Science.gov

Sample records for chesapeake bay impact

  1. The Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, Jr., J. Wright

    2015-01-01

    About 35 million years ago, during late Eocene time, a 2-mile-wide asteroid or comet smashed into Earth in what is now the lower Chesapeake Bay in Virginia. The oceanic impact vaporized, melted, fractured, and (or) displaced the target rocks and sediments and sent billions of tons of water, sediments, and rocks into the air. Glassy particles of solidified melt rock rained down as far away as Texas and the Caribbean. Models suggest that even up to 50 miles away the velocity of the intensely hot air blast was greater than 1,500 miles per hour, and ground shaking was equivalent to an earthquake greater than magnitude 8.0 on the Richter scale. Large tsunamis affected most of the North Atlantic basin. The Chesapeake Bay impact structure is among the 20 largest known impact structures on Earth.

  2. Coring the Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C.W.

    2004-01-01

    In July 1983, the shipboard scientists of Deep Sea Drilling Project Leg 95 found an unexpected bonus in a core taken 150 kilometers east of Atlantic City, N.J. At Site 612, the scientists recovered a 10-centimeter-thick layer of late Eocene debris ejected from an impact about 36 million years ago. Microfossils and argon isotope ratios from the same layer reveal that the ejecta were part of a broad North American impact debris field, previously known primarily from the Gulf of Mexico and Caribbean Sea. Since that serendipitous beginning, years of seismic reflection profiling, gravity measurements and core drilling have confirmed the source of that strewn field - the Chesapeake Bay impact crater, the largest structure of its kind in the United States, and the sixth-largest impact crater on Earth.

  3. CHESAPEAKE BAY MONITORING PROGRAM

    EPA Science Inventory

    The Chesapeake Bay Program is the unique regional partnership which has been directing and conducting the restoration of the Chesapeake Bay since the signing of the historic 1983 Chesapeake Bay Agreement. The Chesapeake Bay Program partners include the states of Maryland, Pennsyl...

  4. Potential climate-change impacts on the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Najjar, Raymond G.; Pyke, Christopher R.; Adams, Mary Beth; Breitburg, Denise; Hershner, Carl; Kemp, Michael; Howarth, Robert; Mulholland, Margaret R.; Paolisso, Michael; Secor, David; Sellner, Kevin; Wardrop, Denice; Wood, Robert

    2010-01-01

    We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for CO 2 emissions indicate that by the end of the 21 st century the Bay region will experience significant changes in climate forcings with respect to historical conditions, including increases in CO 2 concentrations, sea level, and water temperature of 50-160%, 0.7-1.6 m, and 2-6 °C, respectively. Also likely are increases in precipitation amount (very likely in the winter and spring), precipitation intensity, intensity of tropical and extratropical cyclones (though their frequency may decrease), and sea-level variability. The greatest uncertainty is associated with changes in annual streamflow, though it is likely that winter and spring flows will increase. Climate change alone will cause the Bay to function very differently in the future. Likely changes include: (1) an increase in coastal flooding and submergence of estuarine wetlands; (2) an increase in salinity variability on many time scales; (3) an increase in harmful algae; (4) an increase in hypoxia; (5) a reduction of eelgrass, the dominant submerged aquatic vegetation in the Bay; and (6) altered interactions among trophic levels, with subtropical fish and shellfish species ultimately being favored in the Bay. The magnitude of these changes is sensitive to the CO 2 emission trajectory, so that actions taken now to reduce CO 2 emissions will reduce climate impacts on the Bay. Research needs include improved precipitation and streamflow projections for the Bay watershed and whole-system monitoring, modeling, and process studies that can capture the likely non-linear responses of the Chesapeake Bay system to climate variability, climate change, and their interaction with other anthropogenic stressors.

  5. Potential climate-change impacts on the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Pyke, C.; Adams, M.; Breitburg, D.; Hershner, C.; Kemp, M.; Howarth, R.; Mulholland, M.; Paolisso, M.; Secor, D.; Sellner, K.; Wardrop, D.; Wood, R.

    2008-12-01

    We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for carbon dioxide emissions indicate that by the end of the 21st century the Bay region will experience significant changes in climate forcings with respect to historic conditions, including increases in carbon dioxide concentrations, sea level, and water temperature of 50-160 percent, 0.7-1.6 m, and 2-6 K, respectively. Also likely are increases in precipitation amount (particularly in the winter and spring), precipitation intensity, intensity of tropical and extratropical cyclones (though their frequency may decrease), and sea-level variability. The greatest uncertainty is associated with changes in annual streamflow, though it is likely that winter and spring flows will increase. Climate change alone will cause the Bay to function very differently in the future. Likely changes include: (1) an increase in coastal flooding and submergence of estuarine wetlands; (2) an increase in salinity variability on many time scales; (3) an increase in harmful algae; (4) an increase in hypoxia; (5) a reduction of eelgrass, the dominant submerged aquatic vegetation in the Bay; and (6) altered interactions among trophic levels, with warm-water fish and shellfish species ultimately being favored in the Bay. The magnitude of these changes is sensitive to the carbon dioxide emission trajectory, so that actions taken now to reduce carbon dioxide emissions will reduce climate impacts on the Bay. Research needs include improved precipitation and streamflow projections for the Bay watershed and whole-system monitoring and modeling (supplemented by process studies) that can capture the likely non-linear responses of the Chesapeake Bay system to climate variability and change.

  6. Deep drilling into the Chesapeake Bay impact structure.

    PubMed

    Gohn, G S; Koeberl, C; Miller, K G; Reimold, W U; Browning, J V; Cockell, C S; Horton, J W; Kenkmann, T; Kulpecz, A A; Powars, D S; Sanford, W E; Voytek, M A

    2008-06-27

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation. PMID:18583604

  7. Deep drilling into the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.; Browning, J.V.; Cockell, C.S.; Horton, J.W., Jr.; Kenkmann, T.; Kulpecz, A.A.; Powars, D.S.; Sanford, W.E.; Voytek, M.A.

    2008-01-01

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  8. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  9. Chesapeake Bay

    Atmospheric Science Data Center

    2016-06-13

    ... pollution and other particles in a volume of air over ocean, and at the same time characterizing the way the dark water surface below ... at the Chesapeake Lighthouse, a platform in the Atlantic Ocean 25 kilometers off the Virginia coast, and by six instrumented aircraft, ...

  10. Chesapeake Bay Crater, Virginia: Confirmation of Impact Origin

    NASA Astrophysics Data System (ADS)

    Koeberl, C.; Reimold, W. U.; Brandt, D.; Poag, C. W.

    1995-09-01

    Poag et al. [1] identified a late Eocene boulder bed in drill cores from southeast Virginia, and interpreted it as an impact-generated tsunami deposit. Seismic studies and other geophysical evidence indicated the existence of a possible impact structure centered at Chesapeake Bay (37 degrees x 15' N and 76 degrees x 04' W), which may be 85-90 km in diameter [2]. Four drill cores have penetrated into the breccia, although none is available from the center of the structure, or reaches basement. A central peak-ring of crystalline rocks with about 25 km diameter is surrounded by a 30 km-wide annular trough and terrace terrane. The trough is filled with polymictic breccia composed mainly of autochthonous sedimentary clasts in a sandy matrix with some angular clasts of granitic and metasedimentary basement rocks [2]. The Chesapeake Bay crater is of special interest, because it is close to the region identified as the possible source region for the North American tektites, is of about the expected size, and has an age identical to that of the tektites [3]. While the source craters for the Central European and Ivory Coast tektite strewn fields are known, the source crater of the North American tektites has remained elusive. A variety of locations were suggested, including Popigai (Siberia), Wanapitei (Canada), Mistastin (Canada), and Bee Bluff (Texas), but all were later discounted. The distribution of the tektites and microtektites in the strewn field suggests that the North American tektite source crater is likely to be located at or near the eastern coast of the North American continent, maybe underwater [4,5]. The location of the Chesapeake Bay structure is in agreement with the area suggested before [4,5]. We have started a petrological and geochemical study of target rocks and breccias from the Chesapeake Bay structure. We analyzed the major and trace element composition of 17 mainly sedimentary samples, for comparison with North American tektite values. 14 of these

  11. Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C. Wylie

    2012-01-01

    The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.

  12. Coesite in suevites from the Chesapeake Bay impact structure

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Horton, J. Wright; Chou, I.-Ming; Belkin, Harvey E.

    2016-05-01

    The occurrence of coesite in suevites from the Chesapeake Bay impact structure is confirmed within a variety of textural domains in situ by Raman spectroscopy for the first time and in mechanically separated grains by X-ray diffraction. Microtextures of coesite identified in situ investigated under transmitted light and by scanning electron microscope reveal coesite as micrometer-sized grains (1-3 μm) within amorphous silica of impact-melt clasts and as submicrometer-sized grains and polycrystalline aggregates within shocked quartz grains. Coesite-bearing quartz grains are present both idiomorphically with original grain margins intact and as highly strained grains that underwent shock-produced plastic deformation. Coesite commonly occurs in plastically deformed quartz grains within domains that appear brown (toasted) in transmitted light and rarely within quartz of spheroidal texture. The coesite likely developed by a mechanism of solid-state transformation from precursor quartz. Raman spectroscopy also showed a series of unidentified peaks associated with shocked quartz grains that likely represent unidentified silica phases, possibly including a moganite-like phase that has not previously been associated with coesite.

