Science.gov

Sample records for chemoattractant protein-1 expression

  1. Monocyte chemoattractant protein-1 gene expression in prostatic hyperplasia and prostate adenocarcinoma.

    PubMed Central

    Mazzucchelli, L.; Loetscher, P.; Kappeler, A.; Uguccioni, M.; Baggiolini, M.; Laissue, J. A.; Mueller, C.

    1996-01-01

    Human monocyte chemoattractant protein-1 (MCP-1) has been shown to act as a chemokine in the recruitment of monocyte/macrophages during inflammation states. Furthermore, there is increasing evidence that MCP-1 is involved in the recruitment of tumor-associated macrophages. In vivo, one of the major cellular sources of MCP-1 are the smooth muscle cells. As MCP-1 gene expression and/or protein production in these cells is not necessarily correlated with the accumulation of inflammatory cells, there might possibly be additional functions of this cytokine. In the present study, we investigated by use of 35S-labeled antisense RNA probes whether the MCP-1 gene is expressed in tissue specimens of benign prostatic hyperplasia (n = 13) and specimens of prostate carcinoma (n = 8), both of which are characterized by a prominent fibromuscular stroma and inconspicuous inflammatory infiltrates. MCP-1 transcripts were located in stromal smooth muscle cells and, additionally, in basal cells of benign prostatic glands. In prostate carcinoma, the number of MCP-1 mRNA-expressing cells was significantly less than in benign prostatic hyperplasia. MCP-1 transcripts were located in preserved fibromuscular stroma and in basal cells of entrapped non-neoplastic glands but not in carcinomatous cells. Immunohistochemical staining with polyclonal antibodies raised against MCP-1 revealed strong reactivity in the fibromuscular stroma surrounding both benign and malignant glands. MCP-1 gene expression or immunoreactivity for anti-MCP-1 antibodies was not related to the rare, lymphocytic interstitial infiltrates. The results show that 1) in the absence of significant leukocyte accumulation, it is unlikely that MCP-1 exerts chemotactic functions in the prostate and 2) that MCP-1, in contrast to previous findings in a wide variety of other human neoplasms, is not expressed in carcinomatous cells of the prostate. Images Figure 2 Figure 3 Figure 4 PMID:8701989

  2. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  3. Hypoxia reduces constitutive and TNF-{alpha}-induced expression of monocyte chemoattractant protein-1 in human proximal renal tubular cells

    SciTech Connect

    Li Xuan; Kimura, Hideki . E-mail: hkimura@fmsrsa.fukui-med.ac.jp; Hirota, Kiichi; Sugimoto, Hidehiro; Yoshida, Haruyoshi

    2005-10-07

    Chronic hypoxia has been reported to be associated with macrophage infiltration in progressive forms of kidney disease. Here, we investigated the regulatory effects of hypoxia on constitutive and TNF-{alpha}-stimulated expression of monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal renal tubular cells (HPTECs). Hypoxia reduced constitutive MCP-1 expression at the mRNA and protein levels in a time-dependent fashion for up to 48 h. Hypoxia also inhibited MCP-1 up-regulation by TNF-{alpha}. Treatment with actinomycin D showed that hypoxic down-regulation of MCP-1 expression resulted mainly from a decrease in the transcription but not the mRNA stability. Immunoblot and immunofluorescence analyses revealed that treatment with hypoxia or an iron chelator, desferrioxamine, induced nuclear accumulation of hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) in HPTECs. Desferrioxamine mimicked hypoxia in the reduction of MCP-1 expression. However, overexpression of a dominant negative form of HIF-1{alpha} did not abolish the hypoxia-induced reduction of MCP-1 expression in HPTECs. These results suggest that hypoxia is an important negative regulator of monocyte chemotaxis to the renal inflamed interstitium, by reducing MCP-1 expression partly via hypoxia-activated signals other than the HIF-1 pathway.

  4. Higher expression of monocyte chemoattractant protein 1 and its receptor in brain tissue of intractable epilepsy patients.

    PubMed

    Wang, Chunyan; Yang, Lihua; Zhang, Jiadong; Lin, Zhiguo; Qi, Jiping; Duan, Shurong

    2016-06-01

    We aimed to explore the pathogenesis of monocyte chemoattractant protein-1 (MCP1) and CC chemokine receptor 2 (CCR2) in brain tissue of patients with intractable epilepsy (IE). Hippocampi or temporal lobe tissues were obtained from 40 patients with IE and five patients without IE who had undergone surgical decompression and debridement. The levels of MCP1 and CCR2 were evaluated using immunohistochemistry. Pearson correlation analysis was employed to evaluate the correlation between levels of MCP1 and CCR2 in IE with or without hippocampal sclerosis (HS) and the disease duration, along with age. Higher levels of MCP1 (11.68±4.68% versus 1.72±1.54%) and CCR2 (11.54±4.65% versus 1.52±1.29%; P<0.05) were observed in IE patients compared to controls. Expression levels of MCP1 (R=0.867) and CCR2 (R=0.835) in IE patients with HS were correlated with the disease duration. However, no correlation was found in IE patients without HS. There was also no correlation between levels of MCP1 and CCR2 in IE patients with age, either with HS or without HS. These results suggest that MCP1 and its receptor may play a role in the pathogenesis and progression of IE. PMID:26810469

  5. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails.

    PubMed Central

    Charo, I F; Myers, S J; Herman, A; Franci, C; Connolly, A J; Coughlin, S R

    1994-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of cytokines that mediate leukocyte chemotaxis. The potent and specific activation of monocytes by MCP-1 may mediate the monocytic infiltration of tissues in atherosclerosis and other inflammatory diseases. We have isolated cDNAs that encode two MCP-1-specific receptors with alternatively spliced carboxyl tails. Expression of the receptors in Xenopus oocytes conferred robust mobilization of intracellular calcium in response to nanomolar concentrations of MCP-1 but not to related chemokines. The MCP-1 receptors are most closely related to the receptor for the chemokines macrophage inflammatory protein 1 alpha and RANTES (regulated on activation, normal T expressed and secreted). The identification of the MCP-1 receptor and cloning of two distinct isoforms provide powerful tools for understanding the specificity and signaling mechanisms of this important chemokine. Images PMID:8146186

  6. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation.

    PubMed

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-09-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. PMID:27392713

  7. Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis.

    PubMed

    Shen, Yan; Xu, Wei; Chu, Yi-Wei; Wang, Ying; Liu, Quan-Sheng; Xiong, Si-Dong

    2004-11-01

    Coxsackievirus group B type 3 (CVB3) is an important cause of viral myocarditis. The infiltration of mononuclear cells into the myocardial tissue is one of the key events in viral myocarditis. Immediately after CVB3 infects the heart, the expression of chemokine(s) by infected myocardial cells may be the first trigger for inflammatory infiltration and immune response. However, it is unknown whether CVB3 can induce the chemokine expression in cardiac myocytes. Monocyte chemoattractant protein 1 (MCP-1) is a potent chemokine that stimulates the migration of mononuclear cells. The objective of the present study was to investigate the effect of CVB3 infection on MCP-1 expression in murine cardiac myocytes and the role of MCP-1 in migration of mononuclear cells in viral myocarditis. Our results showed that the expression of MCP-1 was significantly increased in cardiac myocytes after wild-type CVB3 infection in a time- and dose-dependent manner, which resulted in enhanced migration of mononuclear cells in mice with viral myocarditis. The migration of mononuclear cells was partially abolished by antibodies specific for MCP-1 in vivo and in vitro. Administration of anti-MCP-1 antibody prevented infiltration of mononuclear cells bearing the MCP-1 receptor CCR2 in mice with viral myocarditis. Infection by UV-irradiated CVB3 induced rapid and transient expression of MCP-1 in cardiac myocytes. In conclusion, our results indicate that CVB3 infection stimulates the expression of MCP-1 in myocardial cells, which subsequently leads to migration of mononuclear cells in viral myocarditis. PMID:15507642

  8. Angiotensin II induces apoptosis of human pulmonary microvascular endothelial cells in acute aortic dissection complicated with lung injury patients through modulating the expression of monocyte chemoattractant protein-1

    PubMed Central

    Wu, Zhiyong; Dai, Feifeng; Ren, Wei; Liu, Huagang; Li, Bowen; Chang, Jinxing

    2016-01-01

    Patients with acute aortic dissection (AAD) usually showed acute lung injury (ALI). However, its pathogenesis is still not well defined. Apoptosis of pulmonary microvascular endothelial cells (PMVECs) is closely related to the alveolus-capillary barrier injury and the increased vascular permeability. In this study, we aim to investigate the human PMVECs (hPMVECs) apoptosis induced by angiotensin II (AngII) and monocyte chemoattractant protein-1 (MCP-1) and their potential interaction in the pathogenesis of AAD complicated with ALI. Fifty-eight newly diagnosed AAD, 12 matched healthy individuals were included. Pulmonary tissues of AAD complicated with lung injury were obtained from 2 cadavers to determine the levels of AngII type 1 receptor (AT1-R) and MCP-1. Serum AngII was measured using commercial ELISA kit. H&E staining and immunohistostaining were performed to determine the expression of AT1-R and MCP-1. For the in vitro experiment, hPMVECs were divided into control, AngII group, AngII+Bindarit group and Bindarit group, respectively. Flow cytometry was performed to analyze the apoptosis in each group. Reverse transcription-polymerase chain reaction was performed to determine the mRNA expression of MCP-1. Western blot analysis was performed to evaluate the expression of MCP-1 and apoptosis related protein. Apoptosis of hPMVECs was observed in the lung tissues in the cadavers with AAD complicated with ALI. Besides, the expression of AT1-R and MCP-1 was remarkably elevated. Compared with normal individuals and the non-lung injury AAD patients, the expression of serum AngII was remarkably elevated in AAD patients complicated with ALI. In vitro experiments showed AngII contributed to the apoptosis and elevation of MCP1 in hPMVECs. Besides, it involved in the down-regulation of Bcl-2 protein, and up-regulation of Bax and Caspase-3. Such phenomenon was completely reversed after administration of MCP-1 inhibitor (Bindarit). The production of MCP-1 and cellular

  9. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview

    PubMed Central

    Deshmane, Satish L.; Kremlev, Sergey; Amini, Shohreh

    2009-01-01

    Chemokines constitute a family of chemoattractant cytokines and are subdivided into four families on the basis of the number and spacing of the conserved cysteine residues in the N-terminus of the protein. Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes, as well as in inducing chemotaxis through the activation of G-protein-coupled receptors. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages. Both CCL2 and its receptor CCR2 have been demonstrated to be induced and involved in various diseases. Migration of monocytes from the blood stream across the vascular endothelium is required for routine immunological surveillance of tissues, as well as in response to inflammation. This review will discuss these biological processes and the structure and function of CCL2. PMID:19441883

  10. Monocyte Chemoattractant Protein 1 (MCP-1) in Obesity and Diabetes

    PubMed Central

    Panee, Jun

    2012-01-01

    Monocyte chemoattractant protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past 2 decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized. PMID:22766373

  11. Monocyte chemoattractant protein-1 in patients with peripheral arterial disease.

    PubMed Central

    Petrkova, Jana; Szotkowska, Jaroslava; Hermanova, Zuzana; Lukl, Jan; Petrek, Martin

    2004-01-01

    BACKGROUND: Chemokine-driven migration of inflammatory cells has been implicated in the pathogenesis of atherosclerotic conditions including peripheral arterial disease (PAD). Monocyte chemoattractant protein-1 (MCP-1) is elevated in patients with coronary artery disease and in hypertensive patients. This study therefore investigated MCP-1 in patients with PAD. METHODS: Serum MCP-1 was determined by enzyme-linked immunosorbent assay in 36 healthy, control subjects and in 19 patients with PAD. Statistical analysis utilised the Mann-Whitney test and Spearman correlation (p < 0.05). RESULTS: MCP-1 (pg/ml) was increased in patients compared with in controls (mean+/-standard error of the mean: PAD group, 748+/-60; control group, 459+/-27; p=0.0001). MCP-1 levels tended to decrease with progressing disease. From atherosclerosis risk factors, diabetes inclined to increase MCP-1 levels; hypertension had no effect. Serum MCP-1 correlated with cholesterol, triglycerides, low-density lipoprotein but not high-density lipoprotein. Conclusion: Elevation of MCP-1 in the circulation of PAD patients shown in the present pilot study implicates this CC chemokine ligand 2 in inflammatory processes contributing to PAD clinical symptomatology. Further investigations are necessary to evaluate whether MCP-1 can be used as a potential marker of peripheral arterial disease follow-up and/or prognosis. PMID:15203564

  12. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial-mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells.

    PubMed

    Li, A; Wang, J; Zhu, D; Zhang, X; Pan, R; Wang, R

    2015-01-01

    Transforming growth factor-β1 (TGF-β1) induces expression of the proinflammatory and profibrotic cytokine monocyte chemoattractant protein-1 (MCP-1) in tubular epithelial cells (TECs) and thereby contributes to the tubular epithelial-mesenchymal transition (EMT), which in turn leads to the progression of tubulointerstitial inflammation into tubulointerstitial fibrosis. Exactly how TGF-β1 causes MCP-1 overexpression and subsequent EMT is not well understood. Using human tubular epithelial cultures, we found that TGF-β1 upregulated the expression of reduced nicotinamide adenine dinucleotide phosphate oxidases 2 and 4 and their regulatory subunits, inducing the production of reactive oxygen species. These reactive species activated a signaling pathway mediated by extracellular signal-regulated kinase (ERK1/2) and nuclear factor-κB (NF-κB), which upregulated expression of MCP-1. Incubating cultures with TGF-β1 was sufficient to induce hallmarks of EMT, such as downregulation of epithelial marker proteins (E-cadherin and zonula occludens-1), induction of mesenchymal marker proteins (α-smooth muscle actin, fibronectin, and vimentin), and elevated cell migration and invasion in an EMT-like manner. Overexpressing MCP-1 in cells exposed to TGF-β1 exacerbated these EMT-like changes. Pretreating cells with the antioxidant and anti-inflammatory compound arctigenin (ATG) protected them against these TGF-β1-induced EMT-like changes; the compound worked by inhibiting the ROS/ERK1/2/NF-κB pathway to decrease MCP-1 upregulation. These findings suggest ATG as a new therapeutic candidate to inhibit or even reverse tubular EMT-like changes during progression to tubulointerstitial fibrosis, and they provide the first clues to how ATG may work. PMID:25968940

  13. Monocyte chemoattractant protein 1 and interleukin-8 production in mononuclear cells stimulated by oral microorganisms.

    PubMed Central

    Jiang, Y; Russell, T R; Graves, D T; Cheng, H; Nong, S H; Levitz, S M

    1996-01-01

    Chemokines are a family of low-molecular-weight proinflammatory cytokines that stimulate recruitment of leukocytes. The chemokines interleukin-8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) are relatively specific chemoattractants for neutrophils and monocytes, respectively. Chemokine expression contributes to the presence of different leukocyte populations observed in normal and pathologic states. In the present studies, peripheral blood mononuclear cells (PBMC) were stimulated by microbes (Candida albicans, Streptococcus mutans, Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans) selected based upon their importance as oral pathogens. IL-8 and MCP-1 gene expression and protein release were determined by Northern blot (RNA blot) analysis and enzyme-linked immunosorbent assay. C. albicans, P. gingivalis, and A. actinomycetemcomitans induced high levels of production of both MCP-1 and IL-8. S. mutans was a strong inducer of MCP-1, but it did not stimulate significant production of IL-8. C. albicans, S. mutans, and A. actinomycetemcomitans were 500 to 5,000 times more potent than P. gingivalis in terms of MCP-1 production. In general, the microbe-to-PBMC ratios required for maximum gene expression of MCP-1 were lower than those for IL-8. However, for actual protein release of MCP-1 versus IL-8, differences in the effects of various microbe concentrations were observed only for A. actinomycetemcomitans. These results demonstrate that different oral pathogens induce specific dose-dependent patterns of chemokine gene expression and release. Such patterns may help explain the immunopathology of oral infections, particularly with regard to inflammatory leukocyte recruitment. PMID:8890191

  14. Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats

    PubMed Central

    2013-01-01

    Background Epilepsy is a common brain disorder characterized by a chronic predisposition to generate spontaneous seizures. The mechanisms for epilepsy formation remain unknown. A growing body of evidence suggests the involvement of inflammatory processes in epileptogenesis. In the present study, we investigated the involvement of monocyte chemoattractant protein-1 (MCP-1) in aberrant migration of hippocampal progenitors in rats after the insult of status epilepticus (SE). Methods SE was induced with pilocarpine in Sprague–Dawley rats. Transcriptional expression of MCP-1 in the dentate gyrus (DG) was measured using quantitative real-time PCR. From 1 to 28 days after SE, the temporal profiles of MCP-1 protein expression in DG were evaluated using enzyme-linked immunosorbent assay. Chemokine (C-C motif) receptor 2 (CCR2) expression in doublecortin-positive neuronal progenitors was examined using double-labeling immunohistochemistry. The involvement of MCP-1/CCR2 signaling in aberrant neuronal progenitor migration in the epileptic hippocampus was assessed in the SE rats using a CCR2 antagonist, RS102895, and the ectopic migration of neuronal progenitors was determined using Prox1/doublecortin double immunostaining. Results After SE, MCP-1 gene was significantly upregulated and its corresponding protein expression in the DG was significantly increased on days 1 and 3. Some hilar ectopic progenitor cells of SE rats expressed the MCP-1 receptor, CCR2. Notably, the ectopic migration of neuronal progenitors into hilus was attenuated by a blockade of the MCP-1/CCR2 interaction with a selective CCR2 inhibitor, RS102895. Conclusions An increase in dentate MCP-1 is associated with seizure-induced aberrant migration of neuronal progenitors through the interaction with CCR2. The upregulation of MCP-1 after an insult of SE may play a role in the generation of epilepsy. PMID:23339567

  15. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer.

    PubMed Central

    Zhang, Y; Rollins, B J

    1995-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of proinflammatory cytokines, all of which share a high degree of amino acid sequence similarity. Aberrant expression of chemokines occurs in a variety of diseases that have an inflammatory component, such as atherosclerosis. Although structural analyses indicate that chemokines form homodimers, there is controversy about whether dimerization is necessary for activity. To address this question for MCP-1, we obtained evidence in four steps. First, coprecipitation experiments demonstrated that MCP-1 forms dimers at physiological concentrations. Second, chemically cross-linked MCP-1 dimers attract monocytes in vitro with a 50% effective concentration of 400 pM, identical to the activity of non-cross-linked MCP-1. Third, an N-terminal deletion variant of MCP-1 (called 7ND) that inhibits MCP-1-mediated monocyte chemotaxis specifically forms heterodimers with wild-type MCP-1. Finally, although 7ND inhibits wild-type MCP-1 activity, it has no effect on cross-linked MCP-1. These results indicate that 7ND is a dominant negative inhibitor, implying that MCP-1 activates its receptor as a dimer. In addition, chemical cross-linking restores activity to an inactive N-terminal insertional variant of MCP-1, further supporting the need for dimerization. Since the reported Kd for MCP-1 monomer dissociation is much higher than its 50% effective concentration or Kd for receptor binding, active dimer formation may require high local concentrations of MCP-1. Our data further suggest that the dimer interface can be a target for MCP-1 inhibitory drugs. PMID:7651403

  16. Phyllostachys edulis Compounds Inhibit Palmitic Acid-Induced Monocyte Chemoattractant Protein 1 (MCP-1) Production

    PubMed Central

    Higa, Jason K.; Liang, Zhibin; Williams, Philip G.; Panee, Jun

    2012-01-01

    Background Phyllostachys edulis Carriere (Poaceae) is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs) and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA), a FFA. Methodology/Principal Findings MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX) inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. Conclusions/Significance PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible therapeutic

  17. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes

    PubMed Central

    Spoettl, T; Hausmann, M; Herlyn, M; Gunckel, M; Dirmeier, A; Falk, W; Herfarth, H; Schoelmerich, J; Rogler, G

    2006-01-01

    Monocytes (MO) migrating into normal, non-inflamed intestinal mucosa undergo a specific differentiation resulting in a non-reactive, tolerogenic intestinal macrophage (IMAC). Recently we demonstrated the differentiation of MO into an intestinal-like macrophage (MAC) phenotype in vitro in a three-dimensional cell culture model (multi-cellular spheroid or MCS model). In the mucosa of patients with inflammatory bowel disease (IBD) in addition to normal IMAC, a reactive MAC population as well as increased levels of monocyte chemoattractant protein 1 (MCP-1) is found. The aim of this study was to investigate the influence of MCP-1 on the differentiation of MO into IMAC. MCS were generated from adenovirally transfected HT-29 cells overexpressing MCP-1, macrophage inflammatory protein 3 alpha (MIP-3α) or non-transfected controls and co-cultured with freshly elutriated blood MO. After 7 days of co-culture MCS were harvested, and expression of the surface antigens CD33 and CD14 as well as the intracellular MAC marker CD68 was determined by flow-cytometry or immunohistochemistry. MCP-1 and MIP-3α expression by HT-29 cells in the MCS was increased by transfection at the time of MCS formation. In contrast to MIP-3α, MCP-1 overexpression induced a massive migration of MO into the three-dimensional aggregates. Differentiation of IMAC was disturbed in MCP-1-transfected MCS compared to experiments with non-transfected control aggregates, or the MIP-3α-transfected MCS, as indicated by high CD14 expression of MO/IMAC cultured inside the MCP-1-transfected MCS, as shown by immunohistochemistry and FACS analysis. Neutralization of MCP-1 was followed by an almost complete absence of monocyte migration into the MCS. MCP-1 induced migration of MO into three-dimensional spheroids generated from HT-29 cells and inhibited intestinal-like differentiation of blood MO into IMAC. It may be speculated that MCP-1 could play a role in the disturbed IMAC differentiation in IBD mucosa. PMID

  18. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes.

    PubMed

    Spoettl, T; Hausmann, M; Herlyn, M; Gunckel, M; Dirmeier, A; Falk, W; Herfarth, H; Schoelmerich, J; Rogler, G

    2006-07-01

    Monocytes (MO) migrating into normal, non-inflamed intestinal mucosa undergo a specific differentiation resulting in a non-reactive, tolerogenic intestinal macrophage (IMAC). Recently we demonstrated the differentiation of MO into an intestinal-like macrophage (MAC) phenotype in vitro in a three-dimensional cell culture model (multi-cellular spheroid or MCS model). In the mucosa of patients with inflammatory bowel disease (IBD) in addition to normal IMAC, a reactive MAC population as well as increased levels of monocyte chemoattractant protein 1 (MCP-1) is found. The aim of this study was to investigate the influence of MCP-1 on the differentiation of MO into IMAC. MCS were generated from adenovirally transfected HT-29 cells overexpressing MCP-1, macrophage inflammatory protein 3 alpha (MIP-3alpha) or non-transfected controls and co-cultured with freshly elutriated blood MO. After 7 days of co-culture MCS were harvested, and expression of the surface antigens CD33 and CD14 as well as the intracellular MAC marker CD68 was determined by flow-cytometry or immunohistochemistry. MCP-1 and MIP-3alpha expression by HT-29 cells in the MCS was increased by transfection at the time of MCS formation. In contrast to MIP-3alpha, MCP-1 overexpression induced a massive migration of MO into the three-dimensional aggregates. Differentiation of IMAC was disturbed in MCP-1-transfected MCS compared to experiments with non-transfected control aggregates, or the MIP-3alpha-transfected MCS, as indicated by high CD14 expression of MO/IMAC cultured inside the MCP-1-transfected MCS, as shown by immunohistochemistry and FACS analysis. Neutralization of MCP-1 was followed by an almost complete absence of monocyte migration into the MCS. MCP-1 induced migration of MO into three-dimensional spheroids generated from HT-29 cells and inhibited intestinal-like differentiation of blood MO into IMAC. It may be speculated that MCP-1 could play a role in the disturbed IMAC differentiation in IBD mucosa

  19. Deficiency for the Chemokine Monocyte Chemoattractant Protein-1 Aggravates Tubular Damage after Renal Ischemia/Reperfusion Injury

    PubMed Central

    Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J. D.; Butter, Loes M.; Florquin, Sandrine; Leemans, Jaklien C.

    2015-01-01

    Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury. PMID:25875776

  20. Monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha is correlated with monocyte infiltration in mouse lipid lesions

    SciTech Connect

    Reckless, Jill; Rubin, Edward M.; Verstuyft, Judy B.; Metcalfe, James C.; Grainger, David J.

    1999-01-11

    inflammatory protein-1 a (MIP-1 a) and monocyte chemoattractant protein-1 (MCP-1), are direct chemoattractants for monocytes. Thus alteration in the expression of a wide variety of adhesion molecules and/or cytokines during atherogenesish as been proposed to affect monocyte recruitment and hence modulates both plaque development and stability.

  1. Role of macrophage chemoattractant protein-1 in acute inflammation after lung contusion.

    PubMed

    Suresh, Madathilparambil V; Yu, Bi; Machado-Aranda, David; Bender, Matthew D; Ochoa-Frongia, Laura; Helinski, Jadwiga D; Davidson, Bruce A; Knight, Paul R; Hogaboam, Cory M; Moore, Bethany B; Raghavendran, Krishnan

    2012-06-01

    Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1β, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC. PMID:22281985

  2. Modulation of morphological changes of microglia and neuroprotection by monocyte chemoattractant protein-1 in experimental glaucoma

    PubMed Central

    Chiu, Kin; Yeung, Sze-Chun; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2010-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 is a C–C chemokine involved in the activation and recruitment of monocytic cells to injury sites. MCP-1/CCL2 can induce either neuroprotection or neurodestruction in vitro, depending on the experimental model. We aim to use MCP-1/CCL2 as an experimental tool to investigate the morphological changes of microglia when loss of healthy retinal ganglion cells (RGCs) is exacerbated or attenuated in an experimental glaucoma model. While a high concentration (1000 ng) of MCP-1/CCL2 and lipopolysaccharide (LPS)-exacerbated RGC loss, 100 ng MCP-1/CCL2 provided neuroprotection towards RGC. Neuroprotective MCP-1/CCL2 (100 ng) also upregulated insulin-like growth factor-1 (IGF-1) immunoreactivity in the RGCs. The neuroprotective effect of MCP-1/CCL2 was not due to the massive infiltration of microglia/macrophages. Taken together, this is the first report showing that an appropriate amount of MCP-1/CCL2 can protect RGCs in experimental glaucoma. PMID:20081877

  3. Genetic variations in monocyte chemoattractant protein-1 and susceptibility to ovarian cancer.

    PubMed

    Li, Li; Zhang, Jinshan; Weng, Xin; Wen, Ge

    2015-01-01

    Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which plays critical roles in regulating host immune responses. Researches have shown that MCP-1 may greatly participate in the development of different cancers. In the current study, we investigated the effect of MCP-1 on ovarian cancer by examining the association between MCP-1 genetic polymorphisms and the susceptibility to ovarian cancer. MCP-1 -2158A/G and MCP-1 -362C/G polymorphisms were examined in ovarian cancer patients and healthy controls by using polymerase chain reaction-restriction fragment length polymorphism analysis. Results showed that percentages of MCP-1 -2158GG genotype and G allele were significantly higher in ovarian cancer patients than in controls (odd ratio (OR) = 1.87; 95 % confidence interval (CI), 1.19-2.76; P = 0.012 and OR = 1.47; 95 % CI, 1.11-1.79; P = 0.003; data were adjusted for age and smoking status). The MCP-1 -362GG genotype also revealed increased number in patients. Stratification analyses presented that ovarian cancer cases with serous-papillary type had significantly increased percentage of -362GG genotype than those with other types (13.1 versus 5.0 %, P = 0.032; data were adjusted for age and smoking status). Also, we evaluated the relation between these two polymorphisms and serum level of MCP-1. We identified that the subjects with MCP-1 -2158AG and GG genotypes had clearly increased serum level of MCP-1 than those with AA genotype. These data suggest that MCP-1 may be involved in the pathogenesis of ovarian cancer. PMID:25234717

  4. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  5. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration*

    PubMed Central

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-01-01

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. PMID:25739439

  6. Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression.

    PubMed

    Díaz-Valdés, Nancy; Basagoiti, María; Dotor, Javier; Aranda, Fernando; Monreal, Iñaki; Riezu-Boj, José Ignacio; Borrás-Cuesta, Francisco; Sarobe, Pablo; Feijoó, Esperanza

    2011-02-01

    Melanoma progression is associated with the expression of different growth factors, cytokines, and chemokines. Because TGFβ1 is a pleiotropic cytokine involved not only in physiologic processes but also in cancer development, we analyzed in A375 human melanoma cells, the effect of TGFβ1 on monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) expression, two known factors responsible for melanoma progression. TGFβ1 increased the expression of MCP-1 and IL-10 in A375 cells, an effect mediated by the cross-talk between Smad, PI3K (phosphoinositide 3-kinase)/AKT, and BRAF-MAPK (mitogen activated protein kinase) signaling pathways. Supernatants from TGFβ1-treated A375 cells enhanced MCP-1-dependent migration of monocytes, which, in turn, expressed high levels of TGF,β1, bFGF, and VEGF mRNA. Moreover, these supernatants also inhibited functional properties of dendritic cells through IL-10-dependent mechanisms. When using in vitro, the TGFβ1-blocking peptide P144, TGFβ1-dependent Smad3 phosphorylation, and expression of MCP-1 and IL-10 were inhibited. In vivo, treatment of A375 tumor-bearing athymic mice with P144 significantly reduced tumor growth, associated with a lower macrophage infiltrate and decreased intratumor MCP-1 and VEGF levels, as well as angiogenesis. Finally, in C57BL/6 mice with B16-OVA melanoma tumors, when administered with immunotherapy, P144 decreased tumor growth and intratumor IL-10 levels, linked to enhanced activation of dendritic cells and natural killer cells, as well as anti-OVA T-cell responses. These results show new effects of TGFβ1 on melanoma cells, which promote tumor progression and immunosuppression, strongly reinforcing the relevance of this cytokine as a molecular target in melanoma. PMID:21159663

  7. Identification of serum monocyte chemoattractant protein-1 and prolactin as potential tumor markers in hepatocellular carcinoma.

    PubMed

    Wang, Who-Whong; Ang, Soo Fan; Kumar, Rajneesh; Heah, Charmain; Utama, Andi; Tania, Navessa Padma; Li, Huihua; Tan, Sze Huey; Poo, Desmond; Choo, Su Pin; Chow, Wan Cheng; Tan, Chee Kiat; Toh, Han Chong

    2013-01-01

    Early diagnosis of hepatocellullar carcinoma (HCC) remains a challenge. The current practice of serum alpha-fetoprotein (AFP) measurement is inadequate. Here we utilized a proteomic approach to identify novel serum biomarkers for distinguishing HCC patients from non-cancer controls. We profiled the serum proteins in a group of 58 resectable HCC patients and 11 non-HCC chronic hepatitis B (HBV) carrier samples from the Singapore General Hospital (SGH) using the RayBio® L-Series 507 Antibody Array and found 113 serum markers that were significantly modulated between HCC and control groups. Selected potential biomarkers from this list were quantified using a multiplex sandwich enzyme-linked immunosorbent assay (ELISA) array in an expanded SGH cohort (126 resectable HCC patients and 115 non-HCC chronic HBV carriers (NC group)), confirming that serum prolactin and monocyte chemoattractant protein-1 (MCP-1) were significantly upregulated in HCC patients. This finding of serum MCP-1 elevation in HCC patients was validated in a separate cohort of serum samples from the Mochtar Riady Institute for Nanotechnology, Indonesia (98 resectable HCC, 101 chronic hepatitis B patients and 100 asymptomatic HBV/HCV carriers) by sandwich ELISA. MCP-1 and prolactin levels were found to correlate with AFP, while MCP-1 also correlated with disease stage. Subsequent receiver operating characteristic (ROC) analysis of AFP, prolactin and MCP-1 in the SGH cohort and comparing their area under the ROC curve (AUC) indicated that neither prolactin nor MCP-1 on their own performed better than AFP. However, the combination of AFP+MCP-1 (AUC, 0.974) had significantly superior discriminative ability than AFP alone (AUC, 0.942; p<0.001). In conclusion, prolactin and MCP-1 are overexpressed in HCC and are conveniently quantifiable in patients' sera by ELISA. MCP-1 appears to be a promising complementary biomarker for HCC diagnosis and this MCP-1+AFP model should be further evaluated as potential

  8. An ion mobility-mass spectrometry investigation of monocyte chemoattractant protein-1

    NASA Astrophysics Data System (ADS)

    Schenauer, Matthew R.; Leary, Julie A.

    2009-10-01

    In the present article we describe the gas-phase dissociation behavior of the dimeric form of monocyte chemoattractant protein-1 (MCP-1) using quadrupole-traveling wave ion mobility spectrometry-time of flight mass spectrometry (q-TWIMS-TOF MS) (Waters Synapt(TM)). Through investigation of the 9+ charge state of the dimer, we were able to monitor dissociation product ion (monomer) formation as a function of activation energy. Using ion mobility, we were able to observe precursor ion structural changes occurring throughout the activation process. Arrival time distributions (ATDs) for the 5+ monomeric MCP-1 product ions, derived from the gas-phase dissociation of the 9+ dimer, were then compared with ATDs obtained for the 5+ MCP-1 monomer isolated directly from solution. The results show that the dissociated monomer is as compact as the monomer arising from solution, regardless of the trap collision energy (CE) used in the dissociation. The solution-derived monomer, when collisionally activated, also resists significant unfolding within measure. Finally, we compared the collisional activation data for the MCP-1 dimer with an MCP-1 dimer non-covalently bound to a single molecule of the semi-synthetic glycosaminoglycan (GAG) analog Arixtra(TM); the latter a therapeutic anti-thrombin III-activating pentasaccharide. We observed that while dimeric MCP-1 dissociated at relatively low trap CEs, the Arixtra-bound dimer required much higher energies, which also induced covalent bond cleavage in the bound Arixtra molecule. Both the free and Arixtra-bound dimers became less compact and exhibited longer arrival times with increasing trap CEs, albeit the Arixtra-bound complex at slightly higher energies. That both dimers shifted to longer arrival times with increasing activation energy, while the dissociated MCP-1 monomers remained compact, suggests that the longer arrival times of the Arixtra-free and Arixtra-bound dimers may represent a partial breach of non

  9. Induction of the Gene Encoding Macrophage Chemoattractant Protein 1 by Orientia tsutsugamushi in Human Endothelial Cells Involves Activation of Transcription Factor Activator Protein 1

    PubMed Central

    Cho, Nam-Hyuk; Seong, Seung-Yong; Huh, Myung-Sook; Kim, Na-Hyun; Choi, Myung-sik; Kim, Ik-sang

    2002-01-01

    Human macrophage chemoattractant protein 1 (MCP-1) is a potent mediator of macrophage migration and therefore plays an essential role in early events of inflammation. In endothelial cells, at least three independent pathways regulate MCP-1 expression by NF-κB and AP-1. Orientia tsutsugamushi causes vasculitis in humans by replicating inside macrophages and endothelial cells. In the present study, we investigated the cis-acting and trans-acting elements involved in O. tsutsugamushi-induced MCP-1 gene expression in human umbilical vein endothelial cells (HUVEC). Although NF-κB activation was observed in HUVEC infected with O. tsutsugamushi, inhibition of NF-κB activation did not affect the MCP-1 expression. However, treatment of HUVEC with extracellular signal-regulated kinase (ERK) kinase inhibitor or p38 mitogen-activated protein kinase (MAPK) inhibitor suppressed expression of MCP-1 mRNA concomitant with downregulation of activator protein 1 (AP-1) activation. Deletion of triphorbol acetate response elements (TRE) at position −69 to −63 of MCP-1 gene abolished inducible promoter activity. Deletion of TRE at position −69 to −63−96 to −90 or deletion of NF-κB-binding site at position −69 to −63−88 to −79 did not affect the inducibility of promoter. Site-directed mutagenesis of the NF-κB binding sites at positions −2640 to −2632, −2612 to −2603 in the enhancer region, or the AP-1 biding site at position −2276 to −2270 decreased the inducible activity of the promoter. Taken together, AP-1 activation by both the ERK pathway and the p38 MAPK pathway as well as their binding to TRE at position −69 to −63 in proximal promoter and TRE at position −2276 to −2270 in enhancer region is altogether essential in induction of MCP-1 mRNA in HUVEC infected with O. tsutsugamushi. Although NF-κB activation is not essential per se, the κB site in the enhancer region is important in MCP-1 induction of HUVEC. This discrepancy in the

  10. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    SciTech Connect

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-05-15

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R{sup -/-} mice (control) or caveolin-1{sup -/-}/LDL-R{sup -/-} mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1{sup -/-}/LDL-R{sup -/-} mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor {alpha}-naphthoflavone ({alpha}-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  11. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2

    PubMed Central

    Aragay, A. M.; Mellado, M.; Frade, J. M. R.; Martin, A. M.; Jimenez-Sainz, M. C.; Martinez-A, C.; Mayor, F.

    1998-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine cytokine family, whose physiological function is mediated by binding to the CCR2 and CCR4 receptors, which are members of the G protein-coupled receptor family. MCP-1 plays a critical role in both activation and migration of leukocytes. Rapid chemokine receptor desensitization is very likely essential for accurate chemotaxis. In this report, we show that MCP-1 binding to the CCR2 receptor in Mono Mac 1 cells promotes the rapid desensitization of MCP-1-induced calcium flux responses. This desensitization correlates with the Ser/Thr phosphorylation of the receptor and with the transient translocation of the G protein-coupled receptor kinase 2 (GRK2, also called β-adrenergic kinase 1 or βARK1) to the membrane. We also demonstrate that GRK2 and the uncoupling protein β-arrestin associate with the receptor, forming a macromolecular complex shortly after MCP-1 binding. Calcium flux responses to MCP-1 in HEK293 cells expressing the CCR2B receptor were also markedly reduced upon cotransfection with GRK2 or the homologous kinase GRK3. Nevertheless, expression of the GRK2 dominant-negative mutant βARK-K220R did not affect the initial calcium response, but favored receptor response to a subsequent challenge by agonists. The modulation of the CCR2B receptor by GRK2 suggests an important role for this kinase in the regulation of monocyte and lymphocyte response to chemokines. PMID:9501202

  12. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction.

    PubMed

    Morimoto, Hajime; Takahashi, Masafumi; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Kolattukudy, Pappachan E; Ikeda, Uichi

    2006-10-13

    Myocardial infarction (MI) is accompanied by inflammatory responses that lead to the recruitment of leukocytes and subsequent myocardial damage, healing, and scar formation. Because monocyte chemoattractant protein-1 (MCP-1) (also known as CCL2) regulates monocytic inflammatory responses, we investigated the effect of cardiac MCP-1 overexpression on left ventricular (LV) dysfunction and remodeling in a murine MI model. Transgenic mice expressing the mouse JE-MCP-1 gene under the control of the alpha-cardiac myosin heavy chain promoter (MHC/MCP-1 mice) were used for this purpose. MHC/MCP-1 mice had reduced infarct area and scar formation and improved LV dysfunction after MI. These mice also showed induction of macrophage infiltration and neovascularization; however, few bone marrow-derived endothelial cells were detected in MHC/MCP-1 mice whose bone marrow was replaced with that of Tie2/LacZ transgenic mice. Flow cytometry analysis showed no increase in endothelial progenitor cells (CD34+/Flk-1+ cells) in MHC/MCP-1 mice. Marked myocardial interleukin (IL)-6 secretion, STAT3 activation, and LV hypertrophy were observed after MI in MHC/MCP-1 mice. Furthermore, cardiac myofibroblasts accumulated after MI in MHC/MCP-1 mice. In vitro experiments revealed that a combination of IL-6 with MCP-1 synergistically stimulated and sustained STAT3 activation in cardiomyocytes. MCP-1, IL-6, and hypoxia directly promoted the differentiation of cardiac fibroblasts into myofibroblasts. Our results suggest that cardiac overexpression of MCP-1 induced macrophage infiltration, neovascularization, myocardial IL-6 secretion, and accumulation of cardiac myofibroblasts, thereby resulting in the prevention of LV dysfunction and remodeling after MI. They also provide a new insight into the role of cardiac MCP-1 in the pathophysiology of MI. PMID:16990567

  13. Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene.

    PubMed

    Graves, D T; Alsulaimani, F; Ding, Y; Marks, S C

    2002-08-01

    Tooth eruption involves the movement of a tooth from its site of development within the alveolar bone to its functional position in the oral cavity. Because this process is dependent upon monocytes and formation of osteoclasts, it represents an excellent model for examination of these processes under developmental regulation. We investigated the functional role of monocyte chemoattractant protein-1 (MCP-1) in monocyte recruitment and its impact on bone resorption by examining each parameter in MCP-1(-/-) mice as compared with wild-type controls during tooth eruption. The peak number of monocytes occurred on day 5 in the MCP-1(-/-) mice and on day 9 in the wild-type mice. The peak number of osteoclasts followed the same pattern, occurring sooner in the MCP-1(-/-) (day 5) than in wild-type mice (day 9). Consistent with this, MCP-1(-/-) mice had an accelerated rate of tooth eruption in the early phase when the teeth first entered the oral cavity as compared with the wild-type mice. However, there was accelerated eruption in the wild-type group in the later phase of tooth eruption. When examined at the molecular level, inducible nitric oxide synthase (iNOS) and interleukin-11 and -6 were expressed at considerably higher levels in the experimental group with accelerated tooth eruption. This is the first report identifying these factors as potential modulators of bone resorption that can accelerate the rate of tooth eruption. We conclude that, at early timepoints, monocyte recruitment occurs by MCP-1-independent mechanisms. However, at a later timepoint, MCP-1 may play a contributory role in the recruitment of monocytic cells, allowing the wild-type animals to catch up. PMID:12151080

  14. Monocyte Chemoattractant Protein-1 (MCP-1) Regulates Macrophage Cytotoxicity in Abdominal Aortic Aneurysm

    PubMed Central

    Wang, Qiwei; Ren, Jun; Morgan, Stephanie; Liu, Zhenjie; Dou, Changlin; Liu, Bo

    2014-01-01

    Aims In abdominal aortic aneurysm (AAA), macrophages are detected in the proximity of aortic smooth muscle cells (SMCs). We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. Methods and Results Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL) mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1)/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68+/FasL+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. Conclusion Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism. PMID:24632850

  15. Effect of prostaglandin I2 analogs on monocyte chemoattractant protein-1 in human monocyte and macrophage.

    PubMed

    Tsai, Ming-Kai; Hsieh, Chong-Chao; Kuo, Hsuan-Fu; Lee, Min-Sheng; Huang, Ming-Yii; Kuo, Chang-Hung; Hung, Chih-Hsing

    2015-08-01

    Chemokines play essential roles during inflammatory responses and in pathogenesis of inflammatory diseases. Monocyte chemotactic protein-1 (MCP-1) is a critical chemokine in the development of atherosclerosis and acute cardiovascular syndromes. MCP-1, by its chemotactic activity, causes diapedesis of monocytes from the lumen to the subendothelial space that leads to atherosclerotic plaque formation. Prostaglandin I2 (PGI2) analogs are used clinically for patients with pulmonary hypertension and have anti-inflammatory effects. However, little is known about the effect of PGI2 analogs on the MCP-1 production in human monocytes and macrophages. We investigated the effects of three conventional (iloprost, beraprost and treprostinil) and one new (ONO-1301) PGI2 analogs, on the expression of MCP-1 expression in human monocytes and macrophages. Human monocyte cell line, THP-1 cell, was treated with PGI2 analogs after LPS stimulation. Supernatants were harvested to measure MCP-1 levels and measured by ELISA. To explore which receptors involved the effects of PGI2 analogs on the expression of MCP-1 expression, IP and EP, PPAR-α and PPAR-γ receptor antagonists were used. Forskolin, a cAMP activator, was used to further confirm the involvement of cAMP on MCP-1 production in human monocytes. Three PGI2 analogs suppressed LPS-induced MCP-1 production in THP-1 cells and THP-1-induced macrophages. Higher concentrations of ONO-1301 also had the suppressive effect. CAY 10449, an IP receptor antagonist, could reverse the effects on MCP-1 production of iloprost on THP-1 cells. Other reported PGI2 receptor antagonists including EP1, EP2, EP4, PPAR-α and PPAR-γ antagonists could not reverse the effect. Forskolin, a cAMP activator, also suppressed MCP-1 production in THP-1 cells. PGI2 analogs suppressed LPS-induced MCP-1 production in human monocytes and macrophages via the IP receptor and cAMP pathway. The new PGI2 analog (ONO-1301) was not better than conventional PGI2 analog in

  16. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Gugoasa, Livia Alexandra; Biris, Alexandru Radu

    2015-09-01

    Four stochastic microsensors based on nanostructured materials (graphene, maltodextrin (MD), and diamond) integrated in miniaturized platforms were proposed. Monocyte chemoattractant protein-1 (MCP-1) is a pro-inflammatory cytokine whose main function is to regulate cell trafficking. It is correlated with the incidence of cardiovascular diseases and obesity, and was used as the model analyte in this study. The screening of whole blood samples for MCP-1 can be done for concentrations ranging from 10-12 to 10-8 g mL-1. The method was used for both qualitative and quantitative assessments of MCP-1 in whole blood samples. The lowest quantification limits for the assay of MCP-1 (1 pg mL-1) were reached when the microsensors based on protoporphyrin IX/Graphene-Au-3 and on MD/Graphene were employed in the platform design.

  17. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Gugoasa, Livia Alexandra; Biris, Alexandru Radu

    2015-09-28

    Four stochastic microsensors based on nanostructured materials (graphene, maltodextrin (MD), and diamond) integrated in miniaturized platforms were proposed. Monocyte chemoattractant protein-1 (MCP-1) is a pro-inflammatory cytokine whose main function is to regulate cell trafficking. It is correlated with the incidence of cardiovascular diseases and obesity, and was used as the model analyte in this study. The screening of whole blood samples for MCP-1 can be done for concentrations ranging from 10(-12) to 10(-8) g mL(-1). The method was used for both qualitative and quantitative assessments of MCP-1 in whole blood samples. The lowest quantification limits for the assay of MCP-1 (1 pg mL(-1)) were reached when the microsensors based on protoporphyrin IX/Graphene-Au-3 and on MD/Graphene were employed in the platform design. PMID:26183340

  18. Blocking of Monocyte Chemoattractant Protein-1 during Tubulointerstitial Nephritis Resulted in Delayed Neutrophil Clearance

    PubMed Central

    Li, Ping; Garcia, Gabriela E.; Xia, Yiyang; Wu, Wei; Gersch, Christine; Park, Pyong Woo; Truong, Luan; Wilson, Curtis B.; Johnson, Richard; Feng, Lili

    2005-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1 has been implicated in the monocyte/macrophage infiltration that occurs during tubulointerstitial nephritis (TIN). We investigated the role of MCP-1 in rats with TIN by administering a neutralizing anti-MCP-1 antibody (Ab). We observed significantly reduced macrophage infiltration and delayed neutrophil clearance in the kidneys of TIN model rats treated with the anti-MCP-1 Ab. To exclude the possibility that an observed immune complex could affect the resolution of apoptotic neutrophils via the Fc receptor, TIN model rats were treated with a peptide-based MCP-1 receptor antagonist (RA). The MCP-1 RA had effects similar to those of the anti-MCP-1 Ab. In addition, MCP-1 did not affect macrophage-mediated phagocytosis of neutrophils in vitro. Deposition of the anti-MCP-1 Ab in rat kidneys resulted from its binding to heparan sulfate-immobilized MCP-1, as demonstrated by the detection of MCP-1 in both pull-down and immunoprecipitation assays. We conclude that induction of chemokines, specifically MCP-1, in TIN corresponds with leukocyte infiltration and that the anti-MCP-1 Ab formed an immune complex with heparan sulfate-immobilized MCP-1 in the kidney. Antagonism of MCP-1 in TIN by Ab or RA may alter the pathological process, most likely through delayed removal of apoptotic neutrophils in the inflammatory loci. PMID:16127145

  19. Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    PubMed Central

    Bojakowski, Krzysztof; Soin, Joanna; Nozynski, Jerzy; Zakliczynski, Michal; Gaciong, Zbigniew; Zembala, Marian; Söderberg-Nauclér, Cecilia

    2009-01-01

    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41±1.03, p = 0.034) and the number of leukocytes (19.1±12.7 per 20 high-power fields, p = 0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts. PMID:19142231

  20. Correlation between Serum Level of Monocyte Chemoattractant Protein-1 and Postoperative Recurrence of Spinal Tuberculosis in the Chinese Han Population

    PubMed Central

    He, Dan; Zhang, Xiaolu; Gao, Qile; Huang, Rongfu; Deng, Zhansheng; Guo, Chaofeng; Guo, Qiang; Huang, Jia; Zhang, Hongqi

    2015-01-01

    Objective To correlate serum level of monocyte chemoattractant protein-1 (MCP-1) with postoperative recurrence of spinal tuberculosis in the Chinese Han population. Methods Patients of Han nationality with newly diagnosed spinal tuberculosis were consecutively included in this study. At different time points postoperatively, serum level of MCP-1 was determined using an enzyme linked immunosorbent assay. Recurrence of spinal tuberculosis after surgery and during the follow-up period was recorded. The correlation between serum MCP-1 level and recurrence of spinal tuberculosis was analyzed. Results A total of 169 patients with spinal tuberculosis were included in the study and followed up for an average of2.2±1.3 years (range, 1–5 years). Of these patients, 11 had postoperative recurrence of spinal tuberculosis. The patients’ serum level of MCP-1 increased significantly after postoperative recurrence of spinal tuberculosis. Once the symptoms of recurrence were cured, the serum level of MCP-1 decreased significantly and it did not differ from patients without disease recurrence. Conclusion Postoperative recurrence of spinal tuberculosis is likely to increase the serum level of MCP-1. PMID:25962150

  1. Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) Enhances Angiogenic and Cardiomyogenic Potential of Murine Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Labedz-Maslowska, Anna; Lipert, Barbara; Berdecka, Dominika; Kedracka-Krok, Sylwia; Jankowska, Urszula; Kamycka, Elzbieta; Sekula, Malgorzata; Madeja, Zbigniew; Dawn, Buddhadeb; Jura, Jolanta; Zuba-Surma, Ewa K.

    2015-01-01

    The current evidence suggests that beneficial effects of mesenchymal stem cells (MSCs) toward myocardial repair are largely due to paracrine actions of several factors. Although Monocyte chemoattractant protein-induced protein 1 (MCPIP1) is involved in the regulation of inflammatory response, apoptosis and angiogenesis, whether MCPIP1 plays any role in stem cell-induced cardiac repair has never been examined. By employing retroviral (RV)-transduced overexpression of MCPIP1, we investigated the impact of MCPIP1 on viability, apoptosis, proliferation, metabolic activity, proteome, secretome and differentiation capacity of murine bone marrow (BM) - derived MSCs. MCPIP1 overexpression enhanced angiogenic and cardiac differentiation of MSCs compared with controls as indicated by elevated expression of genes accompanying angiogenesis and cardiomyogenesis in vitro. The proangiogenic activity of MCPIP1-overexpressing MSCs (MCPIP1-MSCs) was also confirmed by increased capillary-like structure formation under several culture conditions. This increase in differentiation capacity was associated with decreased proliferation of MCPIP1-MSCs when compared with controls. MCPIP1-MSCs also expressed increased levels of proteins involved in angiogenesis, autophagy, and induction of differentiation, but not adverse inflammatory agents. We conclude that MCPIP1 enhances endothelial and cardiac differentiation of MSCs. Thus, modulating MCPIP1 expression may be a novel approach useful for enhancing the immune-regulatory, anti-apoptotic, anti-inflammatory and regenerative capacity of BM-derived MSCs for myocardial repair and regeneration of ischemic tissues. PMID:26214508

  2. Radiation-Induced Thymidine Phosphorylase Upregulation in Rectal Cancer Is Mediated by Tumor-Associated Macrophages by Monocyte Chemoattractant Protein-1 From Cancer Cells

    SciTech Connect

    Kim, Tae-Dong; Li Ge; Song, Kyoung-Sub; Kim, Jin-Man; Kim, Jun-Sang; Kim, Jong-Seok; Yun, Eun-Jin; Park, Jong-Il; Park, Hae-Duck; Hwang, Byung-Doo; Lim, Kyu Yoon, Wan-Hee

    2009-03-01

    Purpose: The mechanisms of thymidine phosphorylase (TP) regulation induced by radiation therapy (XRT) in various tumors are poorly understood. We investigated the effect and mechanisms of preoperative XRT on TP expression in rectal cancer tissues. Methods and Materials: TP expression and CD68 and monocyte chemoattractant protein-1 (MCP-1) levels in rectal cancer tissues and cancer cell lines were evaluated before and after XRT in Western blotting, immunohistochemistry, enzyme-linked immunoassay, and reverse transcription-polymerase chain reaction studies. Isolated peripheral blood monocytes were used in the study of chemotaxis under the influence of MCP-1 released by irradiated colon cancer cells. Results: Expression of TP was significantly elevated by 9 Gy of XRT in most rectal cancer tissues but not by higher doses of XRT. In keeping with the close correlation of the increase in both TP expression and the number of tumor-associated macrophages (TAMs), anti-TP immunoreactivity was found in the CD68-positive TAMs and not the neoplastic cells. Expression of MCP-1 was increased in most cases after XRT, and this increase was strongly correlated with TP expression. However, this increase in MCP-1 expression occurred in tumor cells and not stromal cells. The XRT upregulated MCP-1 mRNA and also triggered the release of MCP-1 protein from cultured colon cancer cells. The supernatant of irradiated colon cancer cells showed strong chemotactic activity for monocyte migration, but this activity was completely abolished by neutralizing antibody. Conclusions: Use of XRT induces MCP-1 expression in cancer cells, which causes circulating monocytes to be recruited into TAMs, which then upregulate TP expression in rectal cancer tissues.

  3. Genetic and Biochemical Determinants of Serum Concentrations of Monocyte Chemoattractant Protein-1, a Potential Neural Tube Defect Risk Factor

    PubMed Central

    Lu, Zhi-Yong; Morales, Megan; Khartulyari, Stephanie; Mei, Minghua; Murphy, Kristen M.; Stanislawska-Sachadyn, Anna; Summers, Carolyn M.; Huang, Yuehua; Von Feldt, Joan M; Blair, Ian A.; Mitchell, Laura E.; Whitehead, Alexander S.

    2010-01-01

    Background Women with the AA genotype at the (−2518) A>G promoter polymorphism of CCL-2, which encodes the potent pro-inflammatory chemokine monocyte chemoattractant protein 1 (MCP-1), may be at increased risk for having offspring affected by spina bifida. As the A allele at this locus has been associated with decreased transcription of MCP-1 mRNA relative to the G allele, the observed genetic association suggests that the risk of spina bifida may be increased in the offspring of women with low MCP-1 levels. The present study was undertaken to identify potential determinants of MCP-1 levels in women of reproductive age. Methods A small cohort of Caucasian and African-American women of reproductive age was recruited to participate in an exploratory investigation of the determinants of several disease-related, biochemical phenotypes, including MCP-1. Subjects completed a brief questionnaire and provided a fasting blood sample for biochemical and genetic studies. Potential biochemical, genetic and lifestyle factors were assessed for their association with MCP-1 levels using linear regression analyses. Results In this cohort, MCP-1 levels were significantly higher in Caucasians as compared to African-Americans. Further, among women of both races, there was evidence that MCP-1 levels were associated with smoking status, MTHFR 677C>T genotype and red blood cell tetrahydrofolate levels. Conclusions The results of these analyses indicate that, if maternal CCL-2 genotype is related to the risk of spina bifida, this relationship is likely to be more complex than initially hypothesized, perhaps depending upon folate intake, MTHFR 677C>T genotype, the distribution of folate derivatives, and immune/inflammatory activity. PMID:18937353

  4. Urine Monocyte Chemoattractant Protein-1 Is an Independent Predictive Factor of Hospital Readmission and Survival in Cirrhosis

    PubMed Central

    Graupera, Isabel; Solà, Elsa; Fabrellas, Núria; Moreira, Rebeca; Solé, Cristina; Huelin, Patricia; de la Prada, Gloria; Pose, Elisa; Ariza, Xavier; Risso, Alessandro; Albertos, Sonia; Morales-Ruiz, Manuel; Jiménez, Wladimiro; Ginès, Pere

    2016-01-01

    MCP-1 (monocyte chemoattractant protein-1) is a proinflammatory cytokine involved in chemotaxis of monocytes. In several diseases, such as acute coronary syndromes and heart failure, elevated MCP-1 levels have been associated with poor outcomes. Little is known about MCP-1 in cirrhosis. AIM: To investigate the relationship between MCP-1 and outcome in decompensated cirrhosis. METHODS: Prospective study of 218 patients discharged from hospital after an admission for complications of cirrhosis. Urine and plasma levels of MCP-1 and other urine proinflammatroy biomarkers: osteopontin(OPN), trefoil-factor3 and liver-fatty-acid-binding protein were measured at admission. Urine non-inflammatory mediators cystatin-C, β2microglobulin and albumin were measured as control biomarkers. The relationship between these biomarkers and the 3-month hospital readmission, complications of cirrhosis, and mortality were assessed. RESULTS: 69 patients(32%) had at least one readmission during the 3-month period of follow-up and 30 patients died(14%). Urine MCP-1 and OPN levels, were associated with 3-month probability of readmission (0.85 (0.27–2.1) and 2003 (705–4586) ug/g creat vs 0.47 (0.2–1.1) and 1188 (512–2958) ug/g creat, in patients with and without readmission, respectively; p<0.05; median (IQR)). Furthermore, urine levels of MCP-1 were significantly associated with mortality (1.01 (1–3.6) vs 0.5 (0.2–1.1) μg/g creat, in dead and alive patients at 3 months; p<0.05). Patients with higher levels of urine MCP-1 (above percentile 75th) had higher probability of development of hepatic encephalopathy, bacterial infections or AKI. Urine MCP-1 was an independent predictive factor of hospital readmission and combined end-point of readmission or dead at 3 months. Plasma levels of MCP-1 did not correlated with outcomes. CONCLUSION: Urine, but not plasma, MCP-1 levels are associated with hospital readmission, development of complications of cirrhosis, and mortality. These

  5. Urinary monocyte chemoattractant protein-1 and hepcidin and early diabetic nephropathy lesions in type 1 diabetes mellitus

    PubMed Central

    Fufaa, Gudeta D.; Weil, E. Jennifer; Nelson, Robert G.; Hanson, Robert L.; Knowler, William C.; Rovin, Brad H.; Wu, Haifeng; Klein, Jon B.; Mifflin, Theodore E.; Feldman, Harold I.; Vasan, Ramachandran S.; Kimmel, Paul L.; Kusek, John W.; Mauer, Michael; Zinman, Bernard; Donnelly, Sandra; Canada, Toronto; Gardiner, Robert; Suissa, Samy; Drummond, Keith; Goodyer, Paul; Sinaiko, Alan; Strand, Trudy; Gubler, Marie Claire; Klein, Ronald

    2015-01-01

    Background Urinary monocyte chemoattractant protein-1 (MCP-1) and hepcidin are potential biomarkers of renal inflammation. We examined their association with development of diabetic nephropathy (DN) lesions in normotensive normoalbuminuric subjects with type 1 diabetes (T1D) from the Renin-Angiotensin System Study. Methods Biomarker concentrations were measured in baseline urine samples from 224 subjects who underwent kidney biopsies at baseline and after 5 years. Fifty-eight urine samples below the limit of quantitation (LOQ, 28.8 pg/mL) of the MCP-1 assay were assigned concentrations of LOQ/√2 for analysis. Relationships between ln(MCP-1/Cr) or ln(hepcidin/Cr) and morphometric variables were assessed by sex using multiple linear regression after adjustment for age, T1D duration, HbA1c, mean arterial pressure, albumin excretion rate (AER) and glomerular filtration rate (GFR). In models that examined changes in morphometric variables, the baseline morphometric value was also included. Results Baseline mean age was 24.6 years, mean duration of T1D 11.2 years, median AER 6.4 µg/min and mean iohexol GFR 129 mL/min/1.73 m2. No associations were found between hepcidin/Cr and morphometric variables. Higher MCP-1/Cr was associated with higher interstitial fractional volume at baseline and after 5 years in women (baseline partial r = 0.244, P = 0.024; 5-year partial r = 0.299, P = 0.005), but not in men (baseline partial r = −0.049, P = 0.678; 5-year partial r = 0.026, P = 0.830). MCP-1 was not associated with glomerular lesions in either sex. Conclusions Elevated urinary MCP-1 concentration measured before clinical findings of DN in women with T1D was associated with changes in kidney interstitial volume, suggesting that inflammatory processes may be involved in the pathogenesis of early interstitial changes in DN. PMID:25648911

  6. Angiotensin II type 1 receptor antagonists inhibit basal as well as low-density lipoprotein and platelet-activating factor-stimulated human monocyte chemoattractant protein-1.

    PubMed

    Proudfoot, Julie M; Croft, Kevin D; Puddey, Ian B; Beilin, Lawrence J

    2003-06-01

    Monocyte chemoattractant protein-1 (MCP-1) is a potent chemotactic agent for monocytes and other cells and is thought to be involved in atherosclerosis, recruiting monocytes to the subendothelial space or to the site of inflammation. Angiotensin II has been demonstrated, at least in animal models, to stimulate MCP-1 expression. We investigated the effect of the angiotensin II type 1 (AT1) receptor antagonists irbesartan and losartan on MCP-1 production by freshly isolated human monocytes. Irbesartan and losartan inhibited basal MCP-1 production in a dose-dependent manner. Low-density lipoprotein (LDL) stimulated MCP-1 in a concentration-dependent manner, with 200 microg/ml LDL protein giving a 2-fold increase in MCP-1. Irbesartan and losartan dose dependently blocked LDL-stimulated MCP-1. An angiotensin II type 2 receptor antagonist, S-(+)-1-([4-(dimethylamino)-3-methylphenyl]methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5-c)pyridine-6-carboxylic acid (PD123319), had no significant effect on basal MCP-1 levels or LDL-stimulated MCP-1. After noting homology between the AT1 receptor and the platelet-activating factor (PAF) receptor, we showed that irbesartan inhibited both [3H]PAF binding to human monocytes and carbamyl-PAF stimulation of MCP-1. However, irbesartan affinity for the PAF receptor was 700 times less than PAF, suggesting that there may be another mechanism for irbesartan inhibition of PAF-stimulated MCP-1. This is the first report showing that AT1 receptor antagonists inhibit basal as well as LDL- and PAF-stimulated MCP-1 production in freshly isolated human monocytes. PMID:12626661

  7. Vascular Endothelial Growth Factor and Monocyte Chemoattractant Protein-1 Levels Unaltered in Symptomatic Atherosclerotic Carotid Plaque Patients from North India

    PubMed Central

    Khurana, Dheeraj; Mathur, Deepali; Prabhakar, Sudesh; Thakur, Keshav; Anand, Akshay

    2013-01-01

    We aimed to identify the role of vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein (MCP-1) as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques, and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of MCP-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis (p < 0.05). Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountain region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at non mountain region. On the contrary, smoking, obesity, dyslipidemia, alcohol consumption, and tobacco chewing were not observed as the determinants of carotid atherosclerosis risk in North India (p > 0.05). We conclude that the pathogenesis of carotid plaques may progress

  8. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy.

