Science.gov

Sample records for chemometrical near-infrared spectroscopy

  1. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics

    NASA Astrophysics Data System (ADS)

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-01

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination.

  2. Chilean flour and wheat grain: tracing their origin using near infrared spectroscopy and chemometrics.

    PubMed

    González-Martín, Ma Inmaculada; Wells Moncada, Guillermo; González-Pérez, Claudio; Zapata San Martín, Nelson; López-González, Fernando; Lobos Ortega, Iris; Hernández-Hierro, Jose-Miguel

    2014-02-15

    Instrumental techniques such a near-infrared spectroscopy (NIRS) are used in industry to monitor and establish product composition and quality. As occurs with other food industries, the Chilean flour industry needs simple, rapid techniques to objectively assess the origin of different products, which is often related to their quality. In this sense, NIRS has been used in combination with chemometric methods to predict the geographic origin of wheat grain and flour samples produced in different regions of Chile. Here, the spectral data obtained with NIRS were analysed using a supervised pattern recognition method, Discriminat Partial Least Squares (DPLS). The method correctly classified 76% of the wheat grain samples and between 90% and 96% of the flour samples according to their geographic origin. The results show that NIRS, together with chemometric methods, provides a rapid tool for the classification of wheat grain and flour samples according to their geographic origin. PMID:24128548

  3. Early detection of emerging street drugs by near infrared spectroscopy and chemometrics.

    PubMed

    Risoluti, R; Materazzi, S; Gregori, A; Ripani, L

    2016-06-01

    Near-infrared spectroscopy (NIRs) is spreading as the tool of choice for fast and non-destructive analysis and detection of different compounds in complex matrices. This paper investigated the feasibility of using near infrared (NIR) spectroscopy coupled to chemometrics calibration to detect new psychoactive substances in street samples. The capabilities of this approach in forensic chemistry were assessed in the determination of new molecules appeared in the illicit market and often claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects. The study focused on synthetic molecules belonging to the classes of synthetic cannabinoids and phenethylamines. The approach was validated comparing results with officials methods and has been successfully applied for "in site" determination of illicit drugs in confiscated real samples, in cooperation with the Scientific Investigation Department (Carabinieri-RIS) of Rome. The achieved results allow to consider NIR spectroscopy analysis followed by chemometrics as a fast, cost-effective and useful tool for the preliminary determination of new psychoactive substances in forensic science. PMID:27130135

  4. Rapid analysis of polysaccharides contents in Glycyrrhiza by near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Ci-Hai; Yun, Yong-Huan; Fan, Wei; Liang, Yi-Zeng; Yu, Yue; Tang, Wen-Xian

    2015-08-01

    A method for quantitative analysis of the polysaccharides contents in Glycyrrhiza was developed based on near infrared (NIR) spectroscopy, and by adopting the phenol-sulphuric acid method as the reference method. This is the first time to use this method for predicting polysaccharides contents in Glycyrrhiza. To improve the predictive ability (or robustness) of the model, the competitive adaptive reweighted sampling (CARS) mathematical strategy was used for selecting relevance wavelengths. By using the restricted relevance wavelengths, the PLS model was more efficient and parsimonious. The coefficient of determination of prediction (Rp(2)) and the root mean square error of prediction (RMSEP) of the obtained optimum models were 0.9119 and 0.4350 for polysaccharides. The selected relevance wavelengths were also interpreted. It proved that all the wavelengths selected by CARS were related to functional groups of polysaccharide. The overall results show that NIR spectroscopy combined with chemometrics can be efficiently utilised for analysis of polysaccharides contents in Glycyrrhiza. PMID:26093314

  5. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-01

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit.

  6. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics.

    PubMed

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-15

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit. PMID:26296251

  7. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  8. Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods.

    PubMed

    Ma, Hong-Liang; Wang, Ji-Wen; Chen, Yong-Jun; Cheng, Jin-le; Lai, Zhi-Tian

    2017-01-15

    Near-infrared reflectance (NIR) spectroscopy combined with chemometric techniques was developed for classification and quantification of cheaper starches (corn and wheat starch) in ultrafine granular powder of Shanyao (UGPSY). By performing orthogonal partial least squares discrimination analysis (OPLS-DA), NIR could efficiently distinguish among authentic UGPSY and UGPSY adulterated with cornstarch and wheat starch. In addition, the starch content in adulterated UGPSY was determined by NIR coupled with an appropriate multivariate calibration method. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were performed comparatively to calibrate the regression model. Experimental results showed that the performance of the siPLS model is the best compared to PLS and iPLS. These results show that the combination of NIR spectroscopy and chemometric methods offers a simple, fast and reliable method for the classification and quantification of the ultrafine granular powder of the herb. PMID:27542456

  9. Near Infrared Spectroscopy Calibration for Wood Chemistry: Which Chemometric Technique Is Best for Prediction and Interpretation?

    PubMed Central

    Via, Brian K.; Zhou, Chengfeng; Acquah, Gifty; Jiang, Wei; Eckhardt, Lori

    2014-01-01

    This paper addresses the precision in factor loadings during partial least squares (PLS) and principal components regression (PCR) of wood chemistry content from near infrared reflectance (NIR) spectra. The precision of the loadings is considered important because these estimates are often utilized to interpret chemometric models or selection of meaningful wavenumbers. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set. PLS and PCR, before and after 1st derivative pretreatment, was utilized for model building and loadings investigation. As demonstrated by others, PLS was found to provide better predictive diagnostics. However, PCR exhibited a more precise estimate of loading peaks which makes PCR better for interpretation. Application of the 1st derivative appeared to assist in improving both PCR and PLS loading precision, but due to the small sample size, the two chemometric methods could not be compared statistically. This work is important because to date most research works have committed to PLS because it yields better predictive performance. But this research suggests there is a tradeoff between better prediction and model interpretation. Future work is needed to compare PLS and PCR for a suite of spectral pretreatment techniques. PMID:25068863

  10. In-situ monitoring of Saccharomyces cerevisiae ITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics.

    PubMed

    Corro-Herrera, Víctor Abel; Gómez-Rodríguez, Javier; Hayward-Jones, Patricia Margaret; Barradas-Dermitz, Dulce María; Aguilar-Uscanga, María Guadalupe; Gschaedler-Mathis, Anne Christine

    2016-03-01

    The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky-Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510-517, 2016. PMID:26743160

  11. Manufacturer identification and storage time determination of “Dong’e Ejiao” using near infrared spectroscopy and chemometrics*

    PubMed Central

    Li, Wen-long; Han, Hai-fan; Zhang, Lu; Zhang, Yan; Qu, Hai-bin

    2016-01-01

    We have developed a set of chemometric methods to address two critical issues in quality control of a precious traditional Chinese medicine (TCM), Dong’e Ejiao (DEEJ). Based on near infrared (NIR) spectra of multiple samples, the genuine manufacturer of DEEJ, e.g. Dong’e Ejiao Co., Ltd., was accurately identified among 21 suppliers by the fingerprint method using Hotelling T2, distance to Model X (DModX), and similarity match value (SMV) as discriminate criteria. Soft independent modeling of the class analogy algorithm led to a misjudgment ratio of 6.2%, suggesting that the fingerprint method is more suitable for manufacturer identification. For another important feature related to clinical efficacy of DEEJ, storage time, the partial least squares-discriminant analysis (PLS-DA) method was applied with a satisfactory misjudgment ratio (15.6%) and individual prediction error around 1 year. Our results demonstrate that NIR spectra comprehensively reflect the essential quality information of DEEJ, and with the aid of proper chemometric algorithms, it is able to identify genuine manufacturer and determine accurate storage time. The overall results indicate the promising potential of NIR spectroscopy as an effective quality control tool for DEEJ and other precious TCM products. PMID:27143266

  12. Automatic and Rapid Discrimination of Cotton Genotypes by Near Infrared Spectroscopy and Chemometrics

    PubMed Central

    Cui, Hai-Feng; Ye, Zi-Hong; Xu, Lu; Fu, Xian-Shu; Fan, Cui-Wen; Yu, Xiao-Ping

    2012-01-01

    This paper reports the application of near infrared (NIR) spectroscopy and pattern recognition methods to rapid and automatic discrimination of the genotypes (parent, transgenic, and parent-transgenic hybrid) of cotton plants. Diffuse reflectance NIR spectra of representative cotton seeds (n = 120) and leaves (n = 123) were measured in the range of 4000–12000 cm−1. A practical problem when developing classification models is the degradation and even breakdown of models caused by outliers. Considering the high-dimensional nature and uncertainty of potential spectral outliers, robust principal component analysis (rPCA) was applied to each separate sample group to detect and exclude outliers. The influence of different data preprocessing methods on model prediction performance was also investigated. The results demonstrate that rPCA can effectively detect outliers and maintain the efficiency of discriminant analysis. Moreover, the classification accuracy can be significantly improved by second-order derivative and standard normal variate (SNV). The best partial least squares discriminant analysis (PLSDA) models obtained total classification accuracy of 100% and 97.6% for seeds and leaves, respectively. PMID:22666635

  13. Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics.

    PubMed

    Kong, W W; Zhang, C; Liu, F; Gong, A P; He, Y

    2013-08-01

    The objective of this study was to examine the possibility of applying visible and near-infrared spectroscopy to the quantitative detection of irradiation dose of irradiated milk powder. A total of 150 samples were used: 100 for the calibration set and 50 for the validation set. The samples were irradiated at 5 different dose levels in the dose range 0 to 6.0 kGy. Six different pretreatment methods were compared. The prediction results of full spectra given by linear and nonlinear calibration methods suggested that Savitzky-Golay smoothing and first derivative were suitable pretreatment methods in this study. Regression coefficient analysis was applied to select effective wavelengths (EW). Less than 10 EW were selected and they were useful for portable detection instrument or sensor development. Partial least squares, extreme learning machine, and least squares support vector machine were used. The best prediction performance was achieved by the EW-extreme learning machine model with first-derivative spectra, and correlation coefficients=0.97 and root mean square error of prediction=0.844. This study provided a new approach for the fast detection of irradiation dose of milk powder. The results could be helpful for quality detection and safety monitoring of milk powder. PMID:23769357

  14. Near infrared spectroscopy and chemometrics analysis of complex traits in animal physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance (NIR) applications have been expanding from the traditional framework of small molecule chemical purity and composition (as defined by spectral libraries) to complex system analysis and holistic exploratory approaches to questions in biochemistry, biophysics and environment...

  15. Quality control of the paracetamol drug by chemometrics and imaging spectroscopy in the near infrared region

    NASA Astrophysics Data System (ADS)

    Baptistao, Mariana; Rocha, Werickson Fortunato de Carvalho; Poppi, Ronei Jesus

    2011-09-01

    In this work, it was used imaging spectroscopy and chemometric tools for the development and analysis of paracetamol and excipients in pharmaceutical formulations. It was also built concentration maps to study the distribution of the drug in the tablets surface. Multivariate models based on PLS regression were developed for paracetamol and excipients concentrations prediction. For the construction of the models it was used 31 samples in the tablet form containing the active principle in a concentration range of 30.0-90.0% (w/w) and errors below to 5% were obtained for validation samples. Finally, the study of the distribution in the drug was performed through the distribution maps of concentration of active principle and excipients. The analysis of maps showed the complementarity between the active principle and excipients in the tablets. The region with a high concentration of a constituent must have, necessarily, absence or low concentration of the other one. Thus, an alternative method for the paracetamol drug quality monitoring is presented.

  16. Experimental Design, Near-Infrared Spectroscopy, and Multivariate Calibration: An Advanced Project in a Chemometrics Course

    ERIC Educational Resources Information Center

    de Oliveira, Rodrigo R.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2012-01-01

    A chemometrics course is offered to students in their fifth semester of the chemistry undergraduate program that includes an in-depth project. Students carry out the project over five weeks (three 8-h sessions per week) and conduct it in parallel to other courses or other practical work. The students conduct a literature search, carry out…

  17. Application of near infrared (NIR) spectroscopy coupled to chemometrics for dried egg-pasta characterization and egg content quantification.

    PubMed

    Bevilacqua, Marta; Bucci, Remo; Materazzi, Stefano; Marini, Federico

    2013-10-15

    Dried egg pasta is an important and traditional food in the Italian cuisine, and the eggs in pasta improve its nutritional value and organoleptic properties. For this reason the percentage of eggs present in the products sold as "egg pasta" has to always be clearly reported in the label. In this respect, the present research addresses the possibility of developing a method which would allow fast, simple and economic determination of egg content in dried egg-pasta, using near-infrared spectroscopy and chemometric analysis. However, as it is very likely that the spectroscopic fingerprint can also be affected by the manufacturing process of this product, in particular by drying temperature and time, the effect of the manufacturing process on the spectral profile of egg-pasta samples was thoroughly investigated, using experimental design coupled to a multivariate exploratory data analytical technique called ANOVA-Simultaneous Component Analysis (ASCA). Moreover, once confirmed the significance of the drying effect on spectral shape, with the aim of building a calibration model to quantify the egg content in pasta samples irrespective of the manufacturing protocol adopted, a non-linear approach based on local regression, namely LWR-PLS, was investigated. This method allowed the determination of the egg content in external validation samples with low error (RMSEP=1.25), resulting in predictions more accurate and precise than those obtained by a global PLS model. PMID:23692759

  18. Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy.

    PubMed

    Ribeiro, J S; Ferreira, M M C; Salva, T J G

    2011-02-15

    Mathematical models based on chemometric analyses of the coffee beverage sensory data and NIR spectra of 51 Arabica roasted coffee samples were generated aiming to predict the scores of acidity, bitterness, flavour, cleanliness, body and overall quality of coffee beverage. Partial least squares (PLS) were used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the wavelengths for the regression model of each sensory attribute in order to take only significant regions into account. The regions of the spectrum defined as important for sensory quality were closely related to the NIR spectra of pure caffeine, trigonelline, 5-caffeoylquinic acid, cellulose, coffee lipids, sucrose and casein. The NIR analyses sustained that the relationship between the sensory characteristics of the beverage and the chemical composition of the roasted grain were as listed below: 1 - the lipids and proteins were closely related to the attribute body; 2 - the caffeine and chlorogenic acids were related to bitterness; 3 - the chlorogenic acids were related to acidity and flavour; 4 - the cleanliness and overall quality were related to caffeine, trigonelline, chlorogenic acid, polysaccharides, sucrose and protein. PMID:21238720

  19. Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jha, Shyam N.

    The discovery of near-infrared energy is ascribed to Herschel in the nineteenth century; the first industrial application however began in the 1950s. Initially near infrared spectroscopy (NIRS) was used only as an add-on unit to other optical devices, that used other wavelengths such as ultraviolet (UV), visible (Vis), or mid-infrared (MIR) spectrometers. In the 1980s, a single unit, stand-alone NIRS system was made available, but the application of NIRS was focused more on chemical analysis. With the introduction of light-fibre optics in the mid 1980s and the monochromator-detector developments in early 1990s, NIRS became a more powerful tool for scientific research. This optical method can be used in a number of fields of science including physics, physiology, medicine and food.

  20. Potential of visible-near infrared spectroscopy combined with chemometrics for analysis of some constituents of coffee and banana residues.

    PubMed

    Rambo, M K D; Amorim, E P; Ferreira, M M C

    2013-05-01

    Banana (stalk, leaf, rhizome, rachis and stem) and coffee (leaf and husks) residues are promising feedstock for fuel and chemical production. In this work we show the potential of near-infrared spectroscopy (NIR) and multivariate analysis to replace reference methods in the characterization of some constituents of coffee and banana residues. The evaluated parameters were Klason lignin (KL), acid soluble lignin (ASL), total lignin (TL), extractives, moisture, ash and acid insoluble residue (AIR) contents of 104 banana residues (B) and 102 coffee (C) residues from Brazil. PLS models were built for banana (B), coffee (C) and pooled samples (B+C). The precision of NIR methodology was better (p<0.05) than the reference method for almost all the parameters, being worse for moisture. With the exception of ash (B and C) and ASL (C) content, which was predicted poorly (R(2)<0.80), the models for all the analytes exhibited R(2)>0.80. The range error ratios varied from 4.5 to 16.0. Based on the results of external validation, the statistical tests and figures of merit, NIR spectroscopy proved to be useful for chemical prediction of banana and coffee residues and can be used as a faster and more economical alternative to the standard methodologies. PMID:23601973

  1. Visible/near infrared spectroscopy and chemometrics for the prediction of trace element (Fe and Zn) levels in rice leaf.

    PubMed

    Shao, Yongni; He, Yong

    2013-01-01

    Two sensitive wavelength (SW) selection methods combined with visible/near infrared (Vis/NIR) spectroscopy were investigated to determine the levels of some trace elements (Fe, Zn) in rice leaf. A total of 90 samples were prepared for the calibration (n = 70) and validation (n = 20) sets. Calibration models using SWs selected by LVA and ICA were developed and nonlinear regression of a least squares-support vector machine (LS-SVM) was built. In the nonlinear models, six SWs selected by ICA can provide the optimal ICA-LS-SVM model when compared with LV-LS-SVM. The coefficients of determination (R2), root mean square error of prediction (RMSEP) and bias by ICA-LS-SVM were 0.6189, 20.6510 ppm and -12.1549 ppm, respectively, for Fe, and 0.6731, 5.5919 ppm and 1.5232 ppm, respectively, for Zn. The overall results indicated that ICA was a powerful way for the selection of SWs, and Vis/NIR spectroscopy combined with ICA-LS-SVM was very efficient in terms of accurate determination of trace elements in rice leaf. PMID:23377188

  2. A novel near-infrared spectroscopy and chemometrics method for rapid analysis of several chemical components and antioxidant activity of mint (Mentha haplocalyx Briq.) samples.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2014-01-01

    A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples. PMID:24480282

  3. Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of Concealed Damage in Raw Almonds (Prunus dulcis).

    PubMed

    Rogel-Castillo, Cristian; Boulton, Roger; Opastpongkarn, Arunwong; Huang, Guangwei; Mitchell, Alyson E

    2016-07-27

    Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only after moderate to high heat treatment (e.g., blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates. With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1% and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing of the selected wavelength resulted in the most robust predictive model. PMID:27309980

  4. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement.

    PubMed

    Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong

    2012-03-01

    An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes. PMID:22805820

  5. Near-infrared spectroscopy (NIRS) and chemometric analysis of Malaysian and UK paracetamol tablets: a spectral database study.

    PubMed

    Said, Mazlina M; Gibbons, Simon; Moffat, Anthony C; Zloh, Mire

    2011-08-30

    The influx of medicines from different sources into healthcare systems of developing countries presents a challenge to monitor their origin and quality. The absence of a repository of reference samples or spectra prevents the analysis of tablets by direct comparison. A set of paracetamol tablets purchased in Malaysian pharmacies were compared to a similar set of sample purchased in the UK using near-infrared spectroscopy (NIRS). Additional samples of products containing ibuprofen or paracetamol in combination with other actives were added to the study as negative controls. NIR spectra of the samples were acquired and compared by using multivariate modeling and classification algorithms (PCA/SIMCA) and stored in a spectral database. All analysed paracetamol samples contained the purported active ingredient with only 1 out of 20 batches excluded from the 95% confidence interval, while the negative controls were clearly classified as outliers of the set. Although the substandard products were not detected in the purchased sample set, our results indicated variability in the quality of the Malaysian tablets. A database of spectra was created and search methods were evaluated for correct identification of tablets. The approach presented here can be further developed as a method for identifying substandard pharmaceutical products. PMID:21645600

  6. Measurement of aspartic acid in oilseed rape leaves under herbicide stress using near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Chu; Kong, Wenwen; Liu, Fei; He, Yong

    2016-01-01

    Oilseed rape is used as both food and a renewable energy resource. Physiological parameters, such as the amino acid aspartic acid, can indicate the growth status of oilseed rape. Traditional detection methods are laborious, time consuming, costly, and not usable in the field. Here, we investigate near infrared spectroscopy (NIRS) as a fast and non-destructive detection method of aspartic acid in oilseed rape leaves under herbicide stress. Different spectral pre-processing methods were compared for optimal prediction performance. The variable selection methods were applied for relevant variable selection, including successive projections algorithm (SPA), Monte Carlo-uninformative variable elimination (MC-UVE) and random frog (RF). The selected effective wavelengths (EWs) were used as input by multiple linear regression (MLR), partial least squares (PLS) and least-square support vector machine (LS-SVM). The best predictive performance was achieved by SPA-LS-SVM (Raw) model using 22 EWs, and the prediction results were Rp = 0.9962 and RMSEP = 0.0339 for the prediction set. The result indicated that NIR combined with LS-SVM is a powerful new method to detect aspartic acid in oilseed rape leaves under herbicide stress. PMID:27441244

  7. Comparative determination of polymorphs of indomethacin in powders and tablets by chemometrical near-infrared spectroscopy and x-ray powder diffractometry.

    PubMed

    Otsuka, Makoto; Kato, Fumie; Matsuda, Yoshihisa; Ozaki, Yukihiro

    2003-01-01

    The purpose of this research was to develop a rapid chemometrical method based on near-infrared (NIR) spectroscopy to determine indomethacin (IMC) polymorphic content in mixed pharmaceutical powder and tablets. Mixed powder samples with known polymorphic contents of forms alpha and gamma were obtained from physical mixing of 50% of IMC standard polymorphic sample and 50% of excipient mixed powder sample consisting of lactose, corn starch, and hydroxypropylcellulose. The tablets were obtained by compressing the mixed powder at 245 MPa. X-ray powder diffraction profiles and NIR spectra were recorded for 6 kinds of standard materials with various polymorphic contents. The principal component regression analysis was performed based on normalized NIR spectra sets of mixed powder standard samples and tablets. The relationships between the actual and predicted polymorphic contents of form g in the mixed powder measured using x-ray powder diffraction and NIR spectroscopy show a straight line with a slope of 0.960 and 0.995, and correlation coefficient constants of 0.970 and 0.993, respectively. The predicted content values of unknown samples by x-ray powder diffraction and NIR spectroscopy were reproducible and in close agreement, but those by NIR spectroscopy had smaller SDs than those by x-ray powder diffraction. The results suggest that NIR spectroscopy provides a more accurate quantitative analysis of polymorphic content in pharmaceutical mixed powder and tablets than does conventional x-ray powder diffractometry. PMID:12916901

  8. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-01

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  9. The feasibility of using near-infrared spectroscopy and chemometrics for untargeted detection of protein adulteration in yogurt: removing unwanted variations in pure yogurt.