  13. Chesapeake Bay study

    NASA Technical Reports Server (NTRS)

    Love, W. J.

    1972-01-01

    The objectives and scope of the Chesapeake Bay study are discussed. The physical, chemical, biological, political, and social phenomena of concern to the Chesapeake Bay area are included in the study. The construction of a model of the bay which will provide a means of accurately studying the interaction of the ecological factors is described. The application of the study by management organizations for development, enhancement, conservation, preservation, and restoration of the resources is examined.

  14. Impact of Hurricane Isabel on Hypoxia in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, M.

    2008-12-01

    Episodic forcing by tropical storms and hurricanes often consists of high winds, heavy precipitation, increased freshwater flow, strong vertical mixing, and intense pulses of nutrients, leading to enhanced plankton biomass and temporary relief or termination of hypoxic condition in estuaries and coastal oceans. The U.S. East and Gulf Coasts have experienced elevated tropical storm and hurricane activity in recent years, a pattern expected to persist for several more decades and that may increase due to global warming. Therefore, there is an urgent need to understand the mechanisms governing the response of a coastal ecosystem to extreme weather events. Here we present a preliminary modeling investigation into Chesapeake Bay's response to Hurricane Isabel which made landfall at the Outer Banks of North Carolina and moved past the Bay on 18 and 19 Sept 2003. Strong storm winds eroded stratification and produced strong turbulent mixing which injected bottom nutrients to the surface euphotic layer and aerated the hypoxic bottom water. After the passage of the storm, however, the horizontal salinity gradient drove restratification and return to hypoxia in bottom water as well as producing a post-storm phytoplankton bloom. Using a coupled hydrodynamic-biogeochemical model, we conduct numerical experiments to investigate how the hurricane-induced destratification and restratification cycle affects the distribution of dissolved oxygen in Chesapeake Bay and explore the mechanisms responsible for the observed rapid return of hypoxia after the storm.

  15. Impact origin of the Chesapeake Bay structure and the source of the North American tektites

    USGS Publications Warehouse

    Koeberl, C.; Poag, C.W.; Reimold, W.U.; Brandt, D.

    1996-01-01

    Seismic profiles, drill core samples, and gravity data suggest that a complex impact crater ???35.5 million years old and 90 kilometers in diameter is buried beneath the lower Chesapeake Bay. The breccia that fills the structure contains evidence of shock metamorphism, including impact melt breccias and multiple sets of planar deformation features (shock lamellae) in quartz and feldspar. The age of the crater and the composition of some breccia clasts are consistent with the Chesapeake Bay impact structure being the source of the North American tektites.

  16. Impact of Shoreline Stabilization Structures on Chesapeake Bay Nearshore Habitats

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Sanford, L. P.; Koch, E.; Stevenson, J. C.; Ortt, R.; Lorie, S.; Booth, D.

    2014-12-01

    Currently 69% of Maryland's shoreline is eroding and 12% is hardened with increasing rates of hardening occurring as development progresses. Shoreline erosion rates are likely to increase, and community needs for shoreline protection are likely to become more important as rates of sea-level rise increase with climate change, constituting a serious coastal hazard. However, the effects of different shoreline stabilization structures on erosion and nearshore water quality and habitat are complex. A variety of stabilization techniques are used in the Maryland Chesapeake Bay, and while the qualitative effects of the different techniques are generally known, there is little quantitative, long-term information available. This study has developed a comprehensive data set comparing long-term impacts of different shoreline stabilization techniques on both the physical environment and habitat. These data include shoreline and bathymetric surveys for comparison to pre-installation information, comparison of pre- and post-construction submerged aquatic vegetation (SAV) coverage, field surveys of SAV and marshes, and collection of cores to determine changes in sediment characteristics and accumulation rates. We have also assembled available estimates of wave and tides near each site to construct wave-sea level climatologies for use in a semi-empirical model of erosion potential. Statistical tests are used to explore relationships among variables. Preliminary results suggest that sediment characteristics depend on the source of material - shoreline type and estuarine salinity zone (proxy for fine sediment availability) - whereas sedimentation rate depends on structure geometry and the pre-construction sedimentation, which generally reflects physical processes controlling sediment transport. Also, sediment type, rather than structure type, seems to influence SAV (plants need sand).

  17. Chesapeake Bay Critters

    ERIC Educational Resources Information Center

    Mackay-Atha, Lynne

    2005-01-01

    When students enter the author's classroom on the first day of school, they are greeted with live crabs scuttling around in large bins. The crabs are her way of grabbing students' attention and launching the unit on the Chesapeake Bay watershed. She chooses to start the year with this unit because, despite the fact that the Potomac River can be…

  18. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains

  19. Drilling the Central Crater of the Chesapeake Bay Impact Structure: A First Look

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.; Gohn, Gregory S.; Powars, David S.; Horton, J. Wright, Jr.; Edwards, Lucy E.; Self-Trail, Jean M.; Morin, Roger H.

    2004-09-01

    The late Eocene Chesapeake Bay impact structure is a well-preserved example of one of Earth's largest impact craters, and its continental-shelf setting and relatively shallow burial make it an excellent target for study. Since the discovery of the structure over a decade ago, test drilling by U.S. federal and state agencies has been limited to the structure's annular trough (Figure 1). In May 2004, the U.S. Geological Survey (USGS) drilled the first scientific test hole into the central crater of the Chesapeake Bay impact structure at the town of Cape Charles, Virginia (Figure 1). This partially cored test hole, the deepest to date, penetrated postimpact sediments and impact breccias to a total depth of 823 m. The test hole is located on the eastern flank of the crater's central uplift, as inferred from seismic surveys and potential-field maps. Two groundwater observation wells were installed within the single test hole with screens at depths of 415-421 m and 689-695 m. The bottom 79 m of the test hole and a short interval at 427-433 m depth were cored with moderate recovery. Drill cuttings were collected from the uncored intervals. A suite of geophysical logs was acquired for the full length of the hole. Rock types and pore-water salinities encountered in this new hole are significantly different from those sampled previously in the structure's annular trough.

  20. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    NASA Technical Reports Server (NTRS)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  1. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: Human impacts in context

    USGS Publications Warehouse

    Bratton, J.F.; Colman, Steven M.; Seal, R.R., II

    2003-01-01

    To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (??13C and ??15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of ??13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of ??15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in ??15N of +4??? started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development. Published by Elsevier Ltd.

  2. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: human impacts in context

    NASA Astrophysics Data System (ADS)

    Bratton, John F.; Colman, Steven M.; Seal, Robert R.

    2003-09-01

    To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ 13C and δ 15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ 13C org profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ 15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ 15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.

  3. Eutrophication in the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Ulanowicz, R. E.

    1978-01-01

    The advantages and limitations of using remote sensing to acquire fast reliable data on the nutrient problem in the Chesapeake Bay ecosystem are discussed. Pollution effects to phytoplankton blooms during late summer and early fall months are also considered.

  4. Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Declercq, J.; Dypvik, H.; Aagaard, P.; Jahren, J.; Ferrell, R.E., Jr.; Horton, J. Wright, Jr.

    2009-01-01

    The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.

  5. Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Jackson, J.C.; Horton, J.W., Jr.; Chou, I.-Ming; Belkin, H.E.

    2011-01-01

    X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02-1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.

  6. Shock-wave-induced fracturing of calcareous nannofossils from the Chesapeake Bay impact crater

    USGS Publications Warehouse

    Self-Trail J.M.

    2003-01-01

    Fractured calcareous nannofossils of the genus Discoaster from synimpact sediments within the Chesapeake Bay impact crater demonstrate that other petrographic shock indicators exist for the cratering process in addition to quartz minerals. Evidence for shock-induced taphonomy includes marginal fracturing of rosette-shaped Discoaster species into pentagonal shapes and pressure- and temperature-induced dissolution of ray tips and edges of discoasters. Rotational deformation of individual crystallites may be the mechanism that produces the fracture pattern. Shock-wave-fractured calcareous nannofossils were recovered from synimpact matrix material representing tsunami or resurge sedimentation that followed impact. Samples taken from cohesive clasts within the crater rubble show no evidence of shock-induced fracturing. The data presented here support growing evidence that microfossils can be used to determine the intensity and timing of wet-impact cratering.

  7. Postimpact deposition in the Chesapeake Bay impact structure: Variations in eustasy, compaction, sediment supply, and passive-aggressive tectonism

    USGS Publications Warehouse

    Kulpecz, A.A.; Miller, K.G.; Browning, J.V.; Edwards, L.E.; Powars, D.S.; McLaughlin, P.P., Jr.; Harris, A.D.; Feigenson, M.D.

