Sample records for chemistry derived materials

  1. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives

    PubMed Central

    Bernard, Samuel; Miele, Philippe

    2014-01-01

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest. PMID:28788257

  2. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives.

    PubMed

    Bernard, Samuel; Miele, Philippe

    2014-11-21

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.

  3. Synthesis and chemistry of elemental 2D materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case formore » synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.« less

  4. Chemistry of electronic ceramic materials. Proceedings of the International Conference on the Chemistry of Electronic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Davies, P. K.; Roth, R. S.

    1991-01-01

    The conference was held at Jackson Hole, Wyoming from August 17 to 22, 1990, and in an attempt to maximize the development of this rapidly moving, multidisciplinary field, this conference brought together major national and international researchers to bridge the gap between those primarily interested in the pure chemistry of inorganic solids and those interested in the physical and electronic properties of ceramics. With the many major discoveries that have occurred over the last decade, one of the goals of this meeting was to evaluate the current understanding of the chemistry of electronic ceramic materials, and to assess the state of a field that has become one of the most important areas of advanced materials research. The topics covered include: crystal chemistry; dielectric ceramics; low temperature synthesis and characterization; solid state synthesis and characterization; surface chemistry; superconductors; theory and modeling.

  5. Computational materials chemistry for carbon capture using porous materials

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Huang, Runhong; Malani, Ateeque; Babarao, Ravichandar

    2017-11-01

    Control over carbon dioxide (CO2) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO2 capture are discussed.

  6. Physics and Chemistry of Earth Materials

    NASA Astrophysics Data System (ADS)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  7. Materials Chemistry of Nanoultrasonic Biomedicine.

    PubMed

    Tang, Hailin; Zheng, Yuanyi; Chen, Yu

    2017-03-01

    As a special cross-disciplinary research frontier, nanoultrasonic biomedicine refers to the design and synthesis of nanomaterials to solve some critical issues of ultrasound (US)-based biomedicine. The concept of nanoultrasonic biomedicine can also overcome the drawbacks of traditional microbubbles and promote the generation of novel US-based contrast agents or synergistic agents for US theranostics. Here, we discuss the recent developments of material chemistry in advancing the nanoultrasonic biomedicine for diverse US-based bio-applications. We initially introduce the design principles of novel nanoplatforms for serving the nanoultrasonic biomedicine, from the viewpoint of synthetic material chemistry. Based on these principles and diverse US-based bio-application backgrounds, the representative proof-of-concept paradigms on this topic are clarified in detail, including nanodroplet vaporization for intelligent/responsive US imaging, multifunctional nano-contrast agents for US-based multi-modality imaging, activatable synergistic agents for US-based therapy, US-triggered on-demand drug releasing, US-enhanced gene transfection, US-based synergistic therapy on combating the cancer and potential toxicity issue of screening various nanosystems suitable for nanoultrasonic biomedicine. It is highly expected that this novel nanoultrasonic biomedicine and corresponding high performance in US imaging and therapy can significantly promote the generation of new sub-discipline of US-based biomedicine by rationally integrating material chemistry and theranostic nanomedicine with clinical US-based biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  9. People Interview: Materials unite physics and chemistry

    NASA Astrophysics Data System (ADS)

    2011-05-01

    INTERVIEW Materials unite physics and chemistry Mark Miodownik is a materials scientist at King's College, London. David Smith talks to him about his career and his fascinating experiences of giving last year's Royal Institution Christmas Lectures.

  10. The Physics and Chemistry of Materials

    NASA Astrophysics Data System (ADS)

    Gersten, Joel I.; Smith, Frederick W.

    2001-06-01

    A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and

  11. Calcifying tissue regeneration via biomimetic materials chemistry

    PubMed Central

    Green, David W.; Goto, Tazuko K.; Kim, Kye-Seong; Jung, Han-Sung

    2014-01-01

    Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction–diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in ‘morphosynthesis’ of complex inorganic constructs. In the future, cellular construction is

  12. Hazardous Materials Chemistry for the Non-Chemist. Second Edition.

    ERIC Educational Resources Information Center

    Wray, Thomas K.; Enholm, Eric J.

    This book provides a basic introduction for the student to hazardous materials chemistry. Coverage of chemistry, rather than non-chemical hazards, is particularly stressed on a level which the layman can understand. Basic terminology is emphasized at all levels, as are simple chemistry symbols, in order to provide the student with an introductory…

  13. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials.

    PubMed

    Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L; Veith, Gabriel M; Levine, Alan M; Lee, Richard J; Mahurin, Shannon M; Dai, Sheng; Naskar, Amit K; Paranthaman, Mariappan Parans

    2017-08-23

    Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and -CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced -SO 3 H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. This study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.

  14. Application of Chemistry in Materials Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  15. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    PubMed

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  16. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.

    energy. The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.« less

  17. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  18. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    ERIC Educational Resources Information Center

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  19. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials

    DOE PAGES

    Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L.; ...

    2017-08-11

    Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this paper, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C–H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption–desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed thatmore » the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and –CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced –SO 3H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. Finally, this study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.« less

  20. 77 FR 14022 - Guidance for Industry on Chemistry, Manufacturing, and Controls Information-Fermentation-Derived...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...] Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products for... to submit to support the CMC information for fermentation-derived intermediates, drug substances, and...

  1. Analytical Chemistry at the Interface Between Materials Science and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Janese C.

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detectionmore » of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.« less

  2. Flow chemistry meets advanced functional materials.

    PubMed

    Myers, Rebecca M; Fitzpatrick, Daniel E; Turner, Richard M; Ley, Steven V

    2014-09-22

    Flow chemistry and continuous processing techniques are beginning to have a profound impact on the production of functional materials ranging from quantum dots, nanoparticles and metal organic frameworks to polymers and dyes. These techniques provide robust procedures which not only enable accurate control of the product material's properties but they are also ideally suited to conducting experiments on scale. The modular nature of flow and continuous processing equipment rapidly facilitates reaction optimisation and variation in function of the products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    NASA Astrophysics Data System (ADS)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  4. Controllable Syntheses of MOF-Derived Materials.

    PubMed

    Zou, Kang-Yu; Li, Zuo-Xi

    2018-05-02

    Metal-organic frameworks (MOFs), as an important kind of porous inorganic-organic hybrid materials with inherent outstanding physicochemistry characteristics, can be widely applied as versatile precursors for the facile preparation of functional MOF-derived materials. However, there are plenty of sophisticated factors during the synthetic process, which is far from reaching the goal of effectively controlling the nature of MOF-derived materials (such as the composition, morphology and surface area). Therefore, it is urgently necessary to develop regular protocols and concepts for controllable syntheses of MOF-derived materials. In this minireview, we mainly summarize and analyze complicated factors in the fabrication of MOF-derived materials according to recently reported literatures, and this provides a new insight into the rational design and syntheses of MOF-derived materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chemistry and Processing of Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, G A; Baumann, T F; Hope-Weeks, L J

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less

  6. Plasma chemistry for inorganic materials

    NASA Technical Reports Server (NTRS)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  7. Novel self-healing materials chemistries for targeted applications

    NASA Astrophysics Data System (ADS)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  8. Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials.

    PubMed

    Mirjafari, Arsalan

    2018-03-25

    Since the introduction of click chemistry by K. B. Sharpless in 2001, its exploration and exploitation has occurred in countless fields of materials sciences in both academic and industrial spheres. Click chemistry is defined as an efficient, robust, and orthogonal synthetic platform for the facile formation of new carbon-heteroatom bonds, using readily available starting materials. Premier examples of click reactions are copper(i)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC) and the thiol-X (X = ene and yne) coupling reactions to form C-N and C-S bonds, respectively. The emphasis of this review is centered on the rapidly expanding area of click chemistry-mediated synthesis of functional ionic liquids via CuAAC, thiol-X and oxime formation, and selected examples of nucleophilic ring-opening reactions, while offering some thoughts on emerging challenges, opportunities and ultimately the evolution of this field. Click chemistry offers tremendous opportunities, and introduces intriguing perspectives for efficient and robust generation of tailored task-specific ionic liquids - an important class of soft materials.

  9. Report on the WPI Conference: General Chemistry and Materials Science: The Interrelationships

    NASA Astrophysics Data System (ADS)

    Beall, Herbert

    1996-08-01

    Of the recent accomplishments of chemistry, some of the most spectacular have been in the area of materials. New miracle materials have revolutionized our lives in almost every aspect from semiconductors to metallic eyeglass frames that return to a "memorized" shape when bent. However, materials receive surprisingly little attention as examples of chemical phenomena in fundamental chemistry classes, which are still built largely on the behavior of gases and liquids. These issues were the basis for the Ninth Annual Worcester Polytechnic Institute Conference on Chemical Education. This article addresses the conference and the issues.

  10. Bend It, Stretch It, Hammer It, Break It: Materials Chemistry Applied

    ERIC Educational Resources Information Center

    Neff, Grace A.; Retsek, Jennifer; Berber-Jimenez, Lola; Barber, Nicole; Coles, Monica; Fintikakis, Christina; Huigens, Brent

    2010-01-01

    Making chemistry both accessible and interesting to middle and high school students can be difficult. Convincing middle and high school teachers that they will learn something new and applicable from a professional development workshop in chemistry can be equally challenging. This paper describes the use of material science as a means to enhance…

  11. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays

  12. Reacting Chemistry Based Burn Model for Explosive Hydrocodes

    NASA Astrophysics Data System (ADS)

    Schwaab, Matthew; Greendyke, Robert; Steward, Bryan

    2017-06-01

    Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.

  13. Overview on the history of organofluorine chemistry from the viewpoint of material industry

    PubMed Central

    Okazoe, Takashi

    2009-01-01

    Fluorine (from “le fluor”, meaning “to flow”) is a second row element of Group 17 in the periodic table. When bound to carbon it forms the strongest bond in organic chemistry to give organofluorine compounds. The scientific field treating them, organofluorine chemistry, started before elemental fluorine itself was isolated. Applying the fruits in academia, industrial organofluorine chemistry has developed over 80 years via dramatic changes during World War II. Nowadays, it provides various materials essential for our society. Recently, it utilizes elemental fluorine itself as a reagent for the introduction of fluorine atoms to organic molecules in leading-edge industries. This paper overviews the historical development of organofluorine chemistry especially from the viewpoint of material industry. PMID:19838009

  14. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  15. The Development of Innovative Chemistry Learning Material for Bilingual Senior High School Students in Indonesia

    ERIC Educational Resources Information Center

    Situmorang, Manihar; Sitorus, Marham; Hutabarat, Wesly; Situmorang, Zakarias

    2015-01-01

    The development of innovative chemistry learning material for bilingual Senior High School (SHS) students in Indonesia is explained. The study is aimed to obtain an innovative chemistry learning material based on national curriculum in Indonesia to be used as a learning media in the teaching and learning activities. The learning material is…

  16. Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.

    ERIC Educational Resources Information Center

    Zoltewicz, Susan

    1993-01-01

    Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)

  17. Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine.

    PubMed

    Cao, Binrui; Yang, Mingying; Mao, Chuanbin

    2016-06-21

    Filamentous bacteriophage (phage) is a genetically modifiable supramacromolecule. It can be pictured as a semiflexible nanofiber (∼900 nm long and ∼8 nm wide) made of a DNA core and a protein shell with the former genetically encoding the latter. Although phage bioengineering and phage display techniques were developed before the 1990s, these techniques have not been widely used for chemistry, materials, and biomedical research from the perspective of supramolecular chemistry until recently. Powered by our expertise in displaying a foreign peptide on its surface through engineering phage DNA, we have employed phage to identify target-specific peptides, construct novel organic-inorganic nanohybrids, develop biomaterials for disease treatment, and generate bioanalytical methods for disease diagnosis. Compared with conventional biomimetic chemistry, phage-based supramolecular chemistry represents a new frontier in chemistry, materials science, and medicine. In this Account, we introduce our recent successful efforts in phage-based supramolecular chemistry, by integrating the unique nanofiber-like phage structure and powerful peptide display techniques into the fields of chemistry, materials science, and medicine: (1) successfully synthesized and assembled silica, hydroxyapatite, and gold nanoparticles using phage templates to form novel functional materials; (2) chemically introduced azo units onto the phage to form photoresponsive functional azo-phage nanofibers via a diazotization reaction between aromatic amino groups and the tyrosine residues genetically displayed on phage surfaces; (3) assembled phage into 2D films for studying the effects of both biochemical (the peptide sequences displayed on the phages) and biophysical (the topographies of the phage films) cues on the proliferation and differentiation of mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) and identified peptides and topographies that can induce their osteogenic

  18. Phage as a Genetically Modifiable Supramacromolecule in Chemistry, Materials and Medicine

    PubMed Central

    Cao, Binrui; Yang, Mingying; Mao, Chuanbin

    2016-01-01

    CONSPECTUS Filamentous bacteriophage (phage) is a genetically modifiable supramacromolecule. It can be pictured as a semiflexible nanofiber (~900 nm long and ~8 nm wide) made of a DNA core and a protein shell with the former genetically encoding the latter. Although phage bioengineering and phage display techniques were developed before the 1990s, these techniques have not been widely used for chemistry, materials, and biomedical research from the perspective of supramolecular chemistry until recently. Powered by our expertise in displaying a foreign peptide on its surface through engineering phage DNA, we have employed phage to identify target-specific peptides, construct novel organic–inorganic nanohybrids, develop biomaterials for disease treatment, and generate bioanalytical methods for disease diagnosis. Compared with conventional biomimetic chemistry, phage-based supramolecular chemistry represents a new frontier in chemistry, materials science, and medicine. In this Account, we introduce our recent successful efforts in phage-based supramolecular chemistry, by integrating the unique nanofiber-like phage structure and powerful peptide display techniques into the fields of chemistry, materials science, and medicine: (1) successfully synthesized and assembled silica, hydroxyapatite, and gold nanoparticles using phage templates to form novel functional materials; (2) chemically introduced azo units onto the phage to form photoresponsive functional azo-phage nanofibers via a diazotization reaction between aromatic amino groups and the tyrosine residues genetically displayed on phage surfaces; (3) assembled phage into 2D films for studying the effects of both biochemical (the peptide sequences displayed on the phages) and biophysical (the topographies of the phage films) cues on the proliferation and differentiation of mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) and identified peptides and topographies that can induce their

  19. Materials, Chemistry, and Simulation for Future Energy Technology.

    PubMed

    Aguey-Zinsou, Kondo-Francois; Wang, Da-Wei; Su, Dang-Sheng

    2015-09-07

    Special Issue: The Future of Energy. The science and engineering of clean energy now is becoming a multidisciplinary area, typically when new materials, chemistry, or mechanisms are met. "Trial and error" is the past. Exploration of new concepts for future clean energy can be accomplished through computer-aided materials design and reaction simulation, thanks to innovations in information technologies. This special issue, a fruit of the Energy Future Conference organized by UNSW Australia, has compiled some excellent examples of such approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemistry and Materials Science, 1990--1991. [Second annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  1. Prospective Symbiosis of Green Chemistry and Energetic Materials.

    PubMed

    Kuchurov, Ilya V; Zharkov, Mikhail N; Fershtat, Leonid L; Makhova, Nina N; Zlotin, Sergey G

    2017-10-23

    A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO 2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  3. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  4. Applied Biology and Chemistry. Course Materials: Chemistry 111, 112, 113, 114. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for four courses in Applied Biology/Chemistry in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity…

  5. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second

  6. Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennit - A Computational Modeling Study

    DTIC Science & Technology

    2014-01-01

    Study Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to...understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus...find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance are required. A computational material

  7. Polyoxometalates: from inorganic chemistry to materials science.

    PubMed

    Casañ-Pastor, Nieves; Gómez-Romero, Pedro

    2004-05-01

    Polyoxometalates have been traditionally the subject of study of molecular inorganic chemistry. Yet, these polynuclear molecules, reminiscent of oxide clusters, present a wide range of structures and with them ideal frameworks for the deployment of a plethora of useful magnetic, electroionic, catalytic, bioactive and photochemical properties. With this in mind, a new trend towards the application of these remarkable species in materials science is beginning to develop. In this review we analyze this trend and discuss two main lines of thought for the application of polyoxometalates as materials. On the one hand, there is their use as clusters with inherently useful properties on themselves, a line which has produced fundamental studies of their magnetic, electronic or photoelectrochemical properties and has shown these clusters as models for quantum-sized oxides. On the other hand, the encapsulation or integration of polyoxometalates into organic, polymeric or inorganic matrices or substrates opens a whole new field within the area of hybrid materials for harnessing the multifunctional properties of these versatile species in a wide variety of applications, ranging from catalysis to energy storage to biomedicine.

  8. Design of Bioinorganic Materials at the Interface of Coordination and Biosupramolecular Chemistry.

    PubMed

    Maity, Basudev; Ueno, Takafumi

    2017-04-01

    Protein assemblies have recently become known as potential molecular scaffolds for applications in materials science and bio-nanotechnology. Efforts to design protein assemblies for construction of protein-based hybrid materials with metal ions, metal complexes, nanomaterials and proteins now represent a growing field with a common aim of providing novel functions and mimicking natural functions. However, the important roles of protein assemblies in coordination and biosupramolecular chemistry have not been systematically investigated and characterized. In this personal account, we focus on our recent progress in rational design of protein assemblies using bioinorganic chemistry for (1) exploration of unnatural reactions, (2) construction of functional protein architectures, and (3) in vivo applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engineering single-molecule, nanoscale, and microscale bio-functional materials via click chemistry

    NASA Astrophysics Data System (ADS)

    Daniele, Michael Angelo-Anthony

    To expand the design envelope and supplement the materials library available to biomaterials scientists, the copper(I)-catalyzed azide-alkyne cycloaddition (CuCAAC) was explored as a route to design, synthesize and characterize bio-functional small-molecules, nanoparticles, and microfibers. In each engineered system, the use of click chemistry provided facile, bio-orthogonal control for materials synthesis; moreover, the results provided a methodology and more complete, fundamental understanding of the use of click chemistry as a tool for the synergy of biotechnology, polymer and materials science. Fluorophores with well-defined photophysical characteristics (ranging from UV to NIR fluorescence) were used as building blocks for small-molecule, fluorescent biosensors. Fluorophores were paired to exhibit fluorescence resonant energy transfer (FRET) and used to probe the metabolic activity of carbazole 1,9a-dioxygenase (CARDO). The FRET pair exhibited a significant variation in PL response with exposure to the lysate of Pseudomonas resinovorans CA10, an organism which can degrade variants of both the donor and acceptor fluorophores. Nanoparticle systems were modified via CuCAAC chemistry to carry affinity tags for CARDO and were subsequently utilized for affinity based bioseparation of CARDO from crude cell lysate. The enzymes were baited with an azide-modified carbazolyl-moiety attached to a poly(propargyl acrylate) nanoparticle. Magnetic nanocluster systems were also modified via CuCAAC chemistry to carry fluorescent imaging tags. The iron-oxide nanoclusters were coated with poly(acrylic acid-co-propargyl acrylate) to provide a clickable surface. Ultimately, alternate Cu-free click chemistries were utilized to produce biohybrid microfibers. The biohybrid microfibers were synthesized under benign photopolymerization conditions inside a microchannel, allowing the encapsulation of viable bacteria. By adjusting pre-polymer solutions and laminar flow rates within the

  10. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  11. Based on a True Story: Using Movies as Source Material for General Chemistry Reports

    ERIC Educational Resources Information Center

    Griep, Mark A.; Mikasen, Marjorie L.

    2005-01-01

    The story to improve student enthusiasm for writing reports about the chemistry behind events reported in the news and movies were chosen as the source material. The use of movies in the chemical classroom helps an instructor move the subject of chemistry from abstract, general themes to the personal and subjective arena of human interactions.

  12. The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.

  13. Design Guidelines for Digital Learning Material for Food Chemistry Education.

    ERIC Educational Resources Information Center

    Diederen, Julia; Gruppen, Harry; Voragen, Alphons G. J.; Hartog, Rob; Mulder, Martin; Biemans, Harm

    This paper describes the first stage of a 4-year research project on the design, development and use of Web-based digital learning material for food chemistry education. The paper discusses design guidelines, based on principles that were selected from theories on learning and instruction, and illustrates in detail how these guidelines were used…

  14. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could removemore » some residue.« less

  15. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  16. Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennite -- A Computational Modeling Study

    NASA Astrophysics Data System (ADS)

    Adebiyi, Babatunde Mattew

    Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance, are required. A computational material modeling methodology is investigated and demonstrated for a key cement hydrated component material chemistry structure of Calcium-Silicate-Hydrate (C-S-H) Jennite in this work. The effect of material ion exchanges on the mechanical stiffness properties and shear deformation behavior of hydrated cement material chemistry structure of Calcium Silicate Hydrate (C-S-H) Jennite was studied. Calcium ions were replaced with Magnesium ions in Jennite structure of the C-S-H gel. Different level of substitution of the ions was used. The traditional Jennite structure was obtained from the American Mineralogist Crystal Structure Database and super cells of the structures were created using a Molecular Dynamics Analyzer and Visualizer Material Studio. Molecular dynamics parameters used in the modeling analysis were determined by carrying out initial dynamic studies. 64 unit cell of C-S-H Jennite was used in material modeling analysis studies based on convergence results obtained from the elastic modulus and total energies. NVT forcite dynamics using COMPASS force field based on 200 ps dynamics time was used to determine mechanical modulus of the traditional C-S-H gel and the Magnesium ion modified structures. NVT Discover dynamics using COMPASS forcefield was used in the material modeling studies to investigate the influence of ionic exchange on the shear deformation of the associated material chemistry structures. A prior established quasi-static deformation method to emulate shear deformation of C-S-H material chemistry structure that is

  17. A Survey of the Teaching Practices and Materials Used in Introductory College Chemistry. Final Report.

    ERIC Educational Resources Information Center

    Dodson, B.C.

    Surveyed were current objectives, teaching methods and teaching materials used in introductory college chemistry. Six general objectives were identified: (1) to develop the ability to do critical thinking, (2) to make the students familiar with the facts, principles, and concepts of chemistry, (3) to help the students understand the nature of…

  18. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials.

    PubMed

    Wang, Rui; Sing, Michelle K; Avery, Reginald K; Souza, Bruno S; Kim, Minkyu; Olsen, Bradley D

    2016-12-20

    Polymer networks are widely used from commodity to biomedical materials. The space-spanning, net-like structure gives polymer networks their advantageous mechanical and dynamic properties, the most essential factor that governs their responses to external electrical, thermal, and chemical stimuli. Despite the ubiquity of applications and a century of active research on these materials, the way that chemistry and processing interact to yield the final structure and the material properties of polymer networks is not fully understood, which leads to a number of classical challenges in the physical chemistry of gels. Fundamentally, it is not yet possible to quantitatively predict the mechanical response of a polymer network based on its chemical design, limiting our ability to understand and characterize the nanostructure of gels and rationally design new materials. In this Account, we summarize our recent theoretical and experimental approaches to study the physical chemistry of polymer networks. First, our understanding of the impact of molecular defects on topology and elasticity of polymer networks is discussed. By systematically incorporating the effects of different orders of loop structure, we develop a kinetic graph theory and real elastic network theory that bridge the chemical design, the network topology, and the mechanical properties of the gel. These theories show good agreement with the recent experimental data without any fitting parameters. Next, associative polymer gel dynamics is discussed, focusing on our evolving understanding of the effect of transient bonds on the mechanical response. Using forced Rayleigh scattering (FRS), we are able to probe diffusivity across a wide range of length and time scales in gels. A superdiffusive region is observed in different associative network systems, which can be captured by a two-state kinetic model. Further, the effects of the architecture and chemistry of polymer chains on gel nanostructure are studied. By

  19. Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model

    NASA Astrophysics Data System (ADS)

    Stadtler, Scarlet; Kühn, Thomas; Taraborrelli, Domenico; Kokkola, Harri; Schultz, Martin

    2017-04-01

    Secondary organic aerosol (SOA) impacts earth's climate and human health. Since its precursor chemistry and its formation are not fully understood, climate models cannot catch its direct and indirect effects. Global isoprene emissions are higher than any other non-methane hydrocarbons. Therefore, SOA from isoprene-derived, low volatile species (iSOA) is simulated using a global aerosol chemistry climate model ECHAM6-HAM-SALSA-MOZ. Isoprene oxidation in the chemistry model MOZ is following a novel semi-explicit scheme, embedded in a detailed atmospheric chemical mechanism. For iSOA formation four low volatile isoprene oxidation products were identified. The group method by Nanoonlal et al. 2008 was used to estimate their evaporation enthalpies ΔHvap. To calculate the saturation concentration C∗(T) the sectional aerosol model SALSA uses the gas phase concentrations simulated by MOZ and their corresponding ΔHvap to obtain the saturation vapor pressure p∗(T) from the Clausius Clapeyron equation. Subsequently, the saturation concentration is used to calculate the explicit kinetic partitioning of these compounds forming iSOA. Furthermore, the irreversible heterogeneous reactions of IEPOX and glyoxal from isoprene were included. The possibility of reversible heterogeneous uptake was ignored at this stage, leading to an upper estimate of the contribution of glyoxal to iSOA mass.

  20. The Development of Monograph with 3-Dimentional Illustrations Titled “Augmented Chemistry: Hydrocarbon” as Learning Enrichment Materials

    NASA Astrophysics Data System (ADS)

    Ernawati, D.; Ikhsan, J.

    2017-02-01

    The development of 3D technology provides more advantages in education sectors. In chemistry, the 3D technology makes chemistry objects look more tangible. This research developed a monograph titled “Augmented Chemistry: Hydrocarbon” as learning enrichment materials. The development model consisted of 5 steps, which were the adaptation of the ADDIE model. The 3D objects of chemistry were built using the computer applications of Chem Sketch, and Google Sketch Up with AR Plugin. The 3D objects were displayed by relevant markers on the texts of the monograph from which the visualizations of the 3D objects appeared when they were captured by digital camera of laptop or smartphone, and were possibly viewed with free-rotation. Not only were 3D chemistry objects included in the monograph, but also graphics, videos, audios, and animations, which facilitated more fun learning for readers of the monograph. After the reviews by the experts of subject matter, of media, of instruction, and by peers, the monograph was revised, and then rated by chemistry teachers. The analysis of the data showed that the monograph titled “Augmented Chemistry: Hydrocarbon” was in the criteria of very good for the enrichment materials of Chemistry learning.

  1. New trends in chemistry and materials science in extremely tight space

    DOE PAGES

    Song, Yang; Manaa, M. Riad

    2012-01-26

    Pressure plays a critical role in regulating the structures and properties of materials. Since Percy Bridgeman was recognized by the 1946 Nobel Prize in Physics for his contribution in high-pressure physics, high-pressure research has remained an interdisciplinary scientific frontier with many extraordinary breakthroughs. Over the past decade or so, in particular, high-pressure chemistry and materials research has undergone major advances with the discovery of numerous exotic structures and properties. Furthermore, brand new classes of inorganic materials of unusual stoichiometries and crystal structures, which have a wide range of optical, mechanical, electronic and magnetic properties, have been produced at high pressures.

  2. New trends in chemistry and materials science in extremely tight space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; Manaa, M. Riad

    Pressure plays a critical role in regulating the structures and properties of materials. Since Percy Bridgeman was recognized by the 1946 Nobel Prize in Physics for his contribution in high-pressure physics, high-pressure research has remained an interdisciplinary scientific frontier with many extraordinary breakthroughs. Over the past decade or so, in particular, high-pressure chemistry and materials research has undergone major advances with the discovery of numerous exotic structures and properties. Furthermore, brand new classes of inorganic materials of unusual stoichiometries and crystal structures, which have a wide range of optical, mechanical, electronic and magnetic properties, have been produced at high pressures.

  3. Research on the development of green chemistry technology assessment techniques: a material reutilization case.

    PubMed

    Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong

    2015-01-01

    This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.

  4. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery.

    PubMed

    Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira

    2007-02-01

    Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.

  5. Chemistry and technology of radiation processed composite materials

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting. E.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene.

  6. Hazardous materials: chemistry and safe handling aspects of flammable, toxic and radioactive materials. A course of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.W.