    PubMed

    Xu, Lu; Yan, Si-Min; Cai, Chen-Bo; Wang, Zhen-Ji; Yu, Xiao-Ping

    2013-01-01

    Untargeted detection of protein adulteration in Chinese yogurt was performed using near-infrared (NIR) spectroscopy and chemometrics class modelling techniques. sixty yogurt samples were prepared with pure and fresh milk from local market, and 197 adulterated yogurt samples were prepared by blending the pure yogurt objects with different levels of edible gelatin, industrial gelatin, and soy protein powder, which have been frequently used for yogurt adulteration. A recently proposed one-class partial least squares (OCPLS) model was used to model the NIR spectra of pure yogurt objects and analyze those of future objects. To improve the raw spectra, orthogonal projection (OP) of raw spectra onto the spectrum of pure water and standard normal variate (SNV) transformation were used to remove unwanted spectral variations. The best model was obtained with OP preprocessing with sensitivity of 0.900 and specificity of 0.949. Moreover, adulterations of yogurt with 1% (w/w) edible gelatin, 2% (w/w) industrial gelatin, and 2% (w/w) soy protein powder can be safely detected by the proposed method. This study demonstrates the potential of combining NIR spectroscopy and OCPLS as an untargeted detection tool for protein adulteration in yogurt. PMID:23844318

  10. The Feasibility of Using Near-Infrared Spectroscopy and Chemometrics for Untargeted Detection of Protein Adulteration in Yogurt: Removing Unwanted Variations in Pure Yogurt

    PubMed Central

    Xu, Lu; Yan, Si-Min; Wang, Zhen-Ji; Yu, Xiao-Ping

    2013-01-01

    Untargeted detection of protein adulteration in Chinese yogurt was performed using near-infrared (NIR) spectroscopy and chemometrics class modelling techniques. sixty yogurt samples were prepared with pure and fresh milk from local market, and 197 adulterated yogurt samples were prepared by blending the pure yogurt objects with different levels of edible gelatin, industrial gelatin, and soy protein powder, which have been frequently used for yogurt adulteration. A recently proposed one-class partial least squares (OCPLS) model was used to model the NIR spectra of pure yogurt objects and analyze those of future objects. To improve the raw spectra, orthogonal projection (OP) of raw spectra onto the spectrum of pure water and standard normal variate (SNV) transformation were used to remove unwanted spectral variations. The best model was obtained with OP preprocessing with sensitivity of 0.900 and specificity of 0.949. Moreover, adulterations of yogurt with 1% (w/w) edible gelatin, 2% (w/w) industrial gelatin, and 2% (w/w) soy protein powder can be safely detected by the proposed method. This study demonstrates the potential of combining NIR spectroscopy and OCPLS as an untargeted detection tool for protein adulteration in yogurt. PMID:23844318

  11. Novel, Rapid Identification, and Quantification of Adulterants in Extra Virgin Olive Oil Using Near-Infrared Spectroscopy and Chemometrics.

    PubMed

    Azizian, Hormoz; Mossoba, Magdi M; Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Karunathilaka, Sanjeewa R; Kramer, John K G

    2015-07-01

    A new, rapid Fourier transform near infrared (FT-NIR) spectroscopic procedure is described to screen for the authenticity of extra virgin olive oils (EVOO) and to determine the kind and amount of an adulterant in EVOO. To screen EVOO, a partial least squares (PLS1) calibration model was developed to estimate a newly created FT-NIR index based mainly on the relative intensities of two unique carbonyl overtone absorptions in the FT-NIR spectra of EVOO and other mixtures attributed to volatile (5280 cm(-1)) and non-volatile (5180 cm(-1)) components. Spectra were also used to predict the fatty acid (FA) composition of EVOO or samples spiked with an adulterant using previously developed PLS1 calibration models. Some adulterated mixtures could be identified provided the FA profile was sufficiently different from those of EVOO. To identify the type and determine the quantity of an adulterant, gravimetric mixtures were prepared by spiking EVOO with different concentrations of each adulterant. Based on FT-NIR spectra, four PLS1 calibration models were developed for four specific groups of adulterants, each with a characteristic FA composition. Using these different PLS1 calibration models for prediction, plots of predicted vs. gravimetric concentrations of an adulterant in EVOO yielded linear regression functions with four unique sets of slopes, one for each group of adulterants. Four corresponding slope rules were defined that allowed for the determination of the nature and concentration of an adulterant in EVOO products by applying these four calibration models. The standard addition technique was used for confirmation. PMID:26050093

  12. Non-destructive Measurement of Total Carotenoid Content in Processed Tomato Products: Infrared Lock-In Thermography, Near-Infrared Spectroscopy/Chemometrics, and Condensed Phase Laser-Based Photoacoustics—Pilot Study

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Streza, M.; Dóka, O.; Valinger, D.; Luterotti, S.; Ajtony, Zs.; Kurtanjek, Z.; Dadarlat, D.

    2015-09-01

    Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC.

  13. Classification the geographical origin of corn distillers dried grains with solubles by near infrared reflectance spectroscopy combined with chemometrics: A feasibility study.

    PubMed

    Zhou, Xingfan; Yang, Zengling; Haughey, Simon A; Galvin-King, Pamela; Han, Lujia; Elliott, Christopher T

    2015-12-15

    In this study, 137 corn distillers dried grains with solubles (DDGS) samples from a range of different geographical origins (Jilin Province of China, Heilongjiang Province of China, USA and Europe) were collected and analysed. Different near infrared spectrometers combined with different chemometric packages were used in two independent laboratories to investigate the feasibility of classifying geographical origin of DDGS. Base on the same dataset, one laboratory developed a partial least square discriminant analysis model and another laboratory developed an orthogonal partial least square discriminant analysis model. Results showed that both models could perfectly classify DDGS samples from different geographical origins. These promising results encourage the development of larger scale efforts to produce datasets which can be used to differentiate the geographical origin of DDGS and such efforts are required to provide higher level food security measures on a global scale. PMID:26190595

  14. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars "Cripps Pink" and "Braeburn".

    PubMed

    Eisenstecken, Daniela; Panarese, Alessia; Robatscher, Peter; Huck, Christian W; Zanella, Angelo; Oberhuber, Michael

    2015-01-01

    The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000-2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples ("Braeburn" and "Cripps Pink") was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples. PMID:26213913

  15. On-line quantitative monitoring of liquid-liquid extraction of Lonicera japonica and Artemisia annua using near-infrared spectroscopy and chemometrics

    PubMed Central

    Wu, Sha; Jin, Ye; Liu, Qian; Liu, Qi-an; Wu, Jianxiong; Bi, Yu-an; Wang, Zhengzhong; Xiao, Wei

    2015-01-01

    Background: Liquid-liquid extraction of Lonicera japonica and Artemisia annua (JQ) plays a significant role in manufacturing Reduning injection. Many process parameters may influence liquid-liquid extraction and cause fluctuations in product quality. Objective: To develop a near-infrared (NIR) spectroscopy method for on-line monitoring of liquid-liquid extraction of JQ. Materials and Methods: Eleven batches of JQ extraction solution were obtained, ten for building quantitative models and one for assessing the predictive accuracy of established models. Neochlorogenic acid (NCA), chlorogenic acid (CA), cryptochlorogenic acid (CCA), isochlorogenic acid B (ICAB), isochlorogenic acid A (ICAA), isochlorogenic acid C (ICAC) and soluble solid content (SSC) were selected as quality control indicators, and measured by reference methods. NIR spectra were collected in transmittance mode. After selecting the spectral sub-ranges, optimizing the spectral pretreatment and neglecting outliers, partial least squares regression models were built to predict the content of indicators. The model performance was evaluated by the coefficients of determination (R2), the root mean square errors of prediction (RMSEP) and the relative standard error of prediction (RSEP). Results: For NCA, CA, CCA, ICAB, ICAA, ICAC and SSC, R2 was 0.9674, 0.9704, 0.9641, 0.9514, 0.9436, 0.9640, 0.9809, RMSEP was 0.0280, 0.2913, 0.0710, 0.0590, 0.0815, 0.1506, 1.167, and RSEP was 2.32%, 4.14%, 3.86%, 5.65%, 7.29%, 6.95% and 4.18%, respectively. Conclusion: This study demonstrated that NIR spectroscopy could provide good predictive ability in monitoring of the content of quality control indicators in liquid-liquid extraction of JQ. PMID:26246744

  16. In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example.

    PubMed

    Mureșan, Vlad; Danthine, Sabine; Mureșan, Andruța Elena; Racolța, Emil; Blecker, Christophe; Muste, Sevastița; Socaciu, Carmen; Baeten, Vincent

    2016-08-01

    A new near-infrared (NIR) spectroscopic method was developed for the analytical measurement of lipid oxidation in sunflower kernel paste (tahini), which was chosen as an example of a complex oilseed-based food product. The NIR spectra of sunflower tahini were acquired for the extracted fat phase (EFP) and for the intact sunflower tahini (IST) samples during controlled storage. The best peroxide value (PV) calibration models were considered suitable for quality control (ratio of performance of deviation [RPD]>5). The best PV partial least squares (PLS) model result for EFP (RPD 6.36) was obtained when using standard normal variate (SNV) and the Savitzky-Golay first derivative in the 1140-1184nm, 1388-1440nm and 2026-2194nm regions. In the case of IST spectra, the best PV models (RPD 5.23) were obtained when either multiple scattering correction (MSC) or SNV were followed by the Savitzky-Golay second derivative for the 1148-1180nm and 2064-2132nm regions. There were poor correlations between the NIR-predicted values and the reference data of the p-anisidine value (pAV) for both EFP and IST. Overall, the results obtained showed that NIR spectroscopy is an appropriate analytical tool for monitoring sunflower paste PV in situ. Due to the nonexistence of the extraction step, it demonstrates a unique and substantial advantage over presently known methods. Based on these results it is strongly recommended that, when using NIR PLS models to assess lipid oxidation in situ in similar oilseed-based food products (e.g., sesame tahini, hazelnut and cocoa liquor used for chocolate production, peanut butter, hazelnut, almond, pistachio spreads), suitable calibration sets containing samples of different particle sizes and stored at different temperatures be selected. PMID:27216691

  17. Gastric cancer target detection using near-infrared hyperspectral imaging with chemometrics

    NASA Astrophysics Data System (ADS)

    Yi, Weisong; Zhang, Jian; Jiang, Houmin; Zhang, Niya

    2014-09-01

    Gastric cancer is one of the leading causes of cancer death in the world due to its high morbidity and mortality. Hyperspectral imaging (HSI) is an emerging, non-destructive, cutting edge analytical technology that combines conventional imaging and spectroscopy in one single system. The manuscript has investigated the application of near-infrared hyperspectral imaging (900-1700 nm) (NIR-HSI) for gastric cancer detection with algorithms. Major spectral differences were observed in three regions (950-1050, 1150-1250, and 1400-1500 nm). By inspecting cancerous mean spectrum three major absorption bands were observed around 975, 1215 and 1450 nm. Furthermore, the cancer target detection results are consistent and conformed with histopathological examination results. These results suggest that NIR-HSI is a simple, feasible and sensitive optical diagnostic technology for gastric cancer target detection with chemometrics.

  18. [Application of near infrared spectroscopy (NIR) for evaluating cheese quality].

    PubMed

    Zou, Qiang; Fang, Hui; Zhang, Wei; He, Yong

    2011-10-01

    Near infrared spectrocopy, widely used in food industry, is a fast, nondestructive analysis method. Although it has been in the detection of the quality of cheese for many years, related research is few in our country. The principle of near infrared spectroscopy and the characteristics are introduced. Cheese process, shrinkage control, maturation process, shelf life, brand classification and detection of components in the application of near infrared spectroscopy are summarized. There is great potential to apply near infrared spectroscopy in cheese quality analysis. It is an urgent task to promote the application of near infrared spectroscopy and the development of China's cheese industry. PMID:22250544

  19. Discrimination of planting area of white peach based near-infrared spectra and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Fu, Xiaping; Ying, Yibin; Zhou, Ying; Xu, Huirong; Xie, Lijuan; Jiang, Xuesong

    2007-09-01

    White peach is a famous peach variety for its super-quality and high economic benefit. It is originally planted in Yuandong Villiage, Jinhua County, Zhejiang province. By now, it has been planted in many other places in southeast of China. However, peaches from different planting areas have dissimilar quality and taste, which result in different selling price. The objective of this research was to discriminate peaches from different planting areas by using near-infrared (NIR) spectra and chemometrics methods. Diffuse reflectance spectra were collected by a fiber spectrometer in the range of 800-2500 nm. Discriminant analysis (DA), soft independent modeling of class analogy (SIMCA), and discriminant partial least square regression (DPLS) methods were employed to classify the peaches from three planting areas 'Jinhua', 'Wuyi', and 'Yongkang' of Zhejiang province. 360 samples were used in this study, 120 samples per planting area. The classifying correctness were above 92% for both DA and SIMCA mdoels. And the result of DPLS model was slightly better. By using DPLS method, two 'Jinhua' peaches, three 'Wuyi' peaches, and three 'Yongkang' peaches were misclassified, the accruacy was above 95%. The results of this study indicate that the three chemometrics methods DA, SIMCA, and DPLS are effective for discriminating peaches from different planting areas based on NIR spectroscopy.

  20. Interferometric near-infrared spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-03-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts the optical and dynamic properties of turbid media from the analysis of the spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency swept narrow bandwidth light source such that the temporal intensity autocorrelations can be determined for all photon path lengths. This approach enables time-of-flight (TOF) resolved measurement of scatterer motion, which is a feature inaccessible in well-established diffuse correlation spectroscopy techniques. We prove this by analyzing intensity correlations of the light transmitted through diffusive fluid phantoms with photon random walks of up to 55 (approximately 110 scattering events) using laser sweep rates on the order of 100kHz. Thus, the results we present here advance diffuse optical methods by enabling simultaneous determination of depth-resolved optical properties and dynamics in highly scattering samples.

  1. Identification of oil spills by near-infrared spectroscopy (NIR) and support vector machine (SVM)

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Tan, Ailing; Zhao, Yong; Gao, Meijing

    2009-11-01

    The identification of the spilled oil is an essential and important part in the investigation and handling of oil spill accidents. The combination of near-infrared spectroscopy (NIR) and chemometrics is ideal for such a situation. NIR spectroscopy is a powerful and effective technique and qualitative information can be obtained with classification models. Support vector machines (SVM) have been introduced recently in chemometrics and have proven to be powerful in NIR spectra classification tasks, such as material identification and food discrimination. In this work, the SVM is utilized to classify near infrared spectroscopy of simulated spilled oils of gasoline, diesel fuel and kerosene on the marine. A good classification performance is obtained :the identification rate were 100%, 96% and 98% on the test sets respectively.

  2. Near-infrared imaging spectroscopy for counterfeit drug detection

    NASA Astrophysics Data System (ADS)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  3. Near-infrared spectroscopy of dark asteroids.

    PubMed

    Barucci, M A; Lazzarin, M; Owen, T; Barbieri, C; Fulchignoni, M

    1994-08-01

    Near-infrared (J, H and K bands) spectra of nine dark asteroids (chosen among a sample of supposed primitive objects between C and D classes) have been obtained at the Mauna Kea Observatory (Hawaii) with the 2.2-m telescope using KSPEC as spectrograph. The aim of this work was to search for evidence of the presence of organic materials in these objects as found in other planetary bodies as 5145 Pholus, and in some cometary nuclei. A careful analysis of the data has revealed flat or slightly redder spectra than the solar one for all observed asteroids. No evidence of distinct absorption features was found. PMID:11539179

  4. Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Huan, Yanfu; Feng, Guodong; Wang, Bin; Ren, Yulin; Fei, Qiang

    2013-05-01

    In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength.

  5. Near-infrared spectroscopy in NGC 7538

    NASA Astrophysics Data System (ADS)

    Puga, E.; Marín-Franch, A.; Najarro, F.; Lenorzer, A.; Herrero, A.; Acosta Pulido, J. A.; Chavarría, L. A.; Bik, A.; Figer, D.; Ramírez Alegría, S.

    2010-07-01

    Aims: The characterisation of the stellar population in young high-mass star-forming regions allows fundamental cluster properties like distance and age to be constrained. These are essential when using high-mass clusters as probes for conducting Galactic studies. Methods: NGC 7538 is a star-forming region with an embedded stellar population unearthed only in the near-infrared (NIR). We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with subarcsecond JHKs photometry of the region using the imaging mode of the same instrument. Results: We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the H ii region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources, as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7 ± 0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass 1.7 × 103 Msun for the older population. Based on observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  6. [Determination of adulteration in honey using near-infrared spectroscopy].

    PubMed

    Chen, Lan-Zhen; Zhao, Jing; Ye, Zhi-Hua; Zhong, Yan-Ping

    2008-11-01

    The objective of the present research is to study the potential of using Fourier transform near-infrared spectroscopy (FT-NIR) in conjunction with discriminant partial least squares (DPLS) chemometric techniques for the discrimination of honey authenticity. First, seventy one commercial honey samples from Chinese market were analyzed to detect the levels of honey adulteration by stable carbon isotope ratio and the chemical result showed that the samples include unadulterated (n = 27) and adulterated (n = 44) products. The samples were scanned in the spectral region between 4 000 and 11 000 cm(-1) by FT-NIR spectrometer with an optic fiber of 2 mm path-length and an InGaAs detector and then divided randomly five times into two sets, namely calibration sets and validation sets, respectively. Five kinds of mathematic models of honey samples were established for classification of honeys as authentic or adulterated by using DPLS. Different spectra pretreatment methods, spectral range and different principal component factors were selected to optimize the calibration models. The calibration models were successfully validated with exterior cross-validation methods. Through comparison analysis of the results, the overall corrected identification rate of authentic and adulterated honey samples in five calibration models were 91.49%, 94.68%, 92.98%, 93.86% and 94.87%, respectively. The correct classification rate of the validation samples was 93.75%, 89.58%, 89.29%, 92.31% and 86.96% from model one to model five, respectively and 100% of adulterated honey samples were correctly identified and classified in validation models 2, 3 and 4. The results demonstrated that FT-NIR together with DPLS could be used as a rapid and cost-efficient screening tool for discrimination of commercial honey adulteration, and the analytical technique would be significant to Chinese honey quality supervision. PMID:19271491

  7. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    PubMed Central

    Khan, Ahmed Nawaz; Khar, Roop Krishen; Ajayakumar, P. V.

    2016-01-01

    Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX) in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH) and European Medicine Agency (EMA) developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC), 2.38% root mean square error of prediction (RMSEP), 2.43% root mean square error of cross-validation (RMSECV). Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated using developed

  8. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  9. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  10. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  11. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  12. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  13. Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics.

    PubMed

    Otsuka, Makoto; Yamane, Ikuro

    2006-07-01

    The purpose of this research is to elucidate the effect of lubricant mixing on tablet hardness by near-infrared (NIR) chemometrics as a basic study of process analytical technology. Formulation cellulose (F-C) consisted of sulpyrine (SP), microcrystalline cellulose (MC), and magnesium stearate (MgSt). Formulation lactose/starch (F-L) consisted of SP bulk drug powder, spray-dried lactose (SL), corn starch (CS), and MgSt. First, F-L and F-C without MgSt were mixed in a twin-shell mixer for 60 min. MgSt was added to the mixed powder, and was mixed for various mixing times, after which the mixed powders were compressed by 8-mm diameter punch and die. NIR spectra of raw mixed powders of F-L and F-C were taken using a reflection type of Fourier transform NIR spectra spectrometer, and chemometric analysis was performed using principal component regression (PCR). The tablet hardnesses of F-L and F-C decreased with increasing mixing time. All NIR spectra of the mixed powders of F-L and F-C fluctuated depending on mixing time. In order to predict tablet hardness before tablet compression, NIR spectra of F-L and F-C mixed powders were analyzed and evaluated for hardness by PCR. The minimum standard error of cross-validation values could be realized by using five- and six-principal component models, respectively. In the cases of F-L and F-C, the relationships between the actual and predicted tablet hardnesses showed straight lines, respectively. In the regression vectors of F-L and FC, the peaks related to hydrogen groups of SP, CS, and MC appeared as positive peaks. In contrast, the peaks related to hydrocarbon due to MgSt appeared as negative peaks in the regression vectors. The calibration models to evaluate the tablet hardness were obtained based on NIR spectra of raw mixed powders by PCR. This approach to predicting tablet hardness prior to compression could be used as a routine test to indicate the quality of the final product without spending time and energy to produce

  14. Unresolved Instrumentation Problems Following Clinical Trials Using Near Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew J.; Gagnon, Roy E.; Gagnon, Faith A.

    1998-10-01

    Near infrared spectroscopy (NIRS) clinical trials conducted over a seven year period have identified instrument engineering problems related to fiber optic failure, electromagnetic interference, chromophore algorithms, and computational software. These problems have caused confusion amongst clinicians at the bedside, rejection of large volumes of data, repeated reanalysis of data, and a significant diversion of project resources away from clinical studies and into engineering solutions. This article summarizes previously published studies and presents new data which, together, emphasize the need for improvements in NIRS technology. Instrument designers need to be aware of the need for these improvements if NIRS is to serve clinicians better during research designed to rationally define clinical management protocols.

  15. Near-infrared spectroscopy. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy`s (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program.

  16. Innovative uses of near-infrared spectroscopy in food processing.

    PubMed

    Bock, J E; Connelly, R K

    2008-09-01

    Near-infrared spectroscopy (NIRS) has experienced widespread use as an analytical tool in the last 3 decades. Researchers today are exploring ways of applying NIRS that expand beyond compositional analyses into process control. Processes such as meat tenderness evaluation, curd cutting, and dough mixing have traditionally been controlled by highly skilled master craftsmen; new NIRS research applications are demonstrating that these complex processes can be monitored and controlled in situ to produce consistent, high quality end products with online NIRS technology. Additionally, researchers also now have the potential ability to develop new nondestructive spectroscopic techniques to probe the underlying molecular evolution of these products during processing. PMID:18803725

  17. Note: Wearable near-infrared spectroscopy imager for haired region

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Atsumori, H.; Fukasaku, I.; Kumagai, Y.; Funane, T.; Maki, A.; Kasai, Y.; Ninomiya, A.

    2012-05-01

    A wearable optical topography system was developed that is based on near-infrared spectroscopy (NIRS) for observing brain activity noninvasively including in regions covered by hair. An avalanche photo diode, high voltage dc-dc converter, and preamplifier were placed in an electrically shielded case to be safely mounted on the head. Rubber teeth and a glass rod were prepared to clear away hair and reach the scalp. These devices realized for the first time a wearable NIRS imager for any region of the cortex. The activity in the motor cortex during finger tapping was successfully observed.

  18. Quantification of simvastatin in mice plasma by near-infrared and chemometric analysis of spectral data

    PubMed Central

    Fahmy, Usama A

    2016-01-01

    Time and cost saving is an essential requirement in pharmacokinetics and bioequivalence studies. The aim of this study is to use a simple, fast, and nondestructive near-infrared transmission spectroscopic method to quantify simvastatin (SMV) concentrations in mice plasma and also to improve SMV bioavailability by using alpha-lipoic acid as a carrier. Calibration curve was built at a concentration range of 10–250 ng/mL, and HPLC method was considered as a reference method. A partial least squares regression analysis model was used for method development, which gave less root mean square error cross-validation. Comparison of SMV concentrations obtained from both instruments showed no statistically significant differences between all the data. Near-infrared spectroscopy was utilized as a rapid, simple accurate method to quantify drug–plasma concentrations without need for any extraction protocols, and the significant effect of alpha-lipoic acid as a novel carrier to enhance SMV bioavailability is also addressed. PMID:27540278

  19. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    PubMed

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey. PMID:26669162

  20. Wavelet minimum description length detrending for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Eun; Tak, Sungho; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul

    2009-05-01

    Near-infrared spectroscopy (NIRS) can be employed to investigate brain activities associated with regional changes of the oxy- and deoxyhemoglobin concentration by measuring the absorption of near-infrared light through the intact skull. NIRS is regarded as a promising neuroimaging modality thanks to its excellent temporal resolution and flexibility for routine monitoring. Recently, the general linear model (GLM), which is a standard method for functional MRI (fMRI) analysis, has been employed for quantitative analysis of NIRS data. However, the GLM often fails in NIRS when there exists an unknown global trend due to breathing, cardiac, vasomotion, or other experimental errors. We propose a wavelet minimum description length (Wavelet-MDL) detrending algorithm to overcome this problem. Specifically, the wavelet transform is applied to decompose NIRS measurements into global trends, hemodynamic signals, and uncorrelated noise components at distinct scales. The minimum description length (MDL) principle plays an important role in preventing over- or underfitting and facilitates optimal model order selection for the global trend estimate. Experimental results demonstrate that the new detrending algorithm outperforms the conventional approaches.