    2009-01-01

    The Eyreville and Exmore, Virginia, core holes were drilled in the inner basin and annular trough, respectively, of the Chesapeake Bay impact structure, and they allow us to evaluate sequence deposition in an impact crater. We provide new high-resolution geochronologic (<1 Ma) and sequence-stratigraphic interpretations of the Exmore core, identify 12 definite (and four possible) postimpact depositional sequences, and present comparisons with similar results from Eyreville and other mid- Atlantic core holes. The concurrence of increases in ??18O with Chesapeake Bay impact structure sequence boundaries indicates a primary glacioeustatic control on deposition. However, regional comparisons show the differential preservation of sequences across the mid-Atlantic margin. We explain this distribution by the compaction of impactites, regional sediment-supply changes, and the differential movement of basement structures. Upper Eocene strata are thin or missing updip and around the crater, but they thicken into the inner basin (and offshore to the southeast) due to rapid crater infilling and concurrent impactite compaction. Oligocene sequences are generally thin and highly dissected throughout the mid-Atlantic region due to sediment starvation and tectonism, except in southeastern New Jersey. Regional tectonic uplift of the Norfolk Arch coupled with a southward decrease in sediment supply resulted in: (1) largely absent Lower Miocene sections around the Chesapeake Bay impact structure compared to thick sections in New Jersey and Delaware; (2) thick Middle Miocene sequences across the Delmarva Peninsula that thin south of the Chesapeake Bay impact structure; and (3) upper Middle Miocene sections that pinch out just north of the Chesapeake Bay impact structure. Conversely, the Upper Miocene-Pliocene section is thick across Virginia, but it is poorly represented in New Jersey because of regional variations in relative subsidence. ?? 2009 The Geological Society of America.

  8. Chesapeake Bay impact structure: A blast from the past

    USGS Publications Warehouse

    Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, Jr., J. Wright

    2015-01-01

    Since its discovery in the early 1990s, scientists have conducted deep drilling and geophysical surveys of the impact structure to find out more about its size, composition, structure, age, and biological effects and to understand its lingering influences on the regional groundwater system. These efforts culminated in the drilling of a 1-mile-deep, continuously sampled corehole in 2005 by an international group of scientists and agencies.

  9. Recent research on the Chesapeake Bay impact structure, USA - Impact debris and reworked ejecta

    USGS Publications Warehouse

    Horton, J.W., Jr.; Aleinikoff, J.N.; Kunk, M.J.; Gohn, G.S.; Edwards, L.E.; Self-Trail J.M.; Powars, D.S.; Izett, G.A.

    2005-01-01

    Four new coreholes in the western annular trough of the buried, late Eocene Chesapeake Bay impact structure provide samples of shocked minerals, cataclastic rocks, possible impact melt, mixed sediments, and damaged microfossils. Parautochthonous Cretaceous sediments show an upward increase in collapse, sand fluidization, and mixed sediment injections. These impact-modifi ed sediments are scoured and covered by the upper Eocene Exmore beds, which consist of highly mixed Cretaceous to Eocene sediment clasts and minor crystalline-rock clasts in a muddy quartz-glauconite sand matrix. The Exmore beds are interpreted as seawater-resurge debris flows. Shocked quartz is found as sparse grains and in rock fragments at all four sites in the Exmore, where these fallback remnants are mixed into the resurge deposit. Crystalline-rock clasts that exhibit shocked quartz or cataclastic fabrics include felsites, granitoids, and other plutonic rocks. Felsite from a monomict cataclasite boulder has a sensitive high-resolution ion microprobe U-Pb zircon age of 613 ?? 4 Ma. Leucogranite from a polymict cataclasite boulder has a similar Neoproterozoic age based on muscovite 40Ar/39Ar data. Potassium-feldspar 40Ar/39Ar ages from this leucogranite show cooling through closure (???150 ??C) at ca. 261 Ma without discernible impact heating. Spherulitic felsite is under investigation as a possible impact melt. Types of crystalline clasts, and exotic sediment clasts and grains, in the Exmore vary according to location, which suggests different provenances across the structure. Fractured calcareous nannofossils and fused, bubbled, and curled dinofl agellate cysts coexist with shocked quartz in the Exmore, and this damage may record conditions of heat, pressure, and abrasion due to impact in a shallow-marine environment. ?? 2005 Geological Society of America.

  10. Osmium-Isotope and Platinum-Group-Element Systematics of Impact-Melt Rocks, Chesapeake Bay Impact Structure, Virginia, USA

    NASA Technical Reports Server (NTRS)

    Lee, Seung Ryeol; Wright Horton, J., Jr.; Walker, Richard J.

    2005-01-01

    Osmium (Os) isotopes and platinum-group elements (PGEs) are useful for geochemically identifying a meteoritic component within impact structures, because meteorites are typically characterized by low (187)Os/(188)Os ratios and high PGE concentrations. In contrast, most types of crustal target rocks have high radiogenic Os and very low PGE concentrations. We have examined Os isotope and PGE systematics of impact-melt rocks and pre-impact target rocks from a 2004 test hole in the late Eocene Chesapeake Bay impact structure and from nearby coreholes. Our goal is to determine the proportion of the projectile component in the melt rock Additional information is included in the original extended abstract.

  11. Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars

    USGS Publications Warehouse

    Horton, J.W., Jr.; Ormo, J.; Powars, D.S.; Gohn, G.S.

    2006-01-01

    The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.

  12. Structural outer rim of Chesapeake Bay impact crater: Seismic and bore hole evidence

    USGS Publications Warehouse

    Poag, C.W.

    1996-01-01

    Nine seismic-reflection profiles and four continuous core holes define the gross structural and stratigraphic framework of the outer rim of the Chesapeake Bay impact crater. The rim is manifested as a 90 km diameter ring of terraced normal-fault blocks, which forms a ???320 m-1200 m high rim escarpment. The top of the rim escarpment is covered by a 20 m-30 m thick ejecta blanket. The escarpment encircles a flat-floored annular trough, which is partly filled with an ???250 m thick breccia lens (Exmore breccia). The Exmore breccia overlies a 200 m-800 m thick interval of slumped sedimentary megablocks, which, in turn, rests on crystalline basement rocks. All postimpact strata (upper Eocene to Quaternary) sag structurally into the annular trough, and most units also thicken as they cross the rim into the crater. Postimpact compaction and subsidence of the Exmore breccia have created extensive normal faulting in overlying strata.

  13. Postimpact deformation associated with the late Eocene Chesapeake Bay impact structure in southeastern Virginia

    USGS Publications Warehouse

    Johnson, G.H.; Kruse, S.E.; Vaughn, A.W.; Lucey, J.K.; Hobbs, C. H., III; Powars, D.S.

    1998-01-01

    Upper Cenozoic strata covering the Chesapeake Bay impact structure in southeastern Virginia record intermittent differential movement around its buried rim. Miocene strata in a graben detected by seismic surveys on the York River exhibit variable thickness and are deformed above the creater rim. Fan-like interformational and intraformational angular unconformities within Pliocene-Pleistocene strata, which strike parallel to the crater rim and dip 2-3?? away from the crater center, indicate that deformation and deposition were synchronous. Concentric, large-scale crossbedded, bioclastics and bodies of Pliocene age within ~20km of the buried crater rim formed on offshore shoals, presumably as subsiding listric slump blocks rotated near the crater rim.

  14. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Self-Trail J.M.; Edwards, L.E.; Litwin, R.J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of watersaturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dinoflagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a

  15. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Self-Trail, Jean M.; Edwards, Lucy E.; Litwin, Ronald J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of water- saturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dino-flagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As

  16. Impacts of land cover changes on hurricane storm surge in the lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Denton, M.; Lawler, S.; Ferreira, C.

    2013-12-01

    The Chesapeake Bay is the largest estuary in the United States with more than 150 rivers draining into the bay's tidal wetlands. Coastal wetlands and vegetation play an important role in shaping the hydrodynamics of storm surge events by retaining water and slowing the propagation of storm surge. In this way coastal wetlands act as a natural barrier to inland flooding, particularly against less intense storms. Threats to wetlands come from both land development (residential or commercial/industrial) and sea level rise. The lower region of the Chesapeake Bay near its outlet is especially vulnerable to flooding from Atlantic storm surge brought in by hurricanes, tropical storms and nor'easters (e.g., hurricanes Isabel [2003] and Sandy [2012]). This region is also intensely developed with nearly 1.7 million residents within the greater Hampton Roads metropolitan area. Anthropogenic changes to land cover in the lower bay can directly impact basin drainage and storm surge propagation with impacts reaching beyond the immediate coastal zone to affect flooding in inland areas. While construction of seawall barriers around population centers may provide storm surge protection to a specifically defined area, these barriers deflect storm surge rather than attenuate it, underscoring the importance of wetlands. To analyze these impacts a framework was developed combining numerical simulations with a detailed hydrodynamic characterization of flow through coastal wetland areas. Storm surges were calculated using a hydrodynamic model (ADCIRC) coupled to a wave model (SWAN) forced by an asymmetric hurricane vortex model using the FEMA region 3 unstructured mesh (2.3 million nodes) under a High Performance Computing (HPC) environment. Multiple model simulations were performed using historical hurricanes data and hypothetical storms to compare the predicted storm surge inundation with various levels of wetland reduction and/or beach hardening. These data were combined and overlaid

  17. Biofuels and the bay: Characterizing health and ecosystem impacts in the Chesapeake

    EPA Science Inventory

    The global climate crisis has stimulated the search for alternative fuels. Biofuels have been the focus of a recent report by the Chesapeake Bay Commission that evaluated alternative fuel development efforts in the local area. Already under stress from anthropomorphic factors,...

