigned unambiguously to their respective nuclear sites through comparison of the experimental data to the results of density-functional calculations employing a refined X-ray diffraction structure. These measurements expand the database of measured aromatic (13)C chemical-shift tensors to the indole ring. Magnetic shielding calculations for hypoxanthine and adenosine are also reported. Comparisons of calculations that include the effect of the crystalline lattice with calculations that model indigo as an isolated molecule give an estimate of the intermolecular contribution to the magnetic shielding. PMID:26344134

  11. Carbon-13 chemical-shift tensors in indigo: A two-dimensional NMR-ROCSA and DFT Study

    PubMed Central

    Holmes, Sean T.; Dybowski, Cecil

    2016-01-01

    The principal components of the 13C NMR chemical-shift tensors for the eight unique carbon sites of crystalline indigo have been measured using the ROCSA pulse sequence. The chemical shifts have been assigned unambiguously to their respective nuclear sites through comparison of the experimental data to the results of density-functional calculations employing a refined X-ray diffraction structure. These measurements expand the database of measured aromatic 13C chemical-shift tensors to the indole ring. Magnetic shielding calculations for hypoxanthine and adenosine are also reported. Comparisons of calculations that include the effect of the crystalline lattice with calculations that model indigo as an isolated molecule give an estimate of the intermolecular contribution to the magnetic shielding. PMID:26344134

  12. CAESURA: Measurement of slow molecular dynamics by solid-state nuclear magnetic resonance chemical shift anisotropy modulation amplification

    NASA Astrophysics Data System (ADS)

    Shao, Limin; Titman, Jeremy J.

    2006-08-01

    An alternative magic angle spinning (MAS) exchange NMR experiment based on chemical shift anisotropy (CSA) amplification is described. The CSA amplification experiment correlates a standard MAS spectrum in the ω2 dimension with a sideband pattern in ω1 in which the intensities are identical to those expected for a sample spinning at some fraction 1/N of the actual rate ωr. In common with 2D-PASS, the isotropic shift appears only in the ω2 dimension, and long acquisition times can be avoided without loss of resolution of different chemical sites. The new CSA amplification exchange experiment provides information about the time scale and geometry of molecular motions via their effect on the sideband intensities in a one-dimensional pattern. The one-dimensional patterns from different chemical sites are separated across two frequency dimensions according to the isotropic shifts.

  13. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs

    PubMed Central

    Illich, Damir Jacob; Zhang, Miao; Ursu, Andrei; Osorno, Rodrigo; Kim, Kee-Pyo; Yoon, Juyong; Araúzo-Bravo, Marcos J.; Wu, Guangming; Esch, Daniel; Sabour, Davood; Colby, Douglas; Grassme, Kathrin S.; Chen, Jiayu; Greber, Boris; Höing, Susanne; Herzog, Wiebke; Ziegler, Slava; Chambers, Ian; Gao, Shaorong; Waldmann, Herbert; Schöler, Hans R.

    2016-01-01

    Summary It has previously been reported that mouse epiblast stem cell (EpiSC) lines comprise heterogeneous cell populations that are functionally equivalent to cells of either early- or late-stage postimplantation development. So far, the establishment of the embryonic stem cell (ESC) pluripotency gene regulatory network through the widely known chemical inhibition of MEK and GSK3beta has been impractical in late-stage EpiSCs. Here, we show that chemical inhibition of casein kinase 1alpha (CK1alpha) induces the conversion of recalcitrant late-stage EpiSCs into ESC pluripotency. CK1alpha inhibition directly results in the simultaneous activation of the WNT signaling pathway, together with inhibition of the TGFbeta/SMAD2 signaling pathway, mediating the rewiring of the gene regulatory network in favor of an ESC-like state. Our findings uncover a molecular mechanism that links CK1alpha to ESC pluripotency through the direct modulation of WNT and TGFbeta signaling. PMID:27149845

  14. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.

    PubMed

    Webster, Nicole S; Xavier, Joana R; Freckelton, Marnie; Motti, Cherie A; Cobb, Rose

    2008-12-01

    The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology. PMID:18783385

  15. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods

    NASA Astrophysics Data System (ADS)

    Arcisauskaite, Vaida; Melo, Juan I.; Hemmingsen, Lars; Sauer, Stephan P. A.

    2011-07-01

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ˜2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ˜500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ˜100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.

  16. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    PubMed

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  17. Multiparametric fat–water separation method for fast chemical-shift imaging guidance of thermal therapies

    PubMed Central

    Lin, Jonathan S.; Hwang, Ken-Pin; Jackson, Edward F.; Hazle, John D.; Jason Stafford, R.; Taylor, Brian A.

    2013-01-01

    Purpose: A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. Methods: Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions. Results: Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively

  18. Recoupling of chemical shift anisotropy by R-symmetry sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2012-10-01

    13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40-100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in

  19. One-dimensional phosphorus-31 chemical shift imaging of human brain tumors

    SciTech Connect

    Rutter, A.; Hugenholtz, H.; Saunders, J.K.

    1995-06-01

    Phosphorus magnetic resonance spectroscopy has been used noninvasively to determine characteristic spectral parameters for untreated human brain tumors as a prelude to its use in clinical diagnosis. The spectra, which reflect the relative amounts of phosphorus-containing compounds, and the pH within and surrounding the tumors, were obtained in vivo using the the localization technique of one-dimensional chemical shift imaging applied with a surface coil. Phosphorus-31 chemical shift imaging was performed successfully in vivo on 9 volunteers and 27 patients with untreated brain tumors, including 7 with astrocytoma, 4 with glioblastoma, 3 with meningioma, and 11 with metastases. This study provides spectra from within and surrounding the brain tumors, and allows accountability for the heterogeneity of brain tumors by the selection of the maximum data point for each parameter. The ratios of resonance areas, phosphodiesters over nucleoside triphosphate (NTP), and phosphomonoesters over NTP, were found to be higher in glioblastomas (2.55 {plus_minus} 0.22, 1.06 {plus_minus} 0.09) and astorcytomas (3.04 {plus_minus} 0.36, 1.28 {plus_minus} 0.36) than in normal brain (2.00 {plus_minus} 0.32, 0.79 {plus_minus}0.22). The ratios of areas due to inorganic phosphate and NTP, and phosphocreatine and NTP, also were higher in astrocytomas (1.16 {plus_minus} 0.40, 1.17 {plus_minus} 0.41) compared with glioblastomas (0.68 {plus_minus} 0.01, 0.88 {plus_minus} 0.19) and normal brain (0.61 {plus_minus}0.03, 0.77 {plus_minus} 0.03). The pH of brain tumors ranged from alkaline to neutral, with meningiomas consistently having alkaline pH. These data show that there are statistically significant differences in the magnetic resonance parameters of the affected brain hemispheres of patients with astrocytomas, glioblastomas, meningiomas, and normal brain tissue, and underline the need for a multisite clinical trial to establish clinical criteria for diagnosis. 28 refs., 3 figs., 2 tabs.