  1. Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Tan, Chao; Wu, Tong; Wang, Li; Zhu, Wanping

    2014-09-01

    Chinese liquor is one of the famous distilled spirits and counterfeit liquor is becoming a serious problem in the market. Especially, age liquor is facing the crisis of confidence because it is difficult for consumer to identify the marked age, which prompts unscrupulous traders to pose off low-grade liquors as high-grade liquors. An ideal method for authenticity confirmation of liquors should be non-invasive, non-destructive and timely. The combination of near-infrared spectroscopy with chemometrics proves to be a good way to reach these premises. A new strategy is proposed for classification and verification of the adulteration of liquors by using NIR spectroscopy and chemometric classification, i.e., ensemble support vector machines (SVM). Three measures, i.e., accuracy, sensitivity and specificity were used for performance evaluation. The results confirmed that the strategy can serve as a screening tool applied to verify adulteration of the liquor, that is, a prior step used to condition the sample to a deeper analysis only when a positive result for adulteration is obtained by the proposed methodology.

  2. Recent advances in fetal near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  3. Cardiac tissue characterization using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh Moon, Rajinder; Hendon, Christine P.

    2014-03-01

    Cardiac tissue from swine and canine hearts were assessed using diffuse reflectance near-infrared spectroscopy (NIRS) ex vivo. Slope measured between 800-880 nm reflectance was found to reveal differences between epicardial fat and normal myocardium tissue. This parameter was observed to increase monotonically from measurements obtained from the onset of radiofrequency ablation (RFA). A sheathe-style fiber optic catheter was then developed to allow real-time sampling of the zone of resistive heating during RFA treatment. A model was developed and used to extract changes in tissue absorption and reduced scattering based on the steady-state diffusion approximation. It was found that key changes in tissue optical properties occur during application of RF energy and can be monitored using NIRS. These results encourage the development of NIRS integrated catheters for real-time guidance of the cardiac ablation treatment.

  4. Review of functional near-infrared spectroscopy in neurorehabilitation.

    PubMed

    Mihara, Masahito; Miyai, Ichiro

    2016-07-01

    We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback. PMID:27429995

  5. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  6. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela; Hearn, Tristan

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors

  7. Biochemical and physiological basis of medical near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Joebsis-vander Vliet, Frans F.; Joebsis, Paul

    1999-10-01

    Near infrared spectroscopy (NIRS) can monitor both the redox status of Cytochrome c oxidase located in the mitochondria within the cell and the oxygenation of the blood in the tissue being monitored. Since the enzyme catalyzes more than 90% of oxygen utilization, it is the sink for the oxygen while the hemoglobin in the capillaries is the oxygen source. In order to evaluate the oxidative metabolic status of a tissue the optical data obtained from both molecules are commonly interpreted in the basis of test tube experiments with purified preparations. We are concerned that the validity of this practice may not have been tested sufficiently and raise four basic questions that have not yet been answered. Citing some examples of in vitro versus in vivo differences we conclude that more effort should be expended on the in vivo testing of the range of the signals, their natural variability, and the physiological and pathological meaning of their deviations from norm.

  8. Discrimination and Content Analysis of Fritillaria Using Near Infrared Spectroscopy

    PubMed Central

    Meng, Yu; Wang, Shisheng; Cai, Rui; Jiang, Bohai; Zhao, Weijie

    2015-01-01

    Fritillaria is a traditional Chinese herbal medicine which can be used to moisten the lungs. The objective of this study is to develop simple, accurate, and solvent-free methods to discriminate and quantify Fritillaria herbs from seven different origins. Near infrared spectroscopy (NIRS) methods are established for the rapid discrimination of seven different Fritillaria samples and quantitative analysis of their total alkaloids. The scaling to first range method and the partial least square (PLS) method are used for the establishment of qualitative and quantitative analysis models. As a result of evaluation for the qualitative NIR model, the selectivity values between groups are always above 2, and the mistaken judgment rate of fifteen samples in prediction sets was zero. This means that the NIR model can be used to distinguish different species of Fritillaria herbs. The established quantitative NIR model can accurately predict the content of total alkaloids from Fritillaria samples. PMID:25789196

  9. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  10. Near-infrared Spectroscopy in the Brewing Industry.

    PubMed

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product. PMID:24915307

  11. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    PubMed Central

    Liu, Bin; Liu, Jin; Chen, Tianpeng; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-01-01

    The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs). The gas chromatography (GC) based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS) technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2) being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production. PMID:25826532

  12. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy.

    PubMed

    Liu, Bin; Liu, Jin; Chen, Tianpeng; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-01-01

    The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs). The gas chromatography (GC) based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS) technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2) being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production. PMID:25826532

  13. [Research and application progress of near infrared spectroscopy analytical technology in China in the past five years].

    PubMed

    Chu, Xiao-Li; Lu, Wan-Zhen

    2014-10-01

    In the past decade, near infrared spectroscopy (NIR) has expanded rapidly and been applied widely in many fields in China. The recent progress of the research and application of NIR analytical technology in China especially in the past five years has been reviewed. It includes hardware and software R&D, Chemometric algorithms and experimental methods research, and quantitative and qualitative applications in the typical fields such as food, agriculture, pharmaceuticals, petrochemicals, forestry, and medical diagnosis. 209 references are cited, which are mainly published in national journals, professional magazines, and book chapters. The developing trend of near infrared spectroscopy and the strategies to further promote its innovation and development in China in the near future are put forward and discussed. PMID:25739193

  14. Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques.

    PubMed

    Balabin, Roman M; Safieva, Ravilya Z; Lomakina, Ekaterina I

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm(-1) NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems. PMID:20541639

  15. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  16. Near Infrared Spectroscopy and Imaging of Star Cluster Mercer 17

    NASA Astrophysics Data System (ADS)

    Moreau, Julie May; Clemens, D.; Jameson, K.; Pavel, M.; Pinnick, A.

    2010-01-01

    Mercer 17 is a recently discovered and as yet unstudied candidate star cluster located in the inner disk of the Milky Way (Mercer et al. 2005 ApJ 635, 560). Follow up studies are necessary to test the validity of proposed star clusters identified by imaging. The majority of well studied star clusters are outer galaxy clusters because of decreased extinction there. Using infrared enables probing into the inner galaxy to larger distances and to younger environments. Determining the basic properties of these newly discovered star cluster candidates, like Mercer 17, provides new insight into their formation. We obtained medium resolution (R=560-780) H- and K-band spectroscopy for eight of the brightest stars using the Mimir near-infrared instrument on the Perkins 1.83m telescope outside Flagstaff, Arizona. In addition to the spectroscopy observations, deep JHK band photometry was obtained for the cluster. Using these imaging and spectroscopic data, we present classified spectra and derived magnitudes of the stars in Mercer 17. Combining color magnitude diagrams and spectroscopy, we estimate basic cluster properties including age, distance, and total mass. Partially funded by an Undergraduate Research Opportunities Program (UROP) Award as a Clare Boothe Luce Summer Undergraduate Research Fellow and NSF grants AST 06-07500 and AST 09-07790

  17. Selection of Haploid Maize Kernels from Hybrid Kernels for Plant Breeding Using Near-Infrared Spectroscopy and SIMCA Analysis

    SciTech Connect

    Jones, Roger W.; Reinot, Tonu; Frei, Ursula K.; Tseng, Yichia; Lübberstedt, Thomas; McClelland, John F.

    2012-04-01

    Samples of haploid and hybrid seed from three different maize donor genotypes after maternal haploid induction were used to test the capability of automated near-infrared transmission spectroscopy to individually differentiate haploid from hybrid seeds. Using a two-step chemometric analysis in which the seeds were first classified according to genotype and then the haploid or hybrid status was determined proved to be the most successful approach. This approach allowed 11 of 13 haploid and 25 of 25 hybrid kernels to be correctly identified from a mixture that included seeds of all the genotypes.

  18. Near Infrared Spectroscopy for Burning Plasma Diagnostic Applications

    SciTech Connect

    Soukhanovskii, V A

    2008-06-18

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ion fuel species (H, D, T, Li) and impurities (e.g. He, Be, C, W) is a key element of plasma control and diagnosis on ITER and future magnetically confined burning plasma experiments (BPX). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window and optical fiber transmission under intense neutron and {gamma}-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can address machine protection and plasma control diagnostic tasks, as well as plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma facing component temperatures.

  19. Near-infrared spectroscopy of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hsiao, Eric; Phillips, Mark; Burns, Christopher R.; Contreras, Carlos; Gall, Christa; Hoeflich, Peter; Kirshner, Robert P.; Marion, Howie H.; Morrell, Nidia; Sand, David J.; Stritzinger, Maximillian; Carnegie Supernova Project

    2016-01-01

    Improving the cosmological experiments with Type Ia supernovae (SNe Ia) is now not simply a question of observing more supernovae, since any survey, no matter how large, will ultimately be limited by the systematic errors. It has been clearly demonstrated in a number of studies that SNe Ia are better distance indicators in the near-infrared compared to the optical. As exciting as these new results are, SNe Ia in the NIR are expected to be even better than these studies indicate. A key ingredient for improving SN Ia in the NIR as distance indicators is to obtain NIR spectroscopy to determine precise k-corrections, which account for the effect of cosmological expansion upon the measured magnitudes. Better knowledge of the NIR spectroscopic behaviors, akin to that in the optical, is necessary to reach the distance precision required to identify viable models for dark energy. Carnegie Supernova Project II has built a definitive data set, much improved from previous samples, both in size and quality. With this previously unavailable window, we are also beginning to gain new insight on the physics of these events.

  20. Detecting concealed information using functional near-infrared spectroscopy.

    PubMed

    Sai, Liyang; Zhou, Xiaomei; Ding, Xiao Pan; Fu, Genyue; Sang, Biao

    2014-09-01

    The present study focused on the potential application of fNIRS in the detection of concealed information. Participants either committed a mock crime or not and then were presented with a randomized series of probes (crime-related information) and irrelevants (crime-irrelevant information) in a standard concealed information test (CIT). Participants in the guilty group were instructed to conceal crime-related information they obtained from the mock crime, thus making deceptive response to the probes. Meanwhile, their brain activity to probes and irrelevants was recorded by functional near-infrared spectroscopy (fNIRS). At the group level, we found that probe items were associated with longer reaction times and greater activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex than irrelevant items in the guilty group, but not in the innocent group. These findings provided evidence on neural correlates of recognition during a CIT. Finally, on the basis of the activity in bilateral dorsolateral prefrontal cortex and supplementary motor cortex, the correct classification of guilty versus innocent participants was approximately 75 % and the combination of fNIRS and reaction time measures yielded a better classification rate of 83.3 %. These findings illustrate the feasibility and promise of using fNIRS to detect concealed information. PMID:24514911

  1. Prediction of chicken quality attributes by near infrared spectroscopy.

    PubMed

    Barbin, Douglas Fernandes; Kaminishikawahara, Cintia Midori; Soares, Adriana Lourenco; Mizubuti, Ivone Yurika; Grespan, Moises; Shimokomaki, Massami; Hirooka, Elisa Yoko

    2015-02-01

    In the present study, near-infrared (NIR) reflectance was tested as a potential technique to predict quality attributes of chicken breast (Pectoralis major). Spectra in the wavelengths between 400 and 2500nm were analysed using principal component analysis (PCA) and quality attributes were predicted using partial least-squares regression (PLSR). PCA performed on NIR dataset revealed the influence of muscle reflectance (L(∗)) influencing the spectra. PCA was not successful to completely discriminate between pale, soft and exudative (PSE) and pale-only muscles. High-quality PLSR were obtained for L(∗) and pH models predicted individually (R(2)CV of 0.91 and 0.81, and SECV of 1.99 and 0.07, respectively). Water-holding capacity was the most challenging attribute to determine (R(2)CV of 0.70 and SECV of 2.40%). Sample mincing and different spectra pre-treatments were not necessary to maximise the predictive performance of models. Results suggest that NIR spectroscopy can become useful tool for quality assessment of chicken meat. PMID:25172747

  2. Near-Infrared Spectroscopy for the Evaluation of Anesthetic Depth

    PubMed Central

    Hernandez-Meza, Gabriela; Izzetoglu, Meltem; Osbakken, Mary; Green, Michael; Izzetoglu, Kurtulus

    2015-01-01

    The standard-of-care guidelines published by the American Society of Anesthesiologists (ASA) recommend monitoring of pulse oximetry, blood pressure, heart rate, and end tidal CO2 during the use of anesthesia and sedation. This information can help to identify adverse events that may occur during procedures. However, these parameters are not specific to the effects of anesthetics or sedatives, and therefore they offer little, to no, real time information regarding the effects of those agents and do not give the clinician the lead-time necessary to prevent patient “awareness.” Since no “gold-standard” method is available to continuously, reliably, and effectively monitor the effects of sedatives and anesthetics, such a method is greatly needed. Investigation of the use of functional near-infrared spectroscopy (fNIRS) as a method for anesthesia or sedation monitoring and for the assessment of the effects of various anesthetic drugs on cerebral oxygenation has started to be conducted. The objective of this paper is to provide a thorough review of the currently available published scientific studies regarding the use of fNIRS in the fields of anesthesia and sedation monitoring, comment on their findings, and discuss the future work required for the translation of this technology to the clinical setting. PMID:26495317

  3. Wearable near-infrared spectroscopy neuroimaging and its applications.

    PubMed

    Funane, Tsukasa

    2015-08-01

    Wearable near-infrared spectroscopy (NIRS) systems are expected to be applied in various fields such as health care (medical use), education (teaching), and biofeedback. An investigation on hyperscanning by using NIRS is discussed first, where multiple brains were simultaneously measured for investigating and evaluating important social interactions, such as communication. The relationship between interacting brain activities and performance in cooperation has been demonstrated. An investigation on mood-state measurements in a return-to-work program is next discussed. It has been reported that a specified index calculated using NIRS signals obtained during performance of a working memory task correlated with a mood score. Using this index, the mood states of volunteers who participated in a return-to-work program after psychiatric clinical treatment were monitored. It has been suggested that the relationship between brain activities and subjective assessment of depression mood will be useful for evaluating the recovery stage for return-to-work programs. These techniques open new applications of wearable NIRS systems in mental health care. PMID:26737177

  4. Textile integrated sensors and actuators for near-infrared spectroscopy.

    PubMed

    Zysset, Christoph; Nasseri, Nassim; Büthe, Lars; Münzenrieder, Niko; Kinkeldei, Thomas; Petti, Luisa; Kleiser, Stefan; Salvatore, Giovanni A; Wolf, Martin; Tröster, Gerhard

    2013-02-11

    Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 μm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices. PMID:23481780

  5. Rapid Characterization of Tanshinone Extract Powder by Near Infrared Spectroscopy

    PubMed Central

    Luo, Gan; Xu, Bing; Shi, Xinyuan; Li, Jianyu; Dai, Shengyun; Qiao, Yanjiang

    2015-01-01

    Chemical and physical quality attributes of herbal extract powders play an important role in the research and development of Chinese medicine preparations. The active pharmaceutical ingredients have a direct impact on the herbal extract's efficacy, while the physical properties of raw material affect the pharmaceutical manufacturing process and the final products' quality. In this study, tanshinone extract powders from Salvia miltiorrhiza which are widely used for the treatment of cardiovascular diseases in the clinic are taken as the research object. Both the chemical information and physical information of tanshinone extract powders are analyzed by near infrared (NIR) spectroscopy. The partial least squares (PLS) and least square support vector machine (LS-SVM) models are investigated to build the relationship between NIR spectra and reference values. PLS models performed well for the content of crytotanshinone, tanshinone IIA, the moisture, and average median particle size, while, for specific surface area and tapped density, the LS-SVM models performed better than the PLS models. Results demonstrated NIR to be a valid and fast process analytical technology tool to simultaneously determine multiple quality attributes of herbal extract powders and indicated that there existed some nonlinear relationship between NIR spectra and physical quality attributes. PMID:25866511

  6. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  7. Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Alford, K.; Wickramasinghe, Y.

    2000-05-01

    Near infrared spectroscopy (NIRS) instruments that rely on phase sensitive detection suffer from what is called "phase-amplitude crosstalk," i.e., the phase measured is dependent on the average light intensity entering the detector. Changes in detector rise time with input light intensity is the accepted explanation of this phenomenon. It is concluded here that an additional simple mechanism can cause phase-amplitude errors, particularly if the ratio of the ac component of the detected signal to the dc component is low. It is shown that the form of the phase distortion encountered during the development of a new phase sensitive NIR instrument can be modeled by assuming the presence of a synchronous interfering signal, due to rf coupling, at the detector output. This modeling allows a required margin between the detected signal of interest, i.e., the signal from the tissue and the interfering signal to be set in order to achieve a measured phase accuracy necessary to derive sufficiently accurate clinical parameters.

  8. Application of functional near-infrared spectroscopy in psychiatry.

    PubMed

    Ehlis, Ann-Christine; Schneider, Sabrina; Dresler, Thomas; Fallgatter, Andreas J

    2014-01-15

    Two decades ago, the introduction of functional near-infrared spectroscopy (fNIRS) into the field of neuroscience created new opportunities for investigating neural processes within the human cerebral cortex. Since then, fNIRS has been increasingly used to conduct functional activation studies in different neuropsychiatric disorders, most prominently schizophrenic illnesses, affective disorders and developmental syndromes, such as attention-deficit/hyperactivity disorder as well as normal and pathological aging. This review article provides a comprehensive overview of state of the art fNIRS research in psychiatry covering a wide range of applications, including studies on the phenomenological characterization of psychiatric disorders, descriptions of life-time developmental aspects, treatment effects, and genetic influences on neuroimaging data. Finally, methodological shortcomings as well as current research perspectives and promising future applications of fNIRS in psychiatry are discussed. We conclude that fNIRS is a valid addition to the range of neuroscientific methods available to assess neural mechanisms underlying neuropsychiatric disorders. Future research should particularly focus on expanding the presently used activation paradigms and cortical regions of interest, while additionally fostering technical and methodological advances particularly concerning the identification and removal of extracranial influences on fNIRS data as well as systematic artifact correction. Eventually, fNIRS might be a useful tool in practical psychiatric settings involving both diagnostics and the complementary treatment of psychological disorders using, for example, neurofeedback applications. PMID:23578578

  9. Near-infrared spectroscopy of renal tissue in vivo

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Steinkellner, Oliver; Wabnitz, Heidrun; Macdonald, Rainer; Niendorf, Thoralf; Cantow, Kathleen; Flemming, Bert; Seeliger, Erdmann

    2013-03-01

    We have developed a method to quantify hemoglobin concentration and oxygen saturation within the renal cortex by near-infrared spectroscopy. A fiber optic probe was used to transmit the radiation of three semiconductor lasers at 690 nm, 800 nm and 830 nm to the tissue, and to collect diffusely remitted light at source-detector separations from 1 mm to 4 mm. To derive tissue hemoglobin concentration and oxygen saturation of hemoglobin the spatial dependence of the measured cw intensities was fitted by a Monte Carlo model. In this model the tissue was assumed to be homogeneous. The scaling factors between measured intensities and simulated photon flux were obtained by applying the same setup to a homogeneous semi-infinite phantom with known optical properties and by performing Monte Carlo simulations for this phantom. To accelerate the fit of the tissue optical properties a look-up table of the simulated reflected intensities was generated for the needed range of absorption and scattering coefficients. The intensities at the three wavelengths were fitted simultaneously using hemoglobin concentration, oxygen saturation, the reduced scattering coefficient at 800 nm and the scatter power coefficient as fit parameters. The method was employed to study the temporal changes of renal hemoglobin concentration and blood oxygenation on an anesthetized rat during a short period of renal ischemia induced by aortic occlusion and during subsequent reperfusion.

  10. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  11. Dynamic causal modelling for functional near-infrared spectroscopy

    PubMed Central

    Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757

  12. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    PubMed

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  13. Near-infrared spectroscopy for rapid classification of fruit spirits.

    PubMed

    Jakubíková, M; Sádecká, J; Kleinová, A; Májek, P

    2016-06-01

    Multivariate analysis combined with near-infrared (NIR) spectral analysis was evaluated to classify fruit spirits. A total of 67 fruit spirits (12 apple, 18 apricot, 19 pear and 18 plum spirits) were analyzed. NIR spectra were collected in the wavenumber range of 4000-10,000 cm(-1). Linear discriminant analysis based on principal component analysis (PCA-LDA) and general discriminant analysis (GDA) based directly on NIR spectral data were used to classify the samples. The prediction performance of models in different wavenumber ranges was also investigated. The best PCA-LDA and GDA models gave a 100 % classification of spirits of the four fruit kinds in the wavenumber range from 5500 to 6050 cm(-1) corresponding to either the C-H stretch of the first overtones of CH3 and CH2 groups, or to compounds containing O-H aromatic groups. The results demonstrated that NIR spectroscopy could be used as a rapid method for classification of fruit spirits. PMID:27478236

  14. Quantification of the extracerebral contamination of near infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Mudra, R.; Niederer, P.; Keller, E.

    2005-04-01

    Recently, conventional near infrared spectroscopy (NIRS) for oxymetry has been extended with an indocyanine green (ICG) dye dilution method which allows the estimation of cerebral blood flow (CBF) and cerebral blood volume (CBV). The signal obtained through the skull is substantially influenced by extracerebral tissue. In order to quantify and eliminate extracerebral contamination of the optical density signal we have applied two approaches. Firstly, we used spatially resolved spectroscopy (SRS) with a two receiver arrangement, with separations between emitter and two receivers in distances of d1=4.0cm and d2=6.5cm. The magnitude of the determined extracerebral contamination was verified with NIRS measurements in patients after brain herniation. Intracerebral circulatory arrest was confirmed by transcerebral Doppler examination. Secondly, Monte Carlo simulation was used to simulate the light propagation through the head to quantify the extracerebral contamination of the optical density signal of NIRS. The anatomical structure is determined from 3D-magnetic resonance imaging (MRI) using a voxel resolution of 0.8 x 0.8 x 0 .8 mm3 for three different pairs of T1/T2 values. We segment the MRI data to obtain a material matrix describing the composition of skin, skull, cerebral spinal fluid (CSF), grey and white matter. Each voxel in this material matrix characterizes the light absorption and dispersion coefficient of the identified material. This material matrix is applied in the Monte Carlo simulation. With SRS an extracerebral contamination of 65% of the optical density signal is extracted, while the Monte Carlo simulation results show that the extracerebral contamination decreases from 70% to 30% with increasing emitter-receiver distance. Differences between the NIRS ICG dye dilution technique and conventional NIRS oxymetry concerning the extracerebral contamination are discussed.