    PubMed

    Tam, Frederick W K; Riser, Bruce L; Meeran, Karim; Rambow, JoAnn; Pusey, Charles D; Frankel, Andrew H

    2009-07-01

    Profibrotic growth factors and inflammatory chemokines have been implicated in the pathogenesis of diabetic nephropathy (DN). However, measurement of urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers has not previously been reported, and neither have two such molecules in urine been examined in a single study of DN. In this prospective observational study, 43 adult diabetic patients were studied, 40 were followed up for 6years. Urinary MCP-1/creatinine ratios were found to be significantly higher in patients with macroalbuminuria (3.3- and 2.1-fold higher (p<0.01) than normoalbuminuric and microalbuminuric patients, respectively). CCN2 exhibited a pattern different from that of urinary MCP-1. Urinary CCN2/creatinine ratios were greatly elevated in both microalbuminuric and macroalbuminuric patients (125- and 74-fold higher than normoalbuminuric patients, respectively, p<0.01 and p<0.05, respectively). Further, urinary CCN2, but not MCP-1, correlated with progression of microalbuminuria (R=0.49, p<0.05). In contrast, MCP-1, but not CCN2, correlated with the rate of eGFR decline for all patients (R=0.61, p<0.0001), reflective of its predictive value in patients with macroalbuminuria, but not for patients with microalbuminuria or normoalbuminuria. In conclusion, increased urinary CCN2 is associated with the early progression of DN, whereas MCP-1 is associated with later stage disease. PMID:19409809

  9. Genome-wide association replicates the association of Duffy antigen receptor for chemokines (DARC) polymorphisms with serum monocyte chemoattractant protein-1 (MCP-1) levels in Hispanic children.

    PubMed

    Voruganti, V Saroja; Laston, Sandra; Haack, Karin; Mehta, Nitesh R; Smith, C Wayne; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G

    2012-12-01

    Obesity is associated with a chronic low inflammatory state characterized by elevated levels of chemokines. Monocyte chemoattractant protein-1 (MCP-1) is a member of the cysteine-cysteine (CC) chemokine family and is increased in obesity. The purpose of this study was to identify loci regulating serum MCP-1 in obese Hispanic children from the Viva La Familia Study. A genome-wide association (GWA) analysis was performed in 815 children, ages 4-19 years, using genotypes assayed with the Illumina HumanOmni1-Quad v1.0 BeadChips. All analyses were performed in SOLAR using a linear regression-based test under an additive model of allelic effect, while accounting for the relatedness of family members via a kinship variance component. The strongest association for MCP-1 levels was found with a non-synonymous single nucleotide polymorphism (SNP), rs12075, resulting in an amino acid substitution (Asp42Gly) in the Duffy antigen receptor for chemokines (DARC) gene product (minor allele frequency=43.6%, p=1.3 × 10(-21)) on chromosome 1. Four other DARC SNPs were also significantly associated with MCP-1 levels (p<10(-16)-10(-6)). The Asp42Gly variant was associated with higher levels of MCP-1 and accounted for approximately 10% of its variability. In addition, MCP-1 levels were significantly associated with SNPs in chemokine receptor 3 (CCR3) and caspase recruitment domain family, member 9 (CARD9). In summary, the association of the DARC Asp42Gly variant with MCP-1 levels replicates previous GWA results substantiating a potential role for DARC in the regulation of pro-inflammatory cytokines. PMID:23017229

  10. Gut Microbiota in Type 2 Diabetes Individuals and Correlation with Monocyte Chemoattractant Protein1 and Interferon Gamma from Patients Attending a Tertiary Care Centre in Chennai, India

    PubMed Central

    Pushpanathan, Premalatha; Srikanth, Padma; Seshadri, Krishna G.; Selvarajan, Sribal; Pitani, Ravi Shankar; Kumar, Thomas David; Janarthanan, R.

    2016-01-01

    Background: Type 2 diabetes mellitus (T2DM) and obesity are associated with changes in gut microbiota and characterized by chronic low-grade inflammation. Monocyte chemoattractant protein-1 (MCP-1) and interferon gamma (IFNγ) are proinflammatory cytokines which play an important role in the development of T2DM. We undertook this study to analyze the gut microbiota of T2DM and nondiabetic subjects and to determine the profile of MCP 1 and IFNγ in the same subjects attending a tertiary care center in Chennai, Tamil Nadu, India. Methods: The study included 30 subjects with clinical details. Stool and blood samples were collected from all the subjects. DNA was extracted from fecal samples and polymerase chain reaction was done using fusion primers. Metagenomic analysis was performed using ion torrent sequencing. The reads obtained were in FASTA format and reported as operational taxonomic units. Human MCP 1 and IFNγ enzyme linked immunosorbent assay (ELISA) were performed for 23 serum samples. Results: The study consisted of 30 subjects; 17 were T2DM and 13 were nondiabetics. The gut microbiota among T2DM consisted predominantly of Gram negative bacteria; Escherichia and Prevotella, when compared with the nondiabetic group with predominantly Gram positive organisms suchas Faecalibacterium, Eubacterium, and Bifidobacterium. The mean MCP-1 values in the diabetic group were 232.8 pg/ml and in the nondiabetic group 170.84 pg/ml. IFNγ (mean 385.5 pg/ml) was raised in glycated hemoglobin (HbA1c) group of 6.5–7.5% which was statistically significant. Association of Escherichia with T2DM and association of Bifidobacteria in the nondiabetics were also statistically significant. Conclusion: Escherichia counts were elevated in T2DM with HbA1c of 6.5–8.5% which was statistically significant suggesting that lipopolysaccharides present in the cell wall of Gram-negative bacteria may be responsible for low-grade inflammation as evidenced by elevated MCP-1 and IFNγ levels in T

  11. Plasma Levels of Monocyte Chemoattractant Protein-1, n-Terminal Fragment of Brain Natriuretic Peptide and Calcidiol Are Independently Associated with the Complexity of Coronary Artery Disease

    PubMed Central

    Martín-Reyes, Roberto; Franco-Peláez, Juan Antonio; Lorenzo, Óscar; González-Casaus, María Luisa; Pello, Ana María; Aceña, Álvaro; Carda, Rocío; Martín-Ventura, José Luis; Blanco-Colio, Luis; Martín-Mariscal, María Luisa; Martínez-Milla, Juan; Villa-Bellosta, Ricardo; Piñero, Antonio; Navarro, Felipe; Egido, Jesús; Tuñón, José

    2016-01-01

    Background and Objectives We investigated the relationship of the Syntax Score (SS) and coronary artery calcification (CAC), with plasma levels of biomarkers related to cardiovascular damage and mineral metabolism, as there is sparse information in this field. Methods We studied 270 patients with coronary disease that had an acute coronary syndrome (ACS) six months before. Calcidiol, fibroblast growth factor-23, parathormone, phosphate and monocyte chemoattractant protein-1 [MCP-1], high-sensitivity C-reactive protein, galectin-3, and N-terminal pro-brain natriuretic peptide [NT-proBNP] levels, among other biomarkers, were determined. CAC was assessed by coronary angiogram as low-grade (0–1) and high-grade (2–3) calcification, measured with a semiquantitative scale ranging from 0 (none) to 3 (severe). For the SS study patients were divided in SS<14 and SS≥14. Multivariate linear and logistic regression analyses were performed. Results MCP-1 predicted independently the SS (RC = 1.73 [95%CI = 0.08–3.39]; p = 0.040), along with NT-proBNP (RC = 0.17 [95%CI = 0.05–0.28]; p = 0.004), male sex (RC = 4.15 [95%CI = 1.47–6.83]; p = 0.003), age (RC = 0.13 [95%CI = 0.02–0.24]; p = 0.020), hypertension (RC = 3.64, [95%CI = 0.77–6.50]; p = 0.013), hyperlipidemia (RC = 2.78, [95%CI = 0.28–5.29]; p = 0.030), and statins (RC = 6.12 [95%CI = 1.28–10.96]; p = 0.013). Low calcidiol predicted high-grade calcification independently (OR = 0.57 [95% CI = 0.36–0.90]; p = 0.013) along with ST-elevation myocardial infarction (OR = 0.38 [95%CI = 0.19–0.78]; p = 0.006), diabetes (OR = 2.35 [95%CI = 1.11–4.98]; p = 0.028) and age (OR = 1.37 [95%CI = 1.18–1.59]; p<0.001). During follow-up (1.79 [0.94–2.86] years), 27 patients developed ACS, stroke, or transient ischemic attack. A combined score using SS and CAC predicted independently the development of the outcome. Conclusions MCP-1 and NT-proBNP are independent predictors of SS, while low calcidiol plasma levels

  12. Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    PubMed Central

    2012-01-01

    Chemokine (C-C motif) ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1) is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND). The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS) via the disrupted blood-brain barrier (BBB). We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF)-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinases and phosphatidylinositol 3-kinase (PI3K)/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB). Chromatin immunoprecipitation (ChIP) assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs), an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R) blocker). PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte activation by PDGF

  13. Endothelial activation and chemoattractant expression are early processes in isolated blast brain injury.

    PubMed

    Risdall, Jane E; Carter, Alun J; Kirkman, Emrys; Watts, Sarah A; Taylor, Christopher; Menon, David K

    2014-09-01

    Blast injuries are an increasing problem in military conflicts and terrorist incidents. Blast-induced traumatic brain injury has risen to prominence and represents a specific form of primary brain injury, with sufficiently different physical attributes (and possibly biological consequences) to be classified separately. There is increasing interest in the role of blast in initiating inflammatory responses, which may be linked to the pathological processes seen clinically. Terminally anaesthetised rats were exposed to a blast wave directed at the cranium, using a bench-top blast wave generator. Control animals were not exposed to blast. Animals were killed after 8 h, and the brains examined for evidence of an inflammatory response. Compared to controls, erythropoietin, endothelial integrins, ICAM and sVCAM, and the pro-inflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1) were significantly elevated. Other pro-inflammatory cytokines, including MIP-1α, were also detectable, but levels did not permit accurate quantification. Six inflammatory genes examined by qRT-PCR exhibited a biologically significant increase in activity in the blast-exposed animals. These included genes supporting chemokines responsible for monocyte recruitment, including MCP-1, and chemokines influencing T cell movement. Brain injury is usually accompanied by pathological neuro-inflammation. This study shows that blast brain injury is no exception, and the data provide important mechanistic clues regarding the drivers of such inflammation. Whilst this effect alone is unlikely to be responsible for the totality of consequences of blast brain injury, it suggests a mechanism that may be priming the cerebral inflammatory response and rendering cerebral tissue more susceptible to the deleterious effects of systemic inflammatory reactions. PMID:24858498

  14. Hydrogen Sulfide Suppresses Oxidized Low-density Lipoprotein (Ox-LDL)-stimulated Monocyte Chemoattractant Protein 1 generation from Macrophages via the Nuclear Factor κB (NF-κB) Pathway*

    PubMed Central

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391

  15. Role of the monocyte chemoattractant protein-1/C-C chemokine receptor 2 signaling pathway in transient receptor potential vanilloid type 1 ablation-induced renal injury in salt-sensitive hypertension.

    PubMed

    Wang, Youping; Zhu, Mingjun; Xu, Hui; Cui, Lin; Liu, Weihong; Wang, Xiaoxiao; Shen, Si; Wang, Donna H

    2015-09-01

    Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1(-/-) mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1(-/-) mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1(-/-) mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1(-/-) mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1(-/-) mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1

  16. Cloning and expression of a gene encoding a protein obtained from earthworm secretion that is a chemoattractant for garter snakes.

    PubMed

    Liu, W; Wang, D; Chen, P; Halpern, M

    1997-10-24

    The protein ES20, derived from earthworm shock secretion, is a vomeronasally mediated chemoattractant for garter snakes (Jiang, X. C., Inouchi, J., Wang, D., and Halpern, M. (1990) J. Biol. Chem. 265, 8736-8744). Based on its 15-residue N-terminal amino acid sequence, degenerative oligodeoxynucleotide probes were synthesized and used to screen a cDNA library that was constructed in sense orientation using a Uni-ZAPTM XR vector and XL1-Blue MRF' host. A gene was cloned from a polymerase chain reaction as well as from the cDNA library. A combination of the forward degenerative primer and T7 primer was used to obtain gene-specific DNA fragments, from which probes were synthesized and successfully used in screening the cDNA library. The ES20 gene is about 700 base pairs long and encodes 208 amino residues. The ES20 gene was excised from a recombinant plasmid pSK-ES20, ligated to pQE30 expression vector, and transformed into Escherichia coli strain JM109. The selected recombinant plasmids were transformed into expression host cell, E. coli M15[pREP4]. Three transformants were selected, induced with isopropyl-1-thio-beta-D-galactopyranoside for fusion gene expression and an expressed 20-kDa fusion protein purified under denaturing conditions. This protein was refolded and gave a positive reaction against ES20-specific polyclonal antibodies. The fusion protein that had not been denatured remained as an aggregate and was an active chemoattractant for garter snakes. PMID:9341189

  17. Associations between the Duration of Dialysis, Endotoxemia, Monocyte Chemoattractant Protein-1, and the Effects of a Short-Dwell Exchange in Patients Requiring Continuous Ambulatory Peritoneal Dialysis

    PubMed Central

    Chiu, Ping-Fang; Liou, Hung-Hsiang; Chang, Chirn-Bin; Tarng, Der-Cherng; Chang, Chia-Chu

    2014-01-01

    Background Endotoxemia is exaggerated and contributes to systemic inflammation and atherosclerosis in patients requiring continuous ambulatory peritoneal dialysis (CAPD). The risk of mortality is substantially increased in patients requiring CAPD for >2 years. However, little is known about the effects of long-term CAPD on circulating endotoxin and cytokine levels. Therefore, the present study evaluated the associations between plasma endotoxin levels, cytokine levels, and clinical parameters with the effects of a short-dwell exchange on endotoxemia and cytokine levels in patients on long-term CAPD. Methods A total of 26 patients were enrolled and divided into two groups (short-term or long-term CAPD) according to the 2-year duration of CAPD. Plasma endotoxin and cytokine levels were measured before and after a short-dwell exchange (4-h dwell) during a peritoneal equilibration test (a standardized method to evaluate the solute transport function of peritoneal membrane). These data were analyzed to determine the relationship of circulating endotoxemia, cytokines and clinical characteristics between the two groups. Results Plasma endotoxin and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the long-term group. PD duration was significantly correlated with plasma endotoxin (r = 0.479, P = 0.016) and MCP-1 (r = 0.486, P = 0.012). PD duration was also independently associated with plasma MCP-1 levels in multivariate regression. Plasma MCP-1 levels tended to decrease (13.3% reduction, P = 0.077) though endotoxin levels did not decrease in the long-term PD group after the 4-h short-dwell exchange. Conclusion Long-term PD may result in exaggerated endotoxemia and elevated plasma MCP-1 levels. The duration of PD was significantly correlated with circulating endotoxin and MCP-1 levels, and was an independent predictor of plasma MCP-1 levels. Short-dwell exchange seemed to have favorable effects on circulating MCP-1 levels in

  18. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma.

    PubMed

    Lee, Yong Gyu; Jeong, Jong Jin; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Chung, Sangwoon; Ranjan, Ravi; Karpurapu, Manjula; Deng, Jing; Qian, Feng; Kelly, Elizabeth A B; Jarjour, Nizar N; Ackerman, Steven J; Natarajan, Viswanathan; Christman, John W; Park, Gye Young

    2015-06-01

    Although alveolar macrophages (AMs) from patients with asthma are known to be functionally different from those of healthy individuals, the mechanism by which this transformation occurs has not been fully elucidated in asthma. The goal of this study was to define the mechanisms that control AM phenotypic and functional transformation in response to acute allergic airway inflammation. The phenotype and functional characteristics of AMs obtained from human subjects with asthma after subsegmental bronchoprovocation with allergen was studied. Using macrophage-depleted mice, the role and trafficking of AM populations was determined using an acute allergic lung inflammation model. We observed that depletion of AMs in a mouse allergic asthma model attenuates Th2-type allergic lung inflammation and its consequent airway remodeling. In both human and mouse, endobronchial challenge with allergen induced a marked increase in monocyte chemotactic proteins (MCPs) in bronchoalveolar fluid, concomitant with the rapid appearance of a monocyte-derived population of AMs. Furthermore, airway allergen challenge of allergic subjects with mild asthma skewed the pattern of AM gene expression toward high levels of the receptor for MCP1 (CCR2/MCP1R) and expression of M2 phenotypic proteins, whereas most proinflammatory genes were highly suppressed. CCL2/MCP-1 gene expression was prominent in bronchial epithelial cells in a mouse allergic asthma model, and in vitro studies indicate that bronchial epithelial cells produced abundant MCP-1 in response to house dust mite allergen. Thus, our study indicates that bronchial allergen challenge induces the recruitment of blood monocytes along a chemotactic gradient generated by allergen-exposed bronchial epithelial cells. PMID:25360868

  19. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    PubMed

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  20. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells☆

    PubMed Central

    Xue, Luzheng; Salimi, Maryam; Panse, Isabel; Mjösberg, Jenny M.; McKenzie, Andrew N.J.; Spits, Hergen; Klenerman, Paul; Ogg, Graham

    2014-01-01

    Background Activation of the group 2 innate lymphoid cell (ILC2) population leads to production of the classical type 2 cytokines, thus promoting type 2 immunity. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2), is expressed by human ILC2s. However, the function of CRTH2 in these cells is unclear. Objectives We sought to determine the role of PGD2 and CRTH2 in human ILC2s and compare it with that of the established ILC2 activators IL-25 and IL-33. Methods The effects of PGD2, IL-25, and IL-33 on the cell migration, cytokine production, gene regulation, and receptor expression of ILC2s were measured with chemotaxis, ELISA, Luminex, flow cytometry, quantitative RT-PCR, and QuantiGene assays. The effects of PGD2 under physiologic conditions were evaluated by using the supernatant from activated mast cells. Results PGD2 binding to CRTH2 induced ILC2 migration and production of type 2 cytokines and many other cytokines. ILC2 activation through CRTH2 also upregulated the expression of IL-33 and IL-25 receptor subunits (ST2 and IL-17RA). The effects of PGD2 on ILC2s could be mimicked by the supernatant from activated human mast cells and inhibited by a CRTH2 antagonist. Conclusions PGD2 is an important and potent activator of ILC2s through CRTH2 mediating strong proallergic inflammatory responses. Through IgE-mediated mast cell degranulation, these innate cells can also contribute to adaptive type 2 immunity; thus CRTH2 bridges the innate and adaptive pathways in human ILC2s. PMID:24388011

  1. Chemoattraction of macrophages by secretory molecules derived from cells expressing the signal peptide of eosinophil cationic protein

    PubMed Central

    2012-01-01

    Background Eosinophil cationic protein is a clinical asthma biomarker that would be released into blood, especially gathered in bronchia. The signal peptide of eosinophil cationic protein (ECPsp) plays an important role in translocating ECP to the extracellular space. We previously reported that ECPsp inhibits microbial growth and regulates the expression of mammalian genes encoding tumor growth factor-α (TGF-α) and epidermal growth factor receptor (EGFR). Results In the present study, we first generated a DNA microarray dataset, which showed that ECPsp upregulated proinflammatory molecules, including chemokines, interferon-induced molecules, and Toll-like receptors. The levels of mRNAs encoding CCL5, CXCL10, CXCL11, CXCL16, STAT1, and STAT2 were increased in the presence of ECPsp by 2.07-, 4.21-, 7.52-, 2.6-, 3.58-, and 1.67-fold, respectively. We then constructed a functional linkage network by integrating the microarray dataset with the pathway database of Kyoto Encyclopedia of Genes and Genomes (KEGG). Follow-up analysis revealed that STAT1 and STAT2, important transcriptional factors that regulate cytokine expression and release, served as hubs to connect the pathways of cytokine stimulation (TGF-α and EGFR pathways) and inflammatory responses. Furthermore, integrating TGF-α and EGFR with the functional linkage network indicated that STAT1 and STAT2 served as hubs that connect two functional clusters, including (1) cell proliferation and survival, and (2) inflammation. Finally, we found that conditioned medium in which cells that express ECPsp had been cultured could chemoattract macrophages. Experimentally, we also demonstrated that the migration of macrophage could be inhibited by the individual treatment of siRNAs of STAT1 or STAT2. Therefore, we hypothesize that ECPsp may function as a regulator for enhancing the migration of macrophages through the upregualtion of the transcriptional factors STAT1 and STAT2. Conclusion The increased expression and

  2. D prostanoid receptor 2 (chemoattractant receptor–homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells

    PubMed Central

    Stinson, Sally E.; Amrani, Yassine; Brightling, Christopher E.

    2015-01-01

    Background The D prostanoid receptor 2 (DP2; also known as chemoattractant receptor–homologous molecule expressed on TH2 cells) is implicated in the pathogenesis of asthma, but its expression within bronchial biopsy specimens is unknown. Objectives We sought to investigate the bronchial submucosal DP2 expression in asthmatic patients and healthy control subjects and to explore its functional role in epithelial cells. Methods DP2 protein expression was assessed in bronchial biopsy specimens from asthmatic patients (n = 22) and healthy control subjects (n = 10) by using immunohistochemistry and in primary epithelial cells by using flow cytometry, immunofluorescence, and quantitative RT-PCR. The effects of the selective DP2 agonist 13, 14-dihydro-15-keto prostaglandin D2 on epithelial cell migration and differentiation were determined. Results Numbers of submucosal DP2+ cells were increased in asthmatic patients compared with those in healthy control subjects (mean [SEM]: 78 [5] vs 22 [3]/mm2 submucosa, P < .001). The bronchial epithelium expressed DP2, but its expression was decreased in asthmatic patients compared with that seen in healthy control subjects (mean [SEM]: 21 [3] vs 72 [11]/10 mm2 epithelial area, P = .001), with similar differences observed in vitro by primary epithelial cells. Squamous metaplasia of the bronchial epithelium was increased in asthmatic patients and related to decreased DP2 expression (rs = 0.69, P < .001). 13, 14-Dihydro-15-keto prostaglandin D2 promoted epithelial cell migration and at air-liquid interface cultures increased the number of MUC5AC+ and involucrin-positive cells, which were blocked with the DP2-selective antagonist AZD6430. Conclusions DP2 is expressed by the bronchial epithelium, and its activation drives epithelial differentiation, suggesting that in addition to its well-characterized role in inflammatory cell migration, DP2 might contribute to airway remodeling in asthmatic patients. PMID:25312757

  3. Murine bone marrow-derived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2).

    PubMed

    Boehme, Stefen A; Franz-Bacon, Karin; Chen, Edward P; Ly, Tai Wei; Kawakami, Yuko; Bacon, Kevin B

    2009-06-01

    Mast cells are bone marrow-derived effector cells that can initiate inflammatory responses to infectious organisms or allergens by releasing a multitude of pro-inflammatory factors including prostaglandin (PG) D(2). We demonstrate that primary murine bone marrow-derived mast cells (BMMCs) express the PGD(2) receptor; chemoattractant receptor-homologous molecule expressed on T(h) class 2 cells (CRT(h)2). Activation of CRT(h)2 on BMMC by PGD(2) or the CRT(h)2-specific agonist, 13,14-dihydro-15-keto-prostaglandin D(2) (DK-PGD(2)), resulted in signaling response including Ca(2+) mobilization and phosphorylation of the p42/p44 extracellular signal-regulated kinases (ERKs) kinases. Phosphorylation of the ERKs could be blocked by pertussis toxin, as well as a small molecule antagonist of CRT(h)2, Compound A. Activation of CRT(h)2 on BMMC also resulted in the up-regulation of CD23 and CD30 on the cell surface, as well as CD62L shedding. Finally, PGD(2) and DK-PGD(2) induced the migration of BMMC in vitro and in vivo in response to an intra-dermal DK-PGD(2) injection. Both these processes were inhibited by the CRT(h)2 antagonist. These results raise the possibility that the functional consequences of the PGD(2)-CRT(h)2 interaction on mast cells may be relevant in allergic inflammation. PMID:19346259

  4. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.

    PubMed Central

    Marra, F.; DeFranco, R.; Grappone, C.; Milani, S.; Pastacaldi, S.; Pinzani, M.; Romanelli, R. G.; Laffi, G.; Gentilini, P.

    1998-01-01

    Monocyte chemotactic protein (MCP)-1 is a chemoattractant and activator for circulating monocytes and T lymphocytes. We investigated MCP-1 protein and gene expression during chronic liver disease at different stages, using immunohistochemistry and in situ hybridization, respectively. In normal liver, a modest expression of MCP-1 was confined to few peri-sinusoidal cells and to bile duct epithelial cells. During chronic hepatitis, MCP-1 immunostaining and gene expression were evident in the inflammatory infiltrate of the portal tract. In tissue from patients with active cirrhosis, MCP-1 expression was clearly up-regulated and was present in the portal tract, in the epithelial cells of regenerating bile ducts, and in the active septa surrounding regenerating nodules. A combination of in situ hybridization for MCP-1 and immunohistochemistry showed that activated stellate cells and monocyte/macrophages contribute to MCP-1 expression in vivo together with bile duct epithelial cells. Comparison of serial sections of liver biopsies from patients with various degrees of necro-inflammatory activity showed that infiltration of the portal tracts with monocytes/macrophages is directly correlated with the expression of MCP-1. These data expand previous in vitro studies showing that secretion of MCP-1 may contribute to the formation and maintenance of the inflammatory infiltrate observed during chronic liver disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9466568

  5. Expression of fibroblast specific protein-1 in pleural tuberculosis and its clinical biological significance

    PubMed Central

    2014-01-01

    Background Fibroblast specific protein-1 (S100A4) is related with many fibrotic diseases, but its role in the pathogenesis of pleural fibrosis has not been fully elucidated. Then we aim to investigate the expression and effect of fibroblast specific protein-1 (S100A4) in pleural tuberculosis and, subsequently, pleural fibrosis. Methods The expression of S100A4 in pleura was examined in 30 patients with pleural tuberculosis and 5 control (disease-free) patients by immunohistochemistry using the streptavidin-peroxidase (S-P) conjugated method. Results The expression of S100A4 in pleura was mainly distributed in the nucleus and cytoplasm of fibroblasts and vascular endothelial cells, and the positive rate was 90.0% (27 out of 30 patients with pleural tuberculosis). There were no expressions of S100A4 in the control group. In the pleura of all 30 patients with pleural tuberculosis, S100A4 had a higher expression in the two- to eight-week duration of the disease. Conclusions S100A4 plays an important role in the phenotypic transformation of pleural mesothelial cells and the development of pleural fibrosis. PMID:24885536

  6. Pharmacological characterization of MK-7246, a potent and selective CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) antagonist.

    PubMed

    Gervais, Francois G; Sawyer, Nicole; Stocco, Rino; Hamel, Martine; Krawczyk, Connie; Sillaots, Susan; Denis, Danielle; Wong, Elizabeth; Wang, Zhaoyin; Gallant, Michel; Abraham, William M; Slipetz, Deborah; Crackower, Michael A; O'Neill, Gary P

    2011-01-01

    The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor that has been reported to modulate inflammatory responses in various rodent models of asthma, allergic rhinitis and atopic dermatitis. In this study, we describe the biological and pharmacological properties of {(7R)-7-[[(4-fluorophenyl)sulfonyl](methyl)amino]-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl}acetic acid (MK-7246), a novel synthetic CRTH2 antagonist. We show that MK-7246 1) has high affinity for the human, monkey, dog, rat, and mouse CRTH2, 2) interacts with CRTH2 in a reversible manner, 3) exhibits high selectivity over all prostanoid receptors as well as 157 other receptors and enzymes, 4) acts as a full antagonist on recombinant and endogenously expressed CRTH2, 5) demonstrates good oral bioavailability and metabolic stability in various animal species, 6) yields ex vivo blockade of CRTH2 on eosinophils in monkeys and sheep, and 7) significantly blocks antigen-induced late-phase bronchoconstriction and airway hyper-responsiveness in sheep. MK-7246 represents a potent and selective tool to further investigate the in vivo function of CRTH2. PMID:20943773

  7. Haem carrier protein 1 (HCP1): Expression and functional studies in cultured cells.

    PubMed

    Latunde-Dada, Gladys O; Takeuchi, Ken; Simpson, Robert J; McKie, Andrew T

    2006-12-22

    Haem released from digestion and breakdown of meat products provides an important source of dietary iron, which is readily absorbed in the proximal intestine. The recent cloning and characterization of a haem carrier protein 1 (HCP 1) has provided a candidate intestinal haem transporter. The current studies describe the expression and functional analysis of HCP1 in cultured Caco-2 cells, a commonly used model of human intestinal cells. HCP1 mRNA expression in other cell types was also studied. The uptake of (55)Fe labeled haem was determined in cells under different experimental conditions and HCP1 expression was measured by RT-PCR and immunohistochemistry. mRNA and protein expressions increased in Caco-2 cells transduced with HCP1 adenoviral plasmid, and consequently (55)Fe haem uptake was higher in these cells. Haem uptake was also increased in fully differentiated Caco-2 cells compared to undifferentiated cells. Preincubation of cells with desferrioxamine (DFO, to deplete cells of iron) had no effect on HCP1 expression or haem uptake. Treatment with CdCl(2) (to induce haem oxygenase, HO-1) enhanced HCP1 expression and increased haem uptake into the cells. HCP1 expression and function were found to be adaptive to the rate of haem degradation by HO-1. Furthermore, HCP1 expression in different cells implies a functional role in tissues other than the duodenum. PMID:17156779

  8. Glutamate Receptor Interacting Protein 1 Regulates CD4(+) CTLA-4 Expression and Transplant Rejection.

    PubMed

    Modjeski, K L; Levy, S C; Ture, S K; Field, D J; Shi, G; Ko, K; Zhu, Q; Morrell, C N

    2016-05-01

    PDZ domains are common 80- to 90-amino-acid regions named after the first three proteins discovered to share these domains: postsynaptic density 95, discs large, and zonula occludens. PDZ domain-containing proteins typically interact with the C-terminus of membrane receptors. Glutamate receptor interacting protein 1 (GRIP1), a seven-PDZ domain protein scaffold, regulates glutamate receptor surface expression and trafficking in neurons. We have found that human and mouse T cells also express GRIP1. T cell-specific GRIP1(-/-) mice >11 weeks old had prolonged cardiac allograft survival. Compared with wild-type T cells, in vitro stimulated GRIP1(-/-) T cells had decreased expression of activation markers and increased apoptotic surface marker expression. Surface expression of the strong T cell inhibitory molecule cytotoxic T lymphocyte antigen-4 (CTLA-4) was increased on GRIP1(-/-) T cells from mice >11 weeks old. CTLA-4 increases with T cell stimulation and its surface expression on GRIP1(-/-) T cells remained high after stimulation was removed, indicating a possible internalization defect in GRIP1-deficient T cells. CTLA-4-blocking antibody treatment following heart transplantation led to complete rejection in T cell GRIP1(-/-) mice, indicating that increased CTLA-4 surface expression contributed to the extended graft survival. Our data indicate that GRIP1 regulates T cell activation by regulating CTLA-4 surface expression. PMID:26601915

  9. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    SciTech Connect

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio . E-mail: harzate@servidor.unam.mx

    2007-07-06

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation.

  10. Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species

    PubMed Central

    Ro, Seung-Hyun; Nam, Myeongjin; Jang, Insook; Park, Hwan-Woo; Park, Haeli; Semple, Ian A.; Kim, Myungjin; Kim, Jeong Sig; Park, Haewon; Einat, Paz; Damari, Golda; Golikov, Maya; Feinstein, Elena; Lee, Jun Hee

    2014-01-01

    Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2−/− mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold- or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROS-mediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism. PMID:24825887

  11. Organ-selective regulation of vascular adhesion protein-1 expression in man.

    PubMed

    Arvilommi, A M; Salmi, M; Jalkanen, S

    1997-07-01

    Vascular adhesion protein-1 (VAP-1) is an endothelial molecule which mediates lymphocyte binding to endothelium in peripheral lymph nodes and at certain sites of inflammation. The expression of VAP-1 in vivo is strongly up-regulated in inflamed tissues, such as gut and skin. The purpose of this work was to examine the factors responsible for this induction of VAP-1. Since the expression of VAP-1 could not be induced in cultured endothelial cells with a large panel of mediators, we used an organ culture technique for the investigation of the regulation of VAP-1 expression in a more physiological micromilieu. Indeed, we found that the expression of endothelial VAP-1 could be up-regulated in human tonsillar tissue with interleukin (IL)-1, IL-4, tumor necrosis factor (TNF-alpha), interferon (IFN)-gamma and lipopolysaccharide, whereas histamine, thrombin, dibutyryl cAMP, N-formyl-Met-Leu-Phe (fMLP) and phorbol 12-myristate 13-acetate (PMA) had no effect. The induced VAP-1 protein was similar in molecular weight to the non-induced VAP-1, suggesting that VAP-1 synthesized de novo carries appropriate carbohydrate moieties. In contrast to tonsil organ culture, similar inductions performed with human appendix showed no up-regulation of VAP-1 expression, indicating that the regulation of VAP-1 expression exhibits organ-selective characteristics. Furthermore, in these tissues the smooth muscle cells, which constitutively express VAP-1, could not be stimulated to alter their level of expression of this molecule. In conclusion, the expression of VAP-1 can be markedly up-regulated with several mediators in tonsil but not in appendix organ culture, whereas cultured endothelial cells cannot be induced to express VAP-1. These results indicate that the expression of VAP-1 is regulated in a tissue- and cell type-selective manner, and a correct micromilieu is required for the up-regulation to occur. PMID:9247594

  12. Inhibition of antigen-induced airway inflammation and hyperresponsiveness in guinea pigs by a selective antagonist of "chemoattractant receptor homologous molecule expressed on Th2 cells" (CRTH2).

    PubMed

    Tasaki, Mamoru; Kobayashi, Miki; Tenda, Yoshiyuki; Tsujimoto, Susumu; Nakazato, Shoko; Numazaki, Mako; Hirano, Yasuno; Matsuda, Hiroshi; Terasaka, Tadashi; Miyao, Yasuhiro; Shimizu, Yasuaki; Hirayama, Yoshitaka

    2013-06-14

    Chemoattractant receptor homologous molecule expressed on T helper type 2 cells (CRTH2) is a PGD2 receptor found on eosinophils, basophils, and Th2 type T cells which exhibits chemotaxis and functions in activation cascades. However, while a number of CRTH2 antagonists, including ramatroban, are known to exert activity in certain animal models, activity in a guinea pig model of EA-induced airway hyperresponsiveness has not been demonstrated. The newly developed CRTH2 antagonist ASP5642 has shown antagonistic activity against human and guinea pig CRTH2 in previous studies and has also been found effective in treating guinea pig models of airway inflammation and airway hyperresponsiveness. While previous studies have used animals such as rats and mice to evaluate CRTH2 antagonist effects, ours is the first attempt to evaluate CRTH2 function in a guinea pig asthma model, which may prove useful in evaluating the compound's effects in humans, given the comparable airway function between the two species taken together, these data from the present study strongly suggest the utility of ASP5642 in investigating the role of CRTH2 in inflammatory responses and as a drug treatment for human asthma. PMID:23624353

  13. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast.

    PubMed Central

    Stuart, J A; Harper, J A; Brindle, K M; Jekabsons, M B; Brand, M D

    2001-01-01

    Uncoupling protein 1 (UCP1) from mouse was expressed in yeast and the specific (GDP-inhibitable) and artifactual (GDP-insensitive) effects on mitochondrial uncoupling were assessed. UCP1 provides a GDP-inhibitable model system to help interpret the uncoupling effects of high expression in yeast of other members of the mitochondrial carrier protein family, such as the UCP1 homologues UCP2 and UCP3. Yeast expressing UCP1 at modest levels (approx. 1 microg/mg of mitochondrial protein) showed no growth defect, normal rates of chemically uncoupled respiration and an increased non-phosphorylating proton conductance that was completely GDP-sensitive. The catalytic-centre activity of UCP1 in these yeast mitochondria was similar to that in mammalian brown-adipose-tissue mitochondria. However, yeast expressing UCP1 at higher levels (approx. 11 microg/mg of mitochondrial protein) showed a growth defect. Their mitochondria had depressed chemically uncoupled respiration rates and an increased proton conductance that was partly GDP-insensitive. Thus, although UCP1 shows native behaviour at modest levels of expression in yeast, higher levels (or rates) of expression can lead to an uncoupling that is not a physiological property of the native protein and is therefore artifactual. This observation might be important in the interpretation of results from experiments in which the functions of UCP1 homologues are verified by their ability to uncouple yeast mitochondria. PMID:11389685

  14. X-ray Structure of Engineered Human Aortic Preferentially Expressed Protein-1 (APEG-1)

    SciTech Connect

    Manjasetty,B.; Niesen, F.; Scheich, C.; Roske, Y.; Goetz, F.; Behlke, J.; Sievert, V.; Heinemann, U.; Buessow, K.

    2005-01-01

    Arterial smooth muscle cells (SMC) are essential for the formation and function of the cardiovascular system. Abnormalities in their growth can cause a wide range of human disorders such as atherosclerosis, the principal cause for heart failure, thus the leading cause for deaths in the western world. The molecular mechanisms that regulate SMC growth and differentiation are unclear partly due to the lack of specific markers and defined in vitro differentiation systems. The recently discovered Aortic Preferentially Expressed Protein-1 (APEG-1) may serve as a sensitive marker for vascular SMC differentiation. APEG-1 is expressed in differentiated vascular SMC in vivo and was found to be down-regulated rapidly in de-differentiated vascular SMC in vitro and in injured arteries in vivo.

  15. [Expression of cyclin-dependent kinase 2-associated protein 1 in chicken embryos of different sexes].

    PubMed

    Yang, Yu; Feng, Yan-Ping; Gong, Ping; Huang, Pan; Li, Shi-Jun; Peng, Xiu-Li; Gong, Yan-Zhang

    2009-09-01

    To investigate the expression and functions of cyclin-dependent kinase 2-associated protein 1 (cdk2ap1) screened by suppression subtractive hybridization in chicken embryo development, a pair of primers was designed to amplify the cdk2ap1 fragment by RT-PCR and subsequently the fragment obtained was cloned into the plasmid pGEM-T. Sense and antisense probes labeled with digoxigenin were generated using SP6 and T7 RNA polymerases, respectively, and used to examine cdk2ap1 expression in chicken embryos of both sexes by whole-mount in situ hybridization. In both sexes, cdk2ap1 was expressed in the head mesenchyme, rhombencephalon, optic vesicles, spinal neural tube, and forelimb of 4.0-day-old embryos and the expression in males was significantly higher than that in females. In addition, in the genital ridge and hindlimb of the 4.0-day-old chicken embryo, cdk2ap1 was obviously expressed in the males but not in females. It is supposed that cdk2ap1 may play a role in the sexual differentiation and development of gonad of chicken embryo. PMID:19819846

  16. Transcriptional and post‐transcriptional regulation of monocyte chemoattractant protein‐3 gene expression in human endothelial cells by phorbol ester and cAMP signalling

    PubMed Central

    Kondo, A; Isaji, S; Nishimura, Y; Tanaka, T

    2000-01-01

    Monocyte chemoattractant protein‐3 (MCP‐3) is one of the most broadly active chemokines, potentially inducing chemotaxis of all leucocytic cells. In the present study, we examined the regulation of MCP‐3 mRNA and protein production in endothelial cells by protein kinase C (PKC) activator, phorbol 12‐myristate 13‐acetate (PMA) and cAMP signalling. On stimulation of endothelial cells with 10 nm PMA, MCP‐3 mRNA increased to 300‐fold the basal level at 3 hr and rapidly declined to 0·2‐fold the basal level at 24 hr. PMA‐induced MCP‐3 mRNA and protein production of human endothelial cells were partially inhibited by pretreatment with the adenylate cyclase activator, forskolin, or membrane‐permeable cAMP derivative. The PMA‐induced MCP‐3 mRNA increase was almost abrogated when cells were pretreated with cycloheximide (CHX). Forskolin inhibited the transcription of PMA‐induced MCP‐3 gene expression. Following PMA stimulation for 3 hr, subsequent addition of actinomycin D suppressed the rapid decay of PMA‐induced MCP‐3 mRNA. These results suggest that PMA induces the transcriptional activation of the MCP‐3 gene through de novo protein synthesis and the rapid decay of PMA‐induced MCP‐3 mRNA through de novo synthesis of adenosine/uridine (AU)‐rich element binding proteins and cAMP signalling inhibits the PMA‐induced transcriptional activation of the MCP‐3 gene expression. PMID:10792504

  17. High expression of cellular retinol binding protein-1 in lung adenocarcinoma is associated with poor prognosis

    PubMed Central

    Doldo, Elena; Costanza, Gaetana; Ferlosio, Amedeo; Pompeo, Eugenio; Agostinelli, Sara; Bellezza, Guido; Mazzaglia, Donatella; Giunta, Alessandro; Sidoni, Angelo; Orlandi, Augusto

    2015-01-01

    Purpose Adenocarcinoma, the most common non-small cell lung cancer is a leading cause of death worldwide, with a low overall survival (OS) despite increasing attempts to achieve an early diagnosis and accomplish surgical and multimodality treatment strategies. Cellular retinol binding protein-1 (CRBP-1) regulates retinol bioavailability and cell differentiation, but its role in lung cancerogenesis remains uncertain. Experimental design CRBP-1 expression, clinical outcome and other prognostic factors were investigated in 167 lung adenocarcinoma patients. CRBP-1 expression was evaluated by immunohistochemistry of tissue microarray sections, gene copy number analysis and tumor methylation specific PCR. Effects of CRBP-1 expression on proliferation/apoptosis gene array, protein and transcripts were investigated in transfected A549 lung adenocarcinoma cells. Results CRBP-1High expression was observed in 62.3% of adenocarcinomas and correlated with increased tumor grade and reduced OS as an independent prognostic factor. CRBP-1 gene copy gain also associated with tumor CRBP-1High status and dedifferentiation. CRBP-1-transfected (CRBP-1+) A549 grew more than CRBP-1− A549 cells. At >1μM concentrations, all trans-retinoic acid and retinol reduced viability more in CRBP-1+ than in CRBP-1− A549 cells. CRBP-1+ A549 cells showed up-regulated RARα/ RXRα and proliferative and transcriptional genes including pAkt, pEGFR, pErk1/2, creb1 and c-jun, whereas RARβ and p53 were strongly down-regulated; pAkt/pErk/ pEGFR inhibitors counteracted proliferative advantage and increased RARα/RXRα, c-jun and CD44 expression in CRBP-1+ A549 cells. Conclusion CRBP-1High expression in lung adenocarcinoma correlated with increased tumor grade and reduced OS, likely through increased Akt/Erk/EGFR-mediated cell proliferation and differentiation. CRBP-1High expression can be considered an additional marker of poor prognosis in lung adenocarcinoma patients. PMID:26807202

  18. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells.

    PubMed

    Görgens, Sven W; Raschke, Silja; Holven, Kirsten Bjørklund; Jensen, Jørgen; Eckardt, Kristin; Eckel, Jürgen

    2013-05-01

    Follistatin-like protein 1 (Fstl1) is a secreted glycoprotein of the follistatin family. Fstl1 is secreted by C2C12 cells, and Akt1 over-expression in skeletal muscle leads to its induction in muscle and increased circulating levels. So far, secretion of Fstl1 by human myotubes and the effect of exercise on its circulating levels have not been investigated. Here, we examined both the regulation of Fstl1 expression and secretion in primary human skeletal muscle cells and the effect of acute exercise on Fstl1 serum concentrations in humans. We show that human myotubes express and secrete Fstl1 in a differentiation-dependent manner. Furthermore, IFNγ and IL-1β significantly increase Fstl1 secretion. Electrical pulse stimulation (EPS)-induced contractile activity of myotubes did not regulate Fstl1. Interestingly, we observed that 60 min cycling increased serum Fstl1 level by 22%. In conclusion, we demonstrate that Fstl1 is expressed and secreted by human myotubes and plasma Fstl1 levels are increased after exercise. PMID:23419164

  19. Dietary Soy Protein Isolate Ameliorates Atherosclerotic Lesions in Apolipoprotein E-Deficient Mice Potentially by Inhibiting Monocyte Chemoattractant Protein-1 Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-based diets reportedly protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of a soy-based diet was addressed using the apolipoprotein E knockout...

  20. High-level expression and characterization of a glycosylated human cementum protein 1 with lectin activity.

    PubMed

    Romo-Arévalo, Enrique; Arzate, Higinio; Montoya-Ayala, Gonzalo; Rodríguez-Romero, Adela

    2016-01-01

    This work aims to contribute to the knowledge of human cementum protein 1 (CEMP1), its conformational characteristics and influence during the biomineralization process. The results revealed that hrCEMP1 expressed in Pichia pastoris is a 2.4% glycosylated, thermostable protein which possesses a molecular mass of 28 770 Da. The circular dichroism spectrum indicated a secondary structure content of 28.6% of alpha-helix, 9.9% of beta-sheet and 61.5% of random-coil forms. Biological activity assays demonstrated that hrCEMP1 nucleates and regulates hydroxyapatite crystal growth. Hereby, it is demonstrated for the first time that CEMP1 has a (C-type) lectin-like activity and specifically recognizes mannopyranoside. The information produced by this biochemical and structural characterization may contribute to understand more fully the biological functions of CEMP1. PMID:26763148

  1. Prognostic Significance of EBV Latent Membrane Protein 1 Expression in Lymphomas: Evidence from 15 Studies

    PubMed Central

    Mao, Yuan; Lu, Mei Ping; Lin, Hong; Zhang, Da Wei; Liu, Ying; Li, Qing Dong; Lv, Zhi Gang; Xu, Jia Ren; Chen, Ren Jie; Zhu, Jin

    2013-01-01

    Background Epstein-Barr virus (EBV) infection has been associated with lymphoma development. EBV latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation and progression of different human cells, including lymphocytes. This meta-analysis investigated LMP1 expression with prognosis of patients with lymphoma. Methods The electronic databases of PubMed, Embase, and Chinese Biomedicine Databases were searched. There were 15 published studies available for a random effects model analysis. Quality assessment was performed using the Newcastle-Ottawa Quality Assessment Scale for cohort studies. A funnel plot was used to investigate publication bias, and sources of heterogeneity were identified by meta-regression analysis. The combined hazard ratios (HR) and their corresponding 95% confidence intervals of LMP1 expression were calculated by comparison to the overall survival. Results Overall, there was no statistical significance found between LMP1 expression and survival of lymphoma patients (HR 1.25 [95% CI, 0.92–1.68]). In subgroup analyses, LMP1 expression was associated with survival in patients with non-Hodgkin lymphoma (NHL) (HR  = 1.84, 95% CI: 1.02–3.34), but not with survival of patients with Hodgkin disease (HD) (HR  =  1.03, 95% CI: 0.74–1.44). In addition, significant heterogeneity was present and the meta-regression revealed that the outcome of analysis was mainly influenced by the cutoff value. Conclusions This meta-analysis demonstrated that LMP1 expression appears to be an unfavorable prognostic factor for overall survival of NHL patients. The data suggested that EBV infection and LMP1 expression may be an important factor for NHL development or progression. PMID:23613723

  2. Inhibiting activator protein-1 activity alters cocaine-induced gene expression and potentiates sensitization.

    PubMed

    Paletzki, R F; Myakishev, M V; Polesskaya, O; Orosz, A; Hyman, S E; Vinson, C

    2008-04-01

    We have expressed A-FOS, an inhibitor of activator protein-1 (AP-1) DNA binding, in adult mouse striatal neurons. We observed normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and subsequent cocaine administration. These results indicate that AP-1 suppresses this behavioral response to cocaine. We analyzed mRNA from the striatum before and 4 and 24 h after a single cocaine injection in both A-FOS and control striata using Affymetrix microarrays (430 2.0 Array) to identify genes mis-regulated by A-FOS that may mediate the increased locomotor sensitization to cocaine. A-FOS expression did not change gene expression in the basal state or 4 h following cocaine treatment relative to controls. However, 24 h after an acute cocaine treatment, 84 genes were identified that were differentially expressed between the A-FOS and control mice. Fifty-six genes are down-regulated while 28 genes are up-regulated including previously identified candidates for addiction including brain-derived neurotrophic factor and period homolog 1. Using a random sample of identified genes, quantitative PCR was used to verify the microarray studies. The chromosomal location of these 84 genes was compared with human genome scans of addiction to identify potential genes in humans that are involved in addiction. PMID:18355967

  3. Inositol-requiring protein 1 - X-box-binding protein 1 pathway promotes epithelial-mesenchymal transition via mediating snail expression in pulmonary fibrosis.

    PubMed

    Mo, Xiao-Ting; Zhou, Wen-Cheng; Cui, Wen-Hui; Li, De-Lin; Li, Liu-Cheng; Xu, Liang; Zhao, Ping; Gao, Jian

    2015-08-01

    Epithelial-mesenchymal transition (EMT) is a complex biological program during which cells loss epithelial phenotype and acquire mesenchymal features. EMT is thought to be involved in the pathogenesis of various fibrotic diseases including pulmonary fibrosis (PF). Recent studies suggest that endoplasmic reticulum (ER) stress is associated with EMT in the progression of PF. However, the exact mechanism is unclear. Here, we developed a PF model with bleomycin (BLM) administration in rats and conducted several simulation experiments in alveolar epithelial cell (AECs) RLE-6TN to unravel the role of inositol-requiring protein 1 (IRE1) - X-box-binding protein 1 (XBP1) signal pathway in ER stress-induced EMT in PF. First, we observed that ER stress was occurred in type II AECs accompanied by EMT in BLM-induced PF. Then we explored the role of IRE1-XBP1-snail pathway in transforming growth factor (TGF)-β1/tunicamycin (TM)-induced EMT. When TGF-β1/TM was treated on AECs, IRE1 and XBP1 were overexpressed, meanwhile, snail expression was upregulated accompanied with EMT. However, when IRE1 or XBP1 was knockdown, TGF-β1/TM-induced EMT were blocked while the expression of snail was inhibited. Then we silenced snail and found that TGF-β1/TM-induced EMT were also suppressed, but it had no effect on the up-regulated expression of IRE1 and XBP1. Thus, we concluded that IRE1-XBP1 pathway promotes EMT via mediating snail expression in PF. PMID:26065400

  4. Constitutive Nuclear Expression of Dentin Matrix Protein 1 Fails to Rescue the Dmp1-null Phenotype*

    PubMed Central

    Lin, Shuxian; Zhang, Qi; Cao, Zhengguo; Lu, Yongbo; Zhang, Hua; Yan, Kevin; Liu, Ying; McKee, Marc D.; Qin, Chunlin; Chen, Zhi; Feng, Jian Q.

    2014-01-01

    Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvβ3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as NLSDMP1) or to the extracellular matrix as the WT type (referred to as SPDMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted NLSDMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the SPDMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes. PMID:24917674

  5. Heterochromatin Protein 1 Binding Protein 3 Expression as a Candidate Marker of Intrinsic 5-Fluorouracil Resistance

    PubMed Central

    HADAC, JAMIE N.; MILLER, DEVON D.; GRIMES, IAN C.; CLIPSON, LINDA; NEWTON, MICHAEL A.; SCHELMAN, WILLIAM R.; HALBERG, RICHARD B.

    2016-01-01

    Background Despite receiving post-operative 5-fluorouracil (5-FU)-based chemotherapy, approximately 50% of patients with stage IIIC colon cancer experience recurrence. Currently, no molecular signature can predict response to 5-FU. Materials and Methods Mouse models of colon cancer have been developed and characterized. Individual tumors in these mice can be longitudinally monitored and assessed to identify differences between those that are responsive and those that are resistant to therapy. Gene expression was analyzed in serial biopsies that were collected before and after treatment with 5-FU. Colon tumors had heterogeneous responses to treatment with 5-FU. Microarray analysis of pretreatment biopsies revealed that Hp1bp3, a gene encoding heterochromatin protein 1 binding protein 3, was differentially expressed between sensitive and resistant tumors. Conclusion Using mouse models of human colorectal cancer, Hp1bp3 was identified as a candidate marker of intrinsic 5-FU resistance and may represent a potential biomarker for patient stratification or a target of clinical importance. PMID:26976970

  6. A comparative approach to understanding tissue-specific expression of uncoupling protein 1 expression in adipose tissue.

    PubMed

    Shore, Andrew; Emes, Richard D; Wessely, Frank; Kemp, Paul; Cillo, Clemente; D'Armiento, Maria; Hoggard, Nigel; Lomax, Michael A

    2012-01-01

    The thermoregulatory function of brown adipose tissue (BAT) is due to the tissue-specific expression of uncoupling protein 1 (UCP1) which is thought to have evolved in early mammals. We report that a CpG island close to the UCP1 transcription start site is highly conserved in all 29 vertebrates examined apart from the mouse and xenopus. Using methylation sensitive restriction digest and bisulfite mapping we show that the CpG island in both the bovine and human is largely un-methylated and is not related to differences in UCP1 expression between white and BAT. Tissue-specific expression of UCP1 has been proposed to be regulated by a conserved 5' distal enhancer which has been reported to be absent in marsupials. We demonstrate that the enhancer, is also absent in five eutherians as well as marsupials, monotremes, amphibians, and fish, is present in pigs despite UCP1 having become a pseudogene, and that absence of the enhancer element does not relate to BAT-specific UCP1 expression. We identify an additional putative 5' regulatory unit which is conserved in 14 eutherian species but absent in other eutherians and vertebrates, but again unrelated to UCP1 expression. We conclude that despite clear evidence of conservation of regulatory elements in the UCP1 5' untranslated region, this does not appear to be related to species or tissues-specific expression of UCP1. PMID:23293654

  7. Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines.

    PubMed

    Dijkhuis, Anne-Jan; Douwes, Jenny; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2003-07-31

    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in SK-N-AS cells. These two cell lines exhibited higher sphingolipid levels, compared to SK-N-DZ, which had the lowest activity of either ATP-binding cassette transporter protein. SK-N-DZ cells also differed in ganglioside composition with predominant expression of b-series gangliosides. In conclusion, these three neuroblastoma cell lines offer a good model system to study sphingolipid metabolism in relation to ATP-binding cassette transporter protein function. PMID:12885402

  8. [Aortic expression of monocyte chemotactic protein-1 (MCP-1) gene in rabbits with experimental atherosclerosis].

    PubMed

    Sekalska, Beata

    2003-01-01

    The theory of Ross describes atherosclerosis as a process induced by inflammatory reactions involving cytokines, cell adhesion molecules, and chemokines. The latter have been identified as the principal mediator of cell recruitment into the vascular wall when accumulating monocytes become a source of foam cells. The most potent monocyte attractant among known chemokines is the monocyte chemotactic protein-1 (MCP-1). This protein is synthesized in vivo by cells of the vascular wall and its expression is largely controlled by NF-kB nuclear transcription factor. The importance of inflammation for the induction and progression of atherosclerosis suggests that anti-inflammatory drugs could be a useful modality in this condition. The present work was undertaken to: 1) adapt the RT-PCR technique to measurements of MCP-1 gene expression in rabbit aorta, 2) assess MCP-1 gene expression in rabbit aorta during atherosclerosis induced with a cholesterol-rich diet, 3) evaluate the effect of ibuprofen on MCP-1 gene expression in rabbit aorta during atherosclerosis induced with a cholesterol-rich diet. The study was done in 72 rabbits assigned to eight even groups on the basis of body weight and starting cholesterol and triglyceride concentrations in serum. All rabbits were fed a standard chow. In some groups, the diet was supplemented with cholesterol and/or ibuprofen. Two months later rabbits in four groups, i.e. control (K2), control with ibuprofen (IK2), cholesterol-rich (M2) and cholesterol-rich with ibuprofen (IM2) were weighed and blood was sampled for measurements of cholesterol and triglyceride concentrations in serum. The liver, heart, kidneys and adrenals were collected at autopsy and weighed. Additionally, a fragment of the ascending aorta was obtained for RT-PCR. The extent of atherosclerosis in aorta was determined using planimetry. Another month later this procedure was repeated for the remaining groups K3, IK3, M3 and IM3. RT-PCR was applied to measure MCP-1 gene

  9. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    PubMed Central

    Scovell, William M

    2016-01-01

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  10. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression.

    PubMed

    Scovell, William M

    2016-05-26

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N' and N'') remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  11. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1.

    PubMed

    Lambe, Teresa; Carey, John B; Li, Yuanyuan; Spencer, Alexandra J; van Laarhoven, Arjan; Mullarkey, Caitlin E; Vrdoljak, Anto; Moore, Anne C; Gilbert, Sarah C

    2013-01-01

    Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8(+) T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8(+) T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants. PMID:23485942

  12. mRNA expression and protein localization of dentin matrix protein 1 during dental root formation.

    PubMed

    Toyosawa, S; Okabayashi, K; Komori, T; Ijuhin, N

    2004-01-01

    Dentin matrix protein 1 (DMP1) is an acidic phosphoprotein. DMP1 was initially detected in dentin and later in other mineralized tissues including cementum and bone, but the DMP1 expression pattern in tooth is still controversial. To determine the precise localization of DMP1 messenger RNA (mRNA) and the protein in the tooth, we performed in situ hybridization and immunohistochemical analyses using rat molars and incisors during various stages of root formation. During root dentin formation of molars, DMP1 mRNA was detected in root odontoblasts in parallel with mineralization of the dentin. However, the level of DMP1 mRNA expression in root odontoblasts decreased near the coronal part and was absent in coronal odontoblasts. DMP1 protein was localized along dentinal tubules and their branches in mineralized root dentin, and the distribution of DMP1 shifted from the end of dentinal tubules to the base of the tubules as dentin formation progressed. During the formation of the acellular cementum, DMP1 mRNA was detected in cementoblasts lining the acellular cementum where its protein was localized. During the formation of the cellular cementum, DMP1 mRNA was detected in cementocytes embedded in the cellular cementum but not in cementoblasts, and its protein was localized in the pericellular cementum of cementocytes including their processes. During dentin formation of incisors, DMP1 mRNA was detected in odontoblasts on the cementum-related dentin, where its protein was localized along dentinal tubules near the mineralization front. The localization of DMP1 mRNA and protein in dentin and cementum was related to their mineralization, suggesting that one of the functions of DMP1 may be involved in the mineralization of dentin and cementum during root formation. PMID:14751569

  13. Porcine dentin matrix protein 1: gene structure, cDNA sequence, and expression in teeth

    PubMed Central

    Kim, Jung-Wook; Yamakoshi, Yasuo; Iwata, Takanori; Hu, Yuan Yuan; Zhang, Hengmin; Hu, Jan C.-C.; Simmer, James P.

    2015-01-01

    Dentin matrix protein 1 (DMP1) is an acidic non-collagenous protein that is necessary for the proper biomineralization of bone, cartilage, cementum, dentin, and enamel. Dentin matrix protein 1 is highly phosphorylated and potentially glycosylated, but there is no experimental data identifying which specific amino acids are modified. For the purpose of facilitating the characterization of DMP1 from pig, which has the advantage of large developing teeth for obtaining protein in quantity and extensive structural information concerning other tooth matrix proteins, we characterized the porcine DMP1 cDNA and gene structure, raised anti-peptide immunoglobulins that are specific for porcine DMP1, and detected DMP1 protein in porcine tooth extracts and histological sections. Porcine DMP1 has 510 amino acids, including a 16-amino acid signal peptide. The deduced molecular weight of the secreted, unmodified protein is 53.5 kDa. The protein has 93 serines and 12 threonines in the appropriate context for phosphorylation, and four asparagines in a context suitable for glycosylation. Dentin matrix protein 1 protein bands with apparent molecular weights between 30 and 45 kDa were observed in partially purified dentin extracts. In developing teeth, immunohistochemistry localized DMP1 in odontoblasts and the dentinal tubules of mineralized dentin and in ameloblasts, but not in the enamel matrix. PMID:16460339

  14. Leukocyte chemoattractant activity of diacylglycerol

    SciTech Connect

    Wright, T.M.; Hoffman, R.D.; Nishijima, J.; Shin, H.S.

    1986-03-05

    Phosphatidylinositol breakdown with the generation of 1,2-diacylglycerol (1,2-DG) and inositol phosphates occurs in response to receptor mediated stimulation of lymphocytes and polymorphonuclear neutrophils (PMN). In the authors attempt to demonstrate the direct role of 1,2-DG in cell migration, they have found 1,2 dioctanoyl glycerol (1,2-C8DG) to be a chemoattractant for 6C3HED, a mouse thymic lymphoma, and human peripheral blood PMN's. The chemoattractant activity for both cell types was observed at concentrations from 0.5 to 10mM in an under agarose assay. The maximum effect of 1,2-C8DG on 6C3HED cells was similar to that of 1mM lysophosphatidylcholine and the maximum effect of 1,2-C8DG on PMN's was similar to that of 10/sup -7/M f-met-leu-phe. Other 1,2-DG's with acyl chains ranging from 6 to 18 carbons in length and 1-oleoyl-2-acetyl-glycerol were also chemoattractants for 6C3HED, although their activities were less than 1,2-C8DG. In addition, phorbol myristate acetate (PMA), another activator of protein kinase C, was a chemoattractant for 6C3HED and human PMN's. PMA was more potent than 1,2-C8DG for both 6C3HED and PMN's with chemoattractant activity in the range of 30nM to 1..mu..M. These studies support the direct role of 1,2-DG in the transduction of chemotactic stimuli in leukocytes and further suggest that the formation of diacylglycerol represents a common step in the migratory responses of lymphoid and myeloid cells.

  15. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells

    PubMed Central

    Sobolewski, Cyril; Sanduja, Sandhya; Blanco, Fernando F.; Hu, Liangyan; Dixon, Dan A.

    2015-01-01

    The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer. PMID:26343742

  16. 15d-prostaglandin J2 enhancement of nerve growth factor-induced neurite outgrowth is blocked by the chemoattractant receptor- homologous molecule expressed on T-helper type 2 cells (CRTH2) antagonist CAY10471 in PC12 cells.

    PubMed

    Hatanaka, Michiyoshi; Shibata, Norihiro; Shintani, Norihito; Haba, Ryota; Hayata, Atsuko; Hashimoto, Hitoshi; Baba, Akemichi

    2010-01-01

    The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is the most recently identified prostaglandin (PG) receptor for both PGD(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). We examined the mechanism by which 15d-PGJ(2) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. CAY10471 (CRTH2 antagonist) inhibited both the neurite-promotion and p38 mitogen-activated protein (MAP) kinase phosphorylation induced by 15d-PGJ(2). In contrast, 13,14-dihydro-15-keto-PGD(2 )(DK-PGD(2)) (selective CRTH2 agonist) stimulated its phosphorylation but failed to produce neurite-promoting effects. These suggest, for the first time, the action of 15d-PGJ(2) is mediated by CRTH2, although the CRTH2 activation alone is insufficient for the underlying action. PMID:20424389

  17. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  18. Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli

    PubMed Central

    Flick, Kirsten; Ahuja, Sanjay; Chene, Arnaud; Bejarano, Maria Teresa; Chen, Qijun

    2004-01-01

    Background The expression of recombinant proteins in Escherichia coli is an important and frequently used tool within malaria research, however, this method remains problematic. High A/T versus C/G content and frequent lysine and arginine repeats in the Plasmodium falciparum genome are thought to be the main reason for early termination in the mRNA translation process. Therefore, the majority of P. falciparum derived recombinant proteins is expressed only as truncated forms or appears as insoluble inclusion bodies within the bacterial cells. Methods Several domains of PfEMP1 genes obtained from different P. falciparum strains were expressed in E. coli as GST-fusion proteins. Expression was carried out under various culture conditions with a main focus on the time point of induction in relation to the bacterial growth stage. Results and conclusions When expressed in E. coli recombinant proteins derived from P. falciparum sequences are often truncated and tend to aggregate what in turn leads to the formation of insoluble inclusion bodies. The analysis of various factors influencing the expression revealed that the time point of induction plays a key role in successful expression of A/T rich sequences into their native conformation. Contrary to recommended procedures, initiation of expression at post-log instead of mid-log growth phase generated significantly increased amounts of soluble protein of a high quality. Furthermore, these proteins were shown to be functionally active. Other factors such as temperature, pH, bacterial proteases or the codon optimization for E. coli had little or no effect on the quality of the recombinant protein, nevertheless, optimizing these factors might be beneficial for each individual construct. In conclusion, changing the timepoint of induction and conducting expression at the post-log stage where the bacteria have entered a decelerated growth phase, greatly facilitates and improves the expression of sequences containing rare codons

  19. Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1.