    1983-01-01

    The subject of this dissertation is a one semester, three credit course designed for students who have taken at least twelve credits college chemistry, and for high school teachers as a continuing education course. The need for such a course arises from the increased concern for safety in recent years and the introduction of many regulations of which the working chemist should be aware, notably those issued by the Occupational Safety and Health Administration. A few colleges have recently started to offer courses in laboratory safety to undergraduate and graduate chemistry students. Thus, there is a need for the developmentmore » of courses in which chemical safety is taught. This course is divided into three units: 1) flammable materials; 2) toxic materials; and 3) radioactive materials. Each unit is self contained and could be taught separately as a one credit course. The material necessary for lecture presentation is given in the text of this dissertation: there are about seven topics in each unit. The chemical properties of selected substances are emphasized. Examples of governmental regulations are given, and there are sample examination questions for each unit and homework assignments that require the use of reference sources. Laboratory exercises are included to enable students to gain experience in the safe handling of hazardous chemicals and of some equipment and instruments used to analyze and study flammable, toxic and radioactive materials.« less

  7. Lignin-Derived Advanced Carbon Materials

    DOE PAGES

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  8. Lignin-Derived Advanced Carbon Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sabornie; Saito, Tomonori

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  9. Evolution in Medicinal Chemistry of Ursolic Acid Derivatives as Anticancer Agents

    PubMed Central

    Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia

    2015-01-01

    Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA. PMID:25617694

  10. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    NASA Astrophysics Data System (ADS)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  11. Examining Chemistry Teachers' Use of Curriculum Materials: In View of Teachers' Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Chen, Bo; Wei, Bing

    2015-01-01

    This paper aimed to explore how pedagogical content knowledge (PCK) of teachers influenced their adaptations of the curriculum materials of the new senior secondary chemistry curriculum, a standards-based science curriculum, in China. This study was based on the premise that the interaction of the teacher with the curriculum materials determines…

  12. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  13. Highly Soluble p-Terphenyl and Fluorene Derivatives as Efficient Dopants in Plastic Scintillators for Sensitive Nuclear Material Detection.

    PubMed

    Yemam, Henok A; Mahl, Adam; Tinkham, Jonathan S; Koubek, Joshua T; Greife, Uwe; Sellinger, Alan

    2017-07-03

    Plastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt %) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however, they suffer from poor mechanical properties. In this work, a series of p-terphenyl and fluorene derivatives were synthesized and tested as dopants in PVT based plastic scintillators as possible alternatives to PPO to address the mechanical property issue and to study the PSD mechanism. The derivatives were synthesized from low cost starting materials in high yields using simple chemistry. The photophysical and thermal properties were investigated for their influence on radiation sensitivity/detection performance, and mechanical stability. A direct correlation was found between the melting point of the dopants and the subsequent mechanical properties of the PVT based plastic scintillators. For example, select fluorene derivatives used as dopants produced scintillator samples with mechanical properties exceeding those of the commercial PPO-based scintillators while producing acceptable PSD capabilities. The physical properties of the synthesized dopants were also investigated to examine their effect on the final scintillator samples. Planar derivatives of fluorene were found to be highly soluble in PVT matrices with little to no aggregation induced effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    PubMed

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    PubMed

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bergman cyclization in polymer chemistry and material science.

    PubMed

    Xiao, Yuli; Hu, Aiguo

    2011-11-01

    Bergman cyclization of enediynes, regarded as a promising strategy for anticancer drugs, now finds its own niche in the area of polymer chemistry and material science. The highly reactive aromatic diradicals generated from Bergman cyclization can undergo polymerization acting as either monomers or initiators of other vinyl monomers. The former, namely homopolymerization, leads to polyphenylenes and polynaphthalenes with excellent thermal stability, good solubility, and processability. The many remarkable properties of these aromatic polymers have further endowed them to be manufactured into carbon-rich materials, e.g., glassy carbons and carbon nanotubes. Whereas used as initiators, enediynes provide a novel resource for high molecular weight polymers with narrow polydispersities. The aromatic diradicals are also useful for introducing oligomers or polymers onto pristine carbonous nanomaterials, such as carbon nano-onions and carbon nanotubes, to improve their dispersibility in organic solvents and polymer solutions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An Introductory Organic Chemistry Review Homework Exercise: Deriving Potential Mechanisms for Glucose Ring Opening in Mutarotation

    ERIC Educational Resources Information Center

    Murdock, Margaret; Holman, R. W.; Slade, Tyler; Clark, Shelley L. D.; Rodnick, Kenneth J.

    2014-01-01

    A unique homework assignment has been designed as a review exercise to be implemented near the end of the one-year undergraduate organic chemistry sequence. Within the framework of the exercise, students derive potential mechanisms for glucose ring opening in the aqueous mutarotation process. In this endeavor, 21 general review principles are…

  18. Graphene-based materials: fabrication and application for adsorption in analytical chemistry.

    PubMed

    Wang, Xin; Liu, Bo; Lu, Qipeng; Qu, Qishu

    2014-10-03

    Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    NASA Astrophysics Data System (ADS)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  20. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  1. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    PubMed

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology. 2010 Elsevier Ltd. All rights reserved.

  2. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  3. Based on a True Story: Using Movies as Source Material for General Chemistry Reports

    NASA Astrophysics Data System (ADS)

    Griep, Mark A.; Mikasen, Marjorie L.

    2005-10-01

    Research for chemical reports and case study analysis of chemical topics are two commonly used learning activities to engage and enrich student understanding of the content in introductory chemistry courses. Even though movies are excellent vehicles for exploring the human dimension of events, they have been used only sparingly as source material in introductory science courses. One reason for this sparing use has been the lack of a list of suitable movies. To fill this void, a list of one dozen highly rated movies is presented. The focus of these movies is either a scientist's chemical research or the societal impact of some chemical compound. The method by which two of these movies were used as source material for a written report in a general chemistry course is described. The student response to the exercise was enthusiastic.

  4. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.

    PubMed

    Grayfer, Ekaterina D; Pazhetnov, Egor M; Kozlova, Mariia N; Artemkina, Sofya B; Fedorov, Vladimir E

    2017-12-22

    Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS 2 , VS 4 , TiS 3 , NbS 3 , TiS 4 , MoS 3 , etc., in which the key role is played by the (S-S) 2- /2 S 2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Acid base chemistry of luteolin and its methyl-ether derivatives: A DFT and ab initio investigation

    NASA Astrophysics Data System (ADS)

    Amat, Anna; De Angelis, Filippo; Sgamellotti, Antonio; Fantacci, Simona

    2008-09-01

    The acid-base chemistry of luteolin, a flavonoid with important pharmacological and dyeing properties, and of the related methyl ether derivatives have been investigated by DFT and MP2 methods, testing different computational setups. We calculate the pK's of all the possible deprotonation sites, for which no experimental assignment could be achieved. The calculated pK's deliver a different acidity order for the two most acidic deprotonation sites between luteolin and its methyl ether derivatives, due to intramolecular hydrogen bonding in luteolin. A lowest p Ka of 6.19 is computed for luteolin, in good agreement with available experimental data.

  6. Silver/polysaccharide-based nanofibrous materials synthesized from green chemistry approach.

    PubMed

    Martínez-Rodríguez, M A; Garza-Navarro, M A; Moreno-Cortez, I E; Lucio-Porto, R; González-González, V A

    2016-01-20

    In this contribution a novel green chemistry approach for the synthesis of nanofibrous materials based on blends of carboxymethyl-cellulose (CMC)-silver nanoparticles (AgNPs) composite and polyvinyl-alcohol (PVA) is proposed. These nanofibrous materials were obtained from the electrospinning of blends of aqueous solutions of CMC-AgNPs composite and PVA, which were prepared at different CMC/PVA weight ratios in order to electrospin nanofibers applying a constant tension of 15kV. The synthesized materials were characterized by means of transmission electron microscopy, scanning electron microscopy; as well as Fourier-transform infrared, ultraviolet and Raman spectroscopic techniques. Experimental evidence suggests that the diameter of the nanofibers is thinner than any other reported in the literature regarding the electrospinning of CMC. This feature is related to the interactions of AgNPs with carboxyl functional groups of the CMC, which diminish those between the later and acetyl groups of PVA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  8. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry.

    PubMed

    Zanoletti, A; Bilo, F; Depero, L E; Zappa, D; Bontempi, E

    2018-07-15

    This work presents a new porous material (SUNSPACE) designed for air particulate matter (PM) capture. It was developed in answer to the European Commission request of an innovative, affordable, and sustainable solution, based on design-driven material, to reduce the concentration of air particulate matter in urban areas. SUNSPACE material was developed from by-products and low-cost materials, such as silica fume and sodium alginate. Its capability to catch ultrafine PM was evaluated by different ad-hoc tests, considering diesel exhaust fumes and incense smoke PM. Despite the fact that procedures and materials can be designed for remediation, the high impact on the environment, for example in terms of natural resources consumption and emissions, are not usually considered. Instead, we believe that the technologies must be always evaluated in terms of material embodied energy (EE) and carbon footprint (CF). We define our approach to solve environment problems by a sustainable methodology "Azure Chemistry". For the SUNSPACE synthesis, the multi-criteria decision analysis was performed to select the best sustainable solution. The emissions and the energies involved in the synthesis of SUNSPACE material were evaluated with the Azure Chemistry approach, showing that this could be the best available technology to face the problem of capturing the PM in urban area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  10. Isotopic Fractionation in Primitive Material: Quantifying the Contribution of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2010-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  11. Through the looking glass of a chemistry video game: Evaluating the effects of different MLEs presenting identical content material

    NASA Astrophysics Data System (ADS)

    Hillman, Dustin S.

    The primary goal of this study is to evaluate the effects of different media-based learning environments (MLEs) that present identical chemistry content material. This is done with four different MLEs that utilize some or all components of a chemistry-based media-based prototype video game. Examination of general chemistry student volunteers purposefully randomized to one of four different MLEs did not provide evidence that the higher the level of interactivity resulted in a more effective MLE for the chemistry content. Data suggested that the cognitive load to play the chemistry-based video game may impaired the chemistry content being presented and recalled by the students while the students watching the movie of the chemistry-based video game were able to recall the chemistry content more efficiently. Further studies in this area need to address the overall cognitive load of the different MLEs to potentially better determine what the most effective MLE may be for this chemistry content.

  12. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin

  13. Improving the Effectiveness of Organic Chemistry Experiments through Multimedia Teaching Materials for Junior High School Students

    ERIC Educational Resources Information Center

    Lou, Shi-Jer; Lin, Hui-Chen; Shih, Ru-Chu; Tseng, Kuo-Hung

    2012-01-01

    The purpose of the study aimed to explore the effects of three different forms of the multimedia teaching materials on the achievements and attitudes of junior high school students in a chemistry laboratory context. The three forms of the multimedia teaching materials, static pictures, video, and animation, were employed to teach chemistry…

  14. Method for deriving information regarding stress from a stressed ferromagnetic material

    DOEpatents

    Jiles, David C.

    1991-04-30

    A non-destructive evaluation technique for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

  15. Method for deriving information regarding stress from a stressed ferromagnetic material

    DOEpatents

    Jiles, D.C.

    1991-04-30

    A nondestructive evaluation technique is disclosed for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

  16. Quantum chemistry study of dielectric materials deposition

    NASA Astrophysics Data System (ADS)

    Widjaja, Yuniarto

    The drive to continually decrease the device dimensions of integrated circuits in the microelectronics industry requires that deposited films approach subnanometer thicknesses. Hence, a fundamental understanding of the physics and chemistry of film deposition is important to obtain better control of the properties of the deposited film. We use ab initio quantum chemistry calculations to explore chemical reactions at the atomic level. Important thermodynamic and kinetic parameters are then obtained, which can then be used as inputs in constructing first-principles based reactor models. Studies of new systems for which data are not available can be conducted as well. In this dissertation, we use quantum chemistry simulations to study the deposition of gate dielectrics for metal-oxide-semiconductor (MOS) devices. The focus of this study is on heterogeneous reactions between gaseous precursors and solid surfaces. Adsorbate-surface interactions introduce additional degrees of complexity compared to the corresponding gas-phase or solid-state reactions. The applicability and accuracy of cluster approximations to represent solid surfaces are first investigated. The majority of our results are obtained using B3LYP density functional theory (DFT). The structures of reactants, products, and transition states are obtained, followed by calculations of thermochemical and kinetic properties. Whenever experimental data are available, qualitative and/or quantitative comparisons are drawn. Atomistic mechanisms and the energetics of several reactions leading to the deposition of SiO2, Si3N4, and potential new high-kappa materials such as ZrO2, HfO2, and Al 2O3 have been explored in this dissertation. Competing reaction pathways are explored for each of the deposition reactions studied. For example, the potential energy surface (PES) for ZrO2 ALD shows that the reactions proceed through a trapping-mediated mechanism, which results in a competition between desorption and decomposition

  17. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Styskalik, Ales; Skoda, David; Barnes, Craig

    This review is devoted to non-hydrolytic sol-gel chemistry. During the last 25 years, non-hydrolytic sol-gel (NHSG) techniques were found to be attractive and versatile methods for the preparation of oxide materials. Compared to conventional hydrolytic approaches, the NHSG route allows reaction control at the atomic scale resulting in homogeneous and well defined products. Due to these features and the ability to design specific materials, the products of NHSG reactions have been used in many fields of application. The aim of this review therefore is to present an overview of NHSG research in recent years with an emphasis on the synthesesmore » of mixed oxides, silicates and phosphates. The first part of the review highlights well known condensation reactions with some deeper insights into their mechanism and also presents novel condensation reactions established in NHSG chemistry in recent years. In the second section we discuss porosity control and novel compositions of selected materials. In the last part, the applications of NHSG derived materials as heterogeneous catalysts and supports, luminescent materials and electrode materials in Li-ion batteries are described.« less

  18. The Power of Non-Hydrolytic Sol-Gel Chemistry: A Review

    DOE PAGES

    Styskalik, Ales; Skoda, David; Barnes, Craig; ...

    2017-05-25

    This review is devoted to non-hydrolytic sol-gel chemistry. During the last 25 years, non-hydrolytic sol-gel (NHSG) techniques were found to be attractive and versatile methods for the preparation of oxide materials. Compared to conventional hydrolytic approaches, the NHSG route allows reaction control at the atomic scale resulting in homogeneous and well defined products. Due to these features and the ability to design specific materials, the products of NHSG reactions have been used in many fields of application. The aim of this review therefore is to present an overview of NHSG research in recent years with an emphasis on the synthesesmore » of mixed oxides, silicates and phosphates. The first part of the review highlights well known condensation reactions with some deeper insights into their mechanism and also presents novel condensation reactions established in NHSG chemistry in recent years. In the second section we discuss porosity control and novel compositions of selected materials. In the last part, the applications of NHSG derived materials as heterogeneous catalysts and supports, luminescent materials and electrode materials in Li-ion batteries are described.« less

  19. EUV lithography using water-developable resist material derived from biomass

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ichikawa, Takumi; Sekiguchi, Atsushi; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2013-03-01

    A water-developable resist material which had specific desired properties such as high sensitivity of 5.0 μC/cm2, thermal stability of 160 °C, suitable calculated linear absorption coefficients of 13.5 nm, and acceptable CF4 etch selectivity was proposed using EB lithography for EUV lithography. A water developable resist material derived from biomass is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of trimethylphenylammonium hydroxide. 100 nm line and 400 nm space patterning images with exposure dose of 5.0 μC/cm2 were provided by specific process conditions of EB lithography. The developed trehalose derivatives with hydroxyl groups and EB sensitive groups in the water-developable resist material derived from biomass were applicable to future development of high-sensitive and resolution negative type of water-developable resist material as a novel chemical design.

  20. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  1. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine.

  2. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    NASA Astrophysics Data System (ADS)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  3. Novel Energetic Materials for Counter WMD Applications

    DTIC Science & Technology

    2011-09-01

    insensitive dianionic dinitrourea salts: The CN4ol · anion paired with nitrogen-rich cations C. Energetic ionic liquids based on anionic rare earth nitrate ...and their derivatives as energetic materials by click chemistry 1-Pentafluorosulfanyl acetylene and its derivatives react with azide or diazomethane...extended to the syntheses and characterization often DNU dianionic salts by the metathesis oftetrazolium and guanidinium sulfates with in situ

  4. Habitability and Biosignature Preservation in Impact-Derived Materials

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Pontefract, A.; Osinski, G. R.; Cannon, K. M.; Mustard, J. F.

    2016-05-01

    Meteorite impacts create environments conducive to microbial colonization. Biosignatures in impact-derived materials have been characterized on Earth. Impact environments comprise candidates for biosignature detection and preservation on Mars.

  5. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  6. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    PubMed

    Głowacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The separate and collective effects of personalization, personification, and gender on learning with multimedia chemistry instructional materials

    NASA Astrophysics Data System (ADS)

    Halkyard, Shannon

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations can be employed in multimedia instructional materials designed following principles understood through the Cognitive Theory of Multimedia Learning. Additionally, these materials can expand the known use of principles like personalization (addressing the learner as "you") and test prospective design principles like personification (referring to abstract objects like atoms as "she" or "he"). The purpose of this study was to use the recommendations on teaching atomic and electronic structure along with known multimedia design principles to create multimedia chemistry learning materials that can be used to test the use of personalization and personification both separately and together. The study also investigated how learning with these materials might be different for male and female students. A sample of 329 students from private northern California high schools were given an atomic structure pre-test, watched a multimedia chemistry instructional video, and took a post-test on atomic structure. Students were randomly assigned to watch one of six versions of the instructional video. Students in the six groups were compared using ANOVA procedures and no significant differences were found. Males were compared to females for the six different treatment conditions and the most significant difference was for the treatment that combined personalization (you) and female personification (she), with a medium effect size (Cohen's d=0.65). Males and females were then compared separately across the six groups using ANOVA procedures and t-tests. A significant difference was found for female students using the treatment that combined

  8. A facile route to steady redox-modulated nitroxide spin-labeled surfaces based on diazonium chemistry.

    PubMed

    Cougnon, Charles; Boisard, Séverine; Cador, Olivier; Dias, Marylène; Levillain, Eric; Breton, Tony

    2013-05-18

    A TEMPO derivative was covalently grafted onto carbon and gold surfaces via the diazonium chemistry. The acid-dependent redox properties of the nitroxyl group were exploited to elaborate electro-switchable magnetic surfaces. ESR characterization demonstrated the reversible and permanent magnetic character of the material.

  9. Lunar carbon chemistry - Relations to and implications for terrestrial organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1972-01-01

    Survey of the various ways in which studies of lunar carbon chemistry have beneficially affected terrestrial organic geochemistry. A lunar organic gas-analysis operating system is cited as the most important instrumental development in relation to terrestrial organic geochemistry. Improved methods of analysis and handling of organic samples are cited as another benefit derived from studies of lunar carbon chemistry. The problem of controlling contamination and minimizing organic vapors is considered, as well as the possibility of analyzing terrestrial samples by the techniques developed for lunar samples. A need for new methods of analyzing carbonaceous material which is insoluble in organic solvents is indicated.

  10. Microcomputer-Analyzed Initial Rate Kinetics of the Benzene-Enhanced Unfolding of Myoglobin: A Biophysical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Schuh, Merlyn D.

    1988-01-01

    Describes a biophysical chemistry experiment that introduces students to globular protein conformation and microcomputer analysis of initial rate data for the unfolding of proteins. Presents background, materials needed and methodology. Uses a visible spectrometer for analysis. Lists educational benefits derived from the experiment. (ML)

  11. Dense velocity reconstruction from tomographic PTV with material derivatives

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  12. Forensic Chemistry--A Symposium Collection.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)

  13. Biologically-Derived Photonic Materials for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Squire, Thomas H.; Lawson, John W.; Gusman, Michael; Lau, K.-H.; Sanjurjo, Angel

    2014-01-01

    Space vehicles entering a planetary atmosphere at high velocity can be subject to substantial radiative heating from the shock layer in addition to the convective heating caused by the flow of hot gas past the vehicle surface. The radiative component can be very high but of a short duration. Approaches to combat this effect include investigation of various materials to reflect the radiation. Photonic materials can be used to reflect radiation. The wavelengths reflected depend on the length scale of the ordered microstructure. Fabricating photonic structures, such as layers, can be time consuming and expensive. We have used a biologically-derived material as the template for forming a high temperature photonic material that could be incorporated into a heatshield thermal protection material.

  14. Sol Gel-Derived SBA-16 Mesoporous Material

    PubMed Central

    Rivera-Muñoz, Eric M.; Huirache-Acuña, Rafael

    2010-01-01

    The aim of this article is to review current knowledge related to the synthesis and characterization of sol gel-derived SBA-16 mesoporous silicas, as well as a review of the state of the art in this issue, to take stock of knowledge about current and future applications. The ease of the method of preparation, the orderly structure, size and shape of their pores and control, all these achievable through simple changes in the method of synthesis, makes SBA-16 a very versatile material, potentially applicable in many areas of science and molecular engineering of materials. PMID:20957080

  15. STUDY OF ACAROID MITES POLLUTION IN STORED FRUIT-DERIVED CHINESE MEDICINAL MATERIALS.

    PubMed

    Xu, Li-fa; Li, He-xia; Xu, Peng-fei; Xu, Hai-feng; Li, Chao-pin

    2015-08-01

    to investigate the species and breeding density of acaroid mites in stored fruit-derived Chinese medicinal materials in Anhui province. samples of stored fruit-derived Chinese medicinal materials were collected from 30 herb stores and storehouses in 17 Anhui cities, where the breeding acaroids mites were detected. 20 species of acaroids mites were found in 33 samples, belonging to 15 genus, 5 families of the acaridae respectively, among which T. putrescentiae, A. farinae, C. lactis, and C. berlesei are predominant species. stored fruit-derived Chinese medicinal materials in Anhui areas suffer from serious acaroid mites pollution. Therefore, proactive measures should be taken to control acaroid mites from breeding in an effort to reduce the harm on medicinal materials. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Graphene and its derivatives as biomedical materials: future prospects and challenges.

    PubMed

    Banerjee, Arghya Narayan

    2018-06-06

    Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.

  17. Novel chemistries and materials for grid-scale energy storage: Quinones and halogen catalysis

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian Thomas

    In this work I describe various approaches to electrochemical energy storage at the grid-scale. Chapter 1 provides an introduction to energy storage and an overview of the history and development of flow batteries. Chapter 2 describes work on the hydrogen-chlorine regenerative fuel cell, detailing its development and the record-breaking performance of the device. Chapter 3 dives into catalyst materials for such a fuel cell, focusing on ruthenium oxide based alloys to be used as chlorine redox catalysts. Chapter 4 introduces and details the development of a performance model for a hydrogen-bromine cell. Chapter 5 delves into the more recent work I have done, switching to applications of quinone chemistries in flow batteries. It focuses on the pairing of one particular quinone (2,7-anthraquinone disulfonic acid) with bromine, and highlights the promising performance characteristics of a device based on this type of chemistry.

  18. Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials.

    PubMed

    Sun, Shuyang; Lu, Ming

    2018-06-23

    Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO-LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm 3 ), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.

  19. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  20. Characteristics of and sorption to biochars derived from waste material

    NASA Astrophysics Data System (ADS)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (<1% ash), sewage sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 < Log Kd < 6.5 L

  1. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  2. Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry.

    PubMed

    Olah, George A; Mathew, Thomas; Prakash, G K Surya

    2016-06-08

    Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed.

  3. Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.

    PubMed

    Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D

    2003-11-01

    Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.

  4. Electrochemical Coupling of Biomass-Derived Acids: New C8 Platforms for Renewable Polymers and Fuels.

    PubMed

    Wu, Linglin; Mascal, Mark; Farmer, Thomas J; Arnaud, Sacha Pérocheau; Wong Chang, Maria-Angelica

    2017-01-10

    Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C 6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  6. Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for Ex Vivo Biotinylation of Azido and Alkynyl Derivatives

    PubMed Central

    Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.

    2009-01-01

    Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be

  7. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Expanding frontiers in materials chemistry and physics with multiple anions.

    PubMed

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  9. PREFACE: 10th Joint Conference on Chemistry

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The 10th Joint Conference on Chemistry is an international conference organized by 4 chemistry departments of 4 universities in central Java, Indonesia. The universities are Sebelas Maret University, Diponegoro University, Semarang State University and Soedirman University. The venue was at Solo, Indonesia, at September 8-9, 2015. The total conference participants are 133 including the invited speakers. The conference emphasized the multidisciplinary chemical issue and impact of today's sustainable chemistry which covering the following topics: • Material innovation for sustainable goals • Development of renewable and sustainable energy based on chemistry • New drug design, experimental and theoretical methods • Green synthesis and characterization of material (from molecule to functionalized materials) • Catalysis as core technology in industry • Natural product isolation and optimization

  10. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.

    1995-01-01

    One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.

  11. The Effectiveness of Substituting Locally Available Materials in Teaching Chemistry in Nigeria: A Case for Science Education in Developing Countries

    ERIC Educational Resources Information Center

    DomNwachukwu, Nkechi S.; DomNwachukwu, Chinaka S.

    2006-01-01

    This article investigates the effectiveness of improvising locally available materials for teaching chemistry in Nigeria, as a case for a culture of improvisation for teaching the sciences in developing countries. The scarcity and cost of imported materials for teaching science has remained a major challenge to teaching sciences in developing…

  12. [Fundamentals of plasma chemistry and its application to drug engineering].

    PubMed

    Kuzuya, M

    1996-04-01

    In this review, our novel research works in both low temperature plasma chemistry and solid state plasma chemistry were described. As for low temperature plasma, the ESR study on plasma-induced radicals of several selected conventional polymers was shown including the detailed analyses of the radical structure and the mechanism by which the radicals were formed on typical degradable methacrylic polymers and cross-linkable polystyrene. One of the pharmaceutical applications of the plasma processing for drug delivery system (DDS) was also described, which includes the preparations of double-compressed tablet consisting of drugs as a core material and various types of polymers as a wall material followed by plasma-irradiation on such a tablet. As for solid state plasma, the detailed reaction mechanism of solid state mechanochemical polymerization was shown including the solid state single electron transfer and the special feature of the resulting polymers. The structural criteria for polymerizable monomer derived from the quantum chemical considerations were also established. Based on the above findings, we synthesized various polymeric prodrugs by mechanochemical polymerization and studied the nature of hydrolyses (drug release).

  13. International year of Chemistry 2011. A guide to the history of clinical chemistry.

    PubMed

    Kricka, Larry J; Savory, John

    2011-08-01

    This review was written as part of the celebration of the International Year of Chemistry 2011. In this review we provide a chronicle of the history of clinical chemistry, with a focus on North America. We outline major methodological advances and trace the development of professional societies and journals dedicated to clinical chemistry. This review also serves as a guide to reference materials for those interested in the history of clinical chemistry. The various resources available, in sound recordings, videos, moving images, image and document archives, museums, and websites dedicated to diagnostic company timelines, are surveyed. These resources provide a map of how the medical subspecialty of clinical chemistry arrived at its present state. This information will undoubtedly help visionaries to determine in which direction clinical chemistry will move in the future.

  14. The physical chemistry and materials science behind sinter-resistant catalysts.

    PubMed

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  15. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  16. Functional materials from cellulose-derived liquid-crystal templates.

    PubMed

    Giese, Michael; Blusch, Lina K; Khan, Mostofa K; MacLachlan, Mark J

    2015-03-02

    Cellulose nanocrystals (CNCs), known for more than 50 years, have attracted attention because of their unique properties such as high specific strength and modulus, high surface area, and fascinating optical properties. Just recently, however, their potential in supramolecular templating was identified by making use of their self-assembly behavior in aqueous dispersions in the presence of compatible precursors. The combination of the mesoporosity, photonic properties, and chiral nematic order of the materials, which are available as freestanding films, has led to a significant number of interesting and promising discoveries towards new functional materials. This Review summarizes the use of cellulose derivatives, especially CNCs, as novel templates and gives an overview of the recent developments toward new functional materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rubber-like materials derived from biosourced phenolic resins

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.

    2017-07-01

    The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.

  18. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  19. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    PubMed

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  20. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

  1. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges

    PubMed Central

    Wu, Hao Bin; Lou, Xiong Wen (David)

    2017-01-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220

  2. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  3. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures.

    PubMed

    Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H

    2017-09-21

    The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.

  4. Chemistry of green encapsulating molding compounds at interfaces with other materials in electronic devices

    NASA Astrophysics Data System (ADS)

    Scandurra, A.; Zafarana, R.; Tenya, Y.; Pignataro, S.

    2004-07-01

    The interface chemistry between encapsulating epoxy phenolic molding compound (EMC) containing phosphorous based organic flame retardant (the so called "green materials") and copper oxide-hydroxide and aluminum oxide-hydroxide surfaces have been studied in comparison with "conventional" EMC containing bromine and antimony as flame retardant. These green materials are designed to reduce the presence of toxic elements in the electronic packages and, consequently, in the environment. For the study were used a Scanning Acoustic Microscopy for delamination measurements, a dynamometer for the pull strength measurements and an ESCA spectrometer for chemical analysis of the interface. The general behavior of the green compound in terms of delamination, adhesion, and corrosion is found better or at least comparable than that of the conventional EMC.