  15. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  16. Reliability of Near-Infrared Spectroscopy for Determining Muscle Oxygen Saturation during Exercise

    ERIC Educational Resources Information Center

    Austin, Krista G.; Daigle, Karen A.; Patterson, Patricia; Cowman, Jason; Chelland, Sara; Haymes, Emily M.

    2005-01-01

    Near-infrared spectroscopy is currently used to assess changes in the oxygen saturation of the muscle during exercise. The primary purpose of this study was to assess the reliability of near-infrared spectroscopy in determining muscle oxygen saturation (StO[subscript 2]) in the vastus lateralis during cycling and the gastrocnemius during running…

  17. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  18. Fetal oxygenation measurement using wireless near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan

    2012-03-01

    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  19. MOS spectroscopy with the JWST Near-Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Karakla, Diane M.; Beck, Tracy; Gilbert, Karoline; Pontoppidan, Klaus Martin; Curtis, Gary; Shyrokov, Alexander

    2015-08-01

    The James Webb Space Telescope's Near-Infrared Spectrograph (NIRSpec) will feature astronomy’s first space-based, multi-object spectroscopic (MOS) capability enabled by the instrument’s micro-shutter array (MSA). The MSA is a four-quadrant fixed grid of nearly 250,000 tiny shutters that can be configured into slits on multiple astronomical targets in a field. In MOS mode, NIRSpec can obtain spectra of more than 100 targets simultaneously in one of three spectral bands (1.0 - 1.8 μm, 1.7 - 3.0 μm, and 2.9 - 5.0 μm) at medium (R~1000) or high resolution (R~2700) with the gratings, or at lower resolution (R~100, 0.6 - 5.0 μm) with the PRISM. The NIRSpec team and software developers at the Space Telescope Science Institute (STScI) have developed an MSA Planning Tool (MPT) to facilitate the complex observation planning process for a variety of observing strategies. The purpose of the tool is to find optimal pointings on the sky where many sources (or many high-valued sources) can be observed at a given pointing, or through a set of telescope dithers, and to design the associated MSA configurations at each position. The MPT is available to the astronomical community as part of the Astronomer’s Proposal Tool (APT), an integrated software package developed by STScI for the preparation of observing proposals. We will summarize the operational concept for MOS spectroscopy with the instrument, describe the MSA Planning Tool and its algorithms, and highlight recent developments that extend the tool’s applicability to diverse science cases.

  20. Near-infrared Spectroscopy of EX Lupi in Outburst

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Goto, M.; Regály, Zs.; Dullemond, C. P.; Henning, Th.; Juhász, A.; Sicilia-Aguilar, A.; van den Ancker, M.

    2011-07-01

    EX Lup is the prototype of the EXor class of young eruptive stars: objects showing repetitive brightenings due to increased accretion from the circumstellar disk to the star. In this paper, we report on medium-resolution near-infrared spectroscopy of EX Lup taken during its extreme outburst in 2008, as well as numerical modeling with the aim of determining the physical conditions around the star. We detect emission lines from atomic hydrogen, helium, and metals, as well as first overtone bandhead emission from carbon monoxide. Our results indicate that the emission lines are originating from gas located in a dust-free region within ≈0.2 AU of the star. The profile of the CO bandhead indicates that the CO gas has a temperature of 2500 K and is located in the inner edge of the disk or in the outer parts of funnel flows. The atomic metals are probably colocated with the CO. Some metallic lines are fluorescently excited, suggesting direct exposure to ultraviolet photons. The Brackett series indicates emission from hot (10,000 K) and optically thin gas. The hydrogen lines display a strong spectro-astrometric signal, suggesting that the hydrogen emission is probably not coming from an equatorial boundary layer; a funnel flow or disk wind origin is more likely. This picture is broadly consistent with the standard magnetospheric accretion model usually assumed for normally accreting T Tauri stars. Our results also set constraints on the eruption mechanism, supporting a model where material piles up around the corotation radius and episodically falls onto the star.

  1. Effect of mechanical optical clearing on near-infrared spectroscopy.

    PubMed

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations. PMID:26041069

  2. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  3. Astronomical Spectroscopy: Calibration Sources for the Near Infrared

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Aldenius, Maria; Nave, Gillian; Sansonetti, Craig J.; Ralchenko, Yuri

    2009-05-01

    The European Southern Observatory (ESO) operates a multitude of telescopes and instruments at its La Silla Paranal Observatory in Chile. The most powerful ones are the four 8-m telescopes of the Very Large Telescope (VLT). ESO is currently studying an Extremely Large Telescope (ELT) with a diameter of the primary mirror of 42 m. This telescope will make use of various techniques of adaptive optics (AO) to counter the perturbing effect of Earth's atmosphere. Due to the wavelength dependent performance of AO the European ELT (E-ELT) will be most powerful in the near-infrared (IR) domain. A collaboration of ESO and the US Institute for Standards and Technology (NIST) has successfully established wavelength standards in the emission spectrum of Th-Ar hollow cathode lamps for high resolution spectroscopy. This has been a major advancement for near-IR astronomy, which has traditionally relied on atmospheric features for wavelength calibration. ESO and NIST report on joint efforts to identify and establish the best sources for wavelength calibration for the 2nd generation of VLT instrument and for the E-ELT. To this end we are studying the near-IR spectra of various elements. With the focus of astronomy moving toward IR wavelengths the astronomical community will have a need for a large amount of atomic and molecular data in order to perform the scientific analysis of their data. It will be essential that the long-standing and fruitful collaboration between astrophysics and the atomic and molecular physics community continues in the future.

  4. Evaluation of Phalaenopsis flowering quality using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Chuang, Yung-Kun; Tsai, Chao-Yin; Chang, Yao-Chien A.; Yang, I.-Chang; Chang, Yung-Huei; Tai, Chu-Chun; Hou, Jiunn-Yan

    2013-05-01

    Carbohydrate contents have been demonstrated as indicators for flowering quality of Phalaenopsis plants. In this study, near infrared reflectance (NIR) spectroscopy was employed for quantitative analysis of carbohydrate contents like fructose, glucose, sucrose, and starch in Phalaenopsis. The modified partial least squares regression (MPLSR) method was adopted for spectra analyses of 176 grown plant samples (88 shoots and 88 roots), over the full wavelength range (FWR, 400 to 2498 nm). For fructose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.210% DW, SEV = 0.324% DW) in the wavelength ranges of 1400-1600, 1800-2000, and 2200-2300 nm. For glucose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.975, SEC = 0.196% DW, SEV = 0.264% DW) in the wavelength range of 1400-1600, 1800-2000, and 2100-2400 nm. For sucrose concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.961, SEC = 0.237% DW, SEV = 0.322% DW) in the wavelength range of 1300-1400, 1500-1800, 2000-2100, and 2200-2300 nm. For starch concentrations, the smoothing 1st derivative model can produce the best effect (Rc = 0.873, SEC = 0.697% DW, SEV = 0.774% DW) in the wavelength ranges of 500-700, 1200-1300, 1700-1800, and 2200-2300 nm. This study successfully developed the calibration models for inspecting concentrations of carbohydrates to predict the flowering quality in different cultivation environments of Phalaenopsis. The specific wavelengths can be used to predict the quality of Phalaenopsis flowers and thus to adjust cultivation managements.

  5. Near infrared spectroscopy monitoring in the pediatric cardiac catheterization laboratory.

    PubMed

    Tanidir, Ibrahim Cansaran; Ozturk, Erkut; Ozyilmaz, Isa; Saygi, Murat; Kiplapinar, Neslihan; Haydin, Sertac; Guzeltas, Alper; Odemis, Ender

    2014-10-01

    Near-infrared spectroscopy (NIRS) is a noninvasive method used to evaluate tissue oxygenation. We evaluated the relationship between cerebral and renal NIRS parameters during transcatheter intervention and adverse events in the catheterization room. Between January 1 and May 31, 2012, 123 of 163 pediatric patients undergoing cardiac catheterization were followed by NIRS. All were monitored by electrocardiography, noninvasive blood pressure measurement, pulse oxymetry, initial and final blood lactate level measurement. The number of interventional procedures was 73 (59%). During the procedures, 39 patients experienced a total of 41 adverse events: 18 (19.5%) had desaturation, 10 (8.1%) arrhythmia, three (2.4%) had respiratory difficulty, six (4.8%) had a situation calling for cardiopulmonary resuscitation, three (2.4%) had anemia necessitating transfusion, and one (0.8%) had a cyanotic spell. Cranial NIRS values worsened in 12 (9.8%) and renal measurements worsened in 13 (12.5%) patients. The sensitivity and specificity of a 9% impairment of cranial values were 90 and 61%, respectively, while the corresponding calculations for a 21% fall in renal measurements were 54% sensitivity and 90% specificity. When arrhythmia developed, NIRS values fell simultaneously, while the development of a desaturation problem was heralded by NIRS falling 10-15 s earlier than changes in pulse oxymetry; on improving saturation, NIRS returned to earlier values 10-15 s before pulse oxymetry readings. NIRS monitoring may provide an early warning with regard to complications likely to develop during a procedure. A fall of 9% in cranial NIRS values, or of 21% in renal measurements, should raise clinician awareness. PMID:24404951

  6. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis.

    PubMed

    Liu, Fei; He, Yong; Wang, Li

    2008-05-12

    Near infrared (NIR) spectroscopy based on effective wavelengths (EWs) and chemometrics was proposed to discriminate the varieties of fruit vinegars including aloe, apple, lemon and peach vinegars. One hundred eighty samples (45 for each variety) were selected randomly for the calibration set, and 60 samples (15 for each variety) for the validation set, whereas 24 samples (6 for each variety) for the independent set. Partial least squares discriminant analysis (PLS-DA) and least squares-support vector machine (LS-SVM) were implemented for calibration models. Different input data matrices of LS-SVM were determined by latent variables (LVs) selected by explained variance, and EWs selected by x-loading weights, regression coefficients, modeling power and independent component analysis (ICA). Then the LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS-DA model, and the optimal LS-SVM model was achieved with EWs (4021, 4058, 4264, 4400, 4853, 5070 and 5273 cm(-1)) selected by regression coefficients. The determination coefficient (R(2)), RMSEP and total recognition ratio with cutoff value +/-0.1 in validation set were 1.000, 0.025 and 100%, respectively. The overall results indicted that the regression coefficients was an effective way for the selection of effective wavelengths. NIR spectroscopy combined with LS-SVM models had the capability to discriminate the varieties of fruit vinegars with high accuracy. PMID:18440358

  7. Near-Infrared Spectroscopy as a Diagnostic Tool for Distinguishing between Normal and Malignant Colorectal Tissues

    PubMed Central

    Chen, Hui; Lin, Zan; Mo, Lin; Wu, Tong; Tan, Chao

    2015-01-01

    Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations. The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA) was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training, optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three wavenumbers/variables (4065, 4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3% for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues. PMID:25654106

  8. Challenging near infrared spectroscopy discriminating ability for counterfeit pharmaceuticals detection.

    PubMed

    Storme-Paris, I; Rebiere, H; Matoga, M; Civade, C; Bonnet, P-A; Tissier, M H; Chaminade, P

    2010-01-25

    This study was initiated by the laboratories and control department of the French Health Products Safety Agency (AFSSAPS) as part of the fight against the public health problem of rising counterfeit and imitation medicines. To test the discriminating ability of Near InfraRed Spectroscopy (NIRS), worse cases scenarios were first considered for the discrimination of various pharmaceutical final products containing the same Active Pharmaceutical Ingredient (API) with different excipients, such as generics of proprietary medicinal products (PMP). Two generic databases were explored: low active strength hard capsules of Fluoxetine and high strength tablets of Ciprofloxacin. Then 4 other cases involving suspicious samples, counterfeits and imitations products were treated. In all these cases, spectral differences between samples were studied, giving access to API or excipient contents information, and eventually allowing manufacturing site identification. A chemometric background is developed to explain the optimisation methodology, consisting in the choices of appropriate pretreatments, algorithms for data exploratory analyses (unsupervised Principal Component Analysis), and data classification (supervised cluster analysis, and Soft Independent Modelling of Class Analogy). Results demonstrate the high performance of NIRS, highlighting slight differences in formulations, such as 2.5% (w/w) in API strength, 1.0% (w/w) in excipient and even coating variations (<1%, w/w) with identical contents, approaching the theoretical limits of NIRS sensitivity. All the different generic formulations were correctly discriminated and foreign PMP, constituted of formulations slightly different from the calibration ones, were also all discriminated. This publication addresses the ability of NIRS to detect counterfeits and imitations and presents the NIRS as an ideal tool to master the global threat of counterfeit drugs. PMID:20103090

  9. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  10. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  11. Using Visible/Near-Infrared Spectroscopy to Identify Cryptotephra Layers

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Thomson, B. J.; Fisher, E.

    2014-12-01

    Continually accumulating marine sediments incorporate tephra layers within their depositional record that can be linked to individual explosive volcanic events. These layers can range from several meters in thickness, to discrete layers invisible to the naked eye (cryptotephra). Identification of cryptotephra layers is paramount for complete characterization of the eruptive record of a volcanic center, not just the largest eruptive events. However, cryptotephra recognition is hampered by their small volume in most drill cores. A non-destructive method to distinguish tephra layers, particularly those of a high silica nature which may not be readily detectable with magnetic methods, is visible/near-infrared (Vis/NIR) spectroscopy. The Vis/NIR region of the light spectrum contains strong absorption features due to charge-transfer absorptions in transition metals (dominated by iron) and vibration and overtone bands due to hydroxyl and water (including near 1.4 μm, 1.9 μm, and 2.2-2.5 μm). The exact position and nature of these bands provide a means to identify various carbonate-, hydroxyl-, iron-, phyllosilicate-, sulfate-, and water-bearing minerals (e.g., Pieters and Englert, 1993). We produced a series of mixtures of hemipelagic sediment and tephra which were used to identify band positions and features which strongly correlate with the presence of tephra (see figure). The addition of ~15-20 wt.% tephra to a sediment results in recognizable spectral changes. The mixture data was used to create a MATLAB program to run unknown sample analyses through. We then used an ASD FieldSpec to collect Vis/NIR data (0.39-2.5 μm) on the upper 10 m of core collected during IODP 340 (U1396C) off the coast of Montserrat at 0.5 cm resolution and applied our tephra recognition program to this data. We identified 29 potential cryptotephra layers in the 10 m analyzed. Dissolution techniques are being completed to corroborate the spectral data.

  12. Using near infrared spectroscopy to classify soybean oil according to expiration date.

    PubMed

    da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano

    2016-04-01

    A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples. PMID:26593525

  13. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong; Hu, Xingyue

    2007-12-01

    An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.

  14. [Applications of On-Line Near Infrared Spectroscopy Monitoring Technology in Polymer Processing].

    PubMed

    Chen, Ru-huang; Wang, Xiao-lin; Lin, Xiao-kai; Hu, Xin; Jin, Gang

    2015-06-01

    Due to the significant impact of processing on the performance of polymer products, it is crucial to develop in-line monitoring methods on processing. Based on the feedback data from in-line monitoring the processing parameters can be adjusted, which will contribute to the stability of production, thereby ensuring product quality, reducing energy waste and improving production efficiency. Near infrared spectroscopy (NIR), a low-cost, real-time and accurately quantitative analysis technology, has been widely used in many areas but still under study in polymer processing. The applications of in-line NIR monitoring technology in measuring the content of component, melt index, melt density and dispersion of filler of polymer during processing were reviewed. The existing problems about in-line NIR monitoring technology were pointed out, as well as the suggestions for the corresponding problems. The future trends of in-line NIR monitoring technology were discussed. With the development of fiber optic spectrometer, computer science and chemometrics, it is foreseen that the in-line NIR monitoring technology will make considerable progress in the stability of raw data, methods of pretreatment and modeling, the robustness and accuracy of model. Therefore, in-line NIR monitoring technology will be applied to more areas generating the great economic and environmental value. PMID:26601357

  15. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  16. Near infrared spectroscopy--investigations in neurovascular diseases.

    PubMed

    Schytz, Henrik Winther

    2015-12-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes in cerebral blood flow (CBF), the first study investigated a multi-source detector separation configuration and indocyanine green (ICG) as a tracer to calculate a corrected blood flow index (BFI) value. The study showed no correlation between CBF changes measured by 133Xenon single photon emission computer tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase and gain directly and over time. Migraine may be associated with persistent impairment of neurovascular coupling, but there is no experimental evidence to support this. The third study therefore investigated interictal neurovascular coupling during a mental task by a Stroop test in migraine without aura (MO) patients, which is the most common type of migraine. The study showed intact neurovascular coupling in the prefrontal cortex outside of attacks in patients with MO. The fourth study aimed to investigate possible changes in LFOs amplitude following nitric oxide (NO) donor infusion in familial hemiplegic migraine (FHM), which is a rare Mendelian subtype of migraine with aura. This study showed increased LFOs amplitude only in FHM patients with co-existing common type of migraine

  17. Using near-infrared spectroscopy for characterization of transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Aronson, E.; Waldén, P.

    2015-06-01

    Context. We propose a method for observing transiting exoplanets with near-infrared high-resolution spectrometers. Aims: We aim to create a robust data analysis method for recovering atmospheric transmission spectra from transiting exoplanets over a wide wavelength range in the near-infrared. Methods: By using an inverse method approach, combined with stellar models and telluric transmission spectra, the method recovers the transiting exoplanet's atmospheric transmittance at high precision over a wide wavelength range. We describe our method and have tested it by simulating observations. Results: This method is capable of recovering transmission spectra of high enough accuracy to identify absorption features from molecules such as O2, CH4, CO2, and H2O. This accuracy is achievable for Jupiter-size exoplanets at S/N that can be reached for 8 m class telescopes using high-resolution spectrometers (R> 20 000) during a single transit, and for Earth-size planets and super-Earths transiting late K or M dwarf stars at S/N reachable during observations of less than 10 transits. We also analyse potential error sources to show the robustness of the method. Conclusions: Detection and characterization of atmospheres of both Jupiter-size planets and smaller rocky planets looks promising using this set-up.

  18. Identification of Different Varieties of Sesame Oil Using Near-Infrared Hyperspectral Imaging and Chemometrics Algorithms

    PubMed Central

    Xie, Chuanqi; Wang, Qiaonan; He, Yong

    2014-01-01

    This study investigated the feasibility of using near infrared hyperspectral imaging (NIR-HSI) technique for non-destructive identification of sesame oil. Hyperspectral images of four varieties of sesame oil were obtained in the spectral region of 874–1734 nm. Reflectance values were extracted from each region of interest (ROI) of each sample. Competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA) and x-loading weights (x-LW) were carried out to identify the most significant wavelengths. Based on the sixty-four, seven and five wavelengths suggested by CARS, SPA and x-LW, respectively, two classified models (least squares-support vector machine, LS-SVM and linear discriminant analysis,LDA) were established. Among the established models, CARS-LS-SVM and CARS-LDA models performed well with the highest classification rate (100%) in both calibration and prediction sets. SPA-LS-SVM and SPA-LDA models obtained better results (95.59% and 98.53% of classification rate in prediction set) with only seven wavelengths (938, 1160, 1214, 1406, 1656, 1659 and 1663 nm). The x-LW-LS-SVM and x-LW-LDA models also obtained satisfactory results (>80% of classification rate in prediction set) with the only five wavelengths (921, 925, 995, 1453 and 1663 nm). The results showed that NIR-HSI technique could be used to identify the varieties of sesame oil rapidly and non-destructively, and CARS, SPA and x-LW were effective wavelengths selection methods. PMID:24879306

  19. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  20. The value of near infrared spectroscopy in a small hospital compounding unit to control the risks associated with raw materials.

    PubMed

    Storm-Paris, Isabelle; Storme, Thomas; Thauvin, Maxime; Brion, Francoise; Chaminade, Pierre; Rieutord, Andre

    2009-01-01

    Pharmaceutical products, including capsules, oral suspensions, and solutions, are prepared by hospital pharmacists if no commercial product is available. Identification of the raw materials is a regulatory requirement before manufacturing (compounding). Because of the standard methods used, however, this is often time-consuming and laborious in a hospital setting. This article describes the use of near infrared spectroscopy in combination with chemometric methods for discrimination of raw materials. Sixty-three pulverized powder samples were discriminated by using reference samples (identity guaranteed by supplier and confirmed by mid infrared analyses) and NIRCal cluster analyses. A routine expert application involving optimized calibrations (n=6) was developed, which allowed a rapid and nondestructive release procedure for every powder-based raw material received. This technique is superior to established identification analyses because of reduced quarantine times and cost savings. PMID:23969968

  1. Near infrared spectroscopy for counterfeit detection using a large database of pharmaceutical tablets.

    PubMed

    Dégardin, Klara; Guillemain, Aurélie; Guerreiro, Nicole Viegas; Roggo, Yves

    2016-09-01

    Medicine counterfeiting is one of the current burdens of the pharmaceutical world. Reliable technologies have become available for the chemical analysis of suspect medicines. Near infrared spectroscopy (NIRS) allows for instance fast, specific and non-destructive authentication of pharmaceutical products. In this paper, a NIRS method is presented for the identification of 29 different pharmaceutical product families of tablets, one family containing one or more formulation (s), e.g. different dosages. This selection represents the whole tablet portfolio of our firm. The high number of product families constituted a challenge, given that the measurement of the samples, made on two similar instruments, generated a dataset of 7120 spectra. Several chemometric tools proved efficient for the identification of these medicines. The dataset was first investigated with a Principal Component Analysis (PCA) in order to provide an overview of the distribution of the samples. The K-Nearest Neighbors (KNN), the Support Vector Machines (SVM) and the Discriminant Analysis (DA) supervised classification tools were successfully applied and generated an outstanding classification rate of 100% of correct answer. The methods were then fully validated with an independent set of spectra. The DA was selected as the method for the routine analysis of suspect tablets with the Mahalanobis distance as acceptance criterion for identification. Counterfeits, generics and placebos samples, constituting a second validation set, were tested and rejected by the method. NIRS has thus been demonstrated as an efficient tool for the quick identification of a large dataset of pharmaceutical tablets and the detection of counterfeit medicines. PMID:27236101

  2. Near-Infrared Spectroscopy of 12 Outer Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Takir, Driss; Emery, J. P.

    2010-10-01

    We have begun a project to quantify the degree of aqueous alteration in CM carbonaceous chondrites, obtain spectra of these chondrites, and measure spectra of possibly related outer Main Belt asteroids in order to explore the nature of aqueous alteration on these asteroids. In this first stage of the project, we will present the near-infrared (NIR) spectra of 12 outer Main Belt asteroids (2.59 < a < 3.96 AU). The asteroids include, 10 Hygiea, 76 Friea, 91 Aegina, 107 Camila, 104 Klymene, 121 Hemione, 153 Hilda, 308 Polyxo, 334 Chicago, 361 Bononia, 401 Ottilia, and 790 Pretoria. We collected the spectra of these asteroids between April 2009 and April 2010, using the long wavelength cross-dispersed (LXD) mode (1.9-4.1-µm) of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). We also observed some of these asteroids with the prism mode (0.8-2.5-µm). For data reduction, we used Spextool, a set of Interactive Data Language routines provided by the IRTF. Except for 91 Aegina, all observed asteroids exhibit an absorption feature near 3-µm, which is attributed to hydrated minerals and/or H2O ice. The hydrated mineral features on these asteroids show two different band shapes, weak "rounded” H2O-like absorption band and deeper "checkmark” OH-like absorption band. The former band shape is much more common in our sample than the latter band shape.