    PubMed

    Liu, Guo Xia; Xuan, Ning; Chu, Dong; Xie, Hong Yan; Fan, Zhong Xue; Bi, Yu Ping; Picimbon, Jean-François; Qin, Yu Chuan; Zhong, Su Ting; Li, Yao Fa; Gao, Zhan Lin; Pan, Wen Liang; Wang, Guo Ying; Rajashekar, Balaji

    2014-03-01

    Chemosensory proteins (CSPs) are a group of small soluble proteins found so far exclusively in arthropod species. These proteins act in chemical communication and perception. In this study, a gene encoding the Type 1 CSP (BtabCSP1) from the agricultural pest Bemisia tabaci (whitefly) was analyzed to understand sequence variation and expression specificity in different biotypes. Sequence analysis of BtabCSP1 showed significant differences between the two genetically characterized biotypes, B and Q. The B-biotype had a larger number of BtabCSP1 mutations than the Q-biotype. Similar to most other CSPs, BtabCSP1 was more expressed in the head than in the rest of the body. One-step RT-PCR and qPCR analysis on total messenger RNA showed that biotype-Q had higher BtabCSP1 expression levels than biotype-B. Females from a mixed field-population had high levels of BtabCSP1 expression. The interaction of BtabCSP1 with the insecticide thiamethoxam was investigated by analyzing the BtabCSP1 expression levels following exposure to the neonicotinoid, thiamethoxam, in a time/dose-response study. Insecticide exposure increased BtabCSP1 expression (up to tenfold) at 4 and 24 h following 50 or 100 g/ml treatments. PMID:24478049

  20. Expression of Babesia bovis rhoptry-associated protein 1 (RAP1) in Brucella abortus S19.

    PubMed

    Sabio y García, Julia V; Farber, Marisa; Carrica, Mariela; Cravero, Silvio; Macedo, Gilson C; Bigi, Fabiana; Oliveira, Sergio C; Rossetti, Osvaldo; Campos, Eleonora

    2008-05-01

    Brucella abortus strain 19 (live vaccine) induces a strong humoral and cellular immune response and therefore, it is an attractive vector for the delivery of heterologous antigens. The objective of the present study was to express the rhoptry-associated protein (RAP1) of Babesia bovis in B. abortus S19, as a model for heterologous expression of immunostimulatory antigens from veterinary pathogens. A plasmid for the expression of recombinant proteins fused to the aminoterminal of the outer membrane lipoprotein OMP19 was created, pursuing the objective of increasing the immunogenicity of the recombinant antigen being expressed by its association to a lipid moiety. Recombinant strains of B. abortus S19 expressing RAP1 as a fusion protein either with the first amino acids of beta-galactosidase (S19pBB-RAP1) or B. abortus OMP19 (S19pBB19-RAP1) were generated. Plasmid stability and the immunogenicity of the heterologous proteins were analyzed. Mice immunized with S19pBB-RAP1 or S19pBB19-RAP1 developed specific humoral immune response to RAP1, IgG2a being the predominant antibody isotype. Furthermore, a specific cellular immune response to recombinant RAP1 was elicited in vitro by lymphocytes from mice immunized with both strains. Therefore, we concluded that B. abortus S19 expressing RAP1 is immunostimulatory and may provide the basis for combined heterologous vaccines for babesiosis and brucellosis. PMID:18462974

  1. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression

    PubMed Central

    Borin, Thaiz Ferraz; Arbab, Ali Syed; Gelaleti, Gabriela Bottaro; Ferreira, Lívia Carvalho; Moschetta, Marina Gobbe; Jardim-Perassi, Bruna Victorasso; Iskander, ASM; Varma, Nadimpalli Ravi S.; Shankar, Adarsh; Coimbra, Verena Benedick; Fabri, Vanessa Alves; de Oliveira, Juliana Garcia; de Campos Zuccari, Debora Aparecida Pires

    2016-01-01

    The occurrence of metastasis, an important breast cancer prognostic factor, depends on cell migration/invasion mechanisms, which can be controlled by regulatory and effector molecules such as Rho-associated kinase protein (ROCK-1). Increased expression of this protein promotes tumor growth and metastasis, which can be restricted by ROCK-1 inhibitors. Melatonin has shown oncostatic, antimetastatic, and anti-angiogenic effects and can modulate ROCK-1 expression. Metastatic and nonmetastatic breast cancer cell lines were treated with melatonin as well as with specific ROCK-1 inhibitor (Y27632). Cell viability, cell migration/invasion, and ROCK-1 gene expression and protein expression were determined in vitro. In vivo lung metastasis study was performed using female athymic nude mice treated with either melatonin or Y27832 for 2 and 5 wk. The metastases were evaluated by X-ray computed tomography and single photon emission computed tomography (SPECT) and by immunohistochemistry for ROCK-1 and cytokeratin proteins. Melatonin and Y27632 treatments reduced cell viability and invasion/migration of both cell lines and decreased ROCK-1 gene expression in metastatic cells and protein expression in nonmetastatic cell line. The numbers of ‘hot’ spots (lung metastasis) identified by SPECT images were significantly lower in treated groups. ROCK-1 protein expression also was decreased in metastatic foci of treated groups. Melatonin has shown to be effective in controlling metastatic breast cancer in vitro and in vivo, not only via inhibition of the proliferation of tumor cells but also through direct antagonism of metastatic mechanism of cells rendered by ROCK-1 inhibition. When Y27632 was used, the effects were similar to those found with melatonin treatment. PMID:26292662

  2. Spatial Expression of Otolith Matrix Protein-1 and Otolin-1 in Normally and Kinetotically Swimming Fish.

    PubMed

    Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard

    2015-10-01

    Kinetosis (motion sickness) has been repeatedly shown to affect some fish of a given clutch following the transition from 1g to microgravity or from hypergravity to 1g. This susceptibility to kinetosis may be correlated with irregular inner ear otolith growth. Otoliths are mainly composed of calcium carbonate and matrix proteins, which play an important role in the process of otolith mineralization. Here, we examine the morphology of otoliths and the expression pattern of the major otolith proteins OMP-1 and otolin-1 in a series of hypergravity experiments. In the utricle, OMP-1 is present in centripetal (medial) and centrifugal (lateral) regions of the meshwork area. In the saccule, OMP-1 was expressed within a dorsal and a ventral narrow band of the meshwork area opposite to the periphery of the sulcus acusticus. In normal animals, the spatial expression pattern of OMP-1 reaches more posteriorly in the centrifugal aspect and is considerably broader in the centripetal portion of the utricle compared to kinetotic animals. However, otolin-1 was not expressed in the utricule. In the saccule, no differences were observed for either gene when comparing normal and kinetotically behaving fish. The difference in the utricular OMP-1 expression pattern between normally and kinetotically swimming fish indicates a different otolith morphology and thus a different geometry of the otoliths resting on the corresponding sensory maculae. As the utricle is the endorgan responsible for sensing gravity, the aberrant morphology of the utricular otoliths, based on OMP-1 expression, likely leads to the observed kinetotic behavior. PMID:26096990

  3. eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer

    PubMed Central

    Chao, Min-Wu; Wang, Li-Ting; Lai, Chin-Yu; Yang, Xiao-Ming; Cheng, Ya-Wen; Lee, Kuo-Hsiung

    2015-01-01

    eIF4E binding protein 1 (4E-BP1), is critical for cap-dependent and cap-independent translation. This study is the first to demonstrate that 4E-BP1 expression correlates with colorectal cancer (CRC) progression. Compared to its expression in normal colon epithelial cells, 4E-BP1 was upregulated in CRC cell lines and was detected in patient tumor tissues. Furthermore, high 4E-BP1 expression was statistically associated with poor prognosis. Hypoxia has been considered as an obstacle for cancer therapeutics. Our previous data showed that YXM110, a cryptopleurine derivative, exhibited anticancer activity via 4E-BP1 depletion. Here, we investigated whether YXM110 could inhibit protein synthesis under hypoxia. 4E-BP1 expression was notably decreased by YXM110 under hypoxic conditions, implying that cap-independent translation could be suppressed by YXM110. Moreover, YXM110 repressed hypoxia-inducible factor 1α (HIF-1α) expression, which resulted in decreased downstream vascular endothelial growth factor (VEGF) expression. These observations highlight 4E-BP1 as a useful biomarker and therapeutic target, indicating that YXM110 could be a potent CRC therapeutic drug. PMID:26204490

  4. Expression of early growth response protein 1 in vasopressin neurones of the rat anterior olfactory nucleus following social odour exposure

    PubMed Central

    Wacker, Douglas W; Tobin, Vicky A; Noack, Julia; Bishop, Valerie R; Duszkiewicz, Adrian J; Engelmann, Mario; Meddle, Simone L; Ludwig, Mike

    2010-01-01

    The anterior olfactory nucleus (AON), a component of the main olfactory system, is a cortical region that processes olfactory information and acts as a relay between the main olfactory bulbs and higher brain regions such as the piriform cortex. Utilizing a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we have discovered a population of vasopressin neurones in the AON. These vasopressin neurones co-express vasopressin V1 receptors. They also co-express GABA and calbinin-D28k indicating that they are neurochemically different from the newly described vasopressin neurons in the main olfactory bulb. We utilized the immediate early gene product, early growth response protein 1 (Egr-1), to examine the functional role of these vasopressin neurons in processing social and non-social odours in the AON. Exposure of adult rats to a conspecific juvenile or a heterospecific predator odour leads to increases in Egr-1 expression in the AON in a subregion specific manner. However, only exposure to a juvenile increases Egr-1 expression in AON vasopressin neurons. These data suggest that vasopressin neurones in the AON may be selectively involved in the coding of social odour information. PMID:20921194

  5. Reduced expression of plasma membrane calcium ATPase 2 and collapsin response mediator protein 1 promotes death of spinal cord neurons.

    PubMed

    Kurnellas, M P; Li, H; Jain, M R; Giraud, S N; Nicot, A B; Ratnayake, A; Heary, R F; Elkabes, S

    2010-09-01

    The mechanisms underlying neuronal pathology and death in the spinal cord (SC) during inflammation remain elusive. We previously showed the important role of plasma membrane calcium ATPases (PMCAs) in the survival of SC neurons, in vitro. We also postulated that a decrease in PMCA2 expression could cause neuronal death during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The current studies were undertaken to define the specific contribution of PMCA2 to degeneration of SC neurons, the effectors downstream to PMCA2 mediating neuronal death and the triggers that reduce PMCA2 expression. We report that knockdown of PMCA2 in SC neurons decreases collapsin response mediator protein 1 (CRMP1) levels. This is followed by cell death. Silencing of CRMP1 expression also leads to neuronal loss. Kainic acid reduces both PMCA2 and CRMP1 levels and induces neuronal death. Administration of an alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate receptor antagonist, at onset or peak of EAE, restores the decreased PMCA2 and CRMP1 levels to control values and ameliorates clinical deficits. Thus, our data link the reduction in PMCA2 expression with perturbations in the expression of CRMP1 and the ensuing death of SC neurons. This represents an additional mechanism underlying AMPA/kainate receptor-mediated excitotoxicity with relevance to neurodegeneration in EAE. PMID:20489728

  6. Interleukin-1β stimulates macrophage inflammatory protein-1α and -1β expression in human neuronal cells (NT2-N)

    PubMed Central

    Guo, Chang-Jiang; Douglas, Steven D.; Lai, Jian-Ping; Pleasure, David E.; Li, Yuan; Williams, Marge; Bannerman, Peter; Song, Li; Ho, Wen-Zhe

    2014-01-01

    Chemokines are important mediators in immune responses and inflammatory processes of neuroimmunologic and infectious diseases. Although chemokines are expressed predominantly by cells of the immune system, neurons also express chemokines and chemokine receptors. We report herein that human neuronal cells (NT2-N) produce macrophage inflammatory protein-1α and -1β (MIP-1α and MIP-1β), which could be enhanced by interleukin (IL)-1β at both mRNA and protein levels. The addition of supernatants from human peripheral blood monocyte-derived macrophage (MDM) cultures induced MIP-1β mRNA expression in NT2-N cells. Anti-IL-1β antibody removed most, but not all, of the MDM culture supernatant-induced MIP-1β mRNA expression in NT2-N cells, suggesting that IL-1β in the MDM culture supernatants is a major factor in the induction of MIP-1β expression. Investigation of the mechanism(s) responsible for IL-1β-induced MIP-1α and -1β expression demonstrated that IL-1β activated nuclear factor kappa B (NF-κB) promoter-directed luciferase activity in NT2-N cells. Caffeic acid phenethyl ester, a potent and specific inhibitor of activation of NF-κB, not only blocked IL-1β-induced activation of the NF-κB promoter but also decreased IL-1β-induced MIP-1α and -1β expression in NT2-N cells. These data suggest that NF-κB is at least partially involved in the IL-1β-mediated action on MIP-1α and -1β in NT2-N cells. IL-1β-mediated up-regulation of β-chemokine expression may have important implications in the immuno-pathogenesis of inflammatory diseases in the CNS. PMID:12603824

  7. Expression of a Secreted Fibroblast Growth Factor Binding Protein-1 (FGFBP1) in Angioproliferative Kaposi Sarcoma

    PubMed Central

    Ray, Patricio E; Al-Attar, Ali; Liu, Xue-Hui; Das, Jharna R; Tassi, Elena; Wellstein, Anton

    2014-01-01

    Objective Kaposi’s sarcoma (KS) is an angioproliferative disease frequently seen in patients with the acquired immunodeficiency syndrome (AIDS). Previous studies suggest that the HIV-1 protein Tat and Fibroblast Growth Factor 2 (FGF-2) have synergistic angiogenic effects in AIDS-KS tumors. However, the mechanisms by which FGF-2 is released and activated in KS tumors are not clearly defined. We carried out this study to determine whether an FGF-binding protein (FGFBP1 or BP1) that enhances the angiogenic activity of FGF-2 is expressed in AIDS-KS tumors, and to define whether BP1, FGF-2, and HIV-Tat protein-protein interactions could play a potential clinically role in the pathogenesis of AIDS-KS. Methods BP1 was localized in AIDS-KS lesions by immunohistochemistry and in situ hybridization studies. The binding of radiolabeled FGF-2 to His-tagged BP1 or the FGF-receptor 1 was assessed in the presence and absence of HIV-Tat and other viral proteins. Mice carrying tetracycline-regulated BP1 transgene mice were used to determine whether activation of BP1 during wound healing induces KS-like lesions. Results BP1 expression was detected in AIDS-KS tumor keratinocytes, spindle cells, and infiltrating mononuclear cells. In addition, HIV-Tat competed for the binding of FGF-2 to immobilized BP1, but does not affect the interactions of FGF-2 with its high affinity receptor (FGFR-1). In contrast, two other HIV-proteins, Nef and gp120, did not affect the binding of FGF-2 to BP1 or to FGFR-1. Finally, up-regulation of BP1 expression in tetracycline-regulated –conditional BP1 transgenic mice subjected to skin wounds, induced KS-like skin lesions. Conclusion Taking into consideration the results of previous studies showing that both HIV-Tat and BP1 enhance the mitogenic and angiogenic activity of locally-stored FGF-2, both in vitro and in vivo, our findings suggest a novel mechanism by which the release and activity of FGFs can be modulated in AIDS-KS tumors by HIV-Tat as well

  8. Specific protein 1 depletion attenuates glucose uptake and proliferation of human glioma cells by regulating GLUT3 expression

    PubMed Central

    ZHENG, CHUANYI; YANG, KUN; ZHANG, MAOYING; ZOU, MINGMING; BAI, ENQI; MA, QUANHONG; XU, RUXIANG

    2016-01-01

    It has been reported previously that the expression of glucose transporter member 3 (GLUT3) is increased in malignant glioma cells compared with normal glial cells. However, the regulating mechanism that causes this phenomenon remains unknown. The present study investigated the regulating role of transcription factor specific protein 1 (Sp1) in GLUT3 expression in a human glioma cell line. In the present study, Sp1 was identified to directly bind to the GLUT3 5′-untranslated region in human glioma U251 cells. Small interfering RNA- and the Sp1-inhibitor mithramycin A-mediated Sp1 knockdown experiments revealed that Sp1 depletion decreased glucose uptake and inhibited cell growth and invasion of U251 cells by downregulating GLUT3 expression. Therefore Sp1 is an important positive regulator for the expression of GLUT3 in human glioma cells, and may explain the overexpression of GLUT3 in U251 cells. These results suggest that Sp1 may have a role in glioma treatment. PMID:27347112

  9. Expression, purification and characterization of recombinant severe acute respiratory syndrome coronavirus non-structural protein 1

    PubMed Central

    Brucz, Kimberly; Miknis, Zachary J.; Schultz, L. Wayne; Umland, Timothy C.

    2007-01-01

    The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering. PMID:17187987

  10. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells.

    PubMed

    Zhu, J J; Luo, J; Xu, H F; Wang, H; Loor, J J

    2016-06-01

    Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells. PMID:26995134

  11. Expression of the Domain Cassette 8 Plasmodium falciparum Erythrocyte Membrane Protein 1 Is Associated with Cerebral Malaria in Benin

    PubMed Central

    Bertin, Gwladys I.; Lavstsen, Thomas; Guillonneau, François; Doritchamou, Justin; Wang, Christian W.; Jespersen, Jakob S.; Ezimegnon, Sem; Fievet, Nadine; Alao, Maroufou J.; Lalya, Francis; Massougbodji, Achille; Ndam, Nicaise Tuikue; Theander, Thor G.; Deloron, Philippe

    2013-01-01

    Background Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a highly polymorphic adherence receptor expressed on the surface of infected erythrocytes. Based on sequence homology PfEMP-1 variants have been grouped into three major groups A-C, the highly conserved VAR2CSA variants, and semi-conserved types defined by tandem runs of specific domains (“domain cassettes” (DC)). The PfEMP-1 type expressed determines the adherence phenotype, and is associated with clinical outcome of infection. Methods Parasite isolates from Beninese children or women presenting with, respectively, CM or PAM were collected along with samples from patients with uncomplicated malaria (UM). We assessed the transcript level of var genes by RT-qPCR and the expression of PfEMP-1 proteins by LC-MS/MS. Results Var genes encoding DC8 and Group A PfEMP-1 were transcribed more often and at higher levels in cerebral malaria vs. uncomplicated malaria patients. LC-MS/MS identified peptides from group A, DC8 PfEMP-1 more frequently in cerebral malaria than in uncomplicated malaria and pregnancy-associated malaria samples. Conclusion This is the first study to show association between PfEMP-1 subtype and disease outcome by direct analysis of parasites proteome. The results corroborate that group A and specifically the PfEMP-1 types DC8 are universally associated with cerebral malaria. This is a crucial observation for promoting studies on malaria pathogenesis. PMID:23922654

  12. Human eosinophils can express the cytokines tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha.

    PubMed Central

    Costa, J J; Matossian, K; Resnick, M B; Beil, W J; Wong, D T; Gordon, J R; Dvorak, A M; Weller, P F; Galli, S J

    1993-01-01

    By in situ hybridization, 44-100% of the blood eosinophils from five patients with hypereosinophilia and four normal subjects exhibited intense hybridization signals for TNF-alpha mRNA. TNF-alpha protein was detectable by immunohistochemistry in blood eosinophils of hypereosinophilic subjects, and purified blood eosinophils from three atopic donors exhibited cycloheximide-inhibitable spontaneous release of TNF-alpha in vitro. Many blood eosinophils (39-91%) from hypereosinophilic donors exhibited intense labeling for macrophage inflammatory protein-1 alpha (MIP-1 alpha) mRNA, whereas eosinophils of normal donors demonstrated only weak or undetectable hybridization signals for MIP-1 alpha mRNA. Most tissue eosinophils infiltrating nasal polyps were strongly positive for both TNF-alpha and MIP-1 alpha mRNA. By Northern blot analysis, highly enriched blood eosinophils from a patient with the idiopathic hypereosinophilic syndrome exhibited differential expression of TNF-alpha and MIP-1 alpha mRNA. These findings indicate that human eosinophils represent a potential source of TNF-alpha and MIP-1 alpha, that levels of expression of mRNA for both cytokines are high in the blood eosinophils of hypereosinophilic donors and in eosinophils infiltrating nasal polyps, that the eosinophils of normal subjects express higher levels of TNF-alpha than MIP-1 alpha mRNA, and that eosinophils purified from the blood of atopic donors can release TNF-alpha in vitro. Images PMID:8514874

  13. Novel nuclear protein ALC-INTERACTING PROTEIN1 is expressed in vascular and mesocarp cells in Arabidopsis.

    PubMed

    Wang, Fang; Shi, Dong-Qiao; Liu, Jie; Yang, Wei-Cai

    2008-07-01

    Pod shattering is an agronomical trait that is a result of the coordinated action of cell differentiation and separation. In Arabidopsis, pod shattering is controlled by a complex genetic network in which ALCATRAZ (ALC), a member of the basic helix-loop-helix family, is critical for cell separation during fruit dehiscence. Herein, we report the identification of ALC-INTERACTING PROTEIN1 (ACI1) via the yeast two-hybrid screen. ACI1 encodes a nuclear protein with a lysine-rich domain and a C-terminal serine-rich domain. ACI1 is mainly expressed in the vascular system throughout the plant and mesocarp of the valve in siliques. Our data showed that ACI1 interacts strongly with the N-terminal portion of ALC in yeast cells and in plant cells in the nucleus as demonstrated by bimolecular fluorescence complementation assay. Both ACI1 and ALC share an overlapping expression pattern, suggesting that they likely function together in planta. However, no detectable phenotype was found in plants with reduced ACI1 expression by RNA interference technology, suggesting that ACI1 may be redundant. Taken together, these data indicate that ALC may interact with ACI1 and its homologs to control cell separation during fruit dehiscence in Arabidopsis. PMID:18713402

  14. Association between p53-binding protein 1 expression and genomic instability in oncocytic follicular adenoma of the thyroid.

    PubMed

    Mussazhanova, Zhanna; Akazawa, Yuko; Matsuda, Katsuya; Shichijo, Kazuko; Miura, Shiro; Otsubo, Ryota; Oikawa, Masahiro; Yoshiura, Koh-Ichiro; Mitsutake, Norisato; Rogounovitch, Tatiana; Saenko, Vladimir; Kozykenova, Zhanna; Zhetpisbaev, Bekbolat; Shabdarbaeva, Dariya; Sayakenov, Nurlan; Amantayev, Bakanay; Kondo, Hisayoshi; Ito, Masahiro; Nakashima, Masahiro

    2016-05-31

    Oncocytic follicular adenomas (FAs) of the thyroid are neoplasms of follicular cell origin that are predominantly composed of large polygonal cells with eosinophilic and granular cytoplasm. However, the pathological characteristics of these tumors are largely unexplored. Both the initiation and progression of cancer can be caused by an accumulation of genetic mutations that can induce genomic instability. Thus, the aim of this study was to evaluate the extent of genomic instability in oncocytic FA. As the presence of p53-binding protein 1 (53BP1) in nuclear foci has been found to reflect DNA double-strand breaks that are triggered by various stresses, the immunofluorescence expression pattern of 53BP-1 was assessed in oncocytic and conventional FA. The association with the degree of DNA copy number aberration (CNA) was also evaluated using array-based comparative genomic hybridization. Data from this study demonstrated increased 53BP1 expression (i.e., "unstable" expression) in nuclear foci of oncocytic FA and a higher incidence of CNAs compared with conventional FA. There was also a particular focus on the amplification of chromosome 1p36 in oncocytic FA, which includes the locus for Tumor protein 73, a member of the p53 family implicated as a factor in the development of malignancies. Further evaluations revealed that unstable 53BP1 expression had a significant positive correlation with the levels of expression of Tumor protein 73. These data suggest a higher level of genomic instability in oncocytic FA compared with conventional FA, and a possible relationship between oncocytic FA and abnormal amplification of Tumor protein 73. PMID:26935218

  15. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression

    PubMed Central

    Narayanan, Krishna; Ramirez, Sydney I.; Lokugamage, Kumari G.; Makino, Shinji

    2014-01-01

    The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection. PMID:25432065

  16. Expression of SPARC like protein 1 (SPARCL1), extracellular matrix-associated protein is down regulated in gastric adenocarcinoma

    PubMed Central

    Jakharia, Aniruddha; Borkakoty, Biswajyoti

    2016-01-01

    Background SPARC-like protein 1 (SPARCL1/Hevin), a member of the SPARC family is defined by the presence of a highly acidic domain-I, a follistatin-like domain, and an extracellular calcium (EC) binding domain. SPARCL1 has been shown to be down-regulated in many types of cancer and may serve as a negative regulator of cell growth and proliferation. Methods Both tumor and adjacent normal tissue were collected from patients with gastric adenocarcinoma. Monoclonal antibody developed against recombinant SPARCL1 was used to analyze the expression of SPARCL1 by immunohisto chemical and western blotting (WB) analysis. Results The expression of SPARCL1 was found to be significantly lower or negligible in gastric adenocarcinoma tissues in nearly all of the cases in comparison with adjacent normal tissue. This comparison was found to be independent of the patient’s age, sex, and stage of cancer. Conclusions We postulate that down regulation of SPARCL1 may be related to inactivation of its tumor suppressor functions and might play an important role in the development of gastric adenocarcinoma. PMID:27034797

  17. Prophylactic effects of the histamine H1 receptor antagonist epinastine and the dual thromboxane A2 receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells antagonist ramatroban on allergic rhinitis model in mice.

    PubMed

    Suzuki, Yuh; Inoue, Toshio; Yamamoto, Atsuki; Sugimoto, Yukio

    2011-01-01

    The prophylactic use of anti-allergic drugs has been proposed to be effective in the treatment of seasonal allergic rhinitis in humans. However, there is little information regarding the prophylactic effect of thromboxane A(2) (TXA(2)) receptor antagonist on allergic rhinitis. Recent studies revealed that a TXA(2) receptor antagonist ramatroban could block the prostaglandin D(2) (PGD(2)) receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). In the present study, we investigated the prophylactic effects of the histamine H(1) receptor antagonist epinastine and the TXA(2) receptor antagonist ramatroban and seratrodast on mouse models of allergic rhinitis. Female BALB/c mice were sensitized by an intraperitoneal injection of ovalbumin and alum on days 0, 5, 14 and 21. Seven days later, mice were sensitized by intranasal application of ovalbumin thrice a week. Drugs were administered once a day from day 22. The severity of allergic rhinitis was assessed by determining the extent of 2 nasal allergic symptoms (sneezing and nasal rubbing). Histamine sensitivity and eosinophil infiltration into the nasal mucosa were also determined. Epinastine and ramatroban significantly reduced nasal symptoms and the number of eosinophils in the nasal mucosa. Seratrodast showed no effect on nasal symptoms and eosinophil infiltration into the nasal mucosa. In addition, histamine sensitivity was reduced by epinastine and ramatroban. These results indicate that epinastine and ramatroban induce the prophylactic effect on allergic rhinitis. PMID:21467637

  18. Mast Cell Chemotaxis – Chemoattractants and Signaling Pathways

    PubMed Central

    Halova, Ivana; Draberova, Lubica; Draber, Petr

    2012-01-01

    Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems. PMID:22654878

  19. Porphyromonas gingivalis induces receptor activator of NF-kappaB ligand expression in osteoblasts through the activator protein 1 pathway.

    PubMed

    Okahashi, Nobuo; Inaba, Hiroaki; Nakagawa, Ichiro; Yamamura, Taihei; Kuboniwa, Masae; Nakayama, Koji; Hamada, Shigeyuki; Amano, Atsuo

    2004-03-01

    Porphyromonas gingivalis, an important periodontal pathogen, is closely associated with inflammatory alveolar bone resorption, and several components of the organism such as lipopolysaccharides have been reported to stimulate production of cytokines that promote inflammatory bone destruction. We investigated the effect of infection with viable P. gingivalis on cytokine production by osteoblasts. Reverse transcription-PCR and real-time PCR analyses revealed that infection with P. gingivalis induced receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) mRNA expression in mouse primary osteoblasts. Production of interleukin-6 was also stimulated; however, osteoprotegerin was not. SB20350 (an inhibitor of p38 mitogen-activated protein kinase), PD98059 (an inhibitor of classic mitogen-activated protein kinase kinase, MEK1/2), wortmannin (an inhibitor of phosphatidylinositol 3 kinase), and carbobenzoxyl-leucinyl-leucinyl-leucinal (an inhibitor of NF-kappaB) did not prevent the RANKL expression induced by P. gingivalis. Degradation of inhibitor of NF-kappaB-alpha was not detectable; however, curcumin, an inhibitor of activator protein 1 (AP-1), prevented the RANKL production induced by P. gingivalis infection. Western blot analysis revealed that phosphorylation of c-Jun, a component of AP-1, occurred in the infected cells, and an analysis of c-Fos binding to an oligonucleotide containing an AP-1 consensus site also demonstrated AP-1 activation in infected osteoblasts. Infection with P. gingivalis KDP136, an isogenic deficient mutant of arginine- and lysine-specific cysteine proteinases, did not stimulate RANKL production. These results suggest that P. gingivalis infection induces RANKL expression in osteoblasts through AP-1 signaling pathways and cysteine proteases of the organism are involved in RANKL production. PMID:14977979

  20. Expression and regulation of the macrophage inflammatory protein-1 alpha gene by nicotine in rat alveolar macrophages.

    PubMed

    Chong, Inn-Wen; Lin, Shiu-Ru; Hwang, Jhi-Jhu; Huang, Ming-Shyan; Wang, Tung-Heng; Hung, Jen-Yu; Paulauskis, Joseph D

    2002-01-01

    Cigarette smoking causes inflammation mainly confined to the airway and lung. Nicotine is one of the primary constituents in cigarette smoke. Alveolar macrophages apparently play a pivotal role in mediating pulmonary inflammation via the production of chemokines. Macrophage inflammatory protein-1 alpha (MIP-1 alpha), a member of CC chemokines, has been shown to contribute to monocyte/macrophage and neutrophil chemotaxis and activation. Our previous work demonstrated that MIP-1 alpha mRNA expression in macrophages is induced by a variety of stimuli. In the present study, we further investigate whether nicotine can regulate the gene expression of MIP-1 alpha in macrophages and determine the mechanism leading to increased expression. A rat alveolar macrophage (RAM) cell line, NR8383, was treated with nicotine at a dose of 3.1, 31, 310 microM, or 3.1 mM. Northern blot analysis showed that the induction of MIP-1 alpha mRNA expression was dose-dependent. To define the time course of the inflammatory response, RAM cells were exposed to 31 microM nicotine, MIP-1 alpha mRNA was induced as early as 1 h after treatment, was maximally expressed at 4 and 6 hours, and reduced by 8 hours. Western blot analysis demonstrated a single band with an estimated molecular weight of 10 kD for MIP-1 alpha which was induced after nicotine treatment, suggesting that expression of MIP-1 alpha mRNA could reflect in protein synthesis. In addition. the increase in MIP-1 alpha mRNA expression induced by nicotine was attenuated by co-treatment with the antioxidant N-acetylcysteine (NAC), at doses of 10 and 20 mM, suggesting that the induction of MIP-1 alpha mRNA is mediated via the generation of reactive oxygen species (ROS). To further investigate transcriptional regulation of the MIP-1 alpha gene expression, RAM cells were exposed to nicotine. MIP-1 alpha mRNA levels were significantly increased in nuclear RNA preparations, indicating that transcriptional activation is involved in increased

  1. Secondary-structure characterization by far-UV CD of highly purified uncoupling protein 1 expressed in yeast.

    PubMed Central

    Douette, Pierre; Navet, Rachel; Bouillenne, Fabrice; Brans, Alain; Sluse-Goffart, Claudine; Matagne, André; Sluse, Francis E

    2004-01-01

    The rat UCP1 (uncoupling protein 1) is a mitochondrial inner-membrane carrier involved in energy dissipation and heat production. We expressed UCP1 carrying a His6 epitope at its C-terminus in Saccharomyces cerevisiae mitochondria. The recombinant-tagged UCP1 was purified by immobilized metal-ion affinity chromatography to homogeneity (>95%). This made it suitable for subsequent biophysical characterization. Fluorescence resonance energy transfer experiments showed that n-dodecyl-beta-D-maltoside-solubilized UCP1-His6 retained its PN (purine nucleotide)-binding capacity. The far-UV CD spectrum of the functional protein clearly indicated the predominance of alpha-helices in the UCP1 secondary structure. The UCP1 secondary structure exhibited an alpha-helical degree of approx. 68%, which is at least 25% higher than the previously reported estimations based on computational predictions. Moreover, the helical content remained unchanged in free and PN-loaded UCP1. A homology model of the first repeat of UCP1, built on the basis of X-ray-solved close parent, the ADP/ATP carrier, strengthened the CD experimental results. Our experimental and computational results indicate that (i) alpha-helices are the major component of UCP1 secondary structure; (ii) PN-binding mechanism does not involve significant secondary-structure rearrangement; and (iii) UCP1 shares similar secondary-structure characteristics with the ADP/ATP carrier, at least for the first repeat. PMID:14766012

  2. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells.

    PubMed

    Martínez-Álvarez, Laura; Piña-Vázquez, Carolina; Zarco, Wilbert; Padilla-Noriega, Luis

    2013-06-01

    A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover. PMID:23827992

  3. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    PubMed Central

    Martínez-Álvarez, Laura; Piña-Vázquez, Carolina; Zarco, Wilbert; Padilla-Noriega, Luis

    2013-01-01

    A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover. PMID:23827992

  4. von Hippel–Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step

    PubMed Central

    Mousnier, Aurélie; Kubat, Nicole; Massias-Simon, Aurélie; Ségéral, Emmanuel; Rain, Jean-Christophe; Benarous, Richard; Emiliani, Stéphane; Dargemont, Catherine

    2007-01-01

    HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin–proteasome pathway. Here, we identify von Hippel–Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel–Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin–VHL–proteasome pathway in the integration–transcription transition of the viral replication cycle. PMID:17698809

  5. Tax1-binding protein 1 is expressed in the retina and interacts with the GABAC receptor ρ1 subunit

    PubMed Central

    Ulrich, Melanie; Seeber, Silke; Becker, Cord-Michael; Enz, Ralf

    2006-01-01

    Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABAC (where GABA is γ-aminobutyric acid) receptors in the retina, we used antibodies specific for GABAC receptor ρ1–3 subunits. Analysis of immunoprecipitated proteins by MALDI–TOF MS (matrix-assisted laser-desorption ionization–time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253–813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the ρ1 subunit, but not to other subunits of GABAC, GABAA or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and ρ1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABAC receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABAC receptor-containing signal complexes. PMID:16999686

  6. Repression of chick multidrug resistance-associated protein 1 (chMRP1) gene expression by estrogen.

    PubMed

    Hagen, S G; Monroe, D G; Dean, D M; Sanders, M M

    2000-10-31

    Although a number of genes have been identified whose transcriptional activities are stimulated by estrogen, relatively few have been discovered that are repressed. In an effort to determine whether estrogen can directly repress gene expression, attempts were made to identify genes that are direct targets of the estrogen receptor and whose activities are repressed by it. Because the development and differentiation of the chick oviduct are exquisitely dependent upon estrogen, this seemed an appropriate model system for testing this hypothesis. RNA was isolated from estrogen-treated and estrogen-withdrawn chick oviducts and was subjected to differential display analysis. Surprisingly, one of the products repressed by estrogen encoded the chick homolog of the multidrug resistance-associated protein 1 (MRP1) gene. Further cloning resulted in a chick MRP1 (chMRP1) cDNA clone that is 72% identical with human MRP1. Translation of the chMRP1 sequence indicates a 77% amino acid identity with both the human and mouse MRP1 proteins. Treatment of estrogen-withdrawn chicks with 17beta-estradiol decreased chMRP1 mRNA levels to 50% within 30 min and to 70% by 1h, which is comparable to the level observed with chronic repression by estrogen. ChMRP1 mRNA is present in many other tissues, including the heart, lung, brain, kidney, skeletal muscle, and intestine, but is undetectable in the liver. This study indicates that in estrogen-responsive tissues such as chick oviduct, the regulation of chMRP1 gene expression is controlled by estrogen. PMID:11080590

  7. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1.

    PubMed

    Lin, Chiou-Feng; Chiu, Shu-Chen; Hsiao, Yu-Ling; Wan, Shu-Wen; Lei, Huan-Yao; Shiau, Ai-Li; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Chen, Shun-Hua; Liu, Ching-Chuan; Lin, Yee-Shin

    2005-01-01

    Vascular dysfunction is a hallmark associated with disease onset in dengue hemorrhagic fever and dengue shock syndrome. In addition to direct viral damage, immune responses to dengue virus (DV) infection may also underlie the pathogenesis of disease. We have proposed a mechanism of molecular mimicry in which Abs directed against DV nonstructural protein 1 (NS1) cross-react with endothelial cells and induce damage. In this study, we demonstrated the inflammatory endothelial cell activation induced by anti-DV NS1 via the transcription factor NF-kappaB-regulated pathway. Protein phosphorylation and NF-kappaB activation were observed after anti-DV NS1 stimulation in a human microvascular endothelial cell line-1. The cytokine and chemokine production, including IL-6, IL-8, and MCP-1, but not RANTES, in endothelial cells increased after treatment with anti-DV NS1 Abs. The expression of IL-6, IL-8, and MCP-1 was blocked by the preabsorption of anti-DV NS1 with DV NS1 or by the inhibition of NF-kappaB activation. Furthermore, the increases in both ICAM-1 expression and the ability of human PBMC to adhere to endothelial cells were also observed, and these effects were inhibited by pretreatment with anti-ICAM-1 or anti-MCP-1 Abs. Therefore, in addition to endothelial cell apoptosis, as previously reported, inflammatory activation occurs in endothelial cells after stimulation by anti-DV NS1 Abs. These results suggest the involvement of anti-DV NS1 Abs in the vasculopathy of DV infection. PMID:15611263

  8. Regulation of human CYP2C9 expression by electrophilic stress involves activator protein 1 activation and DNA looping.

    PubMed

    Makia, Ngome L; Surapureddi, Sailesh; Monostory, Katalin; Prough, Russell A; Goldstein, Joyce A

    2014-08-01

    Cytochrome P450 (CYP)2C9 and CYP2C19 are important human enzymes that metabolize therapeutic drugs, environmental chemicals, and physiologically important endogenous compounds. Initial studies using primary human hepatocytes showed induction of both the CYP2C9 and CYP2C19 genes by tert-butylhydroquinone (tBHQ). As a pro-oxidant, tBHQ regulates the expression of cytoprotective genes by activation of redox-sensing transcription factors, such as the nuclear factor E2-related factor 2 (Nrf2) and members of the activator protein 1 (AP-1) family of proteins. The promoter region of CYP2C9 contains two putative AP-1 sites (TGAGTCA) at positions -2201 and -1930, which are also highly conserved in CYP2C19. The CYP2C9 promoter is activated by ectopic expression of cFos and JunD, whereas Nrf2 had no effect. Using specific kinase inhibitors for mitogen-activated protein kinase, we showed that extracellular signal-regulated kinase and Jun N-terminal kinase are essential for tBHQ-induced expression of CYP2C9. Electrophoretic mobility shift assays demonstrate that cFos distinctly interacts with the distal AP-1 site and JunD with the proximal site. Because cFos regulates target genes as heterodimers with Jun proteins, we hypothesized that DNA looping might be required to bring the distal and proximal AP-1 sites together to activate the CYP2C9 promoter. Chromosome conformation capture analyses confirmed the formation of a DNA loop in the CYP2C9 promoter, possibly allowing interaction between cFos at the distal site and JunD at the proximal site to activate CYP2C9 transcription in response to electrophiles. These results indicate that oxidative stress generated by exposure to electrophilic xenobiotics and metabolites induces the expression of CYP2C9 and CYP2C19 in human hepatocytes. PMID:24830941

  9. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  10. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide

    PubMed Central

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-01-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-γ-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1–DNA and STAT–DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  11. Cellular retinol-binding protein-1 is transiently expressed in granulation tissue fibroblasts and differentially expressed in fibroblasts cultured from different organs.

    PubMed Central

    Xu, G.; Redard, M.; Gabbiani, G.; Neuville, P.

    1997-01-01

    We have reported that cellular retinol-binding protein-1 (CRBP-1) is transiently expressed by arterial smooth muscle cells during experimental intimal repair (P. Neuville, A. Geinoz, G. Benzonana, M. Redard, F. Gabbiani, P. Ropraz, G. Gabbiani: Am J Pathol 1997, 150:509-521). We have examined here the expression of CRBP-1 during wound healing after a full-thickness rat skin wound. CRBP-1 was transiently expressed by a significant proportion of fibroblastic cells including myofibroblasts. Expression started 4 days after wounding, reached a maximum at 12 days, and persisted up to 30 days when a scar was formed. After wound closure, most CRBP-1-containing fibroblastic cells underwent apoptosis. We have further investigated CRBP-1 expression in rat fibroblasts cultured from different organs. CRBP-1 was abundant in lung and heart fibroblasts and was detected in decreasing amounts in muscle, tendon, subcutaneous tissue, and granulation tissue fibroblasts. Dermis fibroblasts contained no detectable levels of CRBP-1. All-trans retinoic acid and transforming growth factor-beta1 inhibited cell proliferation and increased CRBP-1 expression in fibroblastic populations except dermis fibroblasts. We demonstrate that during granulation tissue formation a subpopulation of fibroblastic cells express CRBP-1 de novo. We also demonstrate that CRBP-1 expression by fibroblasts is regulated in vitro by retinoic acid and transforming growth factor-beta1. Our results suggest that CRBP-1 and possibly retinoic acid play a role in the evolution of granulation tissue. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:9403724

  12. Anti-inflammatory actions of Chemoattractant Receptor-homologous molecule expressed on Th2 by the antagonist MK-7246 in a novel rat model of Alternaria alternata elicited pulmonary inflammation.

    PubMed

    Gil, Malgorzata A; Caniga, Michael; Woodhouse, Janice D; Eckman, Joseph; Lee, Hyun-Hee; Salmon, Michael; Naber, John; Hamilton, Valerie T; Sevilla, Raquel S; Bettano, Kimberly; Klappenbach, Joel; Moy, Lily; Correll, Craig C; Gervais, Francois G; Siliphaivanh, Phieng; Zhang, Weisheng; Zhang-Hoover, Jie; McLeod, Robbie L; Cicmil, Milenko

    2014-11-15

    Alternaria alternata is a fungal allergen linked to the development of severe asthma in humans. In view of the clinical relationship between A. alternata and asthma, we sought to investigate the allergic activity of this antigen after direct application to the lungs of Brown Norway rats. Here we demonstrate that a single intratracheal instillation of A. alternata induces dose and time dependent eosinophil influx, edema and Type 2 helper cell cytokine production in the lungs of BN rats. We established the temporal profile of eosinophilic infiltration and cytokine production, such as Interleukin-5 and Interleukin-13, following A. alternata challenge. These responses were comparable to Ovalbumin induced models of asthma and resulted in peak inflammatory responses 48h following a single challenge, eliminating the need for multiple sensitizations and challenges. The initial perivascular and peribronchiolar inflammation preceded alveolar inflammation, progressing to a more sub-acute inflammatory response with notable epithelial cell hypertrophy. To limit the effects of an A. alternata inflammatory response, MK-7246 was utilized as it is an antagonist for Chemoattractant Receptor-homologous molecule expressed in Th2 cells. In a dose-dependent manner, MK-7246 decreased eosinophil influx and Th2 cytokine production following the A. alternata challenge. Furthermore, therapeutic administration of corticosteroids resulted in a dose-dependent decrease in eosinophil influx and Th2 cytokine production. Reproducible asthma-related outcomes and amenability to pharmacological intervention by mechanisms relevant to asthma demonstrate that an A. alternata induced pulmonary inflammation in BN rats is a valuable preclinical pharmacodynamic in vivo model for evaluating the pharmacological inhibitors of allergic pulmonary inflammation. PMID:25261040

  13. A paracrine role for chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) in mediating chemotactic activation of CRTH2+ CD4+ T helper type 2 lymphocytes.

    PubMed

    Vinall, Shân L; Townsend, Elizabeth R; Pettipher, Roy

    2007-08-01

    Activation of human CRTH2(+) CD4(+) T helper type 2 (Th2) cells with anti-CD3/anti-CD28 led to time-dependent production of prostaglandin D(2) (PGD(2)) which peaked at 8 hr. The production of PGD(2) was completely inhibited by cotreatment with the cyclo-oxygenase inhibitor diclofenac (10 microm) but was not affected by cotreatment with ramatroban, a dual antagonist of both the thromboxane-like prostanoid (TP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Supernatants from activated CRTH2(+) CD4(+) Th2 cells caused a concentration-dependent increase in the migration of naive CRTH2(+) CD4(+) Th2 cells compared to supernatants from unstimulated CRTH2(+) CD4(+) Th2 cells. The level of chemotactic activity peaked at 8 hr after activation, corresponding to the peak levels of PGD(2), but production of chemotactic activity was only partially inhibited by the cyclo-oxygenase inhibitor diclofenac. In contrast, ramatroban completely inhibited the chemotactic responses of naive Th2 cells to supernatants from activated CRTH2(+) CD4(+) Th2 cells collected up to 8 hr after activation, although supernatants collected 24 hr after activation were less sensitive to inhibition by ramatroban. The selective TP antagonist SQ29548 did not inhibit migration of Th2 cells, implicating CRTH2 in this response. These data suggest that CRTH2 plays an important paracrine role in mediating chemotactic activation of Th2 cells. Interestingly, although PGD(2) is produced from Th2 cells and contributes to this paracrine activation, it appears that additional CRTH2 agonist factors are also produced by activated Th2 cells and the production of these factors occurs independently of the cyclo-oxygenase pathway of the arachidonic acid metabolism. PMID:17437532

  14. Monocyte chemotactic protein-1 expression as a prognosic biomarker in patients with solid tumor: a meta analysis

    PubMed Central

    Wang, Hong; Zhang, Qiongwen; Kong, Hongyu; Zeng, Yunhui; Hao, Meiqin; Yu, Ting; Peng, Jing; Xu, Zhao; Chen, Jingquan; Shi, Huashan

    2014-01-01

    Purpose: A great deal of studies have been performed on the prognostic value of monocyte chemotactic protein-1 (MCP-1) in solid tumors in recent years. However, no consistent outcomes are reported. Therefore, the prognostic value of MCP-1 still remains controversial in patients with solid tumors. Here we aimed to evaluate the prognostic value of MCP-1 expression for patients with solid tumors. Methods: Comprehensive literature was selected from PUBMED and EMBASE and clinical studies which reported analysis of survival data about MCP-1 in solid tumors were included. Stata 11.0 was used for performing a meta-analysis on evaluating the relation between MCP-1 and clinical staging, overall survival (OS) and disease free survival (DFS). Results: Eleven studies with a total of 1324 patients with solid tumors were included into our meta-analysis. The result showed that high concentration of MCP-1 was related to a worse OS (HR = 1.95, 95% CI 1.32-2.88). The subgroup analysis on different location of tumors showed that high concentration of MCP-1 meant bad prognosis in patients with digestive cancer (HR = 2.66, 95% CI 1.44-4.91) and urogenital cancer (HR = 2.23, 95% CI 1.61-3.10), even head and neck cancer (HR = 1.99, 95% CI 0.95-4.18) other than respiratory cancer (HR = 1.10, 95% CI 0.39-3.11). Another subgroup analysed on different sites of cancer and indicated a poor prognosis on adenocarcinoma (HR = 2.10, 95% CI 1.63-2.69). Conclusions: Our findings suggest that MCP-1 can be regarded as a poor prognostic maker for solid tumors and may represent important new therapeutic targets. PMID:25120764

  15. The Role of Chemoattractant Receptors in Shaping the Tumor Microenvironment

    PubMed Central

    Xiang, Yi; Yoshimura, Teizo; Chen, Keqiang; Gong, Wanghua; Huang, Jian; Zhou, Ye; Yao, Xiaohong; Bian, Xiuwu; Wang, Ji Ming

    2014-01-01

    Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics. PMID:25110692

  16. Monocyte chemoattractants in pigeon aortic atherosclerosis.

    PubMed Central

    Denholm, E. M.; Lewis, J. C.

    1987-01-01

    Atherosclerosis occurs in the aorta of White Carneau pigeons proximal to the celiac bifurcation, where monocyte adhesion and migration into lesions have been demonstrated. This study documents chemoattractants that might be responsible for monocyte adherence and migration. Ten-week-old pigeons were fed either a cholesterol-free (normal) diet or a 0.4% cholesterol diet for 12 or 24 weeks. Birds with a normal diet did not have lesions in the lesion-prone area of the aorta, whereas birds fed a cholesterol-containing diet had simple intimal foam-cell lesions (12 weeks) or foam-cell lesions complicated with extracellular lipid and fibrillar matrix material (24 weeks). Plasma cholesterol levels in birds on the cholesterol-containing diet were 780-1080 mg/dl versus 140-240 mg/dl in the normal diet control group(s) at necropsy. To assay for chemoattractants, tissue was collected from lesion-prone and nonsusceptible (nonlesion) areas of the aortas. Samples from the two types of regions were separately pooled, then homogenized and tested for chemoattractant activity for pigeon peripheral blood monocytes. Monocyte chemoattractants were demonstrated in lesion area homogenates from pigeons fed cholesterol for 12 or 24 weeks and also in analogous homogenates from pigeons fed a normal diet. Monocyte migration to lesion-prone homogenates was significantly greater than that to nonlesion area homogenates. The chemoattractants in homogenates were monocyte-specific. The chemoattractant activity in the birds fed cholesterol for 12 weeks was confined to the aqueous phase of lipid extracts. This activity was abolished by pronase but unaffected by heat (100 C, 30 minutes), which indicated that the chemoattractant(s) in these homogenates was heat-stable protein(s). Activity in lipid extracts of lesion area homogenates from birds fed a cholesterol-containing diet for 24 weeks was found in both the aqueous and organic phases, suggesting that these samples contained lipid as well as

  17. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE.

    PubMed Central

    Rollins, B. J.; Yoshimura, T.; Leonard, E. J.; Pober, J. S.

    1990-01-01

    We have demonstrated inducible expression of the mRNA encoding the monocyte chemoattractant MCP-1, the human homolog of the JE gene, in endothelial cells within 3 hours of treatment with IL-1 beta and tumor necrosis factor. IFN-gamma also induced expression of this mRNA after 24 hours, but to a lesser extent. MCP-1/JE protein steadily accumulated in the medium of endothelial cells during a 48-hour exposure to IL-1 beta. Medium conditioned by IL-1 beta-treated endothelial cells contained monocyte chemoattractant activity that was immunoadsorbed by anti-MCP-1 antibodies. These results suggest that endothelial cells secrete a monocyte chemoattractant, MCP-1/JE, in response to inflammatory mediators, and thus may contribute to the accumulation of monocytes at sites of inflammation. Images Figure 1 Figure 2 PMID:2113354

  18. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System

    PubMed Central

    Auderset, Loic; Cullen, Carlie L.; Young, Kaylene M.

    2016-01-01

    The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation–where expression levels are much higher. PMID:27280679

  19. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System.

    PubMed

    Auderset, Loic; Cullen, Carlie L; Young, Kaylene M

    2016-01-01

    The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation-where expression levels are much higher. PMID:27280679

  20. Selenium-binding protein 1 in head and neck cancer is low-expression and associates with the prognosis of nasopharyngeal carcinoma

    PubMed Central

    Chen, Fasheng; Chen, Chen; Qu, Yangang; Xiang, Hua; Ai, Qingxiu; Yang, Fei; Tan, Xueping; Zhou, Yi; Jiang, Guang; Zhang, Zixiong

    2016-01-01

    Abstract Background: Selenium-binding protein 1 (SELENBP1) expression is reduced markedly in many types of cancers and low SELENBP1 expression levels are associated with poor patient prognosis. Methods: SELENBP1 gene expression in head and neck squamous cell carcinoma (HNSCC) was analyzed with GEO dataset and characteristics of SELENBP1 expression in paraffin embedded tissue were summarized. Expression of SELENBP1 in nasopharyngeal carcinoma (NPC), laryngeal cancer, oral cancer, tonsil cancer, hypopharyngeal cancer and normal tissues were detected using immunohistochemistry, at last, 99 NPC patients were followed up more than 5 years and were analyzed the prognostic significance of SELENBP1. Results: Analysis of GEO dataset concluded that SELENBP1 gene expression in HNSCC was lower than that in normal tissue (P < 0.01), but there was no significant difference of SELENBP1 gene expression in different T-stage and N-stage (P > 0.05). Analysis of pathological section concluded that SELENBP1 in the majority of HNSCC is low expression and in cancer nests is lower expression than surrounding normal tissue, even associated with the malignant degree of tumor. Further study indicated the low SELENBP1 expression group of patients with NPC accompanied by poor overall survival and has significantly different comparing with the high expression group. Conclusion: SELENBP1 expression was down-regulated in HNSCC, but has no associated with T-stage and N-stage of tumor. Low expression of SELENBP1 in patients with NPC has poor over survival, so SELENBP1 could be a novel biomarker for predicting prognosis. PMID:27583873

  1. Clinical significance and expression of the PRSS3 and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 for the early detection of epithelial ovarian cancer.

    PubMed

    Azizmohammadi, Sima; Safari, Aghdas; Seifoleslami, Mehri; Rabati, Rahman Ghaffarzadegan; Mohammadi, Mohsen; Yahaghi, Hamid; Azizmohammadi, Susan

    2016-05-01

    In this study, we evaluate the clinical significance of the PRSS3 and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) in patients with epithelial ovarian cancer (EOC) by immunohistochemistry.In current study, all adjacent non-cancerous tissues showed absent or low expression of PRSS3. The expression of PRSS3 was significantly increased in the EOCs than adjacent non-cancerous tissues. Moreover, the expression of WAVE1 was significantly observed in all EOC tissues when compared with normal tissues. Furthermore, WAVE1 expression was absent in 35 (89.74 %) adjacent non-cancerous tissues.Our findings showed that high expression of PRSS3 was markedly linked to FIGO stage (P = 0.02), advanced grade (P = 0.017), and lymph node metastases (P = 0.001), but no relationship was determined with other clinicopathological parameters. Furthermore, high expression of WAVE1 was significantly correlated with FIGO stage (P = 0.001), grade of tumor (P = 0.011), and residual tumor size (P = 0.041), but no significant associations were found between WAVE1 expression and age, lymph node metastasis, and histological subtypes (all P > 0.05). In conclusion, our study showed that increased expression of PRSS3 and WAVE1 may be involved in development of EOC. PMID:26662304

  2. Expression of poly(C)-binding protein 1 (PCBP1) in NSCLC as a negative regulator of EMT and its clinical value

    PubMed Central

    Liu, Yifei; Gai, Ling; Liu, Jian; Cui, Yuan; Zhang, Yan; Feng, Jia

    2015-01-01

    Poly (C)-binding Protein 1 (PCBP1) is a 35 kDa protein involved in a number of biological processes. Recently, the research found that PCBP1 might be involved in epithelial-mesenchymal transition (EMT). However, the role of PCBP1 in non-small-cell lung cancer (NSCLC) metastasis needs further elucidation. The purpose of this study was to determine whether PCBP1 could serve as a biomarker for stratification and prediction of prognosis in NSCLC as a regulator of EMT formation. In this study, PCBP1 expression was evaluated by Western blot in 8 fresh lung cancer tissues and immunohistochemistry (IHC) on 145 paraffin-embedded slices. PCBP1 was highly expressed in non-metastatic NSCLC specimens and significantly correlated with lymph node status (P < 0.001), clinical stage (P = 0.001), vimentin expression (P = 0.033) and E-cadherin expression (P = 0.042). Our study showed that the low expression of PCBP1 was correlated with decreased expression of E-cadherin and elevated expression of vimentin, which were the markers of EMT. Besides, high expression of PCBP1 was correlated with better prognosis. These findings suggested that PCBP1 might play an important role in preventing the process of EMT in NSCLC, thus be a promising therapeutic target to inhibit NSCLC metastasis. PMID:26261610

  3. Transforming growth factor-β inhibits IQ motif containing guanosine triphosphatase activating protein 1 expression in lung fibroblasts via the nuclear factor-κB signaling pathway.

    PubMed

    Zong, Chuanyue; Zhang, Xianlong; Xie, Ying; Cheng, Jiawen

    2015-07-01

    IQ motif containing guanosine triphosphatase activating protein 1 (IQGAP1) is associated with idiopathic pulmonary fibrogenesis (IPF); however, characterization of the expression of IQGAP1 in lung fibroblasts has remained elusive. The present study therefore evaluated IQGAP1 expression in mouse and human lung fibroblasts under fibrotic conditions via western blot analysis. It was revealed that IQGAP1 expression levels were significantly decreased in lung fibroblasts isolated from bleomycin-challenged mice than in those of control mice. Transforming growth factor-β (TGF-β) induced differentiation, as well as decreased expression of IQGAP1 in WI-38 cells human lung fibroblasts. Furthermore, inhibition of nuclear factor (NF)-κB activation restored the TGF-β-induced inhibition of IQGAP1 expression in WI-38 cells. In lysophosphatidic acid (LPA)-challenged WI-38 cells, the expression of IQGAP1 was also decreased, while neutralized anti-TGF-β antibody treatment restored the LPA-induced inhibition of IQGAP1 expression. These data indicated that TGF-β inhibited IQGAP1 expression in lung fibroblasts via the NF-κB signaling pathway, presenting a potential novel therapeutic target for the treatment of IPF. PMID:25684348

  4. Glomerular expression of myxovirus resistance protein 1 in human mesangial cells: possible activation of innate immunity in the pathogenesis of lupus nephritis.

    PubMed

    Watanabe, Shojiro; Imaizumi, Tadaatsu; Tsuruga, Kazushi; Aizawa, Tomomi; Ito, Tatsuya; Matsumiya, Tomoh; Yoshida, Hidemi; Joh, Kensuke; Ito, Etsuro; Tanaka, Hiroshi

    2013-12-01

    Since viral infections activate type I interferon (IFN) pathways and cause subsequent release of IFN-dependent proinflammatory chemokines and cytokines, the innate immune system plays an important role in the pathogenesis of lupus nephritis (LN). It has been reported that human myxovirus resistance protein 1 (Mx1), a type I IFN-dependent transcript, acts against a wide range of RNA viruses. Although the expression of Mx1 in biopsy specimens obtained from patients with dermatomyositis and cutaneous lupus has been described, the expression of Mx1 in human mesangial cells (MCs) has remained largely unknown. We treated normal human MCs in culture with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expression of Mx1 by reverse transcription-polymerase chain reaction and western blotting. To elucidate the poly IC-signalling pathway, we subjected the cells to RNA interference against IFN-β. We also conducted an immunofluorescence study to examine mesangial Mx1 expression in biopsy specimens from patients with LN. Poly IC-induced Mx1 expression in MCs are shown both time- and dose-dependently, and RNA interference against IFN-β inhibited poly IC-induced Mx1 expression. Intense glomerular Mx1 expression was observed in biopsy specimens from patients with LN, whereas negative staining occurred in specimens from patients with IgA nephropathy or purpura nephritis. These preliminary observations support, at least in part, the theory of innate immune system activation in the pathogenesis of LN. PMID:24674141

  5. Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes

    PubMed Central

    Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli

    2016-01-01

    Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138

  6. Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes.

    PubMed

    Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli; Chen, Hui; Chen, Shuo

    2016-02-01

    Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138

  7. Transgenic Expression in Arabidopsis of a Polyprotein Construct Leading to Production of Two Different Antimicrobial Proteins1

    PubMed Central

    François, Isabelle E.J.A.; De Bolle, Miguel F.C.; Dwyer, Geoff; Goderis, Inge J.W.M.; Woutors, Piet F.J.; Verhaert, Peter D.; Proost, Paul; Schaaper, Wim M.M.; Cammue, Bruno P.A.; Broekaert, Willem F.

    2002-01-01

    We developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence (“linker peptide”) originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space. Both AMPs were found to exert antifungal activity in vitro. It is surprising that the amount of AMPs produced in plants transformed with some of the polyprotein transgene constructs was significantly higher compared with the amount in plants transformed with a transgene encoding a single AMP, indicating that the polyprotein expression strategy may be a way to boost expression levels of small proteins. PMID:11950983

  8. In vivo promoter analysis on refeeding response of hepatic sterol regulatory element-binding protein-1c expression

    SciTech Connect

    Takeuchi, Yoshinori; Yahagi, Naoya; Nakagawa, Yoshimi; Matsuzaka, Takashi; Shimizu, Ritsuko; Sekiya, Motohiro; Iizuka, Yoko; Ohashi, Ken; Gotoda, Takanari; Yamamoto, Masayuki; Nagai, Ryozo; Kadowaki, Takashi; Yamada, Nobuhiro; Osuga, Jun-ichi; Shimano, Hitoshi

    2007-11-16

    Sterol regulatory element-binding protein (SREBP)-1c is the master regulator of lipogenic gene expression in liver. The mRNA abundance of SREBP-1c is markedly induced when animals are refed after starvation, although the regulatory mechanism is so far unknown. To investigate the mechanism of refeeding response of SREBP-1c gene expression in vivo, we generated a transgenic mouse model that carries 2.2 kb promoter region fused to the luciferase reporter gene. These transgenic mice exhibited refeeding responses of the reporter in liver and adipose tissues with extents essentially identical to those of endogenous SREBP-1c mRNA. The same results were obtained from experiments using adenovirus-mediated SREBP-1c-promoter-luciferase fusion gene transduction to liver. These data demonstrate that the regulation of SREBP-1c gene expression is at the transcription level, and that the 2.2 kb 5'-flanking region is sufficient for this regulation. Moreover, when these transgenic or adenovirus-infected mice were placed on insulin-depleted state by streptozotocin treatment, the reporter expression was upregulated as strongly as in control mice, demonstrating that this regulation is not dominated by serum insulin level. These mice are the first models to provide the mechanistic insight into the transcriptional regulation of SREBP-1c gene in vivo.

  9. MicroRNA-212 Regulates the Expression of Olfactomedin 1 and C-Terminal Binding Protein 1 in Human Endometrial Epithelial Cells to Enhance Spheroid Attachment In Vitro.