  5. Chemistry Division: Annual progress report for period ending March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  6. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    NASA Astrophysics Data System (ADS)

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-10-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one class period. They were then encouraged to use their imagination and creativity to brainstorm and write chemistry poems or humors on the concepts and principles covered in the chemistry classes and artistically illustrate their original work on posters. The project, 2 3 months in length, was perceived by students as effective at helping them learn chemistry and express their understanding in a fun, personal, and creative way. The instructors found students listened to the directives because many posters were witty, clever, and eye-catching. They showed fresh use of language and revealed a good understanding of chemistry. The top posters were created by a mix of A-, B-, and C-level students. The fine art work, coupled with poetry, helped chemistry come alive on campus, providing an aesthetic presentation of materials that engaged the general viewer.

  7. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  8. Chalcone: A Privileged Structure in Medicinal Chemistry.

    PubMed

    Zhuang, Chunlin; Zhang, Wen; Sheng, Chunquan; Zhang, Wannian; Xing, Chengguo; Miao, Zhenyuan

    2017-06-28

    Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.

  9. Chemistry for Student Nurses: Applications-Based Learning

    ERIC Educational Resources Information Center

    El-Farargy, Nancy

    2009-01-01

    New chemistry materials were devised for pre university National Certificate (NC) nursing students studying chemistry at a further education college. Previously, preliminary work showed that students felt that the chemistry taught to them was irrelevant, boring and difficult. It was hoped that through an applications-led style curriculum…

  10. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  12. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  13. Sol-Gel Synthesis of a Biotemplated Inorganic Photocatalyst: A Simple Experiment for Introducing Undergraduate Students to Materials Chemistry

    ERIC Educational Resources Information Center

    Boffa, Vittorio; Yue, Yuanzheng; He, Wen

    2012-01-01

    As part of a laboratory course, undergraduate students were asked to use baker's yeast cells as biotemplate in preparing TiO[subscript 2] powders and to test the photocatalytic activity of the resulting materials. This laboratory experience, selected because of the important environmental implications of soft chemistry and photocatalysis, provides…

  14. Removal of cadmium ions from wastewater using innovative electronic waste-derived material.

    PubMed

    Xu, Meng; Hadi, Pejman; Chen, Guohua; McKay, Gordon

    2014-05-30

    Cadmium is a highly toxic heavy metal even at a trace level. In this study, a novel material derived from waste PCBs has been applied as an adsorbent to remove cadmium ions from aqueous solutions. The effects of various factors including contact time, initial cadmium ion concentration, pH and adsorbent dosage have been evaluated. The maximum uptake capacity of the newly derived material for cadmium ions has reached 2.1mmol/g at an initial pH 4. This value shows that this material can effectively remove cadmium ions from effluent. The equilibrium isotherm has been analyzed using several isotherm equations and is best described by the Redlich-Peterson model. Furthermore, different commercial adsorbent resins have been studied for comparison purposes. The results further confirm that this activated material is highly competitive with its commercial counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  16. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  17. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  18. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  19. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    PubMed

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  1. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.

    PubMed

    Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2010-11-04

    Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.

  2. Development and characterization of a 99m Tc-tricarbonyl-labelled estradiol derivative obtained by "Click Chemistry" with potential application in estrogen receptors imaging.

    PubMed

    Tejería, María Emilia; Giglio, Javier; Dematteis, Silvia; Rey, Ana

    2017-09-01

    Assessment of the presence of estrogen receptors in breast cancer is crucial for treatment planning. With the objective to develop a potential agent for estrogen receptors imaging, we present the development and characterization of a 99m Tc-tricarbonyl-labelled estradiol derivative. Using ethinylestradiol as starting material, an estradiol derivative bearing a 1,4-disubstituted 1,2,3-triazole-containing tridentate ligand system was synthesized by "Click Chemistry" and fully characterized. Labelling with high yield and radiochemical purity was achieved through the formation of a 99m Tc-tricarbonyl complex. The radiolabelled compound was stable, exhibited moderate binding to plasma protein (approximately 33%) and lipophilicity in the adequate range (logP 1.3 ± 0.1 at pH 7.4). Studies in MCF7 showed promising uptake values (approximately 2%). However, more than 50% of the activity is quickly released from the cell. Biodistribution experiments in normal rats confirmed the expected "in vivo" stability of the radiotracer but showed very high gastrointestinal and liver activity, which is inconvenient for in vivo applications. Taking into consideration the well-documented influence of the chelating system in the physicochemical and biological behaviour of technetium-labelled small biomolecules, research will be continued using the same pharmacophore but different complexation modalities of technetium. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  4. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  5. Performance of carbon material derived from starch mixed with flame retardant as electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Morita, Masaki; Murakami, Naoya; Ohno, Teruhisa

    2014-12-01

    Carbon materials derived from starch with an added flame retardant, such as melamine polyphosphate, melamine sulfate, guanylurea phosphate, or guanidine phosphate, were synthesized for investigating the performance as the electrode of an electrochemical capacitor. The yield after the heat treatment of the carbonization reaction increased by the addition of these flame retardants up to 800 °C. Although both the specific surface area and electrical resistivity are almost independent of the addition of the flame retardants, the capacitance values are improved with the addition of the flame retardants. The nitrogen atoms derived from the flame retardants are introduced to some extent into the synthesized carbon material. Moreover, the phosphorous atoms or the sulfur atoms derived from the flame retardants are doped into the synthesized carbon material. The method applied in this study, that is, the addition of flame retardants before the carbonization process can be used for the doping of the hetero atom such as N, P and S into the carbon material.

  6. Chemistry of vaporization of refractory materials

    NASA Technical Reports Server (NTRS)

    Gilles, P. W.

    1975-01-01

    A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.

  7. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    EPA Pesticide Factsheets

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  8. Hyaluronan based materials with catanionic sugar-derived surfactants as drug delivery systems.

    PubMed

    Roig, F; Blanzat, M; Solans, C; Esquena, J; García-Celma, M J

    2018-04-01

    In the present work novel drug delivery systems consisting in highly porous Hyaluronan foams for the administration of a non-steroidal anti-inflammatory drug (NSAID), ketoprofen, have been obtained. A sugar-derived surfactant associated with ketoprofen was prepared and incorporated into the porous hyaluronan materials. The association between a lactose derived surfactant, Lhyd 12 , and ketoprofen was obtained by acid-base reaction and its physicochemical properties were studied. Tensiometric and dynamic light scattering (DLS) determinations showed the formation of catanionic surfactant aggregates, Lhyd 12 /ketoprofen, in aqueous solution. Furthermore, the catanionic surfactants allowed greater solubilisation of ketoprofen. Hyaluronan porous materials were developed using butanediol diglycidyl ether as crosslinking agent. The profile release of Lhyd 12 /ketoprofen from hyaluronan based materials shows differences as a function of the aggregation state of catanionic surfactant. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. To Form a Favorable Idea of Chemistry

    ERIC Educational Resources Information Center

    Heikkinen, Henry W.

    2010-01-01

    "To confess the truth, Mrs. B., I am not disposed to form a very favorable idea of chemistry, nor do I expect to derive much entertainment from it." That 200-year-old statement by Caroline to Mrs. Bryan, her teacher, appeared on the first page of Jane Marcet's pioneering secondary school textbook, "Conversations on Chemistry". It was published 17…

  10. Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species

    PubMed Central

    Fukuto, Jon M.; Carrington, Samantha J.; Tantillo, Dean J.; Harrison, Jason G.; Ignarro, Louis J.; Freeman, Bruce A.; Chen, Andrew; Wink, David A.

    2014-01-01

    Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H2S (and the nonendogenously generated O2), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions. PMID:22263838

  11. Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2007-01-01

    Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue. (c) 2007 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  12. Discovery and Development of Natural Product-derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach⊥†

    PubMed Central

    Lee, Kuo-Hsiung

    2010-01-01

    Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogs, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analog synthesis, as well as structure-activity relationship and mechanism of action studies. Current clinical trials agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in Phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called “maturation inhibitors”. In addition, an etoposide analog, GL-331, progressed to anticancer Phase II clinical trials, and the curcumin analog JC-9 is in Phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trials candidates will also be discussed. PMID:20187635

  13. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    DOEpatents

    Bronfenbrenner, James C.; Foster, Edward P.; Tewari, Krishna

    1985-01-01

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  14. Doing Chemistry: A Resource for High School Chemistry Teachers.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1989

    1989-01-01

    Described is a practical resource that ties the specifics of classroom chemistry content to the specifics of teaching practice. Listed are 135 lessons found on three videodisks which have 700 pages of supporting written materials. Notes that the full gamut of the traditional high school curriculum is covered. (MVL)

  15. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  16. Chemistry at the dirac point of graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Santanu

    Graphene holds great potential as an electronic material because of its excellent transport properties, which derive from its unique Fermi surface and ballistic conductance. It exhibits extremely high mobility [~250,000 cm*2/(V*s)]. Despite its extraordinary properties, the absence of a band-gap in graphene makes it unsuitable for its use as an active element in conventional field effect transistors (FETs). Another problem with pristine graphene is its lack of solution processability, which inhibits it applications in numerous fields such as printed electronics, transparent conductors, nano-biodevices, and thin film technologies involving fuel cells, capacitors and solar cells. My thesis is focused on addressing theses issue by application of covalent chemistry on graphene. We have applied the Kolbe electro-oxidation strategy to achieve an efficient quasi-reversible electrochemical grafting of the naphthylmethyl radicals to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. We have discovered that the zero-band-gap electronic structure of graphene enables it to function as either the diene or the dienophile in the Diels-Alder (DA) reaction, and this versatile synthetic method offers a powerful strategy for the reversible modification of the electronic properties of graphene under very mild conditions. We show that the application of the Diels-Alder (DA) chemistry to graphene, which is capable of simultaneous formation of a pair of sp3-carbon centers (balanced divacancies) in graphene, can selectively produce DA-modified graphene FET devices with mobility between 1,000-6,000 cm2V-1s-1 (with a variable range hopping transport mechanism). Most of the covalent chemistry applied on graphene leads to the change in hybridization of graphene sp2 carbon to sp3 (destructive hybridization) and the FET devices based on such covalently modified graphene shows a drastic reduction of

  17. Problem-based learning on quantitative analytical chemistry course

    NASA Astrophysics Data System (ADS)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  18. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Jonathan E.; Curtiss, Larry A.; Assary, Rajeev S.

    2014-09-25

    Application of density functional calculations to compute electrochemical properties such as redox windows, effect of substitution by electron donating and electron withdrawing groups on redox windows, and solvation free energies for ~50 anthraquinone (AQ) derivatives are presented because of their potential as anolytes in all-organic redox flow batteries. Computations suggest that lithium ions can increase (by ~0.4 V) the reduction potential of anthraquinone due to the lithium ion pairing by forming a Lewis base-Lewis acid complex. To design new redox active species, the substitution by electron donating groups are essential to improve the reduction window of AQ with adequate oxidativemore » stability. For instance, a complete methylation of AQ can improve its reduction window by ~0.4 V. The quantum chemical studies of the ~50 AQ derivatives are used to derive a relationship that connects the computed LUMO energy and the reduction potential that can be applied as a descriptor for screening thousands of AQ derivatives. Our computations also suggest that incorporating oxy-methyl dioxolane substituents in the AQ framework can increase its interaction with non-aqueous solvent and improve its solubility. Thermochemical calculations for likely bond breaking decomposition reactions of un-substituted AQ anions suggest that the dianions are relatively stable in the solution. These studies provide ideal platform to perform further combined experimental and theoretical studies to understand the electrochemical reversibility and solubility of new quinone molecules as energy storage materials.« less

  19. Airborne Observations of Urban-Derived Water Vapor and Potential Impacts on Chemistry and Clouds

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Shepson, P. B.; Grundman, R. M., II; Stirm, B. H.; Ren, X.; Dickerson, R. R.; Fuentes, J. D.

    2015-12-01

    Atmospheric conditions typical of wintertime, such as lower boundary layer heights and reduced turbulent mixing, provide a unique environment for anthropogenic pollutants to accumulate and react. Wintertime enhancements in water vapor (H2O) have been observed in urban areas, and are thought to result from fossil fuel combustion and urban heat island-induced evaporation. The contribution of urban-derived water vapor to the atmosphere has the potential to locally influence atmospheric chemistry and weather for the urban area and surrounding region due to interactions between H2O and other chemical species, aerosols, and clouds. Airborne observations of urban-derived H2O, carbon dioxide (CO2), methane, nitrogen dioxide (NO2), ozone, and aerosols were conducted from Purdue University's Airborne Laboratory for Atmospheric Research (ALAR) and the University of Maryland's (UMD) Twin Cessna research aircraft during the winter of 2015. Measurements were conducted as part of the collaborative airborne campaign, Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER), which investigated seasonal trends in anthropogenic emissions and reactivity in the Northeastern United States. ALAR and the UMD aircraft participated in mass balance experiments around Washington D.C.-Baltimore to determine total city emission rates of H2O and other greenhouse gases. Average enhancements in H2O mixing ratio of 0.048%, and up to 0.13%, were observed downwind of the urban centers on ten research flights. In some cases, downwind H2O concentrations clearly track CO2 and NO2 enhancements, suggesting a strong combustion signal. Analysis of Purdue and UMD data collected during the WINTER campaign shows an average urban-derived H2O contribution of 5.3%, and as much as 13%, to the local boundary layer from ten research flights flown in February and March of 2015. In this paper, we discuss the potential chemical and physical implications of these results.

  20. UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY

    EPA Science Inventory

    Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...

  1. Ionic liquids and derived materials for lithium and sodium batteries.

    PubMed

    Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng

    2018-03-21

    The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.

  2. Carbohydrate CuAAC click chemistry for therapy and diagnosis.

    PubMed

    He, Xiao-Peng; Zeng, Ya-Li; Zang, Yi; Li, Jia; Field, Robert A; Chen, Guo-Rong

    2016-06-24

    Carbohydrates are important as signaling molecules and for cellular recognition events, therefore offering scope for the development of carbohydrate-mimetic diagnostics and drug candidates. As a consequence, the construction of carbohydrate-based bioactive compounds and sensors has become an active research area. While the advent of click chemistry has greatly accelerated the progress of medicinal chemistry and chemical biology, recent literature has seen an extensive use of such approaches to construct functionally diverse carbohydrate derivatives. Here we summarize some of the progress, covering the period 2010 to mid-2015, in Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition CuAAC "click chemistry" of carbohydrate derivatives, in the context of potential therapeutic and diagnostic tool development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The Living Textbook of Nuclear Chemistry: A Peer-Reviewed, Web-Based, Education Resource

    ERIC Educational Resources Information Center

    Loveland, W.; Gallant, A.; Joiner, C.

    2004-01-01

    The recent developments in nuclear chemistry education are presented and an attempt is made to collect supplemental materials relating to the study and practice of nuclear chemistry. The Living Textbook of Nuclear Chemistry functions as an authoritative Web site with supplemental material for teaching nuclear and radiochemistry.

  4. Chemistry of Meridiani Outcrops

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Squyres, S. W.; Ming, D. W.; Morris, R. V.; Yen, A.; Gellert, R.; Knoll, A.H.; Arvidson, R. E.

    2006-01-01

    The chemistry and mineralogy of the sulfate-rich sandstone outcrops at Meridiani Planum, Mars, have been inferred from data obtained by the Opportunity rover of the MER mission and reported in recent publications [1-6]. Here, we provide an update on more recent samples and results derived from this extensive data set.

  5. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    PubMed

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  7. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  8. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  9. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    PubMed

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optical determination of material abundances by using neural networks for the derivation of spectral filters

    NASA Astrophysics Data System (ADS)

    Krippner, Wolfgang; Wagner, Felix; Bauer, Sebastian; Puente León, Fernando

    2017-06-01

    Using appropriately designed spectral filters allows to optically determine material abundances. While an infinite number of possibilities exist for determining spectral filters, we take advantage of using neural networks to derive spectral filters leading to precise estimations. To overcome some drawbacks that regularly influence the determination of material abundances using hyperspectral data, we incorporate the spectral variability of the raw materials into the training of the considered neural networks. As a main result, we successfully classify quantized material abundances optically. Thus, the main part of the high computational load, which belongs to the use of neural networks, is avoided. In addition, the derived material abundances become invariant against spatially varying illumination intensity as a remarkable benefit in comparison with spectral filters based on the Moore-Penrose pseudoinverse, for instance.

  11. Friendship chemistry: An examination of underlying factors☆.

    PubMed

    Campbell, Kelly; Holderness, Nicole; Riggs, Matt

    2015-06-01

    Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed.

  12. Friendship chemistry: An examination of underlying factors☆

    PubMed Central

    Campbell, Kelly; Holderness, Nicole; Riggs, Matt

    2015-01-01

    Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed. PMID:26097283

  13. Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    DeVoe, Howard; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…

  14. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.

    PubMed

    Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S

    2013-10-14

    Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.

  15. Can Human Embryonic Stem Cell-Derived Stromal Cells Serve a Starting Material for Myoblasts?

    PubMed Central

    Ando, Yu; Saito, Marie; Machida, Masakazu; Yoshida-Noro, Chikako; Akutsu, Hidenori; Takahashi, Masataka

    2017-01-01

    A large number of myocytes are necessary to treat intractable muscular disorders such as Duchenne muscular dystrophy with cell-based therapies. However, starting materials for cellular therapy products such as myoblasts, marrow stromal cells, menstrual blood-derived cells, and placenta-derived cells have a limited lifespan and cease to proliferate in vitro. From the viewpoints of manufacturing and quality control, cells with a long lifespan are more suitable as a starting material. In this study, we generated stromal cells for future myoblast therapy from a working cell bank of human embryonic stem cells (ESCs). The ESC-derived CD105+ cells with extensive in vitro proliferation capability exhibited myogenesis and genetic stability in vitro. These results imply that ESC-derived CD105+ cells are another cell source for myoblasts in cell-based therapy for patients with genetic muscular disorders. Since ESCs are immortal, mesenchymal stromal cells generated from ESCs can be manufactured at a large scale in one lot for pharmaceutical purposes. PMID:28706537

  16. Planetary Sources for Reducing Sulfur Compounds for Cyanosulfidic Origins of Life Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, S.; Todd, Z. R.; Sutherland, J.; Sasselov, D. D.

    2017-12-01

    A key challenge in origin-of-life studies is understanding the chemistry that lead to the origin of the key biomolecules of life, such as the components of nucleic acids, sugars, lipids, and proteins. Prebiotic reaction networks based upon reductive homologation of nitriles (e.g., Patel et al. 2015), are building a tantalizing picture of sustained abiotic synthesis of activated ribonucleotides, amino acids and lipid precursors under environmental conditions thought to have been available on early Earth. Sulfidic anions in aqueous solution (e.g., HS-, HSO3-) under near-UV irradiation play important roles in these chemical pathways. However, the sources and availability of these anions on early Earth have not yet been quantitatively constrained. Here, we evaluate the potential for the atmosphere to serve as a source of sulfidic anions, via dissolution of volcanically-outgassed SO2 and H2S into water reservoirs. We combine photochemical modeling from the literature (Hu et al. 2013) with equilibrium chemistry calculations to place constraints on the partial pressures of SO2 and H2S required to reach the elevated concentrations of sulfidic anions (≥1 μM) thought to be necessary for prebiotic chemistry. We find that micromolar levels of SO2-derived anions (HSO3-, SO3(2-)) are possible through simple exposure of aqueous reservoirs like shallow lakes to the atmosphere, assuming total sulfur emission flux comparable to today. Millimolar levels of these compounds are available during the epochs of elevated volcanism, due to elevated sulfur emission flux. Radiative transfer modeling suggests the atmospheric sulfur will not block the near-UV radiation also required for the cyanosulfidic chemistry. However, H2S-derived anions (e.g., HS-) reach only sub-micromolar levels from atmospheric sources, meaning that prebiotic chemistry invoking such molecules must invoke specialized, local sources. Prebiotic chemistry invoking SO2-derived anions may be considered more robust than

  17. Part 7: Environmental Chemistry, Revised.

    ERIC Educational Resources Information Center

    Douville, Judith A.

    2003-01-01

    Discusses resources on applied/interdisciplinary areas of chemistry available as books and electronic materials that mostly target graduate students, faculty, and chemists in the industry. (Author/YDS)

  18. BIBLIOGRAPHIC GUIDE FOR ADVANCED PLACEMENT, CHEMISTRY.

    ERIC Educational Resources Information Center

    WILLIAMS, HARRY; KING, CLYDE

    REFERENCES AND AUDIOVISUAL MATERIALS ARE LISTED IN THIS GUIDE FOR SECONDARY SCHOOL ADVANCED PLACEMENT CHEMISTRY TEACHERS AND LIBRARIANS. BOOKS, PERIODICALS, WALL CHARTS, FILMS, AND FILMSTRIPS ARE INCLUDED. CITATIONS ARE COMPLETE AND INCLUDE INFORMATION PERTINENT TO THE ACQUISITION OF THE MATERIALS. (AG)

  19. Immobilized-type chiral packing materials for HPLC based on polysaccharide derivatives.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2008-11-01

    The polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography (HPLC) have been recognized as the most powerful ones for the analyzing and preparative separating of the chiral compounds. These CPMs have been conventionally prepared by coating polysaccharide derivatives on a silica gel support. This means that the solvents, which swell or dissolve the derivatives on the silica gel and reduce the performance of the chiral columns, do not allow to be applied as components of the eluents. Therefore, the polysaccharide-based CPMs can be used with a rather limited number of eluents. In order to enhance the versatility of the eluent selection for more practical and economical chromatographic enantioseparations, the polysaccharide derivatives must be immobilized onto the silica gel. This review summarizes our latest studies on the development of the immobilized-type CPMs via the radical copolymerization and the polycondensation of the polysaccharide derivatives bearing small amounts of vinyl groups and alkoxysilyl groups, respectively.

  20. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  1. Integrating the Principles of Toxicology into a Chemistry Curriculum

    EPA Science Inventory

    Designing safer products, processes and materials requires a commitment to engaging a transdisciplinary, systems approach utilizing the principles of chemistry, toxicology, environmental sciences and other allied disciplines. Chemistry and toxicology are inherently complementary ...

  2. Functional nucleic acid entrapment in sol-gel derived materials.

    PubMed

    Carrasquilla, Carmen; Brennan, John D

    2013-10-01

    Functional nucleic acids (FNAs) are single-stranded DNA or RNA molecules, typically generated through in vitro selection, that have the ability to act as receptors for target molecules (aptamers) or perform catalysis of a chemical reaction (deoxyribozymes and ribozymes). Fluorescence-signaling aptamers and deoxyribozymes have recently emerged as promising biological recognition and signaling elements, although little has been done to evaluate their potential for solid-phase assays, particularly with species made of RNA due to their lack of chemical stability and susceptibility to nuclease attack. Herein, we present a detailed overview of the methods utilized for solid-phase immobilization of FNAs using a sol-gel entrapment method that can provide protection from nuclease degradation and impart long-term chemical stability to the FNA reporter systems, while maintaining their signaling capabilities. This article will also provide a brief review of the results of such entrapment studies involving fluorescence-signaling versions of a DNA aptamer, selected RNA-cleaving deoxyribozymes, and two different RNA aptamers in a series of sol-gel derived composites, ranging from highly polar silica to hydrophobic methylsilsesquioxane-based materials. Given the ability to produce sol-gel derived materials in a variety of configurations, particularly as thin film coatings on electrodes, optical fibers, and other devices, this entrapment method should provide a useful platform for numerous solid-phase FNA-based biosensing applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  4. Form and Function: An Organic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

  5. Surface Chemistry of a Microcoated Energetic Material, Pentaerythritoltetranitrate (PETN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, C.M.; Vannet, M.D.; Ball, G.L.

    1987-01-01

    A microcoating technique was used to apply a polymer to an energetic explosive material. The explosive was pentaerythritoltetranitrate (PETN), and the coating was a copolymer consisting of vinylchloride/trifluorochloroethylene in a 1.5/1.0 molecular ratio. X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) were used to study the surface and interfacial chemistry of PETN powders and pellets made from compressed powders having either 0.5 or 20 wt% coating. Two simple models were used to discuss the nature of the copolymer film on the PETN. Model I shows the copolymer completely coating PETN; Model II depicts the copolymer as only partially coveringmore » PETN. Model II was applicable in explaining the 0.5 and 20 wt% microcoating of powders, as well as the 0.5 wt% coated pellets. However, the pellets with 20 wt% coating showed the copolymer to completely coat PETN (Model I), suggesting copolymer redistribution during pelletization. XPS and ISS results showed the copolymer film to be thin. An XPS expression modified to accommodate ISS data was developed for the calculation of the average copolymer thickness of PETN. The thicknesses were determined to be 10 {angstrom} and 6 {angstrom} for 0.5 wt% coated PETN powders and pellets, respectively. Bonding between the copolymer and PETN was concluded to be mechanical.« less

  6. Electrospun Nanocomposite Materials, A Novel Synergy of Polyurethane and Bovine Derived Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Bozkurt, Y.; Sahin, A.; Sunulu, A.; Aydogdu, M. O.; Altun, E.; Oktar, F. N.; Ekren, N.; Gunduz, O.

    2017-04-01

    Polyurethane (PU) is a synthetic polymer that is used for construction of scaffold in tissue engineering applications in order to obtain desirable mechanical, physical and chemical properties like elasticity and durability. Bovine derived hydroxyapatite (BHAp) is a ceramic based natural polymer that is used as the most preferred implant material in orthopedics and dentistry due to their chemically and biologically similarity to the mineral phase found in the human bone structure. PU and bovine derived hydroxyapatite (BHAp) solutions with different concentrations were prepared with dissolving polyurethane and BHAp in Dimethylformamide (DMF) and Tetrahydrofuran (THF) solutions. Blended PU-BHAp solutions in different concentrations were used for electrospinning technique to create nanofiber scaffolds and new biocomposite material together. SEM, FTIR and physical analysis such as viscosity, electrical conductivity, density measurement and tensile strength measurement tests were carried out after production process.

  7. Mechanochemistry of nucleosides, nucleotides and related materials

    PubMed Central

    Eguaogie, Olga; Conlon, Patrick F; Gîlea, Manuela A; Liang, Yipei

    2018-01-01

    The application of mechanical force to induce the formation and cleavage of covalent bonds is a rapidly developing field within organic chemistry which has particular value in reducing or eliminating solvent usage, enhancing reaction rates and also in enabling the preparation of products which are otherwise inaccessible under solution-phase conditions. Mechanochemistry has also found recent attention in materials chemistry and API formulation during which rearrangement of non-covalent interactions give rise to functional products. However, this has been known to nucleic acids science almost since its inception in the late nineteenth century when Miescher exploited grinding to facilitate disaggregation of DNA from tightly bound proteins through selective denaturation of the latter. Despite the wide application of ball milling to amino acid chemistry, there have been limited reports of mechanochemical transformations involving nucleoside or nucleotide substrates on preparative scales. A survey of these reactions is provided, the majority of which have used a mixer ball mill and display an almost universal requirement for liquid to be present within the grinding vessel. Mechanochemistry of charged nucleotide substrates, in particular, provides considerable benefits both in terms of efficiency (reducing total processing times from weeks to hours) and by minimising exposure to aqueous conditions, access to previously elusive materials. In the absence of large quantities of solvent and heating, side-reactions can be reduced or eliminated. The central contribution of mechanochemistry (and specifically, ball milling) to the isolation of biologically active materials derived from nuclei by grinding will also be outlined. Finally non-covalent associative processes involving nucleic acids and related materials using mechanochemistry will be described: specifically, solid solutions, cocrystals, polymorph transitions, carbon nanotube dissolution and inclusion complex formation

  8. Organic chemistry on solid surfaces

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Zaera, Francisco

    2006-07-01

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed.

  9. Organic Carbamates in Drug Design and Medicinal Chemistry

    PubMed Central

    2016-01-01

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug–target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry. PMID:25565044

  10. Organic carbamates in drug design and medicinal chemistry.

    PubMed

    Ghosh, Arun K; Brindisi, Margherita

    2015-04-09

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.

  11. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.

    2017-03-01

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  12. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    ERIC Educational Resources Information Center

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  13. Greener and Sustainable Chemistry

    EPA Science Inventory

    The special issue on Greener and Sustainable Chemistry highlights various strategies that can be adopted to address the pollution preventive measures promoting the use of energy efficient reactions that utilize benign and bio-renewable raw materials in a relatively safer reaction...