  3. AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Lee, Jong Chul; Lee, Myung Gyoon; Hwang, Ho Seong

    2012-09-01

    We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

  4. Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants.

    PubMed

    Iverson, Nicole M; Bisker, Gili; Farias, Edgardo; Ivanov, Vsevolod; Ahn, Jiyoung; Wogan, Gerald N; Strano, Michael S

    2016-05-01

    Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life. PMID:27305824

  5. Near Infrared Spectroscopy of Active Galactic Nuclei Using FSpec

    NASA Astrophysics Data System (ADS)

    Frechem, Joshua; Pessev, Peter

    2015-01-01

    Using data from the 2.3 meter Bok telescope on Kitt Peak and the FRANKENSpec spectrograph, we aim to investigate the circumnuclear region of over twenty active galaxies in the J, H, and K passbands in order to obtain high signal to noise spectra with reasonable investment of observing time. The sample is selected to cover a wide range of AGN types of activity in luminous nearby galaxies. The primary goal of this project was to sort and process the 9,000+ spectra, including dark subtraction, flat fielding, and creation of and application of bad pixel masks. The 2-D spectra were processed to a 1-D spectra and wavelength calibrated to reveal the exact wavelength of each peak in the spectra. Using standard stars is of utmost importance so the atmospheric lines can be corrected for and the data can be used for precise analysis. With the reduced and calibrated spectra, we measure the Paschen α, β, and γ Hydrogen lines, the Brackett γ Hydrogen line and the FeII line in the near infrared emitted from the circumnuclear regions of the galaxies. These data unveil details of what the environment is like in the area surrounding the supermassive black holes that are found in the heart of each of these galaxies.

  6. Predicting beef tenderness using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jeyamkondan, Subbiah; Kranzler, Glenn A.; Morgan, Brad J.; Rust, Sarah

    2004-03-01

    A near-infrared spectral reflectance system was developed and tested online to predict 14-day aged, cooked beef tenderness. A contact probe with a built-in tungsten-halogen light source supplied broadband light to the ribeye surface. Fiberoptics in the probe transmitted reflected light to a spectrometer with a spectral range of 400-2500 nm. In the first phase, steak samples (n=292) were brought from packing plants to the lab and scanned with the spectrometer. After scanning, samples were vacuum-packaged and aged for 14 days. They were then cooked in an impingement oven to an internal temperature of 70°C. Slice-shear force values were recorded for tenderness reference. In phase two, the spectrometer was modified for packing plant conditions. Spectral scans were obtained on-line on ribbed carcasses (n=276). A partial least square regression model was developed to predict tenderness scores from spectral reflectance. In phase three, the developed model was validated by scanning carcasses (n=200) on-line. The predicted shear-force values and samples were sent to the U.S. Meat Animal Research Center for third-party validation. At up to 70% certification levels, the system was able to successfully sort tough from tender carcasses.

  7. [Studies on Cancer Diagnosis by Using Spectroscopy Combined with Chemometrics].

    PubMed

    Zhang, Zhuo-yong

    2015-09-01

    Studies on cancer diagnosis using various spectroscopic methods combined with chemometrics are briefly reviewed. Elemental contents in serum samples were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES), bidirectional associative memory (BAM) networks were used to establish diagnosis models for the relationships between elemental contents and lung cancer, liver cancer, and stomach cancer, respectively. Near infrared spectroscopy (NIRS) is a non-destructive detection technology. Near infrared spectra of endometrial carcinoma samples were determined and spectral features were extracted by chemoometric methods, a fuzzy rule-based expert system (FuRES) was used for establishing diagnosis model, satisfactory results were obtained. We also proposed a novel variable selection method based on particle swarm optimization (PSO) for near infrared spectra of endometrial carcinoma samples. Spectra with optimized variable were then modeled by support victor machine (SVM). Terahertz technology is an emerging technology for non-destructive detection, which has some unique characteristics. Terahertz time domain spectroscopy (THz-TDS) was used for cervical carcinoma measurement. Absorption coefficients were calculated from the measured time domain spectra and then processed with derivative, orthogonal signal correction (PC-OSC) to reduce interference components, and then fuzzy rule-based expert system (FuRES), fuzzy optimal associative memory (FOAM), support victor machine (SVM), and partial least squares discriminant analysis (PLS-DA) were used for diagnosis model establishment. The above results provide useful information for cancer occurring and development, and provide novel approaches for early stage diagnosis of various cancers. PMID:26669135

  8. Near Infrared Spectroscopy of B-type Asteroids

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Jewitt, D.

    2009-09-01

    Most small bodies in the Solar system possess optical colors that are either redder than, or comparable to, the Solar colors in the wavelength region from 0.4 to 0.9 µm. However, a small fraction, about 1 out of every 23 asteroids, is found to be bluer than the Sun. These rare, blue asteroids, of which 2 Pallas is the largest and most famous example, are classified as B-types in the Bus spectral taxonomy. The paucity of B-types already makes these objects interesting. Moreover, several meteor shower-associated asteroids (e.g. 3200 Phaethon, 2005 UD) are found to be blue in the optical. Furthermore, the available optical spectra of the main belt comets 133P and 176P are similar to those of the B-type asteroids. However, B-type asteroids remain largely unexamined as a group and our knowledge of their properties is correspondingly limited. For this reason, we undertook a focused, spectroscopic study of 20 B-type asteroids using the 3-meter IRTF telescope atop Mauna Kea, Hawaii. The spectra show that optically similar B-type asteroids are spectrally diverse in the near infrared. We find that the negative optical spectral slope is due to the presence of a broad absorption band centered near 1.0 µm. Amongst the meteorites, the best spectral analogs are found in the unusual CI and CM carbonaceous chondrites. The 1.0 µm absorption feature in several objects is very well matched by the reflection spectrum of magnetite. We will present our observations of the 20 B-type asteroids and discuss the possible aqueous alteration history of these objects.

  9. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  10. Mid- Versus Near-Infrared Reflectance Spectroscopy for On-Site Determination of Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has demonstrated that the determination of soil C diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is often more accurate and produces more robust calibrations than near-infrared (NIR) reflectance spectroscopy (NIRS) when analyzing ground, dry soils. DRIFTS is also not ...

  11. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  12. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food. PMID:16395887

  13. Quantitative analysis of peanut oil content in ternary blended edible oil using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Huacai; Liu, Fuli; Wang, Zhilan; Jin, Shangzhong

    2008-03-01

    Calibration models of quantitative analysis of peanut oil content in ternary blended edible oil by near infrared spectroscopy were built using partial least square (PLS) regression. A total of 92 samples blended with three kinds of pure oil in different proportion (V/V) were prepared. Near infrared diffuse reflectance spectra of the samples were collected over 4 000 cm -1-10 000 cm -1 spectral region with a FT-NIR spectrometer. A calibration model of prediction to the peanut oil content was established with PLS using the original spectra and validated with leave-one-out cross validation method. The correlation coefficient and the RMSEC of the model were 0.9926 and 2.91%, respectively. The result showed that near infrared spectroscopy could be an ideal tool for fast determination to the peanut oil content in blended edible oil.

  14. Research on content measurement of textile mixture by near infrared spectroscopy based on principal component regression

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Li

    2010-07-01

    A new method for accurate measurement of content of textile mixture by use of Fourier transform near infrared spectroscopy is put forward. The near infrared spectra of 56 samples with different cotton and polyester contents were obtained, in which 41 samples, 10 samples and 5 samples were used for the calibration set, validation set and prediction set respectively. Principal component analysis (PCA) was utilized for the spectra data compression. Principal component regression (PCR) model was developed. It indicates that the MAE is within 2.9% and the RMSE is less than 3.6% for the validation samples, which is suitable for the prediction of unknown samples. The PCR model was applied to predict unknown samples. Experimental results show that this approach by use of Fourier transform Near Infrared Spectroscopy can be used to quantitative analysis for textile fiber.

  15. [Near Infrared Spectroscopy of the Cretaceous Red Beds in Inner Mongolia Dongshengmiao].

    PubMed

    Liao, Yi-peng; Cao, Jian-jin; Wu, Zheng-quan; Luo, Song-ying; Wang, Zheng-yang

    2015-09-01

    Take the cores and surface weathered soil from the Cretaceous red beds in the western of Dongshengmiao mine of Inner Mongolia and analysis with near-infrared spectroscopy. The result shows that near-infrared spectroscopy can identify mineral quickly through the characteristic absorption peaks of each group. The Cretaceous red beds in the western of Dongshengmiao mine is argillaceous cementation, it is mainly composed of quartz, feldspar, montmorillonite, illite, chlorite, muscovite etc, the mineral composition is mainly affected by the upstream source area. The clay mineral like montmorillonite water swelling and uneven drying shrinkage expands the original crack and creates new cracks, reduces its strength, which is the mainly reason of its disintegration. According to the composition of clay mineral, we speculate its weathering process is mainly physical weathering, the climate during the weathering is cold and dry. The results can not only improve the geological feature of the mining area, but also show that the near-infrared spectroscopy technology can analyze the mineral composition of soil and rock effectively on the basis of Mineral spectroscopy, which demonstrates the feasibility of the near-infrared spectroscopy can analyze minerals in soil and rock quickly, that shows the feasibility in geology study, provides new ideas for the future research of soil and rock. PMID:26669159

  16. Portable microcontroller-based instrument for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Giardini, Mario E.; Corti, Mario; Lago, Paolo; Gelmetti, Andrea

    2000-05-01

    Near IR Spectroscopy (NIRS) can be employed to noninvasively and continuously measure in-vivo local changes in haemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring. We present a portable NIRS research-grade acquisition system prototype, strictly dedicate to low-noise measurements during muscular exercise. The prototype is able to control four LED sources and a detector. Such a number of sources allows for multipoint measurements or for multi-wavelength spectroscopy of tissue constituents other than oxygen, such as cytochrome aa3 oxidation. The LEDs and the detector are mounted on separate probes, which carry also the relevant drivers and preamplifiers. By employing surface-mount technologies, probe size and weight are kept to a minimum. A single-chip mixed-signal RISC microcontroller performs source-to- detector multiplexing with a digital correlation technique. The acquired data are stored on an on-board 64 K EEPROM bank, and can be subsequently uploaded to a personal computer via serial port for further analysis. The resulting instrument is compact and lightweight. Preliminary test of the prototype on oxygen consumption during tourniquet- induced forearm ischaemia show adequate detectivity and time response.

  17. Near-infrared spectroscopy of the Sun and HD 20010. Compiling a new line list in the near-infrared

    NASA Astrophysics Data System (ADS)

    Andreasen, D. T.; Sousa, S. G.; Delgado Mena, E.; Santos, N. C.; Tsantaki, M.; Rojas-Ayala, B.; Neves, V.

    2016-01-01

    Context. Effective temperature, surface gravity, and metallicity are basic spectroscopic stellar parameters necessary to characterize a star or a planetary system. Reliable atmospheric parameters for FGK stars have been obtained mostly from methods that rely on high resolution and high signal-to-noise optical spectroscopy. The advent of a new generation of high resolution near-infrared (NIR) spectrographs opens the possibility of using classic spectroscopic methods with high resolution and high signal-to-noise in the NIR spectral window. Aims: We compile a new iron line list in the NIR from a solar spectrum to derive precise stellar atmospheric parameters, comparable to the ones already obtained from high resolution optical spectra. The spectral range covers 10 000 Å to 25 000 Å , which is equivalent to the Y,J,H, and K-bands. Methods: Our spectroscopic analysis is based on the iron excitation and ionization balance done in local thermodynamic equilibrium. We use a high resolution and high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as a starting point to compile the iron line list. The oscillator strengths (log gf) of the iron lines were calibrated for the Sun. The abundance analysis was done using the MOOG code after measuring equivalent widths of 357 solar iron lines. Results: We successfully derived stellar atmospheric parameters for the Sun. Furthermore, we analysed HD 20010, a F8IV star, from which we derived stellar atmospheric parameters using the same line list as for the Sun. The spectrum was obtained from the CRIRES-POP database. The results are compatible with the values found in the literature, confirming the reliability of our line list. However, we obtain large errors due to the quality of the data. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A143

  18. Near-infrared spectroscopy of proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.; Kwok, Sun; Geballe, T. R.

    1994-01-01

    Sixteen proto-planetary nebulae were observed with low-resolution infrared spectroscopy in the H and K bands, and four were observed in the L band. In the H band, most of the objects show hydrogen Brackett lines (from n = 10 goes to 4 to n = 20 goes to 4) in absorption. In the K band, absorption bands (delta (nu) = 2) of CO were observed to as high as nu = 6 goes to 4, and in three cases the CO bands are in emission. The CO spectrum of 22272 + 5435 was found to change from emission to absorption over a 3 month interval. The CO emission most likely arises from collisional excitation resulting from recent episodes of mass loss. One new object which possibly shows weak 3.3 micron emission was found.

  19. Quantification of rosmarinic acid levels by near infrared spectroscopy in laboratory culture grown spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid quantization of rosmarinic acid (RA) in tissues of spearmint using near-infrared (NIR) spectroscopy was developed by correlating with the results of methanol extracts analyzed on a HPLC photo-diode array (PDA) system. NIR and HPLC analyses performed on over 500 samples were u...

  20. Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers have used various hyperspectral systems, covering several areas of the electromagnetic spectrum to investigate all types of disease/plant interactions. The purpose of this research was to investigate using visible and near-infrared (400-1100nm) spectroscopy to differentiate HLB infected...

  1. Visible and near-infrared spectroscopy detects queen honey bee insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the...

  2. NEAR INFRARED IMAGING SPECTROSCOPY FOR DETECTING NEW AND OLD BRUISES ON APPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to investigate the potential of near-infrared (NIR) imaging spectroscopy for detecting new and old bruises on apple fruit in the spectral region between 900 nm and 1700 nm. Experiments were conducted to acquire hyperspectral image cubes from Red Delicious and Gold...

  3. Near-infrared transmission and reflectance spectroscopy for the measurement of dietary fiber in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared (NIR) transmission and reflectance spectroscopy were investigated as rapid screening tools to evaluate the total dietary fiber content of barley (Hordeum vulgare L.) cultivars. A Foss Grainspec Rice Analyzer and an NIR Systems 6500 spectrometer were used to obtain transmission and ref...

  4. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  5. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared spectroscopy is a noninvasive method of measuring local tissue oxygenation (StO[2]). Abdominal StO[2] measurements in preterm piglets are directly correlated with changes in intestinal blood flow and markedly reduced by necrotizing enterocolitis. The objectives of this study were to us...

  6. Functional Near-Infrared Spectroscopy for the Assessment of Speech Related Tasks

    ERIC Educational Resources Information Center

    Dieler, A. C.; Tupak, S. V.; Fallgatter, A. J.

    2012-01-01

    Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural…

  7. Detection of sucrose content of sugar beet by visible/near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose content is the most important quality parameter in the production and processing of sugar beet. This paper reports on the application of visible/near-infrared (Vis-NIR) spectroscopy for measurement of the sucrose content of sugar beet. Two portable spectrometers, covering the spectral region...

  8. NEAR-INFRARED TRANSMISSION AND REFLECTANCE SPECTROSCOPY FOR DETERMINATION OF DIETARY FIBER IN BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared (NIR) transmission and reflectance spectroscopy were investigated as rapid screening tools to evaluate the total dietary fiber content of barley. The Foss Grainspec Rice Analyzer and the NIR Systems 6500 monochromator were used to obtain transmission and reflectance spectra, respectiv...

  9. MEASUREMENT OF TOTAL DIETARY FIBER IN MILLED BARLEY USING NEAR-INFRARED TRANSMITTANCE SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-grain milled barley (n=56) was scanned using a near-infrared transmittance spectroscopy (NIT)(850-1048nm) and total dietary fiber (TDF) was determined for each cultivar by AOAC enzymatic-gravimetric method (Method 991.43). The validation statistics of PLS models using calibration (n=28) and v...

  10. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated using visible and near-infrared (VIS/NIR) spectroscopy to predict lean color stability in pork loin chops. Spectra were collected immediately following and approximately 1 h after rib removal from 1,208 loins. Loins were aged for 14 d before a 2.54-cm chop was placed in simula...

  11. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...

  12. Visible and Near-Infrared Spectroscopy Detects Honey Bee Queen Insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abdomens of honey bee queens, the heads of worker bees, and the ventriculi of worker bees were analyzed by visible and near-infrared spectroscopy. Mated honey bee queens could be distinguished from virgin queens by their spectra with 100% accuracy. Also, the heads of worker bees taken from the ...

  13. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  14. Integrating Near Infrared Spectroscopy (NIR) into the USDA-ARS sugarcane breeding program in Houma, LA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near Infrared Spectroscopy (NIRs) is a relatively new technique that has the potential to benefit Louisiana’s sugarcane industry, and is being successfully used in other parts of the world (e.g., South Africa) and even Florida. Recently, the USDA-ARS in Houma, LA purchased a NIR Cane Presentation Sy...

  15. Prefrontal Dysfunction in Attention-Deficit/Hyperactivity Disorder as Measured by Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Negoro, Hideki; Sawada, Masayuki; Iida, Junzo; Ota, Toyosaku; Tanaka, Shohei; Kishimoto, Toshifumi

    2010-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders with measurement of hemoglobin concentrations as cerebral blood volume. Twenty medication-naive children with attention-deficit/hyperactivity disorder (ADHD) and 20 age- and sex-matched healthy control…

  16. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of visible and near-infrared spectroscopy for measurement of the sucrose content of sugar beet was investigated with two portable spectrometers that cover the spectral regions of 400-1,100 nm and 900-1,600 nm, respectively. Spectra in interactance mode were collected first from 398 i...

  17. Data fusion of visible/near-infrared spectroscopy and spectral scattering for apple quality assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/near-infrared (VNIR) spectroscopy and spectral scattering are based on different sensing principles, and they have shown different abilities for predicting apple fruit firmness and soluble solids content (SSC). Hence the two techniques could work synergistically to improve the quality predic...

  18. Intensity-modulated near-infrared spectroscopy: instrument design issues

    NASA Astrophysics Data System (ADS)

    Alford, Ken; Wickramasinghe, Yappa A.

    2000-05-01

    Tissue oxygenation instruments which rely on phase sensitive detection suffer form phase-amplitude crosstalk, i.e. the phase of the detected signal with respect to a reference signal is dependent on the average intensity of the light entering the photomultiplier tube (PMT). If an instrument that detects the phase of the scattered signal is to yield the phase accuracy required in order to provide useful clinical parameters, quantitative haemoglobin and oxy- haemoglobin concentrations (Hb), and (HbO2) and mixed arterial-venous saturation all sources of phase-amplitude effects must be understood. The phase-amplitude effect has in the past been attributed to the fact that the rise time of the detector decreases with increasing light intensity. In this work an additional phase-amplitude effect in intensity modulated near IR spectroscopy (IMNIRS) instrumentation is studied. The presence of a coherent interfering signal due to low level RF coupling at the detector output will corrupt the phase of the signal of interest and cause a phase-amplitude effect. Under certain conditions a relatively low level interfering RF signal can introduce a significant error in the slope of the phase per unit distance plot. A comparison between measured and modeled phase distortion is presented and ways to reduce the effect discussed. In addition to phase-amplitude effects, the final accuracy of the quantitative measurements made by an IMNIRS instrument depends heavily on the calibration. Calibration of the measured phase and the AC and DC components of the detected light must take into account distortions due to, (a) phase-amplitude crosstalk and system phase offset, (b) detector non-linearities, (c) variation in laser source intensity and phase with time and temperature, (d) optical probe light loss and (e) variations in detector sensitivity. Current instrument performance will be presented and discussed.

  19. Age dependency of cerebral oxygenation assessed with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Colier, Willy N.; van Haaren, Nicole J.; van de Ven, Marjo J.; Folgering, Hans T.; Oeseburg, Berend

    1997-04-01

    Near-IR spectroscopy (NIRS) is an optical technique that provides information on cerebral tissue oxygenation and hemodynamics on a continuous, direct, and noninvasive basis. It is used to determine cerebral blood volume (CBV) and cerebrovascular CO2 reactivity during normoxic hyper- and hypocapnia in a group of 28 healthy volunteers aged 20 to 83 years. The main focus is on to the age dependency of the measured variables. The influence of changes in minute ventilation during normocapnia on the cerebral oxygenation was also studied. The mean CBV in age was, for 20 to 30 years, 2.14 +/- 0.51 ml/100 g of brain tissue; for 45 to 50 years, 1.92 +/- 0.40 ml/100 g; and for 70 to 83 years, 1.47 +/- 0.55 ml/100 g. The CBV showed a significant decease with advancing age. No influence was found for a change in minute ventilation on cerebral oxygenation. During hypercapnia cerebral blood flow (CBF) significantly increased in al age groups, with a factor of 1.31 +/- 0.17 kPa-1, 1.64 +/- 1.39 kPa-1, and 2.4 +/- 1.7 kPa-1, respectively, for the three age groups. The difference in change among the age groups was not statistically significant. The trend seen was an increased change in CBF with advancing age. During hypocapnia, the CBF significantly decreased in all age groups, with a factor of 0.89 +/- 0.08 kPa-1, 0.89 +/- 0.04 kPa-1, and 0.85 +/- 0.11 kPa-1, respectively. There was no significant difference among the age groups.

  20. Dissolved Gas-in-Oil Analysis in Transformers Based on Near-Infrared Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Xuefeng; Zhou, Xinlei; Zhai, Liang; Yu, Qingxu

    2015-06-01

    This paper investigates an application of near-infrared photoacoustic spectroscopy (PAS) to analyze the dissolved gas-in-oil of a transformer. A near-infrared tunable fiber laser-based PAS system has been developed. Using this system, the gas detection limits (signal-to-noise ratio = 1) of 4 ppb at 1531.59 nm for , 39 ppm at 1565.98 nm for CO, and 34 ppm at 1572.34 are reached. In addition, the fault gas () is produced by a transformer spatial discharge simulation system, and the productivity of the gas is measured quantitatively. The experiment demonstrates the near-infrared PAS system is able to be applied to the dissolved gas analysis of a transformer.

  1. Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications

    SciTech Connect

    Lupoi, Jason

    2012-01-01

    This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.

  2. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil

  3. [Near infrared reflectance spectroscopy (NIRS) and its application in the determination for the quality of animal feed and products].