    PubMed

    Kottawatta, Kottawattage S A; So, Kam-Hei; Kodithuwakku, Suranga P; Ng, Ernest H Y; Yeung, William S B; Lee, Kai-Fai

    2015-11-01

    Successful embryo implantation requires a synchronized dialogue between a competent blastocyst and the receptive endometrium, which occurs in a limited time period known as the "window of implantation." Recent studies suggested that down-regulation of olfactomedin 1 (OLFM1) in the endometrium and fallopian tube is associated with receptive endometrium and tubal ectopic pregnancy in humans. Interestingly, the human chorionic gonadotropin (hCG) induces miR-212 expression, which modulates OLFM1 and C-terminal binding protein 1 (CTBP1) expressions in mouse granulosa cells. Therefore, we hypothesized that embryo-derived hCG would increase miR-212 expression and down-regulate OLFM1 and CTBP1 expressions to favor embryo attachment onto the female reproductive tract. We found that hCG stimulated the expression of miR-212 and down-regulated OLFM1 but not CTBP1 mRNA in both human endometrial (Ishikawa) and fallopian (OE-E6/E7) epithelial cells. However, hCG suppressed the expression of OLFM1 and CTBP1 proteins in both cell lines. The 3'UTR of both OLFM1 and CTBP1 contained binding sites for miR-212. The miR-212 precursor suppressed luciferase expression, whereas the miR-212 inhibitor stimulated luciferase expression of the wild-type (WT)-OLFM1 and WT-CTBP1 reporter constructs. Furthermore, hCG (25 IU/ml) treatments stimulated trophoblastic (Jeg-3) spheroid (blastocyst surrogate) attachment onto Ishikawa and OE-E6/E7 cells. Transfection of miR-212 precursor increased Jeg-3 spheroid attachment onto Ishikawa cells and decreased OLFM1 and CTBP1 protein expressions, whereas the opposite occurred with miR-212 inhibitor. Taken together, hCG stimulated miR-212, which in turn down-regulated OLFM1 and CTBP1 expression in fallopian and endometrial epithelial cells to favor spheroid attachment. PMID:26377223

  10. Molecular cloning and tissue expression of uncoupling protein 1, 2 and 3 genes in Chinese perch (Siniperca chuatsi).

    PubMed

    Wen, Zheng-Yong; Liang, Xu-Fang; He, Shan; Li, Ling; Shen, Dan; Tao, Ya-Xiong

    2015-07-01

    Uncoupling proteins (UCPs) are mitochondrial anion carrier proteins, which play important roles in several physiological processes, including thermogenesis, reactive oxygen species generation, growth, lipid metabolism and insulin secretion. Although the roles of UCPs are well understood in mammals, little is known in fish. To investigate the thermogenesis roles in Chinese perch (Siniperca chuatsi), we cloned the UCP1, 2 and 3. The UCP1 consisted of six exons and five introns, and the UCP2 consisted of eight exons and seven introns. The UCP1 was primarily expressed in liver, UCP2 was ubiquitously expressed, and UCP3 was primarily expressed in muscle. The mRNA levels of UCP1 and UCP2 in liver, and UCP3 in muscle were significantly increased after prolonged cold exposure, but did not change after prolonged heat exposure, suggesting that Chinese perch might have a mechanism of response to cold environment, but not to hot environment. The intestinal UCP1 mRNA level was significantly up-regulated after prolonged heat exposure, while the UCP2 mRNA level was significantly up-regulated after prolonged cold exposure, suggesting that the two paralogs might play different roles in intestine of Chinese perch. In addition, the phylogenetic analysis could shed new light on the evolutionary diversification of UCP gene family. PMID:25829150

  11. A genetic polymorphism affects the risk and prognosis of renal cell carcinoma: association with follistatin-like protein 1 expression.

    PubMed

    Liu, Yan; Han, Xue; Yu, Yongwei; Ding, Yibo; Ni, Chong; Liu, Wenbin; Hou, Xiaomei; Li, Zixiong; Hou, Jianguo; Shen, Dan; Yin, Jianhua; Zhang, Hongwei; Thompson, Timothy C; Tan, Xiaojie; Cao, Guangwen

    2016-01-01

    Few single nucleotide polymorphisms (SNPs) associated with the risk of renal cell carcinoma (RCC) have been identified, yet genetic predisposition contributes significantly to this malignancy. We previously showed that follistatin-like 1 (FSTL1) was significantly down-regulated in clear cell RCC (ccRCC), in particular metastatic ccRCC. In the present study, we systemically investigated the associations of the 6 SNPs within FSTL1-coding genomic region with RCC risk and postoperative prognosis. Age- and gender-matched case-control study (417 vs 855) indicated that rs1259293 variant genotype CC was significantly associated with an increased risk of RCC, with an odds ratio of 2.004 (95% confidence internal [CI] = 1.190-3.375). Multivariate Cox regression analysis in 309 of 417 cases showed that rs1259293 genotype (CC vs TT + CT) independently predicted an unfavorable prognosis, with a hazard ratio of 2.531 (95% CI = 1.052-6.086). Expression of FSTL1 was significantly higher in adjacent renal tissues than in tumors, and significantly higher in the tissues with rs1259293 TT genotype than in those with rs1259293 TC+CC genotypes. rs1259293 C allele might generate a CTCF binding site that blocks trans-activation of FSTL1 expression. Our results indicate that rs1259293 is associated with an increased risk and unfavorable postoperative prognosis of RCC, possibly by down-regulating FSTL1 expression in renal tissues. PMID:27225192

  12. Insulin-like growth factor binding protein-1 expression in baboon endometrial stromal cells: regulation by filamentous actin and requirement for de novo protein synthesis.

    PubMed

    Kim, J J; Jaffe, R C; Fazleabas, A T

    1999-02-01

    Stromal fibroblasts in the primate endometrium undergo dramatic morphological and biochemical changes in response to pregnancy. This transformation is characterized by the expression of insulin-like growth factor binding protein-1 (IGFBP-1). Stromal cells from the baboon endometrium of nonpregnant animals were cultured and subsequently treated with cytochalasin D to disrupt actin filaments. In response to cytochalasin D treatment, cells contracted and became rounded as early as 10 min after the initiation of treatment. When cytochalasin D was removed, cells reverted back to their original fibroblastic shape within 1 h. After cells were treated with cytochalasin D for 5 h, addition of (Bu)2cAMP and/or hormones (estradiol, medroxyprogesterone acetate, and relaxin) resulted in the expression of IGFBP-1 messenger RNA and protein within 24 h. Cells with an intact cytoskeleton did not express detectable levels of IGFBP-1 in response to hormones and/or (Bu)2cAMP. Furthermore, the addition of cycloheximide inhibited expression of IGFBP-1 in cytochalasin D-treated cells. Stromal cells were also isolated from early pregnant and simulated pregnant animals. Within 48 h, cells from both the pregnant and simulated pregnant animals produced IGFBP-1 in response to hormones and/or (Bu)2cAMP. In these studies, IGFBP-1 expression was also inhibited by cycloheximide. These studies suggest that induction of IGFBP-1 requires an intermediary protein and that alterations in the cytoskeleton may be involved. PMID:9927334

  13. Programmed cell death protein 1 and programmed death-ligand 1 are expressed on the surface of some small-cell lung cancer lines

    PubMed Central

    Yamane, Hiromichi; Isozaki, Hideko; Takeyama, Masami; Ochi, Nobuaki; Kudo, Kenichiro; Honda, Yoshihiro; Yamagishi, Tomoko; Kubo, Toshio; Kiura, Katsuyuki; Takigawa, Nagio

    2015-01-01

    Introduction: Programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) play a major role in suppressing the immune system during the formation of the PD-1/PD-L1 pathway, which transmits an inhibitory signal to reduce T cell activity. PD-L1 is often expressed in various malignant tumors. In contrast, PD-1 is generally observed in activated lymphocytes and myeloid-derived dendritic cells. Of the malignant cells, only Jurkat cells under special conditions and angioimmunoblastic T-cell lymphoma tissue cells express PD-1 on their surface. Methods: To clarify whether the PD-1/PD-L1 pathway participates in the immunotolerance of small-cell lung cancer (SCLC) cells, we examined the expressions of PD-1 and PD-L1 on the cell surface of SCLC cell lines using flow cytometry and reverse transcription polymerase chain reaction. Results: Among the four SCLC cell lines examined, only SBC-3 expressed both PD-1 and PD-L1. Conclusions: We demonstrated that both PD-1 and PD-L1 molecules were co-expressed on the surface of SCLC cells. Although the biological implications of this remain unclear, we speculate that PD-1 and its ligand on the SCLC cells may participate in the growth inhibition of tumor cells as reported in cytotoxic T cells. PMID:26101718

  14. A genetic polymorphism affects the risk and prognosis of renal cell carcinoma: association with follistatin-like protein 1 expression

    PubMed Central

    Liu, Yan; Han, Xue; Yu, Yongwei; Ding, Yibo; Ni, Chong; Liu, Wenbin; Hou, Xiaomei; Li, Zixiong; Hou, Jianguo; Shen, Dan; Yin, Jianhua; Zhang, Hongwei; Thompson, Timothy C.; Tan, Xiaojie; Cao, Guangwen

    2016-01-01

    Few single nucleotide polymorphisms (SNPs) associated with the risk of renal cell carcinoma (RCC) have been identified, yet genetic predisposition contributes significantly to this malignancy. We previously showed that follistatin-like 1 (FSTL1) was significantly down-regulated in clear cell RCC (ccRCC), in particular metastatic ccRCC. In the present study, we systemically investigated the associations of the 6 SNPs within FSTL1-coding genomic region with RCC risk and postoperative prognosis. Age- and gender-matched case-control study (417 vs 855) indicated that rs1259293 variant genotype CC was significantly associated with an increased risk of RCC, with an odds ratio of 2.004 (95% confidence internal [CI] = 1.190–3.375). Multivariate Cox regression analysis in 309 of 417 cases showed that rs1259293 genotype (CC vs TT + CT) independently predicted an unfavorable prognosis, with a hazard ratio of 2.531 (95% CI = 1.052–6.086). Expression of FSTL1 was significantly higher in adjacent renal tissues than in tumors, and significantly higher in the tissues with rs1259293 TT genotype than in those with rs1259293 TC+CC genotypes. rs1259293 C allele might generate a CTCF binding site that blocks trans-activation of FSTL1 expression. Our results indicate that rs1259293 is associated with an increased risk and unfavorable postoperative prognosis of RCC, possibly by down-regulating FSTL1 expression in renal tissues. PMID:27225192

  15. PI3K/AKT signaling modulates transcriptional expression of EWS/FLI1 through specificity protein 1

    PubMed Central

    Giorgi, Chiara; Boro, Aleksandar; Rechfeld, Florian; Lopez-Garcia, Laura A.; Gierisch, Maria E.; Schäfer, Beat W.; Niggli, Felix K.

    2015-01-01

    Ewing sarcoma (ES) is the second most frequent bone cancer in childhood and is characterized by the presence of the balanced translocation t(11;22)(q24;q12) in more than 85% of cases, generating a dysregulated transcription factor EWS/FLI1. This fusion protein is an essential oncogenic component of ES development which is necessary for tumor cell maintenance and represents an attractive therapeutic target. To search for modulators of EWS/FLI1 activity we screened a library of 153 targeted compounds and identified inhibitors of the PI3K pathway to directly modulate EWS/FLI1 transcription. Surprisingly, treatment of four different ES cell lines with BEZ235 resulted in down regulation of EWS/FLI1 mRNA and protein by ∼50% with subsequent modulation of target gene expression. Analysis of the EWS/FLI1 promoter region (−2239/+67) using various deletion constructs identified two 14bp minimal elements as being important for EWS/FLI1 transcription. We identified SP1 as modulator of EWS/FLI1 gene expression and demonstrated direct binding to one of these regions in the EWS/FLI1 promoter by EMSA and ChIP experiments. These results provide the first insights on the transcriptional regulation of EWS/FLI1, an area that has not been investigated so far, and offer an additional molecular explanation for the known sensitivity of ES cell lines to PI3K inhibition. PMID:26336820

  16. Analysis of differential gene expression profiles in Caenorhabditis elegans knockouts for the v-SNARE master protein 1.

    PubMed

    Rodriguez, Ashley; McKay, Kody; Graham, Melanie; Dittrich, Josiah; Holgado, Andrea M

    2014-06-01

    At chemical synapses, neurons communicate information to other cells by secreting neurotransmitters or neuropeptides into the synaptic cleft, which then bind to receptors on the target cell. Preliminary work performed in our laboratory has shown that mutant nematodes lacking a protein called VSM-1 have increased synaptic density compared with the wild type. Consequently, we hypothesized that genes expressed in vsm-1 mutants mediate enhanced synaptogenesis. To identify these genes of interest, we utilized microarray technology and quantitative PCR. To this end, first we isolated the total RNA from young-adult wild-type and vsm-1 mutant Caenorhabditis elegans. Next, we synthesized cDNA from reverse transcription of the isolated RNA. Hybridization of the cDNA to a microarray was performed to facilitate gene expression profiling. Finally, fluorescently labeled microarrays were analyzed, and the identities of induced and repressed genes were uncovered in the open-source software Magic Tool. Analyses of microarray experiments performed using three independent biological samples per strain and three technical replicas and dye swaps showed induction of genes coding for major sperm proteins and repression of SPP-2 in vsm-1 mutants. Microarray results were also validated and quantified by using quantitative PCR. PMID:24615917

  17. Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte

    PubMed Central

    Cahill, Catherine M.; Tam, Bosco; Rajanala, Susruthi; Rogers, Jack T.; Walker, W. Allan

    2016-01-01

    The innate immune response is characterized by activation of transcription factors, nuclear factor kappa B and activator protein-1 and their downstream targets, the pro-inflammatory cytokines including interleukin 1β and interleukin 6. Normal development of this response in the intestine is critical to survival of the human neonate and delays can cause the onset of devastating inflammatory diseases such as necrotizing enterocolitis. Previous studies have addressed the role of nuclear factor kappa B in the development of the innate immune response in the enterocyte, however despite its central role in the control of multiple pro-inflammatory cytokine genes, little is known on the role of Activator Protein 1 in this response in the enterocyte. Here we show that the canonical Activator Protein 1 members, cJun and cFos and their upstream kinases JNK and p38 play an essential role in the regulation of interleukin 6 in the immature enterocyte. Our data supports a model whereby the cFos/cJun heterodimer and the more potent cJun homodimer downstream of JNK are replaced by less efficient JunD containing dimers, contributing to the decreased responsiveness to interleukin 1β and decreased interleukin 6 secretion observed in the mature enterocyte. The tissue specific expression of JunB in colonocytes and colon derived tissues together with its ability to repress Interleukin-1β induction of an Interleukin-6 gene reporter in the NCM-460 colonocyte suggests that induction of JunB containing dimers may offer an attractive therapeutic strategy for the control of IL-6 secretion during inflammatory episodes in this area of the intestine PMID:26799482

  18. Epidermal Growth Factor Receptor and PTEN Modulate Tissue Factor Expression in Glioblastoma through JunD/Activator Protein-1 Transcriptional Activity

    PubMed Central

    Rong, Yuan; Belozerov, Vladimir E.; Tucker-Burden, Carol; Chen, Gang; Durden, Donald L.; Olson, Jeffrey J.; Van Meir, Erwin G.; Mackman, Nigel; Brat, Daniel J.

    2009-01-01

    Hypoxia and necrosis are fundamental features of glioblastoma (GBM) and their emergence is critical for the rapid biological progression of this fatal tumor; yet, underlying mechanisms are poorly understood. We have suggested that vaso-occlusion following intravascular thrombosis could initiate or propagate hypoxia and necrosis in GBM. Tissue factor (TF), the main cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Epidermal growth factor receptor (EGFR) amplification and PTEN loss are two common genetic alterations seen in GBM but not in lower-grade astrocytomas that could be responsible for TF up-regulation. The most frequent EGFR mutation in GBM involves deletion of exons 2 to 7, resulting in the expression of a constitutively active receptor, EGFRvIII. Here, we show that overexpression of EGFR or EGFRvIII in human glioma cells causes increased basal TF expression and that stimulation of EGFR by its ligand, EGF, leads to a marked dose-dependent up-regulation of TF. In all cases, increased TF expression led to accelerated plasma coagulation in vitro. EGFR-mediated TF expression depended most strongly on activator protein-1 (AP-1) transcriptional activity and was associated with c-Jun NH2-terminal kinase (JNK) and JunD activation. Restoration of PTEN expression in PTEN-deficient GBM cells diminished EGFR-induced TF expression by inhibiting JunD/AP-1 transcriptional activity. PTEN mediated this effect by antagonizing phosphatidylinositol 3-kinase activity, which in turn attenuated both Akt and JNK activities. These mechanisms are likely at work in vivo, as EGFR expression was highly correlated with TF expression in human high-grade astrocytoma specimens. PMID:19276385

  19. Monocyte chemotactic protein-1 secretion and expression after Toxoplasma gondii infection in vitro depend on the stage of the parasite.

    PubMed

    Brenier-Pinchart, Marie-Pierre; Vigan, Inés; Jouvin-Marche, Evelyne; Marche, Patrice Noél; Pelet, Elisabeth; Gross, Uwe; Ambroise-Thomas, Pierre; Pelloux, Hervé

    2002-08-27

    Infection of human fibroblasts with tachyzoites of RH and Prugniaud strains, two different strains of Toxoplasma gondii, significantly increased monocyte chemotactic protein (MCP)-1 secretion contrary to what happened with bradyzoites of the cystogenetic strain. Quantification of MCP-1 mRNA by RT-PCR showed that this phenomenon is regulated at the transcriptional level. Thus, the stage of parasite can be deciding in MCP-1 induction since only tachyzoites induced MCP-1 expression and secretion. MCP-1 induced by tachyzoites could be involved in cell recruitment, as shown by the quantification of MCP1 ARNm by real-time PCR (LightCycler, Roche Diagnostics), in the pathogenesis of T. gondii infection. PMID:12204371

  20. Modulation of MicroRNA Cluster miR-183-96-182 Expression by Epstein-Barr Virus Latent Membrane Protein 1

    PubMed Central

    Oussaief, Lassad; Fendri, Ali; Chane-Woon-Ming, Béatrice; Poirey, Remy; Delecluse, Henri-Jacques; Joab, Irène

    2015-01-01

    ABSTRACT Epstein-Barr virus (EBV) is an oncogenic human herpesvirus involved in the pathogenesis of Burkitt's lymphoma (BL) and various other lymphoproliferative disorders. In BL, EBV protein expression is restricted to EBV nuclear antigen 1 (EBNA1), but small noncoding RNAs such as EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs) can also be detected. miRNAs play major roles in crucial processes such as proliferation, differentiation, and cell death. It has recently become clear that alterations in the expression profile of miRNAs contribute to the pathogenesis of a number of malignancies. During latent infection, EBV expresses 25 viral pre-miRNAs and modulates the expression of specific cellular miRNAs, such as miR-155 and miR-146, which potentially play a role in oncogenesis. Here, we established the small-RNA expression profiles of three BL cell lines. Using large-scale sequencing coupled to Northern blotting and real-time reverse transcription-PCR (RT-PCR) analysis validation, we demonstrated the differential expression of some cellular and viral miRNAs. High-level expression of the miR-183-96-182 cluster and EBV miR-BamHI A rightward transcript (miR-BART) cluster was significantly associated with EBV type I latency. This expression was not affected by viral reactivation since transforming growth factor β1 (TGF-β1) stimulation did not significantly change the miRNA profiles. However, using several approaches, including de novo infection with a mutant virus, we present evidence that the expression of latent membrane protein 1 (LMP-1) triggered downregulation of the expression of the miR-183-96-182 cluster. We further show that this effect involves the Akt signaling pathway. IMPORTANCE In addition to expressing their own miRNAs, herpesviruses also impact the expression levels of cellular miRNAs. This regulation can be either positive or negative and usually results in the perturbation of pathways to create a cellular environment that is more

  1. A Dynamic Model of Chemoattractant-Induced Cell Migration

    PubMed Central

    Yang, Hao; Gou, Xue; Wang, Yong; Fahmy, Tarek M.; Leung, Anskar Y.-H.; Lu, Jian; Sun, Dong

    2015-01-01

    Cell migration refers to a directional cell movement in response to chemoattractant stimulation. In this work, we developed a cell-migration model by mimicking in vivo migration using optically manipulated chemoattractant-loaded microsources. The model facilitates a quantitative characterization of the relationship among the protrusion force, cell motility, and chemoattractant gradient for the first time (to our knowledge). We verified the correctness of the model using migrating leukemia cancer Jurkat cells. The results show that one can achieve the ideal migrating capacity by choosing the appropriate chemoattractant gradient and concentration at the leading edge of the cell. PMID:25863056

  2. The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons.

    PubMed

    Caton, A; Hacker, A; Naeem, A; Livet, J; Maina, F; Bladt, F; Klein, R; Birchmeier, C; Guthrie, S

    2000-04-01

    During development, cranial motor neurons extend their axons along distinct pathways into the periphery. For example, branchiomotor axons extend dorsally to leave the hindbrain via large dorsal exit points. They then grow in association with sensory ganglia, to their targets, the muscles of the branchial arches. We have investigated the possibility that pathway tissues might secrete diffusible chemorepellents or chemoattractants that guide cranial motor axons, using co-cultures in collagen gels. We found that explants of dorsal neural tube or hindbrain roof plate chemorepelled cranial motor axons, while explants of cranial sensory ganglia were weakly chemoattractive. Explants of branchial arch mesenchyme were strongly growth-promoting and chemoattractive for cranial motor axons. Enhanced and oriented axon outgrowth was also elicited by beads loaded with Hepatocyte Growth Factor (HGF); antibodies to this protein largely blocked the outgrowth and orientation effects of the branchial arch on motor axons. HGF was expressed in the branchial arches, whilst Met, which encodes an HGF receptor, was expressed by subpopulations of cranial motor neurons. Mice with targetted disruptions of HGF or Met showed defects in the navigation of hypoglossal motor axons into the branchial region. Branchial arch tissue may thus act as a target-derived factor that guides motor axons during development. This influence is likely to be mediated partly by Hepatocyte Growth Factor, although a component of branchial arch-mediated growth promotion and chemoattraction was not blocked by anti-HGF antibodies. PMID:10725250

  3. Effect of latent membrane protein 1 expression on overall survival in Epstein-Barr virus-associated cancers: a literature-based meta-analysis

    PubMed Central

    Tang, Ling-Long; Mao, Yan-Ping; Li, Wen-Fei; Liu, Xu; Zhou, Guan-Qun; Sun, Ying; Kang, Tie-Bang; Zeng, Mu-Sheng; Liu, Na; Ma, Jun

    2015-01-01

    Latent membrane protein 1 (LMP1) is identified as the main transforming oncoprotein of Epstein-Barr virus (EBV). LMP1 is frequently expressed in a variety of EBV-associated cancers, including nasopharyngeal carcinoma (NPC), non-Hodgkin lymphoma (NHL), Hodgkin disease (HD), and gastric cancer (GC). However, due to conflicting results, the prognostic value of LMP1 expression on clinical outcomes in EBV-associated cancers remains unclear. We performed a meta-analysis on 32 studies with a total of 3752 patients to explore the association between LMP1 expression and overall survival (OS) in EBV-associated cancers. Overall, LMP1 expression was significantly associated with poorer OS (hazard ratio, HR = 1.51, 95% confidence interval, CI, 1.13–2.03), irrespective of cancer type. Further analyses showed that LMP1 expression correlated with poorer OS in NPC (HR = 2.48, 95% CI, 1.77–3.47) and NHL patients (HR = 1.83, 95% CI, 1.07–3.15), but not in HD patients (HR = 0.98, 95% CI, 0.60–1.62) or GC patients (HR = 0.70, 95% CI, 0.44–1.12). Subgroup analyses indicated that the age and geographical factors seemed to have an effect on the clinical outcomes of HD patients with positive LMP1 expression. In conclusion, LMP1 expression can be used as a prognostic biomarker in NPC, NHL, and certain HD patients. This data suggests that novel therapies targeting LMP1 may improve clinical outcomes for EBV-associated cancer patients. PMID:26336130

  4. Cloning, expression, crystallization and preliminary X-ray diffraction studies of staphylococcal superantigen-like protein 1 (SSL1).

    PubMed

    Dutta, Debabrata; Dutta, Anirudha; Bhattacharjee, Atanu; Basak, Amit; Das, Amit Kumar

    2014-05-01

    Staphylococcus aureus produces a family of exotoxins which are structural homologues of superantigens and thus are called staphylococcal superantigen-like proteins (SSLs). Amongst the 14 SSL genes, ssl1 (SAOUHSC_00383) has been cloned in the pQE30 expression vector, overexpressed in Escherichia coli M15 (pREP4) cells and the protein purified to homogeneity. The protein was crystallized using 6% Tacsimate pH 6.0, 0.1 M MES pH 6.0, 25%(w/v) polyethylene glycol 3350, 100 mM NDSB 256 at 298 K by the sitting-drop vapour-diffusion method. The crystals belonged to space group P21, with unit-cell parameters a = 77.9, b = 70.5, c = 126.5 Å, β = 106.2°. X-ray diffraction data were collected and processed to a maximum resolution of 2.5 Å. The crystal contains six molecules in the asymmetric unit. PMID:24817718

  5. p53 regulates expression of uncoupling protein 1 through binding and repression of PPARγ coactivator-1α.

    PubMed

    Hallenborg, Philip; Fjære, Even; Liaset, Bjørn; Petersen, Rasmus Koefoed; Murano, Incoronata; Sonne, Si Brask; Falkerslev, Mathias; Winther, Sally; Jensen, Benjamin Anderschou Holbech; Ma, Tao; Hansen, Jacob B; Cinti, Saverio; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten

    2016-01-15

    The tumor suppressor p53 (TRP53 in mice) is known for its involvement in carcinogenesis, but work during recent years has underscored the importance of p53 in the regulation of whole body metabolism. A general notion is that p53 is necessary for efficient oxidative metabolism. The importance of UCP1-dependent uncoupled respiration and increased oxidation of glucose and fatty acids in brown or brown-like adipocytes, termed brite or beige, in relation to energy balance and homeostasis has been highlighted recently. UCP1-dependent uncoupled respiration in classic interscapular brown adipose tissue is central to cold-induced thermogenesis, whereas brite/beige adipocytes are of special importance in relation to diet-induced thermogenesis, where the importance of UCP1 is only clearly manifested in mice kept at thermoneutrality. We challenged wild-type and TRP53-deficient mice by high-fat feeding under thermoneutral conditions. Interestingly, mice lacking TRP53 gained less weight compared with their wild-type counterparts. This was related to an increased expression of Ucp1 and other PPARGC1a and PPARGC1b target genes but not Ppargc1a or Ppargc1b in inguinal white adipose tissue of mice lacking TRP53. We show that TRP53, independently of its ability to bind DNA, inhibits the activity of PPARGC1a and PPARGC1b. Collectively, our data show that TRP53 has the ability to regulate the thermogenic capacity of adipocytes through modulation of PPARGC1 activity. PMID:26578713

  6. An in vivo assay for chemoattractant activity.

    PubMed

    Zetter, B R; Rasmussen, N; Brown, L

    1985-09-01

    We have devised an implantable device for the study of leukocyte chemoattraction. The device consists of a 0.25-mm thick patch of Dacron fabric coupled to a disc of ethylene vinyl acetate copolymer. Such polymers can release biologically active molecules at a constant rate for at least 18 days. Attracted cells invade and are trapped within the Dacron fabric. Upon removal from the host, the fabric patches are sectioned and stained to reveal the distribution of attracted cells. Distinct patterns of cellular accumulation can be seen for different chemoattractant molecules. These include the attraction of eosinophils by histamine, monocytes by tuftsin, and mast cells by glycyl-histidyl-lysine. Maximal accumulation of specific cell types occurs at postimplantation days 1 to 2 for neutrophils, days 3 to 5 for monocytes, and days 5 to 6 for macrophages and eosinophils. Control polymers fail to cause significant leukocyte accumulation, indicating that neither the polymer nor the Dacron fabric provokes an inflammatory response. PMID:3162062

  7. Human papillomavirus 16 E2 interacts with neuregulin receptor degradation protein 1 affecting ErbB-3 expression in vitro and in clinical samples of cervical lesions.

    PubMed

    Paolini, Francesca; Curzio, Gianfranca; Melucci, Elisa; Terrenato, Irene; Antoniani, Barbara; Carosi, Mariantonia; Mottolese, Marcella; Vici, Patrizia; Mariani, Luciano; Venuti, Aldo

    2016-05-01

    The ErbB tyrosine kinase receptors play a key role in regulating many cellular functions and human papillomaviruses (HPVs) may interact with transductional pathway of different growth factor receptors. Here, these interactions were analysed in W12 cell line carrying HPV 16 genome and in clinical samples. W12 cells, in which HPV16 becomes integrated during passages, were utilised to detect viral and ErbB family expression at early (W12E) and late passages (W12G). Interestingly, a strong reduction of ErbB-3 expression was observed in W12G. Loss of the E2 and E5 viral genes occurs in W12G and this may affect ErbB-3 receptor expression. E2 and E5 rescue experiments demonstrated that only E2 gene was able to restore ErbB-3 expression. E2 is a transcriptional factor but the expression levels of ErbB3 were unaffected and ErbB-3 promoter did not show any consensus sequence for E2, thus E2 may interact in another way with ErbB3. Indeed, HPV 16 E2 can modulate ErbB-3 by interacting with the ubiquitin ligase neuregulin receptor degradation protein 1 (Nrdp-1) that is involved in the regulation of this receptor, via ubiquitination and degradation. E2 co-immunoprecipitated in a complex with Nrdp-1 leading to hypothesise an involvement of this interaction in ErbB-3 regulation. In addition, 90% of the clinical samples with integrated virus and E2 loss showed no or low ErbB-3 positivity, confirming in vitro results. In conclusion, the new discovered interaction of HPV-16 E2 with Nrdp-1 may affect ErbB-3 expression. PMID:26963794

  8. Far upstream element-binding protein 1 (FUBP1) is a potential c-Myc regulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression.

    PubMed

    Yang, Lei; Zhu, Jun-Ya; Zhang, Jian-Guo; Bao, Bo-Jun; Guan, Cheng-Qi; Yang, Xiao-Jing; Liu, Yan-Hua; Huang, Yue-Jiao; Ni, Run-Zhou; Ji, Li-Li

    2016-03-01

    The human far upstream element (FUSE) binding protein 1 (FUBP1) belongs to an ancient family which is required for proper regulation of the c-Myc proto-oncogene. Although c-Myc plays an important role in development of various carcinomas, the relevance of FUBP1 and their contribution to esophageal squamous cell carcinoma (ESCC) development remain unclear. In this study, we aimed to investigate the relationship between FUBP1 and c-Myc as well as their contribution to ESCC development. Western blot and immunohistochemical analyses were performed to evaluate FUBP1 expression. Coimmunoprecipitation analysis was performed to explore the correlation between FUBP1 and c-Myc in ESCC. In addition, the role of FUBP1 in ESCC proliferation was studied in ESCC cells through knocking FUBP1 down. The regulation of FUBP1 on proliferation was confirmed by Cell Counting Kit-8 (CCK-8) assay, flow cytometric assays, and clone formation assays. The expressions of FUBP1 and c-Myc were both upregulated in ESCC tissues. In addition to correlation between expression of FUBP1 and tumor grade, we also confirmed the correlation of FUBP1, c-Myc, and Ki-67 expression by twos. Moreover, upregulation of FUBP1 and c-Myc in ESCC was associated with poor survival. FUBP1 was confirmed to activate c-Myc in ESCC tissues and cells. FUBP1 was demonstrated to promote proliferation of ESCC cells. Moreover, downregulation of both FUBP1 and c-Myc was confirmed to inhibit proliferation of ESCC cells. Our results indicated that FUBP1 may potentially stimulate c-Myc expression in ESCC and its expression may promote ESCC progression. PMID:26490982

  9. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    PubMed Central

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-01-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotics detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that cautions should be taken for PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. PMID:23707768

  10. High Expression of Leucine Zipper-EF-Hand Containing Transmembrane Protein 1 Predicts Poor Prognosis in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Chen, Liyan; Yang, Yang; Liu, Shuangping; Piao, Longzhen; Zhang, Yuan; Lin, Zhenhua; Li, Zhuhu

    2014-01-01

    Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) is a mitochondrial inner membrane protein and plays an important role in mitochondrial ATP production and biogenesis. High expression levels of LETM1 have been correlated with numerous human malignancies. This study explored the clinicopathological significance of LETM1 expression as a prognostic determinant in head and neck squamous cell carcinoma (HNSCC). HNSCC samples from 176 patients were selected for immunohistochemical staining of LETM1 protein. Correlations between LETM1 overexpression and clinicopathological features of HNSCC were evaluated by Chi-squared tests and Fisher's exact tests, and relationships between prognostic factors and patient survival were analyzed using Cox proportional hazards models. Our results demonstrated that the strongly positive rate of LETM1 protein was 65.3% in HNSCC, which was significantly higher than in either adjacent nontumor tissue (25.0%) or normal squamous epithelia (6.7%). LETM1 overexpression correlated with poor differentiation, presence of lymph node metastasis, advanced stage, absence of chemoradiotherapy, and 5-year disease-free survival and overall survival rates in HNSCC. Further analysis showed that high LETM1 expression, advanced stage, and nonchemoradiotherapy were significant independent risk factors for mortality in HNSCC. In conclusion, LETM1 plays an important role in the progression of HNSCC and is an independent poor prognostic factor for HNSCC. PMID:24689060

  11. Iron Regulatory Protein 1 Suppresses Hypoxia-Induced Iron Uptake Proteins Expression and Decreases Iron Levels in HepG2 Cells.

    PubMed

    Cheng, Chun-Ming; Wang, Dan; Cao, Xian; Luo, Qian-Qian; Lu, Ya-Peng; Zhu, Li

    2015-09-01

    Transferrin receptor (TfR1) and divalent metal transporter 1 (DMT1) are important proteins for cellular iron uptake, and both are regulated transcriptionally through the binding of hypoxia-inducible factor 1 (HIF-1) to hypoxia-responsive elements (HREs) under hypoxic conditions. These proteins are also regulated post-transcriptionally through the binding of iron regulatory protein 1 (IRP1) to iron-responsive elements (IREs) located in the mRNA untranslated region (UTR) to control cellular iron homeostasis. In iron-deficient cells, IRP1-IRE interactions stabilize TfR1 and DMT1 mRNAs, enhancing iron uptake. However, little is known about the impact of IRP1 on the regulation of cellular iron homeostasis under hypoxia. Thus, to investigate the role of IRP1 in hypoxic condition, overexpression and knockdown assays were performed using HepG2 cells. The overexpression of IRP1 suppressed the hypoxia-induced increase in TfR1 and DMT1 (+IRE) expression and reduced the stability of TfR1 and DMT1 (+IRE) mRNAs under hypoxia, whereas IRP1 knockdown further increased the hypoxia-induced expression of both proteins, preventing the decrease in IRE-dependent luciferase activity induced by hypoxia. Under hypoxic conditions, ferrous iron uptake, the labile iron pool (LIP), and total intracellular iron reduced when IRP1 was overexpressed and further increased when IRP1 was knocked down. IRP1 expression declined and TfR1/DMT1 (+IRE) expression increased with the time of hypoxia prolonged, whereas the binding of IRP1 to the IRE of TfR1/DMT1 mRNA maintained. In summary, IRP1 suppressed TfR1/DMT1 (+IRE) expression, limited the cellular iron content and decreased lactate dehydrogenase (LDH) release induced by hypoxia. PMID:25727755

  12. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation. PMID:27271915

  13. Does the Clearance of Inhaled (99m)Tc-Sestamibi Correlate with Multidrug Resistance Protein 1 Expression in the Human Lung?

    PubMed

    Mohan, Hosahalli K; Routledge, Thomas; Cane, Paul; Livieratos, Lefteris; Ballinger, James R; Peters, Adrien M

    2016-09-01

    Purpose To examine the relation between the lung elimination rate of inhaled technetium 99m ((99m)Tc)-sestamibi and immunohistochemical expression of bronchopulmonary multidrug resistance protein 1 (MRP1) and permeability glycoprotein (P-gp) and assess the repeatability of the inhaled (99m)Tc-sestamibi clearance technique. Materials and Methods (99m)Tc-sestamibi is a known substrate for P-gp and MRP1, which are established cellular drug efflux transporters. The elimination rate of (99m)Tc-sestamibi from the lungs after inhalation as an aerosol has been hypothesized to be regulated by expression of these transporters. Institutional ethics committee approval was received for this prospective study. Written informed consent was obtained from all participants. The clearance of inhaled (99m)Tc-sestamibi from the lungs of 13 patients due to undergo surgery for primary lung cancer (five of 13) or spontaneous pneumothorax (eight of 13) was estimated after dynamic imaging of the lungs during a period of 40 minutes. The time taken to clear 50% of inhaled sestamibi (T1/2) was compared with a semiquantitative immunohistochemical assessment (grade 0-3) of MRP1 and P-gp expression in the lung by using parametric and nonparametric tests. The study was repeated in five participants to assess the repeatability of the technique by using a Bland Altman analysis method. Results MRP1 expression was seen in 12 of 13 patients, while P-gp expression was seen in only two. The mean (99m)Tc-sestamibi elimination rate was faster in patients (n = 6) with low levels of MRP1 expression (grade 0-1) and mean T1/2 of 105 minutes ± 20 (standard deviation), compared with those with higher levels of MRP1 expression (grade 2-3, n = 7) and mean T1/2 of 149 minutes ± 28 (P = .008). Bland-Altman analysis revealed excellent agreement between test and retest values. Conclusion Inhaled (99m)Tc-sestamibi clearance study is a repeatable technique demonstrating significant correlation with MRP1 expression in

  14. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    SciTech Connect

    Neboori, Hanmanth J.R.; Haffty, Bruce G.; Wu Hao; Yang Qifeng; Aly, Amal; Goyal, Sharad; Schiff, Devora; Moran, Meena S.; Golhar, Ryan; Chen Chunxia; Moore, Dirk; and others

    2012-08-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survival (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their clinical

  15. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  16. Effect of the knockdown of death-associated protein 1 expression on cell adhesion, growth and migration in breast cancer cells.

    PubMed

    Wazir, Umar; Sanders, Andrew J; Wazir, Ali; Baig, Ruqia Mehmood; Jiang, Wen G; Ster, Irina C; Sharma, Anup K; Mokbel, Kefah

    2015-03-01

    Death-associated protein 1 (DAP1) is a highly conserved phosphoprotein involved in the regulation of autophagy. A previous clinical study by our group suggested an association between low DAP1 expression and clinicopathological parameters of human breast cancer. In the present study, we aimed to determine the role of DAP1 in cancer cell behaviour in the context of human breast cancer. We developed knockdown sublines of MCF7 and MDA-MB‑231, and performed growth, adhesion and invasion assays and electric cell-substrate impedance sensing (ECIS) studies of the post-wound migration of cells. In addition, we studied the mRNA expression of caspase 8 and 9, DELE, IPS1, cyclin D1 and p21 in the control and knockdown sublines. Knockdown was associated with increased adhesion and migration, significantly so in the MDA-MB-231DAP1kd cell subline (p=0.029 and p=0.001, respectively). Growth in MCF7 cells showed a significant suppression on day 3 (p=0.029), followed by an increase in growth matching the controls on day 5. While no change in the apoptotic response to serum starvation could be attributed to DAP1 knockdown, the expression of known components of the apoptosis pathway (caspase 8) and cell cycle (p21) was significantly reduced in the MCF7DAP1kd cell subline (p≤0.05), while in MDA-MB-231DAP1kd the expression of a pro-apoptotic molecule, IPS1, was suppressed (p≤0.05). DAP1 may have an important role in cell adhesion, migration and growth in the context of breast cancer and has significant associations with the apoptosis pathway. Furthermore, we believe that delayed increase in growth observed in the MCF7DAP1kd cell subline may indicate activation of a strongly pro-oncogenic pathway downstream of DAP1. PMID:25530065

  17. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes

    PubMed Central

    Pérez-Toledo, Karla; Rojas-Meza, Ana Paola; Mancio-Silva, Liliana; Hernández-Cuevas, Nora Adriana; Delgadillo, Dulce Maria; Vargas, Miguel; Martínez-Calvillo, Santiago; Scherf, Artur; Hernandez-Rivas, Rosaura

    2009-01-01

    Increasing experimental evidence shows a prominent role of histone modifications in the coordinated control of gene expression in the human malaria parasite Plasmodium falciparum. The search for the histone-mark-reading machinery that translates histone modifications into biological processes, such as formation of heterochromatin and antigenic variation is of foremost importance. In this work, we identified the first member of a histone modification specific recognition protein, an orthologue of heterochromatin protein 1 (PfHP1). Analysis of the PfHP1 amino-acid sequence revealed the presence of the two characteristic HP1 domains: a chromodomain (CD) and a chromo shadow domain (CSD). Recombinant CD binds to di- and tri-methylated lysine 9 from histone H3, but not to unmodified or methylated histone H3 in lysine 4. PfHP1 is able to interact with itself to form dimers, underlying its potential role in aggregating nucleosomes to form heterochromatin. Antibodies raised against PfHP1 detect this molecule in foci at the perinuclear region. ChIP analysis using anti-PfHP1 shows that this protein is linked to heterochromatin of subtelomeric non-coding repeat regions and monoallelic expression of the major virulence var gene family. This is the first report implicating an HP1 protein in the control of antigenic variation of a protozoan parasite. PMID:19270070

  18. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition.

    PubMed

    Gao, Wenqing; Li, Qi; Zhu, Ruiyu; Jin, Jian

    2016-01-01

    The function of ribosome binding protein 1 (RRBP1) is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5' untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5' UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES). Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La), which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5' UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions. PMID:27447629

  19. The group A streptococcal collagen-like protein 1, Scl1, mediates biofilm formation by targeting the EDA-containing variant of cellular fibronectin expressed in wounded tissue

    PubMed Central

    Oliver-Kozup, Heaven; Martin, Karen H.; Schwegler-Berry, Diane; Green, Brett J.; Betts, Courtney; Shinde, Arti V.; Van De Water, Livingston; Lukomski, Slawomir

    2012-01-01

    Summary Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C′ loop region recognized by the α9β1 integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization. PMID:23217101

  20. Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria.

    PubMed

    Warimwe, George M; Abdi, Abdirahman I; Muthui, Michelle; Fegan, Gregory; Musyoki, Jennifer N; Marsh, Kevin; Bull, Peter C

    2016-05-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria. PMID:26883585

  1. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition

    PubMed Central

    Gao, Wenqing; Li, Qi; Zhu, Ruiyu; Jin, Jian

    2016-01-01

    The function of ribosome binding protein 1 (RRBP1) is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5′ untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5′ UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES). Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La), which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5′ UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions. PMID:27447629

  2. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex.

    PubMed Central

    Griffiths, M R; Black, E J; Culbert, A A; Dickens, M; Shaw, P E; Gillespie, D A; Tavaré, J M

    1998-01-01

    The activator protein-1 (AP-1) transcriptional complex is made up of members of the Fos (c-Fos, FosB, Fra1, Fra2) and Jun (c-Jun, JunB, JunD) families and is stimulated by insulin in several cell types. The mechanism by which insulin activates this complex is not well understood but it is dependent on the activation of the Erk1 and Erk2 isoforms of mitogen-activated protein kinases. In the current study we show that the AP-1 complex isolated from insulin-stimulated cells contained c-Fos, Fra1, c-Jun and JunB. The activation of the AP-1 complex by insulin was accompanied by (i) a transient increase in c-fos expression, and the transactivation of the ternary complex factors Elk1 and Sap1a, in an Erk1/Erk2-dependent fashion; (ii) a substantial increase in the expression of Fra1 protein and mRNA, which was preceded by a transient decrease in its electrophoretic mobility upon SDS/PAGE, indicative of phosphorylation; and (iii) a sustained increase in c-jun expression without increasing c-Jun phosphorylation on serines 63 and 73 or activation of the stress-activated kinase JNK/SAPK. In conclusion, insulin appears to stimulate the activity of the AP-1 complex primarily through a change in the abundance of the components of this complex, although there may be an additional role for Fra1 phosphorylation. PMID:9742208

  3. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein.

    PubMed

    Bleve, Gianluca; Zacheo, Giuseppe; Cappello, Maria Stella; Dellaglio, Franco; Grieco, Francesco

    2005-08-15

    GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1-GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter localized at the plasma membrane and endoplasmic reticulum levels of induced cells. The factors involved in proper localization and turnover of Gup1p were revealed by expression of the Gup1p-GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaerical protein was targeted to the plasma membrane through a Sec6-dependent process; on treatment with glucose, it was endocytosed through END3 and targeted for degradation in the vacuole. Gup1p belongs to the list of yeast proteins rapidly down-regulated by changing the carbon source in the culture medium, in agreement with the concept that post-translational modifications triggered by glucose affect proteins of peripheral functions. The immunoelectron microscopy assays of cells expressing either Gup1-GFP or GFP-Gup1 fusions suggested the Gup1p membrane topology: the N-terminus lies in the periplasmic space, whereas its C-terminal tail has an intracellular location. An extra cytosolic location of the N-terminal tail is not generally predicted or determined in yeast membrane transporters. PMID:15813700

  4. Impact of Concanavalin-A-Mediated Cytoskeleton Disruption on Low-Density Lipoprotein Receptor-Related Protein-1 Internalization and Cell Surface Expression in Glioblastomas

    PubMed Central

    Nanni, Samuel Burke; Pratt, Jonathan; Beauchemin, David; Haidara, Khadidja; Annabi, Borhane

    2016-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a multiligand endocytic receptor, which plays a pivotal role in controlling cytoskeleton dynamics during cancer cell migration. Its rapid endocytosis further allows efficient clearance of extracellular ligands. Concanavalin-A (ConA) is a lectin used to trigger in vitro physiological cellular processes, including cytokines secretion, nitric oxide production, and T-lymphocytes activation. Given that ConA exerts part of its effects through cytoskeleton remodeling, we questioned whether it affected LRP-1 expression, intracellular trafficking, and cell surface function in grade IV U87 glioblastoma cells. Using flow cytometry and confocal microscopy, we found that loss of the cell surface 600-kDa mature form of LRP-1 occurs upon ConA treatment. Consequently, internalization of the physiological α2-macroglobulin and the synthetic angiopep-2 ligands of LRP-1 was also decreased. Silencing of known mediators of ConA, such as the membrane type-1 matrix metalloproteinase, and the Toll-like receptors (TLR)-2 and TLR-6 was unable to rescue ConA-mediated LRP-1 expression decrease, implying that the loss of LRP-1 was independent of cell surface relayed signaling. The ConA-mediated reduction in LRP-1 expression was emulated by the actin cytoskeleton-disrupting agent cytochalasin-D, but not by the microtubule inhibitor nocodazole, and required both lysosomal- and ubiquitin-proteasome system-mediated degradation. Our study implies that actin cytoskeleton integrity is required for proper LRP-1 cell surface functions and that impaired trafficking leads to specialized compartmentation and degradation. Our data also strengthen the biomarker role of cell surface LRP-1 functions in the vectorized transport of therapeutic angiopep bioconjugates into brain cancer cells. PMID:27226736

  5. Enhanced Expression of Interleukin-1α and Tumor Necrosis Factor Receptor-Associated Protein 1 in Ileal Tissues of Cattle Infected with Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Aho, Abraham D.; McNulty, Amanda M.; Coussens, Paul M.

    2003-01-01

    Infection with Mycobacterium avium subsp. paratuberculosis is associated with high levels of morbidity, decreased production, and early culling in dairy cattle. Clinical symptoms of Johne's disease include persistent diarrhea, inappetence, and resultant weight loss due to chronic inflammation of the small intestine. Although the presence or absence of intestinal lesions cannot be used as a definitive indicator of M. avium subsp. paratuberculosis infection, most infected cattle exhibit significant changes to intestinal mucosa, with the focus of pathology surrounding the ileal cecal junction. Typical pathology of M. avium subsp. paratuberculosis infection includes inflammation, thickening of the lumenal wall, and hyperplasia in draining lymph nodes. To further understand the pathology of Johne's disease, we compared the gene expression profiles of ileal tissues from Johne's disease-positive (n = 6), and Johne's disease-negative (n = 5) Holstein cattle. Gene expression profiles were compared with a bovine total leukocyte (BOTL-3) cDNA microarray. Genes that were expressed at significantly higher levels (>1.5-fold; P < 0.05) in tissues from Johne's disease-infected animals relative to noninfected animals included those encoding tumor necrosis factor receptor-associated protein 1 (TRAF1), interleukin-1α (IL-1α), MCP-2, N-cadherin, and β1 integrin (CD29). Dramatic upregulation of IL-1α (21.5-fold) and TRAF1 (27.5-fold) gene expression in tissues of Johne's disease-positive cows relative to tissues from control cows was confirmed by quantitative real-time PCR. Western blot analysis confirmed that IL-1α and TRAF1 mRNA levels resulted in increased protein expression in tissues of Johne's disease-positive cattle relative to tissues from control cattle. High levels of IL-1α can produce symptoms similar to those found in clinical Johne's disease. Taken together, the data presented in this report suggest that many outward symptoms of Johne's disease may be due to IL-1

  6. Analysis of the coding sequence and expression of the coiled-coil α-helical rod protein 1 gene in normal and neoplastic epithelial cervical cells

    PubMed Central

    PACHOLSKA-BOGALSKA, JOANNA; MYGA-NOWAK, MAGDALENA; CIEPŁUCH, KATARZYNA; JÓZEFIAK, AGATA; KWAŒNIEWSKA, ANNA; GOźDZICKA-JÓZEFIAK, ANNA

    2012-01-01

    The role of the CCHCR1 (coiled-coil α-helical rod protein 1) protein in the cell is poorly understood. It is thought to be engaged in processes such as proliferation and differentiation of epithelial cells, tissue-specific gene transcription and steroidogenesis. It is supposed to participate in keratinocyte transformation. It has also been found that this protein interacts with the E2 protein of human papilloma virus type 16 (HPV16). The oncogenic HPV forms, such as HPV16, are known to be necessary but not sufficient agents in the development of cervical carcinoma. In the present study, the CCHCR1 gene coding sequence and its expression was analyzed in normal, precancerous and cervical cancer cells. Changes in the non-coding region were found in 20.3% of the examined probes from women with cervical cancer or precancerous lesions and in 16.67% of the control probes. Most of the detected changes were single nucleotide polymorphisms (SNPs). Changes in the coding region were found in 22.8% of the probes with cervical cancer and in 16.67% of the control probes and all of them were SNPs. The level of CCHCR1 transcripts was determined using the real-time PCR method and the highest gene expression was detected in the H-SIL group and slightly decreased in the cervical carcinoma cells, compared with the control probes. It suggests that CCHCR1 could have a role in the process of cervical epithelial cell transformation, but this suggestion must be confirmed experimentally. PMID:22218424

  7. Functional expression of choline transporter-like protein 1 (CTL1) in small cell lung carcinoma cells: a target molecule for lung cancer therapy.

    PubMed

    Inazu, Masato; Yamada, Tomoko; Kubota, Nobuo; Yamanaka, Tsuyoshi

    2013-10-01

    Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in cancer cells. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. However, the uptake system for choline and the functional expression of choline transporters in lung cancer cells are poorly understood. We examined the molecular and functional characterization of choline uptake in the small cell lung carcinoma cell line NCI-H69. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na(+) from the uptake buffer strongly enhanced choline uptake. This increase in choline uptake under the Na(+)-free conditions was inhibited by dimethylamiloride (DMA), a Na(+)/H(+) exchanger (NHE) inhibitor. Various organic cations and the choline analog hemicholinium-3 (HC-3) inhibited the choline uptake and cell viability. A correlation analysis of the potencies of organic cations for the inhibition of choline uptake and cell viability showed a strong correlation (R=0.8077). RT-PCR revealed that choline transporter-like protein 1 (CTL1) mRNA and NHE1 are mainly expressed. HC-3 and CTL1 siRNA inhibited choline uptake and cell viability, and increased caspase-3/7 activity. The conversion of choline to ACh was confirmed, and this conversion was enhanced under Na(+)-free conditions, which in turn was sensitive to HC-3. These results indicate that choline uptake through CTL1 is used for ACh synthesis. Both an acetylcholinesterase inhibitor (eserine) and a butyrylcholinesterase inhibitor (ethopropazine) increased cell proliferation, and these effects were inhibited by 4-DAMP, a mAChR3 antagonist. We conclude that NCI-H69 cells express the choline transporter CTL1 which uses a directed H

  8. Insulin-like growth factor-binding protein-1 (IGFBP-1) in goldfish, Carassius auratus: molecular cloning, tissue expression, and mRNA expression responses to periprandial changes and cadmium exposure.

    PubMed

    Chen, Wenbo; Zhang, Zhen; Dong, Haiyan; Yan, Fangfang

    2016-06-01

    In this study, the cDNA encoding insulin-like growth factor-binding protein-1 (IGFBP-1) was cloned from the liver of goldfish (Carassius auratus). The obtained goldfish IGFBP-1 cDNA sequence was 1037 bp in length and had an open reading frame of 789 bp encoding a predicted polypeptide of 262 amino acid residues. IGFBP-1 transcript was detected in all tested central nervous and peripheral tissues. The relatively higher levels of IGFBP-1 mRNA were observed in the liver, gill, kidney, heart, spleen, fat and testis, while the lower levels were found in all different regions of brain, muscle and intestine. In the skin, IGFBP-1 mRNA expression level was extremely low. The IGFBP-1 mRNA expression level in liver was significantly elevated after feeding. With cadmium exposure for 24 h, IGFBP-1 mRNA expression levels in spleen and liver were significantly increased at different cadmium concentrations ranging from 0.5 to 10 ppm. The results in this study provided the data regarding molecular characteristics and expression patterns of IGFBP-1 in goldfish and showed that the expression of IGFBP-1 mRNA might be associated with metabolic status and heavy metal stress and regulated by metabolic factors and cadmium in fish. PMID:26753895

  9. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury

    PubMed Central

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-01-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. PMID:25193973

  10. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C) Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells

    PubMed Central

    Matsuzaki, Hirotaka; Mikami, Yu; Makita, Kousuke; Takeshima, Hideyuki; Horie, Masafumi; Noguchi, Satoshi; Jo, Taisuke; Narumoto, Osamu; Kohyama, Tadashi; Takizawa, Hajime; Nagase, Takahide; Yamauchi, Yasuhiro

    2015-01-01

    Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients’ respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL)-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C) alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C) strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL)8, growth-related oncogene (GRO), and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C) induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β–mediated signals. The co-stimulation with IL-17A and poly(I:C) markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C), although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C). In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  11. In Situ Tissue Regeneration: Chemoattractants for Endogenous Stem Cell Recruitment

    PubMed Central

    2014-01-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration PMID:23678952

  12. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls

    PubMed Central

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation. PMID:26237185

  13. Constitutive Activation of Nuclear Factor-E2-Related Factor 2 Induces Biotransformation Enzyme and Transporter Expression in Livers of Mice With Hepatocyte-Specific Deletion of Kelch-like ECH-associated protein 1

    PubMed Central

    Cheng, Qiuqiong; Taguchi, Keiko; Aleksunes, Lauren M.; Manautou, José E.; Cherrington, Nathan J.; Yamamoto, Masayuki; Slitt, Angela L.

    2013-01-01

    Chemicals that activate nuclear factor-E2-related factor-2 (Nrf2) often increase multidrug resistance-associated protein expression in liver. Hepatocyte-specific deletion of Kelch-like ECH-associated protein 1 (Keap1) activates Nrf2. Use of hepatocyte-specific Keap1 deletion represents a non-pharmacological method to determine whether constitutive Nrf2 activation upregulates liver transporter expression in vivo. The mRNA, protein expression and localization of several biotransformation and transporters was determined in livers of wild-type and hepatocyte-specific Keap1-null mice. Sulfotransferase 2a1/2, NADP(H):quinone oxidoreductase 1, Cytochrome P450 2b10, 3a11, and glutamate-cysteine ligase catalytic subunit expression was increased in livers of Keap1-null mice. Oatp1a1 expression was nearly abolished, as compared to that detected in livers of wild-type mice. By contrast, Mrp 1-5 mRNA and protein levels were increased in Keap1-null mouse livers, with Mrp4 expression being more than 15-fold higher than wild-types. In summary, Nrf2 has a significant role in affecting expression of Oatp and Mrp expression. PMID:21538727

  14. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases.

    PubMed

    Tsai, Chi-Neu; Tsai, Chia-Lung; Tse, Ka-Po; Chang, Hwan-You; Chang, Yu-Sun

    2002-07-23

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which is notoriously metastatic. Although it is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PCR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMP1-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery. PMID:12110730

  15. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    PubMed Central

    Carvalho, Denise Maciel; Garcia, Fernanda Gonçalves; Terra, Ana Paula Sarreta; Lopes Tosta, Ana Cristina; Silva, Luciana de Almeida; Castellano, Lúcio Roberto; Silva Teixeira, David Nascimento

    2014-01-01

    Background. During dengue virus (DV) infection, monocytes produce tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1) on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1) serum levels and innate immune response (TLR4 expression and TNF-α/NO production) of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA), TNF-α production by peripheral blood mononuclear cells (PBMCs), and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF) was detected compared to patients with dengue hemorrhagic fever (DHF). Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production) when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes. PMID:25580138

  16. Sperm navigation along helical paths in 3D chemoattractant landscapes

    NASA Astrophysics Data System (ADS)

    Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin

    2015-08-01

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an `off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.

  17. Sperm navigation along helical paths in 3D chemoattractant landscapes

    PubMed Central

    Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin

    2015-01-01

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. PMID:26278469

  18. Sperm navigation along helical paths in 3D chemoattractant landscapes.

    PubMed

    Jikeli, Jan F; Alvarez, Luis; Friedrich, Benjamin M; Wilson, Laurence G; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U Benjamin

    2015-01-01

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an 'off' Ca(2+) response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. PMID:26278469

  19. The Tyrosine Phosphatase SHP2 Associates with CUB Domain-Containing Protein-1 (CDCP1), Regulating Its Expression at the Cell Surface in a Phosphorylation-Dependent Manner

    PubMed Central

    Gandji, Leslie Yewakon; Proust, Richard; Larue, Lionel; Gesbert, Franck

    2015-01-01

    CUB domain-containing protein-1 (CDCP1) is a transmembrane glycoprotein that is phosphorylated by SRC family kinases (SFK) before recruiting and activating PKCδ. CDCP1 is overproduced in many cancers. It promotes metastasis and resistance to anoïkis. The robust production of CDCP1 would be associated with stemness and has been proposed as a novel prognosis marker. The natural transmembrane location of CDCP1 makes it an ideal therapeutic target and treatments based on the use of appropriate antibodies are currently being evaluated. However, we still know very little about the molecular fate of CDCP1 and its downstream signaling events. Improvements in our understanding of the molecular events occurring downstream of CDCP1 are required to make use of changes of CDCP1 production or functions for therapeutic purposes. By the mean of co-immunoprecipitation and affinity precipitation we show here, for the first time, that CDCP1 interacts directly, with the cytosolic tyrosine phosphatase SHP2. Point mutants of CDCP1 show that residues Y734 and Y743 are responsible for its interaction with SHP2. It may therefore compete with SFK. We also demonstrate that a shRNA-mediated down regulation of SHP2 is associated with a stronger CDCP1 phosphorylation and an impairment of antibody-mediated CDCP1 internalization. PMID:25876044

  20. A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours

    PubMed Central

    Carneiro, A P; Reis, C F; Morari, E C; Maia, Y C P; Nascimento, R; Bonatto, J M C; de Souza, M A; Goulart, L R; Ward, L S

    2014-01-01

    Background: This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. Methods: We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. Results: One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Conclusions: The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management. PMID:24937664

  1. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    PubMed Central

    2010-01-01

    Aims As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung cancers (n = 269) and non neoplastic lung tissue (n = 35) were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010). The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1) expression were correlated to LDH5 expression. Results 89.5% (n = 238) of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34) (p < 0.0001). LDH5 overexpression was associated with histological type (adenocarcinoma = 57%, squamous cell carcinoma = 45%, large cell carcinoma = 46%, p = 0.006). No significant correlation could be detected with regard to TNM-stage, grading or survival. A two sided correlation between the expression of TKTL1 and LDH5 could be shown (p = 0.002) within the overall cohort as well as for each grading and pN group. A significant correlation between LDH5 and TKTL1 within each histologic tumortype could not be revealed. Conclusions LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation. PMID:20385008

  2. Expression of Estrogen Receptor Coactivator Proline-, Glutamic Acid- and Leucine-Rich Protein 1 within Paraspinal Muscles in Adolescents with Idiopathic Scoliosis

    PubMed Central

    Skibinska, Izabela; Tomaszewski, Marek; Andrusiewicz, Miroslaw; Urbaniak, Paulina; Czarnecka-Klos, Roza; Shadi, Milud; Kotwicki, Tomasz; Kotwicka, Malgorzata

    2016-01-01

    Purpose The aim of this study was to detect and assess the estrogen receptor (ESR) coactivator PELP1 expression within human paraspinal skeletal muscles in patients suffering from idiopathic scoliosis. Methods During surgical correction of scoliosis the muscle biopsies harvested in 29 females. Presence of PELP1, ESR1 and ESR2 genes transcripts was studied using RT-qPCR technique while immunohistochemistry and western blot methods were used to detect the PEPL1 protein presence. Results PELP1 expression in deep paraspinal muscles revealed higher than in superficial back muscles (p = 0.005). Positive immunohistochemical staining for PELP1 was observed in the nuclei of the paraspinal muscle cells. Western blot revealed PELP1 protein in all samples. No significant difference in PELP1 expression between the convex and the concave scoliosis side (p>0.05) was found. In deep paraspinal back muscles, a significant correlation between the PELP1 expression level on the concave side and the Cobb angle (r = 0.4; p<0.05) was noted as well as between the PELP1 and ESR1 expression level (r = 0.7; p<0.05) while no correlation between PELP1 and ESR2 expression level was found. Conclusion To our knowledge, three techniques for the first time demonstrated the presence of the PELP1 in paraspinal muscles of patients with idiopathic scoliosis. The PELP1 potential regulatory impact on back muscle function is to be further investigated. PMID:27045366

  3. Characterization of a chemoattractant for endothelium induced by angiogenesis effectors.

    PubMed

    Raju, K S; Alessandri, G; Gullino, P M

    1984-04-01

    The mechanism of neovascularization was further explored by the use of chemically defined angiogenesis effectors. The vascularization of the rabbit cornea was selected as an experimental approach that permits comparison of one cornea treated by the angiogenesis effector with the contralateral cornea of the same subject treated by the same molecule deprived of angiogenic capacity. Under these conditions, we observed that neovascularization was initiated by the appearance of a chemoattractant for the bovine capillary endothelium only in the cornea treated by the angiogenesis effector. The chemoattractant was purified about 150-fold by a single-step procedure, using gelatin:Sepharose affinity chromatography. Chemoattraction resulted from the combined effect of a chemotactic factor(s) and an activating factor(s). The association of the two enhanced 5- to 8-fold the motility of the capillary endothelium in a concentration-dependent manner with optimum at 0.2 mg/ml. The activating factor(s) does not have chemotactic capacity, but without it, chemotaxis is reduced to about one half. The chemotactic complex was present in the cornea regardless of the nature of the angiogenesis effector used as the triggering device. Heat and proteases eliminated chemotaxis and destroyed the chemotactic complex. Thus, neovascularization may be triggered by effectors able to induce in the cornea proteins, normally not present, that influence angiogenesis via mobilization of capillary endothelium. PMID:6200213

  4. Screening and formulation of chemoattractant coatings for artificial reef structures.

    PubMed

    Lee, Han Seong; Sidharthan, M; Shim, Cheol Soo; Kim, Young Do; Lim, Chi Young; Ko, J W; Han, Man Deuk; Rang, Maeng Joo; Bim, Lee Sae; Cho, Hwan Sung; Shin, H W

    2008-07-01

    This study was carried out to augment the colonization of marine benthic communities on artificial reef structure. Increasing marine pollution along with various natural hazards cause severe damages to marine algae and associated fauna. In recent years, artificial reefs have been deployed in coastal regions of several parts of the world in order to increase the marine productivity. They are mainly built with concrete materials, however their leachates have considerable impacts on algae. Therefore to increase the algal colonization five chemoattractants such as ferrous sulfate, zinc oxide, ammonium nitrate, sodium phosphate and ferrous lactate were screened against spores of a fouling alga, Ulva pertusa. FeSO4 / ZnO (8:2) and ferrous lactate coatings showed the highest spore attachment with 52 +/- 5.2 cm2 and 79.5 +/- 10.2 cm2 spores respectively (p<0.01). Furthermore using these chemoattractants, coating formulations were made and their performances were investigated at East coast (Ayajin harbor) and South coast (Meejo harbor) of Korea. A maximum fouling coverage (with green algae 25%, red algae 11.3% and brown algae 63.7%) was estimated from ferrous lactate coatings (p<0.01). Different composition of coating formulations and their chemoattractive properties were evaluated. PMID:19195405

  5. High expression of Y-box-binding protein 1 correlates with poor prognosis and early recurrence in patients with small invasive lung adenocarcinoma

    PubMed Central

    Zhao, Shilei; Guo, Wei; Li, Jinxiu; Yu, Wendan; Guo, Tao; Deng, Wuguo; Gu, Chundong

    2016-01-01

    Background Prognosis of small (≤2 cm) invasive lung adenocarcinoma remains poor, and identification of high-risk individuals from the patients after complete surgical resection of lung adenocarcinoma has become an urgent problem. YBX1 has been reported to be able to predict prognosis in many cancers (except lung adenocarcinoma) that are independent of TNM (tumor, nodes, metastases) staging, especially small invasive lung adenocarcinoma. Therefore, we examined the significance of YBX1 expression on prognosis and recurrence in patients with small invasive lung adenocarcinoma. Material and methods A total of 75 patients with small invasive lung adenocarcinoma after complete resection were enrolled from January 2008 to December 2010. Immunohistochemical staining was used to detect the expression of YBX1, and receiver operating characteristic curve analysis was performed to precisely assess the overall expression of YBX1. Meanwhile, primary lesions were identified based on the International Association for the Study of Lung Cancer, the American Thoracic Society, and the European Respiratory Society’s classification of lung adenocarcinoma. The effect of different clinicopathological factors on patients’ survival was examined. Furthermore, Western blot analysis was used to show the expression of YBX1 in vitro. Results Sensitivity and specificity of YBX1 for detecting small invasive lung adenocarcinoma from normal surrounding tissue were 66.7% and 74.7% (area under the receiver operating characteristic curve =0.731; P<0.001), respectively. High YBX1 expression was detected in 31 (41.3%) patients, and in A549, H322, Hcc827, and H1299 lung adenocarcinoma cells but not in HLF cells. In addition to sex, age, tumor size, TNM staging, pleural invasion, and lymph node metastasis, the expression of YBX1 was associated with the International Association for the Study of Lung Cancer, the American Thoracic Society, and the European Respiratory Society pathological grade risk (P

  6. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses.