  20. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  1. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Möller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  2. (39)K NMR of solid potassium salts at 21 T: effect of quadrupolar and chemical shift tensors.

    PubMed

    Moudrakovski, Igor L; Ripmeester, John A

    2007-01-25

    39K Solid State NMR spectra (static and magic angle spinning (MAS)) on a set of potassium salts measured at 21.14 T show that the chemical shift range for K(+) ions in diamagnetic salts is well in excess of 100 ppm contrary to previous assumptions that it was quite small. Inequivalent potassium sites in crystals can be resolved through differences in chemical shifts, with chemically similar sites showing differences of over 10 ppm. The quadrupolar coupling constants obtained from MAS and solid echo experiments on powders cover the range from zero for potassium in cubic environments in halides to over 3 MHz for the highly asymmetric sites in K2CO3. Although the quadrupolar effects generally dominate the 39K spectra, in several instances, we have observed subtle but significant contributions of chemical shift anisotropy with values up to 45 ppm, a first such observation. Careful analysis of static and MAS spectra allows the observation of the various chemical shift and quadrupole coupling tensor components as well as their relative orientations, thereby demonstrating that high-field 39K NMR spectroscopy in the solid state has a substantial sensitivity to the local environment with parameters that will be of considerable value in materials characterization and electronic structure studies. PMID:17228903

  3. Parallel-plate RF resonator imaging of chemical shift resolved capillary flow.

    PubMed

    Zhang, Jing; Balcom, Bruce J

    2010-07-01

    Magnetic resonance imaging has been introduced to study flow in microchannels using pure phase spatial encoding with a microfabricated parallel-plate nuclear magnetic resonance (NMR) probe. The NMR probe and pure phase spatial encoding enhance the sensitivity and resolution of the measurement. In this paper, (1)H NMR spectra and images were acquired at 100 MHz. The B(1) magnetic field is homogeneous and the signal-to-noise ratio of 30 microl doped water for a single scan is 8x10(4). The high sensitivity of the probe enables velocity mapping of the fluids in the micro-channel with a spatial resolution of 13x13 microm. The parallel-plate probe with pure phase encoding permits the acquisition of NMR spectra; therefore, chemical shift resolved velocity mapping was also undertaken. Results are presented which show separate velocity maps for water and methanol flowing through a straight circular micro-channel. Finally, future performance of these techniques for the study of microfluidics is extrapolated and discussed. PMID:20444567

  4. Heterogeneous living donor hepatic fat distribution on MRI chemical shift imaging

    PubMed Central

    Choi, YoungRok; Lee, Jeong Min; Yi, Nam-Joon; Kim, Hyeyoung; Park, Min-Su; Hong, Geun; Yoo, Tae; Suh, Suk-Won; Lee, Hae Won; Lee, Kwang-Woong

    2015-01-01

    Purpose We evaluated the heterogeneity of steatosis in living donor livers to determine its regional differences. Methods Between June 2011 and February 2012, 81 liver donors were selected. Fat fraction was estimated using magnetic resonance triple-echo chemical shifting gradient imaging in 13 different regions: segment 1 (S1), S2, S3, and each peripheral and deep region of S4, S5, S6, S7, and S8. Results There were differences (range, 3.2%-5.3%) in fat fractions between each peripheral and deep region of S4, S6, S7, and S8 (P < 0.001, P = 0.004, P < 0.001, and P = 0.006). Fat deposit amount in S1, S2, S3 and deep regions of S4-S8 were significantly different from one another (F [4.003, 58.032] = 8.684, P < 0.001), while there were no differences among the peripheral regions of S4-S8 (F [2.9, 5.3] = 1.3, P = 0.272) by repeated measure analysis of variance method. And regional differences of the amount of fat deposit in the whole liver increased as a peripheral fat fraction of S5 increased (R2 = 0.428, P < 0.001). Conclusion Multifocal fat measurements for the whole liver are needed because a small regional evaluation might not represent the remaining liver completely, especially in patients with severe hepatic steatosis. PMID:26131443

  5. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:26493308

  6. Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates.

    PubMed

    Kida, Masato; Sakagami, Hirotoshi; Takahashi, Nobuo; Nagao, Jiro

    2013-05-23

    The solid-state (13)C NMR spectra of various guest hydrocarbons (methane, ethane, propane, adamantane) in clathrate hydrates were measured to elucidate the local structural environments around hydrocarbon molecules isolated in guest-host frameworks of clathrate hydrates. The results show that, depending on the cage environment, the trends in the (13)C chemical shift and line width change as a function of temperature. Shielding around the carbons of the guest normal alkanes in looser cage environments tends to decrease with increasing temperature, whereas shielding in tighter cage environments tends to increase continuously with increasing temperature. Furthermore, the (13)C NMR line widths suggest, because of the reorientation of the guest alkanes, that the local structures in structure II are more averaged than those in structure I. The differences between structures I and II tend to be very large in the lower temperature range examined in this study. The (13)C NMR spectra of adamantane guest molecules in structure H hydrate show that the local structures around adamantane guests trapped in structure H hydrate cages are averaged at the same level as in the α phase of solid adamantane. PMID:23607335

  7. Light ion irradiation creep of Textron SCS-6™ silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.; Lesueur, D.

    2002-12-01

    Creep tests were conducted in torsion on Textron SCS-6™ fibers during an irradiation with light ions in the temperature range 500-1000 °C for doses up to 0.16 dpa. The fibers produced by chemical vapor deposition have a similar structure as a silicon carbide composite matrix produced by chemical vapor infiltration. At 600 °C, the irradiation creep curves were characterized by a continuous drop in creep rate with dose. There was approximately a square root relationship between irradiation creep strain and dose. The creep rate was a linear function of stress. On a decrease in temperature the creep rate increased. At 1000 °C, the creep rate dropped only slightly with dose and decreased if the temperature was lowered. The results are discussed in terms of concentration and mobility of point defects and the change of these quantities with temperature.

  8. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    PubMed

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases. PMID:23398371

  9. Nickel Complexes of a Binucleating Ligand Derived from an SCS Pincer

    SciTech Connect

    Peterson, Sonja M.; Helm, Monte L.; Appel, Aaron M.

    2015-01-01

    A binucleating ligand has been prepared that contains an SCS pincer and three oxygen donor ligands in a partial crown ether loop. To enable metalation with Ni0, a bromoarene precursor was used and resulted in the formation of a nickel-bromide complex in the SCS pincer. Reaction of the nickel complex with a lithium salt yielded a heterobimetallic complex with bromide bridging the two metal centers. The solid-state structures were determined for this heterobimetallic complex and the nickel-bromide precursor, and the two complexes were characterized electrochemically to determine the influence of coordinating the second metal. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  10. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study.