    PubMed

    Wang, Li; Meng, Qing-Xiang; Ren, Li-Ping; Yang, Jian-Song

    2010-06-01

    Near-infrared reflectance spectroscopy (NIRS) has been the most rapidly developing and noticeable spectrographic analytical technique in recent years. The determining principle and progresses of near-infrared reflectance spectroscopy are presented briefly. It mainly includes the progresses in pre-processing technique and analyzing model of near-infrared reflectance spectroscopy. Two pre-processing techniques, including differential coefficient-dealt with technique, the signal-smoothing technique, and four analyzing models of near-infrared spectroscopy, including the multiplied lined regression (MLR), principal component analysis (PCA), partial least squares (PLS), and artificial nerve network (ANN). The application of near-infrared reflectance spectroscopy to the first time. The investigation of reviewed papers shows that the near-infrared reflectance spectroscopy is widely applied in feed analysis and animal products analysis because of its rapidness, non-destruction and non-pollution. The near infrared reflectance spectroscopy has been used to determine the feed common ingredient, such as dry matter, crude protein, crude fiber, crude fat and so on, micro-components including amino acid, vitamin, and noxious components, and to determine the physical and chemical properties of animal products which including egg, mutton, beef and pork. Details of the analytical characteristics of feed and animal products described in the reviewed papers are given. New trends and limits to the application of near-infrared reflectance spectroscopy in these fields are also discussed. PMID:20707134

  4. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.

    PubMed

    Juric, Simon; Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction. PMID:24883388

  5. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    PubMed Central

    Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction. PMID:24883388

  6. Structure analysis of aromatic medicines containing nitrogen using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren

    2008-12-01

    Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.

  7. Compositional analysis of protein content in milk with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Yang, Xiaoli; Li, Chao; Liu, Haiying

    2006-02-01

    A fast analytical method was introduced based on near-infrared (NIR) technology in this paper. The protein content was measured in short order using the near-infrared transmission spectroscopy (1000-1700nm) of milk. There were several waves of milk's NIR spectroscopy selected. By correlating the spectrum data of the waves selected and the protein content in milk, a calibration model was established. The protein content could be measured by importing the spectrum data to the calibration model. In this model there were several parameters, which were the spectrum data of the waves selected. Then, the method how to select the waves best was introduced and the characteristic waves of milk were selected by utilizing genetic algorithm. A partial least squares (PLS) regression model between the spectroscopy and the protein content was presented for milk samples, and the predictive repeatability was also researched.

  8. In situ near infrared spectroscopy monitoring of cyprosin production by recombinant Saccharomyces cerevisiae strains.

    PubMed

    Sampaio, Pedro N; Sales, Kevin C; Rosa, Filipa O; Lopes, Marta B; Calado, Cecília R

    2014-10-20

    Near infrared (NIR) spectroscopy was used to in situ monitoring the cultivation of two recombinant Saccharomyces cerevisiae strains producing heterologous cyprosin B. NIR spectroscopy is a fast and non-destructive technique, that by being based on overtones and combinations of molecular vibrations requires chemometrics tools, such as partial least squares (PLS) regression models, to extract quantitative information concerning the variables of interest from the spectral data. In the present work, good PLS calibration models based on specific regions of the NIR spectral data were built for estimating the critical variables of the cyprosin production process: biomass concentration, cyprosin activity, cyprosin specific activity, the carbon sources glucose and galactose concentration and the by-products acetic acid and ethanol concentration. The PLS models developed are valid for both recombinant S. cerevisiae strains, presenting distinct cyprosin production capacities, and therefore can be used, not only for the real-time control of both processes, but also in optimization protocols. The PLS model for biomass yielded a R(2)=0.98 and a RMSEP=0.46 g dcw l(-1), representing an error of 4% for a calibration range between 0.44 and 13.75 g dcw l(-1). A R(2)=0.94 and a RMSEP=167 Um l(-1) were obtained for the cyprosin activity, corresponding to an error of 6.7% of the experimental data range (0-2509 Um l(-1)), whereas a R(2)=0.93 and RMSEP=672 U mg(-1) were obtained for the cyprosin specific activity, corresponding to an error of 7% of the experimental data range (0-11,690 Um g(-1)). For the carbon sources glucose and galactose, a R(2)=0.96 and a RMSECV of 1.26 and 0.55 g l(-1), respectively, were obtained, showing high predictive capabilities within the range of 0-20 g l(-1). For the metabolites resulting from the cell growth, the PLS model for acetate was characterized by a R(2)=0.92 and a RMSEP=0.06 g l (-1), which corresponds to a 6.1% error within the range of 0

  9. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  10. Detection of Glutamic Acid in Oilseed Rape Leaves Using Near Infrared Spectroscopy and the Least Squares-Support Vector Machine

    PubMed Central

    Bao, Yidan; Kong, Wenwen; Liu, Fei; Qiu, Zhengjun; He, Yong

    2012-01-01

    Amino acids are quite important indices to indicate the growth status of oilseed rape under herbicide stress. Near infrared (NIR) spectroscopy combined with chemometrics was applied for fast determination of glutamic acid in oilseed rape leaves. The optimal spectral preprocessing method was obtained after comparing Savitzky-Golay smoothing, standard normal variate, multiplicative scatter correction, first and second derivatives, detrending and direct orthogonal signal correction. Linear and nonlinear calibration methods were developed, including partial least squares (PLS) and least squares-support vector machine (LS-SVM). The most effective wavelengths (EWs) were determined by the successive projections algorithm (SPA), and these wavelengths were used as the inputs of PLS and LS-SVM model. The best prediction results were achieved by SPA-LS-SVM (Raw) model with correlation coefficient r = 0.9943 and root mean squares error of prediction (RMSEP) = 0.0569 for prediction set. These results indicated that NIR spectroscopy combined with SPA-LS-SVM was feasible for the fast and effective detection of glutamic acid in oilseed rape leaves. The selected EWs could be used to develop spectral sensors, and the important and basic amino acid data were helpful to study the function mechanism of herbicide. PMID:23203052

  11. Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC

    NASA Astrophysics Data System (ADS)

    Alves, Julio Cesar L.; Henriques, Claudete B.; Poppi, Ronei J.

    2014-01-01

    The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams.

  12. Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC.

    PubMed

    Alves, Julio Cesar L; Henriques, Claudete B; Poppi, Ronei J

    2014-01-01

    The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams. PMID:24012979

  13. [Application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality].

    PubMed

    Xie, Li-Juan; Ying, Yi-Bin; Yu, Hai-Yan; Fu, Xia-Ping

    2007-06-01

    Nondestructive detection techniques of vegetable include electrical properties, optical reflectance and transmission, sonic vibration, nuclear magnetic resonance (NMR), machine vision, aromatic volatile emission, vibration characteristics and others. The most widely employed and successful technique is to use its optical property. Near infrared spectroscopy technique is extremely fast, highly efficient, cheap to implement, of good recurrence and no sample preparation, and is a rapid and non-destructive modern measuring technique that has been widely used in many fields. In the present paper, the application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality was briefly introduced. Some considerable aspects existing in the application were also discussed, and it is pointed out that because of vegetable's diversity and rot-proneness, automation analysis machine should be developed to improve the speed of quality detection, and cooperating with several other nondestructive techniques, such as NMR and machine vision, is the research trend. PMID:17763775

  14. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  15. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    NASA Astrophysics Data System (ADS)

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  16. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    SciTech Connect

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  17. Near-infrared Spectroscopy of Brown Dwarf and Planetary-Mass Members in Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Lodieu, Nicolas

    2016-01-01

    In these proceedings, I present new VLT/X-shooter near-infrared spectroscopy of brown dwarf and planetary-mass candidates with masses below 30 Jupiter masses identified in a deep VISTA ZYJ survey of 13.5 square degrees in the Upper Scorpius (USco) association. These spectra represent new benchmarks at 5-10 Myr to compare with known and future discoveries of members in nearby moving groups and other young regions.

  18. A novel objective sour taste evaluation method based on near-infrared spectroscopy.

    PubMed

    Hoshi, Ayaka; Aoki, Soichiro; Kouno, Emi; Ogasawara, Masashi; Onaka, Takashi; Miura, Yutaka; Mamiya, Kanji

    2014-05-01

    One of the most important themes in the development of foods and drinks is the accurate evaluation of taste properties. In general, a sensory evaluation system is frequently used for evaluating food and drink. This method, which is dependent on human senses, is highly sensitive but is influenced by the eating experience and food palatability of individuals, leading to subjective results. Therefore, a more effective method for objectively estimating taste properties is required. Here we show that salivary hemodynamic signals, as measured by near-infrared spectroscopy, are a useful objective indicator for evaluating sour taste stimulus. In addition, the hemodynamic responses of the parotid gland are closely correlated to the salivary secretion volume of the parotid gland in response to basic taste stimuli and respond to stimuli independently of the hedonic aspect. Moreover, we examined the hemodynamic responses to complex taste stimuli in food-based solutions and demonstrated for the first time that the complicated phenomenon of the "masking effect," which decreases taste intensity despite the additional taste components, can be successfully detected by near-infrared spectroscopy. In summary, this study is the first to demonstrate near-infrared spectroscopy as a novel tool for objectively evaluating complex sour taste properties in foods and drinks. PMID:24474216

  19. Authentication of cow feeding and geographic origin on milk using visible and near-infrared spectroscopy.

    PubMed

    Coppa, M; Martin, B; Agabriel, C; Chassaing, C; Sibra, C; Constant, I; Graulet, B; Andueza, D

    2012-10-01

    The ability of near-infrared spectroscopy to trace cow feeding systems and farming altitude was tested on 486 bulk milk samples from France and northwestern Italy. Milks were grouped into feeding systems according to the main forage in the diet. Partial least square discriminant analysis correctly classified 95.5, 91.5, and 93.3% of pasture versus maize silage, hay, and fermented herbage feeding systems, respectively. Discrimination was slightly less successful when diets with large proportions of the nondominant forage were included in each group. Near-infrared spectroscopy correctly discriminated no-pasture from pasture milk, even with only 30% of pasture in the diet (5.4% cross-validation error), and the error stabilized when pasture exceeded 70% (2.5% error). Near-infrared spectroscopy did not reliably trace milk geographic origin when the feeding system effect was isolated from the altitude effect. These findings may be usefully exploited for the authentication of dairy products. PMID:22901470

  20. Tissue blood flow and oxygen consumption measured with near-infrared frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Paunescu, Lelia Adelina

    2001-12-01

    For decades, researchers have contributed with new ways of applying physics' principles to medicine. Moreover, researchers were involved in developing new, non-invasive instrumentation for medical applications. Recently, application of optical techniques in biology and medicine became an important field. Researchers found a non- invasive approach of using visible and near-infrared light as a probe for tissue investigation. Optical methods can contribute to medicine by offering the possibility of rapid, low-resolution, functional images and real-time devices. Near-infrared spectroscopy (NIRS) is a useful technique for the investigation of biological tissues because of the relatively low absorption of water and high absorption of oxy- and deoxy-hemoglobin in the near- infrared region of 750-900 nm. Due to these properties, the near-infrared light can penetrate biological tissues in the range of 0.5-2 cm, offering investigation possibility of deep tissues and differentiate among healthy and diseased tissues. This work represents the initial steps towards understanding and improving of the promising near- infrared frequency-domain technique. This instrument has a very important advantage: it can be used non-invasively to investigate many parts of the human body, including the brain. My research consists primarily of in vivo measurements of optical parameters such as absorption and reduced scattering coefficients and consequently, blood parameters such as oxy, deoxy, and total hemoglobin concentrations, tissue oxygen saturation, blood flow and oxygen consumption of skeletal muscle of healthy and diseased subjects. This research gives a solid background towards a ready- to-use instrument that can continuously, in real-time, measure blood parameters and especially blood oxygenation. This is a very important information in emergency medicine, for persons under intensive care, or undergoing surgery, organ transplant or other interventions.

  1. The influence of experiment design on the model precision in the noninvasive glucose sensing by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Chen, Wenliang; Xu, Kexin

    2007-11-01

    In the sensing of blood glucose by the near-infrared spectroscopy, building a robust and effective model is the precondition to obtain an accurate and reasonable prediction result of glucose concentration. In the chemometrics analysis, training set should be representative, reasonable distribution and cover the scope of prediction set. So the experiment designs became one of most difficult challenges for the noninvasive glucose sensing, especially for the in vivo experiments. In this paper, the oral glucose tolerance tests of two diabetics were carried out. The transcutaneous diffuse reflectance spectra were collected by a custom-build spectrometer and the glucose reference were measured by an invasive portable glucose meter. Then the influence of different experiment designs including the error in the references, the time delay between glucose in blood and interstitial fluid, the change in physiological temperature and different validation methods were analyzed. The result showed that, the error induced by the uncertainty in the reference was lower than that by the time delay, which could be up to 15.4%. And the proportion of error induced by temperature change is more than 50%, which is the most significant. Furthermore, the prediction error was restricted by the validation set selection and the way to change the blood glucose concentration.

  2. Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances.

    PubMed

    Qu, Jia-Huan; Liu, Dan; Cheng, Jun-Hu; Sun, Da-Wen; Ma, Ji; Pu, Hongbin; Zeng, Xin-An

    2015-01-01

    Food safety is a critical public concern, and has drawn great attention in society. Consequently, developments of rapid, robust, and accurate methods and techniques for food safety evaluation and control are required. As a nondestructive and convenient tool, near-infrared spectroscopy (NIRS) has been widely shown to be a promising technique for food safety inspection and control due to its huge advantages of speed, noninvasive measurement, ease of use, and minimal sample preparation requirement. This review presents the fundamentals of NIRS and focuses on recent advances in its applications, during the last 10 years of food safety control, in meat, fish and fishery products, edible oils, milk and dairy products, grains and grain products, fruits and vegetables, and others. Based upon these applications, it can be demonstrated that NIRS, combined with chemometric methods, is a powerful tool for food safety surveillance and for the elimination of the occurrence of food safety problems. Some disadvantages that need to be solved or investigated with regard to the further development of NIRS are also discussed. PMID:24689758

  3. Exploration of in vivo Effect Assessment Factor Monitoring by Near-infrared Spectroscopy during LITT

    NASA Astrophysics Data System (ADS)

    Qian, Ai-ping; Hua, Guo-ran; Zhang, Hua; Qian, Zhi-yu

    2011-02-01

    By studying the variation trends of the absorption coefficient (μa) and the reduced scattering coefficient (μ's), which were monitored in vivo by functional near infrared spectroscopy (fNIRS) system in real time during laser induced interstitial thermotherapy (LITT), the optimized near infrared effect assessment factor would be explored. In vivo measurements of the absorption coefficient (ua) and the reduced scattering coefficient (u's) were performed with a functional near infrared spectroscopy system during LITT. Fresh porcine liver tissue samples in vitro and the subcutaneous implanted rat liver cancers were examined in different laser doses and define heating times. The absorption coefficient obtained by the fNIRS increased in the pork liver experiments, but decreased in the rat liver cancer experiments. The reduced scattering coefficient increased in the pork liver experiments and the rat liver cancer experiments, it increased quickly at beginning, and gradually reached the stable state. Therefore, the reduced scattering coefficient is more suitable for reflecting the progress of damage during different biological tissues' LITT than the absorption coefficient. This conclusion will effectively guide the study of suitable therapy effect assessment system during LITT in real time.

  4. [Detection of reducing sugar content of potato granules based on wavelet compression by near infrared spectroscopy].

    PubMed

    Dong, Xiao-Ling; Sun, Xu-Dong

    2013-12-01

    The feasibility was explored in determination of reducing sugar content of potato granules based on wavelet compression algorithm combined with near-infrared spectroscopy. The spectra of 250 potato granules samples were recorded by Fourier transform near-infrared spectrometer in the range of 4000- 10000 cm-1. The three parameters of vanishing moments, wavelet coefficients and principal component factor were optimized. The optimization results of three parameters were 10, 100 and 20, respectively. The original spectra of 1501 spectral variables were transfered to 100 wavelet coefficients using db wavelet function. The partial least squares (PLS) calibration models were developed by 1501 spectral variables and 100 wavelet coefficients. Sixty two unknown samples of prediction set were applied to evaluate the performance of PLS models. By comparison, the optimal result was obtained by wavelet compression combined with PLS calibration model. The correlation coefficient of prediction and root mean square error of prediction were 0.98 and 0.181%, respectively. Experimental results show that the dimensions of spectral data were reduced, scarcely losing effective information by wavelet compression algorithm combined with near-infrared spectroscopy technology in determination of reducing sugar in potato granules. The PLS model is simplified, and the predictive ability is improved. PMID:24611373

  5. Determination of in vivo skin moisture level by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Spigulis, Janis

    2015-03-01

    Near-infrared spectroscopy has a potential for noninvasive determination of skin moisture level due to high water absorption. In this study, diffuse reflectance spectra of in vivo skin were acquired in the spectral range of 900 nm to 1700 nm by using near-infrared spectrometer, optical fiber and halogen bulb light source. Absorption changes after applying skin moisturizers were analyzed over time at different body sites. Results show difference in absorption when comparing dry and normal skin. Comparison of absorption changes over time after applying moisturizer at different body sites is analyzed and discussed. Some patterns of how skin reacts to different skin moisturizers are shown, although no clear pattern can be seen due to signal noise.

  6. Comparison of Diffuse Reflectance Fourier Transform Mid-Infrared and Near-Infrared Spectroscopy with Grating-Based Near-Infrared for the Determination of Fatty Acids in Forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffuse reflectance Fourier transform mid-infrared (FTMIR) and near infrared spectroscopy (FTNIR) were compared to scanning monochromator-grating-based near infrared spectroscopy (SMNIR), for their ability to quantify fatty acids (FA) in forages. Thirteen different forage cultivars belonging to 11 d...

  7. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  8. [Noninvasive detection of the concentrations of pigments in pork tissue using near infrared spectroscopy].

    PubMed

    Teng, Yi-chao; Li, Yue; Huang, Lan; Ding, Hai-shu

    2010-01-01

    Based on the absorption spectra of hemoglobin and myoglobin in the near infrared band, the concentrations of these pigments in the biological tissues can be obtained using near infrared spectroscopy (NIRS) by detecting the intensity attenuation of the emitted light compared with the incident light. Based on the steady-state spatially resolved NIRS, the prototype for detecting the concentrations of tissue hemoglobin and myoglobin was independently developed by our group. The probe consisted of an LED light source which could emit three different wavelengths in the near infrared band, and two detectors which were placed on the same line with and at the distances of 30/40 mm to the LED. The pigment concentrations of two pieces of pork, one from the erector spinae and the other from the rectus femoris, were detected using this prototype. The total concentrations of hemoglobin and myoglobin (c(total)) were (6.42 + 1.51) micromol x L(-1) in the erector spinae, and (15.48 +/- 4.54) micromol x L(-1) in the rectus femoris, respectively. The myoglobin was dominant in both of the results. These were consistent with the recent empirical reports. In summary, the NIRS method and prototype are authentic in detecting the pigment concentrations of pork tissue non-invasively, real-time, directly and conveniently. PMID:20302083

  9. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    PubMed

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future. PMID:24972267

  10. Near-infrared and fourier transform infrared chemometric methods for the quantification of crystalline tacrolimus from sustained-release amorphous solid dispersion.

    PubMed

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-08-01

    The objective of the present research was to study the feasibility of using near-infrared (NIR) and Fourier transform infrared (FTIR)-based chemometric models in quantifying crystalline and amorphous tacrolimus from its sustained-release amorphous solid dispersion (ASD). ASD contained ethyl cellulose, hydroxypropyl methyl cellulose, and lactose monohydrate as carriers, and amorphous form of tacrolimus in it was confirmed by X-ray powder diffraction. Crystalline physical mixture was mixed with ASD in various proportions to prepare sample matrices containing 0%-100% amorphous/crystalline tacrolimus. NIR and FTIR of the samples were recorded, and data were mathematically pretreated using multiple scattering correction, standard normal variate, or Savitzky-Golay before multivariate analysis, partial-least-square regression (PLSR), and principle component regression (PCR). The PLSR models were more accurate than PCR for NIR and FTIR data as indicated by low value of root-mean-squared error of prediction, standard error of prediction and bias, and high value of R(2). Additionally, NIR data-based models were more accurate and precise than FTIR data models. In conclusion, NIR chemometric models provide simple and fast method to quantitate crystalline tacrolimus in the ASD formulation. PMID:24931728

  11. Resting state connectivity patterns with near-infrared spectroscopy data of the whole head

    PubMed Central

    Novi, Sergio L.; Rodrigues, Renato B. M. L.; Mesquita, Rickson C.

    2016-01-01

    Resting state cerebral dynamics has been a useful approach to explore the brain’s functional organization. In this study, we employed graph theory to deeply investigate resting state functional connectivity (rs-FC) as measured by near-infrared spectroscopy (NIRS). Our results suggest that network parameters are very similar across time and subjects. We also identified the most frequent connections between brain regions and the main hubs that participate in the spontaneous activity of brain hemodynamics. Similar to previous findings, we verified that symmetrically located brain areas are highly connected. Overall, our results introduce new insights in NIRS-based functional connectivity at rest. PMID:27446687

  12. Application of spectral derivative data in visible and near-infrared spectroscopy

    PubMed Central

    Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W; Chauchard, Fabien

    2011-01-01

    The use of the spectral derivative method in visible and near-infrared optical spectroscopy is presented, whereby instead of using discrete measurements around several wavelengths, the difference between nearest neighbouring spectral measurements is utilized. The proposed technique is shown to be insensitive to the unknown tissue and fibre contact coupling coefficients providing substantially increased accuracy as compared to more conventional techniques. The self-calibrating nature of the spectral derivative techniques increases its robustness for both clinical and industrial applications, as is demonstrated based on simulated results as well as experimental data. PMID:20505221

  13. Near-Infrared Spectroscopy in the Monitoring of Adult Traumatic Brain Injury: A Review

    PubMed Central

    Su, Zhangjie; Clancy, Michael T.; Lucas, Samuel J. E.; Dehghani, Hamid; Logan, Ann; Belli, Antonio

    2015-01-01

    Abstract Cerebral near-infrared spectroscopy (NIRS) has long represented an exciting prospect for the noninvasive monitoring of cerebral tissue oxygenation and perfusion in the context of traumatic brain injury (TBI), although uncertainty still exists regarding the reliability of this technology specifically within this field. We have undertaken a review of the existing literature relating to the application of NIRS within TBI. We discuss current “state-of-the-art” NIRS monitoring, provide a brief background of the technology, and discuss the evidence regarding the ability of NIRS to substitute for established invasive monitoring in TBI. PMID:25603012

  14. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans-Juergen; Lott, Carsten; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1998-01-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  15. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans J.; Lott, C.; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1997-12-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  16. Near-infrared surface-enhanced Raman spectroscopy: New developments and applications

    SciTech Connect

    Angel, S.M.; Myrick, M.L.

    1989-01-01

    The surface-enhanced Raman phenomenon was discovered in 1974 and analytical applications of it are only now being developed. Near-infrared surface-enhanced Raman spectroscopy was first reported in 1988, and the characteristics of the technique are still being determined. The purpose of this paper is to introduce the reader to the technique and to describe some of its characteristics. In addition, some of the applications being explored by the authors, including remote monitoring of groundwater contaminants and qualitative assays for drugs, are presented. 61 refs., 12 figs.

  17. Analyzing the resting state functional connectivity in the human language system using near infrared spectroscopy

    PubMed Central

    Molavi, Behnam; May, Lillian; Gervain, Judit; Carreiras, Manuel; Werker, Janet F.; Dumont, Guy A.