    PubMed

    Gangadhar, Baniekal H; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W; Prasad, Ram; Mishra, Raghvendra K

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  7. Urantide improves atherosclerosis by controlling C-reactive protein, monocyte chemotactic protein-1 and transforming growth factor-β expression in rats

    PubMed Central

    ZHAO, JUAN; XIE, LI-DE; SONG, CHENG-JUN; MAO, XIAO-XIA; YU, HAI-RONG; YU, QUAN-XIN; REN, LI-QUN; SHI, YAN; XIE, YA-QIN; LI, YING; LIU, SHA-SHA; YANG, XIAO-HONG

    2014-01-01

    The aim of the present study was to investigate the effects of urantide on the expression status of C-reactive protein (CRP) and the inflammatory cytokines monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β in the aortas of rats with atherosclerosis (AS), and to identify its underlying mechanisms. The effects of urantide in a rat model of AS and in cultured rat vascular smooth muscle cells (VSMCs) were analyzed via hematoxylin and eosin staining, immunohistochemical staining and ELISA. The results in vivo demonstrated that urantide downregulated the expression of inflammatory mediators CRP and MCP-1 and upregulated the expression of TGF-β. The results in vitro indicated that urantide inhibited the proliferation of VSMCs. In addition, urantide reduced the expression of CRP and downregulated the secretion of TGF-β in the culture supernatant. In conclusion, urantide ameliorated the arterial inflammatory damage that was observed in the AS rat model at the cell and tissue levels by controlling the expression of CRP and the inflammatory cytokines MCP-1 and TGF-β. Therefore, urantide may be a potential agent for the complementary treatment of AS. PMID:24926360

  8. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses

    PubMed Central

    Gangadhar, Baniekal H.; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W.; Prasad, Ram; Mishra, Raghvendra K.

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  9. AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins1[W][OA

    PubMed Central

    Van Aken, Olivier; Zhang, Botao; Law, Simon; Narsai, Reena; Whelan, James

    2013-01-01

    The expression of a variety of nuclear genes encoding mitochondrial proteins is known to adapt to changes in environmental conditions and retrograde signaling. The presence of putative WRKY transcription factor binding sites (W-boxes) in the promoters of many of these genes prompted a screen of 72 annotated WRKY factors in the Arabidopsis (Arabidopsis thaliana) genome for regulators of transcripts encoding mitochondrial proteins. A large-scale yeast one-hybrid screen was used to identify WRKY factors that bind the promoters of marker genes (Alternative oxidase1a, NADH dehydrogenaseB2, and the AAA ATPase Ubiquinol-cytochrome c reductase synthesis1), and interactions were confirmed using electromobility shift assays. Transgenic overexpression and knockout lines for 12 binding WRKY factors were generated and tested for altered expression of the marker genes during normal and stress conditions. AtWRKY40 was found to be a repressor of antimycin A-induced mitochondrial retrograde expression and high-light-induced signaling, while AtWRKY63 was identified as an activator. Genome-wide expression analysis following high-light stress in transgenic lines with perturbed AtWRKY40 and AtWRKY63 function revealed that these factors are involved in regulating stress-responsive genes encoding mitochondrial and chloroplast proteins but have little effect on more constitutively expressed genes encoding organellar proteins. Furthermore, it appears that AtWRKY40 and AtWRKY63 are particularly involved in regulating the expression of genes responding commonly to both mitochondrial and chloroplast dysfunction but not of genes responding to either mitochondrial or chloroplast perturbation. In conclusion, this study establishes the role of WRKY transcription factors in the coordination of stress-responsive genes encoding mitochondrial and chloroplast proteins. PMID:23509177

  10. Two Types of Assays for Detecting Frog Sperm Chemoattraction

    PubMed Central

    Burnett, Lindsey A.; Tholl, Nathan; Chandler, Douglas E.

    2011-01-01

    Sperm chemoattraction in invertebrates can be sufficiently robust that one can place a pipette containing the attractive peptide into a sperm suspension and microscopically visualize sperm accumulation around the pipette1. Sperm chemoattraction in vertebrates such as frogs, rodents and humans is more difficult to detect and requires quantitative assays. Such assays are of two major types - assays that quantitate sperm movement to a source of chemoattractant, so-called sperm accumulation assays, and assays that actually track the swimming trajectories of individual sperm. Sperm accumulation assays are relatively rapid allowing tens or hundreds of assays to be done in a single day, thereby allowing dose response curves and time courses to be carried out relatively rapidly. These types of assays have been used extensively to characterize many well established chemoattraction systems - for example, neutrophil chemotaxis to bacterial peptides and sperm chemotaxis to follicular fluid. Sperm tracking assays can be more labor intensive but offer additional data on how chemoattractancts actually alter the swimming paths that sperm take. This type of assay is needed to demonstrate the orientation of sperm movement relative to the chemoattrractant gradient axis and to visualize characteristic turns or changes in orientation that bring the sperm closer to the egg. Here we describe methods used for each of these two types of assays. The sperm accumulation assay utilized is called a "two-chamber" assay. Amphibian sperm are placed in a tissue culture plate insert with a polycarbonate filter floor having 12 μm diameter pores. Inserts with sperm are placed into tissue culture plate wells containing buffer and a chemoatttractant carefully pipetted into the bottom well where the floor meets the wall (see Fig. 1). After incubation, the top insert containing the sperm reservoir is carefully removed, and sperm in the bottom chamber that have passed through the membrane are removed

  11. Macrophage-like tumor cells as tools to study chemoattractive activity.

    PubMed

    Terheggen, P; Van Loveren, H; Den Otter, W

    1985-12-01

    Macrophage-like tumor cells can be obtained in large quantities as rather homogeneous populations, making these cells useful for chemotaxis assays. Therefore, macrophage-like cells J774A, WEHI-3, P388D1, IC-21, and NCTC 1469, all of murine origin, and U937 of human origin, were tested for chemotactic activity to a number of chemoattractive agents, such as casein, an N-formyl tetrapeptide (N-formyl-L-norleucyl-L-leucyl-L-phenylalanyl-L-tyrosine), and culture supernatants of murine SL2 lymphoma cells. J774A and WEHI-3 macrophage-like cells of murine (BALB/c) origin expressed the strongest chemotactic activity to casein and N-formyl tetrapeptide, respectively. The results show that: very standardized chemotaxis assays can be performed using these cell lines; these assays require appropriate cell line-stimulus combinations; there are substantial differences among cell lines as to sensitivity to various chemoattractive substances; macrophage cell lines and functional mutants may be helpful for the study of receptors for chemotaxins and the study of transducer signals for chemotaxis. PMID:3864910

  12. Extracellular galectin-3 counteracts adhesion and exhibits chemoattraction in Helicobacter pylori-infected gastric cancer cells.

    PubMed

    Subhash, Vinod Vijay; Ling, Samantha Shi Min; Ho, Bow

    2016-08-01

    Galectin-3 (Gal-3) is a β-galactoside lectin that is upregulated and rapidly secreted by gastric epithelial cells in response to Helicobacter pylori infection. An earlier study reported the involvement of H. pylori cytotoxin-associated gene A (cagA) in the expression of intracellular Gal-3. However, the role of extracellular Gal-3 and its functional significance in H. pylori-infected cells remains uncharacterized. Data presented here demonstrate secretion of Gal-3 is an initial host response event in gastric epithelial cells during H. pylori infection and is independent of CagA. Previously, Gal-3 was shown to bind to H. pylori LPS. The present study elaborates the significance of this binding, as extracellular recombinant Gal-3 (rGal-3) was shown to inhibit the adhesion of H. pylori to the gastric epithelial cells. Interestingly, a decrease in H. pylori adhesion to host cells also resulted in a decrease in apoptosis. Furthermore, the study also demonstrated a chemoattractant role of extracellular rGal-3 in the recruitment of THP-1 monocytes. This study outlines the previously unidentified roles of extracellular Gal-3 where it acts as a negative regulator of H. pylori adhesion and apoptosis in gastric epithelial cells, and as a chemoattractant to THP-1 monocytes. Our findings could contribute to the better understanding of how Gal-3 acts as a modulator under H. pylori-induced pathological conditions. PMID:27283429

  13. Cloning, structural characterization and expression analysis of a novel lipid storage droplet protein-1 (LSD-1) gene in Chinese honeybee (Apis cerana cerana).

    PubMed

    Liu, Li; Gong, Zhihong; Guo, Xingqi; Xu, Baohua

    2012-03-01

    Lipid storage droplet 1 (LSD-1), a PAT family protein located around lipid droplets in insects, is intimately linked to lipid droplets formation and lipid metabolism. Conjugated linoleic acid (CLA) and rosiglitazone (Rosi) have previously been shown to modulate the expression of several PAT family proteins through peroxisome proliferator-activated receptor-γ (PPARγ). In the present study, we isolated and characterized a novel LSD-1 gene, referred to AccLSD-1, from Chinese honeybee (Apis cerana cerana). Sequence analysis indicated that the central region of LSD-1 protein had significant sequence similarity and a typical LSD-1 gene was composed of 8 exons and 7 introns. Interestingly, the first intron of AccLSD-1 including several PPARγ-response elements (PPREs) was located in 5' UTR. Analysis of 5'-flanking region of AccLSD-1 revealed a number of putative cis-acting elements, including three PPREs. Quantitative real-time PCR showed that AccLSD-1 expressed ubiquitously from feeding larva to adult, and its expression level was highest at brown-eyed pupae (Pb) stage. The effect of CLA, Rosi and combination on AccLSD-1 expressions indicated 1% CLA and 0.5 mg/ml Rosi were considered as the suitable diets for rearing adult workers in laboratory, and AccLSD-1 was down-regulated by CLA whereas up-regulated by Rosi. Furthermore, the combination of CLA and Rosi remarkly rescued the suppression of AccLSD-1 expression by CLA alone. These results suggest that AccLSD-1 is associated with A. cerana cerana development, especially during pupal metamorphosis, and can be regulated by CLA or Rosi possibly via activating PPARγ. PMID:21695433

  14. Correlation of Organic Cation/Carnitine Transporter 1 and Multidrug Resistance-Associated Protein 1 Transport Activities With Protein Expression Levels in Primary Cultured Human Tracheal, Bronchial, and Alveolar Epithelial Cells.

    PubMed

    Sakamoto, Atsushi; Suzuki, Shinobu; Matsumaru, Takehisa; Yamamura, Norio; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2016-02-01

    Understanding how transporters contribute to the distribution of inhaled drugs in the lung is important for the discovery and development of such drugs. Protein expression levels may be useful to predict and understand drug distribution. As previously reported, organic cation/carnitine transporter 1 (OCTN1) and multidrug resistance-associated protein 1 (MRP1) have higher levels of protein expression among transporters in primary cultured human lung cells. Nevertheless, it is unclear to what extent transport activity correlates with transporter protein expression. The purpose is to evaluate whether differences in OCTN1 and MRP1 protein expression govern the respective transport activity in primary cultured human lung cells. The model substrates of 4-[4-(dimethylamino) styryl]-N-methylpyridinium iodide (ASP(+)) and carboxy-dichlorofluorescein (CDF) for OCTN1 and MRP1, respectively, were used in the lung cells from five donors. Significant correlation was found between the kinetic parameter Vmax for ASP(+) and OCTN1 protein expression in plasma membrane of tracheal, bronchial, and alveolar cells (r(2) = 0.965, 0.834, and 0.877, respectively), and between the efflux of CDF and MRP1 protein expression in plasma membrane of tracheal, bronchial, and alveolar cells (r(2) = 0.800, 0.904, and 0.790, respectively). These findings suggest that OCTN1 and MRP1 protein concentrations are determinants for drug distribution in the lung. PMID:26429295

  15. Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and Activator Protein-1-dependent monocyte networks.

    PubMed

    Green, Justin A; Elkington, Paul T; Pennington, Caroline J; Roncaroli, Federico; Dholakia, Shruti; Moores, Rachel C; Bullen, Anwen; Porter, Joanna C; Agranoff, Dan; Edwards, Dylan R; Friedland, Jon S

    2010-06-01

    Inflammatory tissue destruction is central to pathology in CNS tuberculosis (TB). We hypothesized that microglial-derived matrix metalloproteinases (MMPs) have a key role in driving such damage. Analysis of all of the MMPs demonstrated that conditioned medium from Mycobacterium tuberculosis-infected human monocytes (CoMTb) stimulated greater MMP-1, -3, and -9 gene expression in human microglial cells than direct infection. In patients with CNS TB, MMP-1/-3 immunoreactivity was demonstrated in the center of brain granulomas. Concurrently, CoMTb decreased expression of the inhibitors, tissue inhibitor of metalloproteinase-2, -3, and -4. MMP-1/-3 secretion was significantly inhibited by dexamethasone, which reduces mortality in CNS TB. Surface-enhanced laser desorption ionization time-of-flight analysis of CoMTb showed that TNF-alpha and IL-1beta are necessary but not sufficient for upregulating MMP-1 secretion and act synergistically to drive MMP-3 secretion. Chemical inhibition and promoter-reporter analyses showed that NF-kappaB and AP-1 c-Jun/FosB heterodimers regulate CoMTb-induced MMP-1/-3 secretion. Furthermore, NF-kappaB p65 and AP-1 c-Jun subunits were upregulated in biopsy granulomas from patients with cerebral TB. In summary, functionally unopposed, network-dependent microglial MMP-1/-3 gene expression and secretion regulated by NF-kappaB and AP-1 subunits were demonstrated in vitro and, for the first time, in CNS TB patients. Dexamethasone suppression of MMP-1/-3 gene expression provides a novel mechanism explaining the benefit of steroid therapy in these patients. PMID:20483790

  16. Recombinant Treponema pallidum rare outer membrane protein 1 (Tromp1) expressed in Escherichia coli has porin activity and surface antigenic exposure.

    PubMed Central

    Blanco, D R; Champion, C I; Exner, M M; Shang, E S; Skare, J T; Hancock, R E; Miller, J N; Lovett, M A

    1996-01-01

    We recently reported the cloning and sequencing of the gene encoding a 31-kDa Treponema pallidum subsp. pallidum rare outer membrane porin protein, designated Tromp1 (D. R. Blanco, C. I. Champion, M. M. Exner, H. Erdjument-Bromage, R. E. W. Hancock, P. Tempst, J. N. Miller, and M. A. Lovett, J. Bacteriol. 177:3556-3562, 1995). Here, we report the stable expression of recombinant Tromp1 (rTromp1) in Escherichia coli. rTromp1 expressed without its signal peptide and containing a 22-residue N-terminal fusion resulted in high-level accumulation of a nonexported soluble protein that was purified to homogeneity by fast protein liquid chromatography (FPLC). Specific antiserum generated to the FPLC-purified rTromp1 fusion identified on immunoblots of T. pallidum the native 31-kDa Tromp1 protein and two higher-molecular-mass oligomeric forms of Tromp1 at 55 and 80 kDa. rTromp1 was also expressed with its native signal peptide by using an inducible T7 promoter. Under these conditions, rTromp1 fractionated predominantly with the E. coli soluble and outer membrane fractions, but not with the inner membrane fraction. rTromp1 isolated from the E. coli outer membrane and reconstituted into planar lipid bilayers showed porin activity based on average single-channel conductances of 0.4 and 0.8 nS in 1 M KCl. Whole-mount immunoelectron microscopy using infection-derived immune serum against T. pallidum indicated that rTromp1 was surface exposed when expressed in E. coli. These findings demonstrate that rTromp1 can be targeted to the E. coli outer membrane, where it has both porin activity and surface antigenic exposure. PMID:8955283

  17. Melia azedarach extract stimulates melanogenesis through increase of tyrosinase-related protein 1 expression in B16F10 mouse melanoma cells.

    PubMed

    Yao, Cheng; Jin, Cheng Long; Oh, Inn Gyung; Park, Chi-Hyun; Chung, Jin Ho

    2015-06-01

    Melia azedarach (MA) has been used in folk medicine in Asia for the treatment of several diseases. Several constituents from MA possess anti-herpetic, anti-angiogenic and anticancer properties. The aim of the present study was to investigate the effect of a 70% ethanol extract of MA on melanogenesis and the underlying mechanisms involved. A B16F10 mouse melanoma cell line was used in our experiments. Treatment of B16F10 cells with the MA extract (10, 20 and 40 µg/ml) increased melanin content in a concentration-dependent manner without cytotoxicity at 24 h. Further experiments indicated that the MA extract (20 µg/ml) increased melanin content as early as at 4 h after treatment. Additionally, although the MA extract did not affect intracellular tyrosinase activity and the protein levels of tyrosinase and tyrosinase-related protein-2 (TRP-2) at 2 and 4 h after treatment, the MA extract increased TRP-1 protein expression at both time points. However, no significant effect of the MA extract treatment on TRP-1 mRNA level at the time points measured was observed. In conclusion, the results from the present study demonstrate that the MA extract increases melanogenesis through the upregulation of TRP-1 protein expression by post-transcriptional control in B16F10 cells and suggest that the MA extract can be viewed as a rapid inducer of melanogenesis, thus rendering it a potential treatment for hypopigmentation diseases including vitiligo. PMID:25872655

  18. Intraspecific and interspecific chemoattraction inBiomphalaria glabrata andHelisoma trivolvis (Gastropoda: Planorbidae).

    PubMed

    Marcopoulos, A A; Fried, B

    1994-10-01

    A Petri dish bioassay previously used to examine food preferences in planorbid snails was used to study intraspecific and interspecific chemoattraction inBiomphalaria glabrata (albino strain, M-line) andHelisoma trivolvis (Colorado strain) snails.B. glabrata snails showed significant intraspecific chemoattraction in the absence of visual cues and snail thigmotaxis.H. trivolvis snails also showed significant intraspecific chemoattraction. Interspecific chemoattraction between these species occurred in the bioassay, suggesting that the chemoattractants were not species specific. Artificial spring water conditioned by aqueous excretory-secretory products (snail-conditioned water) ofB. glabrata elicited significant intraspecific chemoattraction. However, lipophilic excretory-secretory products ofB. glabrata elicited significant chemorepulsion. Repellant factors in the lipophilic fraction were not characterized. PMID:24241838

  19. Honokiol reverses alcoholic fatty liver by inhibiting the maturation of sterol regulatory element binding protein-1c and the expression of its downstream lipogenesis genes

    SciTech Connect

    Yin Huquan; Kim, Youn-Chul; Chung, Young-Suk; Kim, Young-Chul; Shin, Young-Kee; Lee, Byung-Hoon

    2009-04-01

    Ethanol induces hepatic steatosis via a complex mechanism that is not well understood. Among the variety of molecules that have been proposed to participate in this mechanism, the sterol regulatory element (SRE)-binding proteins (SREBPs) have been identified as attractive targets for therapeutic intervention. In the present study, we evaluated the effects of honokiol on alcoholic steatosis and investigated its possible effect on the inhibition of SREBP-1c maturation. In in vitro studies, H4IIEC3 rat hepatoma cells developed increased lipid droplets when exposed to ethanol, but co-treatment with honokiol reversed this effect. Honokiol inhibited the maturation of SREBP-1c and its translocation to the nucleus, the binding of nSREBP-1c to SRE or SRE-related sequences of its lipogenic target genes, and the expression of genes for fatty acid synthesis. In contrast, magnolol, a structural isomer of honokiol, had no effect on nSREBP-1c levels. Male Wistar rats fed with a standard Lieber-DeCarli ethanol diet for 4 weeks exhibited increased hepatic triglyceride and decreased hepatic glutathione levels, with concomitantly increased serum alanine aminotransferase and TNF-{alpha} levels. Daily administration of honokiol (10 mg/kg body weight) by gavage during the final 2 weeks of ethanol treatment completely reversed these effects on hepatotoxicity markers, including hepatic triglyceride, hepatic glutathione, and serum TNF-{alpha}, with efficacious abrogation of fat accumulation in the liver. Inhibition of SREBP-1c protein maturation and of the expression of Srebf1c and its target genes for hepatic lipogenesis were also observed in vivo. A chromatin immunoprecipitation assay demonstrated inhibition of specific binding of SREBP-1c to the Fas promoter by honokiol in vivo. These results demonstrate that honokiol has the potential to ameliorate alcoholic steatosis by blocking fatty acid synthesis regulated by SREBP-1c.

  20. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    SciTech Connect

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha} and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms

  1. Reversal of phenol and naphthalene effects on ciliate chemoattraction

    SciTech Connect

    Berk, S.G.; Ting, R.S.; Roberts, R.O. ); Mills, B.A. ); Stewart, K.C. )

    1990-02-01

    In an effort to address research needs in the area of rapid screening tests for aquatic toxicology, the authors engaged in a study of pollutant effects on protozoan chemoattraction. Among pollutants tested were metals and hydrocarbons. To ascertain whether inhibition observed after brief exposures to certain concentrations of the pollutants were irreversible, they examined the possibility of nullifying the inhibitory effect by removing protozoa from the toxicants after short exposures. Earlier work showed that inhibitory effects of metals could be removed, and they report here the nullification and reversibility of effects of phenol and naphthalene on certain ciliates.

  2. Contracting C2C12 myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction.

    PubMed

    Miyatake, Shouta; Bilan, Philip J; Pillon, Nicolas J; Klip, Amira

    2016-01-15

    Muscle inflammation following exercise is characterized by expression of inflammatory cytokines and chemokines. Exercise also increases muscle macrophages derived from circulating monocytes. However, it is unknown whether muscle cells themselves attract circulating monocytes, or what is the underlying mechanism. We used an in vitro system of electrical stimulation (ES) causing C2C12 myotube contraction to explore whether monocyte chemoattraction ensues and investigated the mediating chemoattractants. Conditioned medium from ES-contracted myotubes caused robust chemoattraction of THP-1 monocytes across Boyden chambers. Following ES, expression of several known monocyte chemokines [C-C motif ligand 2 (CCL2) and C-X-C motif ligand (CXCL)1, -2, and -5] was elevated, but of these, only recombinant CCL2 effectively reproduced monocyte migration. Electrically stimulated myotubes secreted CCL2, and neutralization of CCL2 in conditioned medium or antagonizing the CCL2 receptor (CCR2) in THP-1 monocytes inhibited ES-induced monocyte migration. N-benzyl-p-toluene sulfonamide (BTS), a myosin II-ATPase inhibitor, prevented ES-induced myotube contraction but not CCL2 gene expression and secretion. The membrane-permeant calcium chelator BAPTA-AM reduced ES-induced CCL2 secretion. Hence, electrical depolarization, rather than mechanical contraction, drives the rise in CCL2, with partial calcium input. ES activated the NF-κB pathway; NF-κB inhibitors reduced ES-induced CCL2 gene expression and secretion and repressed ES-induced THP-1 chemoattraction. Thus, electrically stimulated myotubes chemoattract monocytes through NF-κB-regulated CCL2 secretion. PMID:26554595

  3. Expression of RIZ1 protein (Retinoblastoma-interacting zinc-finger protein 1) in prostate cancer epithelial cells changes with cancer grade progression and is modulated in vitro by DHT and E2.

    PubMed

    Rossi, Valentina; Staibano, Stefania; Abbondanza, Ciro; Pasquali, Daniela; De Rosa, Caterina; Mascolo, Massimo; Bellastella, Giuseppe; Visconti, Daniela; De Bellis, Annamaria; Moncharmont, Bruno; De Rosa, Gaetano; Puca, Giovanni Alfredo; Bellastella, Antonio; Sinisi, Antonio Agostino

    2009-12-01

    The nuclear protein methyl-transferase Retinoblastoma-interacting zinc-finger protein 1 (RIZ1) is considered to be a downstream effector of estrogen action in target tissues. Silencing of RIZ1 expression is common in many tumors. We analyzed RIZ1 expression in normal and malignant prostate tissue and evaluated whether estradiol (E2) or dihydrotestosterone (DHT) treatment modulated RIZ1 in cultured prostate epithelial cells (PEC). Moreover, we studied the possible involvement of RIZ1 in estrogen action on the EPN prostate cell line, constitutively expressing both estrogen receptor (ER)-alpha and beta. RIZ1 protein, found in the nucleus of normal PECs by immunohistochemistry, was progressively lost in cancer tissues as the Gleason score increased and was only detected in the cytoplasmic compartment. RIZ1 transcript levels, as assayed by semi-quantitative RT-PCR in primary PEC cultures, were significantly reduced in cancer cells (P < 0.05). In EPN DHT treatment significantly increased RIZ1 transcript and protein levels (P < 0.05); E2 induced a reduction of S phase without significant changes of RIZ1 expression. In E2-treated EPN cell extracts RIZ co-immunoprecipitated with ERbeta and ERalpha. Our data demonstrate that RIZ1 is expressed in normal PECs and down-regulated in cancer cells, with a switch of its sub-cellular localization from the nucleus to the cytoplasm upon cancer grade progression. RIZ1 expression levels in the PECs were modulated by DHT or E2 treatment in vitro. Furthermore, the E2 effects on ER-expressing prostate cells involve RIZ1, which confirms a possible role for ER-mediated pathways in a non-classic E(2)-target tissue. PMID:19746436

  4. B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1

    PubMed Central

    Zhou, H; Ma, H; Wei, W; Ji, D; Song, X; Sun, J; Zhang, J; Jia, L

    2013-01-01

    β-1, 4-Galactosyltransferase gene (B4GALT) family consists of seven members, which encode corresponding enzymes known as type II membrane-bound glycoproteins. These enzymes catalyze the biosynthesis of different glycoconjugates and saccharide structures, and have been recognized to be involved in various diseases. In this study, we sought to determine the expressional profiles of B4GALT family in four pairs of parental and chemoresistant human leukemia cell lines and in bone marrow mononuclear cells (BMMC) of leukemia patients with multidrug resistance (MDR). The results revealed that B4GALT1 and B4GALT5 were highly expressed in four MDR cells and patients, altered levels of B4GALT1 and B4GALT5 were responsible for changed drug-resistant phenotype of HL60 and HL60/adriamycin-resistant cells. Further data showed that manipulation of these two gene expression led to increased or decreased activity of hedgehog (Hh) signaling and proportionally mutative expression of p-glycoprotein (P-gp) and MDR-associated protein 1 (MRP1) that are both known to be related to MDR. Thus, we propose that B4GALT1 and B4GALT5, two members of B4GALT gene family, are involved in the development of MDR of human leukemia cells, probably by regulating the activity of Hh signaling and the expression of P-gp and MRP1. PMID:23744354

  5. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  6. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    PubMed Central

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  7. Human ecalectin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes.

    PubMed

    Matsumoto, R; Matsumoto, H; Seki, M; Hata, M; Asano, Y; Kanegasaki, S; Stevens, R L; Hirashima, M

    1998-07-01

    A 1.6-kilobase pair cDNA was isolated from a human T-cell-derived expression library that encodes a novel eosinophil chemoattractant (designated ecalectin) expressed during allergic and parasitic responses. Based on its deduced amino acid sequence, ecalectin is a 36-kDa protein consisting of 323 amino acids. Although ecalectin lacks a hydrophobic signal peptide, it is secreted from mammalian cells. Ecalectin is not related to any known cytokine or chemokine but rather is a variant of human galectin-9, a member of the large family of animal lectins that have affinity for beta-galactosides. Recombinant ecalectin, expressed in COS cells and insect cells, exhibited potent eosinophil chemoattractant activity and attracted eosinophils in vitro and in vivo in a dose-dependent manner but not neutrophils, lymphocytes, or monocytes. The finding that the ecalectin transcript is present in abundance in various lymphatic tissues and that its expression increases substantially in antigen-activated peripheral blood mononuclear cells suggests that ecalectin is an important T-cell-derived regulator of eosinophil recruitment in tissues during inflammatory reactions. We believe that this is the first report of the expression of an immunoregulatory galectin expressed by a T-cell line that is selective for eosinophils. PMID:9642261

  8. Elevated monocyte chemotactic proteins 1, 2, and 3 in pulmonary alveolar proteinosis are associated with chemokine receptor suppression.

    PubMed

    Bonfield, Tracey L; John, Nejimol; Malur, Anagha; Barna, Barbara P; Culver, Daniel A; Kavuru, Mani S; Thomassen, Mary Jane

    2005-01-01

    Pulmonary alveolar proteinosis (PAP) is a rare autoimmune lung disease characterized by abnormal surfactant accumulation within alveolar macrophages, and circulating auto-antibodies against granulocyte-macrophage colony stimulating factor (GM-CSF) resulting in functional GM-CSF deficiency. Monocyte/macrophage chemotactic protein-1 (MCP-1) is elevated in PAP, suggesting association with the pathophysiology. Because PAP has been associated with inflammatory pulmonary changes, we hypothesized that other MCP family chemokines would be present and that Chemokine Chemotaxis Receptor 2 (CCR2) would be elevated on PAP mononuclear cells. Here we show for the first time that MCP-2 and MCP-3, like MCP-1, are highly elevated in PAP. We also confirm that PAP alveolar macrophages and not epithelial cells produce MCP-1, and that MCP-1 from PAP lung has functional chemoattractant activity. Surprisingly, CCR2 expression is diminished in PAP lymphocytes and alveolar macrophages compared to controls. Further, MCP-1 from PAP lung suppresses CCR2 expression in vitro, suggesting that in PAP, MCP-1 participates in an autocrine regulatory network in vivo. PMID:15596412

  9. Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues.

    PubMed

    Antunez-Lamas, Maria; Cabrera, Ezequiel; Lopez-Solanilla, Emilia; Solano, Roberto; González-Melendi, Pablo; Chico, Jose Manuel; Toth, Ian; Birch, Paul; Pritchard, Leighton; Prichard, Leighton; Liu, Hui; Rodriguez-Palenzuela, Pablo

    2009-11-01

    Jasmonate is a key signalling compound in plant defence that is synthesized in wounded tissues. In this work, we have found that this molecule is also a strong chemoattractant for the phythopathogenic bacteria Dickeya dadantii (ex-Erwinia chysanthemi). Jasmonic acid induced the expression of a subset of bacterial genes possibly involved in virulence/survival in the plant apoplast and bacterial cells pre-treated with jasmonate showed increased virulence in chicory and Saintpaulia leaves. We also showed that tissue wounding induced bacterial spread through the leaf surface. Moreover, the jasmonate-deficient aos1 Arabidopsis thaliana mutant was more resistant to bacterial invasion by D. dadantii than wild-type plants. These results are consistent with the hypothesis that sensing jasmonic acid by this bacterium helps the pathogen to ingress inside plant tissues. PMID:19818025

  10. Transformation of Madin-Darby canine kidney (MDCK) epithelial cells by Epstein-Barr virus latent membrane protein 1 (LMP1) induces expression of Ets1 and invasive growth.

    PubMed

    Kim, K R; Yoshizaki, T; Miyamori, H; Hasegawa, K; Horikawa, T; Furukawa, M; Harada, S; Seiki, M; Sato, H

    2000-03-30

    The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) has a significant role in initiating EBV-associated lymphoproliferative disease and EBV-related malignancies. In view of clinical features related to the type of EBV latency, LMP1 may influence invasiveness of EBV associated tumors categorized as types II and III as represented on nasopharyngeal carcinoma (NPC). To screen for genes associated with invasion of epithelial cells transformed by LMP1, Madin-Darby canine kidney (MDCK) epithelial cells were transformed by LMP1. Stable transfection of a LMP1 gene into MDCK cells induced morphological change from cobblestone to a long spindle-shape, reduced cell-cell adhesion and caused high cell motility. Parental MDCK cells, which form spherical cysts in three-dimensional collagen gel matrix, form branching tubules following exposure to hepatocyte growth factor (HGF). MDCK cells transformed by LMP1 showed invasive growth to form branching tubules into collagen gel without HGF-treatment. mRNA differential display and Northern hybridization identified plasminogen activator inhibitor-1 (PAI-1), urokinase type plasminogen activator (uPA) and ets1 as genes upregulated during transformation by LMP1. Expression of a dominant negative type of Etsl in LMP1-transformed cells downregulated uPA expression and cell motility. Deletion of LMP1 cytoplasmic carboxy-terminal activating region 1 (CTAR1) domain abolished transformation, but a deletion mutant lacking CTAR2 domain still retained transforming and uPA-inducing ability. Expression of Ets1 was immunolocalized in tumor cells of NPC tissue which frequently express LMP1. Taken together, it is suggested that LMP1 induces expression of Ets1 which may contribute to invasion of NPC by stimulating cell motility and uPA expression. PMID:10777210

  11. MOLECULAR CLONING, EXPRESSION PATTERN OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN 1 (MRP1, ABCC1) GENE, AND THE SYNERGISTIC EFFECTS OF VERAPAMIL ON TOXICITY OF TWO INSECTICIDES IN THE BIRD CHERRY-OAT APHID.

    PubMed

    Kang, Xin-Le; Zhang, Meng; Wang, Kang; Qiao, Xian-Feng; Chen, Mao-Hua

    2016-05-01

    The ATP-binding cassette (ABC) transporters are important transmembrane proteins encoded by a supergene family. The majority of ABC proteins are primary active transporters that bind and hydrolyze ATP to mediate the efflux of a diverse range of substrates across lipid membranes. In this study, we cloned and characterized a putative multidrug resistance associated protein 1 (MRP1) from Rhopalosiphum padi encoded by ABCC1. Structural analysis showed that this protein has structural features typical of the ABC transporter family. Phylogenetic analysis indicated that the amino acid sequence was highly similar that of the corresponding protein from Acyrthosiphon pisum. Real-time quantitative polymerase chain reaction (PCR) analysis showed that ABCC1 was expressed throughout all R. padi developmental stages, with the highest level of expression in the fourth larval instar. We also examined ABCC1 expression in four different tissue types and found that it was most highly expressed in the midgut. Exposing R. padi to imidacloprid and chlorpyrifos increased ABCC1 expression. Furthermore, ABCC1 expression was higher in the imidacloprid-resistant (IR) and chlorpyrifos-resistant (CR) strains than in an insecticide-susceptible strain (SS) of R. padi. Exposing R. padi to verapamil in combination with insecticides significantly increased the toxicity of the insecticides. The respective synergy factor of CR and IR R. padi strain was 1.33 and 1.26, which was lower than that (2.72 and 1.64, respectively) of the SS. Our results clarify the biological function of ABCC1 in R. padi, particularly its role in insecticide resistance, and suggest novel strategies for pest management that use ABC transporter inhibitors to increase the effectiveness of insecticides. PMID:27110952

  12. Nuclear expression of Y-box binding protein-1 is associated with poor prognosis in patients with pancreatic cancer and its knockdown inhibits tumor growth and metastasis in mice tumor models.

    PubMed

    Shinkai, Kentaro; Nakano, Kenji; Cui, Lin; Mizuuchi, Yusuke; Onishi, Hideya; Oda, Yoshinao; Obika, Satoshi; Tanaka, Masao; Katano, Mitsuo

    2016-07-15

    The objective of this study was to examine the implication of Y-box-binding protein-1 (YB-1) for the aggressive phenotypes, prognosis and therapeutic target in pancreatic ductal adenocarcinoma (PDAC). YB-1 expression in PDAC, pancreatic intraepithelial neoplasia (PanIN) and normal pancreas specimens was evaluated by immunohistochemistry, and its correlation with clinicopathological features was assessed in patients with PDAC. The effects of YB-1 on proliferation, invasion and expressions of cell cycle-related proteins and matrix metalloproteinases (MMPs) were analyzed by WST-8, cell cycle and Matrigel invasion assays, Western blotting and quantitative RT-PCR in PDAC cells transfected with YB-1-siRNAs. To verify the significance of YB-1 for tumor progression in vivo, the growth and metastasis were monitored after intrasplenic implantation of ex vivo YB-1 siRNA-transfected PDAC cells, and YB-1-targeting antisense oligonucleotides were intravenously administered in nude mice harboring subcutaneous tumor. The intensity of YB-1 expression and positivity of nuclear YB-1 expression were higher in PDAC than PanIN and normal pancreatic tissues. Nuclear YB-1 expression was significantly associated with dedifferentiation, lymphatic/venous invasion and unfavorable prognosis. YB-1 knockdown inhibited cell proliferation via cell cycle arrest by S-phase kinase-associated protein 2 downregulation and consequent p27 accumulation, and decreased the invasion due to downregulated membranous-type 2 MMP expression in PDAC cells. Tumor growth and liver metastasis formation were significantly suppressed in nude mice after implantation of YB-1-silenced PDAC cells, and the YB-1 targeting antisense oligonucleotide significantly inhibited the growth of subcutaneous tumors. In conclusion, YB-1 may be involved in aggressive natures of PDAC and a promising therapeutic target. PMID:26939718

  13. Mycoplasma pulmonis possesses a novel chemoattractant for B lymphocytes.

    PubMed Central

    Ross, S E; Simecka, J W; Gambill, G P; Davis, J K; Cassell, G H

    1992-01-01

    Mycoplasma pulmonis causes chronic murine respiratory mycoplasmosis, which is characterized by extensive peribronchial and perivascular infiltration of mononuclear cells, including B lymphocytes. B-lymphocyte recruitment into sites of inflammation is presently poorly understood but must involve directed chemotaxis of these cells in response to some external recruitment stimulus. In these studies, picogram amounts of M. pulmonis membrane protein were found to possess potent chemoattractant activity for resting rat B lymphocytes. This report is the first description of a bacterially derived chemoattractant for B lymphocytes and offers a unique opportunity to study regulation of B-lymphocyte recruitment to a site of chronic pulmonary inflammation. Furthermore, M. pulmonis membrane activation of fresh rat serum was found to produce a potent stimulus for recruitment of peritoneal and alveolar macrophages. M. pulmonis-mediated recruitment of lymphocytes and macrophages may play a significant role in the pathogenesis of murine respiratory mycoplasmosis, a role in which organisms on the bronchiolar epithelial surfaces may release proteins which can directly or indirectly promote chemotaxis of inflammatory cells from the circulation. PMID:1730502

  14. Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells.

    PubMed Central

    Damert, A; Ikeda, E; Risau, W

    1997-01-01

    The endothelial cell-specific mitogen vascular-endothelial growth factor (VEGF) plays a key role in both physiological and pathological angiogenesis. The up-regulation of VEGF expression in response to reduced oxygen tension occurs through transcriptional and post-transcriptional mechanisms. To investigate the molecular mechanisms of transcriptional activation by hypoxia (1% oxygen), fine mapping of a hypoxia-responsive region of the human VEGF promoter was carried out using luciferase reporter-gene constructs in C6 glioma cells. Here, we report that the binding site of hypoxia-inducible factor 1 (HIF1) is crucial for the hypoxic induction of VEGF gene expression. However, an enhancer subfragment containing the HIF1 binding site was not sufficient to confer full hypoxia responsiveness. Addition of upstream sequences restored the full sensitivity to hypoxia induction. This potentiating effect is due to activator protein 1 binding. The 'potentiating' sequences are unable to confer hypoxia responsiveness on their own. Our results strongly suggest that in C6 glioma cells a complex array of trans-acting factors facilitates full transcriptional induction of VEGF gene expression by hypoxia. PMID:9359410

  15. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro

    PubMed Central

    Shu, Sherry T.; Dirksen, Wessel P.; Lanigan, Lisa G.; Martin, Chelsea K.; Thudi, Nanda K.; Werbeck, Jillian L.; Fernandez, Soledad A.; Hildreth, Blake E.; Rosol, Thomas J.

    2012-01-01

    Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells. PMID:21942940

  16. The clinical-grade 42-kilodalton fragment of merozoite surface protein 1 of Plasmodium falciparum strain FVO expressed in Escherichia coli protects Aotus nancymai against challenge with homologous erythrocytic-stage parasites.

    PubMed

    Darko, Christian A; Angov, Evelina; Collins, William E; Bergmann-Leitner, Elke S; Girouard, Autumn S; Hitt, Stacy L; McBride, Jana S; Diggs, Carter L; Holder, Anthony A; Long, Carole A; Barnwell, John W; Lyon, Jeffrey A

    2005-01-01

    A 42-kDa fragment from the C terminus of major merozoite surface protein 1 (MSP1) is among the leading malaria vaccine candidates that target infection by asexual erythrocytic-stage malaria parasites. The MSP1(42) gene fragment from the Vietnam-Oak Knoll (FVO) strain of Plasmodium falciparum was expressed as a soluble protein in Escherichia coli and purified according to good manufacturing practices. This clinical-grade recombinant protein retained some important elements of correct structure, as it was reactive with several functional, conformation-dependent monoclonal antibodies raised against P. falciparum malaria parasites, it induced antibodies (Abs) that were reactive to parasites in immunofluorescent Ab tests, and it induced strong growth and invasion inhibitory antisera in New Zealand White rabbits. The antigen quality was further evaluated by vaccinating Aotus nancymai monkeys and challenging them with homologous P. falciparum FVO erythrocytic-stage malaria parasites. The trial included two control groups, one vaccinated with the sexual-stage-specific antigen of Plasmodium vivax, Pvs25, as a negative control, and the other vaccinated with baculovirus-expressed MSP1(42) (FVO) as a positive control. Enzyme-linked immunosorbent assay (ELISA) Ab titers induced by E. coli MSP1(42) were significantly higher than those induced by the baculovirus-expressed antigen. None of the six monkeys that were vaccinated with the E. coli MSP1(42) antigen required treatment for uncontrolled parasitemia, but two required treatment for anemia. Protective immunity in these monkeys correlated with the ELISA Ab titer against the p19 fragment and the epidermal growth factor (EGF)-like domain 2 fragment of MSP1(42), but not the MSP1(42) protein itself or the EGF-like domain 1 fragment. Soluble MSP1(42) (FVO) expressed in E. coli offers excellent promise as a component of a vaccine against erythrocytic-stage falciparum malaria. PMID:15618165

  17. Using Chemoattractants to Lure Bacteria to Contact-Killing Surfaces.

    PubMed

    Jain, Rishabh; Faith, Nancy G; Milkowski, Andrew; Nelson, Kevin; Busche, David; Lynn, David M; Czuprynski, Charles J; Abbott, Nicholas L

    2016-05-01

    Antimicrobial surfaces with covalently attached biocidal functionalities only kill microbes that come into direct contact with the surfaces (contact-killing surfaces). Herein, the activity of contact-killing surfaces is shown to be enhanced by using gradients in the concentration of soluble chemoattractants (CAs) to attract bacteria to the surfaces. Two natural and nonbiocidal CAs (aspartate and glucose) were used to attract bacteria to model surfaces decorated with quaternary ammonium groups (known to kill bacteria that come into contact with them). These results demonstrate the killing of Escherichia coli and Salmonella typhimurium, two common pathogens, at levels 10- to 20-times greater than that of the native surfaces alone. This approach is general and provides new strategies for the design of active or dynamic contact-killing surfaces with enhanced antimicrobial activities. PMID:27059788

  18. Disorganized muscle protein-1 (DIM-1) of filarial parasite Brugia malayi: cDNA cloning, expression, purification, structural modeling and its potential as vaccine candidate for human filarial infection.

    PubMed

    Kushwaha, Vikas; Kumar, Vikash; Verma, Shiv K; Sharma, Rolee; Siddiqi, M I; Murthy, P K

    2014-03-26

    We have recently identified disorganized muscle protein-1 (DIM-1) in one of the proinflammatory fractions of the human filaria Brugia malayi adult worm. The present study was undertaken to characterize B. malayi DIM-1 (DIM-1bm) and explore its vaccine potential. In this study we cloned and expressed the DIM-1bm gene, investigated its sequence homology with other nematodes, constructed in silico structural model, purified the recombinant DIM-1bm (rDIM-1bm) protein, and studied the effect of immunization with rDIM-1bm on the establishment of B. malayi infection in Mastomys coucha. DIM-1bm showed similarity with DIM-1 of Caenorhabditis elegans, Ascaris suum and Loa loa. Structural modeling revealed three immunoglobulin domains in DIM-1bm indicating that it is a member of immunoglobulin superfamily (IgSF) and 'blastn' results showed that DIM-1bm coding sequence (CDS) have almost no homology with human and mouse nucleotide sequences. Immunization with rDIM-1bm partially protected M. coucha against establishment of infection as inferred by a low recovery of microfilariae (37-64%) and parasite burden (∼50%). The enhanced activity of macrophages, and IFN-γ and NO responses, and elevated levels of specific IgG, IgG1, IgG2a and IgG2b correlated with parasitological findings. This is the first report on cloning, expression, structural modeling and purification of rDIM-1bm and its ability to partially prevent establishment of B. malayi infection. DIM-1bm's almost complete lack of homology with the human counterpart makes it an attractive protein for exploring its vaccine potential. PMID:24513011

  19. Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH).

    PubMed

    Donaubauer, Elyse M; Hunzicker-Dunn, Mary E

    2016-06-01

    Within the ovarian follicle, immature oocytes are surrounded and supported by granulosa cells (GCs). Stimulation of GCs by FSH leads to their proliferation and differentiation, events that are necessary for fertility. FSH activates multiple signaling pathways to regulate genes necessary for follicular maturation. Herein, we investigated the role of Y-box-binding protein-1 (YB-1) within GCs. YB-1 is a nucleic acid binding protein that regulates transcription and translation. Our results show that FSH promotes an increase in the phosphorylation of YB-1 on Ser(102) within 15 min that is maintained at significantly increased levels until ∼8 h post treatment. FSH-stimulated phosphorylation of YB-1(Ser(102)) is prevented by pretreatment of GCs with the PKA-selective inhibitor PKA inhibitor (PKI), the MEK inhibitor PD98059, or the ribosomal S6 kinase-2 (RSK-2) inhibitor BI-D1870. Thus, phosphorylation of YB-1 on Ser(102) is PKA-, ERK-, and RSK-2-dependent. However, pretreatment of GCs with the protein phosphatase 1 (PP1) inhibitor tautomycin increased phosphorylation of YB-1(Ser(102)) in the absence of FSH; FSH did not further increase YB-1(Ser(102)) phosphorylation. This result suggests that the major effect of RSK-2 is to inhibit PP1 rather than to directly phosphorylate YB-1 on Ser(102) YB-1 coimmunoprecipitated with PP1β catalytic subunit and RSK-2. Transduction of GCs with the dephospho-adenoviral-YB-1(S102A) mutant prevented the induction by FSH of Egfr, Cyp19a1, Inha, Lhcgr, Cyp11a1, Hsd17b1, and Pappa mRNAs and estradiol-17β production. Collectively, our results reveal that phosphorylation of YB-1 on Ser(102) via the ERK/RSK-2 signaling pathway is necessary for FSH-mediated expression of target genes required for maturation of follicles to a preovulatory phenotype. PMID:27080258

  20. Impairment of the Ubiquitin-Proteasome Pathway in RPE Alters the Expression of Inflammation Related Genes

    PubMed Central

    Liu, Zhenzhen; Qin, Tingyu; Zhou, Jilin; Taylor, Allen; Sparrow, Janet R.

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related factors. The UPP could be impaired by oxidative stress or chemical inhibition. Impairment of the UPP in RPE increased the expression of several inflammatory cytokines, such as IL-6 and IL-8. However, the expression of monocyte chemoattractant protein-1 (MCP-1) and complement factor H (CFH) and was reduced upon impairment of the UPP. These data suggest that impairment of the UPP in RPE may be one of the causes of retinal inflammation and abnormal functions of monocyte and the complement system during the pathogenesis of age-related macular degeneration. PMID:24664704

  1. Chemoattractant lymphokines specific for the helper/inducer T-lymphocyte subset.

    PubMed

    Berman, J S; Cruikshank, W W; Center, D M; Theodore, A C; Beer, D J

    1985-10-01

    The cellular content of T-lymphocyte-rich inflammatory sites is dependent in part on the in situ elaboration of chemoattractant factors. We have previously described three T-lymphocyte-specific chemoattractant lymphokines; a chemokinetic factor, lymphocyte chemoattractant factor (LCF, MW 56,000), and two distinct lymphocyte migration inhibitory factors (LyMIF75K, MW 75,000; and LyMIF35K, MW 35,000). These factors are produced by human T cells in response to antigen, concanavalin A, or histamine stimulation. In this communication, we report that LCF and LyMIF35K are produced by OKT8+ (suppressor/cytotoxic) and OKT4+ (helper/inducer) lymphocytes, respectively, and are selectively chemoattractant for the OKT4+ lymphocyte subset. LyMIF75K is produced by OKT4+ cells and inhibits both OKT4+ and OKT8+ lymphocyte migration. Production of LCF and LyMIF35K by infiltrating lymphocyte subsets may be one mechanism whereby unactivated helper/inducer T lymphocytes are selectively recruited to sites of inflammation. PMID:3161625

  2. De Novo Chemoattractants Form Supramolecular Hydrogels for Immunomodulating Neutrophils In Vivo

    PubMed Central

    2015-01-01

    Most immunomodulatory materials (e.g., vaccine adjuvants such as alum) modulate adaptive immunity, and yet little effort has focused on developing materials to regulate innate immunity, which get mentioned only when inflammation affects the biocompatibility of biomaterials. Traditionally considered as short-lived effector cells from innate immunity primarily for the clearance of invading microorganisms without specificity, neutrophils exhibit a key role in launching and shaping the immune response. Here we show that the incorporation of unnatural amino acids into a well-known chemoattractant—N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)—offers a facile approach to create a de novo, multifunctional chemoattractant that self-assembles to form supramolecular nanofibrils and hydrogels. This de novo chemoattractant not only exhibits preserved cross-species chemoattractant activity to human and murine neutrophils, but also effectively resists proteolysis. Thus, its hydrogel, in vivo, releases the chemoattractant and attracts neutrophils to the desired location in a sustainable manner. As a novel and general approach to generate a new class of biomaterials for modulating innate immunity, this work offers a prolonged acute inflammation model for developing various new applications. PMID:25398017

  3. Merozoite surface protein-1 of Plasmodium yoelii fused via an oligosaccharide moiety of cholera toxin B subunit glycoprotein expressed in yeast induced protective immunity against lethal malaria infection in mice.

    PubMed

    Miyata, Takeshi; Harakuni, Tetsuya; Taira, Toki; Matsuzaki, Goro; Arakawa, Takeshi

    2012-01-20

    Methylotrophic yeast (Pichia pastoris) secreted cholera toxin B subunit (CTB) predominantly as a biologically active pentamer (PpCTB) with identical ganglioside binding affinity profiles to that of choleragenoid. Unlike choleragenoid, however, the PpCTB did not induce a footpad edema response in mice. Of the two potential glycosylation sites (NIT(4-6) and NKT(90-92)) for this protein, a N-linked oligosaccharide was identified at Asn4. The oligosaccharide, presumed to extend from the lateral circumference of the CTB pentamer ring structure, was exploited as a site-specific anchoring scaffold for the C-terminal 19-kDa merozoite surface protein-1 (MSP1-19) of the rodent malaria parasite, Plasmodium yoelii. Conjugation of MSP1-19 to PpCTB via its oligosaccharide moiety induced higher protective efficacy against lethal parasite infection than conjugation directly to the PpCTB protein body in both intranasal and subcutaneous immunization regimes. Such increased protection was potentially due to the higher antigen loading capacity of CTB achieved when the antigen was linked to the extended branches of the oligosaccharide. This might have allowed the antigen to reside in more spacious molecular environment with less steric hindrance between the constituent molecules of the fusion complex. PMID:22119928

  4. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge

    PubMed Central

    Kriebel, Paul W.; Barr, Valarie A.; Rericha, Erin C.; Zhang, Guofeng; Parent, Carole A.

    2008-01-01

    Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis. PMID:19047467

  5. Lipopolysaccharide Decreases Single Immunoglobulin Interleukin-1 Receptor-related Molecule (SIGIRR) Expression by Suppressing Specificity Protein 1 (Sp1) via the Toll-like Receptor 4 (TLR4)-p38 Pathway in Monocytes and Neutrophils*

    PubMed Central

    Ueno-Shuto, Keiko; Kato, Kosuke; Tasaki, Yukihiro; Sato, Miki; Sato, Keizo; Uchida, Yuji; Sakai, Hiromichi; Ono, Tomomi; Suico, Mary Ann; Mitsutake, Kazunori; Tokutomi, Naofumi; Kai, Hirofumi; Shuto, Tsuyoshi

    2014-01-01

    Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells. PMID:24821721

  6. Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: a new subtype of albinism classified as "OCA3".

    PubMed Central

    Boissy, R. E.; Zhao, H.; Oetting, W. S.; Austin, L. M.; Wildenberg, S. C.; Boissy, Y. L.; Zhao, Y.; Sturm, R. A.; Hearing, V. J.; King, R. A.; Nordlund, J. J.

    1996-01-01

    Most types of human oculocutaneous albinism (OCA) result from mutations in the gene for tyrosinase (OCA1) or the P protein (OCA2), although other types of OCA have been described but have not been mapped to specific loci. Melanocytes were cultured from an African-American with OCA, who exhibited the phenotype of Brown OCA, and his normal fraternal twin. Melanocytes cultured from the patient with OCA and the normal twin appeared brown versus black, respectively. Melanocytes from both the patient with OCA and the normal twin demonstrated equal amounts of NP-40-soluble melanin; however, melanocytes from the patient with OCA contained only 7% of the amount of insoluble melanin found from the normal twin. Tyrosinase- related protein-1 (TRP-1) was not detected in the OCA melanocytes by use of various anti-TRP-1 probes. Furthermore, transcripts for TRP-1 were absent in cultured OCA melanocytes. The affected twin was homozygous for a single-bp deletion in exon 6, removing an A in codon 368 and leading to a premature stop at codon 384. Tyrosine hydroxylase activity of the OCA melanocytes was comparable to controls when assayed in cell lysates but was only 30% of controls when assayed in intact cells. We conclude that this mutation of the human TRP-1 gene affects its interaction with tyrosinase, resulting in dysregulation of tyrosinase activity, promotes the synthesis of brown versus black melanin, and is responsible for a third genetic type of OCA in humans, which we classify as "OCA3." Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8651291

  7. Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: A new subtype of albinism classified as {open_quotes}OCA3{close_quotes}

    SciTech Connect

    Boissy, R.E.; Zhao, H.; Austin, L.M.; Boissy, Y.L.; Zhao, Y.

    1996-06-01

    Most types of human oculocutaneous albinism (OCA) result from mutations in the gene for tyrosinase (OCA1) or the P protein (OCA2), although other types of OCA have been described but have not been mapped to specific loci. Melanocytes were cultured from an African-American with OCA, who exhibited the phenotype of Brown OCA, and his normal fraternal twin. Melanocytes cultured from the patient with OCA and the normal twin appeared brown versus black, respectively. Melanocytes from both the patient with OCA and the normal twin demonstrated equal amounts of NP-40-soluble melanin; however, melanocytes from the patient with OCA contained only 7% of the amount of insoluble melanin found from the normal twin. Tyrosinase-related protein-1 (TRP-1) was not detected in the OCA melanocytes by use of various anti-TRP-1 probes. Furthermore, transcripts for TRP-1 were absent in cultured OCA melanocytes. The affected twin was homozygous for a single-bp deletion in exon 6, removing an A in codon 368 and leading to a premature stop at codon 384. Tyrosine hydroxylase activity of the OCA melanocytes was comparable to controls when assayed in cell lysates but was only 30% of controls when assayed in intact cells. We conclude that this mutation of the human TRP-1 gene affects its interaction with tyrosinase, resulting in dysregulation of tyrosinase activity, promotes the synthesis of brown versus black melanin, and is responsible for a third genetic type of OCA in humans, which we classify as {open_quotes}OCA3.{close_quotes} 69 refs., 7 figs., 3 tabs.

  8. Effect of steady and unsteady flow on chemoattractant plume formation and sperm taxis

    NASA Astrophysics Data System (ADS)

    Bell, Allison F.; Crimaldi, John P.

    2015-08-01

    The formation of chemoattractant plumes around benthic invertebrate eggs in steady and unsteady shear flows is investigated for a range of shear rates, and the ability of sperm to navigate within these plumes is assessed using several chemotactic strategies. Although many of the details of sperm taxis remain uncertain, we investigate the role of basic processes using a toy model in two dimensions. Search strategies in 2D are intrinsically less complex than 3D, but many of the basic components are similar, and the simplified geometry permits an understanding and identification of the key factors of navigation tactics. Numerical simulations are used to model the advection and diffusion of the chemoattractant within the different flows, using three different sperm swimming behaviors. A Monte-Carlo approach is then used to determine the probability of a sperm reaching an egg for a range of flow conditions, initial conditions, and swimming behaviors. The spatial structure of chemoattractant plumes at the scale of the gametes is also investigated. Success rates for locating an egg decrease monotonically with increasing shear rates, and a definitive hierarchical ordering of the tested swimming strategies is identified. A conceptual framework to study and identify important aspects of this fundamental process to support further studies is provided.

  9. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF

    PubMed Central

    Finsterbusch, Michaela; Voisin, Mathieu-Benoit; Beyrau, Martina; Williams, Timothy John

    2014-01-01

    Microvascular plasma protein leakage is an essential component of the inflammatory response and serves an important function in local host defense and tissue repair. Mediators such as histamine and bradykinin act directly on venules to increase the permeability of endothelial cell (EC) junctions. Neutrophil chemoattractants also induce leakage, a response that is dependent on neutrophil adhesion to ECs, but the underlying mechanism has proved elusive. Through application of confocal intravital microscopy to the mouse cremaster muscle, we show that neutrophils responding to chemoattractants release TNF when in close proximity of EC junctions. In vitro, neutrophils adherent to ICAM-1 or ICAM-2 rapidly released TNF in response to LTB4, C5a, and KC. Further, in TNFR−/− mice, neutrophils accumulated normally in response to chemoattractants administered to the cremaster muscle or dorsal skin, but neutrophil-dependent plasma protein leakage was abolished. Similar results were obtained in chimeric mice deficient in leukocyte TNF. A locally injected TNF blocking antibody was also able to inhibit neutrophil-dependent plasma leakage, but had no effect on the response induced by bradykinin. The results suggest that TNF mediates neutrophil-dependent microvascular leakage. This mechanism may contribute to the effects of TNF inhibitors in inflammatory diseases and indicates possible applications in life-threatening acute edema. PMID:24913232

  10. Special AT-rich sequence-binding protein-1 participates in the maintenance of breast cancer stem cells through regulation of the Notch signaling pathway and expression of Snail1 and Twist1.