  14. Materials for stem cell factories of the future

    NASA Astrophysics Data System (ADS)

    Celiz, Adam D.; Smith, James G. W.; Langer, Robert; Anderson, Daniel G.; Winkler, David A.; Barrett, David A.; Davies, Martyn C.; Young, Lorraine E.; Denning, Chris; Alexander, Morgan R.

    2014-06-01

    Polymeric substrates are being identified that could permit translation of human pluripotent stem cells from laboratory-based research to industrial-scale biomedicine. Well-defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large-scale drug-screening programs and clinical use. Yet more than 1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells is challenging, and a rethink of the current predominant cell-derived substrates is needed to provide technology that can be scaled to meet the needs of millions of patients a year. In this Review, we consider the role of materials discovery, an emerging area of materials chemistry that is in large part driven by the challenges posed by biologists to materials scientists.

  15. Fluorous Compounds and their Role in Separation Chemistry

    ERIC Educational Resources Information Center

    Ubeda, Maria Angeles; Dembinski, Roman

    2006-01-01

    The main focus of fluorous chemistry targets resource and time-consuming separation, in order to improve the material economy and thus represents potentially environmentally friendly technology. Fluorous chemistry offers the advantage of easy separation based on different affirmatives of organics and fluorous molecules, where the process called…

  16. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    NASA Astrophysics Data System (ADS)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  17. Insights into the physical chemistry of materials from advances in HAADF-STEM

    DOE PAGES

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; ...

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less

  18. Neural Stem Cells and Its Derivatives as a New Material for Melanin Inhibition

    PubMed Central

    Hwang, Insik

    2017-01-01

    The pigment molecule, melanin, is produced from melanosomes of melanocytes through melanogenesis, which is a complex process involving a combination of chemical and enzymatically catalyzed reactions. The synthesis of melanin is primarily influenced by tyrosinase (TYR), which has attracted interest as a target molecule for the regulation of pigmentation or depigmentation in skin. Thus, direct inhibitors of TYR activity have been sought from various natural and synthetic materials. However, due to issues with these inhibitors, such as weak or permanent ability for depigmentation, allergy, irritant dermatitis and rapid oxidation, in vitro and in vivo, the development of new materials that inhibit melanin production is essential. A conditioned medium (CM) derived from stem cells contains many cell-secreted factors, such as cytokines, chemokines, growth factors and extracellular vesicles including exosomes. In addition, the secreted factors could negatively regulate melanin production through stimulation of a microenvironment of skin tissue in a paracrine manner, which allows the neural stem cell CM to be explored as a new material for skin depigmentation. In this review, we will summarize the current knowledge regulating depigmentation, and discuss the potential of neural stem cells and their derivatives, as a new material for skin depigmentation. PMID:29271951

  19. Surface chemistry relevant to material processing for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Okada, Lynne Aiko

    Metal-oxide-semiconductor (MOS) structures are the core of many modern integrated circuit (IC) devices. Each material utilized in the different regions of the device has its own unique chemistry. Silicon is the base semiconductor material used in the majority of these devices. With IC device complexity increasing and device dimensions decreasing, understanding material interactions and processing becomes increasingly critical. Hsb2 desorption is the rate-limiting step in silicon growth using silane under low temperature conditions. Activation energies for Hsb2 desorption measured during Si chemical vapor deposition (CVD) versus single-crystal studies are found to be significantly lower. It has been proposed that defect sites on the silicon surface could explain the observed differences. Isothermal Hsb2 desorption studies using laser induced thermal desorption (LITD) techniques have addressed this issue. The growth of low temperature oxides is another relevant issue for fabrication of IC devices. Recent studies using 1,4-disilabutane (DSB) (SiHsb3CHsb2CHsb2SiHsb3) at 100sp°C in ambient Osb2 displayed the successful low temperature growth of silicon dioxide (SiOsb2). However, these studies provided no information about the deposition mechanism. We performed LITD and Fourier transform infrared (FTIR) studies on single-crystal and porous silicon surfaces to examine the adsorption, decomposition, and desorption processes to determine the deposition mechanism. Titanium nitride (TiN) diffusion barriers are necessary in modern metallization structures. Controlled deposition using titanium tetrachloride (TiClsb4) and ammonia (NHsb3) has been demonstrated using atomic layered processing (ALP) techniques. We intended to study the sequential deposition method by monitoring the surface intermediates using LITD techniques. However, formation of a Cl impurity source, ammonium chloride (NHsb4sp+Clsp-), was observed, thereby, limiting our ability for effective studies. Tetrakis

  20. Cycloadditions in modern polymer chemistry.

    PubMed

    Delaittre, Guillaume; Guimard, Nathalie K; Barner-Kowollik, Christopher

    2015-05-19

    Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions

  1. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    PubMed

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  2. New chemistry of transition metal oxyhydrides

    PubMed Central

    Kobayashi, Yoji; Hernandez, Olivier; Tassel, Cédric; Kageyama, Hiroshi

    2017-01-01

    Abstract In this review we describe recent advances in transition metal oxyhydride chemistry obtained by topochemical routes, such as low temperature reduction with metal hydrides, or high-pressure solid-state reactions. Besides the crystal chemistry, magnetic and transport properties of the bulk powder and epitaxial thin film samples, the remarkable lability of the hydride anion is particularly highlighted as a new strategy to discover unprecedented mixed anion materials. PMID:29383042

  3. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use

  4. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes.

    PubMed

    Tron, Gian Cesare; Pirali, Tracey; Billington, Richard A; Canonico, Pier Luigi; Sorba, Giovanni; Genazzani, Armando A

    2008-03-01

    In recent years, there has been an ever-increasing need for rapid reactions that meet the three main criteria of an ideal synthesis: efficiency, versatility, and selectivity. Such reactions would allow medicinal chemistry to keep pace with the multitude of information derived from modern biological screening techniques. The present review describes one of these reactions, the 1,3-dipolar cycloaddition ("click-reaction") between azides and alkynes catalyzed by copper (I) salts. The simplicity of this reaction and the ease of purification of the resulting products have opened new opportunities in generating vast arrays of compounds with biological potential. The present review will outline the accomplishments of this strategy achieved so far and outline some of medicinal chemistry applications in which click-chemistry might be relevant in the future. (c) 2007 Wiley Periodicals, Inc.

  5. Benzothiazole Derivatives as Potential Anti-Infective Agents.

    PubMed

    Sharma, Prabodh Chander; Bansal, Kushal Kumar; Deep, Aakash; Pathak, Meenakshi

    2017-01-01

    Severity of microbial infections and escalating resistance towards antibiotics has created a deep necessity for discovery of novel anti-infective agents. Heterocyclic chemistry of benzothiazole has become one of the most prolific areas in the field of drug discovery and development that has attracted great attention in recent time due to its increasing importance in the field of pharmaceuticals. The importance of benzothiazole and derivatives as potential antimicrobial agents has been well established and a large number of papers have been published in this regard. The present communication is an earnest attempt to review the chemistry, synthetic aspects including click chemistry and antimicrobial activities of benzothiazole derivatives reported in recent scientific literature. The scientific information of this manuscript may be worthwhile in encouraging the prospective researchers working on this heterocyclic scaffold.

  6. Drug discovery chemistry: a primer for the non-specialist.

    PubMed

    Jordan, Allan M; Roughley, Stephen D

    2009-08-01

    Like all scientific disciplines, drug discovery chemistry is rife with terminology and methodology that can seem intractable to those outside the sphere of synthetic chemistry. Derived from a successful in-house workshop, this Foundation Review aims to demystify some of this inherent terminology, providing the non-specialist with a general insight into the nomenclature, terminology and workflow of medicinal chemists within the pharmaceutical industry.

  7. Modification of Silk Fibroin Using Diazonium Coupling Chemistry and the Effects on hMSC Proliferation and Differentiation

    PubMed Central

    Murphy, Amanda R.; John, Peter St.; Kaplan, David L.

    2009-01-01

    A simple chemical modification method using diazonium coupling chemistry was developed to tailor the structure and hydrophilicity of silk fibroin protein. The extent of modification using several aniline derivatives was characterized using UV/vis and 1H NMR spectroscopy, and the resulting protein structure was analyzed with ATR-FTIR spectroscopy. Introduction of hydrophobic functional groups facilitated rapid conversion of the protein from a random coil to a β-sheet structure, while addition of hydrophilic groups inhibited this process. hMSCs were grown on these modified silks to assess the biocompatibility of these materials. The hydrophilicity of the silk derivatives was found to affect the growth rate and morphology, but hMSCs were able to attach, proliferate and differentiate into an osteogenic lineage on all of the silk derivatives. PMID:18417206

  8. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Abudu, Patiman; Wang, Luxiang; Xu, Mengjiao; Jia, Dianzeng; Wang, Xingchao; Jia, Lixia

    2018-06-01

    In this work, a honeycomb-like carbon material derived from petroleum pitch was synthesized by a simple one-step carbonization/activation method using silica nanospheres as the hard templates. The obtained hierarchical porous carbon materials (HPCs) with a large specific surface area and uniform macropore distribution provide abundant active sites and sufficient ion migration channels. When used as an electrode material for supercapacitors, the HPCs exhibit a high specific capacitance of 341.0 F g-1 at 1 A g-1, excellent rate capability with a capacitance retention of 55.6% at 50 A g-1 (189.5 F g-1), and outstanding cycling performance in the three-electrode system.

  9. A Test of Strategies for Enhanced Learning of AP Descriptive Chemistry

    ERIC Educational Resources Information Center

    Kotcherlakota, Suhasini; Brooks, David W.

    2008-01-01

    The Advanced Placement (AP) Descriptive Chemistry Website allows users to practice chemistry problems. This study involved the redesign of the Website using worked examples to enhance learner performance. The population sample for the study includes users (students and teachers) interested in learning descriptive chemistry materials. The users…

  10. 75 FR 3942 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance..., Proposal Review Panel for Chemistry, 1191. Dates & Times: February 23, 2010; 8:30 a.m.-4:30 p.m. February... Brittain, Program Director, Chemistry Centers Program, Division of Materials Research, Room 1055, National...

  11. Structural Chemistry of Functional Nano-Materials for Environmental Remediation

    NASA Astrophysics Data System (ADS)

    John, Jesse

    of nuclear waste and the nuclear industry continues to generate an additional 2000 tons every year. MST is the baseline material used for to effectively remove 90Sr and alpha-emitting actinides from strongly alkaline, high-level nuclear waste solutions at the Savannah River site. Despite the success of MST in the remediation of high-level radioactive waste (HLW) the process by which the metals are structurally incorporated is still poorly understood, and there is still no structural model. This study aims to better understand the ion exchange mechanism of MST by generating a structural model derived from synchrotron X-ray powder diffraction data.

  12. Comparative study of graphene and its derivative materials as an electrode in OLEDs

    NASA Astrophysics Data System (ADS)

    Srivastava, Anshika; Kumar, Brijesh

    2018-04-01

    In current scenario, the organic materials have given a revolutionary evolution in the electronics industry. As, the organic light emitting diodes (OLEDs) have almost replaced the conventional technologies due to the use of organic based materials. However, the next generations OLEDs are intensively desired nowadays for high definition display technology. There are various concern involved in the successful design of OLEDs. Electrodes are one of the electrical conductors, which play a vital role in the construction of OLEDs. The performance of OLED is majorly affected by the material used for electrodes. Due to the requirement of transparent, flexible and inexpensive anodes in bottom emissive OLEDs, ITO was replaced by graphene material. Graphene is a single layer 2-dimensional transparent carbon allotrope which showed prodigious potential to escalate the device performance. Although graphene demonstrated impressive characteristics in various applications, it showed unfavorable work function for many other devices. Thus, derivative materials of graphene such as graphene oxide, graphane and β - graphdiyne were synthesized by several researchers. By comparing graphene and its derivatives as an anode of OLEDs, it has been found that graphene oxide showed the preeminent performance among all. In this paper, all the comparisons are investigated by using a standard device constructed by piling layers of anode/ m_MTDATA/ NPB/ Alq3: QAD/ Alq3/ cathode in TCAD ATLAS device simulator.

  13. Recent advances in the application of electron tomography to materials chemistry.

    PubMed

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    , have all contributed significantly to the further development of quantitative 3D studies of nanostructured materials, including nanoparticle-heterogeneous catalysts, fuel-cell components, and drug-delivery systems, as well as photovoltaic and plasmonic devices, and are likely to enhance our knowledge of many other facets of materials chemistry, such as organic-inorganic composites, solar-energy devices, bionanotechnology, biomineralization, and energy-storage systems composed of high-permittivity metal oxides.

  14. Unraveling the Reaction Chemistry of Icy Ocean World Surfaces

    NASA Astrophysics Data System (ADS)

    Hudson, R.; Loeffler, M. J.; Gerakines, P.

    2017-12-01

    The diverse endogenic chemistry of ocean worlds can be divided among interior, surface, and above-surface process, with contributions from exogenic agents such as solar, cosmic, and magnetospheric radiation. Bombardment from micrometeorites to comets also can influence chemistry by both delivering new materials and altering pre-existing ones, and providing energy to drive reactions. Geological processes further complicate the chemistry by transporting materials from one environment to another. In this presentation the focus will be on some of the thermally driven and radiation-induced changes expected from icy materials, primarily covalent and ionic compounds. Low-temperature conversions of a few relatively simple molecules into ions possessing distinct infrared (IR) features will be covered, with an emphasis on such features as might be identified through either orbiting spacecraft or landers. The low-temperature degradation of a few bioorganic molecules, such as DNA nucleobases and some common amino acids, will be used as examples of the more complex, and potentially misleading, chemistry expected for icy moons of the outer solar system. This work was supported by NASA's Emerging Worlds and Outer Planets Research programs, as well as the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  15. Quality assurance for health and environmental chemistry: 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.

    1991-10-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1990.

  16. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    PubMed Central

    Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874

  17. Multimodal and self-healable interfaces enable strong and tough graphene-derived materials

    NASA Astrophysics Data System (ADS)

    Liu, Yilun; Xu, Zhiping

    2014-10-01

    Recent studies have shown that graphene-derived materials not only feature outstanding multifunctional properties, but also act as model materials to implant nanoscale structural engineering insights into their macroscopic performance optimization. In this work, we explore strengthening and toughening strategies of this class of materials by introducing multimodal crosslinks, including long, strong and short, self-healable ones. We identify two failure modes by fracturing functionalized graphene sheets or their crosslinks, and the role of brick-and-mortar hierarchy in mechanical enhancement. Theoretical analysis and atomistic simulation results show that multimodal crosslinks synergistically transfer tensile load to enhance the strength, whereas reversible rupture and formation of healable crosslinks improve the toughness. These findings lay the ground for future development of high-performance paper-, fiber- or film-like macroscopic materials from low-dimensional structures with engineerable interfaces.

  18. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    NASA Astrophysics Data System (ADS)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  19. A Potential Function Derivation of a Constitutive Equation for Inelastic Material Response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Elfoutouh, N. A.

    1983-01-01

    Physical and thermodynamic concepts are used to develop a potential function for application to high temperature polycrystalline material response. Inherent in the formulation is a differential relationship between the potential function and constitutive equation in terms of the state variables. Integration of the differential relationship produces a state variable evolution equation that requires specification of the initial value of the state variable and its time derivative. It is shown that the initial loading rate, which is directly related to the initial hardening rate, can significantly influence subsequent material response. This effect is consistent with observed material behavior on the macroscopic and microscopic levels, and may explain the wide scatter in response often found in creep testing.

  20. Sol-Gel Chemistry for Carbon Dots.

    PubMed

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    PubMed

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  2. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    PubMed Central

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-01-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested. PMID:28773272

  3. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes.

    PubMed

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-03-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested.

  4. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    NASA Astrophysics Data System (ADS)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic

  5. Evaluating Environmental Chemistry Textbooks.

    ERIC Educational Resources Information Center

    Hites, Ronald A.

    2001-01-01

    A director of the Indiana University Center for Environmental Science Research reviews textbooks on environmental chemistry. Highlights clear writing, intellectual depth, presence of problem sets covering both the qualitative and quantitative aspects of the material, and full coverage of the topics of concern. Discusses the director's own approach…

  6. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  7. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    NASA Astrophysics Data System (ADS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  8. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2017-03-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  9. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Orlando

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centersmore » and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.« less

  10. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  11. Chemistry Between The Stars.

    ERIC Educational Resources Information Center

    Gammon, Richard H.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics are covered: the physical conditions in interstellar space in comparison with those of the earth, particularly in regard to gas density,…

  12. Ultrafast studies of shock induced chemistry-scaling down the size by turning up the heat

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn

    2015-06-01

    We will discuss recent progress in measuring time dependent shock induced chemistry on picosecond time scales. Data on the shock induced chemistry of liquids observed through picosecond interferometric and spectroscopic measurements will be reconciled with shock induced chemistry observed on orders of magnitude larger time and length scales from plate impact experiments reported in the literature. While some materials exhibit chemistry consistent with simple thermal models, other materials, like nitromethane, seem to have more complex behavior. More detailed measurements of chemistry and temperature across a broad range of shock conditions, and therefore time and length scales, will be needed to achieve a real understanding of shock induced chemistry, and we will discuss efforts and opportunities in this direction.

  13. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  14. 76 FR 13629 - Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Information-Fermentation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...] Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... Controls (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products... documentation to submit to support the CMC information for fermentation-derived intermediates, drug substances...

  15. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  16. Sustainable metal alkynyl chemistry: 3d metals and polyaza macrocyclic ligands.

    PubMed

    Ren, Tong

    2016-02-25

    We describe the chemistry of 3d metal alkynyls based on polyaza macrocyclic ligands, an emerging area of alkynyl chemistry that has previously been dominated by 4d and 5d metals with soft ligands. The abundance of 3d metals and low cost of tetraazacyclotetradecane ligands make these compounds more affordable, sustainable alternatives to metal alkynyls based on precious metals. Taking advantage of the rich variety of starting materials available in the literature, trans-[M(cyclam)(C2R)2]X (cyclam = 1,4,8,11-tetraazacyclotetradecane) compounds have been prepared from the reactions between [M(cyclam)X2]X (M = Cr, Fe and Co; X = Cl or OTf) and LiC2R. With [Co(cyclam)Cl2](+), both the {trans-[Co(cyclam)Cl]2(μ-(C≡C)n)}(2+) and trans-[Co(cyclam)(C2R)Cl](+) compounds have been prepared by a dehydrohalogenation reaction. The latter compounds undergo the second alkynylation reaction to afford dissymmetric trans-[Co(cyclam)(C2R)(C2R')](+) compounds. Similar alkynylation chemistry with complexes of the cyclam derivatives TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and HMC (5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) has been demonstrated in studies of [Ni(TMC)(C2R)](+) and trans-/cis-[Cr(HMC)(C2R)2](+). Me3TACN (1,4,7-N,N',N''-trimethyl-1,4,7-triazacyclononane) is also a supporting ligand that has been observed in transition metal alkynyls. The trans-[M(cyclam)(C2D)(C2A)](+) compounds (D = donor chromophore, A = acceptor chromophore) are excellent candidates for probing photoinduced electron transfer and related photophysical and photochemical processes. 3d Metal ions are often in high-spin ground states, which make these alkynyl compounds promising building blocks for magnetic materials.

  17. Chemistry--The Big Picture

    ERIC Educational Resources Information Center

    Cassell, Anne

    2011-01-01

    Chemistry produces materials and releases energy by ionic or electronic rearrangements. Three structure types affect the ease with which a reaction occurs. In the Earth's crust, "solid crystals" change chemically only with extreme heat and pressure, unless their fixed ions touch moving fluids. On the other hand, in living things, "liquid crystals"…

  18. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  19. Materials and Molecular Research Division annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  20. The DaVinci Project: Multimedia in Art and Chemistry.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  1. Near-infrared laboratory spectroscopy of mineral chemistry: A review

    NASA Astrophysics Data System (ADS)

    Meer, Freek van der

    2018-03-01

    Spectroscopy is the science concerned with the investigation and measurement of spectra produced when materials interacts with or emits electromagnetic radiation. Commercial infrared spectrometer were designed from the 1950's onward and found their way into the pharmaceutical and chemical industries. In the 1970's and 1980's also natural sciences notably mineralogy and vegetation science started systematically to measure optical properties of leaves and minerals/rocks with spectrometers. In the last decade spectroscopy has made the step from qualitative observations of mineral classes, soil type and vegetation biomass to quantitative estimates of mineral, soil and vegetation chemistry. This resulted in geothermometers used to characterize metamorphic and hydrothermal systems and to the advent of foliar biochemistry. More research is still needed to bridge the gap between laboratory spectroscopy and field spectroscopy. Empirical studies of minerals either as soil or rock constituents (and vegetation parameters) derived from regression analysis of spectra against chemistry is important in understanding the physics of the interaction of electromagnetic radiation and matter which in turn is important in the design of future satellite missions. Physics based models and retrievals are needed to operationalize these relationships and implement them in future earth observation missions as these are more robust and easy to transfer to other areas and data sets.

  2. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2007-02-01

    Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

  3. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Organic Chemistry in Two Dimensions: Surface-Functionalized Polymers and Self-Assembled Monolayer Films

    DTIC Science & Technology

    1988-09-01

    surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular

  5. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  6. Effects of nonequilibrium ablation chemistry on Viking radio blackout.

    NASA Technical Reports Server (NTRS)

    Evans, J. S.; Schexnayder, C. J., Jr.; Grose, W. L.

    1973-01-01

    The length of the entry blackout period during descent of the Viking Lander into the Mars atmosphere is predicted from calculated profiles of electron density in the shock layer over the aeroshell. Nonequilibrium chemistry plays a key role in the calculation, both in the inviscid flow and in the boundary layer. This is especially true in the boundary layer contaminated with ablation material, for which nonequilibrium chemistry predicts electron densities two decades lower than the same case calculated with equilibrium chemistry.

  7. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new ormore » updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.« less

  8. Materials derived from biomass/biodegradable materials.

    PubMed Central

    Luzier, W D

    1992-01-01

    Interest in biodegradable plastics made from renewable resources has increased significantly in recent years. PHBV (polyhydroxybutyrate-polyhydroxyvalerate) copolymers are good examples of this type of materials. This paper provides an overview of the manufacturing process, properties, biodegradability, and application/commercial issues associated with PHBV copolymers. They are naturally produced by bacteria from agricultural raw materials, and they can be processed to make a variety of useful products, where their biodegradability and naturalness are quite beneficial. PHBV copolymers are still in the first stage of commercialization. But they are presented in this paper as an example of how new technology can help meet society's needs for plastics and a clean environment. Images PMID:1736301

  9. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less

  10. Diversity and Periodicity: An Inorganic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Huheey, James; Sandoval, Amado

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching inorganic chemistry. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified science. Contents include: (1) "Periodicity: A Chemical Calendar"; (2)…

  11. Material Development and Meeting Learner's Need

    ERIC Educational Resources Information Center

    Aydin, Abdullah

    2013-01-01

    In this study, the aim was to show that learners' needs can be met using simple and cheap materials that can be found everywhere in 9th to 11th grade Chemistry courses. To this end, materials were developed using simple everyday life materials for 9th to 11th grade Chemistry courses. In the research, the project method was employed. The study was…

  12. Programming chemistry in DNA-addressable bioreactors.

    PubMed

    Fellermann, Harold; Cardelli, Luca

    2014-10-06

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Programming chemistry in DNA-addressable bioreactors

    PubMed Central

    Fellermann, Harold; Cardelli, Luca

    2014-01-01

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647

  14. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  15. Chemistry and Heritage

    NASA Astrophysics Data System (ADS)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  16. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    EPA Science Inventory

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  17. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogotsi, Yury

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination abovemore » 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.« less

  18. Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta

    2006-07-01

    The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.

  19. Chemistry between the stars

    NASA Technical Reports Server (NTRS)

    Gammon, R. H.

    1976-01-01

    A unit is presented for the secondary school teacher of physics, chemistry, astronomy, or earth sciences. Included are a list of reference materials, teaching aids, and projects. Discussion questions and a glossary are also provided. Concepts developed are: the nature of interstellar space, spectroscopy, molecular signals from space and interstellar molecules and other areas of astronomy.

  20. The Chemistry of Health

    ERIC Educational Resources Information Center

    Davis, Alison

    2009-01-01

    Do people realize that chemistry plays a key role in helping solve some of the most serious problems facing the world today? Chemists want to find the building blocks of the chemical universe--the molecules that form materials, living cells and whole organisms. Many chemists are medical explorers looking for new ways to maintain and improve…

  1. Water Treatment Technology - Chemistry/Bacteriology.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  2. Room temperature organic magnets derived from sp3 functionalized graphene.

    PubMed

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-02-20

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.

  3. Room temperature organic magnets derived from sp3 functionalized graphene

    PubMed Central

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-01-01

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636

  4. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    PubMed

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.

  5. How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics.

    PubMed

    Ryan, Aoife A; Senge, Mathias O

    2015-04-01

    As the world strives to create a more sustainable environment, green chemistry has come to the fore in attempts to minimize the use of hazardous materials and shift the focus towards renewable sources. Chlorophylls, being the definitive "green" chemical are rarely used for such purposes and this article focuses on the exploitation of this natural resource, the current applications of chlorophylls and their derivatives whilst also providing a perspective on the commercial potential of large-scale isolation of these pigments from biomass for energy and medicinal applications.

  6. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility

    PubMed Central

    Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186

  7. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  8. Lead Discovery, Chemistry Optimization, and Biological Evaluation Studies of Novel Biamide Derivatives as CB2 Receptor Inverse Agonists and Osteoclast Inhibitors

    PubMed Central

    Yang, Peng; Myint, Kyaw-Zeyar; Tong, Qin; Feng, Rentian; Cao, Haiping; Almehizia, Abdulrahman A.; Alqarni, Mohammed Hamed; Wang, Lirong; Bartlow, Patrick; Gao, Yingdai; Gertsch, Jürg; Teramachi, Jumpei; Kurihara, Noriyoshi; Roodman, Garson David; Cheng, Tao; Xie, Xiang-Qun

    2014-01-01

    N,N′-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB2 inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A–C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB2 inverse agonists with the highest CB2 binding affinity (CB2 Ki of 22–85 nM, EC50 of 4–28 nM) and best selectivity (CB1/CB2 of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 µM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent. PMID:23072339

  9. Presidential Green Chemistry Challenge: 2005 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winner, Professor Robin D. Rogers, used ionic liquids to dissolve and process cellulose from wood, cloth, or paper to make new biorenewable or biocompatible materials.

  10. Knot theory in modern chemistry.

    PubMed

    Horner, Kate E; Miller, Mark A; Steed, Jonathan W; Sutcliffe, Paul M

    2016-11-21

    Knot theory is a branch of pure mathematics, but it is increasingly being applied in a variety of sciences. Knots appear in chemistry, not only in synthetic molecular design, but also in an array of materials and media, including some not traditionally associated with knots. Mathematics and chemistry can now be used synergistically to identify, characterise and create knots, as well as to understand and predict their physical properties. This tutorial review provides a brief introduction to the mathematics of knots and related topological concepts in the context of the chemical sciences. We then survey the broad range of applications of the theory to contemporary research in the field.

  11. Liquid metals: fundamentals and applications in chemistry.

    PubMed

    Daeneke, T; Khoshmanesh, K; Mahmood, N; de Castro, I A; Esrafilzadeh, D; Barrow, S J; Dickey, M D; Kalantar-Zadeh, K

    2018-04-03

    Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.

  12. Holographic recording materials development. [using stilbene, indigo, and thioindigo derivatives

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The area of organic cis-trans photoisomerization systems for holographic memory applications was examined. Photochemical studies were made of stilbene, indigo, and thioindigo derivatives in solution and in a variety of polymer matrix materials, to optimize the photorefractive behavior of the chemical system as a whole. Lithium niobate was used to study the writing and reading efficiencies of thick phase holograms. Both phase-wave holograms and Fourier-transform holograms were employed, and a number of reconstruction techniques are discussed. The possibility of using cis-trans photoisomerization of appropriate organic chemicals as the basis for a holographic recording system is confirmed.

  13. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  14. Modification of symmetrically substituted phthalocyanines using click chemistry: phthalocyanine nanostructures by nanoimprint lithography.