    PubMed

    Garay, Pablo G; Martin, Osvaldo A; Scheraga, Harold A; Vila, Jorge A

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results. PMID:27547559

  11. Detection of methylation, acetylation and glycosylation of protein residues by monitoring 13C chemical-shift changes: A quantum-chemical study

    PubMed Central

    Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.

    2016-01-01

    Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using 13C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the 13C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used 13C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the 13Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable 13C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results. PMID:27547559

  12. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches

    SciTech Connect

    Burns, Lori A.; Marshall, Michael S.; Sherrill, C. David

    2014-12-21

    A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance.

  13. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  14. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    USGS Publications Warehouse

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  15. Benchmark fragment-based (1)H, (13)C, (15)N and (17)O chemical shift predictions in molecular crystals.

    PubMed

    Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O

    2016-08-21

    The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490

  16. X-Ray Photoelectron and Anger Electron Spectroscopic Studies of Chemical Shifts in Amorphous Ge-Se System

    NASA Astrophysics Data System (ADS)

    Ueno, Tokihiro

    1983-09-01

    The chemical shifts of the Ge 3d, 3p3/2,1/2 and Se 3d, 3p3/2,1/2 photoelectron lines were measured for the amorphous Ge-Se system and those of the Ge photoelectron lines are corrected for Auger parameter shifts. According to the valence shell potential model, the ratio of the chemical shift in the amorphous Ge-Se system to that in stoichiometric GeSe2 can be approximated by the ratio of the Ge-Se bond number in the Ge-Se system to that in GeSe2. The chemical shift ratios evaluated from the experimental results reveal bond structures at non-stoichiometric compositions. In the excess-Ge range, GeSe is composed of atomic clusters of three-fold co-ordinated Ge and Se atoms, and Ge2Se3 contains atomic clusters of Se3Ge-GeSe3 units. In the excess-Se range, GeSe3 includes GeSe4 tetrahedral units, and Se-Se chains and/or Se8 rings.

  17. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  18. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    NASA Astrophysics Data System (ADS)

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  19. Deuterium-induced isotope effects on the 13C chemical shifts of α-D-glucose pentaacetate.

    PubMed

    Pérez-Hernández, Nury; Álvarez-Cisneros, Celina; Cerda-García-Rojas, Carlos M; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2013-03-01

    1,2,3,4,6-Penta-O-acetyl-α-D-glucopyranose and the corresponding [1-(2)H], [2-(2)H], [3-(2)H], [4-(2)H], [5-(2)H], and [6,6-(2)H(2)]-labeled compounds were prepared for measuring deuterium/hydrogen-induced effects on (13)C chemical shift (n)Δ (DHIECS) values. A conformational analysis of the nondeuterated compound was achieved using density functional theory (DFT) molecular models that allowed calculation of several structural properties as well as Boltzmann-averaged (13)C NMR chemical shifts by using the gauge-including atomic orbital method. It was found that the DFT-calculated C-H bond lengths correlate with (1)Δ DHIECS. PMID:23315885

  20. Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes?

    NASA Astrophysics Data System (ADS)

    Osuna, Sílvia; Poater, Jordi; Bofill, Josep M.; Alemany, Pere; Solà, Miquel

    2006-09-01

    We have analyzed the change of local aromaticity in a series of polyfluorene compounds with the increase of the number of π-stacked layers. The local aromaticity of the aromatic and non-aromatic rings of polyfluorenes remains unchanged when going from one to four layers of π-stacked rings according to HOMA, PDI, and FLU aromaticity descriptors. On the contrary, experimental 1H NMR chemical shifts indicate a reduction of the aromaticity of π-stacked rings with the increase of the number of layers. Calculated NICS also show a change of aromaticity, but opposite to the tendency given by the 1H NMR chemical shifts. We show that this increase (decrease) of local aromaticity in superimposed aromatic rings indicated by NICS ( 1H NMR) is not real but the result of the coupling between the magnetic fields generated by the π-stacked rings.

  1. De novo structure generation using chemical shifts for proteins with high-sequence identity but different folds

    PubMed Central

    Shen, Yang; Bryan, Philip N; He, Yanan; Orban, John; Baker, David; Bax, Ad

    2010-01-01

    Proteins with high-sequence identity but very different folds present a special challenge to sequence-based protein structure prediction methods. In particular, a 56-residue three-helical bundle protein (GA95) and an α/β-fold protein (GB95), which share 95% sequence identity, were targets in the CASP-8 structure prediction contest. With only 12 out of 300 submitted server-CASP8 models for GA95 exhibiting the correct fold, this protein proved particularly challenging despite its small size. Here, we demonstrate that the information contained in NMR chemical shifts can readily be exploited by the CS-Rosetta structure prediction program and yields adequate convergence, even when input chemical shifts are limited to just amide 1HN and 15N or 1HN and 1Hα values. PMID:19998407

  2. Computer programming for nucleic acid studies. II. Total chemical shifts calculation of all protons of double-stranded helices.

    PubMed

    Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O

    1981-01-01

    A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects. PMID:6274583

  3. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 6: Study issues report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload specialists and mission specialists to operate the wide variety of experiments that will be on-board the Freedom Space Station. This simulation Computer System (SCS) study issues report summarizes the analysis and study done as task 1-identify and analyze the CSC study issues- of the SCS study contract.This work was performed over the first three months of the SCS study which began in August of 1988. First issues were identified from all sources. These included the NASA SOW, the TRW proposal, and working groups which focused the experience of NASA and the contractor team performing the study-TRW, Essex, and Grumman. The final list is organized into training related issues, and SCS associated development issues. To begin the analysis of the issues, a list of all the functions for which the SCS could be used was created, i.e., when the computer is turned on, what will it be doing. Analysis was continued by creating an operational functions matrix of SCS users vs. SCS functions to insure all the functions considered were valid, and to aid in identification of users as the analysis progressed. The functions will form the basis for the requirements, which are currently being developed under task 3 of the SCS study.

  4. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.

  5. On reasons of 29Si NMR chemical shift/structure relations for silicon oxides, nitrides, and carbides: an individual-gauge-for-localized-orbitals study.

    PubMed

    Wolff, R; Jancke, H; Radeglia, R

    1997-12-01

    For alpha-quartz, monoclinic ZSM-5, alpha- and beta-Si3N4 and SiC-6H polytype, the silicon chemical shifts have been calculated using the IGLO (individual gauge for localized orbitals) method and models of different size in real crystal geometry. The result is a theoretical chemical shift scale, which is very similar to the corresponding experimental scale from 29Si MAS NMR experiments. It is shown that the assignment of isotropic silicon chemical shifts of crystallized solids based on theory is a method of practical applicability, also in cases where experimental methods or empirical relations fail. The two NMR spectral lines of alpha-Si3N4 are for the first time assigned to the crystallographic positions. The partition of the silicon chemical shifts into localized contributions from different parts of the model allows insight into the interactions around the resonance nucleus due to substituent and geometry variations leading to silicon chemical shifts. PMID:9477448

  6. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra

    PubMed Central

    Peng, Chen; Unger, Stephen W.; Filipp, Fabian V.; Sattler, Michael; Szalma, Sándor

    2016-01-01

    This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14 residues, Kd = ~ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET) algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen, for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand interaction experiments. PMID:15243180

  7. Cellular thermal shift and clickable chemical probe assays for the determination of drug-target engagement in live cells.