    PubMed

    Sun, Zhengkui; Zhang, Chao; Zou, Xuesen; Jiang, Guixiang; Xu, Zongquan; Li, Wenting; Xie, Hui

    2015-05-01

    The stem cell populations in cancerous tissues and cell lines vary widely and are often associated with aggressive cases of breast cancer. Despite research on the topic, the mechanism underlying the regulation of the breast cancer stem cell (BCSC) population within tumors remains to be fully elucidated. To investigate the function of special AT‑rich sequence‑binding protein‑1 (SATB1) in the maintenance of the BCSC population, SATB1 was overexpressed with lentivirus in MCF‑7 cells or knocked down with shRNA‑lentivirus in BT‑549 cells. The effects of SATB1 overexpression or knockdown on mammosphere formation, the size of the of BCSC population, cell invasion and tumorigenesis were investigated. Activation of the Notch signaling pathway and expression of Snail1 and Twist1 were also examined in the cells. Overexpression of SATB1 in MCF‑7 cells was observed to increase mammosphere formation, the size of the BCSC population, cell invasion and tumorigenesis, accompanied by an increase in the activation of Notch signaling and expression levels of Snail1 and Twist1. Conversely, knockdown of SATB1 in BT‑549 cells produced the opposite effects. The results indicated that expression of SATB1 may increase the size of the BCSC population via the activation of the Notch signaling pathway and by increasing expression levels of Snail1 and Twist1. PMID:25586771

  11. Low Intensity Ultrasound Promotes the Sensitivity of Rat Brain Glioma to Doxorubicin by Down-Regulating the Expressions of P-Glucoprotein and Multidrug Resistance Protein 1 In Vitro and In Vivo

    PubMed Central

    Zhang, Zhen; Xu, Ke; Bi, Yonghua; Yu, Guibo; Wang, Siwei; Qi, Xun; Zhong, Hongshan

    2013-01-01

    The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS) can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm2) or Doxorubicin (DOX) at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm2 both in vitro and in vivo. The expressions of p110 delta (PI3K), NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway. PMID:23940624

  12. Cardiac release of chemoattractants after ischaemia induced by coronary balloon angioplasty.

    PubMed Central

    Neumann, F J; Richardt, G; Schneider, M; Ott, I; Haupt, H M; Tillmanns, H; Schömig, A; Rauch, B

    1993-01-01

    OBJECTIVE--To investigate the release of chemoattractants after myocardial ischaemia during balloon angioplasty. DESIGN--Sampling of femoral arterial and coronary sinus blood before and immediately after the first balloon inflation during angioplasty. In a study group of 16 patients the balloon was kept expanded for two minutes, whereas in a control group of eight patients the first balloon inflation was brief (< 10 s). MAIN OUTCOME MEASURES--Chemotaxis of neutrophils from healthy donors towards patient plasma (Boyden chamber), superoxide anion production by normal neutrophils after incubation with patient plasma (cytochrome C reduction). RESULTS--In the study group, coronary sinus plasma after balloon deflation was more chemoattractive to normal neutrophils (median relative increase 24% (quartiles: 4%, 45%), p = 0.008) and induced a higher superoxide anion production in normal neutrophils (44% (10%, 97%), p = 0.013) than arterial plasma. Concomitantly, the degree of activation of patient neutrophils was increased in coronary sinus blood compared with arterial blood, as shown by an increased proportion of neutrophils reducing nitro-blue tetrazolium (21% (9%, 38%), p = 0.006) and a decreased neutrophil filter-ability (-16%(-3%, -40%), p = 0.003) in coronary sinus blood. In the study group before balloon inflation and in the control group before and after balloon inflation differences between arterial and coronary sinus blood were not significant. Signs of ischaemia (lactate release, ST segment changes) were only detected in the study group. CONCLUSION--After transient myocardial ischaemia during balloon angioplasty there is a local release of chemoattractants, associated with neutrophil activation. PMID:8037995

  13. Structure of human monocyte chemoattractant protein 4 (MCP-4/CCL13)

    SciTech Connect

    Barinka, Cyril; Prahl, Adam; Lubkowski, Jacek

    2008-04-02

    Monocyte chemoattractant proteins (MCPs) belong to the CC chemokine family and are involved in many (patho)physiological processes characterized by mononuclear cell infiltration, including tissue remodeling, atherosclerosis and cancer metastasis. Here, the crystal structure of human monocyte chemoattractant protein 4 (MCP-4) refined at 1.70 {angstrom} resolution is reported with crystallographic values R = 0.180 and R{sub free} = 0.212. The overall MCP-4 fold reveals the typical tertiary features of the CC chemokine family. A central three-stranded antiparallel {beta}-sheet is C-terminally flanked by an overlaying {alpha}-helix, while the N-terminal part of the molecule forms an extended loop that is anchored to the rest of the molecule via two disulfide bridges, Cys11-Cys35 and Cys12-Cys51. The crystal packing suggests the existence of MCP-4 dimers with a dimerization interface similar to those previously reported for the X-ray structures of MCP-1 and MCP-2.

  14. MyD88 expression in the rat dental follicle: Implications for osteoclastogenesis and tooth eruption

    PubMed Central

    Liu, Dawen; Yao, Shaomian; Wise, Gary E.

    2010-01-01

    Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin-1 (IL-1) and IL-18 Toll-like receptor signaling pathway. Because it is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine gene expression of MyD88 in vivo in the DFs from the first mandibular molars of postnatal rats from days 1–11. The results showed that MyD88 was expressed maximally at day 3. Using siRNA to knock down MyD88 expression in the DF cells also reduced the gene expression of nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1). IL-1α up-regulated the expression of NFKB1, MCP-1 and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1α effect. Conditioned medium from DF cells with MyD88 knocked down reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis as opposed to controls. In conclusion, the maximal expression of MyD88 at day 3 in the DF may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression. PMID:20662905

  15. Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids.

    PubMed Central

    Rösl, F; Lengert, M; Albrecht, J; Kleine, K; Zawatzky, R; Schraven, B; zur Hausen, H

    1994-01-01

    Malignant human papillomavirus type 18 (HPV18)-positive cervical carcinoma cells can be reverted to a nonmalignant phenotype by generation of somatic cell hybrids with normal human fibroblasts. Although nontumorigenic hybrids, their tumorigenic segregants, and the parental HeLa cells have similar in vitro properties, inoculation only of nontumorigenic cells into nude mice results in a selective suppression of HPV18 transcription which precedes cessation of cellular growth. Our present study, aimed at understanding the differential regulation in vitro and in vivo, shows that the JE gene, encoding the monocyte chemoattractant protein (MCP-1), is expressed only in nontumorigenic hybrids. Although the gene, including its regulatory region, is intact, no JE (MCP-1) mRNA is detected in the tumorigenic segregants and in other malignant HPV-positive cervical carcinoma cell lines. Tests of several monocyte-derived cytokines showed that only tumor necrosis factor alpha strongly induces the JE (MCP-1) gene in nontumorigenic cells and that this is accompanied by a dose-dependent reduction of HPV transcription. The JE (MCP-1) up-regulation occurs within 2 h and does not require de novo protein synthesis. The response to tumor necrosis factor alpha seems to be mediated by an NF-kappa B-related mechanism, since the induction can be completely abrogated by pretreating the cells with an antioxidant such as pyrrolidine dithiocarbamate. Interestingly, cocultivation of nonmalignant hybrids with monocyte-enriched fractions from human peripheral blood also results in an induction of the JE (MCP-1) gene and a concomitant suppression of HPV18 transcription. Neither effect is observed in malignant cells. These data suggest that JE (MCP-1) may play a pivotal role in the intercellular communication by triggering an intracellular pathway which negatively interferes with viral transcription in HPV-positive nontumorigenic cells. Images PMID:8138998

  16. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    PubMed Central

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  17. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury.

    PubMed

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  18. Soluble Pityrosporum-derived chemoattractant for polymorphonuclear leukocytes of psoriatic patients.

    PubMed

    Bunse, T; Mahrle, G

    1996-01-01

    The chemoattraction of polymorphonuclear leukocytes (PMNs) from psoriatic patients, atopic patients and healthy control persons by Pityrosporum orbicularelovale was investigated using the Boyden chamber method. The chemotactical attraction of PMNs from psoriatic patients by Pityrosporum (stimulation index SI = 58 +/- 50) was significantly increased (p < 0.05) compared to PMNs from atopic patients (SI = 20 +/- 17) and control persons (SI = 26 +/- 24). This effect seems to be specific for Pityrosporum, since the chemotactical response to Staphylococcus epidermidis was not increased in psoriasis. The chemotactical factor produced by Pityrosporum is hydrophilic and is destroyed by acid hydrolysis, indicating its protein nature. The yeast Pityrosporum may thus play a role in the koebnerization of psoriasis. PMID:8721481

  19. Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers†

    PubMed Central

    Shamloo, Amir; Manchandia, Milan; Ferreira, Meghaan; Mani, Maheswaran; Nguyen, Christopher; Jahn, Thomas; Weinberg, Kenneth

    2014-01-01

    Besides its cooperating effects on stem cell proliferation and survival, Kit ligand (KL) is a potent chemotactic protein. While transwell assays permit studies of the frequency of migrating cells, the lack of direct visualization precludes dynamic chemotaxis studies. In response, we utilize microfluidic chambers that enable direct observation of murine bone marrow-derived mast cells (BMMC) within stable KL gradients. Using this system, individual Kit+ BMMC were quantitatively analyzed for migration speed and directionality during KL-induced chemotaxis. Our results indicated a minimum activating threshold of ~3 ng ml−1 for chemoattraction. Analysis of cells at KL concentrations below 3 ng ml−1 revealed a paradoxical chemorepulsion, which has not been described previously. Unlike chemoattraction, which occurred continuously after an initial time lag, chemorepulsion occurred only during the first 90 minutes of observation. Both chemoattraction and chemorepulsion required the action of G-protein coupled receptors (GPCR), as treatment with pertussis toxin abrogated directed migration. These results differ from previous studies of GPCR-mediated chemotaxis, where chemorepulsion occurred at high ligand concentrations. These data indicate that Kit-mediated chemotaxis is more complex than previously understood, with the involvement of GPCRs in addition to the Kit receptor tyrosine kinase and the presence of both chemoattractive and chemorepellent phases. PMID:23835699

  20. Blunted activation of NF-{kappa}B and NF-{kappa}B-dependent gene expression by geranylgeranylacetone: Involvement of unfolded protein response

    SciTech Connect

    Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro; Yao, Jian; Paton, Adrienne W.; Paton, James C.; Kitamura, Masanori

    2008-01-04

    Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA. Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.

  1. Sebocytes differentially express and secrete adipokines.

    PubMed

    Kovács, Dóra; Lovászi, Marianna; Póliska, Szilárd; Oláh, Attila; Bíró, Tamás; Veres, Imre; Zouboulis, Christos C; Ståhle, Mona; Rühl, Ralph; Remenyik, Éva; Törőcsik, Dániel

    2016-03-01

    In addition to producing sebum, sebocytes link lipid metabolism with inflammation at a cellular level and hence, greatly resemble adipocytes. However, so far no analysis was performed to identify and characterize the adipocyte-associated inflammatory proteins, the members of the adipokine family in sebocytes. Therefore, we determined the expression profile of adipokines [adiponectin, interleukin (IL) 6, resistin, leptin, serpin E1, visfatin, apelin, chemerin, retinol-binding protein 4 (RBP4) and monocyte chemoattractant protein 1 (MCP1)] in sebaceous glands of healthy and various disease-affected (acne, rosacea, melanoma and psoriasis) skin samples. Sebaceous glands in all examined samples expressed adiponectin, IL6, resistin, leptin, serpin E1 and visfatin, but not apelin, chemerin, RBP4 and MCP1. Confirming the presence of the detected adipokines in the human SZ95 sebaceous gland cell line we further characterized their expression and secretion patterns under different stimuli mimicking bacterial invasion [by using Toll-like receptor (TLR)2 and 4 activators], or by 13-cis retinoic acid (13CRA; also known as isotretinoin), a key anti-acne agent. With the exception of resistin, the expression of all of the detected adipokines (adiponectin, IL6, leptin, serpin E1 and visfatin) could be further regulated at the level of gene expression, showing a close correlation with the secreted protein levels. Besides providing further evidence on similarities between adipocytes and sebocytes, our results strongly suggest that sebocytes are not simply targets of inflammation but may exhibit initiatory and modulatory roles in the inflammatory processes of the skin through the expression and secretion of adipokines. PMID:26476096

  2. Double localization of F-actin in chemoattractant-stimulated polymorphonuclear leucocytes.

    PubMed

    Lepidi, H; Benoliel, A M; Mege, J L; Bongrand, P; Capo, C

    1992-09-01

    Uniform concentrations of chemoattractants such as formylpeptides induced a morphological polarization of human polymorphonuclear leucocytes (PMNs) and a concentration of F-actin at the cell front. They also induced a transient increase in filamentous actin (F-actin) which preceded the cell shape change. We combined fluorescence microscopy and image analysis to study the localization of F-actin, as revealed by a specific probe (bodipyTM phallacidin) in suspended PMNs stimulated by chemoattractants. F-actin exhibited remarkable concentration in focal points after a 30 s exposure to 10(-8) M formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe), although no shape change of PMNs was detectable. A 10-min incubation with formylpeptide (10(-6) to 10(-9) M) induced the morphological polarization of PMNs and the appearance of a principal focus of F-actin in the cell head region and a secondary focus in the cell posterior end. The distribution of F-actin-associated fluorescence in 2D images of polarized PMNs might be due to an actual concentration of F-actin in privileged areas, to a local concentration of plasma membrane drawing filamentous actin or to variations in the cell volume. Then, we studied the distribution of a cytoplasmic marker, fluorescein diacetate and a membrane probe, TMA-DPH, in unstimulated rounded PMNs and in spherical and morphologically polarized PMNs stimulated by formylpeptide. The distribution of neither of these probes was correlated with F-actin distribution, especially in rounded PMNs stimulated 30 s with 10(-8) M fMet-Leu-Phe, suggesting that F-actin was concentrated in two foci located in the cell head region and in the cell posterior end. In addition, zymosan-activated serum induced the morphological polarization of PMNs and the appearance of two foci of filamentous actin, demonstrating that binding of formylpeptide to its specific receptor was not required for F-actin reorganization. We conclude that the accumulation of F-actin probably

  3. Gene expression profiling in spleens of deoxynivalenol-exposed mice: immediate early genes as primary targets.

    PubMed

    Kinser, Shawn; Jia, Qunshan; Li, Maioxing; Laughter, Ashley; Cornwell, Paul; Corton, J Christopher; Pestka, James

    2004-09-24

    Exposure to the trichothecene mycotoxin deoxynivalenol (DON) alters immune functions in vitro and in vivo. To gain further insight into DON's immunotoxic effects, microarrays were used to determine how acute exposure to this mycotoxin modulates gene expression profiles in murine spleen. B6C3F1 mice were treated orally with 25mg/kg body weight DON, and 2h later spleens were collected for macroarray analysis. Following normalization using a local linear regression model, expression of 116 out of 1176 genes was significantly altered compared to average expression levels in all treatment groups. When genes were arranged into an ontology tree to facilitate comparison of expression profiles between treatment groups, DON was found primarily to modulate genes associated with immunity, inflammation, and chemotaxis. Real-time polymerase chain reaction was used to confirm modulation for selected genes. DON was found to induce the cytokines interleukin (IL)-1alpha, IL-1beta, IL-6 and IL-11. In analogous fashion, DON upregulated expression of the chemokines macrophage inhibitory protein-2 (MIP-2), cytokine-induced chemoattractant protein-1 (CINC-1), monocyte chemoattractant protein (MCP)-1, MCP-3, and cytokine-responsive gene-2 (CRG-2). c-Fos, Fra-, c-Jun, and JunB, components of the activator protein-1 (AP-1) transcription factor complex, were induced by DON as well as another transcription factor, NR4A1. Four hydrolases were found to be upregulated by DON, including mitogen-activated protein kinase phosphatase 1 (MKP1), catalytic subunit beta isoform (CnAbeta), protein tyrosine phosphatase receptor type J (Ptprj), and protein tyrosine phosphatase nonreceptor type 8 (Ptpn8), whereas three other hydrolases, microsomal epoxide hydrolase (Eph) 1, histidine triad nucleotide binding protein (Hint), and proteosome subunit beta type 8 (Psmb8) were significantly decreased by the toxin. Finally, cysteine-rich protein 61 (CRP61) and heat-shock protein 40 (Hsp40), genes associated with

  4. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis

    PubMed Central

    Tweedy, Luke; Knecht, David A.; Mackay, Gillian M.; Insall, Robert H.

    2016-01-01

    Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine. PMID:26981861

  5. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis.

    PubMed

    Tweedy, Luke; Knecht, David A; Mackay, Gillian M; Insall, Robert H

    2016-03-01

    Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine. PMID:26981861

  6. Identification and characterization of new protein chemoattractants in the frog skin secretome.

    PubMed

    Leroy, Baptiste; Toubeau, Gerard; Falmagne, Paul; Wattiez, Ruddy

    2006-11-01

    The vomeronasal organ is a chemosensory organ present in most vertebrates and involved in chemical communication. In the last decade, the deciphering of the signal transduction process of this organ has progressed. However, less is known about the vomeronasal organ ligands and their structure-function relationships. Snakes possess a highly developed vomeronasal system that is used in various behaviors such as mating, predator detection, or prey selection, making this group a suitable model for study of the vomeronasal chemoreception. In this work, we used a proteomics approach to identify and characterize proteins from frog cutaneous mucus proteome involved in prey recognition by snakes of the genus Thamnophis. Herein we report the purification and characterization of two proteins isolated from the frog skin secretome that elicit the vomeronasal organ-mediated predatory behavior of Thamnophis marcianus. These proteins are members of the parvalbumin family, which are calcium-binding proteins generally associated to muscular and nervous tissues. This is the first report that demonstrates parvalbumins are not strictly restricted to intracellular compartments and can also be isolated from exocrine secretions. Purified parvalbumins from frog muscle and mucus revealed identical chemoattractive properties for T. marcianus. Snake bioassay revealed the Ca(2+)/Mg(2+) dependence of the bioactivity of parvalbumins. So parvalbumins appear to be new candidate ligands of the vomeronasal organ. PMID:16899539

  7. Human Neutrophils Are Primed by Chemoattractant Gradients for Blocking the Growth of Aspergillus fumigatus.

    PubMed

    Jones, Caroline N; Dimisko, Laurie; Forrest, Kevin; Judice, Kevin; Poznansky, Mark C; Markmann, James F; Vyas, Jatin M; Irimia, Daniel

    2016-02-01

    The contribution of human neutrophils to the protection against fungal infections by Aspergillus fumigatus is essential but not fully understood. Whereas healthy people can inhale spores of A. fumigatus without developing disease, neutropenic patients and those receiving immunosuppressive drugs have a higher incidence of invasive fungal infections. To study the role of neutrophils in protection against A. fumigatus infections, we developed an in vitro assay in which the interactions between human neutrophils and A. fumigatus were observed in real time, at single-cell resolution, in precisely controlled conditions. We measured the outcomes of neutrophil-fungus interactions and found that human neutrophils have a limited ability to migrate toward A. fumigatus and block the growth of A. fumigatus conidia (proportion with growth blocked, 69%). The blocking ability of human neutrophils increased to 85.1% when they were stimulated by uniform concentrations of fMLP and was enhanced further, to 99.4%, in the presence of chemoattractant gradients. Neutrophils from patients receiving immunosuppressive treatment after transplantation were less effective against the fungus than those from healthy donors, and broader heterogeneity exists between patients, compared with healthy individuals. Further studies using this microfluidic platform will help understand the relevance of innate immune deficiencies responsible for the higher risk of fungal infections in patients with immunosuppressive disease. PMID:26272935

  8. Response of Bdellovibrio and like organisms (BALOs) to the migration of naturally occurring bacteria to chemoattractants.

    PubMed

    Chauhan, Ashvini; Williams, Henry N

    2006-12-01

    A dual culture-based and non-culture-based approach was applied to characterize predator bacterial groups in surface water samples collected from Apalachicola Bay, Florida. Chemotaxis drop assays were performed on concentrated samples in an effort to isolate predator bacteria by their chemotactic ability. Yeast extract (YE) and casamino acids (CA) proved to be strong chemoattractants and resulted in three visibly distinct bands; however, dextrose, succinate, pyruvate, and concentrated cells of Vibrio parahaemolyticus P5 as prey did not elicit any response. The three distinct bands from YE and CA were separately collected to identify the chemotactic microbial assemblages. Plaque-forming unit assays from different chemotaxis bands with P5 as prey indicated 5- (CA) to 10-fold (YE) higher numbers of predator bacteria in the outermost chemotactic bands. Polymerase chain reaction-restriction fragment length polymorphism and 16S rDNA sequencing of clones from different chemotaxis bands resulted in identification of Pseudoalteromonas spp., Marinomonas spp., and Vibrio spp., with their numbers inversely proportional to the numbers of predators-i.e., Bdellovibrio spp. and Bacteriovorax spp-in the chemotaxis bands. This study indicates that predatorial bacteria potentially respond to high densities of microbial biomass in aquatic ecosystems and that chemotaxis drop assay may be an alternate culture-independent method to characterize predatorial bacterial guilds from the environment. PMID:17115104

  9. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  10. Identification of a Chemoattractant G-Protein-Coupled Receptor for Folic Acid that Controls Both Chemotaxis and Phagocytosis.

    PubMed

    Pan, Miao; Xu, Xuehua; Chen, Yong; Jin, Tian

    2016-02-22

    Eukaryotic phagocytes search and destroy invading microorganisms via chemotaxis and phagocytosis. The social amoeba Dictyostelium discoideum is a professional phagocyte that chases bacteria through chemotaxis and engulfs them as food via phagocytosis. G-protein-coupled receptors (GPCRs) are known for detecting chemoattractants and directing cell migration, but their roles in phagocytosis are not clear. Here, we developed a quantitative phosphoproteomic technique to discover signaling components. Using this approach, we discovered the long sought after folic acid receptor, fAR1, in D. discoideum. We showed that the seven-transmembrane receptor fAR1 is required for folic acid-mediated signaling events. Significantly, we discovered that fAR1 is essential for both chemotaxis and phagocytosis of bacteria, thereby representing a chemoattractant GPCR that mediates not only chasing but also ingesting bacteria. We revealed that a phagocyte is able to internalize particles via a chemoattractant-mediated engulfment process. We propose that mammalian phagocytes may also use this mechanism to engulf and ingest bacterial pathogens. PMID:26906738

  11. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    SciTech Connect

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu; Lee, Jae-Ran

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.

  12. NFAT5 Contributes to Osmolality-Induced MCP-1 Expression in Mesothelial Cells

    PubMed Central

    Küper, Christoph; Beck, Franz-X.; Neuhofer, Wolfgang

    2012-01-01

    Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD). Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5). The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB). Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD. PMID:22619484

  13. Monocyte chemotactic protein-1 (MCP-1) mRNA is down-regulated in human dermal fibroblasts by dexamethasone: differential regulation by TGF-beta.

    PubMed

    Slavin, J; Unemori, E; Hunt, T K; Amento, E

    1995-01-01

    Macrophages are a source of cytokines driving repair. Wound macrophages are derived from circulating monocytes. Monocyte chemotactic protein-1 (MCP-1) is a potent specific monocyte chemoattractant. Treatment of serum stimulated dermal fibroblasts with dexamethasone led to a dose dependent down-regulation of MCP-1 mRNA levels. Such an anti-inflammatory effect may partially explain the negative influence of glucocorticoid treatment on wound repair. Topical or parenteral of fibroblasts cultured in serum free media with TGF-beta increased MCP-1 mRNA levels. TGF-beta treatment of fibroblasts cultured in serum also partially overcame the dexamethasone mediated decrease in MCP-1 mRNA levels. In glucocorticoid treated animals TGF-beta may stimulate repair by an indirect pro-inflammatory action following transcriptional up-regulation of MCP-1. PMID:8679249

  14. Activated cytotoxic lymphocytes promote tumor progression by increasing the ability of 3LL tumor cells to mediate MDSC chemoattraction via Fas signaling.

    PubMed

    Yang, Fei; Wei, Yinxiang; Cai, Zhijian; Yu, Lei; Jiang, Lingling; Zhang, Chengyan; Yan, Huanmiao; Wang, Qingqing; Cao, Xuetao; Liang, Tingbo; Wang, Jianli

    2015-01-01

    The Fas/FasL system transmits intracellular apoptotic signaling, inducing cell apoptosis. However, Fas signaling also exerts non-apoptotic functions in addition to inducing tumor cell apoptosis. For example, Fas signaling induces lung cancer tumor cells to produce prostaglandin E2 (PGE2) and recruit myeloid-derived suppressor cells (MDSCs). Activated cytotoxic T lymphocytes (CTLs) induce and express high levels of FasL, but the effects of Fas activation initiated by FasL in CTLs on apoptosis-resistant tumor cells remain largely unclear. We purified activated CD8(+) T cells from OT-1 mice, evaluated the regulatory effects of Fas activation on tumor cell escape and investigated the relevant mechanisms. We found that CTLs induced tumor cells to secrete PGE2 and increase tumor cell-mediated chemoattraction of MDSCs via Fas signaling, which was favorable to tumor growth. Our results indicate that CTLs may participate in the tumor immune evasion process. To the best of our knowledge, this is a novel mechanism by which CTLs play a role in tumor escape. Our findings implicate a strategy to enhance the antitumor immune response via reduction of negative immune responses to tumors promoted by CTLs through Fas signaling. PMID:24769795

  15. Activated cytotoxic lymphocytes promote tumor progression by increasing the ability of 3LL tumor cells to mediate MDSC chemoattraction via Fas signaling

    PubMed Central

    Yang, Fei; Wei, Yinxiang; Cai, Zhijian; Yu, Lei; Jiang, Lingling; Zhang, Chengyan; Yan, Huanmiao; Wang, Qingqing; Cao, Xuetao; Liang, Tingbo; Wang, Jianli

    2015-01-01

    The Fas/FasL system transmits intracellular apoptotic signaling, inducing cell apoptosis. However, Fas signaling also exerts non-apoptotic functions in addition to inducing tumor cell apoptosis. For example, Fas signaling induces lung cancer tumor cells to produce prostaglandin E2 (PGE2) and recruit myeloid-derived suppressor cells (MDSCs). Activated cytotoxic T lymphocytes (CTLs) induce and express high levels of FasL, but the effects of Fas activation initiated by FasL in CTLs on apoptosis-resistant tumor cells remain largely unclear. We purified activated CD8+ T cells from OT-1 mice, evaluated the regulatory effects of Fas activation on tumor cell escape and investigated the relevant mechanisms. We found that CTLs induced tumor cells to secrete PGE2 and increase tumor cell-mediated chemoattraction of MDSCs via Fas signaling, which was favorable to tumor growth. Our results indicate that CTLs may participate in the tumor immune evasion process. To the best of our knowledge, this is a novel mechanism by which CTLs play a role in tumor escape. Our findings implicate a strategy to enhance the antitumor immune response via reduction of negative immune responses to tumors promoted by CTLs through Fas signaling. PMID:24769795

  16. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    PubMed

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications. PMID:27414784

  17. Specific effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    PubMed Central

    Tang, Shu; Wen, Qiang; Zhang, Xiao-jian; Kan, Quan-cheng

    2016-01-01

    c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These findings confirm that JNK-interacting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites. PMID:26981098

  18. Vacuole membrane protein 1, autophagy and much more.

    PubMed

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Escalante, Ricardo

    2008-08-01

    Vacuole membrane protein 1 (Vmp1) is a putative transmembrane protein that has been associated with different functions including autophagy, cell adhesion, and membrane traffic. Highly similar proteins are present in lower eukaryotes and plants although a homologue is absent in the fungi lineage. We have recently described the first loss-of-function mutation for a Vmp1 homologue in a model system, Dictyostelium discoideum. Our results give a more comprehensive view of the intricate roles played by this new gene. Dictyostelium Vmp1 is an endoplasmic reticulum-resident protein. Cells deficient in Vmp1 display pleiotropic defects in the context of the secretory pathway such as organelle biogenesis, the endocytic pathway, and protein secretion. The biogenesis of the contractile vacuole, an organelle necessary to survive under hypoosmotic conditions, is compromised as well as the structure of the endoplasmic reticulum and the Golgi apparatus. Transmission electron microscopy also shows abnormal accumulation of aberrant double-membrane vesicles, suggesting a defect in autophagosome biogenesis or maturation. The expression of a mammalian Vmp1 in the Dictyostelium mutant complements the phenotype suggesting a functional conservation during evolution. We are taking the first steps in understanding the function of this fascinating protein and recent studies have brought us more questions than answers about its basic function and its role in human pathology. PMID:18641456

  19. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis

    PubMed Central

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-01-01

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis. PMID:26634432

  20. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis.

    PubMed

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-01-01

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser(89) is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S(89) was substituted with G(89) (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis. PMID:26634432

  1. Cerivastatin represses atherogenic gene expression through the induction of KLF2 via isoprenoid metabolic pathways.

    PubMed

    Zhao, Jiyuan; Natarajan, Selvamuthu K; Chronos, Nicolas; Singh, Jai Pal

    2015-12-01

    Earlier clinical studies have reported that cerivastatin has an anti-atherosclerotic effect that is unique among the statins. In our study, human THP-1 macrophage cells were used to study the effects of various statins on the expressions of the atherosclerotic genes and Kruppel-like factor 2 (KLF2). Cerivastatin significantly inhibited the two atherosclerotic genes, monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor type 2 (CCR2) at both the mRNA and protein levels, while the other statins did not. Accordingly, cerivastatin was also the most potent inducer of KLF2 transcription in the macrophages. An siRNA-induced reduction in KLF2 expression blocked the inhibition of MCP-1 and CCR2 by cerivastatin. When the cells were further treated with mevalonate, farnesylpyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP), the effects of cerivastatin on KLF2, MCP-1 and CCR2 were obviously reversed. Thus, the results showed that cerivastatin was a potent inhibitor of the inflammation genes MCP-1 and CCR2 through the induction of KLF2. The regulation of MCP-1, CCR2 and KLF2 by cerivastatin was isoprenoid pathway dependent. Our studies suggest that the effect of cerivastatin on atherosclerotic genes and KLF2 expression may contribute to the cardioprotection observed in reported clinical studies. PMID:26556845

  2. Microemboli alter the acute stress response and cause prolonged expression of MCP-1 in the hippocampus.

    PubMed

    Nemeth, Christina L; Neigh, Gretchen N

    2015-04-01

    Microvascular ischemia is linked to cardiovascular disease pathology, as well as alterations in mood and cognition. Ischemia activates the hypothalamic-pituitary-adrenal (HPA) axis and through chronic activation, alters HPA axis function. Dysregulation of the HPA axis can lead to the chronic release of glucocorticoids, a hyper-inflammatory cerebral response, cell damage, and changes in behavior. Although the interactions between injury and HPA axis activity have been established in global ischemia, HPA-related repercussions of diffuse ischemic damage and subsequent inflammation have not been assessed. The current study used a rat model of microsphere embolism (ME) ischemia to test the hypothesis that microvascular ischemia would lead to long term alterations in HPA axis function and inflammatory activity. Furthermore, given the pro-inflammatory nature of chronic stress, we assessed the implications of chronic stress for gene expression of inflammatory factors and key components of the glucocorticoid receptor response, following microvascular ischemia. Results indicated that ME altered the response to an acute stress fourteen days following ME injury and increased hippocampal expression of monocyte chemoattractant protein 1 (Mcp-1) as long as 4 weeks following ME injury, without concomitant effects on gene expression of the glucocorticoid receptor or its co-chaperones. Furthermore, no exacerbative effects of chronic stress exposure were observed following ME injury beyond the effects of ME injury alone. Together, these results indicate that ME injury is sufficient to alter both HPA axis activity and cerebral inflammation for a prolonged period of time following injury. PMID:25697594

  3. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction.

    PubMed

    Lampert, Thomas J; Coleman, Kevin D; Hennessey, Todd M

    2011-01-01

    Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba²⁺ and K⁺, suggesting a decrease in basal excitability (decrease in Ca²⁺ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [³⁵S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein. PMID:22140501

  4. Mineralocorticoid Receptor Blockade Reverses Obesity-Related Changes in Expression of Adiponectin, PPARγ and Pro-inflammatory Adipokines

    PubMed Central

    Guo, Christine; Ricchiuti, Vincent; Lian, Bill Q.; Yao, Tham M.; Coutinho, Patricia; Romero, José R.; Li, Jianmin; Williams, Gordon H.; Adler, Gail K.

    2009-01-01

    Background In obesity, decreases in adiponectin and increases in pro-inflammatory adipokines are associated with heart disease. Since adipocytes express mineralocorticoid receptor (MR) and MR blockade reduces cardiovascular inflammation and injury, we tested the hypothesis that MR blockade reduces inflammation and expression of pro-inflammatory cytokines in adipose tissue and increases adiponectin expression in adipose tissue and hearts of obese mice. Methods and Results We determined the effect of MR blockade (eplerenone, 100 mg/kg/day for 16 weeks) on gene expression in retroperitoneal adipose and heart tissue from obese, diabetic db/db mice (n=8) as compared with untreated obese, diabetic db/db mice (n=10) and lean, non-diabetic db/+ littermates (n=11). There was increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor type-1 (PAI-1) and macrophage protein CD68 and decreased expression of adiponectin and peroxisome proliferator-activated receptor-γ (PPARγ) in retroperitoneal adipose tissue from obese versus lean mice. Also, adiponectin expression in heart was reduced in obese versus lean mice. MR blockade prevented these obesity-related changes in gene expression. Further, treatment of undifferentiated preadipocytes with aldosterone (10−8 M for 24 h) increased mRNA levels of TNF-α and MCP-1, and reduced mRNA and protein levels of PPARγ and adiponectin, supporting a direct aldosterone effect on gene expression. Conclusions MR blockade reduced expression of pro-inflammatory and pro-thrombotic factors in adipose tissue and increased expression of adiponectin in heart and adipose tissue of obese, diabetic mice. These effects on adiponectin and adipokine gene expression may represent a novel mechanism for the cardioprotective effects of MR blockade. PMID:18427128

  5. Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black.

    PubMed

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Ahmed, Sohel; Kakeyama, Masaki; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2006-05-25

    Ambient air ultrafine particles (UFPs) have gained enormous attention to many researchers with recent evidence showing them to have more hazardous effects on human health than larger ambient particles. Studies focusing the possibility of effects on brain are quite limited. To examine the effect of ultrafine carbon black (ufCB) on mice brain, we instilled 125 microg of 14 nm or 95 nm CB into the nostrils of 8-week-old male BALB/c mice, once a week for 4 weeks. Four hours after the last instillation, we collected olfactory bulb and hippocampus and detected the expression of cytokine and chemokine mRNA by quantitative real-time PCR method. In this study, we found the induction of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha and chemokines (monocyte chemoattractant protein-1/CCL2, macrophage inflammatory protein-1 alpha/CCL3), and monokine induced interferon-gamma/CXC chemokine ligand (CXCL9) mRNA in brain olfactory bulb, not in the hippocampus of mice instilled with 14 nm ufCB intranasally. We suggest that the intranasal instillation of ufCB may influence the brain immune function depending on their size. To our knowledge, this is the first study to demonstrate region-specific brain cytokine and chemokine mRNA-induction in mice triggered by intranasal instillation of specific-sized ufCB, in a physiologically relevant condition. PMID:16293374

  6. Up-regulation of the chemo-attractive receptor ChemR23 and occurrence of apoptosis in human chondrocytes isolated from fractured calcaneal osteochondral fragments

    PubMed Central

    Sena, Paola; Manfredini, Giuseppe; Benincasa, Marta; Mariani, Francesco; Smargiassi, Alberto; Catani, Fabio; Palumbo, Carla

    2014-01-01

    To study the expression level of a panel of pro/anti-apoptotic factors and inflammation-related receptors in chondral fragments from patients undergoing surgical treatment for intra-articular calcaneal fractures, cartilage fragments were retrieved from calcaneal fractures of 20 patients subjected to surgical treatment. Primary cultures were performed using chondral fragments from fractured and control patients. Chondrocyte cultures from each patient of the fractured and control groups were subjected to immunofluorescence staining and quantitatively analyzed under confocal microscopy. Proteins extracted from the cultured chondrocytes taken from the fractured and control groups were processed for Western blot experiments and densitometric analysis. The percentage of apoptotic cells was determined using the cleaved PARP-1 antibody. The proportion of labelled cells was 35% for fractured specimens, compared with 7% for control samples. Quantification of caspase-3 active and Bcl-2 proteins in chondrocyte cultures showed a significant increase of the apoptotic process in fractured specimens compared with control ones. Fractured chondrocytes were positively stained for ChemR23 with statistically significant differences with respect to control samples. Densitometric evaluation of the immunoreactive bands confirmed these observations. Human articular chondrocytes obtained from patients with intra-articular calcaneal fractures express higher levels of pivotal pro-apoptotic factors, and of the chemo-attractive receptor ChemR23, compared with control cultures. On the basis of these observations, the authors hypothesize that consistent prolonged chondrocyte death, associated with the persistence of high levels of pro-inflammatory factors, could enhance the deterioration of cartilage tissue with consequent development of post-traumatic arthritis following intra-articular bone fracture. PMID:24689495

  7. Spatiotemporal patterns of the Huntingtin-interacting protein 1-related gene in the mouse head.

    PubMed

    Masuda, Tomoyuki; Sakuma, Chie; Ueno, Takayuki; Yamada, Yuriko; Ohmomo, Hideki; Ueda, Shuichi; Yamagishi, Toshiyuki; Yaginuma, Hiroyuki

    2013-12-01

    Huntingtin-interacting protein 1-related (Hip1r) was originally identified due to its homology to Huntingtin-interacting protein 1, which contributes to the development of Huntington's disease (HD). We studied the expression of the mouse Hip1r (mHip1r) gene in the mouse head by in situ hybridization. In early embryogenesis at embryonic day (E) 13, mHip1r expression was especially prominent in the olfactory epithelium, cerebral cortex layer 1, cortical plate, and dentate gyrus. During later development from E15 to E17, strong expression of mHip1r transcripts continued to be observed in the olfactory epithelium, cortical plate, and dentate gyrus. Furthermore, not only the subplate and subventricular zone of the cortex, but also secretory glands, such as the nasal gland and the submandibular gland, were mHip1r-positive. Other positive tissues included the retinal ganglion cells, vomeronasal organ, trigeminal ganglion, and the developing molar tooth. In the adult mouse brain, similar expression patterns were observed in the cerebral cortex layers and other brain regions except the cerebellum. Additionally, by using an antibody against mHip1r, we confirmed these expression patterns at the protein level. Specific expression of mHip1r in the embryonic brain and secretory glands suggests a possible role for Hip1r in normal development and in the pathology of HD. PMID:24712472

  8. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

    PubMed Central

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-01-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-Guérin) activates disabled naïve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1β), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-β) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions. PMID:26429502

  9. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells

    SciTech Connect

    Berry, Andrea M.; Flock, Kelly E.; Loh, Horace H.; Ko, Jane L. . E-mail: kojane@shu.edu

    2006-11-03

    Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis.

  10. Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2.

    PubMed

    Schuligoi, Rufina; Sedej, Miriam; Waldhoer, Maria; Vukoja, Anela; Sturm, Eva M; Lippe, Irmgard T; Peskar, Bernhard A; Heinemann, Akos

    2009-01-01

    The major mast cell product PGD2 is released during the allergic response and stimulates the chemotaxis of eosinophils, basophils, and Th2-type T lymphocytes. The chemoattractant receptor homologous molecule of Th2 cells (CRTH2) has been shown to mediate the chemotactic effect of PGD2. PGH2 is the common precursor of all PGs and is produced by several cells that express cyclooxygenases. In this study, we show that PGH2 selectively stimulates human peripheral blood eosinophils and basophils but not neutrophils, and this effect is prevented by the CRTH2 receptor antagonist (+)-3-[[(4-fluorophenyl)sulfonyl] methyl amino]-1,2,3,4-tetrahydro-9H-carbazole-9-acetic acid (Cay10471) but not by the hematopoietic PGD synthase inhibitor 4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]piperidine (HQL79). In chemotaxis assays, eosinophils showed a pronounced migratory response toward PGH2, but eosinophil degranulation was inhibited by PGH2. Moreover, collagen-induced platelet aggregation was inhibited by PGH2 in platelet-rich plasma, which was abrogated in the presence of the D-type prostanoid (DP) receptor antagonist 3-[(2-cyclohexyl-2-hydroxyethyl)amino]-2,5-dioxo-1-(phenylmethyl)-4-imidazolidine-heptanoic acid (BWA868c). Each of these effects of PGH2 was enhanced in the presence of plasma and/or albumin. In eosinophils, PGH2-induced calcium ion (Ca2+) flux was subject to homologous desensitization with PGD2. Human embryo kidney (HEK)293 cells transfected with human CRTH2 or DP likewise responded with Ca2+ flux, and untransfected HEK293 cells showed no response. These data indicate that PGH2 causes activation of the PGD2 receptors CRTH2 and DP via a dual mechanism: by interacting directly with the receptors and/or by giving rise to PGD2 after catalytic conversion by plasma proteins. PMID:18835884

  11. Monocyte chemotactic protein-1 provokes mast cell aggregation and [3H]5HT release.

    PubMed Central

    Conti, P; Boucher, W; Letourneau, R; Feliciani, C; Reale, M; Barbacane, R C; Vlagopoulos, P; Bruneau, G; Thibault, J; Theoharides, T C

    1995-01-01

    Monocyte chemotactic protein-1 (MCP-1) and MCP-3, the most active and representative compounds of the CC chemokine family, are proinflammatory cytokines that attract and activate specific types of leucocytes. We have used highly purified isolated rat peritoneal mast cells (RPMC) cultured for different lengths of time with and without MCP-1 (200, 100, 50 and 25 nM). Our data clearly show that MCP-1 (200 nM) causes a marked release of [3H]serotonin ([3H]5HT and histamine, which reach a peak at 40 min of incubation (56.6 +/- 5.3 and 34.7 +/- 6 above the control, respectively). In dose-response experiments, MCP-1 (200, 100, 50, 25, 12.5, 6.25 and 3.12 nM) provoked a dose-dependent release of [3H]5HT and histamine from RPMC, which was maximum at 200 nM. After preparation of the histidine decarboxylase (HDC) probe, a Northern blot analysis was determined for HDC mRNA. After 4 hr, steady-state levels of HDC mRNA were induced in a dose-dependent manner by MCP-1 (200-25 nM), compared to the controls. However, MCP-1 failed to prime RPMC in [3H]5HT and histamine release when C48/80 (0.05 micrograms/ml) or anti-IgE was used. In contrast, murine interleukin-3 (IL-3) in combination with MCP-1 (200 and 100 nM) provoked a greater release of histamine and [3H]5HT than the compounds alone. Moreover, RPMC treated with MCP-1 (200 nM) showed, under light microscopy (20x), greater clump formation, a phenomenon absent in the controls (untreated cells). The electron microscope studies revealed that treatment with MCP-1 (200 nM) promoted binding of RPMC and clearly demonstrated a communication between the cytoplasms of adjacent mast cells. Our report describes additional biological activities for MCP-1, suggesting for the first time that this human monocyte chemoattractant plays a fundamental role in histamine and serotonin release and cell aggregation in rat peritoneal mast cells. Images Figure 4 Figure 5 PMID:8550082

  12. Proinflammatory Cytokine, Chemokine, and Cellular Adhesion Molecule Expression during the Acute Phase of Experimental Brain Abscess Development

    PubMed Central

    Kielian, Tammy; Hickey, William F.

    2000-01-01

    Brain abscess represents the infectious disease sequelae associated with the influx of inflammatory cells and activation of resident parenchymal cells in the central nervous system. However, the immune response leading to the establishment of a brain abscess remains poorly defined. In this study, we have characterized cytokine and chemokine expression in an experimental brain abscess model in the rat during the acute stage of abscess development. RNase protection assay revealed the induction of the proinflammatory cytokines interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α as early as 1 to 6 hours after Staphylococcus aureus exposure. Evaluation of chemokine expression by reverse transcription-polymerase chain reaction demonstrated enhanced levels of the CXC chemokine KC 24 hours after bacterial exposure, which correlated with the appearance of neutrophils in the abscess. In addition, two CC chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α were induced within 24 hours after S. aureus exposure and preceded the influx of macrophages and lymphocytes into the brain. Analysis of abscess lesions by in situ hybridization identified CD11b+ cells as the source of IL-1β in response to S. aureus. Both intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule expression were enhanced on microvessels in S. aureus but not sterile bead-implanted tissues at 24 and 48 hours after treatment. These results characterize proinflammatory cytokine and chemokine expression during the early response to S. aureus in the brain and provide the foundation to assess the functional significance of these mediators in brain abscess pathogenesis. PMID:10934167

  13. Histone acetylation regulates orphan nuclear receptor NR4A1 expression in hypercholesterolaemia.

    PubMed

    Xie, Xina; Song, Xuhong; Yuan, Song; Cai, Haitao; Chen, Yequn; Chang, Xiaolan; Liang, Bin; Huang, Dongyang

    2015-12-01

    Hypercholesterolaemia and inflammation are correlated with atherogenesis. Orphan nuclear receptor NR4A1, as a key regulator of inflammation, is closely associated with lipid levels in vivo. However, the mechanism by which lipids regulate NR4A1 expression remains unknown. We aimed to elucidate the underlying mechanism of NR4A1 expression in monocytes during hypercholesterolaemia, and reveal the potential role of NR4A1 in hypercholesterolaemia-induced circulating inflammation. Circulating leucocytes were collected from blood samples of 139 patients with hypercholesterolaemia and 139 sex- and age-matched healthy subjects. We found that there was a low-grade inflammatory state and higher expression of NR4A1 in patients. Both total cholesterol and low-density lipoprotein cholesterol levels in plasma were positively correlated with NR4A1 mRNA level. ChIP revealed that acetylation of histone H3 was enriched in the NR4A1 promoter region in patients. Human mononuclear cell lines THP-1 and U937 were treated with cholesterol. Supporting our clinical observations, cholesterol enhanced p300 acetyltransferase and decreased HDAC7 (histone deacetylase 7) recruitment to the NR4A1 promoter region, resulting in histone H3 hyperacetylation and further contributing to NR4A1 up-regulation in monocytes. Moreover, cytosporone B, an NR4A1 agonist, completely reversed cholesterol-induced IL-6 (interleukin 6) and MCP-1 (monocyte chemoattractant protein 1) expression to below basal levels, and knockdown of NR4A1 expression by siRNA not only mimicked, but also exaggerated the effects of cholesterol on inflammatory biomarker up-regulation. Thus we conclude that histone acetylation contributes to the regulation of NR4A1 expression in hypercholesterolaemia, and that NR4A1 expression reduces hypercholesterolaemia-induced inflammation. PMID:26396259

  14. Soluble Factors Released by Endogenous Viable Cells Enhance the Antioxidant and Chemoattractive Activities of Cryopreserved Amniotic Membrane

    PubMed Central

    Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Jacobstein, Douglas A.; Danilkovitch, Alla

    2015-01-01

    Objective: Regulation of oxidative stress and recruitment of key cell types are activities of human amniotic membrane (hAM) that contribute to its benefits for wound treatment. Progress in tissue preservation has led to commercialization of hAM. The majority of hAM products are devitalized with various degrees of matrix alteration. Data show the importance of hAM matrix preservation, but little is known about the advantages of retaining viable endogenous cells. In this study, we compared the antioxidant and chemoattractive properties of viable intact cryopreserved hAM (int-hAM) and devitalized cryopreserved hAM (dev-hAM) to determine the benefits of cell preservation. Approach: We evaluated the ability of int-hAM and dev-hAM to protect fibroblasts from oxidant-induced cell damage, to suppress oxidants, and to recruit fibroblasts and keratinocytes in vitro. Results: Both the int-hAM–derived conditioned medium (CM) and the int-hAM tissue rescued significantly more fibroblasts from oxidant-induced damage than dev-hAM (844% and 93% more, respectively). The int-hAM CM showed a 202% greater antioxidant capacity than dev-hAM. The int-hAM CM enhanced the recruitment of fibroblasts and normal and diseased keratinocytes to a greater extent than dev-hAM (1,555%, 315%, and 151% greater, respectively). Innovation and Conclusion: Int-hAM, in which all native components are preserved, including endogenous viable cells, demonstrated a significantly greater antioxidant and fibroblast and keratinocyte chemoattractive potential compared to dev-hAM, in which viable cells are destroyed. The release of soluble factors that protect fibroblasts from oxidative injury by hAM containing viable cells is a mechanism of hAM antioxidant activity, which is a novel finding of this study. PMID:26029483

  15. C-terminal tail phosphorylation of N-formyl peptide receptor: differential recognition of two neutrophil chemoattractant receptors by monoclonal antibodies NFPR1 and NFPR2.

    PubMed

    Riesselman, Marcia; Miettinen, Heini M; Gripentrog, Jeannie M; Lord, Connie I; Mumey, Brendan; Dratz, Edward A; Stie, Jamal; Taylor, Ross M; Jesaitis, Algirdas J

    2007-08-15

    The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni(2+)-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45-75 kDa species (peak M(r) approximately 60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of M(r) approximately 40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting approximately 60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337-346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils. PMID:17675514

  16. Endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in melanoma.

    PubMed

    Tang, Mingrui; Wang, Yuxin; Han, Sihuan; Guo, Shu; Xu, Nan; Guo, Jiayan

    2013-02-01

    It has been demonstrated that cyclooxygenase-2 (COX-2) is expressed in melanoma tissues and prostaglandin E(2) (PGE(2)) is produced by melanoma cells in vitro. However, the roles of COX-2/PGE(2) in melanoma are largely unknown. In the present study, we set out to analyze the correlation of endogenous PGE(2) with the expression of macrophage chemoattractant protein-1 (MCP-1) and to identify the signaling pathway involved. It was found that MCP-1 mRNA was heterogeneously expressed in 18 melanoma tissue specimens, and the levels of MCP-1 mRNA were positively correlated with those of COX-2 mRNA. Inhibition of endogenous PGE(2) production by a COX-2 inhibitor, COX-2 siRNA or an NFκB inhibitor suppressed MCP-1 expression, whereas treatment with TNF-α (to stimulate endogenous PGE(2) production) or exogenous PGE(2) enhanced MCP-1 expression in melanoma cells. Both the EP4 antagonist and the p38 MAPK inhibitor reduced MCP-1 production in melanoma cells, and abrogated the increased MCP-1 secretion induced by TNF-α or exogenous PGE(2). Conditioned medium from melanoma cells promoted macrophage migration, which was blocked by inhibitors of the PGE(2)/EP4/p38 MAPK signaling pathway. These results indicate that endogenous PGE(2) induces MCP-1 expression via EP4/p38 MAPK signaling in an autocrinal manner in melanoma, and melanoma cell-derived PGE(2) may be involved in macrophage recruitment in the melanoma microenvironment. PMID:23420676

  17. Hepatitis B virus X protein mediates yes-associated protein 1 upregulation in hepatocellular carcinoma

    PubMed Central

    Wu, Yuzhuo; Zhang, Junhe; Zhang, Huaihong; Zhai, Yufeng

    2016-01-01

    Hepatitis B virus (HBV) X protein (HBx) is implicated in the development of hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP) is an important proto-oncogene, which is a downstream effector molecule in the Hippo signaling pathway. The aim of the present study was to investigate the association between HBx expression in HCC samples and YAP expression in the Hippo pathway. A total of 20 pathologically confirmed HCC samples, 20 corresponding adjacent non-tumor liver tissues and 5 normal liver tissue samples were collected. The expression of HBx and YAP in the tissues was analyzed by quantitative reverse transcription-polymerase chain reaction and western blot analysis. The intensity and location of YAP expression were analyzed by immunohistochemistry. YAP mRNA and protein expression levels in HCC samples infected with HBV were significantly higher than those of normal liver tissues. Furthermore, YAP expression was positively correlated with HBx expression in HBV-positive HCC samples. Immunohistochemical staining revealed that YAP was predominantly expressed in the nuclei in HBV-positive HCC tissues. YAP expression was significantly decreased in the normal liver tissue and corresponding adjacent liver tissue when compared with the HCC tissues and by contrast to HCC tissues, YAP was predominantly located in the cytoplasm. In conclusion, these results indicate that the YAP gene is a key driver of HBx-induced liver cancer. Therefore, YAP may present a novel target in the treatment of HBV-associated HCC.

  18. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1.

    PubMed

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquitination and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  19. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1

    PubMed Central

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D.

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquiti-nation and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  20. Sulforaphane inhibits advanced glycation end product-induced pericyte damage by reducing expression of receptor for advanced glycation end products.

    PubMed

    Maeda, Sayaka; Matsui, Takanori; Ojima, Ayako; Takeuchi, Masayoshi; Yamagishi, Sho-Ichi

    2014-09-01

    Advanced glycation end products (AGEs) not only inhibit DNA synthesis but also play a role in diabetic retinopathy by evoking apoptosis and inflammation in retinal pericytes via interaction with a receptor for AGE (RAGE). Similarly, sulforaphane, which is a naturally occurring isothiocyanate that is found in widely consumed cruciferous vegetables, protects against oxidative stress-induced tissue damage. Therefore, we hypothesized that sulforaphane could inhibit AGE-induced pericytes injury through its antioxidative properties. Advanced glycation end product stimulated superoxide generation as well as RAGE gene and protein expression in bovine-cultured retinal pericytes, and these effects were prevented by the treatment with sulforaphane. Antibodies directed against RAGE also blocked AGE-evoked reactive oxygen species generation in pericytes. Sulforaphane and antibodies directed against RAGE significantly inhibited the AGE-induced decrease in DNA synthesis, apoptotic cell death, and up-regulation of monocyte chemoattractant protein 1 messenger RNA levels in pericytes. For the first time, the present study demonstrates that sulforaphane could inhibit DNA synthesis, apoptotic cell death, and inflammatory reactions in AGE-exposed pericytes, partly by suppressing RAGE expression via its antioxidative properties. Blockade of the AGE-RAGE axis in pericytes by sulforaphane might be a novel therapeutic target for the treatment of diabetic retinopathy. PMID:25241332

  1. Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gammaactivation.

    PubMed

    Yamagishi, Sho-ichi; Matsui, Takanori; Nakamura, Kazuo; Takeuchi, Masayoshi; Inoue, Hiroyoshi

    2008-01-01

    Advanced glycation end products (AGEs)-their receptor (RAGE) axis plays a central role in the pathogenesis of diabetic microangiopathy. Since the pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II has also been associated with diabetic microangiopathy, we examined here whether and how telmisartan, a unique angiotensin II type 1 receptor blocker (ARB) with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, could inhibit the AGEs-elicited endothelial cell injury by suppressing RAGE expression in vitro. Telmisartan suppressed RAGE expression at both mRNA and protein levels in human cultured microvascular endothelial cells (ECs), which were prevented by GW9662, an inhibitor of PPAR-gamma. Further, telmisartan was found to inhibit up-regulation of mRNA levels for monocyte chemoattractant protein-1, intercellular adhesion molecule-1 and vascular endothelial growth factor in AGEs-exposed ECs. These results suggest that telmisartan inhibits the AGEs-elicited EC injury by down-regulating RAGE expression via PPAR-gamma activation. Our present study provides a unique beneficial aspect of telmisartan. Specifically, it could work as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role against diabetic microangiopathy. PMID:18855759

  2. Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in rats submitted to peritoneal dialysis.

    PubMed

    Li, Zhenghong; Zhang, Lu; He, Weiming; Zhu, Changle; Yang, Jinsong; Sheng, Meixiao

    2014-01-01

    Inflammation and transforming growth factor-β1 (TGF-β1) contribute to the development of peritoneal fibrosis (PF), which is associated with peritoneal dialysis (PD). Astragalus membranaceus (Astragalus) has anti-inflammatory and anti-fibrotic effects in many diseases. The goal of this study was to determine the anti-fibrotic effects of Astragalus on the PF response to PD. A rat model of PD was induced using standard PD fluid, and PF was verified by HE and Masson's staining, as well as through the expression of fibroblast surface protein (FSP) and collagen III. The expression levels of monocyte chemoattractant protein (MCP)-1, F4/80 (macrophage/monocyte marker in rat), TGF-β1 and the downstream proteins phospho-SMAD 2/3 in dialyzed peritoneal tissue treated with or without Astragalus was evaluated using immunohistochemistry analysis. Overall correlations between MCP-1 and TGF-β1 staining were analyzed using both the Spearman and Pearson methods. The results showed that Astragalus could inhibit the recruitment and activation of monocytes/macrophages, thereby reducing the production of TGF-β1 in the dialyzed peritoneal membrane. PF was also significantly decreased following treatment with Astragalus. MCP-1 expression had a strong positive correlation with TGF-β1 sensitivity, suggesting that the anti-fibrotic function of Astragalus was mediated by MCP-1 and the TGF-β1 pathway. Our results indicate that Astragalus could be a useful agent against PD-induced PF. PMID:25054320

  3. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    SciTech Connect

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank . E-mail: fsieg@neurenpharma.com

    2006-10-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology.

  4. Astaxanthin Inhibits Expression of Retinal Oxidative Stress and Inflammatory Mediators in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Yeh, Po-Ting; Huang, Hsin-Wei; Yang, Chung-May; Yang, Wei-Shiung; Yang, Chang-Hao

    2016-01-01

    Purpose We evaluated whether orally administered astaxanthin (AST) protects against oxidative damage in the ocular tissues of streptozotocin (STZ)-induced diabetic rats. Methods and Results Fifty 6-week-old female Wistar rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 40) or to remain uninduced (n = 10). The diabetic rats were randomly selected into four groups and they were separately administered normal saline, 0.6 mg/kg AST, 3 mg/kg AST, or 0.5 mg/kg lutein daily for eight weeks. Retinal functions of each group were evaluated by electroretinography. The expression of oxidative stress and inflammatory mediators in the ocular tissues was then assessed by immunohistochemistry, western blot analysis, ELISA, RT-PCR, and electrophoretic mobility shift assay (EMSA). Retinal functions were preserved by AST and lutein in different levels. Ocular tissues from AST- and lutein-treated rats had significantly reduced levels of oxidative stress mediators (8-hydroxy-2'-deoxyguanosine, nitrotyrosine, and acrolein) and inflammatory mediators (intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine), increased levels of antioxidant enzymes (heme oxygenase-1 and peroxiredoxin), and reduced activity of the transcription factor nuclear factor-kappaB (NF-κB). Conclusion The xanthophyll carotenoids AST and lutein have neuroprotective effects and reduce ocular oxidative stress, and inflammation in the STZ diabetic rat model, which may be mediated by downregulation of NF-κB activity. PMID:26765843

  5. In Patients with Coronary Artery Disease and Type 2 Diabetes, SIRT1 Expression in Circulating Mononuclear Cells Is Associated with Levels of Inflammatory Cytokines but Not with Coronary Lesions

    PubMed Central

    Li, Yuanmin; Ni, Jing; Guo, Rong; Li, Weiming

    2016-01-01

    While SIRT1 is significantly associated with atherosclerosis and diabetic complications, its relevance to coronary lesions in patients with coronary artery disease and type 2 diabetes has not been specifically investigated. Thus, we assessed SIRT1 expression in peripheral blood mononuclear cells in these patients. We found that SIRT1 expression did not significantly correlate with syntax scores from coronary angiography (p > 0.05). Notably, plasma levels of the inflammatory cytokines tumor necrosis factor-α, monocyte chemoattractant protein-1, and high-sensitivity C-reactive protein were markedly higher in diabetic patients (p < 0.05). In addition, SIRT1 expression was negatively correlated with levels of these cytokines, as well as that of interleukin-6 (p < 0.05). In summary, the data indicate that SIRT1 expression in peripheral blood mononuclear cells is significantly correlated with inflammatory cytokines levels in patients with coronary artery disease and type 2 diabetes but not with the severity of coronary lesions. PMID:27123454

  6. Localized expression of mRNA for phagocyte-specific chemotactic cytokines in human periodontal infections.

    PubMed Central

    Tonetti, M S; Imboden, M A; Gerber, L; Lang, N P; Laissue, J; Mueller, C

    1994-01-01

    In bacterial infections, mononuclear and polymorphonuclear phagocytes are key components of host defenses. Recent investigations have indicated that chemokines are able to recruit and activate phagocytes. In particular, interleukin-8 (IL-8) attracts polymorphonuclear leukocytes (PMNs), while monocyte chemoattractant protein-1 (MCP-1) is selective for cells of the monocyte/macrophage lineage. In this investigation, we analyzed the in situ expression of IL-8 and MCP-1 mRNAs in human periodontal infections. Specific mRNA was detected by in situ hybridization using 35S-labeled riboprobes in frozen tissue sections. Phagocytes (PMNs and macrophages) were specifically detected as elastase-positive or CD68+ cells by a three-stage immunoperoxidase technique. Results indicated that expression of phagocyte-specific cytokines was confined to selected tissue locations and, in general, paralleled phagocyte infiltration. In particular, IL-8 expression was maximal in the junctional epithelium adjacent to the infecting microorganisms; PMN infiltration was more prominent in the same area. MCP-1 was expressed in the chronic inflammatory infiltrate and along the basal layer of the oral epithelium. Cells of the monocyte/macrophage lineage were demonstrated to be present in the same areas. The observed expression pattern may be the most economic way to establish a cell-type-selective chemotactic gradient within the tissue that is able to effectively direct polymorphonuclear phagocyte migration toward the infecting microorganisms and modulate mononuclear phagocyte infiltration in the surrounding tissues. This process may optimize host defenses and contribute to containing leukocyte infiltration to the infected and inflamed area, thus limiting tissue damage. Images PMID:8063420

  7. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity

    PubMed Central

    Lagathu, Claire; Christodoulides, Constantinos; Tan, Chong Yew; Virtue, Sam; Laudes, Matthias; Campbell, Mark; Ishikawa, Ko; Ortega, Francisco; Tinahones, Francisco J.; Fernández-Real, Jose-Manuel; Orešič, Matej; Sethi, Jaswinder K.; Vidal-Puig, Antonio

    2014-01-01

    Aim The Wnt/β-catenin signalling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. Here we investigate the role of the Wnt antagonist, secreted Frizzled related protein 1 (SFRP1) in promoting adipogenesis in vitro and adipose tissue expansion in vivo. Methods We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1. Results Secreted Frizzled related protein 1 (SFRP1) is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signalling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high fat diet-fed mice we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects. Conclusions Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signalling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals. PMID:20514047

  8. Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1

    PubMed Central

    van Gorkom, B A P; Timmer-Bosscha, H; de Jong, S; van der Kolk, D M; Kleibeuker, J H; de Vries, E G E

    2002-01-01

    Anthranoid laxatives, belonging to the anthraquinones as do anthracyclines, possibly increase colorectal cancer risk. Anthracyclines interfere with topoisomerase II, intercalate DNA and are substrates for P-glycoprotein and multidrug resistance-associated protein 1. P-glycoprotein and multidrug resistance-associated protein 1 protect colonic epithelial cells against xenobiotics. The aim of this study was to analyse the interference of anthranoids with these natural defence mechanisms and the direct cytotoxicity of anthranoids in cancer cell lines expressing these mechanisms in varying combinations. A cytotoxicity profile of rhein, aloe emodin and danthron was established in related cell lines exhibiting different levels of topoisomerases, multidrug resistance-associated protein 1 and P-glycoprotein. Interaction of rhein with multidrug resistance-associated protein 1 was studied by carboxy fluorescein efflux and direct cytotoxicity by apoptosis induction. Rhein was less cytotoxic in the multidrug resistance-associated protein 1 overexpressing GLC4/ADR cell line compared to GLC4. Multidrug resistance-associated protein 1 inhibition with MK571 increased rhein cytotoxicity. Carboxy fluorescein efflux was blocked by rhein. No P-glycoprotein dependent rhein efflux was observed, nor was topoisomerase II responsible for reduced toxicity. Rhein induced apoptosis but did not intercalate DNA. Aloe emodin and danthron were no substrates for MDR mechanisms. Rhein is a substrate for multidrug resistance-associated protein 1 and induces apoptosis. It could therefore render the colonic epithelium sensitive to cytotoxic agents, apart from being toxic in itself. British Journal of Cancer (2002) 86, 1494–1500. DOI: 10.1038/sj/bjc/6600255 www.bjcancer.com © 2002 Cancer Research UK PMID:11986786

  9. Prognostic significance of INF-induced transmembrane protein 1 in colorectal cancer

    PubMed Central

    He, Jingdong; Li, Jin; Feng, Wanting; Chen, Longbang; Yang, Kangqun

    2015-01-01

    Interferon-induced transmembrane protein 1 (IFITM1) has recently been implicated in tumorigenesis. However, the prognostic value of IFITM1 in colorectal cancer remains unknown. The present study aimed to examine the expression and prognostic significance of IFITM1 in human colorectal cancer. IFITM1 expression was analyzed in 144 archived, paraffin-embedded colorectal cancer tissues and corresponding normal colorectal mucosa by immunohistochemistry. The correlation of IFITM1 with clinic-pathological features and overall survival of colorectal cancer patients was evaluated. IFITM1 was overexpressed in colonic cancer tissues but not in rectal cancer tissues, compared to control normal tissues. The expression of IFITM1 was significantly higher in patients with poor differentiation (P=0.031). The patients with higher IFITM1 expression had worse overall survival outcomes than those with lower IFITM1 expression in rectal cancer (P=0.037). Univariate Cox regression suggested that older age and poorly differentiation status predict shorter overall survival in colorectal cancer (P<0.05). However, IFITM1 expression was not a significant prognostic factor for survival by univariate or multivariate analyses. In conclusion, high expression of IFITM1 is associated with poor prognosis of rectal cancer. IFITM1 may serve as an independent prognostic biomarker for colorectal cancer. PMID:26884876

  10. Express

    Integrated Risk Information System (IRIS)

    Express ; CASRN 101200 - 48 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  11. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell-substrate adhesion.