  18. Physical Properties of Suevite Section of the Eyreville Core, Chesapeake Bay Impact Structure

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Pesonen, L. J.

    2007-12-01

    Chesapeake is a 35 Ma old shallow marine, complex impact structure with a diameter of ca. 85 km. The structure has previously been mapped with shallow drillings. Recently, the deep drilling into inner crater zone near Cape Charles was carried out in order to provide constraints on cratering processes in multi-layered marine targets. The Eyreville-1 core includes three holes with total depth of 1766m (Gohn et al. 2006). We are analyzing the fragments of the Eyreville core including post-impact, impact and basement units of the structure. The sampling interval was chosen dense enough to allow high-resolution petrophysical, paleomagnetic and rock magnetic data to be extracted from the core. Hereby we report the preliminary petrophysical and rock-magnetic data from suevite section of Eyreville core B. Results obtained so far show large variations in magnetic susceptibility data of suevite section. Polymict lithic breccias and cataclasites in lower part of the section are characterized by low magnetic susceptibility (below 0.0003 SI). The upper part, however, consists of more magnetic (susceptibility up to 0.006 SI) suevites. The rock- magnetic measurements (including thermal behavior of magnetic susceptibility and magnetic hysteresis) show the presence of magnetites in lower part of the section. Upper part shows additionally a distinct change in the slope of the susceptibility curve also near 350C, which may indicate the presence of pyrrhotites or maghemites. More extensive studies will be applied in near future in order to clarify the magnetomineralogy and will be presented. References: G. S. Gohn, C. Koeberl, K. G. Miller, W. U. Reimold, C. S. Cockell, J. W. Horton, W. E. Sanford, M. A. Voytek, 2006. Chesapeake Bay Impact Structure Drilled. EOS, vol 87. nr 35

  19. Chesapeake Bay: Introduction to an Ecosystem.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Chesapeake Bay is the largest estuary in the contiguous United States. The Bay and its tidal tributaries make up the Chesapeake Bay ecosystem. This document, which focuses of various aspects of this ecosystem, is divided into four major parts. The first part traces the geologic history of the Bay, describes the overall physical structure of…

  20. The Chesapeake Bay bolide impact: a convulsive event in Atlantic Coastal Plain evolution

    NASA Astrophysics Data System (ADS)

    Poag, C. Wylie

    1997-02-01

    Until recently, Cenozoic evolution of the Atlantic Coastal Plain has been viewed as a subcyclical continuum of deposition and erosion. Marine transgressions alternated with regressions on a slowly subsiding passive continental margin, their orderly succession modified mainly by isostatic adjustments, occasional Appalachian tectonism, and paleoclimatic change. This passive scenario was dramatically transformed in the late Eocene, however, by a bolide impact on the inner continental shelf. The resultant crater is now buried 400-500 m beneath lower Chesapeake Bay, its surrounding peninsulas, and the continental shelf east of Delmarva Peninsula. This convulsive event, and the giant tsunami it engendered, fundamentally changed the regional geological framework and depositional regime of the Virginia Coastal Plain, and produced the following principal consequences. (1) The impact excavated a roughly circular crater, twice the size of Rhode Island (˜6400 km 2) and nearly as deep as the Grand Canyon (˜1.3 km deep). (2) The excavation truncated all existing ground-water aquifers in the target area by gouging ˜4300 km 3 of rock from the upper lithosphere, including Proterozoic and Paleozoic crystalline basement rocks and Middle Jurassic to upper Eocene sedimentary rocks. (3) Synimpact depositional processes, including ejecta fallback, massive crater-wall failure, water-column collapse, and tsunami backwash, filled the crater with a porous breccia lens, 600-1200 m thick, at a phenomenal rate of ˜1200 m/hr. The breccia lens replaced the truncated ground-water aquifers with a single 4300 km 3 reservoir, characterized by ground water ˜1.5 times saltier than normal sea water (chlorinities as high as 25,700 mg/l). (4) A structural and topographic low, created by differential subsidence of the compacting breccia, persisted over the crater at least through the Pleistocene. In the depression are preserved postimpact marine lithofacies and biofacies (upper Eocene, lower Oligocene

  1. Societal Implications of an Impact Crater - Chesapeake Bay Impact Structure, Virginia

    NASA Astrophysics Data System (ADS)

    Emry, S.; McFarland, R.; Powars, D.

    2002-05-01

    Ground water plays an important role in the economy and quality of life in the Coastal Plain of Virginia. In 1990, the aquifers in the Coastal Plain supplied over 100 million gallons of water per day to the citizens, businesses, and industries of Virginia. In southeastern Virginia, the thirteen public water utilities serve approximately 1.5 million people in the Hampton Roads area. The role of ground water resources in sustaining this area is more critical than ever due to the relatively low relief of the Coastal Plain Province, providing few new surface water sources to meet the growing population and expanding economy and the increased regulatory obstacles to obtaining a permit to build new reservoirs. A zone of salty ground water, referred to as the "inland salt water wedge," is well known to ground water resource planners and scientists, but until recently the phenomenon has not been satisfactorily explained. In 1996, the directors of the water utilities in Hampton Roads were introduced to the most dramatic geological event that ever took place in the Chesapeake Bay region. Geologists from the U.S. Geological Survey provided evidence of a meteor impact that formed a crater over 35 million years ago. The contours of the inland saltwater wedge conform well to the shape of the crater's outer rim. Prior to the discovery of the impact crater, it was presumed that the ground water flow in the Coastal Plain aquifer system was a relatively simple system described as "alternating layers of aquifers and confining units gradually dipping and thickening from the west to the east." With the discovery of the impact crater, the rules changed. In 1997, the USGS and the Hampton Roads Planning District Commission, representing the sixteen member jurisdictions, teamed up in a cooperative effort to redefine the hydrogeology of southeastern Virginia. In 1999, the Virginia Department of Environmental Quality and the Virginia Department of Mines, Minerals, and Energy joined the team

  2. New surveys of the Chesapeake Bay impact structure suggest melt pockets and target-structure effect

    USGS Publications Warehouse

    Shah, A.K.; Brozena, J.; Vogt, P.; Daniels, D.; Plescia, J.

    2005-01-01

    We present high-resolution gravity and magnetic field survey results over the 85-km-diameter Chesapeake Bay impact structure. Whereas a continuous melt sheet is anticipated at a crater this size, shallow-source magnetic field anomalies of ???100 nT instead suggest that impact melt pooled in kilometer-scaled pockets surrounding the base of a central peak. A central anomaly of ???300 nT may represent additional melt or rock that underwent shock-induced remagnetization. Models predict that the total volume of the melt ranges from ???0.4 to 10 km3, a quantity that is several orders of magnitude smaller than expected for an impact structure this size. However, this volume is within predictions given a transient crater of diameter of 20-40 km for a target covered with water and sedimentary deposits such that melt fragments were widely dispersed at the time of impact. Gravity data delineate a gently sloping inner basin and a central peak via a contrast between crystalline and sedimentary rock. Both features are ovoid, oriented parallel to larger preimpact basement structures. Conceptual models suggest how lateral differences in rock strength due to these preimpact structures helped to shape the crater's morphology during transient-crater modification. ?? 2005 Geological Society of America.

  3. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  4. The 35.4 Ma Chesapeake Bay Impact: Effects on Post-Impact Sedimentation

    NASA Astrophysics Data System (ADS)

    Miller, K. G.; Gohn, G.; Koeberl, C.; Reimold, W. U.; Browning, J. V.; Hayden, T. G.; Kulpecz, A. A.; Kominz, M. A.; Edwards, L. E.; McLaughlin, P. P.; Pusz, A. E.

    2007-05-01

    The late Eocene (35.4 Ma) Chesapeake Bay impact structure (CBIS) is a well-preserved, large (85 km, 7th largest known) crater with an `inverted sombrero' shape. The International Continental Scientific Drilling Program (ICDP) and the USGS completed three coreholes at Eyreville, VA to a composite depth of almost 1.8 km into the CBIS in the fall of 2005 and the spring of 2006. A total of 444 m of post-impact sediments were cored along with a 1,322 m impactite section which consists (in descending order) of sediment-clast breccia, sediment megablocks, a large granite megablock, smaller rock blocks in sediment, suevite and lithic breccia, and a section of brecciated mica schist and pegmatites with veins of different breccia types. Ongoing studies of the impactite section will test hypotheses including the source and formation of the North American tektite strewn field, the type of impactor, relationships with the late Eocene Popigai impact, implications of shock-pressure variations for constraining kinetic energy and cratering mechanics, and marine crater excavation and modification processes. Other than the immediate effects of resurge and a megatsunami indicated by the sediment clast breccia, regional and global environmental and stratigraphic effects of this large impact were surprisingly minimal as exemplified by results from Eyreville and backstripping of previously drilled crater coreholes. A thick, deep-water upper Eocene section is partly explained by excess accommodation produced by the impact due to compaction of the rapidly deposited impactites, with little evidence of thermal resetting of subsidence by impact. Possible tectonic effects continue into the early Oligocene. Oligocene and lower Miocene sections are thin regionally, both in the crater and outside in Virginia and Maryland, indicating relative uplift compared to NJ and Delaware apparently unrelated to impact. Middle to lower upper Miocene sequences correlate with sections outside the crater in

  5. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    USGS Publications Warehouse

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. ?? 2005 Geological Society of America.