    PubMed

    Xu, Hua; Gopalsamy, Ariamala; Hett, Erik C; Salter, Shores; Aulabaugh, Ann; Kyne, Robert E; Pierce, Betsy; Jones, Lyn H

    2016-07-14

    Proof of drug-target engagement in physiologically-relevant contexts is a key pillar of successful therapeutic target validation. We developed two orthogonal technologies, the cellular thermal shift assay (CETSA) and a covalent chemical probe reporter approach (harnessing sulfonyl fluoride tyrosine labeling and subsequent click chemistry) to measure the occupancy of the mRNA-decapping scavenger enzyme DcpS by a small molecule inhibitor in live cells. Enzyme affinity determined using isothermal dose response fingerprinting (ITDRFCETSA) and the concentration required to occupy 50% of the enzyme (OC50) using the chemical probe reporter assay were very similar. In this case, the chemical probe method worked well due to the long offset kinetics of the reversible inhibitor (determined using a fluorescent dye-tagged probe). This work suggests that CETSA could become the first choice assay to determine in-cell target engagement due to its simplicity. PMID:27216142

  8. Sub-electron-volt chemical shifts and strong interference effects measured in the resonance x-ray scattering spectra of aniline

    SciTech Connect

    Luo, Y.; Agren, H.; Guo, J.; Skytt, P.; Wassdahl, N.; Nordgren, J.

    1995-11-01

    By exploring the monosubstituted benzene compound aniline, we demonstrate that resonance inelastic x-ray spectroscopy of chemically shifted species is {ital site} {ital selective}. Core-excited levels with distinct, super-electron-volt shifts can be resonantly excited and their x-ray emission spectra analyzed separately. Core-excited levels referring to sites with small, sub-electron-volt, chemical shifts give resonant x-ray spectra that interfere strongly. It is demonstrated that this interference, which is manifested in the one-step model, can be used to monitor chemical shifts in the sub-electron-volt energy region. We show that in the limit when these chemical shifts go to zero some salient symmetry-selective features of the benzene resonant x-ray emission spectrum are restored in the aniline spectra.

  9. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean

    PubMed Central

    Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961

  10. Evolution of the SCS curve number method and its applications to continuous runoff simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Natural Resources Conservation Service (NRCS) [previously Soil Conservation Service (SCS)] developed the SCS runoff curve-number (CN) method for estimating direct runoff from storm rainfall. The NRCS uses the CN method for designing structures and for evaluating their effectiveness. Structural...

  11. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    PubMed

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation. PMID:24752730

  12. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated. PMID:27335085

  13. 13C and 15N—Chemical Shift Anisotropy of Ampicillin and Penicillin-V Studied by 2D-PASS and CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Antzutkin, Oleg N.; Lee, Young K.; Levitt, Malcolm H.

    1998-11-01

    The principal values of the chemical shift tensors of all13C and15N sites in two antibiotics, ampicillin and penicillin-V, were determined by 2-dimensionalphaseadjustedspinningsideband (2D-PASS) and conventional CP/MAS experiments. The13C and15N chemical shift anisotropies (CSA), and their confidence limits, were evaluated using a Mathematica program. The CSA values suggest a revised assignment of the 2-methyl13C sites in the case of ampicillin. We speculate on a relationship between the chemical shift principal values of many of the13C and15N sites and the β-lactam ring conformation.

  14. Influence of the chemical shift artifact on measurements of compact bone thickness in equine distal limb MR images.

    PubMed

    Dimock, Abigail N; Spriet, Mathieu

    2010-01-01

    The effect of the chemical shift artifact, resulting from misregistration or phase cancellation at the interface between compact and trabecular bone, on apparent bone thickness was quantified in six isolated equine limbs. Sagittal T1-weighted spin echo (SE) and in-phase three-dimensional spoiled gradient echo (SPGR) images were acquired twice with a 1.5 T magnetic resonance (MR) unit, switching the frequency encoding direction between acquisitions. Out-of-phase SPGR images were also obtained. MR images with different frequency encoding directions were compared with each other and to radiographs made from corresponding 3-mm-bone sections. Compact bone thickness was significantly different when comparing images acquired with different frequency encoding directions for both SE and SPGR sequences. Significant differences were identified in the frequency but not the phase encoding direction when measurements of compact bone in MR images were compared with measurements obtained from thin section radiographs for the majority of surfaces studied (P < 0.05). Correction of MR measurements with the calculated chemical shift abolished these differences (P > 0.05). Measurements of compact bone from out-of-phase SPGR sequences were significantly different than from in-phase sequences (P < 0.001) with out-of-phase measurements greater than in-phase measurements by an average of 0.38mm. These results indicate that the chemical shift artifact results in errors in MR evaluation of compact bone thickness when measurements are performed in the frequency encoding direction or in out-of-phase images. For better accuracy, measurements should be performed parallel to the phase encoding direction and avoiding out-of-phase gradient echo sequences. PMID:20806873

  15. Chemical shift and zone-folding effects on the energy gaps of GaAs-AlAs (001) superlattices

    SciTech Connect

    Zhang, S.B. Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304 ); Cohen, M.L.; Louie, S.G. )

    1991-04-15

    The chemical shift and zone-folding effects obtained from quasiparticle calculations for ultrathin GaAs-AlAs superlattices are incorporated within a Kronig-Penny model for superlattices of the arbitrary lattice period. We determine that superlattices with lattice periods in the range of 3{times}3 to 9{times}9 have an {ital X}-derived pseudodirect gap. This result explains both the results from first-principles calculations for ultrathin superlattices and those from experiments for a broader lattice period.

  16. A multiple pulse zero crossing NMR technique, and its application to F-19 chemical shift measurements in solids

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.-K.

    1978-01-01

    A simple multiple-pulse 'zero crossing technique' for accurately determining the first moment of a solid-state NMR spectrum is introduced. This technique was applied to obtain the F-19 chemical shift versus pressure curves up to 5 kbar for single crystals of CaF2 (0.29 + or - 0.02 ppm/kbar) and BaF2 (0.62 + or - 0.05 ppm/kbar). Results at ambient temperature and pressure are also reported for a number of other fluorine compounds. Because of its high data rate, this technique is potentially several orders of magnitude more sensitive than similar CW methods.