    PubMed

    Fukujin, Fumihito; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi

    2016-06-01

    In the social amoeba Dictyostelium discoideum, travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly-l-lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration. PMID:27358278

  12. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes

    PubMed Central

    Reynolds, Andy M.; Dutta, Tushar K.; Curtis, Rosane H. C.; Powers, Stephen J.; Gaur, Hari S.; Kerry, Brian R.

    2011-01-01

    It has long been recognized that chemotaxis is the primary means by which nematodes locate host plants. Nonetheless, chemotaxis has received scant attention. We show that chemotaxis is predicted to take nematodes to a source of a chemo-attractant via the shortest possible routes through the labyrinth of air-filled or water-filled channels within a soil through which the attractant diffuses. There are just two provisos: (i) all of the channels through which the attractant diffuses are accessible to the nematodes and (ii) nematodes can resolve all chemical gradients no matter how small. Previously, this remarkable consequence of chemotaxis had gone unnoticed. The predictions are supported by experimental studies of the movement patterns of the root-knot nematodes Meloidogyne incognita and Meloidogyne graminicola in modified Y-chamber olfactometers filled with Pluronic gel. By providing two routes to a source of the attractant, one long and one short, our experiments, the first to demonstrate the routes taken by nematodes to plant roots, serve to test our predictions. Our data show that nematodes take the most direct route to their preferred hosts (as predicted) but often take the longest route towards poor hosts. We hypothesize that a complex of repellent and attractant chemicals influences the interaction between nematodes and their hosts. PMID:20880854

  13. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration.

    PubMed

    Theveneau, Eric; Mayor, Roberto

    2012-01-01

    Neural crest (NC) cells are induced at the border of the neural plate and subsequently leave the neuroepithelium during a delamination phase. This delamination involves either a complete or partial epithelium-to-mesenchyme transition, which is directly followed by an extensive cell migration. During migration, NC cells are exposed to a wide variety of signals controlling their polarity and directionality, allowing them to colonize specific areas or preventing them from invading forbidden zones. For instance, NC cells are restricted to very precise pathways by the presence of inhibitory signals at the borders of each route, such as Semaphorins, Ephrins, and Slit/Robo. Although specific NC chemoattractants have been recently identified, there is evidence that repulsive interactions between the cells, in a process called contact inhibition of locomotion, is one of the major driving forces behind directional migration. Interestingly, in cellular and molecular terms, the invasive behavior of NC is similar to the invasion of cancer cells during metastasis. NC cells eventually settle in various places and make an immense contribution to the vertebrate body. They form the major constituents of the skull, the peripheral nervous system, and the pigment cells among others, which show the remarkable diversity and importance of this embryonic-stem cell like cell population. Consequently, several birth defects and craniofacial disorders, such as Treacher Collins syndrome, are due to improper NC cell migration. PMID:23801492

  14. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell–substrate adhesion

    PubMed Central

    Fukujin, Fumihito; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi

    2016-01-01

    In the social amoeba Dictyostelium discoideum, travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly-l-lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration. PMID:27358278

  15. Chemoattraction and penetration of Echinostoma trivolvis and E. caproni cercariae in the presence of Biomphalaria glabrata, Helisoma trivolvis, and Lymnaea elodes dialysate.

    PubMed

    Fried, B; Frazer, B A; Reddy, A

    1997-01-01

    A petri-dish bioassay was used to study the chemoattraction and penetration of the cercariae of Echinostoma trivolvis and E. caproni in the presence of snail dialysates from Helisoma trivolvis (Pennsylvania and Colorado strains). Biomphalaria glabrata, and Lynmaea elodes. Significant chemoattraction was seen with E. trivolvis cercariae in the presence of all snail dialysates released from nonperforated dialysis sacs with a molecular-weight exclusion of 12,000. Under the same conditions, E. caproni was significantly attracted to B. glabrata and H. trivolvis (CO strain) but not to L. elodes or H. trivolvis (PA strain). Dialysis sacs were perforated with needles to allow the release of snail substances of all molecular weights into the bioassay. Cercariae of both species were significantly attracted to all snail dialysates released from perforated sacs. Moreover, cercariae entered these sacs and penetrated the snails, and 24 h later the percentage of cysts per snail species ranged from 70% to 83% for E. trivolvis and from 73% to 93% for E. caproni. Dialysates released from intact sacs were extracted in choloroform-methanol (2:1) to obtain hydrophilic and lipophilic fractions. When these extracts were placed on agar plugs in the bioassay, the lipophilic fraction, but not the hydrophilic fraction, was mainly chemoattractive. PMID:9039703

  16. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone

    PubMed Central

    Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.

    2016-01-01

    Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770

  17. Neuropilin-1 mediates myeloid cell chemoattraction and influences retinal neuroimmune crosstalk

    PubMed Central

    Dejda, Agnieszka; Mawambo, Gaelle; Cerani, Agustin; Miloudi, Khalil; Shao, Zhuo; Daudelin, Jean-Francois; Boulet, Salix; Oubaha, Malika; Beaudoin, Felix; Akla, Naoufal; Henriques, Sullivan; Menard, Catherine; Stahl, Andreas; Delisle, Jean-Sébastien; Rezende, Flavio A.; Labrecque, Nathalie; Sapieha, Przemyslaw

    2014-01-01

    Immunological activity in the CNS is largely dependent on an innate immune response and is heightened in diseases, such as diabetic retinopathy, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease. The molecular dynamics governing immune cell recruitment to sites of injury and disease in the CNS during sterile inflammation remain poorly defined. Here, we identified a subset of mononuclear phagocytes (MPs) that responds to local chemotactic cues that are conserved among central neurons, vessels, and immune cells. Patients suffering from late-stage proliferative diabetic retinopathy (PDR) had elevated vitreous semaphorin 3A (SEMA3A). Using a murine model, we found that SEMA3A acts as a potent attractant for neuropilin-1–positive (NRP-1–positive) MPs. These proangiogenic MPs were selectively recruited to sites of pathological neovascularization in response to locally produced SEMA3A as well as VEGF. NRP-1–positive MPs were essential for disease progression, as NRP-1–deficient MPs failed to enter the retina in a murine model of oxygen-induced retinopathy (OIR), a proxy for PDR. OIR mice with NRP-1–deficient MPs exhibited decreased vascular degeneration and diminished pathological preretinal neovascularization. Intravitreal administration of a NRP-1–derived trap effectively mimicked the therapeutic benefits observed in mice lacking NRP-1–expressing MPs. Our findings indicate that NRP-1 is an obligate receptor for MP chemotaxis, bridging neural ischemia to an innate immune response in neovascular retinal disease. PMID:25271625

  18. Oxygen as a chemoattractant: confirming cellular hypoxia in paper-based invasion assays.

    PubMed

    Truong, Andrew S; Lockett, Matthew R

    2016-06-21

    Low oxygen tension, or hypoxia, is a common occurrence in solid tumors. Hypoxia is a master regulator of cellular phenotype, and is associated with increased tumor invasion and aggressiveness as well as adverse patient prognosis. Oxygen has recently been linked with the selective movement of different cancer cell types in three-dimensional invasion assays utilizing paper-based scaffolds. It has remained unclear, however, if cells in these paper-based invasion assays are experiencing hypoxia. In this manuscript, we adapted cell-based methods to measure oxygen tension in our 3D invasion assays: the adduction of pimonidazole to free thiols in the cell, indicative of a reducing environment; the localization of hypoxia inducible factors to the nucleus; and the expression of hypoxia-regulated gene products. We utilized each method to compare the oxygen tension in different locations of the paper-based invasion stacks and found an oxygen gradient is indeed forming. Specifically, we found that the extent of pimonidazole binding, as well as the levels and activities of nucleus-localized HIF-α proteins, increase as the distance between the cells and the source of fresh medium increases. These complementary cell-based readouts not only confirm the selective invasion we observe is due to an oxygen gradient, they also show the gradient is temporal in nature and evolves with increasing culture period. PMID:27138213

  19. Identification and characterization a novel transcription factor activator protein-1 in the sea cucumber Apostichopus japonicus.

    PubMed

    Yang, Limeng; Li, Chenghua; Chang, Yaqing; Gao, Yinxue; Wang, Yi; Wei, Jing; Song, Jian; Sun, Ping

    2015-08-01

    The transcription factor activator protein-1 (AP-1) is an important gene expression regulator with typical Jun and region-leucine zipper (bZIP) domains and can respond to a plethora of physiological and pathological stimulus. In this study, we identified a novel AP-1 gene in Apostichopus japonicus by transcriptome sequencing and RACE approaches (designated as AjAP-1). The full-length of AjAP-1 was of 2944 bp including a 5' untranslated region (UTR) of 201 bp, a 3' UTR of 1753 bp and a putative open reading frame of 990 bp encoding a polypeptide of 329 amino acid residues. Two representative domains of Jun and bZIP as well as two nuclear localization signals (NLSs) were also detected in deduced amino acid of AjAP-1. Spatial distribution expression indicated that AjAP-1 was ubiquitously expressed in all examined tissues with predominant expression in the body wall, moderate in the tube feet, respiratory tree and colemocytes and slightly weak in the intestine and longitudinal muscle. Time-course expression analysis in intestine and coelomocytes revealed that AjAP-1 both reached its peak expression at 4 h after Vibrio splendidus challenge with a 2.6 and 8.2-fold increase compared to their control groups, respectively. Taken together, all these results suggested that AjAP-1 was a novel immune factor and might be involved in the processes of anti-bacteria response in sea cucumber. PMID:26093208

  20. Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling

    PubMed Central

    Kim, Mi Jin; Kadayat, Taraman; Um, Yeon Ji; Jeong, Tae Cheon; Lee, Eung-Seok; Park, Pil-Hoon

    2015-01-01

    Chalcones (1,3-diaryl-2-propen-1-ones), a subfamily of flavonoid, are widely known to possess potent anti-inflammatory and anti-oxidant properties. In this study, we investigated the effect of 3-(4-Hydroxyphenyl)-1-(thio3-(4-Hydroxyphenyl phen-2-yl)prop-2-en-1-one (TI-I-175), a synthetic chalcone derivative, on endotoxin-induced expression of monocyte chemoattractant protein-1 (MCP-1), one of the key chemokines that regulates migration and infiltration of immune cells, and its potential mechanisms. TII-175 potently inhibited MCP-1 mRNA expression stimulated by lipopolysaccharide (LPS) in RAW 264.7 macrophages without significant effect on cell viability. Treatment of cells with TI-I-175 markedly prevented LPS-induced transcriptional activation of activator protein-1 (AP-1) as measured by luciferase reporter assay, while nuclear factor-κB (NF-κB) activity was not inhibited by TI-I-175, implying that TI-I-175 suppressed MCP-1 expression probably via regulation of AP-1. In addition, TI-I-175 treatment significantly inhibited LPS-induced Akt phosphorylation and led to a significant decrease in reactive oxygen species (ROS) production by LPS, which act as up-stream signaling events required for AP-1 activation in RAW 264.7 macrophages. Taken together, these results indicate that TI-I-175 suppresses MCP-1 gene expression in LPS-stimulated RAW 264.7 macrophages via suppression of ROS production and Akt activation. PMID:25767679

  1. Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression

    PubMed Central

    Liu, Z-H; Hu, J-L; Liang, J-Z; Zhou, A-J; Li, M-Z; Yan, S-M; Zhang, X; Gao, S; Chen, L; Zhong, Q; Zeng, M-S

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with tremendous invasion and metastasis capacities, and it has a high incidence in southeast Asia and southern China. Previous studies identified that far upstream element-binding protein 1 (FBP1), a transcriptional regulator of c-Myc that is one of the most frequently aberrantly expressed oncogenes in various human cancers, including NPC, is an important biomarker for many cancers. Our study aimed to investigate the expression and function of FBP1 in human NPC. Quantitative real-time RT-PCR (qRT-PCR), western blot and immunohistochemical staining (IHC) were performed in NPC cells and biopsies. Furthermore, the effect of FBP1 knockdown on cell proliferation, colony formation, side population tests and tumorigenesis in nude mice were measured by MTT, clonogenicity analysis, flow cytometry and a xenograft model, respectively. The results showed that the mRNA and protein levels of FBP1, which are positively correlated with c-Myc expression, were substantially higher in NPC than that in nasopharyngeal epithelial cells. IHC revealed that the patients with high FBP1 expression had a significantly poorer prognosis compared with the patients with low expression (P=0.020). In univariate analysis, high FBP1 and c-Myc expression predicted poorer overall survival (OS) and poorer progression-free survival. Multivariate analysis indicated that high FBP1 and c-Myc expression were independent prognostic markers. Knockdown of FBP1 reduced cell proliferation, clonogenicity and the ratio of side populations, as well as tumorigenesis in nude mice. These data indicate that FBP1 expression, which is closely correlated with c-Myc expression, is an independent prognostic factor and promotes NPC progression. Our results suggest that FBP1 can not only serve as a useful prognostic biomarker for NPC but also as a potential therapeutic target for NPC patients. PMID:26469968

  2. Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma.

    PubMed

    Jeong, Keun-Yeong; Lee, Eun-Jung; Kim, Su Jin; Yang, Seung-Hyun; Sung, Young Chul; Seong, Jinsil

    2015-08-01

    Irradiation in conjunction with gene therapy is considered for efficient cancer treatment. Mesenchymal stem cells (MSCs), due to their irradiation-promotable tumor tropism, are ideal delivery vehicles for gene therapy. In this study, we investigated whether treatment with radiation and interleukin (IL)-12-expressing MSCs (MSCs/IL-12) exerts improved antitumor effects on murine metastatic hepatoma. HCa-I and Hepa 1-6 cells were utilized to generate heterotopic murine hepatoma models. Tumor-bearing mice were treated with irradiation or MSCs/IL-12 alone, or a combination. Monocyte chemoattractant protein-1 (MCP-1/CCL2) expression was assessed in irradiated hepatoma tissues to confirm a chemotactic effect. Combination treatment strategies were established and their therapeutic efficacies were evaluated by monitoring tumor growth, metastasis and survival rate. IL-12 expression was assessed and the apoptotic activity and immunological alterations in the tumor microenvironment were examined. MCP-1/CCL2 expression and localization of MSCs/IL-12 increased in the irradiated murine hepatoma cells. The antitumor effects, including suppression of pulmonary metastasis and survival rate improvements, were increased by the combination treatment with irradiation and MSCs/IL-12. IL-12 expression was increased in tumor cells, causing proliferation of cluster of differentiation 8(+) T-lymphocytes and natural killer cells. The apoptotic activity increased, indicating that the cytotoxicity of immune cells was involved in the antitumor effect of the combined treatment. Treatment with irradiation and MSCs/IL-12 showed effectiveness in treating murine metastatic hepatoma. IL-12-induced proliferation of immune cells played an important role in apoptosis of tumor cells. Our results suggest that treatment with irradiation and MSCs/IL-12 may be a useful strategy for enhancing antitumor activity in metastatic hepatoma. PMID:25639194

  3. Regulation of Pulmonary and Systemic Bacterial Lipopolysaccharide Responses in Transgenic Mice Expressing Human Elafin

    PubMed Central

    Sallenave, J.-M.; Cunningham, G. A.; James, R. M.; McLachlan, G.; Haslett, C.

    2003-01-01

    The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-α compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation. PMID:12819058

  4. Regulation of pulmonary and systemic bacterial lipopolysaccharide responses in transgenic mice expressing human elafin.

    PubMed

    Sallenave, J-M; Cunningham, G A; James, R M; McLachlan, G; Haslett, C

    2003-07-01

    The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-alpha compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation. PMID:12819058

  5. Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity

    PubMed Central

    Yan, Wenjun; Wei, Jianchao; Shao, Donghua; Deng, Xufang; Wang, Shaohui; Li, Beibei; Tong, Guangzhi; Ma, Zhiyong

    2013-01-01

    Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was essential for inhibition of IAV replication. Mutation of K51 resulted in an hGBP1 that was unable to inhibit IAV replication. The viral nonstructural protein 1 (NS1) was found to interact directly with hGBP1. K51 of hGBP1 and a region between residues 123 and 144 in NS1 were demonstrated to be essential for the interaction between NS1 and hGBP1. Binding of NS1 to hGBP1 resulted in a significant reduction in both GTPase activity and the anti-IAV activity of hGBP1. These findings indicated that hGBP1 contributed to the host immune response against IAV replication and that hGBP1-mediated antiviral activity was antagonized by NS1 via binding to hGBP1. PMID:23405236

  6. Leucine-rich glioma-inactivated protein 1 antibody encephalitis

    PubMed Central

    Mayasi, Yunis; Takhtani, Deepak

    2014-01-01

    Objective: To describe a case of leucine-rich glioma-inactivated protein 1 (LGI1) antibody–associated encephalitis. Methods: The clinical and ancillary data and brain MRIs were gathered retrospectively by chart review. Relevant literature on similar cases was also reviewed. Results: The diagnosis of LGI1 antibody–associated autoimmune encephalitis was based on the typical clinical presentation of seizures, psychiatric symptoms, and memory loss as well as negative diagnostic testing for cancer; the diagnosis was confirmed by positive LGI1 antibody. The patient responded favorably to treatment with IV immunoglobulin and continues to do well. Conclusion: LGI1 antibody–associated encephalitis has increasingly been recognized as a primary autoimmune disorder with good prognosis and response to treatment. PMID:25520958

  7. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  8. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  9. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish

    PubMed Central

    Grone, Brian P.; Marchese, Maria; Hamling, Kyla R.; Kumar, Maneesh G.; Krasniak, Christopher S.; Sicca, Federico; Santorelli, Filippo M.; Patel, Manisha; Baraban, Scott C.

    2016-01-01

    Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations. PMID:26963117

  10. Structural studies of human glioma pathogenesis-related protein 1

    SciTech Connect

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  11. Prostate Androgen-Regulated Mucin-Like protein 1: A Novel Regulator of Progesterone Metabolism

    PubMed Central

    Park, Ji Yeon; Jang, Hyein; Curry, Thomas E.; Sakamoto, Aiko

    2013-01-01

    The LH surge reprograms preovulatory follicular cells to become terminally differentiated luteal cells which produce high levels of progesterone and become resistant to apoptosis. PARM1 (prostate androgen regulated mucin-like protein 1) has been implicated in cell differentiation and cell survival in nonovarian cells, but little is known about PARM1 in the ovary. This study demonstrated that the LH surge induced a dramatic increase in Parm1 expression in periovulatory follicles and newly forming CL in both cycling and immature rat models. We further demonstrated that hCG increases Parm1 expression in granulosa cell cultures. The in vitro up-regulation of Parm1 expression was mediated by hCG-activated multiple signaling pathways and transcriptional activation of this gene. Parm1 knockdown increased the viability of cultured granulosa cells but resulted in a decrease in progesterone levels. The inhibitory effect of Parm1 silencing on progesterone was reversed by adenoviral mediated add-back expression of Parm1. Parm1 silencing had little effect on the expression of genes involved in progesterone biosynthesis and metabolism such as Scarb1, Ldlr, Vldlr, Scp2, Star, Cyp11a1, Hsd3b, and Srd5a1, while decreasing the expression of Akr1c3. Analyses of culture media steroid levels revealed that Parm1 knockdown had no effect on pregnenolone levels, while resulting in time-dependent decreases in progesterone and 20α-dihydroprogesterone and accelerated accumulation of 5α-pregnanediol. This study revealed that the up-regulation of Parm1 expression promotes progesterone and 20α-dihydroprogesterone accumulation in luteinizing granulosa cells by inhibiting progesterone catabolism to 5α-pregnanediol. PARM1 contributes to ovulation and/or luteal function by acting as a novel regulator of progesterone metabolism. PMID:24085821

  12. G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker.

    PubMed

    Zheng, Xiaoyi; Chang, Frank; Zhang, Xinmin; Rothman, Vicki L; Tuszynski, George P

    2012-08-01

    Using an innovative "2-D high performance liquid electrophoresis" (2-D HPLE) technology we identified that a specific fragment of G-protein coupled receptor-associated sorting protein 1 (GASP-1) was present in the sera of breast cancer patients and was over-expressed in early and late stage breast tumors (Tuszynski, G.P. et al., 2011). In this study we further investigated the significance of GASP-1 as a tumor marker by investigating the expression GASP-1 in different kinds of tumors as well as in the sera of patients with various cancers. Over expression of GASP-1 was detected in brain, pancreatic, and breast cancers as compared to their respective normal tissues as assessed by immunohistochemical staining of tissue arrays using a "peptide specific" GASP-1 antibody. We found that across these cancers, GASP-1 was expressed approximately 10 fold more in the cancer as compared to normal tissue. The increase in GASP-1 expression was also seen in hyperplastic and inflammatory lesions of breast and pancreatic cancers as compared to normal tissue. GASP-1 was primarily expressed in the tumor epithelium of the epithelial-derived cancers and in the transformed glial cells of the brain tumors. Using a sensitive "competitive ELISA" for GASP-1, we found that sera from patients with brain, liver, breast and lung cancers expressed 4-7 fold more GASP-1 peptide than sera from normal healthy individuals. These studies identify GASP-1 as a potential new serum and tumor biomarker for several cancers and suggest that GASP-1 may be a novel target for development of cancer therapeutics. PMID:22483848

  13. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    PubMed Central

    Guo, Run-Sheng; Yu, Yue; Chen, Jun; Chen, Yue-Yu; Shen, Na; Qiu, Ming

    2016-01-01

    Background: Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated. Methods: BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay. Results: BASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration. Conclusions: Downregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer. PMID:27270539

  14. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  15. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis.

    PubMed

    Shahbazi, Jeyran; Lock, Richard; Liu, Tao

    2013-01-01

    Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a stress-induced p53-target gene whose expression is modulated by transcription factors such as p53, p73, and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. In association with homeodomain-interacting protein kinase-2 (HIPK2), TP53INP1 phosphorylates p53 protein at Serine-46. This enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53-target genes such as p21 and PIG3, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis, whereas TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment. PMID:23717325

  16. Podocalyxin-like protein 1 functions as an immunomodulatory molecule in breast cancer cells.

    PubMed

    Amo, Laura; Tamayo-Orbegozo, Estíbaliz; Maruri, Natalia; Buqué, Aitziber; Solaun, Miren; Riñón, Marta; Arrieta, Arantza; Larrucea, Susana

    2015-11-01

    Podocalyxin-like protein 1 (PCLP1), a CD34-related sialomucin involved in the regulation of cellular morphology and adhesion, is expressed by a number of normal cells and various tumor cells. In breast malignancies PCLP1 overexpression has been associated with the most aggressive, metastatic cancers and poor prognosis. These observations suggest that PCLP1 expression could provide a mechanism to evade the immune response, thereby promoting metastatic progression of cancer. In the present work, we aimed to determine the effect of PCLP1 overexpressed in MCF7 breast cancer cells on natural killer (NK) cell cytotoxicity, dendritic cell maturation, and agonist-induced T cell proliferation. The results showed that PCLP1 expressed in MCF7 breast cancer cells confers resistance to NK cell-mediated cytolysis and impairs T cell proliferation. Furthermore, PCLP1 decreased the levels of NK cell activating receptors NKG2D, NKp30, NKp44, NKp46, DNAM-1, and CD16 on cell surface in a contact-dependent manner. Moreover, NK cells acquired PCLP1 from MCF7 cells by a process known as trogocytosis. These data reveal a new function of PCLP1 expressed on tumor cells as an immunomodulatory molecule, which may represent a mechanism to evade the immune response. PMID:26276714

  17. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells

    PubMed Central

    HOU, HUIGE; CHEN, LIN; ZHA, ZHENGANG; CAI, SHAOHUI; TAN, MINGHUI; GUO, GUOQING; LIU, NING; SHE, GUORONG; XUN, SONGWEI

    2016-01-01

    It has been reported that long form collapsin response mediator protein-1 (LCRMP-1) promotes the metastasis of non-small cell lung cancer. Osteosarcoma (OS) is a human cancer with a high potential for metastasis. The present study aimed to investigate the role of LCRMP-1 in OS metastasis. The expression of LCRMP-1 in OS specimens and cell lines was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Furthermore, the migration and invasion of OS cells with LCRMP-1-knockdown was investigated to examine the role of LCRMP-1 in OS metastasis. In addition, the expression of N-cadherin and matrix metalloproteinases (MMPs), which are involved in cell migration, was evaluated using RT-qPCR. Increased expression of LCRMP-1 was observed in the OS tissues and cell lines, accompanied by the enhanced migration and invasion of the OS cells. LCRMP-1-knockdown resulted in a significant decrease in the expression of N-cadherin and MMPs, as well as inhibition of the migration and invasion of the OS cells. Overexpression of LCRMP-1 promoted OS metastasis. Therefore, LCRMP-1 may be a promising target for the effective treatment of OS. PMID:27347094

  18. Modulation by dihydropyridine-type calcium channel antagonists of cytokine-inducible gene expression in vascular smooth muscle cells

    PubMed Central

    Cattaruzza, Marco; Wachter, Rolf; Wagner, Andreas H; Hecker, Markus

    2000-01-01

    The 1,4-dihydropyridine nifedipine is frequently used in the therapy of hypertension and heart failure. In addition, nifedipine has been shown to exert distinct anti-arteriosclerotic effects both in experimental animal models and in patients. In the present study we have investigated the hypothesis that the latter effect of this class of drugs is mediated by an interference with the expression of pro-arteriosclerotic gene products in the vessel wall. Moreover, to elucidate as to whether nifedipine acts via L-type calcium channel blockade, its effects were compared to those of another dihydropyridine, Bay w 9798, which has no calcium-antagonistic properties in concentrations up to 10 μM, as verified by superfusion bioassay. Both, nifedipine and Bay w 9798, in concentrations ranging from 0.01 to 1 μM, augmented the interleukin-1β/tumour necrosis factor-α (IL-1β/TNF-α)-induced expression of the inducible isoform of nitric oxide synthase (iNOS) in rat aortic cultured smooth muscle cells (raSMC) 2–3 fold, as judged by RT–PCR and Western blot analyses. In contrast, cytokine-induced mRNA expression of monocyte chemoattractant protein 1 (MCP-1) in these cells was down-regulated by more than 60% in the presence of both dihydropyridines, as judged by RT–PCR and Northern blot analyses. Nuclear run-on assays and incubation with the transcription-terminating drug actinomycin D revealed that both drugs acted at the level of mRNA synthesis rather than stability. These findings suggest that 1,4-dihydropyridines such as nifedipine affect the expression of both potentially pro-arteriosclerotic (MCP-1) and anti-arteriosclerotic (iNOS) gene products in the vessel wall at the level of transcription, and that these effects are unrelated to their calcium channel-blocking properties. PMID:10725264

  19. Proteins and endotoxin in house dust mite extracts modulate cytokine secretion and gene expression by dermal fibroblasts.

    PubMed

    Rockwood, Jananie; Morgan, Marjorie S; Arlian, Larry G

    2013-11-01

    House dust mite extracts used for diagnostic tests and immunotherapy contain bioreactive molecules including proteins and endotoxin. These extracts can influence the cytokine secretion and adhesion molecule expression by cells in the skin and lung airways. The aim of this study was to determine the role of proteins and endotoxin in mite extracts in modulating gene expression and cytokine secretion by human dermal fibroblasts. Cultured normal human dermal fibroblasts were stimulated with whole mite extracts, mite extracts boiled to denature proteins, or mite extracts treated with polymyxin B to inactivate lipopolysaccharide. Gene expression and secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1) were determined after 6 h of stimulation. Whole Dermatophagoides farinae, D. pteronyssinus and Euroglyphus maynei extracts induced dose-dependent IL-6 and IL-8 secretion. In addition, D. farinae and E. maynei induced secretion of MCP-1. Dermatophagoides farinae and E. maynei also induced parallel cytokine gene expression. Cells stimulated with boiled D. farinae extract showed moderate to marked reductions in IL-6 and IL-8 secretion. In contrast, boiled D. pteronyssinus and E. maynei extracts induced equal or greater cytokine secretions than untreated extracts. The stimulating properties were reduced for all three extracts following treatment with polymyxin B. Our data suggest that both endotoxin and proteins in mite extracts modulate the secretion of cytokines by dermal fibroblasts. The biological activities of D. farinae, D. pteronyssinus, and E. maynei extracts are not equivalent. There appears to be a lipopolysaccharide-binding protein in some mite extracts. PMID:23640713

  20. The Effect of Post-Resistance Exercise Amino Acids on Plasma MCP-1 and CCR2 Expression

    PubMed Central

    Wells, Adam J.; Hoffman, Jay R.; Jajtner, Adam R.; Varanoske, Alyssa N.; Church, David D.; Gonzalez, Adam M.; Townsend, Jeremy R.; Boone, Carleigh H.; Baker, Kayla M.; Beyer, Kyle S.; Mangine, Gerald T.; Oliveira, Leonardo P.; Fukuda, David H.; Stout, Jeffrey R.

    2016-01-01

    The recruitment and infiltration of classical monocytes into damaged muscle is critical for optimal tissue remodeling. This study examined the effects of an amino acid supplement on classical monocyte recruitment following an acute bout of lower body resistance exercise. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) ingested supplement (SUPP) or placebo (PL) immediately post-exercise in a randomized, cross-over design. Blood samples were obtained at baseline (BL), immediately (IP), 30-min (30P), 1-h (1H), 2-h (2H), and 5-h (5H) post-exercise to assess plasma concentrations of monocyte chemoattractant protein 1 (MCP-1), myoglobin, cortisol and insulin concentrations; and expressions of C-C chemokine receptor-2 (CCR2), and macrophage-1 antigen (CD11b) on classical monocytes. Magnitude-based inferences were used to provide inferences on the true effects of SUPP compared to PL. Changes in myoglobin, cortisol, and insulin concentrations were similar between treatments. Compared to PL, plasma MCP-1 was “very likely greater” (98.1% likelihood effect) in SUPP at 2H. CCR2 expression was “likely greater” at IP (84.9% likelihood effect), “likely greater” at 1H (87.7% likelihood effect), “very likely greater” at 2H (97.0% likelihood effect), and “likely greater” at 5H (90.1% likelihood effect) in SUPP, compared to PL. Ingestion of SUPP did not influence CD11b expression. Ingestion of an amino acid supplement immediately post-exercise appears to help maintain plasma MCP-1 concentrations and augment CCR2 expression in resistance trained men. PMID:27384580

  1. The Zinc Finger Transcription Factor ZXDC Activates CCL2 Gene Expression by Opposing BCL6-mediated Repression

    PubMed Central

    Ramsey, Jon E.; Fontes, Joseph D.

    2013-01-01

    The zinc finger X-linked duplicated (ZXD) family of transcription factors has been implicated in regulating transcription of major histocompatibility complex class II genes in antigen presenting cells; roles beyond this function are not yet known. The expression of one gene in this family, ZXD family zinc finger C (ZXDC), is enriched in myeloid lineages and therefore we hypothesized that ZXDC may regulate myeloid-specific gene expression. Here we demonstrate that ZXDC regulates genes involved in myeloid cell differentiation and inflammation. Overexpression of the larger isoform of ZXDC, ZXDC1, activates expression of monocyte-specific markers of differentiation and synergizes with phorbol 12-myristate 13-acetate (which causes differentiation) in the human leukemic monoblast cell line U937. To identify additional gene targets of ZXDC1, we performed gene expression profiling which revealed multiple inflammatory gene clusters regulated by ZXDC1. Using a combination of approaches we show that ZXDC1 activates transcription of a gene within one of the regulated clusters, chemokine (C-C motif) ligand 2 (CCL2; monocyte chemoattractant protein 1; MCP1) via a previously defined distal regulatory element. Further, ZXDC1-dependent up-regulation of the gene involves eviction of the transcriptional repressor B-cell CLL/lymphoma 6 (BCL6), a factor known to be important in resolving inflammatory responses, from this region of the promoter. Collectively, our data show that ZXDC1 is a regulator in the process of myeloid function and that ZXDC1 is responsible for Ccl2 gene de-repression by BCL6. PMID:23954399

  2. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  3. Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype.

    PubMed

    Kohlstedt, Karin; Trouvain, Caroline; Namgaladze, Dmitry; Fleming, Ingrid

    2011-03-01

    Human monocytes/macrophages express the angiotensin-converting enzyme (ACE) but nothing is known about its role under physiological conditions. As adipose tissue contains resident macrophages that have been implicated in the generation of insulin resistance in expanding fat mass, we determined whether adipocytes release factors that affect ACE expression and function in monocytes. Incubation of human monocyte-derived macrophages with conditioned medium from freshly isolated human adipocytes (BMI = 25.4 ± 0.96) resulted in a 4-fold increase in ACE expression. The effect was insensitive to denaturation and different proteases but abolished after lipid extraction. mRNA levels of the major histocompatibility complex class II protein increased in parallel with ACE, whereas the expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and cyclooxygenase-2 decreased. As a consequence of the reduction in MCP-1, monocyte recruitment was also attenuated. Moreover, adipocyte-conditioned medium prevented the interferon (IFN)-γ induced formation of TNF-α, IL-6, and MCP-1, all markers of classically-activated (M1 type) macrophages. The decrease in cytokine expression in adipocyte-conditioned medium-treated macrophages was sensitive to ACE silencing by small interfering RNA (siRNA). Accordingly, ACE overexpression in THP-1 cells mimicked the effect of adipocyte-conditioned medium. In both cell types, ACE inhibition failed to affect the changes induced by adipocyte conditioned-medium treatment and ACE overexpression. Thus, the modulation of macrophage polarization by ACE appears to be mediated independently of enzyme activity, probably via intracellular signaling. Interestingly, human macrophage ACE expression was also upregulated by IL-4 and IL-13, which promote the "alternative" activation of macrophages and decreased by LPS and IFN-γ. Mechanistically, adipocyte-conditioned medium stimulated the phosphorylation of

  4. Cytokine-induced neutrophil chemoattractant (CINC)-1 induces fever by a prostaglandin-dependent mechanism in rats.

    PubMed

    Soares, Denis Melo; Machado, Renes R; Yamashiro, Lívia H; Melo, Miriam C C; Souza, Glória E P

    2008-10-01

    Cytokine-induced neutrophil chemoattractant-1 (CINC-1), a member of the ELR+CXC subfamily [ELR motif (glutamic acid-leucine-arginine) adjacent to the cysteine-X-cysteine (CXC) motif located at the N-terminus of the protein], is an acute-phase protein and its synthesis is induced by endogenous and exogenous pyrogens. However, there are no studies on the pyrogenic property of CINC-1. Therefore, the present study evaluates whether centrally administered CINC-1 promotes an integrated febrile response along with an increase in the prostaglandin (PG)E2 content of the cerebrospinal fluid (CSF) of rats. The effects of antipyretic drugs on fever and on the PGE2 content of the CSF as well as the effectiveness of a neutralizing anti-CINC-1 antibody on the fever induced by CINC-1 have also been investigated. Intracerebroventricular (i.c.v.) injection of CINC-1 induced a dose-dependent bell-shaped rise on body temperature and increased PGE2 concentration in the CSF of conscious rats. Injected into the preoptic area of the anterior hypothalamus (AH/POA) (i.h.), CINC-1 also induced a dose-dependent bell-shaped increase in body temperature along with a decrease on tail skin temperature. Indomethacin (INDO, 2 mg kg(-1), i.p.) and ibuprofen (IBU, 10 mg kg(-1), i.p.) markedly reduced the fever evoked by i.c.v. injection of CINC-1 (25 ng/site). Orally given celecoxib (5 mg kg(-1), 30 min. before) abolished the fever induced by CINC-1 i.c.v. or i.h. (50 pg) injection. The antipyretic drugs also blocked the PGE(2) increase after CINC-1 i.c.v. injection. Co-injected anti-CINC antibody (10 ng/site) strongly reduced the febrile response induced by CINC-1 (50 pg/site) injected intrahypothalamically. This is the first time that centrally injected CINC-1 has been reported to act directly on the pyrogen-sensitive neurons of AH/POA, promoting a thermoregulatory response that seems to depend on other endogenous pyrogens synthesis and, as seen here, on PGE2. PMID:18694739

  5. Human Neutrophils Convert the Sebum-derived Polyunsaturated Fatty Acid Sebaleic Acid to a Potent Granulocyte Chemoattractant*

    PubMed Central

    Cossette, Chantal; Patel, Pranav; Anumolu, Jaganmohan R.; Sivendran, Sashikala; Lee, Gue Jae; Gravel, Sylvie; Graham, François D.; Lesimple, Alain; Mamer, Orval A.; Rokach, Joshua; Powell, William S.

    2008-01-01

    its chemoattractant properties, sebum-derived 5-oxo-ODE could be involved in neutrophil infiltration in inflammatory skin diseases. PMID:18287092

  6. Interaction between Ataxin-2 Binding Protein 1 and Cubitus-interruptus during wing development in Drosophila.

    PubMed

    Usha, N; Shashidhara, L S

    2010-05-15

    Animal growth and development is dependent on reiterative use of key signaling pathways such as Hedgehog (Hh) pathway. It is widely believed that Cubitus-interruptus (Ci) mediates all functions of Hh pathway. Here we report that CG32062, the Drosophila homologue of Ataxin-2 Binding Protein 1 (dA2BP1), functions as a cofactor of Ci to specify intervein region between L3 and L4 veins of the adult wing. Specifically, Ci-mediated transactivation of knot/collier (kn) in this region of the developing wing imaginal disc is dependent on dA2BP1 function. Protein interaction studies and chromatin-immunoprecipiation experiments suggest that Ci helps dA2BP1 to bind kn promoter, which in turn may help Ci to activate kn expression. These results suggest a mechanism by which Ci may activate targets such as kn, which do not have classical Ci/Gli-binding sites. PMID:20226779

  7. In Vivo Detection of Vascular Adhesion Protein-1 in Experimental Inflammation

    PubMed Central

    Jaakkola, Kimmo; Nikula, Tuomo; Holopainen, Riikka; Vähäsilta, Tommi; Matikainen, Marja-Terttu; Laukkanen, Marja-Leena; Huupponen, Risto; Halkola, Lauri; Nieminen, Lauri; Hiltunen, Jukka; Parviainen, Sakari; Clark, Michael R.; Knuuti, Juhani; Savunen, Timo; Kääpä, Pekka; Voipio-Pulkki, Liisa Maria; Jalkanen, Sirpa

    2000-01-01

    Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial glycoprotein which mediates leukocyte-endothelial cell interactions. To study the pathogenetic significance of VAP-1 in inflammatory disorders, an in vivo immunodetection method was used to detect the regulation of luminally expressed VAP-1 in experimental skin and joint inflammation in the pig and dog. Moreover, VAP-1 was studied as a potential target to localize inflammation by radioimmunoscintigraphy. Up-regulation of VAP-1 in experimental dermatitis and arthritis could be visualized by specifically targeted immunoscintigraphy. Moreover, the translocation of VAP-1 to the functional position on the endothelial surface was only seen in inflamed tissues. These results suggest that VAP-1 is both an optimal candidate for anti-adhesive therapy and a potential target molecule for imaging inflammation. PMID:10934150

  8. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    PubMed Central

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  9. Amyloid-beta peptide binds to microtubule-associated protein 1B (MAP1B).

    PubMed

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H; Manoutcharian, Karen

    2008-05-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer's disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer's disease. PMID:18079022

  10. Modulation of Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Function by Hypoxia-Upregulated Protein 1

    PubMed Central

    Giffin, Louise; Yan, Feng; Major, M. Ben

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV, also called human herpesvirus 8) is linked to the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). KSHV expresses several proteins that modulate host cell signaling pathways. One of these proteins is viral interleukin-6 (vIL-6), which is a homolog of human IL-6 (hIL-6). vIL-6 is able to prevent apoptosis and promote proinflammatory signaling, angiogenesis, and cell proliferation. Although it can be secreted, vIL-6 is mainly an intracellular protein that is retained in the endoplasmic reticulum (ER). We performed affinity purification and mass spectrometry to identify novel vIL-6 binding partners and found that a cellular ER chaperone, hypoxia-upregulated protein 1 (HYOU1), interacts with vIL-6. Immunohistochemical staining reveals that both PEL and KS tumor tissues express significant amounts of HYOU1. We also show that HYOU1 increases endogenous vIL-6 protein levels and that HYOU1 facilitates vIL-6-induced JAK/STAT signaling, migration, and survival in endothelial cells. Furthermore, our data suggest that HYOU1 also modulates vIL-6's ability to induce CCL2, a chemokine involved in cell migration. Finally, we investigated the impact of HYOU1 on cellular hIL-6 signaling. Collectively, our data indicate that HYOU1 is important for vIL-6 function and may play a role in the pathogenesis of KSHV-associated cancers. IMPORTANCE KSHV vIL-6 is detectable in all KSHV-associated malignancies and promotes tumorigenesis and inflammation. We identified a cellular protein, called hypoxia-upregulated protein 1 (HYOU1), that interacts with KSHV vIL-6 and is present in KSHV-infected tumors. Our data suggest that HYOU1 facilitates the vIL-6-induced signaling, migration, and survival of endothelial cells. PMID:24920810

  11. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas.

    PubMed

    Kostoro, Joanna; Chang, Shu-Jyuan; Clark Lai, Yen-Chang; Wu, Chun-Chieh; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-06-01

    Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p < 0.0001). In the subgroup analysis, upregulated VAP-1 expression was frequently found in older age patients (≥50 years). The VAP-1 expression was found to be significantly correlated with the overall survival (p = 0.0002). There was a statistical correlation between VAP-1(high) tumors in diffuse astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p < 0.0001). Multivariate Cox analysis indicated VAP-1 was an independent predictive marker for poorer prognosis (p = 0.0036). Therefore, VAP-1 could be a promising prognostic biomarker in astrocytoma. PMID:26935340

  12. Thermogenic Ability of Uncoupling Protein 1 in Beige Adipocytes in Mice

    PubMed Central

    Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Uozumi, Akihiro; Terao, Akira; Kimura, Kazuhiro; Saito, Masayuki

    2013-01-01

    Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes. PMID:24386355

  13. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    PubMed Central

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  14. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    PubMed

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  15. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

    PubMed Central

    Feng, Mingxiao; Kim, Jae-Yean

    2015-01-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCFTIR1/AFB) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCFTIR1/AFB auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research. PMID:26467289

  16. A role for heterochromatin protein 1γ at human telomeres

    PubMed Central

    Canudas, Silvia; Houghtaling, Benjamin R.; Bhanot, Monica; Sasa, Ghadir; Savage, Sharon A.; Bertuch, Alison A.; Smith, Susan

    2011-01-01

    Human telomere function is mediated by shelterin, a six-subunit complex that is required for telomere replication, protection, and cohesion. TIN2, the central component of shelterin, has binding sites to three subunits: TRF1, TRF2, and TPP1. Here we identify a fourth partner, heterochromatin protein 1γ (HP1γ), that binds to a conserved canonical HP1-binding motif, PXVXL, in the C-terminal domain of TIN2. We show that HP1γ localizes to telomeres in S phase, where it is required to establish/maintain cohesion. We further demonstrate that the HP1-binding site in TIN2 is required for sister telomere cohesion and can impact telomere length maintenance by telomerase. Remarkably, the PTVML HP1-binding site is embedded in the recently identified cluster of mutations in TIN2 that gives rise to dyskeratosis congenita (DC), an inherited bone marrow failure syndrome caused by defects in telomere maintenance. We show that DC-associated mutations in TIN2 abrogate binding to HP1γ and that DC patient cells are defective in sister telomere cohesion. Our data indicate a novel requirement for HP1γ in the establishment/maintenance of cohesion at human telomeres and, furthermore, may provide insight into the mechanism of pathogenesis in TIN2-mediated DC. PMID:21865325

  17. Structural Plasticity in Human Heterochromatin Protein 1β

    PubMed Central

    Munari, Francesca; Rezaei-Ghaleh, Nasrollah; Xiang, Shengqi; Fischle, Wolfgang; Zweckstetter, Markus

    2013-01-01

    As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1) proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β) in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes. PMID:23585859

  18. MAVS Protein Is Attenuated by Rotavirus Nonstructural Protein 1

    PubMed Central

    Nandi, Satabdi; Chanda, Shampa; Bagchi, Parikshit; Nayak, Mukti Kant; Bhowmick, Rahul; Chawla-Sarkar, Mamta

    2014-01-01

    Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs) of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS), which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1) which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies. PMID:24643253

  19. Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis.

    PubMed

    Hwang, Seong-Hye; Jung, Seung-Hyun; Lee, Saseong; Choi, Susanna; Yoo, Seung-Ah; Park, Ji-Hwan; Hwang, Daehee; Shim, Seung Cheol; Sabbagh, Laurent; Kim, Ki-Jo; Park, Sung Hwan; Cho, Chul-Soo; Kim, Bong-Sung; Leng, Lin; Montgomery, Ruth R; Bucala, Richard; Chung, Yeun-Jun; Kim, Wan-Uk

    2015-11-24

    Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA. PMID:26554018

  20. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes.

    PubMed

    Nociti, F H; Foster, B L; Tran, A B; Dunn, D; Presland, R B; Wang, L; Bhattacharyya, N; Collins, M T; Somerman, M J

    2014-02-01

    Calcium and phosphorus homeostasis is achieved by interplay among hormones, including 1,25(OH)2D3 (1,25D), parathyroid hormone, and fibroblast growth factor 23 (FGF23), and their interactions with other proteins. For example, mutations in dentin matrix protein 1 (DMP-1) result in increased FGF23 and hypophosphatemic rickets. 1,25D is reported to modulate FGF23; thus, we hypothesized that 1,25D may be involved in modulating DMP-1 in an intermediary step. Murine cementoblasts (OCCM-30) and osteocyte-like cells (MLO-Y4 and MLO-A5), known to express DMP-1, were used to analyze effects of 1,25D on DMP-1 expression in vitro. DMP-1 mRNA levels decreased by 50% (p < .05) in the presence of 1,25D in all cell types, while use of a vitamin D receptor (VDR) agonist (EB1089) and antagonist (23S,25S)-DLAM-2P confirmed that VDR pathway activation was required for this response. Further analysis showed that histone deacetylase recruitment was necessary, but neither protein kinase A nor C pathways were required. In conclusion, our results support the hypothesis that 1,25D regulates DMP-1 expression through a VDR-dependent mechanism, possibly contributing to local changes in bone/tooth mineral homeostasis. PMID:24334408

  1. Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain.

    PubMed

    Kirk, Lyndsey M; Ti, Shu W; Bishop, Hannah I; Orozco-Llamas, Mayra; Pham, Michelle; Trimmer, James S; Díaz, Elva

    2016-08-01

    The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline-rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs. J. Comp. Neurol. 524:2266-2280, 2016. © 2015 Wiley Periodicals, Inc. PMID:26660156

  2. Crystallization of an engineered RUN domain of Rab6-interacting protein 1/DENND5

    SciTech Connect

    Fernandes, Humberto; Franklin, Edward; Khan, Amir R.

    2011-08-29

    Effectors of the Rab small GTPases are large multi-domain proteins which have proved difficult to express in soluble form in Escherichia coli. Generally, effectors are recruited to a distinct subcellular compartment by active (GTP-bound) Rabs, which are linked to membranes by one or two prenylated Cys residues at their C-termini. Following recruitment via their Rab-binding domain (RBD), effectors carry out various aspects of vesicle formation, transport, tethering and fusion through their other domains. Previously, successful purification of the RUN-PLAT tandem domains (residues 683-1061) of the 1263-residue Rab6-interacting protein 1 (R6IP1) required co-expression with Rab6, as attempts to solubly express the effector alone were unsuccessful. R6IP1 is also known as DENN domain-containing protein 5 (DENND5) and is expressed as two isoforms, R6IP1A/B (DENND5A/B), which differ by 24 amino acids at the N-terminus. Here, a deletion in R6IP1 was engineered to enable soluble expression and to improve the quality of the crystals grown in complex with Rab6. A large 23-residue loop linking two -helices in the RUN1 domain was removed and replaced with a short linker. This loop resides on the opposite face to the Rab6-binding site and is not conserved in the RUN-domain family. In contrast to wild-type R6IP1-Rab6 crystals, which took several weeks to grow to full size, the engineered R6IP1 (RPdel)-Rab6 crystals could be grown in a matter of days.

  3. Epstein-Barr virus associated modulation of Wnt pathway is not dependent on latent membrane protein-1.

    PubMed

    Webb, Natasha; Connolly, Geoff; Tellam, Judy; Yap, Alpha S; Khanna, Rajiv

    2008-01-01

    Previous studies have indicated that Epstein-Barr virus (EBV) can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1). Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, beta-catenin, Glycogen Synthase Kinase 3ss (GSK3beta), axin and alpha-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and beta-catenin interaction and did not induce transcriptional activation of beta-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1. PMID:18806872

  4. Allurin, a 21 kD sperm chemoattractant, is rapidly released from the outermost jelly layer of the Xenopus egg by diffusion and medium convection.

    PubMed

    Xiang, Xueyu; Kittelson, Andrew; Olson, John; Bieber, Allan; Chandler, Douglas

    2005-03-01

    Allurin, a 21 kD protein from Xenopus laevis egg jelly, has been demonstrated to attract sperm by video microscopy and by quantitative chemotaxis chamber assays. Here, we use immunocytochemistry to demonstrate that this sperm chemoattractant is located in the outermost layer of egg jelly (J3) and is rapidly released into the surrounding medium. SDS-PAGE analysis and Western blotting confirm the appearance of allurin in the medium within 1.5 min and separation of proteins in the medium by anion exchange FPLC, shows that nearly half of the allurin released over a 12-hr period is discharged in the first 5 min. The kinetics of allurin release from J3 and its appearance in the medium were quantitatively accounted for, by computer simulation of mathematical diffusion and convection models. Comparison of simulation data to quantitative measurements of allurin appearance in the medium suggests that allurin, although larger than most chemoattractants, is effectively dispersed by a combination of diffusion and medium mixing at the jelly surface during spawning. Our model further predicts that the innermost jelly layer, J1, is less permeable to allurin than the other layers, allowing it to act as a "reflector" to speed up allurin discharge. PMID:15625699

  5. Apoptosis signal-regulating kinase 1 is mediated in TNF-α-induced CCL2 expression in human synovial fibroblasts.

    PubMed

    Tsou, Hsi-Kai; Chen, Hsien-Te; Chang, Chia-Hao; Yang, Wan-Yu; Tang, Chih-Hsin

    2012-11-01

    Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine with a critical role in osteoarthritis (OA), was primarily produced by monocytes/macrophages and plays a crucial role in the inflammatory response. Here, we investigated the intracellular signaling pathways involved in TNF-α-induced monocyte chemoattractant protein 1 (MCP-1)/CCL2 expression in human synovial fibroblast cells. Stimulation of synovial fibroblasts (OASF) with TNF-α induced concentration- and time-dependent increases in CCL2 expression. TNF-α-mediated CCL2 production was attenuated by TNFR1 monoclonal antibody (Ab). Pretreatment with an apoptosis signal-regulating kinase 1 (ASK1) inhibitor (thioredoxin), JNK inhibitor (SP600125), p38 inhibitor (SB203580), or AP-1 inhibitor (curcumin or tanshinone IIA) also blocked the potentiating action of TNF-α. Stimulation of cells with TNF-α enhanced ASK1, JNK, and p38 activation. Treatment of OASF with TNF-α also increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the CCL2 promoter. TNF-α-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element were inhibited by TNFR1 Ab, thioredoxin, SP600125, and SB203580. Our results suggest that the interaction between TNF-α and TNFR1 increases CCL2 expression in human synovial fibroblasts via the ASK1, JNK/p38, c-Jun, and AP-1 signaling pathway. PMID:22711527

  6. Structural studies of human glioma pathogenesis-related protein 1

    PubMed Central

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-01-01

    Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1. PMID:21931216

  7. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  8. Human lung cancer cells express functionally active Toll-like receptor 9

    PubMed Central

    Droemann, Daniel; Albrecht, Dirk; Gerdes, Johannes; Ulmer, Artur J; Branscheid, Detlev; Vollmer, Ekkehard; Dalhoff, Klaus; Zabel, Peter; Goldmann, Torsten

    2005-01-01

    Background CpG-oligonucleotides (CpG-ODN), which induce signaling through Toll-like receptor 9 (TLR9), are currently under investigation as adjuvants in therapy against infections and cancer. CpG-ODN function as Th-1 adjuvants and are able to activate dendritic cells. In humans TLR9 has been described to be strongly expressed in B-lymphocytes, monocytes, plasmacytoid dendritic cells and at low levels in human respiratory cells. We determined whether a direct interaction of bacterial DNA with the tumor cells themselves is possible and investigated the expression and function of TLR9 in human malignant solid tumors and cell lines. TLR9 expression by malignant tumor cells, would affect treatment approaches using CpG-ODN on the one hand, and, on the other hand, provide additional novel information about the role of tumor cells in tumor-immunology. Methods The expression of TLR9 in HOPE-fixed non-small lung cancer, non-malignant tissue and tumor cell lines was assessed using immunohistochemistry, confocal microscopy, in situ hybridization, RT-PCR and DNA-sequencing. Apoptosis and chemokine expression was detected by FACS analysis and the Bio-Plex system. Results We found high TLR9 signal intensities in the cytoplasm of tumor cells in the majority of lung cancer specimens as well as in all tested tumor cell lines. In contrast to this non-malignant lung tissues showed only sporadically weak expression. Stimulation of HeLa and A549 cells with CpG-ODN induced secretion of monocyte chemoattractant protein-1 and reduction of spontaneous and tumor necrosis factor-alpha induced apoptosis. Conclusions Here we show that TLR9 is expressed in a selection of human lung cancer tissues and various tumor cell lines. The expression of functionally active TLR9 in human malignant tumors might affect treatment approaches using CpG-ODN and shows that malignant cells can be regarded as active players in tumor-immunology. PMID:15631627

  9. Lipoprotein receptor-related protein 1 variants and dietary fatty acids: meta-analysis of European origin and African American studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density lipoprotein-related receptor protein 1 (LRP1) is a multi-functional endocytic receptor and signaling molecule that is expressed in adipose and the hypothalamus. Evidence for a role of LRP1 in adiposity is accumulating from animal and in vitro models, but data from human studies are limit...

  10. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    PubMed

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH. PMID:27000704

  11. Regulatory effect of cytokine-induced neutrophil chemoattractant, epithelial neutrophil-activating peptide 78 and pyrrolidine dithiocarbamate on pulmonary neutrophil aggregation mediated by nuclear factor-κB in lipopolysaccharide-induced acute respiratory distress syndrome mice

    PubMed Central

    Wang, Hongman; Zhao, Jiping; Xue, Guansheng; Wang, Junfei; Wu, Jinxiang; Wang, Donghui; Dong, Liang

    2016-01-01

    In the present study, the regulatory effect of cytokine-induced neutrophil chemoattractant (CINC) and epithelial neutrophil-activating peptide 78 (ENA-78) on pulmonary neutrophil (PMN) accumulation in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) mice, and the therapeutic effect of pyrrolidine dithiocarbamate (PDTC), was investigated. BALB/c mice were divided into control, LPS and PDTC + LPS groups using a random number table. The phosphorylation of nuclear factor-κB (NF-κB) was detected using a western blot, and the mRNA expression levels of CINC were evaluated using reverse transcription-quantitative polymerase chain reaction. The expression of NF-κB, CINC and ENA-78 was detected using immunohistochemistry. The production of interleukin (IL)-8 and IL-10 in serum and broncho-alveolar lavage fluid (BALF) was analyzed using an enzyme-linked immunosorbent assay. The total number of leukocytes and proportion of PMNs in BALF was also determined. Following injection with LPS (20 mg/kg), the expression levels of p-NF-κB, CINC and ENA-78 were increased in lung tissue, and the expression levels of IL-8, IL-10 and the number of PMNs increased in serum and BALF. However, in comparison with the LPS group, the degree of lung injury was reduced in ARDS mice that were treated with PDTC. In addition, the expression level of p-NF-κB and the production of chemokines in lung tissue decreased in ARDS mice that were treated with PDTC, and the number of PMNs in BALF also decreased. In conclusion, the results of the present study suggest that the LPS-induced phosphorylation of NF-κB may result in the synthesis and release of CINC and ENA-78, which induce the accumulation of PMNs in the lung. Therefore, PDTC may be used to reduce the production of chemokines and cytokines, thereby decreasing the activation of PMNs in lung tissue and reducing the damage of lung tissue in ARDS. PMID:27602092

  12. Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma

    PubMed Central

    Liang, Lingli; Cao, Jing; Lutz, Brianna Marie; Bekker, Alex; Zhang, Wei; Tao, Yuan-Xiang

    2015-01-01

    Peripheral nerve injury-induced changes in gene transcription and translation in primary sensory neurons of the dorsal root ganglion (DRG) are considered to contribute to neuropathic pain genesis. Transcription factors control gene expression. Peripheral nerve injury increases the expression of myeloid zinc finger protein 1 (MZF1), a transcription factor, and promotes its binding to the voltage-gated potassium 1.2 (Kv1.2) antisense RNA gene in the injured DRG. However, whether DRG MZF1 participates in neuropathic pain is still unknown. Here, we report that blocking the nerve injury-induced increase of DRG MZF1 through microinjection of MZF1 siRNA into the injured DRG attenuated the initiation and maintenance of mechanical, cold, and thermal pain hypersensitivities in rats with chronic constriction injury (CCI) of the sciatic nerve, without affecting locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking the nerve injury-induced increase of DRG MZF1 through microinjection of recombinant adeno-associated virus 5 expressing full-length MZF1 into the DRG produced significant mechanical, cold, and thermal pain hypersensitivities in naïve rats. Mechanistically, MZF1 participated in CCI-induced reductions in Kv1.2 mRNA and protein and total Kv current and the CCI-induced increase in neuronal excitability through MZF1-triggered Kv1.2 antisense RNA expression in the injured DRG neurons. MZF1 is likely an endogenous trigger of neuropathic pain and might serve as a potential target for preventing and treating this disorder. PMID:25630025

  13. Yes-Associated Protein 1 Is Activated and Functions as an Oncogene in Meningiomas

    PubMed Central

    Baia, Gilson S.; Caballero, Otavia L.; Orr, Brent A.; Lal, Anita; Ho, Janelle S.Y.; Cowdrey, Cynthia; Tihan, Tarik; Mawrin, Christian; Riggins, Gregory J.

    2015-01-01

    The Hippo signaling pathway is functionally conserved in Drosophila melanogaster and mammals, and its proposed function is to control tissue homeostasis by regulating cell proliferation and apoptosis. The core components are composed of a kinase cascade that culminates with the phosphorylation and inhibition of Yes-associated protein 1 (YAP1). Phospho-YAP1 is retained in the cytoplasm. In the absence of Hippo signaling, YAP1 translocates to the nucleus, associates with co-activators TEAD1-4, and functions as a transcriptional factor promoting the expression of key target genes. Components of the Hippo pathway are mutated in human cancers, and deregulation of this pathway plays a role in tumorigenesis. Loss of the NF2 tumor suppressor gene is the most common genetic alteration in meningiomas, and the NF2 gene product, Merlin, acts upstream of the Hippo pathway. Here, we show that primary meningioma tumors have high nuclear expression of YAP1. In meningioma cells, Merlin expression is associated with phosphorylation of YAP1. Using an siRNA transient knockdown of YAP1 in NF2-mutant meningioma cells, we show that suppression of YAP1 impaired cell proliferation and migration. Conversely, YAP1 overexpression led to a strong augment of cell proliferation and anchorage-independent growth and restriction of cisplatin-induced apoptosis. In addition, expression of YAP1 in nontransformed arachnoidal cells led to the development of tumors in nude mice. Together, these findings suggest that in meningiomas, deregulation of the Hippo pathway is largely observed in primary tumors and that YAP1 functions as an oncogene promoting meningioma tumorigenesis. PMID:22618028

  14. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    PubMed Central

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  15. Arabidopsis COP1-interacting protein 1 is a positive regulator of ABA response.

    PubMed

    Ren, Chenxia; Zhu, Xili; Zhang, Pingping; Gong, Qingqiu

    2016-09-01

    COP1-interacting protein 1 (CIP1, At5g41790) was the first reported interacting protein for CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) of Arabidopsis; however its physiological function has remained unknown for two decades. Here we show that CIP1 is a positive regulator of abscisic acid (ABA) response. CIP1 is mainly expressed in the photosynthetic cells and the vascular tissue, and its promoter activity can be induced by osmotic stress and ABA. The CIP1 protein is localized to the plasma membrane. A T-DNA insertion mutant cip1-1 was then characterized. The mutant is sensitive to osmotic stress and has ABA insensitive phenotypes. RNA sequencing showed that cip1-1 has lower levels of gene expression in abiotic stress response compared with the wild-type. Meanwhile, transcript levels of ABA biosynthesis genes are higher in cip1-1 than in the wild-type. These results suggested that CIP1 is positively involved in ABA response. PMID:27372427

  16. CUB-domain–containing protein 1 (CDCP1) activates Src to promote melanoma metastasis

    PubMed Central

    Liu, Hui; Ong, Shao-En; Badu-Nkansah, Kwabena; Schindler, Jeffrey; White, Forest M.; Hynes, Richard O.