  6. Real World: NASA and the Chesapeake Bay

    NASA Video Gallery

    Learn how NASA uses Earth observing satellites to monitor conditions in the Chesapeake Bay over time. Information about pollution, eutrophication, land cover and watershed runoff helps water manage...

  7. The Chesapeake Bay Impact Crater: An Educational Investigation for Students into the Planetary Impact Process and its Environmental Consequences

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    2008-01-01

    Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA

  8. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    USGS Publications Warehouse

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J.W., Jr.; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  9. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde, N. M.; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  10. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    USGS Publications Warehouse

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  11. Structure of the Chesapeake Bay Impact Crater from Wide-Angle Seismic Waveform Tomography

    NASA Astrophysics Data System (ADS)

    Lester, W. R.; Hole, J. A.; Catchings, R. D.; Bleibinhaus, F.

    2006-12-01

    The 35 million year old Chesapeake Bay impact structure is one of the largest and most well preserved meteor/comet impact structures on Earth. As a marine impact on a continental shelf, its morphology consists of a deep inner crater penetrating pre-existing crystalline basement surrounded by a much wider, shallower crater within the overlying sediments. In 2004, the U.S. Geological Survey conducted a combined refraction and low-fold reflection seismic survey across the northern part of the inner crater with the goals of constraining crater structure and identifying an ideal drill site for a deep borehole. Waveform inversion was applied to the seismic data to produce a high-resolution seismic velocity model of the inner crater. This significantly improved the spatial resolution over previous images based on travel times. Under the northeastern part of the outer crater, eastward-sloping, relatively intact crystalline basement is at a depth of ~1.5 km. The edge of the inner crater is at ~17 km radius and slopes gradually inward to penetrate pre-existing crystalline basement. The top of crystalline rock on the central uplift is about 0.8 km higher than its surroundings. Seismic velocity of crystalline rocks under the inner crater is much lower than under the outer crater, suggesting strong fracturing/brecciation of the inner crater floor and even stronger brecciation of the central uplift. A basement uplift and lateral change of basement velocity occurs at a radius of ~12 km and is interpreted as possibly indicating the edge of the transient crater caused by impact excavation prior to collapse. Assuming a 24 km diameter transient crater, scaling laws based on extraterrestrial craters and numerical models predict the observed inner crater diameter, central uplift diameter, and inner crater depth. This suggests that the crater collapse processes that created the inner crater in crystalline rocks were unaffected by the much weaker rheology of the overlying sediments.

  12. Processing of single channel air and water gun data for imaging an impact structure at the Chesapeake Bay

    USGS Publications Warehouse

    Lee, Myung W.

    1999-01-01

    Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.

  13. NASA Satellites Aid in Chesapeake Bay Recovery

    NASA Video Gallery

    By studying the landscape around the Chesapeake Bay, NASA spacecrafts are helping land managers figure out how to battle the harmful pollutants that have added to the destruction of the bay's once ...

  14. Chesapeake Bay Watershed - Protecting the Chesapeake Bay and its rivers through science, restoration, and partnership

    USGS Publications Warehouse

    U.S. Geological Survey

    2012-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded due to the impact of human-population increase, which has doubled since 1950, resulting in degraded water quality, loss of habitat, and declines in populations of biological communities. Since the mid-1980s, the Chesapeake Bay Program (CBP), a multi-agency partnership which includes the Department of Interior (DOI), has worked to restore the Bay ecosystem. The U.S. Geological Survey (USGS) has the critical role of providing unbiased scientific information that is utilized to document and understand ecosystem change to help assess the effectiveness of restoration strategies in the Bay and its watershed. The USGS revised its Chesapeake Bay science plan for 2006-2011 to address the collective needs of the CBP, DOI, and USGS with a mission to provide integrated science for improved understanding and management of the Bay ecosystem. The USGS science themes for this mission are: Causes and consequences of land-use change; Impact of climate change and associated hazards; Factors affecting water quality and quantity; Ability of habitat to support fish and bird populations; and Synthesis and forecasting to improve ecosystem assessment, conservation, and restoration.

  15. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright, Jr.; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  16. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  17. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  18. The bioeconomic impact of different management regulations on the Chesapeake Bay blue crab fishery

    USGS Publications Warehouse

    Bunnell, David B.; Lipton, Douglas W.; Miller, Thomas J.

    2010-01-01

    The harvest of blue crabs Callinectes sapidus in Chesapeake Bay declined 46% between 1993 and 2001 and remained low through 2008. Because the total market value of this fishery has declined by an average of US $ 3.3 million per year since 1993, the commercial fishery has been challenged to maintain profitability. We developed a bioeconomic simulation model of the Chesapeake Bay blue crab fishery to aid managers in determining which regulations will maximize revenues while ensuring a sustainable harvest. We compared 15 different management scenarios, including those implemented by Maryland and Virginia between 2007 and 2009, that sought to reduce female crab harvest and nine others that used seasonal closures, different size regulations, or the elimination of fishing for specific market categories. Six scenarios produced the highest revenues: the 2008 and 2009 Maryland regulations, spring and fall closures for female blue crabs, and 152- and 165-mm maximum size limits for females. Our most important finding was that for each state the 2008 and 2009 scenarios that implemented early closures of the female crab fishery produced higher revenues than the 2007 scenario, in which no early female closures were implemented. We conclude that the use of maximum size limits for female crabs would not be feasible despite their potentially high revenue, given the likelihood that the soft-shell and peeler fisheries cannot be expanded beyond their current capacity and the potentially high mortality rate for culled individuals that are the incorrect size. Our model results support the current use of seasonal closures for females, which permit relatively high exploitation of males and soft-shell and peeler blue crabs (which have high prices) while keeping the female crab harvest sustainable. Further, our bioeconomic model allows for the inclusion of an economic viewpoint along with biological data when target reference points are set by managers.

  19. Chesapeake Bay plume dynamics from LANDSAT

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  20. Improving measurement of Chesapeake Bay's dead zone

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-09-01

    In the 1930s, researchers first noticed that the Chesapeake Bay had a dead zone, an expanse of water with drastically reduced concentrations of oxygen. In the 1980s, hypoxia—low-oxygen conditions—gave way in some places to anoxia—a near-total depletion of dissolved oxygen. A lack of oxygen makes the water inhospitable for many marine organisms, and the Chesapeake Bay is the focus of major ecosystem rehabilitation efforts.

  1. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  2. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  3. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    NASA Astrophysics Data System (ADS)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  4. ISOLATION AND DIVERSITY OF ACTINOMYCETES IN THE CHESAPEAKE BAY

    EPA Science Inventory

    Chesapeake Bay was investigated as a source of actinomycetes to creen for production of novel bioactive compounds. he presence of relatively large populations of actinoplanetes, chemotype IID actinomycetes in Chesapeake Bay sediment samples indicates that is an eminently suitable...

  5. A pollution history of Chesapeake Bay

    USGS Publications Warehouse

    Goldberg, E.D.; Hodge, V.; Koide, M.; Griffin, J.; Gamble, E.; Bricker, O.P.; Matisoff, G.; Holdren, G.R., Jr.; Braun, R.

    1978-01-01

    Present day anthropogenic fluxes of some heavy metals to central Chesapeake Bay appear to be intermediate to those of the southern California coastal region and those of Narragansett Bay. The natural fluxes, however, are in general higher. On the bases of Pb-210 and Pu-239 + 240 geochronologies and of the time changes in interstitial water compositions, there is a mixing of the upper 30 or so centimeters of the sediments in the mid-Chesapeake Bay area through bioturbation by burrowing mollusks and polychaetes. Coal, coke and charcoal levels reach one percent or more by dry weight in the deposits, primarily as a consequence of coal mining operations. ?? 1978.

  6. Turning the tide: Saving the Chesapeake Bay

    SciTech Connect

    Horton, T.; Eichbaum, W.

    1991-07-01

    The Chesapeake Bay is one of the most productive and important ecosystems on earth, and as such is a model for other estuaries facing the demands of commerce, tourism, transportation, recreation, and other uses. This book presents a comprehensive look at two decades of efforts to save the bay, outlining which methods have worked and which have not.

  7. Status and Assessment of Chesapeake Bay Wildlife Contamination

    USGS Publications Warehouse

    Heinz, G.H.; Wiemeyer, Stanley N.; Clark, D.R., Jr.; Albers, P.H.; Henry, P.; Batiuk, R.A.

    1992-01-01

    As an integral component of its priority setting process, the Chesapeake Bay Program`s Toxics Subcommittee has sought the expertise of Chesapeake Bay researchers and managers in developing a series of Chesapeake Bay toxics status and assessment papers. In the report, evidence for historical and current contaminant effects on key bird species, mammals, reptiles and amphibians which inhabit the Chesapeake Bay basin is examined. For each group of wildlife species, a general overview of effects caused by specific toxic substances is followed by detailed accounts of contaminant effects on selected species. Sponsored by Environmental Protection Agency, Annapolis, MD. Chesapeake Bay Program.