    PubMed

    Chen, Xiaochun; Thomas, Jayan; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, N; McGrath, Dominic V

    2009-09-30

    Phthalocyanines (Pcs) are commonly applied to advanced technologies such as optical limiting, photodynamic therapy (PDT), organic field-effect transistors (OFETs), and organic photovoltaic (OPV) devices, where they are used as the p-type layer. An approach to Pc structural diversity and the incorporation of a functional group that allows fabrication of solvent resistant Pc nanostructures formed by using a newly developed nanoimprint by melt processing (NIMP) technique, a variant of standard nanoimprint lithography (NIL), is reported. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a click chemistry reaction, serves as an approach to structural diversity in Pc macrocycles. We have prepared octaalkynyl Pc 1b and have modified this Pc using the CuAAC reaction to yield four Pc derivatives 5a-5d with different peripheral substituents on the macrocycle. One of these derivatives, 5c, has photo-cross-linkable cinnamate residues, and we have demonstrated the fabrication of robust cross-linked photopatterned and imprinted nanostructures from this material.

  15. Electronic Materials Science

    NASA Astrophysics Data System (ADS)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  16. Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Tsang, Daniel C W; Qiu, Rongliang

    2015-07-01

    Recycling sewage sludge by pyrolysis has attracted increasing attention for pollutant removal from wastewater and soils. This study scrutinized As(III) sorption behavior on sludge-derived biochar (SDBC) under different pyrolysis conditions and solution chemistry. The SDBC pyrolyzed at a higher temperature showed a lower As(III) sorption capacity and increasingly nonlinear isotherm due to loss of surface sites and deoxygenation-dehydrogenation. The Langmuir sorption capacity on SDBC (3.08-6.04 mg g) was comparable to other waste-derived sorbents, with the highest As(III) sorption on SDBC pyrolyzed at 400°C for 2 h. The As(III) sorption kinetics best fit with the pseudo-second-order equation, thus suggesting the significance of the availability of surface sites and initial concentration. Sorption of As(III) was faster than that of Cr(VI) but slower than that of Pb(II), which was attributed to their differences in molar volume (correlated to diffusion coefficients) and sorption mechanisms. The X-ray photoelectron spectra revealed an increase of oxide oxygen (O) with a decrease of sorbed water, indicative of ligand exchange with hydroxyl groups on SDBC surfaces. The As(III) sorption was not pH dependent in acidic-neutral range (pH < 8) due to the buffering capacity and surface characteristics of the SDBC; however, sorption was promoted by increasing pH in the alkaline range (pH > 8) because of As(III) speciation in solution. An increasing ionic strength (0.001-0.1 mol L) facilitated As(III) sorption, indicating the predominance of ligand exchange over electrostatic interactions, while high concentrations (0.1 mol L) of competing anions (fluoride, sulfate, carbonate, and phosphate) inhibited As(III) sorption. These results suggest that SDBC is applicable for As(III) immobilization in most environmentally relevant conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Recent Advances in Nanocomposite Materials of Graphene Derivatives with Polysaccharides

    PubMed Central

    Terzopoulou, Zoi; Kyzas, George Z.; Bikiaris, Dimitrios N.

    2015-01-01

    This review article presents the recent advances in syntheses and applications of nanocomposites consisting of graphene derivatives with various polysaccharides. Graphene has recently attracted much interest in the materials field due to its unique 2D structure and outstanding properties. To follow, the physical and mechanical properties of graphene are then introduced. However it was observed that the synthesis of graphene-based nanocomposites had become one of the most important research frontiers in the application of graphene. Therefore, this review also summarizes the recent advances in the synthesis of graphene nanocomposites with polysaccharides, which are abundant in nature and are easily synthesized bio-based polymers. Polysaccharides can be classified in various ways such as cellulose, chitosan, starch, and alginates, each group with unique and different properties. Alginates are considered to be ideal for the preparation of nanocomposites with graphene derivatives due to their environmental-friendly potential. The characteristics of such nanocomposites are discussed here and are compared with regard to their mechanical properties and their various applications. PMID:28787964

  18. Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra

    USGS Publications Warehouse

    Baines, K.H.; Delitsky, M.L.; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Thunderstorm activity on Saturn is associated with optically detectable clouds that are atypically dark throughout the near-infrared. As observed by Cassini/VIMS, these clouds are ~20% less reflective than typical neighboring clouds throughout the spectral range from 0.8 ??m to at least 4.1 ??m. We propose that active thunderstorms originating in the 10-20 bar water-condensation region vertically transport dark materials at depth to the ~1 bar level where they can be observed. These materials in part may be produced by chemical processes associated with lightning, likely within the water clouds near the ~10 bar freezing level of water, as detected by the electrostatic discharge of lightning flashes observed by Cassini/RPWS (e.g., Fischer et al. 2008, Space Sci. Rev., 137, 271-285). We review lightning-induced pyrolytic chemistry involving a variety of Saturnian constituents, including hydrogen, methane, ammonia, hydrogen sulfide, phosphine, and water. We find that the lack of absorption in the 1-2 ??m spectral region by lightning-generated sulfuric and phosphorous condensates renders these constituents as minor players in determining the color of the dark storm clouds. Relatively small particulates of elemental carbon, formed by lightning-induced dissociation of methane and subsequently upwelled from depth - perhaps embedded within and on the surface of spectrally bright condensates such as ammonium hydrosulfide or ammonia - may be a dominant optical material within the dark thunderstorm-related clouds of Saturn. ?? 2009 Elsevier Ltd. All rights reserved.

  19. Syntheses of Thienylamphetamine Derivatives via Borane Chemistry

    DTIC Science & Technology

    1988-08-01

    derivatives of aniline, benzylamines, and phenylethylamines . Their work, showed that, for ring-iodinated phenylalkylamines, brain uptake, reten- tion, and...intensify, mimic, or oppose the biological effect of the metabolite depending on the analogue’s affinity for the receptor site and its intrinsic...amphetamine They found no discernable Itflocano in the dr.4g effect in dogs and on isolated rabbit intestinal tp ho th~onasphet4aine was found to be

  20. High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-Damascene lithography process

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki

    2008-03-01

    The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.

  1. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via 'click chemistry' approach.

    PubMed

    Pyta, Krystian; Klich, Katarzyna; Domagalska, Joanna; Przybylski, Piotr

    2014-09-12

    Thirty four novel derivatives of 3-formylrifamycin SV were synthesized via reductive alkylation and copper(I)-catalysed azide-alkyne cycloaddition. According to the obtained results, 'click chemistry' can be successfully applied for modification of structurally complex antibiotics such as rifamycins, with the formation of desired 1,2,3-triazole products. However, when azide-alkyne cycloaddition on 3-formylrifamycin SV derivatives demanded higher amount of catalyst, lower temperature and longer reaction time because of the high volatility of substrates, an unexpected intramolecular condensation with the formation of 3,4-dihydrobenzo[g]quinazoline heterocyclic system took place. Structures of new derivatives in solution were determined using one- and two-dimensional NMR methods and FT-IR spectroscopy. Computational DFT and PM6 methods were employed to correlate their conformation and acid-base properties to biological activity and establish SAR of the novel compounds. Microbiological, physico-chemical (logP, solubility) and structural studies of newly synthesised rifamycins indicated that for the presence of relatively high antibacterial (MIC ~0.01 nmol/mL) and antitubercular (MIC ~0.006 nmol/mL) activities, a rigid and basic substituent at C(3) arm, containing a protonated nitrogen atom "open" toward intermolecular interactions, is required. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. [Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering].

    PubMed

    Li, Ran; Wang, Hong; Leng, Chongyan; Wang, Kuan; Xie, Ying

    2016-05-01

    Natural polymeric materials and their derivatives are organic macromolecular compounds which exist in plants, animals, and micro-organisms. They have been widely used in the preparation of scaffolds for skin tissue engineering recently because of their good histocompatibility and degradability, and low immunogenicity. With the improvement of the preparation technics, composite materials are more commonly used to make scaffolds for dermal tissue engineering. This article summarizes the classification and research status of the commonly used natural polymer materials, their derivatives, and composite scaffold materials, as well as makes a prospect of the research trends of dermal scaffold in the future.

  3. Teaching Chemistry in Primary Science: What Does the Research Suggest?

    ERIC Educational Resources Information Center

    Skamp, Keith

    2011-01-01

    The new Australian national science curriculum includes chemistry content at the primary level. Chemistry for young students is learning about changes in material stuff (matter) and, by implication, of what stuff is made. Pedagogy in this area needs to be guided by research if stepping stones to later learning of chemical ideas are to facilitate…

  4. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation.

    PubMed

    Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I

    2014-08-01

    The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

  5. Studies related to the evolution of the lunar soil materials

    NASA Technical Reports Server (NTRS)

    Carter, J. L.

    1973-01-01

    Studies of the chemistry and morphology of the lunar samples are reported. The presence of fragments of plagoclase in the centers of the impact craters indicate that the glass spheres were derived by meteoritic impact from high velocity particles, while the glass was at high temperatures. From the study of the Apollo 16 samples, it is suggested that this material was formed in a hot impact ejecta blanket, or in an igneous environment, and later exposed to meteoritic impact. It is suggested that particles from Apollo 17 were formed in a cloud of siliceous vapors.

  6. The Effects of Clickers and Online Homework on Students' Achievement in General Chemistry

    ERIC Educational Resources Information Center

    Gebru, Misganaw T.

    2012-01-01

    Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on…

  7. The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials

    ERIC Educational Resources Information Center

    Halkyard, Shannon

    2012-01-01

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…

  8. Comprehensive reference ranges for hematology and clinical chemistry laboratory parameters derived from normal Nigerian adults.

    PubMed

    Miri-Dashe, Timzing; Osawe, Sophia; Tokdung, Monday; Daniel, Monday Tokdung Nenbammun; Daniel, Nenbammun; Choji, Rahila Pam; Mamman, Ille; Deme, Kurt; Damulak, Dapus; Abimiku, Alash'le

    2014-01-01

    Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women. Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors' questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4%) males, 125 (32.6%) non-pregnant females and 134 pregnant females (35.2%) with a mean age of 31 years. Our results showed that the red blood cells count (RBC), Hemoglobin (HB) and Hematocrit (HCT) had significant gender difference (p = 0.000) but not for total white blood count (p>0.05) which was only significantly higher in pregnant verses non-pregnant women (p = 0.000). Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000). Platelets were significantly higher in females than men (p = 0.001) but lower in pregnant women (p =  .001) with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05) but gender difference exists for Bicarbonate (HCO3), Urea nitrogen, Creatinine as well as the lipids (p<0.05). Total bilirubin was significantly higher in males than females (p = 0.000). Significant differences exist for all chemistry parameters between pregnant and non-pregnant women in this study (p<0.05), except Amylase and total cholesterol (p>0.05). Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non-pregnant females and during pregnancy. This is the first of such comprehensive

  9. Bibliography of AV Materials.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1981

    1981-01-01

    Presented is the second part of a bibliographic listing of commercially available audiovisual materials for chemistry. Information includes producer (with addresses), catalog number, format (slides, cassettes, filmstrips, films), and price for items in these categories: matter and energy, nuclear chemistry, periodic table, solids and crystals,…

  10. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock.

    PubMed

    Tamayo-Mendoza, Teresa; Kreisbeck, Christoph; Lindh, Roland; Aspuru-Guzik, Alán

    2018-05-23

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult , a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  11. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock

    PubMed Central

    2018-01-01

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult, a Hartree–Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  12. Cytotoxicity of magnetic nanoparticles derived from green chemistry against human cells

    NASA Astrophysics Data System (ADS)

    Hanumandla, Pranitha

    The core-shelled Fe3O4 magnetic nanoparticles (MNPs) have been extensively investigated by the researchers due to their diversified applications. Recently, the study on the toxicity of nanomaterials has been drawn increasing attention to reduce or mitigate the environmental hazards and health risk. The objectives of this thesis are three fold: 1) prepare series functionalized Fe3O4 MNPs and optimize the synthesis variables of; 2) characterize their nanostructures using the state-of-the-art instrumental techniques; and 3) evaluate their cytotoxicity by measurement of nitrogen monoxide (NO) release, reactive oxygen species (ROS) and single oxygen species (SOS) generation. In order to prepare the crystalline Fe3O4 MNPs, a cost-effective and user-friendly wet chemistry (Sol-Gel) method was used. Two Indian medicinal plants were extracted to derive the active chemicals, which were used to functionalize the Fe3O 4 MNPs. The results indicated that the Fe3O4 MNPs were well-indexed with the standard inverse spinel structure (PDF 65-3107, a=8.3905A, α = 90°). The particle's sizes varied from 6-10 nm with the Fe3O 4 MNPs acting as cores and medicinal extracts as shell. The active chemical components extracted from two Hygrophila auriculata/ Chlorophytum borivilianum are fatty acid, Saponins, sterols, carbohydrates and amino acids, which are in agreement with the reported data. Toxicological evaluations of MNPs indicated that the Fe3O4 MNPs functionalized with Hygrophila auriculata/ Chlorophytum borivilianum extract prepared at room temperature were toxic to the cells when compared to the control, and act in a mechanism similar to the actions of hydrogen peroxide (H2O2). These functionalized MNPs, which were prepared at 100 ° C, displayed similar mechanism of action to the anticancer drug (SN-38). It was also found that the MNPs prepared at lower temperatures are less toxic and showed similar mechanism of action as the sodium nitrite (NaNO 2).

  13. Students' Understanding of Mathematical Expressions in Physical Chemistry Contexts: An Analysis Using Sherin's Symbolic Forms

    ERIC Educational Resources Information Center

    Becker, Nicole; Towns, Marcy

    2012-01-01

    Undergraduate physical chemistry courses require students to be proficient in calculus in order to develop an understanding of thermodynamics concepts. Here we present the findings of a study that examines student understanding of mathematical expressions, including partial derivative expressions, in two undergraduate physical chemistry courses.…

  14. Instructional Model and Thinking Skill in Chemistry Class

    NASA Astrophysics Data System (ADS)

    Langkudi, H. H.

    2018-02-01

    Chemistry course are considered a difficult lesson for students as evidenced by low learning outcomes on daily tests, mid-semester tests as well as final semester tests. This research intended to investigate the effect of instructional model, thinking skill and the interaction of these variables on students’ achievement in chemistry. Experimental method was applying used 2 x 2 factorial design. The results showed that the use of instructional model with thinking skill influences student’s learning outcomes, so that the chemistry teacher is recommended to pay attention to the learning model, and adjusted to the student’s skill thinking on the chemistry material being taught. The conclusion of this research is that discovery model is suitable for students who have formal thinking skill and conventional model is fit for the students that have concrete thinking skill.

  15. The Application of Chemistry to Conserve Cultural Heritage

    ERIC Educational Resources Information Center

    MacLeod, Ian D.

    2015-01-01

    During the past 50 years the amount of chemistry applied to the preservation of all sorts of materials, from wood, to ceramics, glass and metallic objects has increased dramatically as materials conservation laboratories became established around the world. In Australia, the finding of a series of historic shipwrecks of ships from the Dutch…

  16. Presidential Green Chemistry Challenge: 2013 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2013 award winner, Prof Richard P. Wool of the University of Delaware, created high-performance materials using vegetable oils, feathers, and flax. Can be used as adhesives, composites, foams, and circuit boards.

  17. Incorporation of New Benzofulvene Derivatives Into Polymers to Give New NLO Materials

    NASA Technical Reports Server (NTRS)

    Bowens, Andrea D.; Bu, Xiu; Mintz, Eric A.; Zhang, Yue

    1996-01-01

    The need for fast electro-optic switches and modulators for optical communication, and laser frequency conversion has created a demand for new second-order non-linear optical materials. One approach to produce such materials is to align chromophores with large molecular hyperpolarizabilities in polymers. Recently fulvenes and benzofulvenes which contain electron donating groups have been shown to exhibit large second-order non-linear optical properties. The resonance structures shown below suggest that intramolecular charge transfer (ICT) should be favorable in omega - (hydroxyphenyl)benzofulvenes and even more favorable in omega-omega - (phenoxy)benzofulvenes because of the enhanced donor properties of the O group. This ICT should lead to enormously enhanced second-order hyperpolarizability. We have prepared all three new omega - (hydroxyphenyl)benzofulvenes by the condensation of indene with the appropriate hydroxyaryl aldehyde in MeOH or MeOH/H2O under base catalysis. In a similar fashion we have prepared substituted benzofulvenes with multipal donor groups. Preliminary studies show that some of our benzofulvene derivatives exhibit second order harmonic generation (SHG). Measurements were carried out by preparing host-guest polymers. The results of our work on benzofulvene derivatives in host-guest polymers when covalently bonded in the polymer will be described.

  18. Dynamic Covalent Chemistry-based Sensing: Pyrenyl Derivatives of Phenylboronic Acid for Saccharide and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Chang, Xingmao; Fan, Jiayun; Wang, Min; Wang, Zhaolong; Peng, Haonan; He, Gang; Fang, Yu

    2016-08-01

    We synthesized two specially designed pyrenyl (Py) derivatives of phenylboronic acid, PSNB1 and PSNB2, of which PSNB2 self-assemble to form dynamic aggregate in methanol-water mixture (1:99, v/v) via intermolecular H-bonding and pi-pi stacking. Interestingly, the dynamic aggregate shows smart response to presence of fructose (F) as evidenced by fluorescence color change from green to blue. More interestingly, the fluorescence emission of the resulted PSNB2-F changes from blue to green with the addition of formaldehyde (FA). The reason behind is formation of a PSNB2-F dimer via FA cross-linking. Based upon the reactions as found, sensitive and fast sensing of F and FA in water was realized, of which the experimental DLs could be significantly lower than 10 μM for both analytes, and the response times are less than 1 min. It is believed that not only the materials as created may have the potential to find real-life applications but also the strategy as developed can be adopted to develop other dynamic materials.

  19. Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions.

    PubMed

    Olah, George A; Mathew, Thomas; Prakash, G K Surya; Rasul, Golam

    2016-02-10

    Astrophysically observed extraterrestrial molecular matter contains, besides hydrogen and water, methane and methanol as the most abundant species. Feasible pathways and chemical aspects of their formation as well as of derived hydrocarbon homologues and their ions (carbocations and carbanions) are discussed on the basis of observed similarities with our studied terrestrial chemistry. The preferred pathway for converting extraterrestrial methane according to Ali et al. is based on CH5(+) and Olah's related nonclassical carbonium ion chemistry. On the basis of the observed higher reactivity of methanol compared with methane in various chemical reactions, a feasible new pathway is proposed for the conversion of extraterrestrial methanol to hydrocarbons, their derivatives, and carbocations together with a possible connection with methonium ion-based chemistry.

  20. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.

    PubMed

    Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke

    2016-12-20

    The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be

  1. Exploring global history through the lens of history of Chemistry: Materials, identities and governance.

    PubMed

    Roberts, Lissa

    2016-12-01

    As global history continues to take shape as an important field of research, its interactive relationships with the history of science, technology, and medicine are recognized and being investigated as significant areas of concern. Strangely, despite the fact that it is key to understanding so many of the subjects that are central to global history and would itself benefit from a broader geographical perspective, the history of chemistry has largely been left out of this process - particularly for the modern historical period. This article argues for the value of integrating the history of chemistry with global history, not only for understanding the past, but also for thinking about our shared present and future. Toward this end, it (1) explores the various ways in which 'chemistry' has and can be defined, with special attention to discussions of 'indigenous knowledge systems'; (2) examines the benefits of organizing historical inquiry around the evolving sociomaterial identities of substances; (3) considers ways in which the concepts of 'chemical governance' and 'chemical expertise' can be expanded to match the complexities of global history, especially in relation to environmental issues, climate change, and pollution; and (4) seeks to sketch the various geographies entailed in bringing the history of chemistry together with global histories.

  2. Networked Instructional Chemistry: Using Technology To Teach Chemistry

    NASA Astrophysics Data System (ADS)

    Smith, Stanley; Stovall, Iris

    1996-10-01

    Networked multimedia microcomputers provide new ways to help students learn chemistry and to help instructors manage the learning environment. This technology is used to replace some traditional laboratory work, collect on-line experimental data, enhance lectures and quiz sections with multimedia presentations, provide prelaboratory training for beginning nonchemistry- major organic laboratory, provide electronic homework for organic chemistry students, give graduate students access to real NMR data for analysis, and provide access to molecular modeling tools. The integration of all of these activities into an active learning environment is made possible by a client-server network of hundreds of computers. This requires not only instructional software but also classroom and course management software, computers, networking, and room management. Combining computer-based work with traditional course material is made possible with software management tools that allow the instructor to monitor the progress of each student and make available an on-line gradebook so students can see their grades and class standing. This client-server based system extends the capabilities of the earlier mainframe-based PLATO system, which was used for instructional computing. This paper outlines the components of a technology center used to support over 5,000 students per semester.

  3. The Erroneous Derivative Examples of Eleventh Grade Students

    ERIC Educational Resources Information Center

    Gur, Hulya; Barak, Basak

    2007-01-01

    The derivative is not only an important subject for mathematics but also is an important subject for engineering, physics, economy, chemistry, and statistics. Especially, mathematics depends on strongly preceding learning and the subject of derivative will be used in university education by all students. Therefore, it is one of the most important…

  4. Click Chemistry, a Powerful Tool for Pharmaceutical Sciences

    PubMed Central

    Hein, Christopher D.; Liu, Xin-Ming; Wang, Dong

    2008-01-01

    Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. While there are a number of reactions that fulfill the criteria, the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes has emerged as the frontrunner. It has found applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical sciences. In this manuscript, important aspects of the Huisgen cycloaddition will be reviewed, along with some of its many pharmaceutical applications. Bioconjugation, nanoparticle surface modification, and pharmaceutical-related polymer chemistry will all be covered. Limitations of the reaction will also be discussed. PMID:18509602

  5. Presidential Green Chemistry Challenge: 2007 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2007 award winner, NovaSterilis, invented a way to sterilize delicate biological materials such as graft tissue without harming them, using supercritical carbon dioxide and a peroxide.

  6. Advanced Materials and Devices for Bioresorbable Electronics.

    PubMed

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    clinically relevant modes of operation in animal models. This Account highlights the foundational materials concepts for this area of technology, starting with the dissolution chemistry and reaction kinetics associated with hydrolysis of Si NMs as a function of temperature, pH, and ion and protein concentration. A following discussion focuses on key supporting materials, including a range of dielectrics, metals, and substrates. As comparatively low performance alternatives to Si NMs, bioresorbable organic semiconductors are also presented, where interest derives from their intrinsic flexibility, low-temperature processability, and ease of chemical modification. Representative examples of encapsulation materials and strategies in passive and active control of device lifetime are then discussed, with various device illustrations. A final section outlines bioresorbable electronics for sensing of various biophysical parameters, monitoring electrophysiological activity, and delivering drugs in a programmed manner. Fundamental research in chemistry remains essential to the development of this emerging field, where continued advances will increase the range of possibilities in sensing, actuation, and power harvesting. Materials for encapsulation layers that can delay water-diffusion and dissolution of active electronics in passively or actively triggered modes are particularly important in addressing areas of opportunity in clinical medicine, and in secure systems for envisioned military and industrial uses. The deep scientific content and the broad range of application opportunities suggest that research in transient electronic materials will remain a growing area of interest to the chemistry community.

  7. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.

    PubMed

    Hu, Teh-Min; Chiu, Shih-Jiuan; Hsu, Yu-Ming

    2014-08-22

    Simultaneous production of nitric oxide (NO) and superoxide generates peroxynitrite and causes nitroxidative stress. The fluorometric method for NO detection is based on the formation of a fluorescent product from the reaction of a nonfluorescent probe molecule with NO-derived nitrosating species. Here, we present an example of how nitroxidative chemistry could interact with fluorescent probe chemistry. 2,3-Naphthotriazole (NAT) is the NO-derived fluorescent product of 2,3-diaminonaphthalene (DAN), a commonly used NO-detecting molecule. We show that NO/superoxide cogeneration, and particularly peroxynitrite, mediates the chemical decomposition of NAT. Moreover, the extent of NAT decomposition depends on the relative fluxes of NO and superoxide; the maximum effect being reached at almost equivalent generation rates for both radicals. The rate constant for the reaction of NAT with peroxynitrite was determined to be 2.2×10(3)M(-1)s(-1). Further, various peroxynitrite scavengers were shown to effectively inhibit NO/superoxide- and peroxynitrite-mediated decomposition of NAT. Taken together, the present study suggests that the interference of a fluorometric NO assay can be originated from the interaction between the final fluorescent product and the formed reactive nitrogen and oxygen species. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Eco-friendly electron beam lithography using water-developable resist material derived from biomass

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Wakabayashi, Takanori; Kozawa, Takahiro; Tagawa, Seiichi

    2012-07-01

    We investigated the eco-friendly electron beam (EB) lithography using a high-sensitive negative type of water-developable resist material derived from biomass on hardmask layer for tri-layer processes. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of trimethylphenylammonium hydroxide. The images of 200 nm line and 800 nm space pattern with exposure dose of 7.0 μC/cm2 and CF4 etching selectivity of 2.2 with hardmask layer were provided by specific process conditions.

  9. Synergistic relationships between Analytical Chemistry and written standards.

    PubMed

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  11. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  12. Modeling local chemistry in PWR steam generator crevices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less

  13. Functional microporous materials of metal carboxylate: Gas-occlusion properties and catalytic activities

    NASA Astrophysics Data System (ADS)

    Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru

    2005-08-01

    Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.

  14. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  15. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite

    DTIC Science & Technology

    2015-04-27

    MODELING OF C-S-H Material chemistry level modeling following the principles and techniques commonly grouped under Computational Material Science is...Henmi, C. and Kusachi, I. Monoclinic tobermorite from fuka, bitchu-cho, Okoyama Perfecture. Japan J. Min. Petr. Econ . Geol. (1989)84:374-379. [22...31] Liu, Y. et al. First principles study of the stability and mechanical properties of MC (M=Ti, V, Zr, Nb, Hf and Ta) compounds. Journal of Alloys and Compounds. (2014) 582:500-504. 10

  16. Achieving biopolymer synergy in systems chemistry.

    PubMed

    Bai, Yushi; Chotera, Agata; Taran, Olga; Liang, Chen; Ashkenasy, Gonen; Lynn, David G

    2018-05-31

    Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.

  17. The Five Senses of Christmas Chemistry

    ERIC Educational Resources Information Center

    Jackson, Derek A.; Dicks, Andrew P.

    2012-01-01

    This article describes the organic chemistry of five compounds that are directly associated with the Christmas season. These substances and related materials are presented within the framework of the five senses: silver fulminate (sound), alpha-pinene (sight), sodium acetate (touch), tryptophan (taste), and gingerol (smell). Connections with the…

  18. Materials science: Chemistry and physics happily wed

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory A.

    2017-07-01

    A major advance in the quantum theory of solids allows materials to be identified whose electronic states have a non-trivial topology. Such materials could have many computing and electronics applications. See Article p.298

  19. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    PubMed

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  1. Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries

    DOE PAGES

    Ma, Jiwei; Reeves, Kyle G.; Porras Gutierrez, Ana-Gabriela; ...

    2017-09-19

    Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consistsmore » of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti 2-x⟂ xO 4-4x(OH) 4x.nH 2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H 2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti 2⟂ 2-OH and Ti3⟂-OH and layered H 2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g -1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with advanced characterization tools allows discovering new materials of technological relevance.« less

  2. Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jiwei; Reeves, Kyle G.; Porras Gutierrez, Ana-Gabriela

    Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consistsmore » of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti 2-x⟂ xO 4-4x(OH) 4x.nH 2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H 2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti 2⟂ 2-OH and Ti3⟂-OH and layered H 2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g -1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with advanced characterization tools allows discovering new materials of technological relevance.« less

  3. Effects of Carbonization Temperature on Nature of Nanostructured Electrode Materials Derived from Fe-MOF for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Sui, Yanwei; Zhang, Dongling; Han, Yongpeng; Sun, Zhi; Qi, Jiqiu; Wei, Fuxiang; He, Yezeng; Meng, Qingkun

    2018-05-01

    This work successfully demonstrates various temperature carbonization of iron based metal organic framework to derive electrode materials for supercapacitors. Furthermore, impacts of calcined temperatures on the nature of as-prepared products are reported, and samples obtained at 300, 400, 500, 600 and 700 °C were investigated respectively. The products reveals excellent electrochemical performance. Carbonized at 600 °C, the composite materials display the highest specific capacitance of 972 F/g at a current density of 1 A/g. Carbonized at 500 °C, the capacitance retention of materials reach up to 93%. The high specific capacitance and excellent cyclic stability of the developed materials would exhibit nice prospect for the practical utilization of electrode materials.