  17. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites. PMID:26963288

  18. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    PubMed

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding. PMID:17054116

  19. 13C and 199Hg nuclear magnetic resonance spectroscopic study of alkenemercurinium ions: Effect of methyl substituents on 199Hg chemical shifts

    PubMed Central

    Olah, George A.; Garcia-Luna, Armando

    1980-01-01

    The long-lived ethylene, cyclohexene, and norbornenemercurinium ions prepared in superacidic, low-nucleophilic media have been studied by 13C and 199Hg NMR spectroscopy. The norbornenemercurinium ion shows temperature-dependent 13C and 199Hg NMR spectra, consistent with equilibration via rapid hydride and Wagner-Meerwin shifts. The 199Hg NMR shifts of a series of alkylmercury bromides were also obtained in order to elucidate the effect of methyl substituents on 199Hg NMR chemical shifts. PMID:16592870

  20. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. PMID:27237841

  1. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints

    PubMed Central

    2015-01-01

    Knowledge of RNA structure is necessary to determine structure–function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5′ to 3′ directionality of base pairs in helices. The 5′ to 3′ directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure. PMID:26451676

  2. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  3. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  4. Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping.

    PubMed

    Dong, Jianwu; Liu, Tian; Chen, Feng; Zhou, Dong; Dimov, Alexey; Raj, Ashish; Cheng, Qiang; Spincemaille, Pascal; Wang, Yi

    2015-02-01

    Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique that reveals tissue magnetic susceptibility. It relies on having a high quality field map, typically acquired with a relatively long echo spacing and long final TE. Applications of QSM outside the brain require the removal of fat contributions to the total signal phase. However, current water/fat separation methods applied on typical data acquired for QSM suffer from three issues: inadequacy when using large echo spacing, over-smoothing of the field maps and high computational cost. In this paper, the general phase wrap and chemical shift problem is formulated using a single species fitting and is solved using graph cuts with conditional jump moves. This method is referred as simultaneous phase unwrapping and removal of chemical shift (SPURS). The result from SPURS is then used as the initial guess for a voxel-wise iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL). The estimated 3-D field maps are used to compute QSM in body regions outside of the brain, such as the liver. Experimental results show substantial improvements in field map estimation, water/fat separation and reconstructed QSM compared to two existing water/fat separation methods on 1.5T and 3T magnetic resonance human data with long echo spacing and rapid field map variation. PMID:25312917

  5. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  6. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  7. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.

    PubMed Central

    Schmiedeskamp, M.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis. PMID:9300483

  8. Observation of Optical Chemical Shift by Precision Nuclear Spin Optical Rotation Measurements and Calculations.

    PubMed

    Shi, Junhui; Ikäläinen, Suvi; Vaara, Juha; Romalis, Michael V

    2013-02-01

    Nuclear spin optical rotation (NSOR) is a recently developed technique for detection of nuclear magnetic resonance via rotation of light polarization, instead of the usual long-range magnetic fields. NSOR signals depend on hyperfine interactions with virtual optical excitations, giving new information about the nuclear chemical environment. We use a multipass optical cell to perform the first precision measurements of NSOR signals for a range of organic liquids and find clear distinction between proton signals for different compounds, in agreement with our earlier theoretical predictions. Detailed first-principles quantum mechanical NSOR calculations are found to be in agreement with the measurements. PMID:26281737

  9. Shifting chemical equilibria in flow--efficient decarbonylation driven by annular flow regimes.

    PubMed

    Gutmann, Bernhard; Elsner, Petteri; Glasnov, Toma; Roberge, Dominique M; Kappe, C Oliver

    2014-10-20

    To efficiently drive chemical reactions, it is often necessary to influence an equilibrium by removing one or more components from the reaction space. Such manipulation is straightforward in open systems, for example, by distillation of a volatile product from the reaction mixture. Herein we describe a unique high-temperature/high-pressure gas/liquid continuous-flow process for the rhodium-catalyzed decarbonylation of aldehydes. The carbon monoxide released during the reaction is carried with a stream of an inert gas through the center of the tubing, whereas the liquid feed travels as an annular film along the wall of the channel. As a consequence, carbon monoxide is effectively vaporized from the liquid phase into the gas phase and stripped from the reaction mixture, thus driving the equilibrium to the product and preventing poisoning of the catalyst. This approach enables the catalytic decarbonylation of a variety of aldehydes with unprecedented efficiency with a standard coil-based flow device. PMID:25196172

  10. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift

    NASA Astrophysics Data System (ADS)

    Tizei, L. H. G.; Chiaramonte, T.; Cotta, M. A.; Ugarte, D.

    2010-07-01

    We have studied the assessment of chemical composition changes in III-V heterostructured semiconductor nanowires (NWs) with nanometric spatial resolution using transmission electron microscopy methods. These materials represent a challenge for conventional spectroscopy techniques due to their high sensitivity to electron beam irradiation. Radiation damage strongly limits the exposure time to a few (5-10) s, which reduces the sensitivity of the traditionally used x-ray spectroscopy. The rather low counting statistics results in significant errors bars for EDS chemical quantification (5-10%) and interface width determination (few nanometers). Plasmon chemical shift is ideal in this situation, as its measurement requires very short exposure times (~100 ms) and the plasmon peak energy can be measured with high precision (~20 meV in this work). This high sensitivity allows the detection of subtle changes (1-2%) in composition or even the detection of a small plasmon energy (33 ± 7) meV change along usually assumed pure and homogeneous InAs segments. We have applied this approach to measure interface widths in heterostructure InAs/InP NWs grown using metal catalysts and also to determine the timescale (~10 s) in which beam irradiation induces material damage in these wires. In particular, we have detected small As concentrations (4.4 ± 0.5)% in the final InP segment close to the Au catalyst, which leads to the conclusion that As diffuses through the metal nanoparticle during growth.

  11. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift.

    PubMed

    Tizei, L H G; Chiaramonte, T; Cotta, M A; Ugarte, D

    2010-07-23

    We have studied the assessment of chemical composition changes in III-V heterostructured semiconductor nanowires (NWs) with nanometric spatial resolution using transmission electron microscopy methods. These materials represent a challenge for conventional spectroscopy techniques due to their high sensitivity to electron beam irradiation. Radiation damage strongly limits the exposure time to a few (5-10) s, which reduces the sensitivity of the traditionally used x-ray spectroscopy. The rather low counting statistics results in significant errors bars for EDS chemical quantification (5-10%) and interface width determination (few nanometers). Plasmon chemical shift is ideal in this situation, as its measurement requires very short exposure times (approximately 100 ms) and the plasmon peak energy can be measured with high precision (approximately 20 meV in this work). This high sensitivity allows the detection of subtle changes (1-2%) in composition or even the detection of a small plasmon energy (33 +/- 7) meV change along usually assumed pure and homogeneous InAs segments. We have applied this approach to measure interface widths in heterostructure InAs/InP NWs grown using metal catalysts and also to determine the timescale (approximately 10 s) in which beam irradiation induces material damage in these wires. In particular, we have detected small As concentrations (4.4 +/- 0.5)% in the final InP segment close to the Au catalyst, which leads to the conclusion that As diffuses through the metal nanoparticle during growth. PMID:20585172