    2014-01-01

    We have evaluated the use of phase synchronization to identify resting state functional connectivity (RSFC) in the language system in infants using functional near infrared spectroscopy (fNIRS). We used joint probability distribution of phase between fNIRS channels with a seed channel in the language area to estimate phase relations and to identify the language system network. Our results indicate the feasibility of this method in identifying the language system. The connectivity maps are consistent with anatomical cortical connections and are also comparable to those obtained from functional magnetic resonance imaging (fMRI) functional connectivity studies. The results also indicate left hemisphere lateralization of the language network. PMID:24523685

  18. [Online determination of pH in fresh pork by visible/near-infrared spectroscopy].

    PubMed

    Liao, Yi-Tao; Fan, Yu-Xia; Wu, Xue-Qian; Cheng, Fang

    2010-03-01

    The present research was focused on determination of the pH value online by visible and near-infrared spectroscopy. In the part of data gathering, fresh pork longissimus dorsi was moving at the constant velocity of 0.25 m x s(-1) on the conveyor belt, and the visible and near-infrared diffuse reflectance spectrum (350-1 000 nm) was captured. In the part of data processing, band of 510-980 nm of the spectra was chosen to calibrate reflex distance, then to set up online detection model of pH value in fresh pork by partial least squares regression (PLSR). Kennard-stone algorithm was applied to divide the samples to the calibration set and validation set. The performances of several PLSR models employing various preprocessing methods including multiple scatter correction, derivative and both of them combined were compared. Further, the best performance model was optimized by interval PLSR to decrease the modeling variables of wavelength. The results indicated that the PLSR model based on preprocessing of multiple scatter correction (MSC) combined with first derivative gave the best performance with 0.905 of the correlation coefficient for validation set and 0.051 of the root of mean square errors for validation set. For the best PLSR model performance, the correlation coefficient of validation set increased to 0.926 and the root of mean square errors for validation set to 0.045 in the optimization interval PLSR model. However, only half of variables were used. The research demonstrates that using visible and near-infrared spectroscopy to determine fresh pork pH online is feasible. PMID:20496686

  19. Near-infrared spectroscopy for medical applications: Current status and future perspectives.

    PubMed

    Sakudo, Akikazu

    2016-04-01

    The near-infrared radiation (NIR) window, also known as the "optical window" or "therapeutic window", is the range of wavelengths that has the maximum depth of penetration in tissue. Indeed, because NIR is minimally absorbed by water and hemoglobin, spectra readings can be easily collected from the body surface. Recent reports have shown the potential of NIR spectroscopy in various medical applications, including functional analysis of the brain and other tissues, as well as an analytical tool for diagnosing diseases. The broad applicability of NIR spectroscopy facilitates the diagnosis and therapy of diseases as well as elucidating their pathophysiology. This review introduces recent advances and describes new studies in NIR to demonstrate potential clinical applications of NIR spectroscopy. PMID:26877058

  20. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  1. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm.

    PubMed

    Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan

    2009-06-01

    Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy. PMID:19566194

  2. [Research on zinc content in leaf of Olinda Valencia orange using visible near infrared spectroscopy model].

    PubMed

    Yi, Shi-lai; Deng, Lie; He, Shao-lan; Zheng, Yong-qiang; Wang, Liang; Zhao, Xu-yang

    2010-11-01

    Olinda valencia orange leaves dry powder-like were taken as sample, and chemical analysis combined with technology of visible near-infrared spectroscopy (Vis/NIRS) was used, through the treatment process of second derivative spectrum of samples of the original spectrum and denoising (Noise). Meanwhile, method of partial least squares (PLS) and cross-validation were used to establish maths model of Zn concentration which applying band combination composited by 400-500 and 1201-1300 nm of characteristic wavelength band. The coefficient of establishing models is 0.9975, while the coefficient of correlation coefficient of prediction is 0.9920. The root mean square error of prediction (RMSEP) of cross-validation is 0.5868. Therefore, the means using visible near-infrared spectroscopy (Vis/NIRS) and the methods of cross-validation and PLS to establish the spectral correction model reflecting the Zn content in leaves and characteristic wavelength bands can detect the Zn content in citrus leaves quantitatively and quickly. PMID:21284155

  3. Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments.

    PubMed

    Zimmermann, R; Braun, F; Achtnich, T; Lambercy, O; Gassert, R; Wolf, M

    2013-05-01

    Silicon photomultipliers are novel solid state photodetectors that recently became commercially available. The goal of this paper was to investigate their suitability for low light level detection in miniaturized functional near-infrared spectroscopy instruments. Two measurement modules with a footprint of 26×26 mm(2) were built, and the signal-to-noise ratio was assessed for variable source-detector separations between 25 and 65 mm on phantoms with similar optical properties to those of a human head. These measurements revealed that the signal-to-noise ratio of the raw signal was superior to an empirically derived design requirement for source-detector separations up to 50 mm. An arterial arm occlusion was also performed on one of the authors in vivo, to induce reproducible hemodynamic changes which confirmed the validity of the measured signals. The proposed use of silicon photomultipliers in functional near-infrared spectroscopy bears large potential for future development of precise, yet compact and modular instruments, and affords improvements of the source-detector separation by 67% compared to the commonly used 30 mm. PMID:23667783

  4. Cerebral oxygenation and hemodynamic changes during infant cardiac surgery: measurements by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    du Plessis, Adre J.; Volpe, Joseph J.

    1996-10-01

    Despite dramatic advances in the survival rate among infants undergoing cardiac surgery for congenital heart disease, the incidence of brain injury suffered by survivors remains unacceptably high. This is largely due to our limited understanding of the complex changes in cerebral oxygen utilization and supply occurring during the intraoperative period as a result of hypothermia, neuroactive drugs, and profound circulatory changes. Current techniques for monitoring the adequacy of cerebral oxygen supply and utilization during hypothermic cardiac surgery are inadequate to address this complex problem and consequently to identify the infant at risk for such brain injury. Furthermore, this inability to detect imminent hypoxic- ischemic brain injury is likely to become all the more conspicuous as new neuroprotective strategies, capable of salvaging 'insulated' neuronal tissue form cell death, enter the clinical arena. Near infrared spectroscopy is a relatively new, noninvasive, and portable technique capable of interrogating the oxygenation and hemodynamics of tissue in vivo. These characteristics of the technique have generated enormous interest among clinicians in the ability of near infrared spectroscopy to elucidate the mechanisms of intraoperative brain injury and ultimately to identify infants oat risk for such injury. This paper reviews the experience with this technique to date during infant cardiac surgery.

  5. Determination of chemical composition of commercial honey by near-infrared spectroscopy.

    PubMed

    Qiu, P Y; Ding, H B; Tang, Y K; Xu, R J

    1999-07-01

    The feasibility of using near-infrared spectroscopy to determine chemical composition of commercial honey was examined. The influences of various sample presentation methods and regression models on the performance of calibration equations were also studied. Transmittance spectra with 1 mm optical path length produced the best calibration for all constituents examined. The regression model of modified partial least squares (mPLS) was selected for the calibration of all honey constituents except moisture, for which the optimal calibration was developed with PLS. Validation of the established calibration equations with independent samples showed that the spectroscopic technique could accurately determine the contents of moisture, fructose, glucose, sucrose, and maltose with squared correlation coefficients (R(2)) of 1.0, 0.97, 0.91, 0.86, and 0.93 between the predicted values and the reference values. The prediction accuracy for free acid, lactone, and hydroxymethylfurfural (HMF) contents in honey was poor and unreliable. The study indicates that near-infrared spectroscopy can be used for rapid determination of major components in commercial honey. PMID:10552561

  6. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data

    PubMed Central

    Xu, Jingping; Liu, Xiangyu; Zhang, Jinrui; Li, Zhen; Wang, Xindi; Fang, Fang; Niu, Haijing

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called “functional connectivity analysis tool for near-infrared spectroscopy data” (FC-NIRS). This package includes the main functions of fNIRS data preprocessing, quality control, FC calculation, and network analysis. Because this software has a friendly graphical user interface (GUI), FC-NIRS allows researchers to perform data analysis in an easy, flexible, and quick way. Furthermore, FC-NIRS can accomplish batch processing during data processing and analysis, thereby greatly reducing the time cost of addressing a large number of datasets. Extensive experimental results using real human brain imaging confirm the viability of the toolbox. This novel toolbox is expected to substantially facilitate fNIRS-data-based human functional connectome studies. PMID:26539473

  7. Neuronal Correlates of Cognitive Control during Gaming Revealed by Near-Infrared Spectroscopy.

    PubMed

    Witte, Matthias; Ninaus, Manuel; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In everyday life we quickly build and maintain associations between stimuli and behavioral responses. This is governed by rules of varying complexity and past studies have identified an underlying fronto-parietal network involved in cognitive control processes. However, there is only limited knowledge about the neuronal activations during more natural settings like game playing. We thus assessed whether near-infrared spectroscopy recordings can reflect different demands on cognitive control during a simple game playing task. Sixteen healthy participants had to catch falling objects by pressing computer keys. These objects either fell randomly (RANDOM task), according to a known stimulus-response mapping applied by players (APPLY task) or according to a stimulus-response mapping that had to be learned (LEARN task). We found an increased change of oxygenated and deoxygenated hemoglobin during LEARN covering broad areas over right frontal, central and parietal cortex. Opposed to this, hemoglobin changes were less pronounced for RANDOM and APPLY. Along with the findings that fewer objects were caught during LEARN but stimulus-response mappings were successfully identified, we attribute the higher activations to an increased cognitive load when extracting an unknown mapping. This study therefore demonstrates a neuronal marker of cognitive control during gaming revealed by near-infrared spectroscopy recordings. PMID:26244781

  8. Paddy soil nutrient assessment using visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gholizadeh, A.; Saberioon, M. M.; Amin, M. S. M.

    The ability of obtaining soil properties estimations from time and cost efficient remotely sensed techniques has been identified as a valuable technique as there is a great demand for larger amounts of good quality and inexpensive soil data to be used in environmental monitoring, modelling and precision agriculture. Visible (Vis) and Near Infrared (NIR) spectroscopy provides a good alternative that may be used to enhance or replace conventional methods of soil analysis. The aim of this paper is to evaluate the abilities of Vis (350-700 nm) and near infrared (700-2500 nm) for prediction of soil nutrients. In this instance we implemented Savitzky-Golay algorithm and Stepwise Multiple Linear Regression (SMLR) to construct calibration models. The soil nutrients examined were soil Total Nitrogen (N), Available Phosphorus (P) and Exchangeable Potassium (K). Our results revealed the accuracy of SMLR prediction in each of the Vis and NIR spectral regions. The NIR produced more accurate predictions for N and K; however, higher significant correlation was obtained using the Vis for available P. This work demonstrated Vis and NIR spectroscopy could be considered as a good tool to assess soil nutrients in Malaysian paddy fields.

  9. Discriminant analysis of milk adulteration based on near-infrared spectroscopy and pattern recognition

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Lv, Guorong; He, Bin; Xu, Kexin

    2011-03-01

    Since the beginning of the 21st century, the issue of food safety is becoming a global concern. It is very important to develop a rapid, cost-effective, and widely available method for food adulteration detection. In this paper, near-infrared spectroscopy techniques and pattern recognition were applied to study the qualitative discriminant analysis method. The samples were prepared and adulterated with one of the three adulterants, urea, glucose and melamine with different concentrations. First, the spectral characteristics of milk and adulterant samples were analyzed. Then, pattern recognition methods were used for qualitative discriminant analysis of milk adulteration. Soft independent modeling of class analogy and partial least squares discriminant analysis (PLSDA) were used to construct discriminant models, respectively. Furthermore, the optimization method of the model was studied. The best spectral pretreatment methods and the optimal band were determined. In the optimal conditions, PLSDA models were constructed respectively for each type of adulterated sample sets (urea, melamine and glucose) and all the three types of adulterated sample sets. Results showed that, the discrimination accuracy of model achieved 93.2% in the classification of different adulterated and unadulterated milk samples. Thus, it can be concluded that near-infrared spectroscopy and PLSDA can be used to identify whether the milk has been adulterated or not and the type of adulterant used.

  10. Neuronal Correlates of Cognitive Control during Gaming Revealed by Near-Infrared Spectroscopy

    PubMed Central

    Witte, Matthias; Ninaus, Manuel; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In everyday life we quickly build and maintain associations between stimuli and behavioral responses. This is governed by rules of varying complexity and past studies have identified an underlying fronto-parietal network involved in cognitive control processes. However, there is only limited knowledge about the neuronal activations during more natural settings like game playing. We thus assessed whether near-infrared spectroscopy recordings can reflect different demands on cognitive control during a simple game playing task. Sixteen healthy participants had to catch falling objects by pressing computer keys. These objects either fell randomly (RANDOM task), according to a known stimulus-response mapping applied by players (APPLY task) or according to a stimulus-response mapping that had to be learned (LEARN task). We found an increased change of oxygenated and deoxygenated hemoglobin during LEARN covering broad areas over right frontal, central and parietal cortex. Opposed to this, hemoglobin changes were less pronounced for RANDOM and APPLY. Along with the findings that fewer objects were caught during LEARN but stimulus-response mappings were successfully identified, we attribute the higher activations to an increased cognitive load when extracting an unknown mapping. This study therefore demonstrates a neuronal marker of cognitive control during gaming revealed by near-infrared spectroscopy recordings. PMID:26244781

  11. Near-infrared Raman spectroscopy to detect the calcification of the annular mitral valve

    NASA Astrophysics Data System (ADS)

    Rocha, Rick; Otero, E. P.; Costa, M. S.; Villaverde, Antonio G. J. B.; Pomerarantzeff, P. M.; Pacheco, Marcos T. T.

    2004-10-01

    Cardiac valves are subjected to high repetitive mechanical stresses, particularly at the hinge points of the cusps and leaflets due to the over 40 millions cardiac cycles per year. These delicate structures can suffer cumulative lesions, complicated by the deposition of calcium phosphate mineral, which may lead to clinically important disease. Near Infrared Raman Spectroscopy gives important information about biological tissues composition and it is being used for diagnosis of some pathologies. The aim of this work was to detect trough the use of the Raman Spectroscopy technique the mitral annular calcification. A Ti:sapphire laser operating at the near infrared wavelength of 785 nm was used for the excitation of the valve samples and the Raman radiation was detected by an optical spectrometer with a CCD liquid nitrogen cooled detector. In all, ten samples of normal and pathologic tissues were studied. They were approximately squared with the lateral size of 5 mm. It was observed that the Raman spectrum of the calcified mitral valve showed different behavior, when compared to normal tissues. Results indicate that this technique could be used to detect the deposition of the calcium phosphate mineral over the mitral valve.

  12. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  13. [Applied Research in Grade Estimation of Surimi by Near Infrared Spectroscopy].

    PubMed

    Wu, Hao; Chen, Wei-hua; Wang, Xi-chang; Liu, Yuan

    2015-05-01

    The feasibility of utilizing near infrared spectroscopy for estimating frozen and thawed white croaker surimi with different grades was presented in the research. First-derivative and standard normal variable transformation were used as pretreatment method, then principal component analysis was carried out on the processed datas. Establish grade estimation model on white croaker surimi with different grades by principal component analysis-mahalanobis distance pattern recognition method. Seven kinds of physicochemical indexes (moisture, protein, crude fat, salt-soluble protein, gel strength, water-holding ability and whiteness) of white croaker surimi with different grades were determinated. We came to the following conclusions. Firstly, white croaker surimi with three grade could be distinguished effectively by principal component analysis. Secondly, the model of grade estimation established by principal component analysis-mahalanobis distance pattern recognition method had better performance on frozen white croaker surimi than thawed ones, the former's comprehensive accuracy was 96. 3 % with the latter's is 83. 3%. Thirdly, the physicochemical indexes of white croaker surimi with different grades had some distinctions. The research indicated that near infrared spectroscopy could estimate the grade of white croaker surimi rapidly and nondestructively. PMID:26415435

  14. Analysis of colon tumors in rats by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duarte, Janaína; Hage, Raduan; Silveira, Landulfo, Jr.; Silveira, Fabricio; Pacheco, Marcos Tadeu T.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    Biomedical applications of near-infrared Raman spectroscopy have increased their importance at the last ten years. This technique can determinate the molecular composition of materials, allowing a sensible and fast biological diagnosis. It has showed to be a promising tool for health diagnosis due to its high sensibility. Colorectal cancer (CRC) is one of the most common malignant tumors in humans beings. In the last decades many experimental models have been developed in animals based in the use of chemical composites to induce the formation and development of these tumors, many of them present similar characteristics to those of natural occurrence aiming to the attainment of information on genesis, evolution, as well as diagnosis and more efficient therapies for treating these neoplasias. Amongst the most used chemical composites is the 1,2- dimetilhydrazine (DMH) because its morphological and histological similarity to those tumors. This study aims to compare in vivo normal colon tissue and tumoral colon tissue, induced by DMH, in rats by near-infrared Raman spectroscopy to permit the use in the near future for an efficient diagnosis in real time besides being useful as an auxiliary method for several therapies, including the photodynamic therapy.

  15. Near-infrared spectroscopy as an auxiliary tool in the study of child development

    PubMed Central

    de Oliveira, Suelen Rosa; Machado, Ana Carolina Cabral de Paula; de Miranda, Débora Marques; Campos, Flávio dos Santos; Ribeiro, Cristina Oliveira; Magalhães, Lívia de Castro; Bouzada, Maria Cândida Ferrarez

    2015-01-01

    OBJECTIVE: To investigate the applicability of Near-Infrared Spectroscopy (NIRS) for cortical hemodynamic assessment tool as an aid in the study of child development. DATA SOURCE: Search was conducted in the PubMed and Lilacs databases using the following keywords: ''psychomotor performance/child development/growth and development/neurodevelopment/spectroscopy/near-infrared'' and their equivalents in Portuguese and Spanish. The review was performed according to criteria established by Cochrane and search was limited to 2003 to 2013. English, Portuguese and Spanish were included in the search. DATA SYNTHESIS: Of the 484 articles, 19 were selected: 17 cross-sectional and two longitudinal studies, published in non-Brazilian journals. The analyzed articles were grouped in functional and non-functional studies of child development. Functional studies addressed the object processing, social skills development, language and cognitive development. Non-functional studies discussed the relationship between cerebral oxygen saturation and neurological outcomes, and the comparison between the cortical hemodynamic response of preterm and term newborns. CONCLUSIONS: NIRS has become an increasingly feasible alternative and a potentially useful technique for studying functional activity of the infant brain. PMID:25862295

  16. Determination of microstructure and composition in butadiene and styrene-butadiene polymers by near-infrared spectroscopy

    SciTech Connect

    Miller, C.E.; Eichinger, B.E. ); Gurley, T.W.; Hermiller, J.G. )

    1990-09-01

    Transmission spectroscopy in the near-infrared region (1,100-2,500 nm) is used to determine the microstructure and the composition of poly(butadiene) (PBD) polymers and styrene-butadiene (SBR) copolymers in bulk and in carbon tetrachloride solution. The multivariate method of classical least squares (CLS) is used to analyze near-infrared spectra of polymers with NMR-determined microstructures and compositions. Although the near-infrared spectra of the pure analytes (cis-1,4-butadiene, trans-1,4-butadiene, 1,2-butadiene, and styrene) are highly overlapped, the CLS method provides accurate predictions of analyte concentrations, because all available spectral frequencies are used for quantitation. The sensitivity of near-infrared spectroscopy to intermolecular interactions and neighboring-group effects in these polymers is demonstrated.

  17. Quality Degradation of Chinese White Lotus Seeds Caused by Dampening during Processing and Storage: Rapid and Nondestructive Discrimination Using Near-Infrared Spectroscopy

    PubMed Central

    Xu, Lu; Fu, Hai-Yan; Cai, Chen-Bo; She, Yuan-Bin

    2015-01-01

    Dampening during processing or storage can largely influence the quality of white lotus seeds (WLS). This paper investigated the feasibility of using near-infrared (NIR) spectroscopy and chemometrics for rapid and nondestructive discrimination of the dampened WLS. Regular (n = 167) and dampened (n = 118) WLS objects were collected from five main producing areas and NIR reflectance spectra (4000–12000 cm−1) were measured for bare kernels. The influence of spectral preprocessing methods, including smoothing, taking second-order derivatives (D2), and standard normal variate (SNV), on partial least squares discrimination analysis (PLSDA) was compared to select the optimal data preprocessing method. A moving-window strategy was combined with PLSDA (MWPLSDA) to select the most informative wavelength intervals for classification. Based on the selected spectral ranges, the sensitivity, specificity, and accuracy were 0.927, 0.950, and 0.937 for SNV-MWPLSDA, respectively. PMID:26221564

  18. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection

    PubMed Central

    Liu, Xuesong; Wu, Chunyan; Geng, Shu; Jin, Ye; Luan, Lianjun; Chen, Yong; Wu, Yongjiang

    2015-01-01

    This paper used near-infrared (NIR) spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR) was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid), protocatechuic aldehyde (PA), rosmarinic acid (RA), and salvianolic acid B (SAB) concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value. PMID:26839549

  19. Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy*

    PubMed Central

    Xie, Li-juan; Ye, Xing-qian; Liu, Dong-hong; Ying, Yi-bin

    2008-01-01

    Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice. PMID:19067467

  20. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine.

    PubMed

    da Silva, Neirivaldo Cavalcante; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Garrigues, Salvador; Cervera, Maria Luisa; de la Guardia, Miguel

    2015-09-01

    There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000-4000 per cm. Using PLS-DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2% w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples. PMID:26260573

  1. Near-infrared spectroscopy and pattern recognition techniques applied to the identification of Jinhua ham

    NASA Astrophysics Data System (ADS)

    Li, Honglian; Zhao, Zhilei; Pang, Yanping; Wu, Guancheng; Wang, Yanfeng; Li, Xiaoting

    2009-11-01

    Near-infrared (NIR) diffuse reflectance spectroscopy and pattern recognition techniques are applied to develop a fast identification method of Jinhua ham. The samples are collected from different manufactures and they are nineteen Jinhua ham samples and four Xuanwei ham samples. NIR spectra are pretreated with second derivative calculation and vector normalization. The pattern recognition techniques which are cluster analysis, conformity test and principal component analysis (PCA) are separately used to qualify Jinhua ham. The three methods can all distinguish Jinhua ham successfully. The result indicated that a 100 % recognition ration is achieved by the methods and the PCA method is the best one. Overall, NIR reflectance spectroscopy using pattern recognition is shown to have significant potential as a rapid and accurate method for identification of ham.

  2. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  3. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  4. Multicomponent blood lipid analysis by means of near infrared spectroscopy, in geese.