  8. High-resolution seismic reflection/refraction images near the outer margin of the Chesapeake Bay impact crater, York-James Peninsula, southeastern Virginia

    USGS Publications Warehouse

    Catchings, R.D.; Saulter, D.E.; Powars, D.S.; Goldman, M.R.; Dingler, J.A.; Gohn, G.S.; Schindler, J.S.; Johnson, G.H.

    2001-01-01

    Powars and Bruce (1999) showed that the Chesapeake Bay region of southeastern Virginia was the site of an asteroid or comet impact during the late Eocene, approximately 35 million years ago (Fig. 1). Initial borehole and marine seismic-reflection data revealed a 90-km-diameter impact structure, referred to as the Chesapeake Bay Impact Crater (CBIC), that lies buried beneath the southern Chesapeake Bay and surrounding Virginia Coastal Plain (Powars and Bruce, Figs. 1b). Stratigraphic correlations among a series of boreholes suggest that the impact disrupted basement rock and the overlying Cretaceous through middle Eocene deltaic and marine sediments. The CBIC truncates important regional sedimentary aquifer systems and possibly caused differential flushing of connate seawater. Therefore, the CBIC affects the present-day ground-water quantity and quality in the rapidly growing Hampton Roads region of southeastern Virginia. Impact-generated faults in the basement rock may be the sources of small-to-moderate earthquakes that have been occurred around the perimeter of the impact structure over the past few hundred years (Johnson et al., 1998). Powars and Bruce (1999) suggest that 150 m to 490 m of relatively undisturbed, post-impact Coastal-Plain sediments overlie the impact-disrupted sediments and basement rocks west of Chesapeake Bay. Their interpretation of marine seismic data, released from Texaco and Exxon, revealed a central 38-km-wide, 1.6-km-deep disrupted zone in the basement rocks (inner basin), which is surrounded by a 21- to 31-km-wide, 1- km-deep annular trough. Steep rim escarpments surround these features, which they mapped regionally as the outer and inner margins (rims) of the CBIC (Fig. 1b). The outer margin is a slumped terrace zone that has a 120- to 305-m-high gullied escarpment and varies in width from 0.8 to 3.2 km. However, the geographic bounds of the CBIC, its effects on the regional aquifer systems, and the distribution of impact generated

  9. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    .... Section 1240Q of the Food Security Act of 1985, as amended by the Food, ] Conservation, and Energy Act of... various natural resources conservation programs authorized under Subtitle D, Title XII of the Food Security Act of 1985, as amended. The Chesapeake Bay Watershed Initiative assistance in FY 2010 will...

  10. Confirmation of a meteoritic component in impact-melt rocks of the Chesapeake Bay impact structure, Virginia, USA - Evidence from osmium isotopic and PGE systematics

    USGS Publications Warehouse

    Lee, S.R.; Horton, J.W., Jr.; Walker, R.J.

    2006-01-01

    The osmium isotope ratios and platinum-group element (PGE) concentrations of impact-melt rocks in the Chesapeake Bay impact structure were determined. The impact-melt rocks come from the cored part of a lower-crater section of suevitic crystalline-clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact-melt rocks range from 0.151 to 0.518. The rhenium and platinum-group element (PGE) concentrations of these rocks are 30-270?? higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact-melt rocks. Because the PGE abundances in the impact-melt rocks are dominated by the target materials, interelemental ratios of the impact-melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact-melt rocks include a bulk meteoritic component of 0.01-0.1% by mass. Several impact-melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%-0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01-0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact-melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact-melt rocks, and 2) variable fractionations of PGE during syn- to post-impact events. ?? The Meteoritical Society, 2006.

  11. Evolution of crystalline target rocks and impactites in the chesapeake bay impact structure, ICDP-USGS eyreville B core

    USGS Publications Warehouse

    Horton, J.W., Jr.; Kunk, M.J.; Belkin, H.E.; Aleinikoff, J.N.; Jackson, J.C.; Chou, I.-Ming

    2009-01-01

    The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastalplain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain ??- cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ?? 7 Ma and 254 ?? 3 Ma, respectively. Postimpact heating was 7lt;~350 ??C in the lower basementderived section based on undisturbed 40Ar/ 39Ar plateau ages of muscovite and <~150

  12. Osmium-isotope Evidence for a Projectile Component in Impact-melt Rocks, Chesapeake Bay Impact Structure, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Lee, S.; Horton, J. W.; Walker, R. J.

    2004-12-01

    The late Eocene Chesapeake Bay impact structure (CBIS) is preserved beneath post-impact sediments on the Atlantic margin of Virginia. This 85-km-diameter complex crater formed on the continental shelf of a passive margin in a layered target consisting of ocean water, Cretaceous and Tertiary sediments (mainly siliciclastic), and crystalline basement rocks. The basement rocks include Neoproterozoic granitoids and felsite as well as gneiss of undetermined age. In May, 2004, the USGS drilled an 823-m test hole in the central uplift of the CBIS at Cape Charles, Va., providing drill cuttings and limited core. The core from 744 to 823 m depth contains crystalline-clast breccia and brecciated gneiss that are distinct from sediment-clast breccias recovered from coreholes in the annular trough of the CBIS. Rocks interpreted to be impact-melt clasts and dikes in the crystalline-clast breccia were sampled for analyses of osmium (Os) concentrations and 187Os/188Os ratios to test for evidence of the projectile. These analyses were conducted on samples from a dike (aphanitic to partly hyaline, ST2440.8C) within a gneissic block, from a block of holocrystalline mafic rock (aphanitic, ST2453.3C), and from a flow-laminated bomb (aphanitic to partly hyaline, ST2570.0C). The Os concentrations and 187Os/188Os ratios for samples ST2440.8C, ST2453.3C and ST2570.0C are 0.928, 0.711 and 0.312 ppb, and 0.15205, 0.15545 and 0.22345, respectively. These values are much higher (Os) or lower (187Os/188Os) than those reported for rocks of the upper continental crust, suggesting a significant contribution of osmium from the projectile in these impact-melt rocks. Moreover, a strong negative correlation between 187Os/188Os and Os for these samples suggests that it may be possible to use mixing curves to calculate the proportions of projectile and target-rock components. Our results from the CBIS contrast with those from the Chicxulub crater, where there is little or no evidence for the

  13. Chesapeake Bay sediment flux model. Final report

    SciTech Connect

    Di Toro, D.M.; Fitzpatrick, J.J.

    1993-06-01

    Formulation and application of a predictive diagenetic sediment model are described in this report. The model considers two benthic sediment layers: a thin aerobic layer in contact with the water column and a thicker anaerobic layer. Processes represented include diagenesis, diffusion, particle mixing, and burial. Deposition of organic matter, water column concentrations, and temperature are treated as independent variables that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium, nitrate, phosphate, and silica are predicted. The model was calibrated using sediment-water flux observations collected in Chesapeake Bay 1985-1988. When independent variables were specified based on observations, the model correctly represented the time series of sediment-water fluxes observed at eight stations in the Bay and tributaries.... Chesapeake Bay, Models, Sediments, Dissolved oxygen, Nitrogen Eutrophication, Phosphorus.

  14. Mycobacteria isolated from Chesapeake Bay fish.

    PubMed

    Stine, C B; Kane, A S; Baya, A M

    2010-01-01

    Mycobacteriosis in fish can result in ulcers, emaciation, and in some cases death. Mycobacteria have been previously isolated from a variety of Chesapeake Bay fish species, and the current study was designed to identify potential host specificity and location fidelity of mycobacterial isolates. Mycobacteria were isolated from wild fish of the Chesapeake Bay collected from the Upper Bay, the Choptank River, Herring Bay, the Chicamacomico River, the Pocomoke River and the Potomac River in 2003-2006. Mycobacterial isolates were recovered from striped bass, Morone saxatilis, Atlantic menhaden, Brevoortia tyrannus, white perch, Morone americana, summer flounder, Paralichthys dentatus, spot, Leiostomus xanthurus, largemouth bass, Micropterus salmoides, channel catfish, Ictalurus punctatus, common carp, Cyprinus carpio carpio, spotted seatrout, Cynoscion nebulosus, killifish, Fundulus sp., blueback herring, Alosa aestivalis, American gizzard shad, Dorosoma cepedianum and American silver perch, Bairdiella chrysoura. Twenty-nine well-defined mycobacterial groups resulted from gas chromatography dendrogram clustering of isolates. The majority of groups included more than one host species and more than one site of collection. However, four groups contained only striped bass isolates, three of which were similar to M. shottsii. Therefore, multiple Chesapeake Bay fish species are colonized with multiple mycobacterial isolates, of which few appear to be host or location specific. PMID:19909394

  15. Incidence of Vibrio parahaemolyticus in Chesapeake Bay

    PubMed Central

    Kaneko, Tatsuo; Colwell, R. R.