  12. Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wu, Yi fang; Wang, Xue liang

    2014-01-01

    We report here theoretical and experimental studies on the molecular structure and vibrational and NMR spectra of both natural enmein type diterpenoids molecule (6, 7-seco-ent-kaurenes enmein type), isolated from the leaves of Isodon japonica (Burm.f.) Hara var. galaucocalyx (maxin) Hara. The optimized geometry, total energy, NMR chemical shifts and vibrational wavenumbers of epinodosinol and epinodosin have been determined using B3LYP method with 6-311G (d,p) basis set. A complete vibrational assignment is provided for the observed IR spectra of studied compounds. The calculated wavenumbers and 13C c.s. are in an excellent agreement with the experimental values. Quantum chemical calculations at the B3LYP/6-311G (d,p) level of theory have been carried out on studied compounds to obtain a set of molecular electronic properties (MEP,HOMO, LUMO and gap energies ΔEg). Electrostatic potential surfaces have been mapped over the electron density isosurfaces to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecules.

  13. Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study.

    PubMed

    Wang, Tao; Wu, Yi fang; Wang, Xue liang

    2014-01-01

    We report here theoretical and experimental studies on the molecular structure and vibrational and NMR spectra of both natural enmein type diterpenoids molecule (6, 7-seco-ent-kaurenes enmein type), isolated from the leaves of Isodon japonica (Burm.f.) Hara var. galaucocalyx (maxin) Hara. The optimized geometry, total energy, NMR chemical shifts and vibrational wavenumbers of epinodosinol and epinodosin have been determined using B3LYP method with 6-311G (d,p) basis set. A complete vibrational assignment is provided for the observed IR spectra of studied compounds. The calculated wavenumbers and 13C c.s. are in an excellent agreement with the experimental values. Quantum chemical calculations at the B3LYP/6-311G (d,p) level of theory have been carried out on studied compounds to obtain a set of molecular electronic properties (MEP,HOMO, LUMO and gap energies ΔEg). Electrostatic potential surfaces have been mapped over the electron density isosurfaces to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecules. PMID:24013676

  14. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.

  15. Beyond the SCS curve number: A new stochastic spatial runoff approach

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S., Jr.; Parolari, A.; McDonnell, J.; Porporato, A. M.

    2015-12-01

    The Soil Conservation Service curve number (SCS-CN) method is the standard approach in practice for predicting a storm event runoff response. It is popular because its low parametric complexity and ease of use. However, the SCS-CN method does not describe the spatial variability of runoff and is restricted to certain geographic regions and land use types. Here we present a general theory for extending the SCS-CN method. Our new theory accommodates different event based models derived from alternative rainfall-runoff mechanisms or distributions of watershed variables, which are the basis of different semi-distributed models such as VIC, PDM, and TOPMODEL. We introduce a parsimonious but flexible description where runoff is initiated by a pure threshold, i.e., saturation excess, that is complemented by fill and spill runoff behavior from areas of partial saturation. To facilitate event based runoff prediction, we derive simple equations for the fraction of the runoff source areas, the probability density function (PDF) describing runoff variability, and the corresponding average runoff value (a runoff curve analogous to the SCS-CN). The benefit of the theory is that it unites the SCS-CN method, VIC, PDM, and TOPMODEL as the same model type but with different assumptions for the spatial distribution of variables and the runoff mechanism. The new multiple runoff mechanism description for the SCS-CN enables runoff prediction in geographic regions and site runoff types previously misrepresented by the traditional SCS-CN method. In addition, we show that the VIC, PDM, and TOPMODEL runoff curves may be more suitable than the SCS-CN for different conditions. Lastly, we explore predictions of sediment and nutrient transport by applying the PDF describing runoff variability within our new framework.

  16. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    PubMed

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds. PMID:24655374

  17. Non‐invasive Localization of Thymol Accumulation in Carum copticum (Apiaceae) Fruits by Chemical Shift Selective Magnetic Resonance Imaging

    PubMed Central

    GERSBACH, P. V.; REDDY, N.

    2002-01-01

    Magnetic resonance imaging was used to localize the site of essential oil accumulation in fruit of Carum copticum L. (Apiaceae). A chemical shift method is described that utilized the spectral properties of the aromatic monoterpene thymol, the major component of the essential oil, to image thymol selectively. The presence of essential oil secretory structures in the fruit and an essential oil containing a high proportion of thymol were confirmed with optical microscopy and gas chromatography‐mass spectrometry, respectively. Selective imaging of whole C. copticum fruits showed that thymol accumulation was localized to the secretory structures (canals) situated in the fruit wall. The technique was considered non‐invasive as the seeds used in the imaging experiments remained intact and viable. PMID:12197523

  18. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    PubMed

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W. PMID:24496608

  19. 13C and 1H chemical shift assignments and conformation confirmation of trimedlure-Y via 2-D NMR

    NASA Astrophysics Data System (ADS)

    Warthen, J. D.; Waters, R. M.; McGovern, T. P.

    The conformation of 1,1-dimethylethyl 5-chloro- cis-2-methylcyclohexane-1-carboxylate (trimedlure-Y) was confirmed as 1,2,5 equatorial, axial, equatorial via 13C, 1H, APT, CSCM and COSY NMR analyses. The carbon and proton nuclei in trimedlure-Y and the previously unassigned eight cyclohexyl protons (1.50-2.60 ppm) in 1,1-dimethylethyl 5-chloro- trans-2-methylcyclohexane-1-carboxylate (trimedlure-B 1; 1,2,5 equatorial, equatorial, equatorial) were also characterized by these methods. The effects of the 2-CH 3 in the axial or equatorial conformation upon the chemical shifts of the other nuclei in the molecule are discussed.

  20. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    PubMed

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  1. Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction

    NASA Astrophysics Data System (ADS)

    Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael

    2015-05-01

    A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.