    PubMed

    Bazar, George; Eles, Viktoria; Kovacs, Zoltan; Romvari, Robert; Szabo, Andras

    2016-08-01

    This study provides accurate near infrared (NIR) spectroscopic models on some laboratory determined clinicochemical parameters (i.e. total lipid (5.57±1.95 g/l), triglyceride (2.59±1.36 mmol/l), total cholesterol (3.81±0.68 mmol/l), high density lipoprotein (HDL) cholesterol (2.45±0.58 mmol/l)) of blood serum samples of fattened geese. To increase the performance of multivariate chemometrics, samples significantly deviating from the regression models implying laboratory error were excluded from the final calibration datasets. Reference data of excluded samples having outlier spectra in principal component analysis were not marked as false. Samples deviating from the regression models but having non outlier spectra in PCA were identified as having false reference constituent values. Based on the NIR selection methods, 5% of the reference measurement data were rated as doubtful. The achieved models reached R(2) of 0.864, 0.966, 0.850, 0.793, and RMSE of 0.639 g/l, 0.232 mmol/l, 0.210 mmol/l, 0.241 mmol/l for total lipid, triglyceride, total cholesterol and HDL cholesterol, respectively, during independent validation. Classical analytical techniques focus on single constituents and often require chemicals, time-consuming measurements, and experienced technicians. NIR technique provides a quick, cost effective, non-hazardous alternative method for analysis of several constituents based on one single spectrum of each sample, and it also offers the possibility for looking at the laboratory reference data critically. Evaluation of reference data to identify and exclude falsely analyzed samples can provide warning feedback to the reference laboratory, especially in the case of analyses where laboratory methods are not perfectly suited to the subjected material and there is an increased chance of laboratory error. PMID:27216674

  5. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    NASA Astrophysics Data System (ADS)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  6. Spectroscopic technique with wide range of wavelength information improves near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Eda, Hideo; Aoki, Hiromichi; Eura, Shigeru; Ebe, Kazutoshi

    2009-02-01

    Near-infrared spectroscopy (NIRS) calculates hemoglobin parameters, such as oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) using the near-infrared light around the wavelength of 800nm. This is based on the modified-Lambert-Beer's law that changes in absorbance are proportional to changes in hemoglobin parameters. Many conventional measurement methods uses only a few wavelengths, however, in this research, basic examination of NIRS measurement was approached by acquiring wide range of wavelength information. Venous occlusion test was performed by using the blood pressure cuff around the upper arm. Pressure of 100mmHg was then applied for about 3 minutes. During the venous occlusion, the spectrum of the lower arm muscles was measured every 15 seconds, within the range of 600 to 1100nm. It was found that other wavelength bands hold information correlating to this venous occlusion task. Technique of improving the performance of NIRS measurement using the Spectroscopic Method is very important for Brain science.

  7. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    USGS Publications Warehouse

    Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.

    2011-01-01

    In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.

  8. Recent progress in noninvasive diabetes screening by diffuse reflectance near-infrared skin spectroscopy

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Haiber, S.; Licht, M.; Ihrig, D. F.; Moll, C.; Stuecker, M.

    2006-02-01

    Near infrared spectroscopy exhibits a tremendous potential for clinical chemistry and tissue pathology. Owing to its penetration depth into human skin, near infrared radiation can probe chemical and structural information non-invasively. Metabolic diseases such as diabetes mellitus increase nonenzymatic glycation with the effect of glucose molecules bonding chemically to proteins. In addition, glycation accumulates on tissue proteins with the clearest evidence found in extracellular skin collagen, affecting also covalent crosslinking between adjacent protein strands, which reduces their flexibility, elasticity, and functionality. Non-enzymatically glycated proteins in human skin and following chemical and structural skin changes were our spectroscopic target. We carried out measurements on 109 subjects using two different NIR-spectrometers equipped with diffuse reflection accessories. Spectra of different skin regions (finger and hand/forearm skin) were recorded for comparison with clinical blood analysis data and further patient information allowing classification into diabetics and non-diabetics. Multivariate analysis techniques for supervised classification such as linear discriminant analysis (LDA) were applied using broad spectral interval data or a number of optimally selected wavelengths. Based on fingertip skin spectra recorded by fiber-optics, it was possible to classify diabetics and non-diabetics with a maximum accuracy of 87.8 % using leave-5-out cross-validation (sensitivity of 87.5. %, specificity of 88.2 %). With the results of this study, it can be concluded that ageing and glycation at elevated levels cannot always be separated from each other.

  9. Follow-up in patients with subdural haematomas using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans-Juergen; Richter, Barbel; Lott, Carsten; Dick, Wolfgang; Boor, Stephan; Hanley, Daniel F.

    1998-12-01

    Secondary haemorrhage is an important cause of brain injury following initial therapy of subdural haematoma (SDH). Early identification and treatment of secondary haemorrhage improves neurologic outcome. Near infrared light at a wavelength of 760 nm shows a high absorption for haemoglobin. The difference in absorbance of light ((Delta) OD) at the wavelength of 760 nm between both hemispheres is measured to detect SDH. We have prospectively studied 20 patients with the CT diagnosis of SDH using near infrared spectroscopy (NIRS). Unilateral subdural haematomas were detected by NIRS in 15 out of 16 patients. Bilateral SDH were detected in 2 out of 3 patients. The median of (Delta) OD was reduced from initially 0.32 (0.05 - 0.85) to 0.1 (0.02 - 0.49) at hospital discharge. The complete resorption of the haematoma has been observed in 12 patients by NIRS. In 7 patients we still obtained pathologic values at discharge. The haematomas were not completely resolved, as proved by the CT scans prior to discharge. Our results showed repeated application of NIRS in patients with SDH help to document the clinical course after surgical treatment. Follow-up NIR evaluation of patients with SDH using NIRS may allow early treatment without time delay and a reduction of secondary brain injury as well as treatment costs.

  10. Near Infrared Spectroscopy of Jovian Trojan Asteroids: A Search for Silicate Features

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Jewitt, D.

    2007-10-01

    Spectroscopic studies show that the reflectance spectra of Jovian Trojan asteroids generally appear to be linear and moderately red (with a few neutral ones) in the optical and near infrared wavelength regions. Cruikshank et al. (2001) demonstrated that synthetic models incorporating magnesium-rich pyroxene (Mg, Fe SiO3) and carbon could match the low albedo and the shape of the reflectance spectrum of Trojan Hektor from 0.3 to 3.6 micron. More importantly, Spitzer thermal emission spectra of three Trojan asteroids all showed an emissivity plateau near 10-micron, which was interpreted as an indication of fine-grained silicates (Emery et al. 2006). Interestingly, the previous survey (Howell 1995) noted that several Trojans showed a broad absorption band between 1.1 and 1.25 micron based on broadband infrared colors. This possible 1 micron feature is consistent with the 1 micron silicate band that has been observed and well studied on many main belt asteroids. We obtained near infrared (NIR) spectroscopy (0.8-2.5 micron) on 7 Trojan asteroids having reported silicate-related absorption bands. Also, the unique asteroid (279) Thule in the 3:4 mean-motion resonance was observed. The observations were made with the NASA Infrared Telescope Facility (IRTF) atop Mauna Kea. We will present the new spectra and simple scattering models employed to constrain the surface properties of Trojan asteroids.

  11. In vivo, noninvasive measurement of muscle pH during exercise using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Soyemi, Olusola; Shear, Michael; Landry, Michelle; Anunciacion, Dulce; Soller, Babs

    2005-11-01

    Muscle pH is an important indicator of inadequate blood flow and available oxygen. Muscle pH can be used to triage and help treat trauma victims and indicate poor peripheral blood flow in diabetic patients. Muscle pH can also be used to indicate exercise intensity and fatigue. We have developed methods to non-invasively measure muscle pH using Near-Infrared Spectroscopy (NIRS) and Partial Least Squares (PLS) analysis. A multi-subject PLS model correlating near infrared tissue spectra, acquired from healthy subjects during repetitive hand-grip exercise, to invasive tissue pH measurements, has been developed and validated. Subject related variations in the spectral signal; impede the development of viable multi-subject model. Within-subject variations in tissue NIR spectra often result from uncontrolled motion or blood volume changes during exercise, while subject-to-subject variations arise from differences in skin pigmentation and the fat layer thickness. We have developed signal processing techniques to account for these mitigating factors. By incorporating this signal processing techniques with PLS calibration, we can generate a pH model that has a relative standard error of prediction of 1.7%

  12. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  13. Near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets.

    PubMed

    Lopes, Marta B; Wolff, Jean-Claude; Bioucas-Dias, José M; Figueiredo, Mário A T

    2010-02-15

    A rapid detection of the nonauthenticity of suspect tablets is a key first step in the fight against pharmaceutical counterfeiting. The chemical characterization of these tablets is the logical next step to evaluate their impact on patient health and help authorities in tracking their source. Hyperspectral unmixing of near-infrared (NIR) image data is an emerging effective technology to infer the number of compounds, their spectral signatures, and the mixing fractions in a given tablet, with a resolution of a few tens of micrometers. In a linear mixing scenario, hyperspectral vectors belong to a simplex whose vertices correspond to the spectra of the compounds present in the sample. SISAL (simplex identification via split augmented Lagrangian), MVSA (minimum volume simplex analysis), and MVES (minimum-volume enclosing simplex) are recent algorithms designed to identify the vertices of the minimum volume simplex containing the spectral vectors and the mixing fractions at each pixel (vector). This work demonstrates the usefulness of these techniques, based on minimum volume criteria, for unmixing NIR hyperspectral data of tablets. The experiments herein reported show that SISAL/MVSA and MVES largely outperform MCR-ALS (multivariate curve resolution-alternating least-squares), which is considered the state-of-the-art in spectral unmixing for analytical chemistry. These experiments are based on synthetic data (studying the effect of noise and the presence/absence of pure pixels) and on a real data set composed of NIR images of counterfeit tablets. PMID:20095581

  14. Intraoperative 16-Channel Electroencephalography and Bilateral Near Infrared Spectroscopy Monitorization in Aortic Surgery

    PubMed Central

    Demir, Aslı; Aydınlı, Bahar; Ünal, Ertekin Utku; Bindal, Mustafa; Koçulu, Rabia; Sarıtaş, Ahmet; Karadeniz, Ümit

    2015-01-01

    Transient neurologic dysfunction is common after aortic surgery. Major causes of postoperative complications followed by cardiac surgery are due to hypoperfusion states such as selective cerebral perfusion, embolic debris during cardiopulmonary bypass and ulcerated plaque emboli originated from carotid arteries. Neurologic complications prolong periods of intensive care unit and hospital stay, worsens quality of life and unfortunately they are an important cause of morbidity. Anaesthesia during a carotid and aortic surgery constitutes of providing adequate brain perfusion pressure, attenuating cerebral metabolism by anaesthetic agents and monitoring the cerebral metabolic supply and demand relationship during the intraoperative period. We present a monitoring approach with an intraoperative 16-channel electroencephalography and bilateral near infrared spectroscopy during redo aneurysm of the sinus of Valsalva surgery. PMID:27366510

  15. Near-infrared spectroscopy and pattern-recognition processing for classifying wines of two Italian provinces

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Gordillo, B.; Mencaglia, Andrea A.; González-Miret, M. L.; Heredia, F. J.; Cichelli, A.

    2014-05-01

    This paper presents an experiment making use of the near-infrared spectrum for distinguishing the wines produced in two close provinces of Abruzzo region of Italy. A collection of 32 wines was considered, 18 of which were produced in the province of Chieti, while the other 14 were from the province of Teramo. A conventional dual-beam spectrophotometer was used for absorption measurements in the 1300-1900 nm spectroscopic range. Principal Component Analysis was used for explorative analysis. Score maps in the PC1-PC2 or PC2-PC3 spaces were obtained, which successfully grouped the wine samples in two distinct clusters, corresponding to Chieti and Teramo provinces, respectively. A modelling of dual-band spectroscopy was also proposed, making use of two LEDs for illumination and a PIN detector instead of the spectrometer. These data were processed using Linear Discriminant Analysis which demonstrated satisfactory classification results.

  16. Hemodynamic correlates of visuomotor motor adaptation by functional Near Infrared Spectroscopy.

    PubMed

    Gentili, Rodolphe J; Hadavi, Cyrus; Ayaz, Hasan; Shewokis, Patricia A; Contreras-Vidal, Jose L

    2010-01-01

    The development of rehabilitation engineering technologies such as the design of smart prosthetics necessitates a deep understanding of brain mechanisms engaged in ecological situations when human interact with new tools and/or environments. Thus, we aimed to investigate potential hemodynamic signatures reflecting the level of cognitive-motor performance and/or the internal or mental states of individuals when learning a novel tool with unknown properties. These markers were derived from functional Near Infrared Spectroscopy (fNIR) signals. Our results indicate an increased level of oxy-hemoglobin in prefrontal sensors associated with enhanced kinematics during early compared with late learning. This is consistent with previous neuroimaging studies that revealed a higher contribution of prefrontal areas during early compare to late adaptation learning. These non-invasive functional hemodynamic markers may play a role in bioengineering applications such as smart neuroprosthesis and brain monitoring where adaptive behavior is important. PMID:21095985

  17. Studying brain function with near-infrared spectroscopy concurrently with electroencephalography

    NASA Astrophysics Data System (ADS)

    Tong, Y.; Rooney, E. J.; Bergethon, P. R.; Martin, J. M.; Sassaroli, A.; Ehrenberg, B. L.; Van Toi, Vo; Aggarwal, P.; Ambady, N.; Fantini, S.

    2005-04-01

    Near-infrared spectroscopy (NIRS) has been used for functional brain imaging by employing properly designed source-detector matrices. We demonstrate that by embedding a NIRS source-detector matrix within an electroencephalography (EEG) standard multi-channel cap, we can perform functional brain mapping of hemodynamic response and neuronal response simultaneously. In this study, the P300 endogenous evoked response was generated in human subjects using an auditory odd-ball paradigm while concurrently monitoring the hemodynamic response both spatially and temporally with NIRS. The electrical measurements showed the localization of evoked potential P300, which appeared around 320 ms after the odd-ball stimulus. The NIRS measurements demonstrate a hemodynamic change in the fronto-temporal cortex a few seconds after the appearance of P300.

  18. Extraction of heart rate from functional near-infrared spectroscopy in infants

    PubMed Central

    Perdue, Katherine L.; Westerlund, Alissa; McCormick, Sarah A.; Nelson, Charles A.

    2014-01-01

    Abstract. Changes in heart rate are a useful physiological measure in infant studies. We present an algorithm for calculating the heart rate (HR) from oxyhemoglobin pulsation in functional near-infrared spectroscopy (fNIRS) signals. The algorithm is applied to data collected from 10 infants, and the HR derived from the fNIRS signals is compared against the HR as calculated by electrocardiography. We show high agreement between the two HR signals for all infants (r>0.90), and also compare stimulus-related HR responses as measured by the two methods and find good agreement despite high levels of movement in the infants. This algorithm can be used to measure changes in HR in infants participating in fNIRS studies without the need for additional HR sensors. PMID:24972361

  19. Elevated Skin Blood Flow Influences Near Infrared Spectroscopy Measurements During Supine Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Clarke, Mark S. F.

    2004-01-01

    Near infrared spectroscopy is a non-invasive technique that allows determination of tissue oxygenation/blood flow based on spectrophotometric quantitation of oxy- and deoxyhemoglobin present within a tissue. This technique has gained acceptance as a means of detecting and quantifying changes in tissue blood flow due to physiological perturbation, such as that which is elicited in skeletal muscle during exercise. Since the NIRS technique requires light to penetrate the skin and subcutaneous fat in order to reach the muscle of interest, changes in skin blood flow may alter the NIRS signal in a fashion unrelated to blood flow in the muscle of interest. The aim of this study was to determine the contribution of skin blood flow to the NIRS signal obtained from resting vastus lateralis muscle of the thigh.

  20. Measurement of triglycerides concentration in human serum using near-infrared transmission spectroscopy and interval PLS

    NASA Astrophysics Data System (ADS)

    Huang, Furong; Yu, Jianhui; Li, Shiping

    2011-11-01

    In order to measurement of Triglycerides in human serum with reagent-less using near-infrared (NIR) spectroscopy. Interval partial least square (iPLS) was proposed as an effective variable selection approach for multivariate calibration. For this purpose, an independent sample set was employed to evaluate the prediction ability of the resulting model. The spectrum was split into different interval. Then, the informative region of Triglycerides (1654-1746nm), in which the PLS model has a low RMSEP with 0.157mmol/L and a high R with 0.967, is selected with 18 intervals. The results show that the informative region of Triglycerides can be obtained by iPLS and applied to design the simpler reagent-less NIR instruments for inexpensive Triglycerides measurement in future.

  1. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  2. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    PubMed Central

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  3. Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues.

    PubMed

    Kolmas, Joanna; Marek, Dariusz; Kolodziejski, Waclaw

    2015-08-01

    Near-infrared spectroscopy (NIR) was used to analyze synthetic hydroxyapatite calcined at various temperatures, synthetic carbonated hydroxyapatite, and human hard dental tissues (enamel and dentin). The NIR bands of those materials in the combination, first-overtone, and second-overtone spectral regions were assigned and evaluated for structural characterization. They were attributed to adsorbed and structural water, structural hydroxyl (OH) groups and surface P-OH groups. The NIR spectral features were quantitatively discussed in view of proton solid-state magic-angle spinning nuclear magnetic resonance ((1)H MAS NMR) results. We conclude that the NIR spectra of apatites are useful in the structural characterization of synthetic and biogenic apatites. PMID:26163232

  4. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria-Angela; Fantini, Sergio; Palumbo, Renato; Pasqualini, Leonella; Vaudo, Gaetano; Franceschini, Edoardo; Gratton, Enrico; Palumbo, Barbara; Innocente, Salvatore; Mannarino, Elmo

    1998-01-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) baseline (approximately 5 min); (2) stationary bicycle exercise (approximately 5 min); (3) recovery (approximately 15 min). The change in hemoglobin saturation during exercise ((Delta) Y) and the recovery time after exercise (trec) were significantly greater in the PVD patients ((Delta) Y equals -21 +/- 3%, trec equals 5.9 +/- 3.8 min) than in the control subjects ((Delta) Y equals 2 +/- 3%, trec equals 0.6 +/- 0.1 min).

  5. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria A.; Fantini, Sergio; Palumbo, Renato; Pasqualini, Leonella; Vaudo, Gaetano; Franceschini, Edoardo; Gratton, Enrico; Palumbo, Barbara; Innocente, Salvatore; Mannarino, Elmo

    1997-12-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) baseline (approximately 5 min); (2) stationary bicycle exercise (approximately 5 min); (3) recovery (approximately 15 min). The change in hemoglobin saturation during exercise ((Delta) Y) and the recovery time after exercise (trec) were significantly greater in the PVD patients ((Delta) Y equals -21 +/- 3%, trec equals 5.9 +/- 3.8 min) than in the control subjects ((Delta) Y equals 2 +/- 3%, trec equals 0.6 +/- 0.1 min).

  6. [Use of visible and near infrared reflectance spectroscopy to identify the cashmere and wool].

    PubMed

    Liu, Xin-Ru; Zhang, Li-Ping; Wang, Jian-Fu; Wu, Jian-Ping; Wang, Xin-Rong

    2013-08-01

    The wool and cashmere samples (n = 130) from different areas of Gansu province were identified by visible and near-infrared reflectance spectroscopy (Vis/NIRs). The result shows that principal component-mahalanobis distance pattern can identify the wool and cashmere, and the boundary between two categories was clear; The calibration set samples were used to establish calibration qualitative model using PCR combined with the best pretreatment of the spectra and math, including multivariate scattering correction (MSC), first derivative, eight for the best principal component factor, one for uncertainty factor, this calibration model of the predicted was the best, and the result of the external validation was correct completely. Results from this experiment indicate that Vis/NIRs can be utilized to identify the wool and cashmere. PMID:24159853

  7. Plasmonic filter array for on-chip near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Erwen; Chong, Xinyuan; Ren, Fanghui; Wang, Alan X.

    2016-03-01

    We demonstrate an ultra-compact on-chip spectrometer for near-infrared (NIR) spectroscopy based on narrow-band band-pass filter array. Each individual filter consists of a plasmonic metallic grating with subwavelength period and extremely narrow slits on a quartz substrate, with a polymer cover layer as the waveguide layer. A narrow-band guided-mode resonance (GMR) associated with a surface-plasmon resonance (SPR) gives rise to the narrow-band transmission spectrum. Full width at half maximum (FWHM) of fabricated filter's spectrum is measured to be from 7 to 13 nm, and the operation bandwidth of the entire filter array covers wavelength range over 270 nm from 1510 to 1780 nm. We measure the NIR absorbance spectrum of xylene using our filter array device to demonstrate its application as a spectrometer.

  8. Near-infrared autofluorescence spectroscopy of in vivo soft tissue sarcomas

    PubMed Central

    Nguyen, John Quan; Gowani, Zain; O'Connor, Maggie; Pence, Isaac; Nguyen, The-Quyen; Holt, Ginger; Mahadevan-Jansen, Anita

    2016-01-01

    Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated via surgical resection. Inadequate resection can lead to local recurrence and decreased survival rates. In this study, we investigate the hypothesis that near-infrared (NIR) autofluorescence can be utilized for tumor margin analysis by differentiating STS from the surrounding normal tissue. Intraoperative in vivo measurements were acquired from 30 patients undergoing STS resection and were characterized to differentiate between normal tissue and STS. Overall, normal muscle and fat were observed to have the highest and lowest autofluorescence intensities, respectively, with STS falling in between. With the exclusion of well-differentiated liposarcomas, the algorithm's accuracy for classifying muscle, fat, and STS was 93%, 92%, and 88%, respectively. These findings suggest that NIR autofluorescence spectroscopy has potential as a rapid and nondestructive surgical guidance tool that can inform surgeons of suspicious margins in need of immediate re-excision. PMID:26625035

  9. Extraction of heart rate from functional near-infrared spectroscopy in infants

    NASA Astrophysics Data System (ADS)

    Perdue, Katherine L.; Westerlund, Alissa; McCormick, Sarah A.; Nelson, Charles A.

    2014-06-01

    Changes in heart rate are a useful physiological measure in infant studies. We present an algorithm for calculating the heart rate (HR) from oxyhemoglobin pulsation in functional near-infrared spectroscopy (fNIRS) signals. The algorithm is applied to data collected from 10 infants, and the HR derived from the fNIRS signals is compared against the HR as calculated by electrocardiography. We show high agreement between the two HR signals for all infants (r>0.90), and also compare stimulus-related HR responses as measured by the two methods and find good agreement despite high levels of movement in the infants. This algorithm can be used to measure changes in HR in infants participating in fNIRS studies without the need for additional HR sensors.

  10. Characterizing emotional response to music in the prefrontal cortex using near infrared spectroscopy.

    PubMed

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2012-09-01

    Known to be involved in emotional processing the human prefrontal cortex (PFC), can be non-invasively monitored using near-infrared spectroscopy (NIRS). As such, PFC NIRS can serve as a means for studying emotional processing by the PFC. Identifying patterns associated with emotions in PFC using NIRS may provide a means of bedside emotion identification for nonverbal children and youth with severe physical disabilities. In this study, NIRS was used to characterize the PFC hemodynamic response to emotional arousal and valence in a music-based emotion induction paradigm in 9 individuals without disabilities or known health conditions. In particular, a novel technique based on wavelet-based peak detection was used to characterize chromophore concentration patterns. The maximum wavelet coefficients extracted from oxygenated hemoglobin concentration waveforms from all nine recording locations on the PFC were significantly associated with emotional valence and arousal. Specifically, high arousal and negative emotions were associated with larger maximum wavelet coefficients. PMID:22842396