    2011-01-01

    We report the application of quantitative mass spectrometry to identify plasma membrane proteins differentially expressed in melanoma cells with high vs. low metastatic abilities. Using stable isotope labeling with amino acids in culture (SILAC) coupled with nanospray tandem mass spectrometry, we identified CUB-domain–containing protein 1 (CDCP1) as one such differentially expressed transmembrane protein. CDCP1 is not only a surface marker for cells with higher metastatic potential, but also functionally involved in enhancing tumor metastasis. Overexpression of CDCP1 also correlates with activation of Src. Pharmacological reagents, PP2 and Dasatinib, which block Src family kinase activation, blocked scattered growth of CDCP1-overexpressing cells in 3D Matrigel culture, suggesting that CDCP1 might function through the activation of Src-family kinases (SFKs). This hypothesis was further supported by mutational studies of CDCP1. Whereas wild-type CDCP1 enhances Src activation, point mutation Y734F abolishes in vitro dispersive growth in 3D culture and in vivo metastasis-enhancing activities of CDCP1. In addition, the Y734F mutation also eliminated enhanced Src activation. Thus, this work provides molecular mechanisms for the metastasis-enhancing functions of CDCP1. PMID:21220330

  17. Heat shock protein 27 promotes cell proliferation through activator protein-1 in lung cancer

    PubMed Central

    ZHANG, SAI; HU, YANGMIN; HUANG, YUWEN; XU, HUIMIN; WU, GONGXIONG; DAI, HAIBIN

    2015-01-01

    Heat shock protein 27 (HSP27) is an important regulator involved in the development of lung cancer. However, limited evidence exists concerning the underlying molecular mechanisms of its action. The results of the present study revealed that HSP27 was highly expressed in the lung cancer tissues of mice. In an in vitro model, the overexpression of HSP27 promoted cell proliferation, while HSP27 knockdown inhibited cell proliferation. HSP27 promoted cell proliferation in vitro by directly upregulating the expression of HSP27 target genes, which required the activation of the activator protein-1 (AP-1) signaling pathway. This was evaluated by the phosphorylation status of an important pathway component, c-Jun in lung cancer tissue and cells. These results suggested that HSP27 has a promotional role in lung cancer, and therefore indicated a novel mechanism involving lung cancer cell proliferation, which may underlie poor responses to therapy. Therefore, HSP27 may be a suitable therapeutic target for the treatment of lung cancer. PMID:26137108

  18. Translational control of nociception via 4E-binding protein 1

    PubMed Central

    Khoutorsky, Arkady; Bonin, Robert P; Sorge, Robert E; Gkogkas, Christos G; Pawlowski, Sophie Anne; Jafarnejad, Seyed Mehdi; Pitcher, Mark H; Alain, Tommy; Perez-Sanchez, Jimena; Salter, Eric W; Martin, Loren; Ribeiro-da-Silva, Alfredo; De Koninck, Yves; Cervero, Fernando; Mogil, Jeffrey S; Sonenberg, Nahum

    2015-01-01

    Activation of the mechanistic/mammalian target of rapamycin (mTOR) kinase in models of acute and chronic pain is strongly implicated in mediating enhanced translation and hyperalgesia. However, the molecular mechanisms by which mTOR regulates nociception remain unclear. Here we show that deletion of the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), a major mTOR downstream effector, which represses eIF4E activity and cap-dependent translation, leads to mechanical, but not thermal pain hypersensitivity. Mice lacking 4E-BP1 exhibit enhanced spinal cord expression of neuroligin 1, a cell-adhesion postsynaptic protein regulating excitatory synapse function, and show increased excitatory synaptic input into spinal neurons, and a lowered threshold for induction of synaptic potentiation. Pharmacological inhibition of eIF4E or genetic reduction of neuroligin 1 levels normalizes the increased excitatory synaptic activity and reverses mechanical hypersensitivity. Thus, translational control by 4E-BP1 downstream of mTOR effects the expression of neuroligin 1 and excitatory synaptic transmission in the spinal cord, and thereby contributes to enhanced mechanical nociception. DOI: http://dx.doi.org/10.7554/eLife.12002.001 PMID:26678009

  19. Epigenetic silencing of myogenic gene program by Myb-binding protein 1a suppresses myogenesis

    PubMed Central

    Yang, Chang-Ching; Liu, Hsuan; Chen, Shen Liang; Wang, Tzu-Hao; Hsieh, Chia-Ling; Huang, Yi; Chen, Shu-Jen; Chen, Hua-Chien; Yung, Benjamin Yat-Ming; Chin-Ming Tan, Bertrand

    2012-01-01

    Skeletal myogenesis involves highly coordinated steps that integrate developmental cues at the chromatin of muscle progenitors. Here, we identify Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of muscle-specific gene expression and myoblast differentiation. The mode of action of Mybbp1a was linked to promoter regulation as illustrated by its interaction with MyoD at the genomic regions of silent muscle-specific genes as well as its negative effect on MyoD-mediated transcriptional activity. We propose that Mybbp1a exerts its repressive role by inducing a less permissible chromatin structure following recruitment of negative epigenetic modifiers such as HDAC1/2 and Suv39h1. At the onset of differentiation, Mybbp1a undergoes a promoter disengagement that may be due to the differentiation-responsive, miR-546-mediated downregulation of Mybbp1a expression. Moreover, such alteration gave rise to promoter enrichment of activators and histone acetylation, an epigenetic status amenable to gene activation. Together, these findings unveil a hitherto unrecognized transcriptional co-repressor role of Mybbp1a in proliferating muscle progenitor cells, and highlight an epigenetic mechanism by which Mybbp1a and miR-546 interplay to control myoblast differentiation transition. PMID:22333916

  20. Subcellular compartmentalization of docking protein-1 contributes to progression in colorectal cancer.

    PubMed

    Friedrich, Teresa; Söhn, Michaela; Gutting, Tobias; Janssen, Klaus-Peter; Behrens, Hans-Michael; Röcken, Christoph; Ebert, Matthias P A; Burgermeister, Elke

    2016-06-01

    Full-length (FL) docking protein-1 (DOK1) is an adapter protein which inhibits growth factor and immune response pathways in normal tissues, but is frequently lost in human cancers. Small DOK1 variants remain in cells of solid tumors and leukemias, albeit, their functions are elusive. To assess the so far unknown role of DOK1 in colorectal cancer (CRC), we generated DOK1 mutants which mimic the domain structure and subcellular distribution of DOK1 protein variants in leukemia patients. We found that cytoplasmic DOK1 activated peroxisome-proliferator-activated-receptor-gamma (PPARγ) resulting in inhibition of the c-FOS promoter and cell proliferation, whereas nuclear DOK1 was inactive. PPARγ-agonist increased expression of endogenous DOK1 and interaction with PPARγ. Forward translation of this cell-based signaling model predicted compartmentalization of DOK1 in patients. In a large series of CRC patients, loss of DOK1 protein was associated with poor prognosis at early tumor stages (*p=0.001; n=1492). In tumors with cytoplasmic expression of DOK1, survival was improved, whereas nuclear localization of DOK1 correlated with poor outcome, indicating that compartmentalization of DOK1 is critical for CRC progression. Thus, DOK1 was identified as a prognostic factor for non-metastatic CRC, and, via its drugability by PPARγ-agonist, may constitute a potential target for future cancer treatments. PMID:27428427

  1. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa.

    PubMed

    Yamaguchi, Airi; Kaneko, Takane; Inai, Tetsuichiro; Iida, Hiroshi

    2014-04-01

    Tektins (TEKTs) are composed of a family of filament-forming proteins localized in cilia and flagella. Five types of mammalian TEKTs have been reported, all of which have been verified to be present in sperm flagella. TEKT2, which is indispensable for sperm structure, mobility, and fertilization, was present at the periphery of the outer dense fiber (ODF) in the sperm flagella. By yeast two-hybrid screening, we intended to isolate flagellar proteins that could interact with TEKT2, which resulted in the isolation of novel two genes from the mouse testis library, referred as a TEKT2-binding protein 1 (TEKT2BP1) and -protein 2 (TEKT2BP2). In this study, we characterized TEKT2BP1, which is registered as a coiled-coil domain-containing protein 172 (Ccdc172) in the latest database. RT-PCR analysis indicated that TEKT2BP1 was predominantly expressed in rat testis and that its expression was increased after 3 weeks of postnatal development. Immunocytochemical studies discovered that TEKT2BP1 localized in the middle piece of rat spermatozoa, predominantly concentrated at the mitochondria sheath of the flagella. We hypothesize that the TEKT2-TEKT2BP1 complex might be involved in the structural linkage between the ODF and mitochondria in the middle piece of the sperm flagella. PMID:24394471

  2. Bigenomic transcriptional regulation of all thirteen cytochrome c oxidase subunit genes by specificity protein 1

    PubMed Central

    Dhar, Shilpa S.; Johar, Kaid; Wong-Riley, Margaret T. T.

    2013-01-01

    Cytochrome c oxidase (COX) is one of only four known bigenomic proteins, with three mitochondria-encoded subunits and 10 nucleus-encoded ones derived from nine different chromosomes. The mechanism of regulating this multi-subunit, bigenomic enzyme is not fully understood. We hypothesize that specificity protein 1 (Sp1) functionally regulates the 10 nucleus-encoded COX subunit genes directly and the three mitochondrial COX subunit genes indirectly by regulating mitochondrial transcription factors A and B (TFAM, TFB1M and TFB2M) in neurons. By means of in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, RNA interference and over-expression experiments, the present study documents that Sp1 is a critical regulator of all 13 COX subunit genes in neurons. This regulation is intimately associated with neuronal activity. Silencing of Sp1 prevented the upregulation of all COX subunits by KCl, and over-expressing Sp1 rescued all COX subunits from being downregulated by tetrodotoxin. Thus, Sp1 and our previously described nuclear respiratory factors 1 and 2 are the three key regulators of all 13 COX subunit genes in neurons. The binding sites for Sp1 on all 10 nucleus-encoded COX subunits, TFAM, TFB1M and TFB2M are highly conserved among mice, rats and humans. PMID:23516108

  3. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1

    PubMed Central

    Ge, Xianpeng; Ritter, Susan Y.; Tsang, Kelly; Shi, Ruirui; Takei, Kohtaro; Aliprantis, Antonios O.

    2016-01-01

    Cartilage acidic protein 1 (CRTAC1) was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA) by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM) surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA. PMID:27415616

  4. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    PubMed Central

    2011-01-01

    The Epstein-Barr virus (EBV) encoded Latent Membrane Protein 1 (LMP1) has been shown to increase the expression of promyelocytic leukemia protein (PML) and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs). PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1. PMID:21975125

  5. Dentin Matrix Protein-1 Isoforms Promote Differential Cell Attachment and Migration*S⃞

    PubMed Central

    von Marschall, Zofia; Fisher, Larry W.

    2008-01-01

    Dentin matrix protein-1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN) are three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) co-expressed/secreted by skeletal and active ductal epithelial cells. Although etiological mechanisms remain unclear, DMP1 is the only one of these three genes currently known to have mutations resulting in human disease, and yet it remains the least studied. All three contain the highly conserved integrin-binding tripeptide, RGD, and experiments comparing the cell attachment and haptotactic migration-enhancing properties of DMP1 to BSP and OPN were performed using human skeletal (MG63 and primary dental pulp cells) and salivary gland (HSG) cells. Mutation of any SIBLING's RGD destroyed all attachment and migration activity. Using itsαVβ5 integrin, HSG cells attached to BSP but not to DMP1 or OPN. However, HSG cells could not migrate onto BSP in a modified Boyden chamber assay. Expression of αVβ3 integrin enhanced HSG attachment to DMP1 and OPN and promoted haptotactic migration onto all three proteins. Interchanging the first four coding exons or the conserved amino acids adjacent to the RGD of DMP1 with corresponding sequences of BSP did not enhance the ability of DMP1 to bindαVβ5. For αVβ3-expressing cells, intact DMP1, its BMP1-cleaved C-terminal fragment, and exon six lacking all post-translational modifications worked equally well but the proteoglycan isoform of DMP1 had greatly reduced ability for cell attachment and migration. The sequence specificity of the proposed BMP1-cleavage site of DMP1 was verified by mutation analysis. Direct comparison of the three proteins showed that cells discriminate among these SIBLINGs and among DMP1 isoforms. PMID:18819913

  6. Targeting JNK-interacting protein 1 (JIP1) sensitises osteosarcoma to doxorubicin

    PubMed Central

    De Boer, Jantine Posthuma; van Egmond, Pim W.; Helder, Marco N.; de Menezes, Renée X.; Cleton-Jansen, Anne-Marie; Beliën, Jeroen A.M.; Verheul, Henk M. W.; van Royen, Barend J.; Kaspers, Gert-Jan J.L.; van Beusechem, Victor W.

    2012-01-01

    Osteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents. Despite aggressive therapy, survival outcomes remain unsatisfactory, especially for patients with metastatic disease or patients with a poor chemotherapy response. Chemoresistance contributes to treatment failure. To increase the efficacy of conventional chemotherapy, essential survival pathways should be targeted concomitantly. Here, we performed a loss-of-function siRNA screen of the human kinome in SaOS-2 cells to identify critical survival kinases after doxorubicin treatment. Gene silencing of JNK-interacting-protein-1 (JIP1) elicited the most potent sensitisation to doxorubicin. This candidate was further explored as potential target for chemosensitisation in OS. A panel of OS cell lines and human primary osteoblasts was examined for sensitisation to doxorubicin using small molecule JIP1-inhibitor BI-78D3. JIP1 expression and JIP1-inhibitor effects on JNK-signalling were investigated by Western blot analysis. JIP1 expression in human OS tumours was assessed by immunohistochemistry on tissue micro arrays. BI-78D3 blocked JNK-signalling and sensitised three out of four tested OS cell lines, but not healthy osteoblasts, to treatment with doxorubicin. Combination treatment increased the induction of apoptosis. JIP1 was found to be expressed in two-thirds of human primary OS tissue samples. Patients with JIP1 positive tumours showed a trend to inferior overall survival. Collectively, JIP1 appears a clinically relevant novel target in OS to enhance the efficacy of doxorubicin treatment by means of RNA interference or pharmacological inhibition. PMID:23045411

  7. Anti-dengue virus nonstructural protein 1 antibodies contribute to platelet phagocytosis by macrophages.

    PubMed

    Wan, Shu-Wen; Yang, Yi-Wen; Chu, Ya-Ting; Lin, Chiou-Feng; Chang, Chih-Peng; Yeh, Trai-Ming; Anderson, Robert; Lin, Yee-Shin

    2016-03-01

    Thrombocytopenia is an important clinical manifestation of dengue disease. The hypotheses concerning the pathogenesis of thrombocytopenia include decreased production and increased destruction or consumption of platelets. We previously suggested a mechanism of molecular mimicry in which antibodies (Abs) directed against dengue virus (DENV) nonstructural protein 1 (NS1) cross-react with platelets. Furthermore, several lines of evidence show activation of endothelial cells (ECs) and macrophages are related to dengue disease severity. Previous studies also suggested that Ab-opsonised platelets facilitate the engulfment of platelets by macrophages. Here we show that TNF-α-activated ECs upregulate adhesion molecule expression to enhance the binding of platelets and macrophages and lead to anti-DENV NS1 Ab-mediated platelet phagocytosis. We further demonstrate that the interaction between macrophages and TNF-α-activated ECs requires binding of FcγR with the Fc region of platelet-bound anti-DENV NS1 Abs. Importantly, the binding of anti-DENV NS1 Abs to platelets did not interfere with platelet adhesion to ECs. The adhesion molecules ICAM-1 and β3 integrin expressed on ECs as well as the FcγR expressed on macrophages were critical in anti-DENV NS1 Ab-mediated platelet phagocytosis on activated ECs. Moreover, anti-DENV NS1 Abs dramatically enhanced platelet engulfment by macrophages in a murine model of DENV infection. Our study provides evidence for a novel role for anti-DENV NS1 Abs in the pathogenesis of thrombocytopenia in dengue disease by enhancing platelet phagocytosis by macrophages. PMID:26632672

  8. Alterations in endogenous osteogenic protein-1 with degeneration of human articular cartilage.

    PubMed

    Merrihew, Charis; Kumar, Bhavna; Heretis, Katherine; Rueger, David C; Kuettner, Klaus E; Chubinskaya, Susan

    2003-09-01

    A synchronized balance between synthesis and breakdown of extracellular matrix (ECM) molecules in normal articular cartilage is disturbed in osteoarthritis (OA). The focus of our study is the anabolic factor, osteogenic protein-1 (OP-1) that is expressed in articular cartilage and is able to induce the synthesis of ECM components. The major aim was to investigate both qualitatively and quantitatively endogenous OP-1 in normal, degenerative, and OA cartilage. Normal and degenerative cartilage was obtained at autopsies from femoral condyles of human organ donors with no documented history of joint disease; OA cartilage was obtained from patients undergoing joint arthroplasty. Appearance of donor cartilage was evaluated by Collins scale, where normal cartilage is assigned grades 0-1, and degenerated cartilage is assigned grades 2-4. OP-1 mRNA expression was assessed by RT-PCR; OP-1 protein (pro- and active forms) was qualitatively analyzed by Western blotting and quantified by OP-1 ELISA. The highest levels of OP-1 expression (mRNA and protein) were detected in normal cartilage of grade 0. The concentration of OP-1 protein was about 50 ng per gram cartilage dry weight. With the progression of cartilage degeneration (increased Collins grades and OA) OP-1 protein was down-regulated up to 9-fold. These changes affected primarily the active form of OP-1. OP-1 message also declined in cartilages with the increase of degenerative changes. In conclusion, an overall decrease in endogenous OP-1 in degenerated and OA tissue suggests that OP-1 could be one of the factors responsible for normal homeostasis and matrix integrity in cartilage. PMID:12919879

  9. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    SciTech Connect

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy; Bronson, Roderick T.; Hornick, Jason L.; Cohen, David E.; Ukomadu, Chinweike

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  10. Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal

    PubMed Central

    Parajuli, Prahlad; Anand, Rohit; Mandalaparty, Chandramouli; Suryadevara, Raviteja; Sriranga, Preethi U.; Michelhaugh, Sharon K.; Cazacu, Simona; Finniss, Susan; Thakur, Archana; Lum, Lawrence G.; Schalk, Dana; Brodie, Chaya; Mittal, Sandeep

    2016-01-01

    Gliomas are the most common primary brain tumor and one of the most lethal solid tumors. Mechanistic studies into identification of novel biomarkers are needed to develop new therapeutic strategies for this deadly disease. The objective for this study was to explore the potential direct impact of IL-17−IL-17R interaction in gliomas. Immunohistochemistry and flow cytometry analysis of 12 tumor samples obtained from patients with high grade gliomas revealed that a considerable population (2–19%) of cells in all malignant gliomas expressed IL-17RA, with remarkable co-expression of the glioma stem cell (GSC) markers CD133, Nestin, and Sox2. IL-17 enhanced the self-renewal of GSCs as determined by proliferation and Matrigel® colony assays. IL-17 also induced cytokine/chemokine (IL-6, IL-8, interferon-γ-inducible protein [IP-10], and monocyte chemoattractant protein-1 [MCP-1]) secretion in GSCs, which were differentially blocked by antibodies against IL-17R and IL-6R. Western blot analysis showed that IL-17 modulated the activity of signal transducer and activator of transcription 3 (STAT3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), glycogen synthase kinase-3β (GSK-3β) and β-catenin in GSCs. While IL-17R-mediated secretion of IL-6 and IL-8 were significantly blocked by inhibitors of NF-κB and STAT3; NF-κB inhibitor was more potent than STAT3 inhibitor in blocking IL-17-induced MCP-1 secretion. Overall, our results suggest that IL-17–IL-17R interaction in GSCs induces an autocrine/paracrine cytokine feedback loop, which may provide an important signaling component for maintenance/self-renewal of GSCs via constitutive activation of both NF-κB and STAT3. The results also strongly implicate IL-17R as an important functional biomarker for therapeutic targeting of GSCs. PMID:26755664

  11. Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal.

    PubMed

    Parajuli, Prahlad; Anand, Rohit; Mandalaparty, Chandramouli; Suryadevara, Raviteja; Sriranga, Preethi U; Michelhaugh, Sharon K; Cazacu, Simona; Finniss, Susan; Thakur, Archana; Lum, Lawrence G; Schalk, Dana; Brodie, Chaya; Mittal, Sandeep

    2016-02-01

    Gliomas are the most common primary brain tumor and one of the most lethal solid tumors. Mechanistic studies into identification of novel biomarkers are needed to develop new therapeutic strategies for this deadly disease. The objective for this study was to explore the potential direct impact of IL-17-IL-17R interaction in gliomas. Immunohistochemistry and flow cytometry analysis of 12 tumor samples obtained from patients with high grade gliomas revealed that a considerable population (2-19%) of cells in all malignant gliomas expressed IL-17RA, with remarkable co-expression of the glioma stem cell (GSC) markers CD133, Nestin, and Sox2. IL-17 enhanced the self-renewal of GSCs as determined by proliferation and Matrigel® colony assays. IL-17 also induced cytokine/chemokine (IL-6, IL-8, interferon-γ-inducible protein [IP-10], and monocyte chemoattractant protein-1 [MCP-1]) secretion in GSCs, which were differentially blocked by antibodies against IL-17R and IL-6R. Western blot analysis showed that IL-17 modulated the activity of signal transducer and activator of transcription 3 (STAT3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), glycogen synthase kinase-3β (GSK-3β) and β-catenin in GSCs. While IL-17R-mediated secretion of IL-6 and IL-8 were significantly blocked by inhibitors of NF-κB and STAT3; NF-κB inhibitor was more potent than STAT3 inhibitor in blocking IL-17-induced MCP-1 secretion. Overall, our results suggest that IL-17-IL-17R interaction in GSCs induces an autocrine/paracrine cytokine feedback loop, which may provide an important signaling component for maintenance/self-renewal of GSCs via constitutive activation of both NF-κB and STAT3. The results also strongly implicate IL-17R as an important functional biomarker for therapeutic targeting of GSCs. PMID:26755664

  12. Modulation of JE/MCP-1 expression in dermal wound repair.

    PubMed Central

    DiPietro, L. A.; Polverini, P. J.; Rahbe, S. M.; Kovacs, E. J.

    1995-01-01

    The tissue macrophage plays a prominent role in wound repair, yet the parameters that influence macrophage migration into the wound bed are not well understood. To better understand the process of macrophage recruitment, the production of JE, the murine homologue of monocyte chemoattractant protein 1(JE/MCP-1), was examined in a murine model of dermal wound repair. High levels of JE/MCP-1 mRNA were found in dermal punch wounds at 12 hours and 1 day (24 hours) after wounding; mRNA levels slowly decreased to undetectable by day 21. In situ hybridization analysis of wounds revealed that JE/MCP-1 was predominantly expressed by monocytic and macrophage-like cells, as well as by occasional fibroblasts and other interstitial cells. To correlate JE/MCP-1 production with macrophage migration, macrophage infiltration into the wound bed was quantitated. The number of macrophages within the wound increased to a maximum at day 3 (11.3 +/- 4.5 macrophages per high power field), began to decrease at day 5 (4.8 +/- 1.9 macrophages per high power field), and reached near base line at day 10 (3.0 +/- 1.1 macrophages per high power field). The results demonstrate that JE/MCP-1 production within wounds is closely linked to the time course and distribution of macrophage infiltration, with maximal JE/MCP-1 mRNA levels occurring 1 to 2 days before maximal macrophage infiltration. The results support a role for JE/MCP-1 in the recruitment of wound macrophages and suggest that macrophages, through the production of JE/MCP-1, may sustain the recruitment of additional monocytes and macrophages into sites of injury. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7717454

  13. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide

    PubMed Central

    Liu, Yang; Li, Jing; Liu, Ye; Wang, Ping; Jia, Hui

    2016-01-01

    AIM To investigate the effects of triptolide on proinflammatory cytokine and chemokine expression induced by the fungal component zymosan in cultured human corneal fibroblasts (HCFs). METHODS HCFs were cultured in the absence or presence of zymosan or triptolide. The release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1) into culture supernatants was measured with enzyme-linked immunosorbent assays. The cellular abundance of the mRNAs for these proteins was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs) and the endogenous nuclear factor-κB (NF-κB) inhibitor IκB-α was examined by immunoblot analysis. The release of lactate dehydrogenase (LDH) activity from HCFs was measured with a colorimetric assay. RESULTS Triptolide inhibited the zymosan-induced release of IL-6, IL-8, and MCP-1 from HCFs in a concentration- and time-dependent manner. It also inhibited the zymosan-induced up-regulation of IL-6, IL-8, and MCP-1 mRNA abundance in these cells. Furthermore, triptolide attenuated zymosan-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 as well as the phosphorylation and degradation of IκB-α. Triptolide did not exhibit cytotoxicity for HCFs. CONCLUSION Triptolide inhibited proinflammatory cytokine and chemokine production by HCFs exposed to zymosan, with this action likely being mediated by suppression of MAPK and NF-κB signaling pathways. This compound might thus be expected to limit the infiltration of inflammatory cells into the cornea associated with fungal infection. PMID:26949603

  14. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma.

    PubMed

    Chang, Te-Sheng; Chen, Chi-Long; Wu, Yu-Chih; Liu, Jun-Jen; Kuo, Yung Che; Lee, Kam-Fai; Lin, Sin-Yi; Lin, Sey-En; Tung, Shui-Yi; Kuo, Liang-Mou; Tsai, Ying-Huang; Huang, Yen-Hua

    2016-01-01

    The expression of cancer stemness is believed to reduce the efficacy of current therapies against hepatocellular carcinoma (HCC). Understanding of the stemness-regulating signaling pathways incurred by a specific etiology can facilitate the development of novel targets for individualized therapy against HCC. Niche environments, such as virus-induced inflammation, may play a crucial role. However, the mechanisms linking inflammation and stemness expression in HCC remain unclear. Here we demonstrated the distinct role of inflammatory mediators in expressions of stemness-related properties involving the pluripotent octamer-binding transcription factor 4 (OCT4) in cell migration and drug resistance of hepatitis B virus-related HCC (HBV-HCC). We observed positive immunorecognition for macrophage chemoattractant protein 1 (MCP-1)/CD68 and OCT4/NANOG in HBV-HCC tissues. The inflammation-conditioned medium (inflamed-CM) generated by lipopolysaccharide-stimulated U937 human leukemia cells significantly increased the mRNA and protein levels of OCT4/NANOG preferentially in HBV-active (HBV+HBsAg+) HCC cells. The inflamed-CM also increased the side population (SP) cell percentage, green fluorescent protein (GFP)-positive cell population, and luciferase activity of OCT4 promoter-GFP/luciferase in HBV-active HCC cells. Furthermore, the inflamed-CM upregulated the expressions of insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) and activated IGF-IR/Akt signaling in HBV-HCC. The IGF-IR phosphorylation inhibitor picropodophyllin (PPP) suppressed inflamed-CM-induced OCT4 and NANOG levels in HBV+HBsAg+ Hep3B cells. Forced expression of OCT4 significantly increased the secondary sphere formation and cell migration, and reduced susceptibility of HBV-HCC cells to cisplatin, bleomycin, and doxorubicin. Taking together, our results show that niche inflammatory mediators play critical roles in inducing the expression of stemness-related properties involving IGF-IR activation, and

  15. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma

    PubMed Central

    Wu, Yu-Chih; Liu, Jun-Jen; Kuo, Yung Che; Lee, Kam-Fai; Lin, Sin-Yi; Lin, Sey-En; Tung, Shui-Yi; Kuo, Liang-Mou; Tsai, Ying-Huang; Huang, Yen-Hua

    2016-01-01

    The expression of cancer stemness is believed to reduce the efficacy of current therapies against hepatocellular carcinoma (HCC). Understanding of the stemness-regulating signaling pathways incurred by a specific etiology can facilitate the development of novel targets for individualized therapy against HCC. Niche environments, such as virus-induced inflammation, may play a crucial role. However, the mechanisms linking inflammation and stemness expression in HCC remain unclear. Here we demonstrated the distinct role of inflammatory mediators in expressions of stemness-related properties involving the pluripotent octamer-binding transcription factor 4 (OCT4) in cell migration and drug resistance of hepatitis B virus-related HCC (HBV-HCC). We observed positive immunorecognition for macrophage chemoattractant protein 1 (MCP-1)/CD68 and OCT4/NANOG in HBV-HCC tissues. The inflammation-conditioned medium (inflamed-CM) generated by lipopolysaccharide-stimulated U937 human leukemia cells significantly increased the mRNA and protein levels of OCT4/NANOG preferentially in HBV-active (HBV+HBsAg+) HCC cells. The inflamed-CM also increased the side population (SP) cell percentage, green fluorescent protein (GFP)-positive cell population, and luciferase activity of OCT4 promoter-GFP/luciferase in HBV-active HCC cells. Furthermore, the inflamed-CM upregulated the expressions of insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) and activated IGF-IR/Akt signaling in HBV-HCC. The IGF-IR phosphorylation inhibitor picropodophyllin (PPP) suppressed inflamed-CM-induced OCT4 and NANOG levels in HBV+HBsAg+ Hep3B cells. Forced expression of OCT4 significantly increased the secondary sphere formation and cell migration, and reduced susceptibility of HBV-HCC cells to cisplatin, bleomycin, and doxorubicin. Taking together, our results show that niche inflammatory mediators play critical roles in inducing the expression of stemness-related properties involving IGF-IR activation, and

  16. Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IκB/NF-κB, in atherosclerotic cell model

    PubMed Central

    Qiu, Ling; Xu, Rong; Wang, Siyang; Li, Shuijun; Sheng, Hongguang; Wu, Jiaxi; Qu, Yi

    2015-01-01

    Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IκB phosphorylation and the expression of two NF-κB subunits (p50 and p65) in the IKK/IκB/NF-κB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis. PMID:26138903

  17. Constitutive and LPS-Induced Expression of MCP-1 and IL-8 by Human Uveal Melanocytes In Vitro and Relevant Signal Pathways

    PubMed Central

    Hu, Dan-Ning; Bi, Mingchao; Zhang, David Y.; Ye, Fei; McCormick, Steven A.; Chan, Chi-Chao

    2014-01-01

    Purpose. Melanocytes are one of the major cellular components in the uvea. Interleukin-8/CXCL8 and monocyte chemoattractant protein-1 (MCP-1/CCL2) are the two most important proinflammatory chemokines. We studied the constitutive and lipopolysaccharide (LPS)-induced expression of IL-8 and MCP-1 in cultured human uveal melanocytes (UM) and explored the relevant signal pathways. Methods. Conditioned media and cells were collected from UM cultured in medium with and without stimulation of LPS. Interleukin-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Nuclear factor (NF)-κB in nuclear extracts and phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases1/2 (ERK1/2), and c-Jun N-terminal kinase1/2 (JNK1/2) in cells cultured with and without LPS were measured by ELISA kits. Inhibitors of p38 (SB203580), ERK1/2 (UO1026), JNK1/2 (SP600125), and NF-κB (BAY11-7082) were added to the cultures to evaluate their effects. Results. Low levels of IL-8 and MCP-1 proteins were detected in the conditioned media in UM cultured without serum. Lipopolysaccharide (0.01–1 μg/mL) increased IL-8 and MCP-1 mRNAs and proteins levels in a dose- and time-dependent manner, accompanied by a significant increase of phosphorylated JNK1/2 in cell lysates and NF-κB in nuclear extracts. Nuclear factor–κB and JNK1/2 inhibitors significantly blocked LPS-induced expression of IL-8 and MCP-1. Conclusions. This is the first report on the expression and secretion of chemokines by UM. The data suggest that UM may play a role in the pathogenesis of ocular inflammatory diseases. PMID:25125602

  18. Dectin-1-mediated Signaling Leads to Characteristic Gene Expressions and Cytokine Secretion via Spleen Tyrosine Kinase (Syk) in Rat Mast Cells*

    PubMed Central

    Kimura, Yukihiro; Chihara, Kazuyasu; Honjoh, Chisato; Takeuchi, Kenji; Yamauchi, Shota; Yoshiki, Hatsumi; Fujieda, Shigeharu; Sada, Kiyonao

    2014-01-01

    Dectin-1 recognizes β-glucan and plays important roles for the antifungal immunity through the activation of spleen tyrosine kinase (Syk) in dendritic cells or macrophages. Recently, expression of Dectin-1 was also identified in human and mouse mast cells, although its physiological roles were largely unknown. In this report, rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells. Treatment of cells with Dectin-1-specific agonist curdlan induced tyrosine phosphorylation of cellular proteins and the interaction of Dectin-1 with the Src homology 2 domain of Syk. These responses depended on tyrosine phosphorylation of the hemi-immunoreceptor tyrosine-based activation motif in the cytoplasmic tail of Dectin-1, whereas they were independent of the γ-subunit of high-affinity IgE receptor. DNA microarray and real-time PCR analyses showed that Dectin-1-mediated signaling stimulated gene expression of transcription factor Nfkbiz and inflammatory cytokines, such as monocyte chemoattractant protein-1, IL-3, IL-4, IL-13, and tumor necrosis factor (TNF)-α. The response was abrogated by pretreatment with Syk inhibitor R406. These results suggest that Syk is critical for Dectin-1-mediated activation of mast cells, although the signaling differs from that triggered by FcϵRI activation. In addition, these gene expressions induced by curdlan stimulation were specifically observed in mast cells, suggesting that Dectin-1-mediated signaling of mast cells offers new insight into the antifungal immunity. PMID:25246527

  19. MCP-1 Upregulates Amylin Expression in Murine Pancreatic β Cells through ERK/JNK-AP1 and NF-κB Related Signaling Pathways Independent of CCR2

    PubMed Central

    Cai, Kun; Qi, Dongfei; Hou, Xinwei; Wang, Oumei; Chen, Juan; Deng, Bo; Qian, Lihua; Liu, Xiaolong; Le, Yingying

    2011-01-01

    Background Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. Methodology/Principal Findings We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. Conclusions/Significance MCP-1 induces amylin expression through ERK1/2/JNK

  20. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease

    PubMed Central

    Zenz, Rainer; Eferl, Robert; Scheinecker, Clemens; Redlich, Kurt; Smolen, Josef; Schonthaler, Helia B; Kenner, Lukas; Tschachler, Erwin; Wagner, Erwin F

    2008-01-01

    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications. PMID:18226189

  1. Fibrinogen-like protein 1, a hepatocyte derived protein is an acute phase reactant

    SciTech Connect

    Liu Zhilin; Ukomadu, Chinweike

    2008-01-25

    Fibrinogen-like protein 1 (FGL1) is a hepatocyte derived protein that is upregulated in regenerating rodent livers following partial hepatectomy. It has been implicated as a mitogen for liver cell proliferation. In this study, we show that recombinant human IL-6 induces FGL1 expression in Hep G2 cells in a pattern similar to those of acute phase reactants. Following induction of acute inflammation in rats by subcutaneous injection of turpentine oil, serum FGL1 levels are also enhanced. Although, a recent report suggests that FGL1 associates almost exclusively with the fibrin matrix, we report here that approximately 20% of the total plasma FGL1 remains free. The enhancement of FGL1 levels in vitro by IL-6 and its induction after turpentine oil injection suggest that it is an acute phase reactant. Its presence in bound and free forms in the blood also implies biological roles that extend beyond the proposed autocrine effect it has on hepatocytes during regeneration.

  2. Regulation of muscle contraction by Drebrin-like protein 1 probed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Garces, Renata; Butkevich, Eugenia; Platen, Mitja; Schmidt, Christoph F.; Biophysics Team

    Sarcomeres are the fundamental contractile units of striated muscle cells. They are composed of a variety of structural and regulatory proteins functioning in a precisely orchestrated fashion to enable coordinated force generation in striated muscles. Recently, we have identified a C. elegans drebrin-like protein 1 (DBN-1) as a novel sarcomere component, which stabilizes actin filaments during muscle contraction. To further characterize the function of DBN-1 in muscle cells, we generated a new dbn-1 loss-of-function allele. Absence of DBN-1 resulted in a unique worm movement phenotype, characterized by hyper-bending. It is not clear yet if DBN-1 acts to enhance or reduce the capacity for contraction. We present here an experimental mechanical study on C. elegans muscle mechanics. We measured the stiffness of the worm by indenting living C. eleganswith a micron-sized sphere adhered to the cantilever of an atomic force microscope (AFM). Modeling the worm as a pressurized elastic shell allows us to monitor the axial tension in the muscle through the measured stiffness. We compared responses of wild-type and mutant C. elegans in which DBN-1 is not expressed..

  3. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    PubMed Central

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  4. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance.

    PubMed

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  5. Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1.

    PubMed

    Morgan, W D; Birdsall, B; Frenkiel, T A; Gradwell, M G; Burghaus, P A; Syed, S E; Uthaipibull, C; Holder, A A; Feeney, J

    1999-05-28

    The solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic yeast Komagataella (Pichia) pastoris. The structure has two domains with epidermal growth factor (EGF)-like folds with a novel domain interface for the EGF domain pair interactions, formed from a cluster of hydrophobic residues. This gives the protein a U-shaped overall structure with the N-terminal proteolytic processing site close to the C-terminal glycosyl phosphatidyl inositol (GPI) membrane anchor site, which is consistent with the involvement of a membrane-bound proteinase in the processing of MSP-1 during erythrocyte invasion. This structure, which is the first protozoan EGF example to be determined, contrasts with the elongated structures seen for EGF-module pairs having shared Ca2+-ligation sites at their interface, as found, for example, in fibrillin-1. Recognition surfaces for antibodies that inhibit processing and invasion, and antibodies that block the binding of these inhibitory antibodies, have been mapped on the three-dimensional structure by considering specific MSP-1 mutants. PMID:10339410

  6. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation

    PubMed Central

    Din, Shabana; Mason, Matthew; Völkers, Mirko; Johnson, Bevan; Cottage, Christopher T.; Wang, Zeping; Joyo, Anya Y.; Quijada, Pearl; Erhardt, Peter; Magnuson, Nancy S.; Konstandin, Mathias H.; Sussman, Mark A.

    2013-01-01

    Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-S637, and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis–dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI. PMID:23530233

  7. Mouse dead end 1-β interacts with c-Jun and stimulates activator protein 1 transactivation

    PubMed Central

    ZHANG, YONG; SU, YAN-LIN; LI, LE-SAI; YANG, ZHI; CHEN, SI; XIONG, JIE; FU, XIAO-HUA; PENG, XIAO-NING

    2015-01-01

    Dead end 1 (DND1), important for maintaining the viability of primordial germ cells, is the first protein containing an RNA recognition motif that has been directly implicated as a heritable cause of spontaneous tumorigenesis. In the present study, c-Jun was identified through yeast two-hybrid screening of a 10.5-day old mouse embryo cDNA library as one of the proteins which interact with DND1-β. The interaction between DND1-β and c-Jun was demonstrated to occur by glutathione S-transferase pull-down and co-immunoprecipitation. Using confocal microscopy, DND1-β was found to be specifically expressed in GC-1 spermatogonia cells, mainly in the nuclei. When transfected into GC-1 cells, DND1-β and c-Jun were demonstrated to be co-localized principally in the nuclei. Furthermore, in a dual luciferase reporter assay, the transcriptional activity of activator protein 1 was demonstrated to be significantly increased by co-transfection with DND1-β and c-Jun plasmids in GC-1 cells. The identification and confirmation of an additional protein interacting with DND1-β facilitates the investigation of the functions and molecular mechanisms of DND1. PMID:25405725

  8. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis.

    PubMed

    Dirmeier, Ulrike; Hoffmann, Reinhard; Kilger, Ellen; Schultheiss, Ute; Briseño, Cinthia; Gires, Olivier; Kieser, Arnd; Eick, Dirk; Sugden, Bill; Hammerschmidt, Wolfgang

    2005-03-01

    Latent membrane protein 1 (LMP1), an oncoprotein encoded by Epstein-Barr virus (EBV), is an integral membrane protein, which acts like a constitutively active receptor. LMP1 is critical for some facet of EBV's induction and maintenance of proliferation of infected B cells. It, in part, mimics signaling by the CD40 receptor and has been implicated in regulating proliferation, survival, or both properties of EBV-infected cells. We established a conditional LMP1 allele in the context of the intact EBV genome to define the immediate-early cellular target genes regulated by LMP1 in order to assess its contributions to infected human B cells. The functional analysis of this conditional system indicated that LMP1 specifically induces mitogenic B-cell activation through c-myc and Jun/AP1 family members and confirms its direct role in upregulating expression of multiple genes with opposing activities involved in cell survival. LMP1's signals were found to be essential for the G1/S transition in human B cells; cells lacking LMP1's signals are cell cycle arrested and survive quiescently. LMP1's activities are therefore not required to maintain survival in nonproliferating cells. LMP1 does induce both pro- and antiapoptotic genes whose balance seems to permit survival during LMP1's induction and maintenance of proliferation. PMID:15674340

  9. The mouse lysosomal membrane protein 1 gene as a candidate for the motorneuron degeneration (mnd) locus

    SciTech Connect

    Bermingham, N.A.; Martin, J.E.; Fisher, E.M.C.

    1996-03-01

    The motorneuron degeneration (mnd) mutation causes one of the few late-onset progressive neurodegenerations in mice; therefore, the mnd mouse is a valuable paradigm for studying neurodegenerative biology. The mnd mutation may also model human neuronal ceroid lipofuscinosis (NCL) or Batten disease. Mnd maps to the centromeric region of mouse chromosome 8, which likely corresponds to portions of human chromosomes 13,8, or 19; we note that the chromosome 13 portion maps close to a region thought to contain the human Type V NCL locus. We have identified candidate genes for the mnd locus from human chromosomes 13, 8, and 19, and we are mapping these genes in the mouse to determine their proximity to the mutated locus and to refine the comparative human-mouse map in this area. A candidate gene from human chromosome 13 is LAMP1, which encodes lysosomal membrane protein 1. We found that Lamp1 in the mouse lies within the region of the mnd mutation. Therefore, we sequenced Lamp1 cDNAs from homozygous mnd mice and unrelated wildtype C57BL/6 mice. We find no differences between the two cDNA species in the regions examined, and expression analysis shows a similar LAMP1 protein distribution in wildtype and mutant mice, suggesting that an abnormal accumulation of material within normal lysosome structures is unlikely to be the pathogenetic mechanism in the mnd mouse. 19 refs., 3 figs.

  10. β-lapachone suppresses the proliferation of human malignant melanoma cells by targeting specificity protein 1.

    PubMed

    Bang, Woong; Jeon, Young-Joo; Cho, Jin Hyoung; Lee, Ra Ham; Park, Seon-Min; Shin, Jae-Cheon; Choi, Nag-Jin; Choi, Yung Hyun; Cho, Jung-Jae; Seo, Jae-Min; Lee, Seung-Yeop; Shim, Jung-Hyun; Chae, Jung-Il

    2016-02-01

    β-lapachone (β-lap), a novel natural quinone derived from the bark of the Pink trumpet tree (Tabebuia avellanedae) has been demonstrated to have anticancer activity. In this study, we investigated whether β-lap exhibits anti-proliferative effects on two human malignant melanoma (HMM) cell lines, G361 and SK-MEL-28. The effects of β-lap on the HMM cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)‑5-(3-carboxymethoxyphenyl)‑2-(4-sulfophenyl-2H-tetrazolium (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V and Dead cell assay, mitochondrial membrane potential (MMP) assay and western blot analysis. We demonstrated that β-lap significantly induced apoptosis and suppressed cell viability in the HMM cells. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly downregulated by β-lap in a dose- and time-dependent manner. Furthermore, β-lap modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and apoptosis-associated proteins. Taken together, our findings indicated that β-lap modulates Sp1 transactivation and induces apoptotic cell death through the regulation of cell cycle- and apoptosis-associated proteins. Thus, β-lap may be used as a promising anticancer drug for cancer prevention and may improve the clinical outcome of patients with cancer. PMID:26718788

  11. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance

    PubMed Central

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  12. Behavioral analysis of the huntingtin-associated protein 1 ortholog trak-1 in Caenorhabditis elegans.

    PubMed

    Norflus, Fran; Bu, Jingnan; Guyton, Evon; Gutekunst, Claire-Anne

    2016-09-01

    The precise role of huntingtin-associated protein 1 (HAP1) is not known, but studies have shown that it is important for early development and survival. A Caenorhabditis elegans ortholog of HAP1, T27A3.1 (also called trak-1), has been found and is expressed in a subset of neurons. Potential behavioral functions of three knockout lines of T27A3.1 were examined. From its suspected role in mice we hypothesize that T27A3.1 might be involved in egg hatching and early growth, mechanosensation, chemosensation, sensitivity to osmolarity, and synaptic transmission. Our studies show that the knockout worms are significantly different from the wild-type (WT) worms only in the synaptic transmission test, which was measured by adding aldicarb, an acetylcholinesterase inhibitor. The change in function was determined by measuring the number of worms paralyzed. However, when the T27A3.1 worms were tested for egg hatching and early growth, mechanosensation, chemosensation, and sensitivity to osmolarity, there were no significant differences between the knockout and WT worms. © 2016 Wiley Periodicals, Inc. PMID:27319755

  13. VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis

    PubMed Central

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2016-01-01

    ABSTRACT VIP1 (VIRE2-INTERACTING PROTEIN 1) is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologs (i.e., Arabidopsis group I bZIP proteins) are present in the cytoplasm under steady conditions, but are transiently localized to the nucleus when cells are exposed to hypo-osmotic conditions, which mimic mechanical stimuli such as touch. Recently we have reported that overexpression of a repression domain-fused form of VIP1 represses the expression of some touch-responsive genes, changes structures and/or local auxin responses of the root cap cells, and enhances the touch-induced root waving. This raises the possibility that VIP1 suppresses touch-induced responses. VIP1 should be useful to further characterize touch responses of plants. Here we discuss 2 seemingly interesting perspectives about VIP1: (1) What factors are involved in regulating the nuclear localization of VIP1?; (2) What can be done to further characterize the physiological functions of VIP1 and other Arabidopsis group I bZIP proteins? PMID:27171129

  14. The role of vitamin D3 upregulated protein 1 in thioacetamide-induced mouse hepatotoxicity

    SciTech Connect

    Kwon, Hyo-Jung; Lim, Jong-Hwan; Han, Jong-Tak; Lee, Sae-Bhom; Yoon, Won-Kee; Nam, Ki-Hoan; Choi, In-Pyo; Kim, Dae-Yong; Won, Young-Suk; Kim, Hyoung-Chin

    2010-11-01

    Thioacetamide (TA) is a commonly used drug that can trigger acute hepatic failure (AHF) through generation of oxidative stress. Vitamin D3 upregulated protein 1 (VDUP1) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. In this study, we investigated the role of VDUP1 in AHF using a TA-induced liver injury model. VDUP1 knockout (KO) and wild-type (WT) mice were subjected to a single intraperitoneal TA injection, and various parameters of hepatic injury were assessed. VDUP1 KO mice displayed a significantly higher survival rate, lower serum alanine aminotransferase and aspartate aminotransferase levels, and less hepatic damage, compared to WT mice. In addition, induction of apoptosis was decreased in VDUP1 KO mice, with the alteration of caspase-3 and -9 activities, Bax-to-Bcl-2 expression ratios, and mitogen activated protein kinase (MAPK) signaling pathway. Importantly, analysis of TA bioactivation revealed lower plasma clearance of TA and covalent binding of [{sup 14}C]TA to liver macromolecules in VDUP1 KO mice. Furthermore, the level of oxidative stress was significantly less in VDUP1 KO mice than in their WT counterparts, as evident from lipid peroxidation assay. These results collectively indicate that VDUP1 deficiency protects against TA-induced acute liver injury via lower bioactivation of TA and antioxidant effects.

  15. Spatiotemporal regulation of Heterochromatin Protein 1- alpha oligomerization and dynamics in live cells

    PubMed Central

    Hinde, Elizabeth; Cardarelli, Francesco; Gratton, Enrico

    2015-01-01

    Heterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the heterochromatin state. As consequence of playing a structural role in heterochromatin, HP1 proteins can have both an activating as well as repressive function in gene expression. Here we probe how oligomerisation of the HP1-α isoform modulates interaction with chromatin, by spatially resolved fluorescence correlation spectroscopy (FCS). We find from fluctuation analysis of HP1-α dynamics that this isoform exists as a dimer around the periphery of heterochromatin foci and these foci locally rotate with characteristic turn rates that range from 5–100ms. From inhibition of HP1-α homo-oligomerization we find the slow turn rates (20–100 ms) are dimer dependent. From treatment with drugs that disrupt or promote chromatin compaction, we find that HP1-α dimers spatially redistribute to favor fast (5–10 ms) or slow (20–100 ms) turn rates. Collectively our results demonstrate HP1-α oligomerization is critical to the maintenance of heterochromatin and the tunable dynamics of this HP1 isoform. PMID:26238434

  16. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  17. Early secreted antigenic target of 6 kDa (ESAT-6) protein of Mycobacterium tuberculosis induces interleukin-8 (IL-8) expression in lung epithelial cells via protein kinase signaling and reactive oxygen species.

    PubMed

    Boggaram, Vijay; Gottipati, Koteswara R; Wang, Xisheng; Samten, Buka

    2013-08-30

    Early secreted antigenic target of 6 kDa (ESAT-6) of Mycobacterium tuberculosis is critical for the virulence and pathogenicity of M. tuberculosis. IL-8, a major chemotactic cytokine for neutrophils and T lymphocytes, plays important roles in the development of lung injury. To further understand the role of ESAT-6 in lung pathology associated with tuberculosis development, we studied the effects of ESAT-6 on the regulation of IL-8 expression in lung epithelial cells. ESAT-6 induced IL-8 expression by increasing IL-8 gene transcription and mRNA stability. ESAT-6 induction of IL-8 promoter activity was dependent on nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) binding and sensitive to pharmacological inhibition of PKC and ERK and p38 MAPK pathways. ESAT-6 activated ERK and p38 MAPK phosphorylation and rapidly induced reactive oxygen species (ROS) production. Dimethylthiourea but not mannitol inhibited IL-8 induction by ESAT-6, further supporting the involvement of ROS in the induction of IL-8 expression. Exposure of mice to ESAT-6 induced localized inflammatory cell aggregate formation with characteristics of early granuloma concomitant with increased keratinocyte chemoattractant CXCL1 staining in bronchiolar and alveolar type II epithelial cells and alveolar macrophages. Our studies have identified a signal transduction pathway involving ROS, PKC, ERK, and p38 MAPKs and NF-κB and AP-1 in the ESAT-6 induction of IL-8 expression in lung epithelial cells. This has important implications for the understanding of lung innate immune responses to tuberculosis and the pathogenesis of lung injury in tuberculosis. PMID:23867456

  18. The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex.

    PubMed

    Lowe, S L; Wong, S H; Hong, W

    1996-01-01

    A rat cDNA clone was isolated which encodes a protein displaying characteristics of a ras-like small GTPase. The deduced amino acid sequence shows the highest amino acid identity (79%) with the Drosophila ARF-like protein 1 (dArl1) among all the known members of the ras-like small GTPase superfamily. The encoded protein was tentatively named rat Arl1 (rArl1). Northern blotting analysis revealed that the rArl1 gene is ubiquitously expressed in rat tissues. Recombinant rArl1 fused to glutathione-S-transferase (GST) to create GST-rArl1 binds GTP-gamma-S in a dose-dependent manner. Polyclonal antibodies raised against two unique rArl1 peptides recognized a 22 kDa protein in total NRK cell lysate. Immunofluorescence microscopy of NRK cells revealed discrete perinuclear labelling that could be competed out by GST-rArl1 but not GST. Examination of 8 additional cell lines revealed a similar labelling, suggesting that the antigen recognised by the antibodies is conserved and widely-expressed. Co-localization experiments in NRK cells with antibodies to mannosidase II and a newly identified cis-Golgi protein, p28, showed that rArl1 is localized to the Golgi complex. When cells were treated with nocodazole, the Golgi complex marked by mannosidase II and p28 was fragmented into punctate structures scattered throughout the cell, in which rArl1 was colocalized. Treatment with brefeldin A (BFA) resulted in the redistribution of rArl1 and mannosidase II into the cytoplasm and endoplasmic reticulum, respectively. The kinetics of the redistribution of rArl1 in response to BFA differ from those of ARF and beta-COP, two components of non-clathrin coated vesicles. PMID:8834805

  19. A Membrane Leucine Heptad Contributes to Trafficking, Signaling, and Transformation by Latent Membrane Protein 1

    PubMed Central

    Lee, Jisook; Sugden, Bill

    2007-01-01

    Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-κB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells. PMID:17581993

  20. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation.

    PubMed

    El Asmar, Zeina; Terrand, Jérome; Jenty, Marion; Host, Lionel; Mlih, Mohamed; Zerr, Aurélie; Justiniano, Hélène; Matz, Rachel L; Boudier, Christian; Scholler, Estelle; Garnier, Jean-Marie; Bertaccini, Diego; Thiersé, Danièle; Schaeffer, Christine; Van Dorsselaer, Alain; Herz, Joachim; Bruban, Véronique; Boucher, Philippe

    2016-03-01

    The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases. PMID:26792864

  1. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    PubMed Central

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R.; Howlett, Allyn C.

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide–binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [35S]GTPγS (guanylyl-5′-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA–mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [35S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  2. Discovery of isoquinolinone indole acetic acids as antagonists of chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2) for the treatment of allergic inflammatory diseases.

    PubMed

    Kaila, Neelu; Follows, Bruce; Leung, Louis; Thomason, Jennifer; Huang, Adrian; Moretto, Alessandro; Janz, Kristin; Lowe, Michael; Mansour, Tarek S; Hubeau, Cedric; Page, Karen; Morgan, Paul; Fish, Susan; Xu, Xin; Williams, Cara; Saiah, Eddine

    2014-02-27

    Previously we reported the discovery of CRA-898 (1), a diazine indole acetic acid containing CRTH2 antagonist. This compound had good in vitro and in vivo potency, low rates of metabolism, moderate permeability, and good oral bioavailability in rodents. However, it showed low oral exposure in nonrodent safety species (dogs and monkeys). In the current paper, we wish to report our efforts to understand and improve the poor PK in nonrodents and development of a new isoquinolinone subseries that led to identification of a new development candidate, CRA-680 (44). This compound was efficacious in both a house dust mouse model of allergic lung inflammation (40 mg/kg qd) as well as a guinea pig allergen challenge model of lung inflammation (20 mg/kg bid). PMID:24512187

  3. CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II

    PubMed Central

    Pechkovsky, Dmitri V; Goldmann, Torsten; Ludwig, Corinna; Prasse, Antje; Vollmer, Ekkehard; Müller-Quernheim, Joachim; Zissel, Gernot

    2005-01-01

    The attraction of leukocytes from circulation to inflamed lungs depends on the activation of both the leukocytes and the resident cells within the lung. In this study we determined gene expression and secretion patterns for monocyte chemoattractant protein-1 (MCP-1/CCL2) and T-cell specific CXCR3 agonistic chemokines (Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11) in TNF-α-, IFN-γ-, and IL-1β-stimulated human alveolar epithelial cells type II (AEC-II). AEC-II constitutively expressed high level of CCL2 mRNA in vitro and in situ , and released CCL2 protein in vitro . Treatment of AEC-II with proinflammatory cytokines up-regulated both CCL2 mRNA expression and release of immunoreactive CCL2, whereas IFN-γ had no effect on CCL2 release. In contrast, CXCR3 agonistic chemokines were not detected in freshly isolated AEC-II or in non-stimulated epithelial like cell line A549. IFN-γ, alone or in combination with IL-1β and TNF-α resulted in an increase in CXCL10, CXCL11, and CXCL9 mRNA expression and generation of CXCL10 protein by AEC-II or A549 cells. CXCL10 gene expression and secretion were induced in dose-dependent manner after cytokine-stimulation of AEC-II with an order of potency IFN-γ>>IL-1β ≥ TNF-α. Additionally, we localized the CCL2 and CXCL10 mRNAs in human lung tissue explants by in situ hybridization, and demonstrated the selective effects of cytokines and dexamethasone on CCL2 and CXCL10 expression. These data suggest that the regulation of the CCL2 and CXCL10 expression exhibit significant differences in their mechanisms, and also demonstrate that the alveolar epithelium contributes to the cytokine milieu of the lung, with the ability to respond to locally generated cytokines and to produce potent mediators of the local inflammatory response. PMID:16033640

  4. PPAR Agonist-Induced Reduction of Mcp1 in Atherosclerotic Plaques of Obese, Insulin-Resistant Mice Depends on Adiponectin-Induced Irak3 Expression

    PubMed Central

    Arnould, Thierry; Tsatsanis, Christos; Holvoet, Paul

    2013-01-01

    Synthetic peroxisome proliferator-activated receptor (PPAR) agonists are used to treat dyslipidemia and insulin resistance. In this study, we examined molecular mechanisms that explain differential effects of a PPARα agonist (fenofibrate) and a PPARγ agonist (rosiglitazone) on macrophages during obesity-induced atherogenesis. Twelve-week-old mice with combined leptin and LDL-receptor deficiency (DKO) were treated with fenofibrate, rosiglitazone or placebo for 12 weeks. Only rosiglitazone improved adipocyte function, restored insulin sensitivity, and inhibited atherosclerosis by decreasing lipid-loaded macrophages. In addition, it increased interleukin-1 receptor-associated kinase-3 (Irak3) and decreased monocyte chemoattractant protein-1 (Mcp1) expressions, indicative of a switch from M1 to M2 macrophages. The differences between fenofibrate and rosiglitazone were independent of Pparγ expression. In bone marrow-derived macrophages (BMDM), we identified the rosiglitazone-associated increase in adiponectin as cause of the increase in Irak3. Interestingly, the deletion of Irak3 in BMDM (IRAK3−/− BMDM) resulted in activation of the canonical NFκB signaling pathway and increased Mcp1 protein secretion. Rosiglitazone could not decrease the elevated Mcp1 secretion in IRAK3−/− BMDM directly and fenofibrate even increased the secretion, possibly due to increased mitochondrial reactive oxygen species production. Furthermore, aortic extracts of high-fat insulin-resistant LDL-receptor deficient mice, with lower adiponectin and Irak3 and higher Mcp1, showed accelerated atherosclerosis. In aggregate, our results emphasize an interaction between PPAR agonist-mediated increase in adiponectin and macrophage-associated Irak3 in the protection against atherosclerosis by PPAR agonists. PMID:23620818

  5. Functional characteristics of histamine receptor-bearing mononuclear cells. I. Selective production of lymphocyte chemoattractant lymphokines with histamine used as a ligand.

    PubMed

    Center, D M; Cruikshank, W W; Berman, J S; Beer, D J

    1983-10-01

    Mitogens and antigens have been the traditional ligands for activating lymphocytes in vitro for the elaboration of lymphokines. Recently, histamine, by interaction with histamine-type 2 receptors on T lymphocytes, has been found to induce the production of one lymphokine, histamine-induced suppressor factor (HSF), that inhibits lymphocyte proliferation and lymphokine production in vitro. Because the biologic effects of HSF appear to be confined to alterations in lymphocyte function, we assessed the ability of soluble products of histamine-stimulated human blood mononuclear cells to affect another lymphocyte function, motility. Utilizing a modified Boyden chamber assay to assess lymphocyte migration, we identified chemoattractant activity for human blood and rat splenic T lymphocytes in histamine-induced mononuclear cell supernatants. No neutrophil or monocyte chemoattractant activity was present. Sephadex G-100 gel filtration of histamine-induced supernatants showed the lymphotactic activity eluted with a 56,000 m.w. This activity was cationic as determined by its elution pattern from a Sephadex QAE anion exchange matrix with a single pl of 9.0 to 9.4 determined by isoelectric focusing in sucrose. Its biologic activity is predominantly chemokinetic in nature, is stable to heating at 56 degrees C for 30 min, but is sensitive to the effects of trypsin and neuraminidase. These physicochemical and functional characteristics establish it as identical to a recently described concanavalin A-induced (Con A) lymphotactic lymphokine (LCF). Mononuclear cells that did not adhere to a histamine affinity matrix were unable to produce LCF when subsequently stimulated with histamine or Con A. Mononuclear cells incubated with histamine and diphenhydramine produced LCF; the addition of cimetidine eliminated LCF production. In fact, supernatants from cells incubated with histamine and cimetidine significantly inhibited lymphocyte migration, a phenomenon explainable by the two regions

  6. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes.

    PubMed

    Woo, Jeong-Im; Kil, Sung-Hee; Oh, Sejo; Lee, Yoo-Jin; Park, Raekil; Lim, David J; Moon, Sung K

    2015-04-15

    Cochlear inflammatory diseases, such as tympanogenic labyrinthitis, are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aimed to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on IL-10 and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10Rs are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line was found to inhibit nontypeable Haemophilus influenzae (NTHi)-induced upregulation of monocyte chemotactic protein-1 (MCP-1; CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt Protoporphyrin IX and CO-releasing molecule-2. In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced rat SLF cell line-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 upregulation. Chromatin immunoprecipitation assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying a therapeutic potential for a CO-based approach for inflammation-associated cochlear diseases. PMID:25780042

  7. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes

    PubMed Central

    Woo, Jeong-Im; Kil, Sung-Hee; Oh, Sejo; Lee, Yoo-Jin; Park, Raekil; Lim, David J.; Moon, Sung K.

    2015-01-01

    Cochlear inflammatory diseases such as tympanogenic labyrinthitis are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aim to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on interleukin-10 (IL-10) and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10 receptors (IL-10Rs) are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line (RSL) was found to inhibit nontypeable H. influenzae (NTHi)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1/CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt protoporphyrin IX (CoPP) and carbon monoxide-releasing molecule-2 (CORM-2). In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced RSL-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 up-regulation. Chromatin immunoprecipitation (ChIP) assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying therapeutic potential of a carbon monoxide (CO)-based approach for inflammation-associated cochlear diseases. PMID:25780042

  8. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people.

    PubMed

    Camargo, Antonio; Delgado-Lista, Javier; Garcia-Rios, Antonio; Cruz-Teno, Cristina; Yubero-Serrano, Elena M; Perez-Martinez, Pablo; Gutierrez-Mariscal, Francisco M; Lora-Aguilar, Pilar; Rodriguez-Cantalejo, Fernando; Fuentes-Jimenez, Francisco; Tinahones, Francisco Jose; Malagon, Maria M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2012-08-01

    Ageing is an important determinant of atherosclerosis development rate, mainly by the creation of a chronic low-grade inflammation. Diet, and particularly its fat content, modulates the inflammatory response in the fasting and postprandial states. Our aim was to study the effects of dietary fat on the expression of genes related to inflammation (NF-κB, monocyte chemoattractant protein 1 (MCP-1), TNF-α and IL-6) and plaque stability (matrix metalloproteinase 9, MMP-9) during the postprandial state of twenty healthy, elderly people who followed three diets for 3 weeks each: (1) Mediterranean diet (Med Diet) enriched in MUFA with virgin olive oil; (2) SFA-rich diet; and (3) low-fat, high-carbohydrate diet enriched in n-3 PUFA (CHO-PUFA diet) by a randomised crossover design. At the end of each period, after a 12-h fast, the subjects received a breakfast with a composition similar to the one when the dietary period ended. In the fasting state, the Med Diet consumption induced a lower gene expression of the p65 subunit of NF-κB compared with the SFA-rich diet (P = 0·019). The ingestion of the Med Diet induced a lower gene postprandial expression of p65 (P = 0·033), MCP-1 (P = 0·0229) and MMP-9 (P = 0·041) compared with the SFA-rich diet, and a lower gene postprandial expression of p65 (P = 0·027) and TNF-α (P = 0·047) compared with the CHO-PUFA diet. Direct plasma quantification mostly reproduced the findings. Our data suggest that consumption of a Med Diet reduces the postprandial inflammatory response in mononuclear cells compared with the SFA-rich and CHO-PUFA diets in elderly people. These findings may be partly responsible for the lower CVD risk found in populations with a high adherence to the Med Diet. PMID:22085595

  9. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells

    PubMed Central

    Xiong, Yao-kang; Jia, Yong-liang; Sun, Yan-hong; Lin, Xi-xi; Shen, Hui-juan; Xie, Qiang-min; Yan, Xiao-feng

    2015-01-01

    Cytochrome P-450 epoxygenase (EPOX)-derived epoxyeicosatrienoic acids (EETs), 5-lipoxygenase (5-LO), and leukotriene B4 (LTB4), the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs). Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 (ICAM-1). All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor) antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor) antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB) via the p38 mitogen-activated protein kinase (MAPK) pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells. PMID:26035589

  10. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration

    PubMed Central

    Chen, Xiaofeng; Liu, Yu; Miao, Leiying; Wang, Yangyang; Ren, Shuangshuang; Yang, Xuebin; Hu, Yong; Sun, Weibin

    2016-01-01

    Periodontitis is a major cause for tooth loss, which affects about 15% of the adult population. Cementum regeneration has been the crux of constructing the periodontal complex. Cementum protein 1 (CEMP1) is a cementum-specific protein that can induce cementogenic differentiation. In this study, poly(ethylene glycol) (PEG)-stabilized amorphous calcium phosphate (ACP) nanoparticles were prepared by wet-chemical method and then loaded with recombinant human CEMP1 (rhCEMP1) for controlled release. An electrospun multiphasic scaffold constituted of poly(ε-caprolactone) (PCL), type I collagen (COL), and rhCEMP1/ACP was fabricated. The effects of rhCEMP1/ACP/PCL/COL scaffold on the attachment proliferation, osteogenic, and cementogenic differentiations of