  2. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof; Daszkiewicz, Zdzislaw; Sauer, Stephan P A

    2013-10-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory, and their (13) C nuclear magnetic resonance (NMR) isotropic shieldings were predicted using density functional theory (DFT). The model compounds contained 9H, N-methyl and N-ethyl derivatives. The relativistic effect of Br and I atoms on nuclear shieldings was modeled using the spin-orbit zeroth-order regular approximation (ZORA) method. Significant heavy atom shielding effects for the carbon atom directly bonded with Br and I were observed (~-10 and ~-30 ppm while the other carbon shifts were practically unaffected). The decreasing electronegativity of the halogen substituent (F, Cl, Br, and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions of the carbazole ring. The predicted NMR data correctly reproduce the available experimental data for unsubstituted N-alkylcarbazoles. PMID:23922027

  3. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-01

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools. PMID:27273377

  4. SLUDGE PARTICLE SEPAPATION EFFICIENCIES DURING SETTLER TANK RETRIEVAL INTO SCS-CON-230

    SciTech Connect

    DEARING JI; EPSTEIN M; PLYS MG

    2009-07-16

    The purpose of this document is to release, into the Hanford Document Control System, FA1/0991, Sludge Particle Separation Efficiencies for the Rectangular SCS-CON-230 Container, by M. Epstein and M. G. Plys, Fauske & Associates, LLC, June 2009. The Sludge Treatment Project (STP) will retrieve sludge from the 105-K West Integrated Water Treatment System (IWTS) Settler Tanks and transfer it to container SCS-CON-230 using the Settler Tank Retrieval System (STRS). The sludge will enter the container through two distributors. The container will have a filtration system that is designed to minimize the overflow of sludge fines from the container to the basin. FAI/09-91 was performed to quantify the effect of the STRS on sludge distribution inside of and overflow out of SCS-CON-230. Selected results of the analysis and a system description are discussed. The principal result of the analysis is that the STRS filtration system reduces the overflow of sludge from SCS-CON-230 to the basin by roughly a factor of 10. Some turbidity can be expected in the center bay where the container is located. The exact amount of overflow and subsequent turbidity is dependent on the density of the sludge (which will vary with location in the Settler Tanks) and the thermal gradient between the SCS-CON-230 and the basin. Attachment A presents the full analytical results. These results are applicable specifically to SCS-CON-230 and the STRS filtration system's expected operating duty cycles.

  5. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    PubMed

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts. PMID:27488185

  6. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  7. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  8. Correlation between the Temperature Dependence of Intrsinsic Mr Parameters and Thermal Dose Measured by a Rapid Chemical Shift Imaging Technique

    PubMed Central

    Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2011-01-01

    In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063

  9. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    PubMed

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique. PMID:25113928

  10. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  11. Inverted cucurbit[n]urils: density functional investigations on the electronic structure, electrostatic potential, and NMR chemical shifts.

    PubMed

    Pinjari, Rahul V; Gejji, Shridhar P

    2009-02-19

    Inverted cucurbit[n]uril (i(x)CB[n], x = 1, 2; n = 6-8), the enantiomers of cucurbit[n]uril (CB[n]) comprising one or more inverted glycouril units, show distinct selectivity in recognition toward the guest by the virtue of shape and dimensions of its cavity. The iCB[n] (x = 1 and n = 6, 7) are isolated as intermediates during the synthesis of CB[n]. In this work, density functional theory using the hybrid B3LYP functional has been employed to derive the electronic structure and the NMR chemical shifts in the i(x)CB[n] hosts. The present calculations have shown that the inversion of the glycouril unit of CB[6] and CB[7] engenders a destabilization by 4.2 and 5.7 kJ mol(-1), respectively, and, as opposed to this, the iCB[8] is favored by 18.6 kJ mol(-1) over the corresponding CB[8] host. Likewise, i2CB[7] possessing two inverted glycourils are highly destabilized over CB[7]. A large separation of the inverted glycouril units reduces the repulsion between methine protons inside the cavity, rendering the 1,4-i2CB[n] (n = 7 or 8) to be of lowest energy. Stabilization energies from the self-consistent reaction field (SCRF) theory are calculated with water, ethanol, and tetrahydrofuran (THF) as solvents. Unlike in gas phase and other solvents, the stabilization hierarchy iCB[6] < iCB[7] < iCB[8] has been predicted in THF. Molecular electrostatic potential (MESP) was used to gauge the cavity shape of these hosts. Consequently the iCB[6] reveals a half-sprocket-like cavity; an additional tooth for each glycouril in the succeeding iCB[n] homologue was noticed. In the case of the 1,5-i2CB[8] enantiomer, the cavity turns out to be rectangular. The deeper MESP minima near the ureido oxygens suggest strong electrostatic interactions with the guest at the iCB[6] portals. The electron-rich region within the cavity explains the large affinity of CB[n] toward the electron deficient guests. The electronic distribution and shape and size of the cavity thus derived provide insights

  12. Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration.

    PubMed

    Widdifield, Cory M; Moudrakovski, Igor; Bryce, David L

    2014-07-14

    Calcium is the 5th most abundant element on earth, and is found in numerous biological tissues, proteins, materials, and increasingly in catalysts. However, due to a number of unfavourable nuclear properties, such as a low magnetogyric ratio, very low natural abundance, and its nuclear electric quadrupole moment, development of solid-state (43)Ca NMR has been constrained relative to similar nuclides. In this study, 12 commonly-available calcium compounds are analyzed via(43)Ca solid-state NMR and the information which may be obtained by the measurement of both the (43)Ca electric field gradient (EFG) and chemical shift tensors (the latter of which are extremely rare with only a handful of literature examples) is discussed. Combined with density functional theory (DFT) computations, this 'tensor interplay' is, for the first time for (43)Ca, illustrated to be diagnostic in distinguishing polymorphs (e.g., calcium formate), and the degree of hydration (e.g., CaCl2·2H2O and calcium tartrate tetrahydrate). For Ca(OH)2, we outline the first example of (1)H to (43)Ca cross-polarization on a sample at natural abundance in (43)Ca. Using prior knowledge of the relationship between the isotropic calcium chemical shift and the calcium quadrupolar coupling constant (CQ) with coordination number, we postulate the coordination number in a sample of calcium levulinate dihydrate, which does not have a known crystal structure. Natural samples of CaCO3 (aragonite polymorph) are used to show that the synthetic structure is present in nature. Gauge-including projector augmented-wave (GIPAW) DFT computations using accepted crystal structures for many of these systems generally result in calculated NMR tensor parameters which are in very good agreement with the experimental observations. This combination of (43)Ca NMR measurements with GIPAW DFT ultimately allows us to establish clear correlations between various solid-state (43)Ca NMR observables and selected structural parameters

  13. Contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the /sup 31/P NMR spectra of oxygenated erythrocyte suspensions

    SciTech Connect

    Kirk, K.; Kuchel, P.W.

    1988-01-05

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single /sup 31/P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular /sup 31/P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied) it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference is the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.

  14. DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers.

    PubMed

    Muñoz, Marcelo A; Joseph-Nathan, Pedro

    2009-07-01

    (1)H and (13)C NMR chemical shift calculations using the density functional theory-gauge including/invariant atomic orbitals (DFT-GIAO) approximation at the B3LYP/6-311G++(d,p) level of theory have been used to assign both natural diastereoisomers of 6beta-hydroxyhyoscyamine. The theoretical chemical shifts of the (1)H and (13)C atoms in both isomers were calculated using a previously determined conformational distribution, and the theoretical and experimental values were cross-compared. For protons, the obtained average absolute differences and root mean square (rms) errors for each comparison showed that the experimental chemical shifts of dextrorotatory and levorotatory 6beta-hydroxyhyoscyamines correlated well with the theoretical values calculated for the (3R,6R,2'S) and (3S,6S,2'S) configurations, respectively, whereas for (13)C atoms the calculations were unable to differentiate between isomers. The nature of the relatively large chemical shift differences observed in nuclei that share similar chemical environments between isomers was asserted from the same calculations. It is shown that the anisotropic effect of the phenyl group in the tropic ester moiety, positioned under the tropane ring, has a larger shielding effect over one ring side than over the other one. PMID:19373852

  15. The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions.

    PubMed

    Kirk, K; Kuchel, P W

    1988-01-01

    Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved. PMID:3275636

  16. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  17. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets.