  4. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  5. Chemistry Journal Articles: An Interdisciplinary Approach to Move Analysis with Pedagogical Aims

    ERIC Educational Resources Information Center

    Stoller, Fredricka L.; Robinson, Marin S.

    2013-01-01

    This article highlights aspects of an interdisciplinary (chemistry-applied linguistics) English for Specific Purposes (ESP) course- and materials-development project. The project was aimed at raising genre awareness among chemistry students and faculty, in addition to improving students' disciplinary reading and writing. As part of the project,…

  6. Piaget and School Chemistry--A Critique

    ERIC Educational Resources Information Center

    Jenkins, E. W.

    1978-01-01

    Examines Piaget's theory of cognitive development with particular reference to the teaching of chemistry in the secondary school. Concludes that the theory has many fundamental weaknesses, with respect to analyzing curriculum materials in terms of levels of thought and should not be used as the basis for course assessment. (GA)

  7. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    NASA Astrophysics Data System (ADS)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  8. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls.

    PubMed

    Kallenbach, Cynthia M; Frey, Serita D; Grandy, A Stuart

    2016-11-28

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  9. Structure - Property Relationships of Furanyl Thermosetting Polymer Materials Derived from Biobased Feedstocks

    NASA Astrophysics Data System (ADS)

    Hu, Fengshuo

    Biobased thermosetting polymers have drawn significant attention due to their potential positive economic and ecological impacts. New materials should mimic the rigid, phenylic structures of incumbent petroleum-based thermosetting monomers and possess superior thermal and mechanical properties. Furans and triglycerides derived from cellulose, hemicellulose and plant oils are promising candidates for preparing such thermosetting materials. In this work, furanyl diepoxies, diamines and di-vinyl esters were synthesized using biobased furanyl materials, and their thermal and mechanical properties were investigated using multiple techniques. The structure versus property relationship showed that, compared with the prepared phenylic analogues, biobased furanyl thermosetting materials possess improved glassy storage modulus (E '), advanced fracture toughness, superior high-temperature char yield and comparable glass transition temperature (Tg) properties. An additive molar function analysis of the furanyl building block to the physical properties, such as Tg and density, of thermosetting polymers was performed. The molar glass transition function value (Yg) and molar volume increment value (Va,i) of the furanyl building block were obtained. Biobased epoxidized soybean oil (ESO) was modified using different fatty acids at varying molar ratios, and these prepared materials dramatically improved the critical strain energy release rate (G1c) and the critical stress intensity factor (K1c) values of commercial phenylic epoxy resins, without impairing their Tg and E ' properties. Overall, it was demonstrated that biobased furans and triglycerides possess promising potential for use in preparing high-performance thermosetting materials, and the established methodologies in this work can be utilized to direct the preparation of thermosetting materials with thermal and mechanical properties desired for practical applications.

  10. Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials.

    PubMed

    Zhang, Xinyue; Jiang, Mingyue; Niu, Na; Chen, Zhijun; Li, Shujun; Liu, Shouxin; Li, Jian

    2018-01-10

    Nature provides an almost limitless supply of sources that inspire scientists to develop new materials with novel applications and less of an environmental impact. Recently, much attention has been focused on preparing natural-product-derived carbon dots (NCDs), because natural products have several advantages. First, natural products are renewable and have good biocompatibility. Second, natural products contain heteroatoms, which facilitate the fabrication of heteroatom-doped NCDs without the addition of an external heteroatom source. Finally, some natural products can be used to prepare NCDs in ways that are very green and simple relative to traditional methods for the preparation of carbon dots from man-made carbon sources. NCDs have shown tremendous potential in many fields, including biosensing, bioimaging, optoelectronics, and photocatalysis. This Review addresses recent progress in the synthesis, properties, and applications of NCDs. The challenges and future direction of research on NCD-based materials in this booming field are also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solvent-Tuned Self-Assembled Nanostructures of Chiral l/d-Phenylalanine Derivatives of Protoporphyrin IX

    PubMed Central

    Bobe, Mr Sharad R; Al Kobaisi, Mohammad; Bhosale, Sheshanath V; Bhosale, Sidhanath V

    2015-01-01

    Protoporphyrin IX is a naturally occurring amphiphilic porphyrin with a rigid hydrophobic nonpolar core and two polar propionic acid substitutions on the porphyrin ring. This molecule can be modified on the hydrophilic group, which can lead to strengthened π–π-stacking and spontaneous self-assembly into novel nanostructures. Herein, we use l- phenylalanine and d-phenylalanine to modify protoporphyrin IX, and use the two derivatives for solvophobic-controlled self-assembly. Both derivatives possess two important features: 1) the aromatic core of the porphyrin for dispersive interactions and 2) a chiral amino acid to maximize the influence of chirality on selfassembly. These derivatives lead to the formation of a variety of nanostructure morphologies, such as spheres, nanofibers, lamellar structures, and thread-like and spherical shells. Solution-based self-assembly was determined by UV/Vis, fluorescence, and circular dichroism spectroscopy, and the formed nanostructures were characterized by scanning electron microscopy (SEM). Such engineered porphyrin derivatives could have potential applications in energy transport and storage, supramolecular chemistry, materials science, and medicine. PMID:26478848

  12. Solvent-Tuned Self-Assembled Nanostructures of Chiral l/d-Phenylalanine Derivatives of Protoporphyrin IX.

    PubMed

    Bobe, Mr Sharad R; Al Kobaisi, Mohammad; Bhosale, Sheshanath V; Bhosale, Sidhanath V

    2015-08-01

    Protoporphyrin IX is a naturally occurring amphiphilic porphyrin with a rigid hydrophobic nonpolar core and two polar propionic acid substitutions on the porphyrin ring. This molecule can be modified on the hydrophilic group, which can lead to strengthened π-π-stacking and spontaneous self-assembly into novel nanostructures. Herein, we use l- phenylalanine and d-phenylalanine to modify protoporphyrin IX, and use the two derivatives for solvophobic-controlled self-assembly. Both derivatives possess two important features: 1) the aromatic core of the porphyrin for dispersive interactions and 2) a chiral amino acid to maximize the influence of chirality on selfassembly. These derivatives lead to the formation of a variety of nanostructure morphologies, such as spheres, nanofibers, lamellar structures, and thread-like and spherical shells. Solution-based self-assembly was determined by UV/Vis, fluorescence, and circular dichroism spectroscopy, and the formed nanostructures were characterized by scanning electron microscopy (SEM). Such engineered porphyrin derivatives could have potential applications in energy transport and storage, supramolecular chemistry, materials science, and medicine.

  13. Boosting electrical conductivity in a gel-derived material by nanostructuring with trace carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Canevet, David; Pérez Del Pino, Angel; Amabilino, David B.; Sallé, Marc

    2011-07-01

    An organogelator with two distinct π-functional units is able to incorporate carbon nanotubes into its mesh of fibres in the gel state. The morphology of the material derived from this nanocomposite after evaporation of the solvent is a complex mesh of fibres which is clearly different from the pure gelator. This feature indicates a role of the nanotubes in assisting the formation of a fibre structure in the gel thanks to their interaction with the pyrene units in the organogelator. The nanocomposite conducts electricity once the p-type gelator is doped with iodine vapour. The change in morphology caused by the carbon material increases the conductivity of the material compared with the purely organic conducting system. It is remarkable that this improvement in the physical property is caused by an extremely small proportion of the carbon material (only present at a ratio of 0.1% w/w). The practically unique properties of TTF unit allow measurements with both doped and undoped materials with conducting atomic force microscopy which have demonstrated that the carbon nanotubes are not directly responsible for the increased conductivity.An organogelator with two distinct π-functional units is able to incorporate carbon nanotubes into its mesh of fibres in the gel state. The morphology of the material derived from this nanocomposite after evaporation of the solvent is a complex mesh of fibres which is clearly different from the pure gelator. This feature indicates a role of the nanotubes in assisting the formation of a fibre structure in the gel thanks to their interaction with the pyrene units in the organogelator. The nanocomposite conducts electricity once the p-type gelator is doped with iodine vapour. The change in morphology caused by the carbon material increases the conductivity of the material compared with the purely organic conducting system. It is remarkable that this improvement in the physical property is caused by an extremely small proportion of the

  14. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

    PubMed Central

    Li, Panpan; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-01

    CH4 as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH4 catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO2 methanation reaction is one of the potent technologies for CO2 valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research. PMID:29385064

  15. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    PubMed

    Ji, Pan; Parks, Jeffrey; Edwards, Marc A; Pruden, Amy

    2015-01-01

    A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  16. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome

    PubMed Central

    Ji, Pan; Parks, Jeffrey; Edwards, Marc A.; Pruden, Amy

    2015-01-01

    A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing). To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe) were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO4 2- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9–10) had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome. PMID:26495985

  17. Guide for Teaching Chemistry-Physics Combined 1-2, 3-4 (PSSC - CHEMS).

    ERIC Educational Resources Information Center

    Millstone, H. George

    This guide is written for a combined physics-chemistry course taught over a two-year period. The subject matter contains the major ideas in Chemical Education Materials Study (CHEMS) Chemistry and Physical Science Study Committee (PSSC) Physics. The guide includes discussion of text references, laboratory experiments, films, testing and evaluation…

  18. What People Eat--A Chemistry Program Based on Nutrition

    ERIC Educational Resources Information Center

    Raw, Isaias; And Others

    1975-01-01

    Describes a chemistry curriculum for college freshmen that uses laboratory study of the chemical composition of meals eaten by students as the central activity from which theoretical and practical learning are derived. Presents a meal analysis flow diagram and a table of concepts included in the program. (GS)

  19. Quality improvement on chemistry practicum courses through implementation of 5E learning cycle

    NASA Astrophysics Data System (ADS)

    Merdekawati, Krisna

    2017-03-01

    Two of bachelor of chemical education's competences are having practical skills and mastering chemistry material. Practicum courses are organized to support the competency achievement. Based on observation and evaluation, many problems were found in the implementation of practicum courses. Preliminary study indicated that 5E Learning Cycle can be used as an alternative solution in order to improve the quality of chemistry practicum course. The 5E Learning Cycle can provide positive influence on the achievement of the competence, laboratory skills, and students' understanding. The aim of the research was to describe the feasibility of implementation of 5E Learning Cycle on chemistry practicum courses. The research was based on phenomenology method in qualitative approach. The participants of the research were 5 person of chemistry laboratory manager (lecturers at chemistry and chemistry education department). They concluded that the 5E Learning Cycle could be implemented to improve the quality of the chemistry practicum courses. Practicum guides and assistant competences were organized to support the implementation of 5E Learning Cycle. It needed training for assistants to understand and implement in the stages of 5E Learning Cycle. Preparation of practical guidelines referred to the stages of 5E Learning Cycle, started with the introduction of contextual and applicable materials, then followed with work procedures that accommodate the stage of engagement, exploration, explanation, extension, and evaluation

  20. Adhesion and abrasion of surface materials in the Venusian aeolian environment

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald; Tucker, David; Fogleman, Guy; Hixon, Raymond

    1991-01-01

    In laboratory simulations of the Venusian environment, rock and mineral 'target' surfaces struck by aeolian particles develop a thin layer of accretionary material derived from the particles' attrition debris. Accretion may be (in part) a manifestation of 'cold welding', a process well known in engineering, where bonding occurs between metals at a tribological interface. Accretion on geological materials was found to occur at all Venusian surface temperatures and for all types of materials tested. First-order variations in the amount deposited by particles are related to relative attrition susceptibilities. Second-order variations relate to properties of the particle-target interface. Variations in accretion volume are apparently independent of mineral chemistry and are only weakly dependent on crystallography. The results suggest that accretion should be a fairly universal phenomenon in areas of Venus subject to aeolian activity.

  1. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding chemistry in protostars was simple -- matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger-scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets. This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula. Our understanding of the chemistry in protostellar systems has made enormous progress over the last few decades, fueled by an increased awareness of the complex dynamics of these evolving energetic nebulae. We can no longer consider just the simple local environment to explain the composition of a planet, asteroid, or comet as was done in the past, but must now consider chemical processes that might take place within the nebula as a whole as well as the probability of transport and mixing the products of such reactions throughout the system. just as we now find it impossible to explain the complex chemistry of the terrestrial atmosphere without reference to detailed transport models that interconnect highly dissimilar chemical environments, so chemical models of protostars and of the solar nebula must

  2. The colloidal chemistry of ceramic clays

    NASA Technical Reports Server (NTRS)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  3. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    NASA Astrophysics Data System (ADS)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  4. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-28

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

  5. Chemistry of water collected from an unventilated drift, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Oliver, T.A.; Peterman, Z.E.

    2007-01-01

    Water samples (referred to as puddle water samples) were collected from the surfaces of a conveyor belt and plastic sheeting in the unventilated portion of the Enhanced Characterization of the Repository Block (ECRB) Cross Drift in 2003 and 2005 at Yucca Mountain, Nevada. The chemistry of these puddle water samples is very different than that of pore water samples from borehole cores in the same region of the Cross Drift or than seepage water samples collected from the Exploratory Studies Facility tunnel in 2005. The origin of the puddle water is condensation on surfaces of introduced materials and its chemistry is dominated by components of the introduced materials. Large CO2 concentrations may be indicative of localized chemical conditions induced by biologic activity. ?? 2007 Materials Research Society.

  6. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry.

    PubMed

    Angajala, Kishore Kumar; Vianala, Sunitha; Macha, Ramesh; Raghavender, M; Thupurani, Murali Krishna; Pathi, P J

    2016-01-01

    Nonsteroidal anti-inflammatory drugs are of vast therapeutic benefit in the treatment of different types of inflammatory conditions. 1,2,3-Triazoles and their derivatives have a wide range of applications as anti-bacterial, anti-fungal, anti-tubercular, cytostatic, anti-HIV, anti-allergic, anti-neoplastic and anti-inflammatory (AI) agents. Considering the individual biological and medicinal importance of ibuprofen and 1,2,3-triazoles, we wanted to explore novel chemical entities based on ibuprofen and triazole moieties towards their biological significance. Click chemistry has utilized as an ideal strategy to prepare novel ibuprofen-based 1,4-disubstituted 1,2,3-triazole containing molecules. These compounds were screened for their in vivo AI activity, among all the synthesized analogues 13o was shown potent effect than the reference AI drug ibuprofen at the same concentration (10 mg/kg body weight). Compounds 13l, 13g, 13c, 13k, 13i, 13n, 13m and 13j were shown significant AI activity. These triazole analogues were also screened for their bactericidal profile. Compounds 13c, 13i, 13l and 13o exhibited considerable bactericidal activity against gram positive and gram negative strains. In addition to this, molecular docking studies were also carried out into cyclooxygenase-2 active site to predict the affinity and orientation of these novel compounds (13a-q). In summary, we have designed and synthesized 1,2,3-triazole analogues of ibuprofen in good yields using Click chemistry approach. AI and bactericidal activities of these compounds were evaluated and shown remarkable results.

  7. Iron Analysis by Redox Titration. A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Kaufman, Samuel; DeVoe, Howard

    1988-01-01

    Describes a simplified redox method for total iron analysis suitable for execution in a three-hour laboratory period by general chemistry students. Discusses materials, procedures, analyses, and student performance. (CW)

  8. ASSESSING THE IMPACT OF LANDUSE/LANDCOVER ON STREAM CHEMISTRY IN MARYLAND

    EPA Science Inventory

    Spatial and statistical analyses were conducted to investigate the relationships between stream chemistry (nitrate, sulfate, dissolved organic carbon, etc.), habitat and satellite-derived landuse maps for the state of Maryland. Hydrologic Unit Code (HUC) watershed boundaries (8-...

  9. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry.

    PubMed

    Ranjan, Sukrit; Todd, Zoe R; Sutherland, John D; Sasselov, Dimitar D

    2018-04-08

    A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS - , HSO 3 - , SO 3 2- ) available in surficial aquatic reservoirs on early Earth due to outgassing of SO 2 and H 2 S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO 2 -derived anions, but not H 2 S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species. Key Words: Early Earth-Origin of life-Prebiotic chemistry-Volcanism-UV radiation-Planetary environments. Astrobiology 18, xxx-xxx.

  10. Synthesis of phthalocyanine derivatives as materials for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Collazo-Ramos, Aura

    Organic photovoltaics (OPVs) are used to convert sunlight into electricity by using thin films of organic semiconductors. OPVs have the potential to produce low cost, lightweight, flexible devices with an eased manufacturing process. This technology contains the potential to increase the use of clean, sustainable solar energy, helping manage the global energy and environmental crisis that results majorly from the constant use of fossil fuels as an energy source. The ability to modulate the physical properties of organic molecules by tuning their chemical structure is an advantage for OPVs. Phthalocyanines (Pcs) are highly pi-conjugated synthetic porphyrin analogs that have been explored as active layer components in OPVs due to their high extinction coefficients and hole mobilities. The Pc structure can be modified by the introduction of metals in the core and the incorporation of substituents into the periphery. These modifications tend to tune the solubility, photophysical properties and condensed phase organization of Pcs. The research work in this dissertation describes improved methods towards substituted Pc derivatives addressing: (1) the use of mass spectrometry techniques for Pcs characterization, (2) efforts to achieve materials with near-infrared (NIR) absorption, and (3) the potential of Pc as electron-acceptor materials. Herein, the synthesis of a series of asymmetric and symmetric metallated Pcs has been established, which resulted in interesting chemical, photophysical and electrochemical properties. The materials investigated in this thesis increase the potential of Pcs as organic semiconductors for OPVs.

  11. The effectiveness of module with critical thinking approach on hydrolysis and buffer materials in chemistry learning

    NASA Astrophysics Data System (ADS)

    Nuswowati, M.; Purwanti, E.

    2018-03-01

    The research aims is to find out the effectiveness of critical thinking approach in Chemistry learning especially on hydrolysis and buffer materials. The level of its effectiveness was viewed from the students’ learning outcomes including knowledge, attitude and skill domains. The data were collected through validation sheets, questionnaires and tests, which were then analyzed by using descriptive quantitative method. The first step conducted was validating the module that was going to be used in the learning processes. The students’ learning outcome on knowledge domain was very good, viewed from the classical attainment by 88.63% with N-gain 0.718 with high criteria. It was also viewed from the students’ criticality level in solving the given problems. The result of the study revealed that more than 75% of the students obtained critical and very critical criteria in solving the given problems. The students’ attitudes and skills values were viewed through observation sheets during the learning processes. The result of the observation stated that more than 75% of the students showed good and very good attitudes and skills values. Based on the data, it could be concluded that the module with critical thinking approach was effective to be used on hydrolysis and buffer materials.

  12. Successful photoresist removal: incorporating chemistry, conditions, and equipment

    NASA Astrophysics Data System (ADS)

    Moore, John C.

    2002-07-01

    The material make-up of photoresists span a wide polarity range and chemistry. Resists contain reactive components which are photochemically triggered to convert and condense to forms that result in a solubility change. When designing a cleaning process, a knowledge of the resist chemistry is fundamental. A DNQ/novolak system may follow a simple dissolution model under normal conditions. However, when the same resist is sent through a dry etch process, crosslinking and metallic impregnation occurs to form a residue that is insoluble by simple dissolution. The same applies for negative-tone resists, where bonds must be broken and a high chemical interaction is needed to facilitate solvent penetration. Negative resists of different chemistry, such as the benzoin/acrylic, trazine/novolak, and azide/isoprene, must be addressed separately for specific polarity and reactant requirements. When dissolving and removing these crosslinked systems, benefits in formulated chemistries such as GenSolveTM and GenCleanTM are immediately observed. Once the chemistry is identified, conditions can be optimized with process design using temperature, agitation, and rinsing to achieve a robust process with a wide process latitude.

  13. Advances in dental materials.

    PubMed

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  14. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels

    PubMed Central

    Syverud, Kristin

    2014-01-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295

  15. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  16. Bibliography of AV Materials.

    ERIC Educational Resources Information Center

    Friedstein, Harriet, Ed.

    1981-01-01

    Lists commercially available audiovisual materials by subject area. Includes title, producer (addresses given), catalog number, format (film, filmstrip, cassette, slides), and prices. Subject areas include: elements; equilibrium; gases; laboratory techniques and experiments; general chemistry; introductory materials (including mathematics); and…

  17. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K + ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed themore » existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  18. The role of surface chemistry in the cytotoxicity profile of graphene.

    PubMed

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  20. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    PubMed

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  1. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo, E-mail: enzo.montoneri@unito.it

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers tomore » soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.« less

  2. Carbohydrate Green Chemistry: C-Glycoside Ketones as Potential Chiral Building Blocks

    USDA-ARS?s Scientific Manuscript database

    "Green chemistry" methods to produce new chemicals from renewable agricultural feedstocks will decrease our dependence on imported petroleum feedstocks and lower the environmental impact of consumer products. Our current research focuses on development of new carbohydrate-based derivatives, "locked...

  3. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  4. The Chemistry of Ultra-Radiopure Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, Harry S.; Aalseth, Craig E.; Day, Anthony R.

    Ultra-pure materials are needed for the construction of the next generation of ultra-low level radiation detectors. These detectors are used for environmental research as well as rare nuclear decay experiments, e.g. probing the effective mass and character of the neutrino. Unfortunately, radioactive isotopes are found in most construction materials, either primordial isotopes, activation/spallation products from cosmic-ray exposure, or surface deposition of dust or radon progeny. Copper is an ideal candidate material for these applications. High-purity copper is commercially available and, when even greater radiopurity is needed, additional electrochemical purification can be combined with the final construction step, resulting in “electroformed”more » copper of extreme purity. Copper also offers desirable thermal, mechanical, and electrical properties. To bridge the gap between commercially-available high purity copper and the most stringent requirements of next-generation low-background experiments, a method of additional chemical purification is being developed based on well-known copper electrochemistry. This method is complemented with the co-development of surface cleaning techniques and more sensitive assay for both surface and bulk contamination. Developments in the electroplating of copper, surface cleaning, assay of U and Th in the bulk copper, and residual surface contamination will be discussed relative to goals of less than 1 microBq/kg Th.« less

  5. Chalcone Derivatives: Promising Starting Points for Drug Design.

    PubMed

    Gomes, Marcelo N; Muratov, Eugene N; Pereira, Maristela; Peixoto, Josana C; Rosseto, Lucimar P; Cravo, Pedro V L; Andrade, Carolina H; Neves, Bruno J

    2017-07-25

    Medicinal chemists continue to be fascinated by chalcone derivatives because of their simple chemistry, ease of hydrogen atom manipulation, straightforward synthesis, and a variety of promising biological activities. However, chalcones have still not garnered deserved attention, especially considering their high potential as chemical sources for designing and developing new effective drugs. In this review, we summarize current methodological developments towards the design and synthesis of new chalcone derivatives and state-of-the-art medicinal chemistry strategies (bioisosterism, molecular hybridization, and pro-drug design). We also highlight the applicability of computer-assisted drug design approaches to chalcones and address how this may contribute to optimizing research outputs and lead to more successful and cost-effective drug discovery endeavors. Lastly, we present successful examples of the use of chalcones and suggest possible solutions to existing limitations.

  6. New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: improved optical transparency and enhanced NLO effects.

    PubMed

    Wu, Wenbo; Ye, Cheng; Yu, Gui; Liu, Yunqi; Qin, Jingui; Li, Zhen

    2012-04-02

    By modifying a synthetic procedure, two new hyperbranched polytriazoles (HP1 and HP2) containing isolation chromophores were synthesized successfully through click chemistry reactions under copper(I) catalysis. For the first time, these two polymers were derived from an AB(4)-type monomer, although they contain different end-capping chromophores. They are soluble in normal polar organic solvents and are well characterized. Thanks to the presence of the isolation chromophore, the two polymers demonstrate good nonlinear optical (NLO) properties and optical transparency, making them promising candidates for practical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Towards Teaching Chemistry as a Language

    ERIC Educational Resources Information Center

    Laszlo, Pierre

    2013-01-01

    This paper presents views on the teaching of chemistry and directions for its further development. A detailed critical analysis is offered for the inadequacy of much of the current teaching, weighed that it is by a conventional, traditional and, as it turns out, rather outdated sense of the material to be covered. The ambient meta-discourse on the…

  8. New From Online: Toying With Chemistry

    ERIC Educational Resources Information Center

    Harris, Julie; Kehoe, Steven

    2005-01-01

    Toys which can help to learn the basics and more in-depth chemistry concept are investigated and explained, which are also available online on the website. Some of the examples are simple LCD clock powered by citric acid of lemon, crystal radio made from simple household materials, firework, homemade snow globe, which explains the properties of…

  9. Presidential Green Chemistry Challenge: 2003 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2003 award winner, Shaw Industries, developed EcoWorx carpet tiles with a backing that uses less toxic materials. The carpet tile fiber and backing are readily separated for recycling.

  10. Thermohydrology of fractured geologic materials

    NASA Astrophysics Data System (ADS)

    Esh, David Whittaker

    1998-11-01

    Thermohydrological and thermohydrochemical modeling as applied to the disposal of radioactive materials in a geologic repository is presented. Site hydrology, chemistry, and mineralogy were summarized and conceptual models of the fundamental system processes were developed. The numerical model TOUGH2 was used to complete computer simulations of thermohydrological processes in fractured, geologic media. Sensitivity studies investigating the impact of dimensionality and different conceptual models to represent fractures (ECM, DK, MINC) on thermohydrological response were developed. Sensitivity to parameter variation within a given conceptual model was also considered. The sensitivity of response was examined against thermohydrological metrics derived from the flow and redistribution of moisture. A simple thermohydrochemical model to investigate a three-process coupling (thermal-hydrological-chemical) was presented. The redistribution of chloride was evaluated because the chemical behavior is well known and defensible. In addition, it is very important to overall system performance. For all of the simulations completed, chloride was found to be extremely concentrated in the fluids that eventually return to the engineered barrier system. Chloride concentration and mass flux were increased from ambient by over a factor of 1000 for some simulations. Thermohydrology was found to have the potential to significantly alter chemistry from ambient conditions.

  11. CURRICULUM MATERIALS.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    MATERIALS ARE LISTED BY 36 TOPICS ARRANGED IN ALPHABETICAL ORDER. TOPICS INCLUDE APPRENTICE TRAINING, BAKING, DRAFTING, ENGLISH, GLASSBLOWING, HOME ECONOMICS, INDUSTRIAL CHEMISTRY, MACHINE SHOP, NEEDLE TRADES, REFRIGERATION, AND UPHOLSTERY. PRICES ARE GIVEN FOR EACH ITEM. (EL)

  12. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    NASA Astrophysics Data System (ADS)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    methanol to effect transesterification (3) and examining the effect of variations in leaf type and season on lipid composition. A second "Plant Assay" study involves preparing and characterizing analogs of naphthalene-1-acetamide, which is the active growth-promoting ingredient in commercial preparations such as Transplantone® and Rootone®. There are two direct methods for synthesizing the amide from the native plant growth regulator ("auxin") or carboxylic acid: acid-catalyzed hydrolysis of the nitrile or ammonolysis of the acid chloride derivative, prepared in situ from the acid by treatment with thionyl chloride (4). In the spring of 1996, organic chemistry students synthesized the amide derivatives of a number of auxins via the acid chloride intermediate, which is more efficiently prepared using oxalyl chloride (40-60% overall yield) instead of thionyl chloride (20-40% overall yield), or via nitrile hydrolysis (72-99% yield). Plant bioassays, based on measurement of pea stem segment elongation (5) have only been performed on the acetamide derivatives of three auxins, indole-3-acetic acid (IAA), naphthalene-1-acetic acid (1-NAA), and naphthalene-2-acetic acid (2-NAA). In comparison with the control, indole-3-acetamide and naphthalene-1-acetamide promoted growth by 50% and 90%, respectively. The acetamide of 2-NAA impeded growth by 30% relative to the control, an observation consistent with the known antiauxin activity of 2-NAA (6). Acquisition of the necessary imaging system for the teaching laboratory will enable students to extend these quantitative studies to other auxin conjugates. Acknowledgment We are grateful to the NSF for financial support through the Division of Undergraduate Education (DUE-9455693 and DUE-9550890). Literature Cited 1. Mayo, D. W.; Pike, R. M.; Trumper, P. K. Microscale Organic Laboratory, 3rd ed; John Wiley & Sons: New York, 1994; pp 202-203. 2. Browse, J.; McCourt, P. J.; Somerville, C. R. Anal. Biochem. 1986, 152, 141. 3. Rodig, O. R

  13. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    DOE PAGES

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-28

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less

  14. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less

  15. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  16. The chemistry of cationic polyphosphorus cages – syntheses, structure and reactivity

    PubMed Central

    Holthausen, Michael H.