    1975-01-01

    A Bay-wide survey of the distribution of Vibrio parahaemolyticus was carried out in Chesapeake Bay during May 1972, to determine whether the annual cycle of V. parahaemolyticus which was observed to occur in the Rhode River subestuary of Chesapeake Bay took place in other parts of Chesapeake Bay. In an earlier study, April to early June, when the water temperature rises from 14 to 19 C, was found to be a critical period in the annual cycle of the organism in the Rhode River, since this is the time period when the annual cycle is initiated. Results of this study, however, revealed that V. parahaemolyticus could not be found in the water column during May 1972. Neverthless, several samples of sediment and plankton yielded V. parahaemolyticus isolates. Comparison of data with those for the Rhode River area examined in the earlier studies of the annual cycle of V. parahaemolyticus suggests that the time of initiation of the annual cycle of V. parahaemolyticus in the open Bay proper may be influenced by various factors such as temperature and salinity, i.e., deeper water locations may show initiation of the V. parahaemolyticus annual cycle later than shallow areas. Confirmation of the presence of the organism in the samples studied was accomplished using numerical taxonomy with 19 reference strains also included in the analyses. PMID:1164012

  16. Incidence of Vibrio parahaemolyticus in Chesapeake Bay.

    PubMed

    Kaneko, T; Colwell, R R

    1975-08-01

    A Bay-wide survey of the distribution of Vibrio parahaemolyticus was carried out in Chesapeake Bay during May 1972, to determine whether the annual cycle of V. parahaemolyticus which was observed to occur in the Rhode River subestuary of Chesapeake Bay took place in other parts of Chesapeake Bay. In an earlier study, April to early June, when the water temperature rises from 14 to 19 C, was found to be a critical period in the annual cycle of the organism in the Rhode River, since this is the time period when the annual cycle is initiated. Results of this study, however, revealed that V. parahaemolyticus could not be found in the water column during May 1972. Nevertheless, several samples of sediment and plankton yielded V. parahaemolyticus isolates. Comparison of data with those for the Rhode River area examined in the earlier studies of the annual cycle of V. parahaemolyticus suggests that the time of initiation of the annual cycle of V. parahaemolyticus in the open Bay proper may be influenced by various factors such as temperature and salinity, i.e., deeper water locations may show initiation of the V. parahaemolyticus annual cycle later than shallow areas. Confirmation of the presence of the organisms in the samples studied was accomplished using numerical taxonomy with 19 reference strains also included in the analyses. PMID:1164012

  17. Long-term history of Chesapeake Bay anoxia

    SciTech Connect

    Cooper, S.R.; Brush, G.S. )

    1991-11-15

    Stratigraphic records from four sediment cores collected along a transect across the Chesapeake Bay near the mouth of the Choptank River were used to reconstruct a 2,000-year history of anoxia and eutrophication in the Chesapeake Bay. Variations in pollen, diatoms, concentration of organic carbon, nitrogen, sulfur, acid-soluble iron, and an estimate of the degree of pyritization of iron indicate that sedimentation rates, anoxic conditions and eutrophication have increased in the Chesapeake Bay since the time of European settlement.

  18. Modeling nitrogen cycling in forested watersheds of Chesapeake Bay

    SciTech Connect

    Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

    1995-03-01

    The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

  19. Status and assessment of Chesapeake Bay wildlife contamination

    SciTech Connect

    Heinz, G.H.; Wiemeyer, S.N.; Clark, D.R.; Albers, P.; Henry, P.

    1992-10-01

    As an integral component of its priority setting process, the Chesapeake Bay Program's Toxics Subcommittee has sought the expertise of Chesapeake Bay researchers and managers in developing a series of Chesapeake Bay toxics status and assessment papers. In the report, evidence for historical and current contaminant effects on key bird species, mammals, reptiles and amphibians which inhabit the Chesapeake Bay basin is examined. For each group of wildlife species, a general overview of effects caused by specific toxic substances is followed by detailed accounts of contaminant effects on selected species.

  20. Hydraulic model of the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Robinson, A. E., Jr.

    1978-01-01

    Preliminary planning for the formulation of the first year of hydraulic studies on the Chesapeake Bay model was recently completed. The primary purpose of this initial effort was to develop a study program that is both responsive to problems of immediate importance and at the same time ensure that from the very beginning of operation maximum economical use is made of the model. The formulation of this preliminary study plan involved an extensive analysis of the environmental, economic, and social aspects of a series of current problems in order to establish a priority listing of their importance. The study program that evolved is oriented towards the analysis of the effects of some of the works of man on the Chesapeake Bay estuarine environment.

  1. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A

    USGS Publications Warehouse

    Jackson, J.C.; Horton, J.W., Jr.; Chou, I.-Ming; Belkin, H.E.

    2006-01-01

    A shock-induced polymorph (TiO2II) of anatase and rutile has been identified in breccias from the late Eocene Chesapeake Bay impact structure. The breccia samples are from a recent, partially cored test hole in the central uplift at Cape Charles, Virginia. The drill cores from 744 to 823 m depth consist of suevitic crystalline-clast breccia and brecciated cataclastic gneiss in which the TiO2 phases anatase and rutile are common accessory minerals. Electron-microprobe imaging and laser Raman spectroscopy of TiO2 crystals, and powder X-ray diffraction (XRD) of mineral concentrates, confirm that a high-pressure, ??-PbO2 structured polymorph of TiO2 (TiO2II) coexists with anatase and rutile in matrix-hosted crystals and in inclusions within chlorite. Raman spectra of this polymorph include strong bands at wavenumbers (cm-1) 175, 281, 315, 342, 356, 425, 531, 571, and 604; they appear with anatase bands at 397, 515, and 634 cm-1, and rutile bands at 441 and 608 cm-1. XRD patterns reveal 12 lines from the polymorph that do not significantly interfere with those of anatase or rutile, and are consistent with the TiO2II that was first reported to occur naturally as a shock-induced phase in rutile from the Ries crater in Germany. The recognition here of a second natural shock-induced occurrence of TiO2II suggests that its presence in rocks that have not been subjected to ultrahigh-pressure regional metamorphism can be a diagnostic indicator for confirmation of suspected impact structures.

  2. Integrated sequence stratigraphy of the postimpact sediments from the Eyreville core holes, Chesapeake Bay impact structure inner basin

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P., Jr.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.

    2009-01-01

    The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological

  3. Chesapeake bay watershed land cover data series

    USGS Publications Warehouse

    Irani, Frederick M.; Claggett, Peter R.

    2010-01-01

    To better understand how the land is changing and to relate those changes to water quality trends, the USGS EGSC funded the production of a Chesapeake Bay Watershed Land Cover Data Series (CBLCD) representing four dates: 1984, 1992, 2001, and 2006. EGSC will publish land change forecasts based on observed trends in the CBLCD over the coming year. They are in the process of interpreting and publishing statistics on the extent, type and patterns of land cover change for 1984-2006 in the Bay watershed, major tributaries and counties.

  4. Management of Urban Stormwater Runoff in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Hogan, Dianna M.

    2008-01-01

    Urban and suburban development is associated with elevated nutrients, sediment, and other pollutants in stormwater runoff, impacting the physical and environmental health of area streams and downstream water bodies such as the Chesapeake Bay. Stormwater management facilities, also known as Best Management Practices (BMPs), are increasingly being used in urban areas to replace functions, such as flood protection and water quality improvement, originally performed by wetlands and riparian areas. Scientists from the U.S. Geological Survey (USGS) have partnered with local, academic, and other Federal agency scientists to better understand the effectiveness of different stormwater management systems with respect to Chesapeake Bay health. Management of stormwater runoff is necessary in urban areas to address flooding and water quality concerns. Improving our understanding of what stormwater management actions may be best suited for different types of developed areas could help protect the environmental health of downstream water bodies that ultimately receive runoff from urban landscapes.

  5. Overwintering Habitats of Migratory Juvenile American Shad in Chesapeake Bay

    EPA Science Inventory

    We describe overwintering habitats of age-0 American shad in the lower Chesapeake Bay estuary through analyses of multiple, complementary data sets, including bottom-trawls of the Virginia portion of Chesapeake Bay and its tributaries, stable isotope analysis of American shad a...

  6. 33 CFR 80.510 - Chesapeake Bay Entrance, VA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Chesapeake Bay Entrance, VA. 80.510 Section 80.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.510 Chesapeake Bay Entrance, VA....

  7. The Chesapeake Bay through Ebony Eyes. Curriculum Guide.

    ERIC Educational Resources Information Center

    Quillin, Holli S.

    This curriculum guide contains eight lessons which complement "The Chesapeake Bay through Ebony Eyes," a book that recounts the contributions blacks have made to Maryland's Chesapeake Bay's maritime and seafood industries. The guide is for use as supplemental material or as cultural enrichment. Lesson plans in the guide are: (1) "Profile of the…

  8. Petrography, mineralogy, and geochemistry of deep gravelly sands in the Eyreville B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Bartosova, Katerina; Gier, Susanne; Horton, J. Wright, Jr.; Koeberl, Christian; Mader, Dieter; Dypvik, Henning

    2010-01-01

    The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement-derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size-sorting and subtle, discontinuous layers occur locally. Quartz and K-feldspar are the main sand-size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K-feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer-grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean-resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive

  9. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    USGS Publications Warehouse

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  10. The Chesapeake Bay crater: geology and geophysics of a Late Eocene submarine impact structure

    USGS Publications Warehouse

    Poag, C. Wylie; Koeberl, Christian; Reimold, Wolf Uwe

    2004-01-01

    The list of impact craters documented on Earth is short. Only about 165 genuine impact structures have been identified to date (Table 1.1). Even so, the number is steadily increasing at the rate of ∼3–5 per year (Grieve et al. 1995; Earth Impact Database at http://www.unb.ca/passc/Impact/Database/). In stark contrast, most other rocky planets and satellites of our solar system are pockmarked by thousands to hundreds of thousands of impact features (Beatty et al. 1999). Nevertheless, impact specialists acknowledge that Earth, too, has undergone billions of years of bolide bombardment (Melosh 1989; Schoenberg et al. 2002). The most intense bombardment, however, took place during Earth’s earliest history (∼3.8–4 Ga; Ryder 1990; Cohen et al. 2000; Ryder et al. 2000). Traces of most terrestrial impacts have been completely erased or strongly altered by the dynamic processes of a thick atmosphere, deep ocean, and mobile crust, a combination unique to our planet. Planetary geologists now recognize that processes associated with bolide impacts are fundamental to planetary accretion and surface modification (Melosh 1989; Peucker-Ehrenbrink and Schmitz 2001). Incoming meteorites may have been primary sources for Earth’s water, and, perhaps, even organic life as we know it (Thomas et al. 1997; Kring 2000). There is little doubt that impacts played a major role in the evolution of Earth’s biota (Ryder et al. 1996; Hart 1996).