    PubMed

    Fusch, C; Slotboom, J; Fuehrer, U; Schumacher, R; Keisker, A; Zimmermann, W; Moessinger, A; Boesch, C; Blum, J

    1999-10-01

    An animal study to evaluate dual-energy x-ray absorptiometry (DXA) and magnetic resonance (MR) imaging and spectroscopy for measurement of neonatal body composition was performed. Twenty-three piglets with body weights ranging from 848 to 7550 g were used. After measuring total body water, animals were killed and body composition was assessed using DXA and MR (1.5 T; MR imaging, T1-weighted sagittal spin-echo sequence; MR spectroscopy, three-dimensional chemical shift imaging) as well as chemical carcass analysis (standard methods) after homogenization. Body composition by chemical analysis (percent of body weight, mean +/- SD) was as follows: body water, 75.3 +/- 3.9%; total protein, 13.9 +/- 8.8%; and total fat, 6.5 +/- 3.7%. Absolute content of fat and total ash was 7-674 and 35-237 g, respectively. Mean hydration of fat-free mass was 0.804 +/- 0.011 g/kg and decreased with increasing body weight (r2 = 0.419) independent of age. Using DXA, bone mineral content was highly correlated with calcium content (r2 = 0.992), and calcium per bone mineral content was 44.1 +/- 4.2%. DXA fat mass correlated with total fat (r2 = 0.961). Using MR, spectroscopy and chemical analysis were highly correlated with fat-to-water ratio (r2 = 0.984) and absolute fat content (r2 = 0.988). Total fat by MR imaging volumetry showed a lower correlation (r2 = 0.913) and overestimated total fat by a factor of 2.46. Conversion equations for DXA were developed (total fat = 1.31 x fat mass measured by DXA--68.8; calcium = 0.402 x bone mineral content + 1.7), which improved precision and accuracy of DXA measurements. In conclusion, both DXA and MR spectroscopy give accurate and precise estimates of neonatal body composition and may become valuable tools for the noninvasive assessment of neonatal growth and nutritional status. PMID:10509370

  18. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    NASA Astrophysics Data System (ADS)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  19. Centerband-only analysis of rotor-unsynchronized spin echo for measurement of lipid (31) P chemical shift anisotropy.

    PubMed

    Umegawa, Yuichi; Yamaguchi, Toshiyuki; Murata, Michio; Matsuoka, Shigeru

    2015-07-01

    Structural diversity and molecular flexibility of phospholipids are essential for biological membranes to play key roles in numerous cellular processes. Uncovering the behavior of individual lipids in membrane dynamics is crucial for understanding the molecular mechanisms underlying biological functions of cell membranes. In this paper, we introduce a simple method to investigate dynamics of lipid molecules in multi-component systems by measuring the (31) P chemical shift anisotropy (CSA) under magic angle spinning (MAS) conditions. For achieving both signal separation and CSA determination, we utilized a centerband-only analysis of rotor-unsynchronized spin echo (COARSE). This analysis is based on the curve fitting of periodic modulation of centerband intensity along the interpulse delay time in rotor-unsynchronized spin-echo experiments. The utility of COARSE was examined by using phospholipid vesicles, a three-component lipid raft model system, and archaeal purple membranes. We found that the apparent advantages of this method are high resolution and high sensitivity given by the moderate MAS speed and the one-dimensional acquisition with short spin-echo delays. COARSE provides an alternative method for CSA measurement that is effective in the investigation of lipid polymorphologies. PMID:26017552

  20. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    PubMed

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory. PMID:25468435

  1. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  2. Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging

    PubMed Central

    Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed

    2014-01-01

    19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725

  3. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  4. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  5. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  6. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  7. Estimating the SCS runoff curve number in forest catchments of Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Tae; Kim, Jaehoon; Lim, Hong-geun

    2016-04-01

    To estimate flood runoff discharge is a very important work in design for many hydraulic structures in streams, rivers and lakes such as dams, bridges, culverts, and so on. So, many researchers have tried to develop better methods for estimating flood runoff discharge. The SCS runoff curve number is an empirical parameter determined by empirical analysis of runoff from small catchments and hillslope plots monitored by the USDA. This method is an efficient method for determining the approximate amount of runoff from a rainfall even in a particular area, and is very widely used all around the world. However, there is a quite difference between the conditions of Korea and USA in topography, geology and land use. Therefore, examinations in adaptability of the SCS runoff curve number need to raise the accuracy of runoff prediction using SCS runoff curve number method. The purpose of this study is to find the SCS runoff curve number based on the analysis of observed data from several experimental forest catchments monitored by the National Institute of Forest Science (NIFOS), as a pilot study to modify SCS runoff curve number for forest lands in Korea. Rainfall and runoff records observed in Gwangneung coniferous and broad leaves forests, Sinwol, Hwasoon, Gongju and Gyeongsan catchments were selected to analyze the variability of flood runoff coefficients during the last 5 years. This study shows that runoff curve numbers of the experimental forest catchments range from 55 to 65. SCS Runoff Curve number method is a widely used method for estimating design discharge for small ungauged watersheds. Therefore, this study can be helpful technically to estimate the discharge for forest watersheds in Korea with more accuracy.

  8. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  9. 13C NMR chemical shift correlations in application of “tool of increasing electron demand” to stable long-lived carbocations: Comprehensive evaluation*

    PubMed Central

    Olah, George A.; Berrier, Arthur L.; Prakash, G. K. Surya

    1981-01-01

    The reliability of 13C NMR chemical shift correlations in the application of the “tool of increasing electron demand” to stable long-lived carbocationic systems is demonstrated by a comprehensive analysis of 22 stable aryl-substituted carbocationic systems. The observation of slopes of less than unity in such chemical shift correlations for several cationic systems has been attributed to additional charge delocalizing mechanisms present in the system (such as homoallylic, cyclopropyl, and π conjugations). The onset of nonclassical σ-delocalization in 2-aryl-2-norbornyl cations with electron withdrawing-substituents previously observed was further verified by using σC+ substituent constants. Difficulties in relating the CαNMR shifts in different carbocationic systems are also discussed. PMID:16593000

  10. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.

    PubMed

    de Albuquerque, Ana Carolina Ferreira; Ribeiro, Daniel Joras; de Amorim, Mauro Barbosa

    2016-08-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for (13)C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes. PMID:27424297