    2014-01-01

    The aim of this review is to provide a comprehensive view of the chemistry of cationic polyphosphorus cages. The synthetic protocols established for their preparation, which are all based on the functionalization of P4, and their intriguing follow-up chemistry are highlighted. In addition, this review intends to foster the interest of the inorganic, organic, catalytic and material oriented chemical communities in the versatile field of polyphosphorus cage compounds. In the long term, this is envisioned to contribute to the development of new synthetic procedures for the functionalization of P4 and its transformation into (organo-)phosphorus compounds and materials of added value. PMID:24740160

  17. Presidential Green Chemistry Challenge: 2002 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2002 award winner, Pfizer, improved its synthesis of sertraline, the active ingredient in its drug, Zoloft, to double the yield and reduce the use of raw materials, energy, and water.

  18. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using

  19. Clinical chemistry through Clinical Chemistry: a journal timeline.

    PubMed

    Rej, Robert

    2004-12-01

    The establishment of the modern discipline of clinical chemistry was concurrent with the foundation of the journal Clinical Chemistry and that of the American Association for Clinical Chemistry in the late 1940s and early 1950s. To mark the 50th volume of this Journal, I chronicle and highlight scientific milestones, and those within the discipline, as documented in the pages of Clinical Chemistry. Amazing progress has been made in the field of laboratory diagnostics over these five decades, in many cases paralleling-as well as being bolstered by-the rapid pace in the development of computer technologies. Specific areas of laboratory medicine particularly well represented in Clinical Chemistry include lipids, endocrinology, protein markers, quality of laboratory measurements, molecular diagnostics, and general advances in methodology and instrumentation.

  20. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    PubMed

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  1. 3D printing in chemistry: past, present and future

    NASA Astrophysics Data System (ADS)

    Shatford, Ryan; Karanassios, Vassili

    2016-05-01

    During the last years, 3d printing for rapid prototyping using additive manufacturing has been receiving increased attention in the technical and scientific literature including some Chemistry-related journals. Furthermore, 3D printing technology (defining size and resolution of 3D objects) and properties of printed materials (e.g., strength, resistance to chemical attack, electrical insulation) proved to be important for chemistry-related applications. In this paper these are discussed in detail. In addition, application of 3D printing for development of Micro Plasma Devices (MPDs) is discussed and 2d-profilometry data of a 3D printed surfaces is reported. And, past and present chemistry and bio-related applications of 3D printing are reviewed and possible future directions are postulated.

  2. TDPAC and β-NMR applications in chemistry and biochemistry

    NASA Astrophysics Data System (ADS)

    Jancso, Attila; Correia, Joao G.; Gottberg, Alexander; Schell, Juliana; Stachura, Monika; Szunyogh, Dániel; Pallada, Stavroula; Lupascu, Doru C.; Kowalska, Magdalena; Hemmingsen, Lars

    2017-06-01

    Time differential perturbed angular correlation (TDPAC) of γ-rays spectroscopy has been applied in chemistry and biochemistry for decades. Herein we aim to present a comprehensive review of chemical and biochemical applications of TDPAC spectroscopy conducted at ISOLDE over the past 15 years, including elucidation of metal site structure and dynamics in proteins and model systems. β-NMR spectroscopy is well established in nuclear physics, solid state physics, and materials science, but only a limited number of applications in chemistry have appeared. Current endeavors at ISOLDE advancing applications of β-NMR towards chemistry and biochemistry are presented, including the first experiment on 31Mg2+ in an ionic liquid solution. Both techniques require the production of radioisotopes combined with advanced spectroscopic instrumentation present at ISOLDE.

  3. DanceChemistry: Helping Students Visualize Chemistry Concepts through Dance Videos

    ERIC Educational Resources Information Center

    Tay, Gidget C.; Edwards, Kimberly D.

    2015-01-01

    A visual aid teaching tool, the DanceChemistry video series, has been developed to teach fundamental chemistry concepts through dance. These educational videos portray chemical interactions at the molecular level using dancers to represent chemical species. Students reported that the DanceChemistry videos helped them visualize chemistry ideas in a…

  4. Identifying and Dealing with Hazardous Materials and Procedures in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Katz, David A.

    1982-01-01

    A survey of freshman chemistry laboratory manuals identified 15 questionable laboratory procedures, including the use of potentially hazardous chemicals. Alternatives are suggested for each hazard discussed (such as using a substitute solvent for benzene). (SK)

  5. Recent Advances in the Chemistry and Biology of Podophyllotoxins.

    PubMed

    Yu, Xiang; Che, Zhiping; Xu, Hui

    2017-04-03

    Podophyllotoxin and its related aryltetralin cyclolignans belong to a family of important products that exhibit various biological properties (e.g., cytotoxic, insecticidal, antifungal, antiviral, anti-inflammatory, neurotoxic, immunosuppressive, antirheumatic, antioxidative, antispasmogenic, and hypolipidemic activities). This Review provides a survey of podophyllotoxin and its analogues isolated from plants. In particular, recent developments in the elegant total chemical synthesis, structural modifications, biosynthesis, and biotransformation of podophyllotoxin and its analogues are summarized. Moreover, a deoxypodophyllotoxin-based chemosensor for selective detection of mercury ion is described. In addition to the most active podophyllotoxin derivatives in each series against human cancer cell lines and insect pests listed in the tables, the structure-activity relationships of podophyllotoxin derivatives as cytotoxic and insecticidal agents are also outlined. Future prospects and further developments in this area are covered at the end of the Review. We believe that this Review will provide necessary information for synthetic, medicinal, and pesticidal chemistry researchers who are interested in the chemistry and biology of podophyllotoxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.

    PubMed

    Chinga-Carrasco, Gary; Syverud, Kristin

    2014-09-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Kant and the nature of matter: Mechanics, chemistry, and the life sciences.

    PubMed

    Gaukroger, Stephen

    2016-08-01

    Kant believed that the ultimate processes that regulate the behavior of material bodies can be characterized exclusively in terms of mechanics. In 1790, turning his attention to the life sciences, he raised a potential problem for his mechanically-based account, namely that many of the operations described in the life sciences seemed to operate teleologically. He argued that the life sciences do indeed require us to think in teleological terms, but that this is a fact about us, not about the processes themselves. Nevertheless, even were we to concede his account of the life sciences, this would not secure the credentials of mechanics as a general theory of matter. Hardly any material properties studied in the second half of the eighteenth century were, or could have been, conceived in mechanical terms. Kant's concern with teleology is tangential to the problems facing a general matter theory grounded in mechanics, for the most pressing issues have nothing to do with teleology. They derive rather from a lack of any connection between mechanical forces and material properties. This is evident in chemistry, which Kant dismisses as being unscientific on the grounds that it cannot be formulated in mechanical terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation

    NASA Astrophysics Data System (ADS)

    Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).

  9. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  10. Hexaazatrinaphthylene derivatives: Efficient electron-transporting materials with tunable energy levels for inverted perovskite solar cells

    DOE PAGES

    Zhao, Dongbing; Zhu, Zonglong; Kuo, Ming -Yu; ...

    2016-06-08

    Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6% with negligible hysteresis. Furthermore, this study provides one of the first nonfullerene small-moleculebased ETMs for high-performance p–i–n PVSCs.

  11. Enabling consistency in pluripotent stem cell-derived products for research and development and clinical applications through material standards.

    PubMed

    French, Anna; Bravery, Christopher; Smith, James; Chandra, Amit; Archibald, Peter; Gold, Joseph D; Artzi, Natalie; Kim, Hae-Won; Barker, Richard W; Meissner, Alexander; Wu, Joseph C; Knowles, Jonathan C; Williams, David; García-Cardeña, Guillermo; Sipp, Doug; Oh, Steve; Loring, Jeanne F; Rao, Mahendra S; Reeve, Brock; Wall, Ivan; Carr, Andrew J; Bure, Kim; Stacey, Glyn; Karp, Jeffrey M; Snyder, Evan Y; Brindley, David A

    2015-03-01

    There is a need for physical standards (reference materials) to ensure both reproducibility and consistency in the production of somatic cell types from human pluripotent stem cell (hPSC) sources. We have outlined the need for reference materials (RMs) in relation to the unique properties and concerns surrounding hPSC-derived products and suggest in-house approaches to RM generation relevant to basic research, drug screening, and therapeutic applications. hPSCs have an unparalleled potential as a source of somatic cells for drug screening, disease modeling, and therapeutic application. Undefined variation and product variability after differentiation to the lineage or cell type of interest impede efficient translation and can obscure the evaluation of clinical safety and efficacy. Moreover, in the absence of a consistent population, data generated from in vitro studies could be unreliable and irreproducible. Efforts to devise approaches and tools that facilitate improved consistency of hPSC-derived products, both as development tools and therapeutic products, will aid translation. Standards exist in both written and physical form; however, because many unknown factors persist in the field, premature written standards could inhibit rather than promote innovation and translation. We focused on the derivation of physical standard RMs. We outline the need for RMs and assess the approaches to in-house RM generation for hPSC-derived products, a critical tool for the analysis and control of product variation that can be applied by researchers and developers. We then explore potential routes for the generation of RMs, including both cellular and noncellular materials and novel methods that might provide valuable tools to measure and account for variation. Multiparametric techniques to identify "signatures" for therapeutically relevant cell types, such as neurons and cardiomyocytes that can be derived from hPSCs, would be of significant utility, although physical RMs will

  12. Enabling Consistency in Pluripotent Stem Cell-Derived Products for Research and Development and Clinical Applications Through Material Standards

    PubMed Central

    Bravery, Christopher; Smith, James; Chandra, Amit; Archibald, Peter; Gold, Joseph D.; Artzi, Natalie; Kim, Hae-Won; Barker, Richard W.; Meissner, Alexander; Wu, Joseph C.; Knowles, Jonathan C.; Williams, David; García-Cardeña, Guillermo; Sipp, Doug; Oh, Steve; Loring, Jeanne F.; Rao, Mahendra S.; Reeve, Brock; Wall, Ivan; Carr, Andrew J.; Bure, Kim; Stacey, Glyn; Karp, Jeffrey M.

    2015-01-01

    Summary There is a need for physical standards (reference materials) to ensure both reproducibility and consistency in the production of somatic cell types from human pluripotent stem cell (hPSC) sources. We have outlined the need for reference materials (RMs) in relation to the unique properties and concerns surrounding hPSC-derived products and suggest in-house approaches to RM generation relevant to basic research, drug screening, and therapeutic applications. hPSCs have an unparalleled potential as a source of somatic cells for drug screening, disease modeling, and therapeutic application. Undefined variation and product variability after differentiation to the lineage or cell type of interest impede efficient translation and can obscure the evaluation of clinical safety and efficacy. Moreover, in the absence of a consistent population, data generated from in vitro studies could be unreliable and irreproducible. Efforts to devise approaches and tools that facilitate improved consistency of hPSC-derived products, both as development tools and therapeutic products, will aid translation. Standards exist in both written and physical form; however, because many unknown factors persist in the field, premature written standards could inhibit rather than promote innovation and translation. We focused on the derivation of physical standard RMs. We outline the need for RMs and assess the approaches to in-house RM generation for hPSC-derived products, a critical tool for the analysis and control of product variation that can be applied by researchers and developers. We then explore potential routes for the generation of RMs, including both cellular and noncellular materials and novel methods that might provide valuable tools to measure and account for variation. Multiparametric techniques to identify “signatures” for therapeutically relevant cell types, such as neurons and cardiomyocytes that can be derived from hPSCs, would be of significant utility, although

  13. Designing an Educative Curriculum Unit for Teaching Molecular Geometry in High School Chemistry

    ERIC Educational Resources Information Center

    Makarious, Nader N.

    2017-01-01

    Chemistry is a highly abstract discipline that is taught and learned with the aid of various models. Among the most challenging, yet a fundamental topic in general chemistry at the high school level, is molecular geometry. This study focused on developing exemplary educative curriculum materials pertaining to the topic of molecular geometry. The…

  14. Sedimentation of oil-derived material to the seabed is an unrecognized fate for oil derived from natural seepage.

    NASA Astrophysics Data System (ADS)

    Joye, S. B.

    2016-02-01

    The fate of oil derived from natural seepage in the marine environment is poorly constrained. In the aftermath of the 2010 BP/Macondo oil well blowout, sedimentation of oil-containing material to the seafloor was an important fate for discharged oil. Though the amount of oil accounted for by sedimentation processes remains poorly constrained, sedimentation is now considered an important fate of oil during large open water spills that generate extensive surface slicks. In the Gulf of Mexico, vigorous natural oil seeps generate extensive, sometimes thick, surface slicks. In the case of highly active seeps, these surface oil slicks persist at the sea surface over the seep site a majority of the time. We investigated the fate of oil released through natural seepage and the potential for the sedimentation of surface-slick derived oil at two vigorous hydrocarbon seeps in the Gulf of Mexico, Green Canyon block 600 and block 767. Hydrocarbon analyses were performed on samples collected from oil vents at the seafloor, in surface slicks, and in sediments cores apparently containing sedimented oil. Sediment cores collected from both of these active seep sites away from known oil vents contained distinct (1-3 cm thick) layers that were brown in coloration and which displayed distinct sedimentology compared to deeper strata. The oil fingerprint was also different, suggesting this material was not the result of weathering during transit through the sediment column. Available data suggest that sedimentation of weathered oil also occurs at vigorous natural seeps. Detailed studies of the weathered oil sedimentation process at natural seeps will help reveal the mechanisms driving this phenomena and are important for understanding the fate of oil released during accidental discharges and spills.

  15. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification.

    PubMed

    Bindon, Keren A; Smith, Paul A; Holt, Helen; Kennedy, James A

    2010-10-13

    Proanthocyanidins (PAs) were isolated from the skins, seeds and flesh of commercially ripe grapes, and from wine and marc produced from the same source. In the grape berry, skin PAs accounted for 54% of the total extractable PA, while seed and flesh-derived PA accounted for 30% and 15% of the total, respectively. Following fermentation, 25% of the fruit PA was found in the wine, while 27% was found in the pericarp isolated from marc, and 48% was unaccounted for (either remaining in the seed or adsorbed to lees). To investigate the role that cell wall material (CWM) has on PA extraction during fermentation, CWM isolated from skin and flesh were combined with PA in model suspensions. In general, the affinity of flesh CWM for PA increased with increasing PA molecular mass (MM); however, this relationship was not observed for the interaction of skin CWM with skin PA. Subsequent experiments suggest that the differences in the interaction of flesh and skin CWM with PA of higher MM (>15000 g/mol) may be limited by the structure of the CWM. Observed variations in the composition between skin and flesh CWM may explain the differences in PA interaction at high MM. Among wine-derived PA, no higher MM material was detected, suggesting that, during vinification, higher MM PA are nonextractable and/or are removed from the wine by interaction with CWM.

  16. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-05154; NRC-2010-0056] Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry Laboratories, Inc. Sanitary Lagoon... license amendment to Byproduct Material License No. 24- 13365-01 issued to Analytical Bio-Chemistry...

  17. Organoelement chemistry: promising growth areas and challenges

    NASA Astrophysics Data System (ADS)

    Abakumov, G. A.; Piskunov, A. V.; Cherkasov, V. K.; Fedushkin, I. L.; Ananikov, V. P.; Eremin, D. B.; Gordeev, E. G.; Beletskaya, I. P.; Averin, A. D.; Bochkarev, M. N.; Trifonov, A. A.; Dzhemilev, U. M.; D'yakonov, V. A.; Egorov, M. P.; Vereshchagin, A. N.; Syroeshkin, M. A.; Jouikov, V. V.; Muzafarov, A. M.; Anisimov, A. A.; Arzumanyan, A. V.; Kononevich, Yu N.; Temnikov, M. N.; Sinyashin, O. G.; Budnikova, Yu H.; Burilov, A. R.; Karasik, A. A.; Mironov, V. F.; Storozhenko, P. A.; Shcherbakova, G. I.; Trofimov, B. A.; Amosova, S. V.; Gusarova, N. K.; Potapov, V. A.; Shur, V. B.; Burlakov, V. V.; Bogdanov, V. S.; Andreev, M. V.

    2018-05-01

    The chemistry of organoelement compounds is now one of the most rapidly developing fields of research, regarding both fundamental science and solution of applied problems. This review covers a variety of classes of organoelement compounds, ranging from molecules with highly labile carbon–element bonds to compounds with stable bonds that form the basis of novel structural materials and demonstrates their role in scientific research and industrial production. The use of Grignard reagents in modern organic synthesis and application of catalytic cyclomagnesiation and cycloalumination reactions for the preparation of difficult-to-access metallacycles are considered. The electron transfer processes in redox-active derivatives of Group 14 elements and the role of radical ions in these processes are discussed. Considerable attention is paid to organometallic compounds, first of all, as catalysts; the dynamic nature of catalysis with these compounds is noted. Unusual strained metallacycles of high thermal stability, zirconacyclocumulenes, which also exhibit catalytic activity, are described. Complexes with redox-active ligands that substantially affect the reactivity of the metal centre and directly participate in reactions with various substrates as well as organometallic compounds of lanthanides are considered. Modern environmentally benign methods for the synthesis of organosilicon compounds and production of unique materials based on them are discussed. Particular Sections are devoted to organophosphorus compounds, including those exhibiting therapeutic properties and possessing unusual optical characteristics, and organic chalcogen compounds, which find use as ligands and biologically active molecules. The bibliography includes 1045 references.

  18. Ice Chemistry in Starless Molecular Cores

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.

    2015-06-01

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H2O:CO:CO2:N2:NH3 ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H2O2 and O2H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H2CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH3 could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%-10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  19. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools.

    PubMed

    He, Jinsong; Chen, J Paul

    2014-05-01

    Heavy metals contamination has become a global issue of concern due to their higher toxicities, nature of non-biodegradability, high capabilities in bioaccumulation in human body and food chain, and carcinogenicities to humans. A series of researches demonstrate that biosorption is a promising technology for removal of heavy metals from aqueous solutions. Algae serve as good biosorbents due to their abundance in seawater and fresh water, cost-effectiveness, reusability and high metal sorption capacities. This article provides a comprehensive review of recent findings on performances, applications and chemistry of algae (e.g., brown, green and red algae, modified algae and the derivatives) for sequestration of heavy metals. Biosorption kinetics and equilibrium models are reviewed. The mechanisms for biosorption are presented. Biosorption is a complicated process involving ion-exchange, complexation and coordination. Finally the theoretical simulation tools for biosorption equilibrium and kinetics are presented so that the readers can use them for further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  1. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions.

    PubMed

    Sobkowski, Michal; Kraszewski, Adam; Stawinski, Jacek

    2015-01-01

    This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.

  2. Impact of surface ozone interactions on indoor air chemistry: A modeling study.

    PubMed

    Kruza, M; Lewis, A C; Morrison, G C; Carslaw, N

    2017-09-01

    An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C 6 -C 10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C 6 -C 10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  3. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors.

    PubMed

    Zhu, Hui; Wang, Xiaolei; Liu, Xuexia; Yang, Xiurong

    2012-12-18

    Poly(o-phenylenediamine) (POPD)-derived functional carbon materials with excellent capacitive performance are successfully synthesized by means of an integrated one-step process, in which FeCl(3) not only oxidizes the polymerization of the organic monomers but also activates the carbonization. Furthermore, extensive research has proved that this strategy to discover novel carbons is useful not only for capacitors but also for other energy storage/conversion devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of the Chemistry Collection of a Four-Year College Library by Means of Textbook Citation Analysis.

    ERIC Educational Resources Information Center

    Powell, Diana L.

    The purpose of this study was to evaluate the chemistry collection of the College of Wooster's Chemistry Library. In particular, the extent to which the library supports the curriculum of the chemistry and biochemistry program by providing additional sources to supplement course textbooks was evaluated. Focus was on materials present in the…

  5. Derivation of the Ideal Gas Law

    ERIC Educational Resources Information Center

    Laugier, Alexander; Garai, Jozsef

    2007-01-01

    Undergraduate and graduate physics and chemistry books usually state that combining the gas laws results in the ideal gas law. Leaving the derivation to the students implies that this should be a simple task, most likely a substitution. Boyle's law, Charles's law, and the Avogadro's principle are given under certain conditions; therefore, direct…

  6. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  7. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  8. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE PAGES

    Yi, Tanghong; Chen, Wei; Cheng, Lei; ...

    2017-01-20

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  9. Accuracy of the domain method for the material derivative approach to shape design sensitivities

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Botkin, M. E.

    1987-01-01

    Numerical accuracy for the boundary and domain methods of the material derivative approach to shape design sensitivities is investigated through the use of mesh refinement. The results show that the domain method is generally more accurate than the boundary method, using the finite element technique. It is also shown that the domain method is equivalent, under certain assumptions, to the implicit differentiation approach not only theoretically but also numerically.

  10. Aggregation-Induced Emission of Multiphenyl-Substituted 1,3-Butadiene Derivatives: Synthesis, Property and Application.

    PubMed

    Zhang, Yahui; Mao, Huiling; Xu, Weiquan; Shi, Jianbing; Cai, Zhengxu; Tong, Bin; Dong, Yuping

    2018-05-29

    Organic functional materials, including conjugated molecules and fluorescent dyes, have been rapidly developed in recent years because they can be applied in many fields, such as solar cells, biosensing and bioimaging, and medical adjuvant therapy. Organic functional materials with aggregation-induced emission or aggregation-enhanced emission (AIE/AEE) characteristics have increasingly attracted attention due to their high quantum efficiency in the aggregated or solid state. A large variety of AIE/AEE materials have been designed and applied during the exponential growth of research interest in the abovementioned fields. Multiphenyl-substituted 1,3-butadiene (MPB), as a core structure that includes tetraphenyl-1,3-butadiene, hexaphenyl-1,3-butadiene and their derivatives, show a typical AIE/AEE feature and can be potentially used in all the abovementioned fields. This review summarizes the design principles, the corresponding syntheses, and the structure-property relationships of MPBs, as well as their excellent innovative functionalities and applications. This review will be very useful for scientists conducting chemistry, materials, and biomedical research in AIE/AEE-related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Effects of Clickers and Online Homework on Students' Achievement in General Chemistry

    NASA Astrophysics Data System (ADS)

    Gebru, Misganaw T.

    Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on students' achievement in a first-semester general chemistry course, and assessed students' attitudes toward the use of online homework. Students' data from the yearlong American Chemical Society General Chemistry (ACS GC97) exam, teacher-prepared final exams, and online surveys were analyzed to measure the effects of clickers and online homework on students' long-term content retention and performance, and to capture students' attitudes. A variety of methods including Welch ANOVA, independent samples t -test (Welch), Pearson's correlation, test of proportions, and Pearson's Chi-square test were used to analyze the data. The analyses indicated that the use of clickers or online homework did not significantly improve students' long-term content retention of general chemistry course material, that the use of online homework was more beneficial than, or at least as effective as no graded homework in improving students' performance, and students valued the fact that online homework provided immediate feedback. Additionally, results of this study revealed that greater numbers of students were retained in clicker and online homework classes than non-clicker, non-online homework classes and that various types of online homework systems used in general chemistry could impact student performance differently. Implications of the findings and future research directions were presented.

  12. 21 CFR 862.1660 - Quality control material (assayed and unassayed).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry... control material (assayed and unassayed) for clinical chemistry is a device intended for medical purposes for use in a test system to estimate test precision and to detect systematic analytical deviations...

  13. 21 CFR 862.1660 - Quality control material (assayed and unassayed).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry... control material (assayed and unassayed) for clinical chemistry is a device intended for medical purposes for use in a test system to estimate test precision and to detect systematic analytical deviations...

  14. 21 CFR 862.1660 - Quality control material (assayed and unassayed).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry... control material (assayed and unassayed) for clinical chemistry is a device intended for medical purposes for use in a test system to estimate test precision and to detect systematic analytical deviations...

  15. Polymorphism in Energetic Materials

    DTIC Science & Technology

    2008-01-01

    2Department of Chemistry, Howard University Polymorphism often occurs in energetic materials. Differences in the forms range from conformational changes in...these two areas. rayMond J. ButchEr is a professor of inorganic and structural chemistry at Howard University , Washington, DC. He has worked at Howard ... University since 1977 and has been associated with the NRL Laboratory for Structure of Matter since 1989 (primarily during the summer months as an

  16. Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems.

    PubMed

    Sakimoto, Kelsey K; Kornienko, Nikolay; Yang, Peidong

    2017-03-21

    Photosynthetic biohybrid systems (PBSs) combine the strengths of inorganic materials and biological catalysts by exploiting semiconductor broadband light absorption to capture solar energy and subsequently transform it into valuable CO 2 -derived chemicals by taking advantage of the metabolic pathways in living organisms. In this work, we first traverse through a brief history of recent PBSs, demonstrating the modularity and diversity of possible architectures to rival and, in many cases, surpass the performance of chemistry or biology alone before envisioning the future of these hybrid systems, opportunities for improvement, and its role in sustainable living here on earth and beyond.

  17. Chemistry and materials science progress report, FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  18. The Mole as an Explanatory Device: How Do You Know a Mole if You See One? A Manual for Chemistry Students. Sample Teaching Materials: The Explanatory Modes Project.

    ERIC Educational Resources Information Center

    Roberts, Douglas A.

    This booklet is designed to supplement the study of introductory chemistry. It deals particularly with the mole concept but also includes ideas for analyzing the kinds of statements that appear in all science textbooks and scientific writing. The material in the booklet should be studied after the completion of an introductory textbook study of…

  19. Chemistry for whom? Gender awareness in teaching and learning chemistry

    NASA Astrophysics Data System (ADS)

    Andersson, Kristina

    2017-06-01

    Marie Ståhl and Anita Hussénius have defined what discourses dominate national tests in chemistry for Grade 9 in Sweden by using feminist, critical didactic perspectives. This response seeks to expand the results in Ståhl and Hussénius's article Chemistry inside an epistemological community box!— Discursive exclusions and inclusions in the Swedish national tests in chemistry, by using different facets of gender awareness. The first facet—Gender awareness in relations to the test designers' own conceptions—highlighted how the gender order where women are subordinated men becomes visible in the national tests as a consequence of the test designers internalized conceptions. The second facet—Gender awareness in relation to chemistry—discussed the hierarchy between discourses within chemistry. The third facet—Gender awareness in relation to students—problematized chemistry in relation to the students' identity formation. In summary, I suggest that the different discourses can open up new ways to interpret chemistry and perhaps dismantle the hegemonic chemistry discourse.

  20. Modern Sport and Chemistry: What a Chemically Aware Sports Fanatic Should Know.

    ERIC Educational Resources Information Center

    Giffin, Guinevere A.; Boone, Steven R.; Cole, Renee S.; McKay, Scott E.; Kopitzke, Robert

    2002-01-01

    Advances in the chemical and materials sciences have had dramatic impact on sporting events. Discusses some of the chemicals and materials involved in these advances with the intention of providing a mechanism to interest students in chemistry. Presents structures and properties of some materials that led to their adoption in sports and ideas for…

  1. A Thematic Review of Studies into the Effectiveness of Context-Based Chemistry Curricula

    NASA Astrophysics Data System (ADS)

    Ültay, Neslihan; Çalık, Muammer

    2012-12-01

    Context-based chemistry education aims at making connections between real life and the scientific content of chemistry courses. The purpose of this study was to evaluate context-based chemistry studies. In looking for the context-based chemistry studies, the authors entered the keywords `context-based', `contextual learning' and `chemistry education' in well-known databases (i.e. Academic Search Complete, Education Research Complete, ERIC, Springer LINK Contemporary). Further, in case the computer search by key words may have missed a rather substantial part of the important literature in the area, the authors also conducted a hand search of the related journals. To present a detailed thematic review of context-based chemistry studies, a matrix was used to summarize the findings by focusing on insights derived from the related studies. The matrix incorporates the following themes: needs, aims, methodologies, general knowledge claims, and implications for teaching and learning, implications for curriculum development and suggestions for future research. The general knowledge claims investigated in this paper were: (a) positive effects of the context-based chemistry studies; (b) caveats, both are examined in terms of students' attitudes and students' understanding/cognition. Implications were investigated for practice in context- based chemistry studies, for future research in context- based chemistry studies, and for curriculum developers in context- based chemistry studies. Teachers of context-based courses claimed that the application of the context-based learning approach in chemistry education improved students' motivation and interest in the subject. This seems to have generated an increase in the number of the students who wish to continue chemistry education at higher levels. However, despite the fact that the majority of the studies have reported advantages of context-based chemistry studies, some of them have also referred to pitfalls, i.e. dominant

  2. Quantitative Reactivity Scales for Dynamic Covalent and Systems Chemistry.

    PubMed

    Zhou, Yuntao; Li, Lijie; Ye, Hebo; Zhang, Ling; You, Lei

    2016-01-13

    Dynamic covalent chemistry (DCC) has become a powerful tool for the creation of molecular assemblies and complex systems in chemistry and materials science. Herein we developed for the first time quantitative reactivity scales capable of correlation and prediction of the equilibrium of dynamic covalent reactions (DCRs). The reference reactions are based upon universal DCRs between imines, one of the most utilized structural motifs in DCC, and a series of O-, N-, and S- mononucleophiles. Aromatic imines derived from pyridine-2-carboxyaldehyde exhibit capability for controlling the equilibrium through distinct substituent effects. Electron-donating groups (EDGs) stabilize the imine through quinoidal resonance, while electron-withdrawing groups (EWGs) stabilize the adduct by enhancing intramolecular hydrogen bonding, resulting in curvature in Hammett analysis. Notably, unique nonlinearity induced by both EDGs and EWGs emerged in Hammett plot when cyclic secondary amines were used. This is the first time such a behavior is observed in a thermodynamically controlled system, to the best of our knowledge. Unified quantitative reactivity scales were proposed for DCC and defined by the correlation log K = S(N) (R(N) + R(E)). Nucleophilicity parameters (R(N) and S(N)) and electrophilicity parameters (R(E)) were then developed from DCRs discovered. Furthermore, the predictive power of those parameters was verified by successful correlation of other DCRs, validating our reactivity scales as a general and useful tool for the evaluation and modeling of DCRs. The reactivity parameters proposed here should be complementary to well-established kinetics based parameters and find applications in many aspects, such as DCR discovery, bioconjugation, and catalysis.

  3. [60]Fullerene-based monolayers as neuroprotective biocompatible hybrid materials.

    PubMed

    Giust, Davide; Albasanz, José Luis; Martín, Mairena; Marega, Riccardo; Delforge, Arnaud; Bonifazi, Davide

    2011-10-14

    Here we report on the surface immobilization of redox-active [60]fullerene derivatives and the consequent neuroprotective effects toward l-glutamate induced excitotoxicity in human derived undifferentiated neuroblastoma cells. This journal is © The Royal Society of Chemistry 2011

  4. 1,3-syn-Diaxial Repulsion of Typical Protecting Groups Used in Carbohydrate Chemistry in 3-O-Substituted Derivatives of Isopropyl d-Idopyranosides.

    PubMed

    Komarova, Bozhena S; Gerbst, Alexey G; Finogenova, Anastasiia M; Dmitrenok, Andrey S; Tsvetkov, Yury E; Nifantiev, Nikolay E

    2017-09-01

    The strength of 1,3-syn-diaxial repulsion was evaluated for main types of protecting groups (alkyl, silyl, and acyl) usually used in carbohydrate chemistry. As molecular probes for this study, derivatives of isopropyl 2-O-benzyl-4,6-O-benzylidene-α-d-idopyranoside bearing allyl, acetyl, and tert-butyldiphenylsilyl (TBDPS) protecting groups at O-3 were prepared from p-methoxyphenyl d-galactopyranoside. The equilibrium between O S 2 and 4 C 1 conformations in these compounds was investigated using 3 J H,H and 3 J C,H coupling constants that were determined from 1D 1 H NMR and 2D J-resolved HMBC spectra in various solvents. The analysis of the corresponding coupling constants calculated using DFT/B3LYP/pcJ-1 approximation applied to conformations optimized at DFT/B3LYP/6-311++G** level supported the investigation. Proportions of conformers in the equilibrium revealed the highest repulsion between the 3-allyloxy group and the isopropoxy aglycon and its dependence on the solvent polarity. Differences in the conformational behavior of 3-O-allyl and 3-O-acetyl-α-d-idopyranoside derivatives complied with the notion that higher electron density on O-3 increased 1,3-syn-diaxial repulsion. 3-O-TBDPS derivative existed mainly in 4 C 1 conformation. The attenuation of the 1,3-syn-diaxial repulsive interaction indicates that TBDPS has stereoelectronic properties that may have significance in context of fixing unnatural pyranoside conformation with the help of silyl groups but have been disregarded until now.

  5. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives.

    PubMed

    Lau, Hooi Hong; Murney, Regan; Yakovlev, Nikolai L; Novoselova, Marina V; Lim, Su Hui; Roy, Nicole; Singh, Harjinder; Sukhorukov, Gleb B; Haigh, Brendan; Kiryukhin, Maxim V

    2017-11-01

    The benefits of various functional foods are often negated by stomach digestion and poor targeting to the lower gastrointestinal tract. Layer-by-Layer assembled protein-tannic acid (TA) films are suggested as a prospective material for microencapsulation of food-derived bioactive compounds. Bovine serum albumin (BSA)-TA and pepsin-TA films demonstrate linear growth of 2.8±0.1 and 4.2±0.1nm per bi-layer, correspondingly, as shown by ellipsometry. Both multilayer films are stable in simulated gastric fluid but degrade in simulated intestinal fluid. Their corresponding degradation constants are 0.026±0.006 and 0.347±0.005nm -1 min -1 . Milk proteins possessing enhanced adhesion to human intestinal surface, Immunoglobulin G (IgG) and β-Lactoglobulin (BLG), are explored to tailor targeting function to BSA-TA multilayer film. BLG does not adsorb onto the multilayer while IgG is successfully incorporated. Microcapsules prepared from the multilayer demonstrate 2.7 and 6.3 times higher adhesion to Caco-2 cells when IgG is introduced as an intermediate and the terminal layer, correspondingly. This developed material has a great potential for oral delivery of numerous active food-derived ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Medical Laboratory Technician (Chemistry and Urinalysis). (AFSC 92470).

    ERIC Educational Resources Information Center

    Thompson, Joselyn H.

    This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for medical laboratory technicians. Covered in the individual volumes are medical laboratory administration and clinical chemistry (career opportunities, general laboratory safety and materials, general medical laboratory…

  7. IN-PACKAGE CHEMISTRY ABSTRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less

  8. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less

  9. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  10. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk

    2017-02-01

    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  12. A Comparison of Simulated JWST Observations Derived from Equilibrium and Non-equilibrium Chemistry Models of Giant Exoplanets

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah D.; Mandell, Avi M.; Hébrard, Eric; Batalha, Natasha E.; Cubillos, Patricio E.; Rugheimer, Sarah; Wakeford, Hannah R.

    2018-02-01

    We aim to see if the difference between equilibrium and disequilibrium chemistry is observable in the atmospheres of transiting planets by the James Webb Space Telescope (JWST). We perform a case study comparing the dayside emission spectra of three planets like HD 189733b, WASP-80b, and GJ 436b, in and out of chemical equilibrium at two metallicities each. These three planets were chosen because they span a large range of planetary masses and equilibrium temperatures, from hot and Jupiter-sized to warm and Neptune-sized. We link the one-dimensional disequilibrium chemistry model from Venot et al. (2012), in which thermochemical kinetics, vertical transport, and photochemistry are taken into account, to the one-dimensional, pseudo line-by-line radiative transfer model, Pyrat bay, developed especially for hot Jupiters, and then simulate JWST spectra using PandExo for comparing the effects of temperature, metallicity, and radius. We find the most significant differences from 4 to 5 μm due to disequilibrium from CO and CO2 abundances, and also H2O for select cases. Our case study shows a certain “sweet spot” of planetary mass, temperature, and metallicity where the difference between equilibrium and disequilibrium is observable. For a planet similar to WASP-80b, JWST’s NIRSpec G395M can detect differences due to disequilibrium chemistry with one eclipse event. For a planet similar to GJ 436b, the observability of differences due to disequilibrium chemistry is possible at low metallicity given five eclipse events, but not possible at the higher metallicity.

  13. Just Add Water and Stir. Graduate Chemistry Laboratory, Stony Brook

    ERIC Educational Resources Information Center

    Yee, Roger

    1974-01-01

    Using traditional building materials and a fast-track recipe, the architects, acting as construction manager, completed the Graduate Chemistry Laboratory at Stony Brook, New York, two full years ahead of schedule. (Author/MF)

  14. Atmospheric Chemistry Over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  15. Citrate chemistry and biology for biomaterials design.

    PubMed

    Ma, Chuying; Gerhard, Ethan; Lu, Di; Yang, Jian

    2018-05-04

    Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  17. Materials Analysis and Modeling of Underfill Materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, Nicholas B; Chambers, Robert S.

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps asmore » well as questions arising from the present study are identified and a path forward presented.« less

  18. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories: The Pinacol Rearrangement--An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-01-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation--a new technique…

  19. Consumer Chemistry in the Classroom. Science from the Supermarket.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Brown, Fred W.

    1991-01-01

    Activities that show students a practical use for chemistry using common items such as food products, pharmaceuticals, and household products as sources of chemical compounds are presented. The importance of having adequate resource materials available for students is emphasized. (KR)

  20. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  1. Developing cellulosic waste products as platform chemicals: protecting group chemistry of α-glucoisosaccharinic acid.

    PubMed

    Almond, Michael; Suleiman, Mustapha G; Hawkins, Matthew; Winder, Daniel; Robshaw, Thomas; Waddoups, Megan; Humphreys, Paul N; Laws, Andrew P

    2018-01-02

    Alpha and beta-glucoisosaccharinic acids ((2S,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid and (2R,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid) which are produced when cellulosic materials are treated with aqueous alkali are potentially valuable platform chemicals. Their highly functionalised carbon skeleton, with fixed chirality at C-2 and C-4, makes them ideal starting materials for use in synthesis. In order to assess the potential of these saccharinic acids as platform chemicals we have explored the protecting group chemistry of the lactone form of alpha-glucoisosaccharinic acid (α-GISAL). We report here the use of single and multiple step reaction pathways leading to the regioselective protection of the three different hydroxyl groups of α-GISAL. We report strategies for protecting the three different hydroxyl groups individually or in pairs. We also report the synthesis of a range of tri-O-protected α-GISAL derivatives where a number of the products contain orthogonal protecting groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ferroelectricity in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    The search for new ferroelectric (FE) materials holds promise for broadening our understanding of FE mechanisms and extending the range of application of FE materials. The known FE materials LiNbO3 can be regarded as derived from the A2O3 corundum structure with cation ordering. Here we consider more general binary (AB O3) and ternary (A2 BB' O6) corundum derivatives as an extended class of potential FE materials, motivated by the fact that some members of this class have recently been synthesized. There are four structure types for these corundum derivatives, and the number of cation combinations is enormous, but in many cases the energy barriers for polarization reversal may be too large to allow FE behavior. Here we present a first-principles study of the polar structure, coherent FE barrier, and domain-wall switching barrier for a representative set of polar corundum derivatives, allowing us to identify several potentially new FE materials. We also discuss the conditions under which ferroelectricity is compatible with magnetic ordering. Finally, we identify several empirical measures that can provide a rule of thumb for estimating the barrier energies. Our results should assist in the experimental search for new FE materials in the corundum derivative family. This work is supported by ONR Grant No. N-00014-12-1-1035.

  3. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  4. Pacifichem 2000 Symposium on Plasma Chemistry and Technology for Green Manufacturing, Pollution Control and Processing Applications

    DTIC Science & Technology

    2001-03-19

    Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on

  5. Systemic Changes in the Undergraduate Chemistry Curriculum Program Awards

    NASA Astrophysics Data System (ADS)

    1995-07-01

    The National Science Foundation has awarded over 10 million in awards to four coalitions in the first round of full awards in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Overall, more than 50 institutions, ranging from large universities to four-year and community colleges, are formally involved in these projects. Each of the projects will involve five years of curricular development and evaluation and dissemination of the results by the participating institutions, as described in the abstracts below. We encourage faculty who are interested in becoming involved in any of these projects to contact the appropriate coalition. In addition, we expect to begin offering an emphasis in 1997 under the Course and Curriculum Development program in which faculty can request funds to assist them in adapting and adopting at their own institutions curricular innovations that have been developed by these coalitions. Another round of proposals for full awards was accepted in June of 1995, and we expect to make one more award in the program during FY1996. We do not expect to accept proposals for either planning or full grants in this program in June of 1996. However, the regular Course and Curriculum Development program will continue to accept and fund proposals requesting support for smaller-scale changes in the chemistry curriculum. ChemLinks Coalition: Making Chemical Connections Brock Spencer Beloit College, Beloit, WI 53511 DUE 9455918: FY1995, 705,000; FY 1996, 655,000; FY1997, 655,000; FY1998, 350,00; FY1999, 350,000 The ChemLinks Coalition is undertaking a five-year project to change the way students learn chemistry, increase scientific literacy for all students taking chemistry, and promote the process of educational reform. In collaboration with the ModularChem Consortium, faculty are developing, testing, and disseminating modular course materials that use active and collaborative approaches to learning. These materials, focused on the first two

  6. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  7. Use of Spreadsheet Simulations in University Chemistry Education

    ERIC Educational Resources Information Center

    Lim, Kieran F.

    2006-01-01

    Students who are strong in logical-mathematical intelligence have a natural advantage in learning and understanding chemistry, which is full of abstractions that are remote from the material world. Simulations provide more-inclusive learning activities for students who are weak in logical-mathematical intelligence. A second advantage of using…

  8. Environmental literacy with green chemistry oriented in 21st century learning

    NASA Astrophysics Data System (ADS)

    Mitarlis, Ibnu, Suhadi; Rahayu, Sri; Sutrisno

    2017-12-01

    The aim of this study is to analyze the design of chemistry subject with green chemistry oriented to improve students' environmental literacy as one of the important requirements of 21st century learning. This research used R&D design which consisted of four stages, i.e. preliminary study, the study of literature, development of materials, and expert and empirical validation. This article presents the results of preliminary study and the study of literature. It can be concluded from the results of an analysis that environmental literacy is one of the important components of learning outcomes which should be pursued in 21st century teaching. Philosophy of green chemistry plays an important role to reduce and prevent pollution of environment. Principles of green chemistry can be integrated into learning environment as learning outcomes or nurturant effects of learning.

  9. Crystallisation and crystal forms of carbohydrate derivatives

    NASA Astrophysics Data System (ADS)

    Lennon, Lorna

    This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains

  10. Analytical chemistry of PCBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.D.

    Analytical Chemistry of PCBs offers a review of physical, chemical, commercial, environmental and biological properties of PCBs. It also defines and discusses six discrete steps of analysis: sampling, extraction, cleanup, determination, data reduction, and quality assurance. The final chapter provides a discussion on collaborative testing - the ultimate step in method evaluation. Dr. Erickson also provides a bibliography of over 1200 references, critical reviews of primary literature, and five appendices which present ancillary material on PCB nomen-clature, physical properties, composition of commercial mixtures, mass spectra characteristics, and PGC/ECD chromatograms.

  11. Traceability Assessment and Performance Evaluation of Results for Measurement of Abbott Clinical Chemistry Assays on 4 Chemistry Analyzers.

    PubMed

    Lim, Jinsook; Song, Kyung Eun; Song, Sang Hoon; Choi, Hyun-Jung; Koo, Sun Hoe; Kwon, Gye Choel

    2016-05-01

    -The traceability of clinical results to internationally recognized and accepted reference materials and reference measurement procedures has become increasingly important. Therefore, the establishment of traceability has become a mandatory requirement for all in vitro diagnostics devices. -To evaluate the traceability of the Abbott Architect c8000 system (Abbott Laboratories, Abbott Park, Illinois), consisting of calibrators and reagents, across 4 different chemistry analyzers, and to evaluate its general performance on the Toshiba 2000FR NEO (Toshiba Medical Systems Corporation, Otawara-shi, Tochigi-ken, Japan). -For assessment of traceability, secondary reference materials were evaluated 5 times, and then bias was calculated. Precision, linearity, and carryover were determined according to the guidelines of the Clinical and Laboratory Standards Institute (Wayne, Pennsylvania). -The biases from 4 different analyzers ranged from -2.33% to 2.70% on the Toshiba 2000FR NEO, -2.33% to 5.12% on the Roche Hitachi 7600 (Roche Diagnostics International, Basel, Switzerland), -0.93% to 2.87% on the Roche Modular, and -2.16% to 2.86% on the Abbott Architect c16000. The total coefficients of variance of all analytes were less than 5%. The coefficients of determination (R(2)) were more than 0.9900. The carryover rate ranged from -0.54% to 0.17%. -Abbott clinical chemistry assays met the performance criteria based on desirable biological variation for precision, bias, and total error. They also showed excellent linearity and carryover. Therefore, these clinical chemistry assays were found to be accurate and reliable and are readily applicable on the various platforms used in this study.

  12. Self-assembly into soft materials of molecules derived from naturallyoccurring fatty-acids

    NASA Astrophysics Data System (ADS)

    Zhang, Mohan

    The self-assembly of molecular gelators has provided an attractive route for the construction of nanostructured materials with desired functionalities. A well-defined paradigm for the design of molecular gels is needed, but none has yet been established. One of the important challenges to defining this paradigm is the creation of structure-property correlations for gelators at different distance scales. This dissertation centers on gaining additional insights in the relationship between small changes in gelator structures derived from long-chain, naturally-occurring fatty acids and the properties of the corresponding gels. This approach offers a reasonable method to probe the rational design of molecular gelators. (Abstract shortened by ProQuest.).

  13. Geothermal systems materials: a workshop/symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    Sixteen papers are included. A separate abstract was prepared for each. Summaries of workshops on the following topics are also included in the report: non-metallic materials, corrosion, materials selection, fluid chemistry, and failure analysis. (MHR)

  14. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  15. Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

    DOE PAGES

    Adhikari, Shiba P.; Hood, Zachary D.; Gallego, Nidia C.; ...

    2018-06-04

    Here, the production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO 3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO 3H) catalyst was very efficient atmore » esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.« less

  16. Pretreatment data is highly predictive of liver chemistry signals in clinical trials.

    PubMed

    Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T

    2012-01-01

    The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy's law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.

  17. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents.

    PubMed

    Upadhyay, Akanksha; Kushwaha, Pragati; Gupta, Sampa; Dodda, Ranga Prasad; Ramalingam, Karthik; Kant, Ruchir; Goyal, Neena; Sashidhara, Koneni V

    2018-05-12

    The high potential of quinoline containing natural products and their derivatives in medicinal chemistry led us to discover novel series of 25 compounds for the development of new antileishmanial agents. A series of triazolyl 2-methyl-4-phenylquinoline-3-carboxylate derivatives has been synthesized via click chemistry inspired molecular hybridization approach and evaluated against Leishmania donovani. Most of the screened derivatives exhibited significant in vitro anti-leishmanial activity against promastigote (IC 50 ranging from 2.43 to 45.75 μM) and intracellular amastigotes (IC 50 ranging from 7.06 to 34.9 μM) than the control, miltefosine (IC 50  = 8.4 μM), with less cytotoxicity in comparison to the standard drugs. Overall results revealed that prototype signify a new structural lead for antileishmanial chemotherapy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Surface chemistry driven actuation in nanoporous gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, J; Wittstock, A; Zepeda-Ruiz, L

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into amore » mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.« less

  19. Recent Advances in Azaborine Chemistry

    PubMed Central

    Campbell, Patrick G.; Marwitz, Adam J. V.

    2013-01-01

    The chemistry of organoboron compounds has been primarily dominated by their use as powerful reagents in synthetic organic chemistry. Recently, the incorporation of boron as part of a functional target structure has emerged as a useful way to generate diversity in organic compounds. A commonly applied strategy is the replacement of a CC unit with its isoelectronic BN unit. In particular, the BN/CC isosterism of the ubiquitous arene motif has undergone a renaissance in the past decade. The parent molecule of the 1,2-dihydro-1,2-azaborine family has now been isolated. New mono- and polycyclic BN heterocycles have been synthesized for potential use in biomedical and materials science applications. This review is a tribute to Dewar's first synthesis of a monocyclic 1,2-dihydro-1,2-azaborine 50 years ago and discusses recent advances in the synthesis and characterization of carbon(C)-boron(B)-nitrogen(N)-containing heterocycles. PMID:22644658

  20. Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry.

    PubMed

    Arachchige, Indika U; Armatas, Gerasimos S; Biswas, Kanishka; Subrahmanyam, Kota S; Latturner, Susan; Malliakas, Christos D; Manos, Manolis J; Oh, Youngtak; Polychronopoulou, Kyriaki; P Poudeu, Pierre F; Trikalitis, Pantelis N; Zhang, Qichun; Zhao, Li-Dong; Peter, Sebastian C

    2017-07-17

    Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.

  1. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  2. Micromotors for "Chemistry-on-the-Fly".

    PubMed

    Karshalev, Emil; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2018-03-21

    This perspective reviews mobile micro/nanomotor scaffolds for performing "chemistry-on-the-fly". Synthetic nano/micromotors offer great versatility and distinct advantages in diverse chemical applications owing to their efficient propulsion and facile surface functionalization that allow these mobile platforms to move and disperse reactive materials across the solution. Such dynamic microreactors have led to accelerated chemical processes, including organic pollutant degradation, metal chelation, biorecognition, redox chemistry, chemical "writing", and a variety of other chemical transformations. Representative examples of such micromotor-enhanced chemical reactions are discussed, focusing on the specific chemical role of these mobile microreactors. The advantages, gaps and limitations of using micromotors as mobile chemical platforms are discussed, concluding with the future prospects of this emerging field. We envision that artificial nano/micromotors will become attractive dynamic tools for speeding up and enhancing "on-the-fly" chemical reactions.

  3. Preliminary analyses for perchlorate in selected natural materials and their derivative products

    USGS Publications Warehouse

    Orris, G.J.; Harvey, G.J.; Tsui, D.T.; Eldrige, J.E.

    2003-01-01

    Increasing concern about sources of perchlorate contamination in ground and surface waters has led to interest in identifying potential sources of natural perchlorate and products derived from these natural sources. To date, most perchlorate found in ground and surface waters has been attributed to its major uses as an oxidizer in solid propellants for rockets, in fireworks and other explosives, and a variety of other uses of man-made perchlorate salts. However, perchlorate found in the soils, surface water, and ground water of some locations cannot be linked to an anthropogenic source. This paper contains preliminary data on the detection and non-detection of perchlorate in a variety of natural materials and their products, including some fertilizer materials. These data were previously presented at two conferences; once in poster session and once orally (Harvey and others, 1999; Orris and others, 2000). Although the results presented here are included in a journal article awaiting publication, the lack of public information on this topic has led to repeated requests for the data used as the basis for our presentations in 1999 and 2000.

  4. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds.

    PubMed

    Wang, Weicang; Yang, Haixia; Johnson, David; Gensler, Catherine; Decker, Eric; Zhang, Guodong

    2017-09-01

    The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.

    DTIC Science & Technology

    1984-09-01

    structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and

  6. Problem Types in Synthetic Organic Chemistry Research: Implications for the Development of Curricular Problems for Second-Year Level Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2012-01-01

    Understanding of the nature of science is key to the development of new curricular materials that mirror the practice of science. Three problem types (project level, synthetic planning, and day-to-day) in synthetic organic chemistry emerged during a thematic content analysis of the research experiences of eight practising synthetic organic…

  7. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    NASA Astrophysics Data System (ADS)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.

  8. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    PubMed

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO 3 ), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO 3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd 3+ in Ba 2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO 3 -based ceramics.

  9. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate

    PubMed Central

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-01-01

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559

  10. Demystifying Introductory Chemistry. Part 1: Electron Configurations from Experiment.

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.; And Others

    1996-01-01

    Presents suggestions for alternative presentations of some of the material that usually forms part of the introductory chemistry course. Emphasizes development of concepts from experimental results. Discusses electronic configurations and quantum numbers, experimental evidence for electron configurations, deducing the shell model from the periodic…

  11. Chemistry and Biology of the Caged Garcinia Xanthones

    PubMed Central

    Chantarasriwong, Oraphin; Batova, Ayse; Chavasiri, Warinthorn

    2011-01-01

    Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70% of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development. PMID:20648491

  12. Investigation of Chemical Processes Involving Laser-generated Nanoenergetic Materials

    DTIC Science & Technology

    2010-02-01

    nanoparticle formation, nanoenergetic materials, laser ablation, plasma chemistry , optical emission 16. SECURITY CLASSIFICATION OF: 17...alloys with known trace metal concentrations. In addition to observing the effect of trace metals on the plasma chemistry , commercially available

  13. Performance specifications and six sigma theory: Clinical chemistry and industry compared.

    PubMed

    Oosterhuis, W P; Severens, M J M J

    2018-04-11

    Analytical performance specifications are crucial in test development and quality control. Although consensus has been reached on the use of biological variation to derive these specifications, no consensus has been reached which model should be preferred. The Six Sigma concept is widely applied in industry for quality specifications of products and can well be compared with Six Sigma models in clinical chemistry. However, the models for measurement specifications differ considerably between both fields: where the sigma metric is used in clinical chemistry, in industry the Number of Distinct Categories is used instead. In this study the models in both fields are compared and discussed. Copyright © 2018. Published by Elsevier Inc.

  14. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  15. Ferroelectricity in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2016-04-01

    The search for new ferroelectric (FE) materials holds promise for broadening our understanding of FE mechanisms and extending the range of application of FE materials. Here we investigate a class of A B O3 and A2B B'O6 materials that can be derived from the X2O3 corundum structure by mixing two or three ordered cations on the X site. Most such corundum derivatives have a polar structure, but it is unclear whether the polarization is reversible, which is a requirement for a FE material. In this paper, we propose a method to study the FE reversal path of materials in the corundum derivative family. We first categorize the corundum derivatives into four classes and show that only two of these allow for the possibility of FE reversal. We then calculate the energy profile and energy barrier of the FE reversal path using first-principles density functional methods with a structural constraint. Furthermore, we identify several empirical measures that can provide a rule of thumb for estimating the energy barriers. Finally, the conditions under which the magnetic ordering is compatible with ferroelectricity are determined. These results lead us to predict several potentially new FE materials.

  16. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  17. National Chemistry Week 2000: JCE Resources in Food Chemistry

    NASA Astrophysics Data System (ADS)

    Jacobsen, Erica K.

    2000-10-01

    November brings another National Chemistry Week, and this year's theme is food chemistry. I was asked to collect and evaluate JCE resources for use with this theme, a project that took me deep into past issues of JCE and yielded many treasures. Here we present the results of searches for food chemistry information and activities. While the selected articles are mainly at the high school and college levels, there are some excellent ones for the elementary school level and some that can be adapted for younger students. The focus of all articles is on the chemistry of food itself. Activities that only use food to demonstrate a principle other than food chemistry are not included. Articles that cover household products such as cleansers and pharmaceuticals are also not included. Each article has been characterized as a demonstration, experiment, calculation, activity, or informational item; several fit more than one classification. Also included are keywords and an evaluation as to which levels the article may serve.

  18. Compression selective solid-state chemistry

    NASA Astrophysics Data System (ADS)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  19. Aromatic, Alphatic, Enigmatic: The Chemistry of Titan

    NASA Astrophysics Data System (ADS)

    Horst, Sarah

    2017-10-01

    The extraordinary complexity of Titan’s atmospheric chemistry far surpasses that of any other solar system atmosphere. With its thick N2 atmosphere and stable bodies of liquid on its surface, Titan also possesses many physical processes that are similar to those that occur on Earth. The connection between Titan’s surface and atmosphere is unique in our solar system; atmospheric chemistry produces materials that are deposited on the surface and subsequently altered by surface-atmosphere interactions such as aeolian and fluvial processes resulting in the formation of extensive dune fields and expansive lakes and seas. Titan’s atmosphere is favorable for organic haze formation, which combined with the presence of some oxygen-bearing molecules indicates that Titan’s atmosphere may produce molecules of prebiotic interest. The combination of organics and liquid, in the form of water in a subsurface ocean and methane/ethane in the surface lakes and seas, means that Titan may be the ideal place in the solar system to test ideas about habitability, prebiotic chemistry, and the ubiquity and diversity of life in the universe. I will review our current understanding of chemistry on Titan forged from the powerful combination of Earth-based observations, remote sensing and in situ spacecraft measurements, laboratory experiments, and models. I will conclude with some of the questions that remain after Cassini-Huygens.

  20. Applying the Multilevel Framework of Discourse Comprehension to Evaluate the Text Characteristics of General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Pyburn, Daniel T.; Pazicni, Samuel

    2014-01-01

    Prior chemistry education research has demonstrated a relationship between student reading skill and general chemistry course performance. In addition to student characteristics, however, the qualities of the learning materials with which students interact also impact student learning. For example, low-knowledge students benefit from texts that…