  11. Recent estuarine deposits, Chesapeake Bay and Apalachicola Bay

    SciTech Connect

    Donoghue, J.F.

    1985-02-01

    Estuarine facies are not easily discernible in the ancient record, because they represent a transition stage between fluvial and marine deposits. Modern estuarine sediments, nevertheless, are widespread because of the ongoing marine transgression. This widespread occurrence indicates that, during a highstand, estuaries are important centers for deposition of sediments shed from the continents. Sedimentologic studies have been made of 2 major estuaries: Chesapeake Bay (the largest US estuary) and Apalachicola Bay (estuary of the largest river in Florida). A detailed sediment budget for the Chesapeake, using radiotracers, clay mineralogy, magnetic stratigraphy, and other methods, demonstrates that the estuary is filling rapidly with sediment. Its remaining sedimentologic lifetime can be measured in centuries. Most of this filling has come at the expense of shoreline erosion. The rate of sedimentation, as measured by C-14, Pb-210, and Cs-137, has accelerated sharply over the past 2 centuries, from a few millimeters per year to present rates of a few centimeters per year. Sediment trapping effectiveness of the Chesapeake is nearly 100%. For Apalachicola Bay, the filling rate has been slower, although it appears to be nearly as efficient in retaining sediment. It has undergone a comparable change in sedimentation rates and sources over the past few centuries, as shown by magnetic stratigraphy and clay mineralogy. Given favorable conditions, such estuaries might be expected to contribute relatively thin but areally extensive bodies of fine-grained sediment to the rock record.

  12. 33 CFR 334.170 - Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range, Naval Research Laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation... RESTRICTED AREA REGULATIONS § 334.170 Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range...-west line through Chesapeake Beach Light 2 at the entrance channel to Fishing Creek; on the south by...

  13. 33 CFR 334.170 - Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range, Naval Research Laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation... RESTRICTED AREA REGULATIONS § 334.170 Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range...-west line through Chesapeake Beach Light 2 at the entrance channel to Fishing Creek; on the south by...

  14. 33 CFR 334.170 - Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range, Naval Research Laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation... RESTRICTED AREA REGULATIONS § 334.170 Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range...-west line through Chesapeake Beach Light 2 at the entrance channel to Fishing Creek; on the south by...

  15. 33 CFR 334.170 - Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range, Naval Research Laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation... RESTRICTED AREA REGULATIONS § 334.170 Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range...-west line through Chesapeake Beach Light 2 at the entrance channel to Fishing Creek; on the south by...

  16. 33 CFR 334.170 - Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range, Naval Research Laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Chesapeake Beach, Md.; firing range, Naval Research Laboratory. 334.170 Section 334.170 Navigation... RESTRICTED AREA REGULATIONS § 334.170 Chesapeake Bay, in the vicinity of Chesapeake Beach, Md.; firing range...-west line through Chesapeake Beach Light 2 at the entrance channel to Fishing Creek; on the south by...

  17. A chemostratigraphic method to determine the end of impact-related sedimentation at marine-target impact craters (Chesapeake Bay, Lockne, Tvären)

    USGS Publications Warehouse

    Ormö, Jens; Hill, Andrew C.; Self-Trail, Jean M.

    2010-01-01

    To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact-related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine-target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact-related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine-target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.

  18. Resource protection for waterbirds in Chesapeake bay

    NASA Astrophysics Data System (ADS)

    Erwin, R. Michael; Haramis, G. Michael; Krementz, David G.; Funderburk, Steven L.

    1993-09-01

    Many living resources in the Chesapeake Bay estuary have deteriorated over the past 50 years. As a result, many governmental committees, task forces, and management plans have been established. Most of the recommendations for implementing a bay cleanup focus on reducing sediments and nutrient flow into the watershed. We emphasize that habitat requirements other than water quality are necessary for the recovery of much of the bay's avian wildlife, and we use a waterbird example as illustration. Some of these needs are: (1) protection of fast-eroding islands, or creation of new ones by dredge deposition to improve nesting habitat for American black ducks (Anas rubripes), great blue herons (Ardea herodias), and other associated wading birds; (2) conservation of remaining brackish marshes, especially near riparian areas, for feeding black ducks, wading birds, and wood ducks (Aix sponsa); (3) establishment of sanctuaries in open-water, littoral zones to protect feeding and/or roosting areas for diving ducks such as canvasbacks (Aythya valisineria) and redheads (Aythya americana), and for bald eagles (Haliaeetus leucocephalus); and (4) limitation of disturbance by boaters around nesting islands and open-water feeding areas. Land (or water) protection measures for waterbirds need to include units at several different spatial scales, ranging from “points” (e.g., a colony site) to large-area resources (e.g., a marsh or tributary for feeding). Planning to conserve large areas of both land and water can be achieved following a biosphere reserve model. Existing interagency committees in the Chesapeake Bay Program could be more effective in developing such a model for wildlife and fisheries resources.

  19. Heat flow and brine generation following the Chesapeake Bay bolide impact

    USGS Publications Warehouse

    Sanford, W.

    2003-01-01

    Calculations indicate that the impact of an asteroid or comet on the Atlantic Coastal Plain 35 million years ago created subsequent hydrothermal activity and conditions suitable for phase separation and the creation of the brine observed in the groundwater at the site today. A calculation of groundwater velocity using Darcy's law suggests flow rates are insufficient to have moved the water out of the crater within 35 million years. A similar calculation using Pick's law demonstrates that solutes cannot have escaped by molecular diffusion since the impact. Simulations from other investigators using shock-physics codes indicate that the crust would have been vaporized or melted down to at least 2 km at the time of impact. Based on these calculations, a simulation of heat conduction was made assuming a 1000 ??C initial crustal temperature. The hot crust acted as a heat source, with temperatures peaking in the overlying sediment about 10,000 years later. The pressure and temperature conditions within the sediment during that time would have been favorable for phase separation and generation of a residual brine, which may be found today in the inner crater. ?? 2003 Elsevier Science B.V. All rights reserved.

  20. Defining a data management strategy for USGS Chesapeake Bay studies

    USGS Publications Warehouse

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  1. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    PubMed

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. PMID:27310532

  2. PRIMARY PRODUCTION ESTIMATES IN CHESAPEAKE BAY USING SEAWIFS

    EPA Science Inventory

    The temporal and spatial variability in primary production along the main stem of Chesapeake Bay was examined from 1997 through 2000. Primary production estimates were determined from the Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski, 1997) using chloro...

  3. INTEGRATED ASSESSMENTS OF THE ENVIRONMENTAL CONDITION OF THE CHESAPEAKE BAY

    EPA Science Inventory

    The Chesapeake Bay, the Nation's largest estuary, has experienced environmental degradation due to nutrient enrichment, contamination, loss of habitat, and over-harvesting of living resources. Resource managers need information on the extent of degradation to formulate restoratio...

  4. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J.W., Jr.

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by

  5. Petrographic observations on the Exmore breccia, ICDP-USGS drilling at Eyreville, Chesapeake Bay impact structure, USA

    USGS Publications Warehouse

    Reimold, W.U.; Bartosova, K.; Schmitt, R.T.; Hansen, B.; Crasselt, C.; Koeberl, C.; Wittmann, A.; Powars, D.S.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B drill cores sampled crater fill in the region of the crater moat, ??9 km to the NE of the center of the Chesapeake Bay impact structure, Virginia, USA. They provide a 953 m section (444-1397 m depth) of sedimentary clast breccia and intercalated sedimentary and crystalline megablocks knownas Exmore beds, deposited on top of the impactite sequence between 1397 and 1551 m depth. We petrographically investigated the sandy-clayey groundmass-dominated breccia, which resembles a diamictite ("Exmore breccia"), and which, in its lower parts, carries sedimentary and crystalline blocks. The entire breccia interval is characterizedby the presence of glauconite and bioclastic carbonate, which distinguishes the Exmore breccia from other sandy facies above and below in the stratigraphy. The sediment-clast breccia exhibits strong heterogeneity from sample to sample with respect to groundmass nature, e.g., clay versus sand content, as well as clast content, in general, and shocked clast content, in particular. There is a consistently signifi cantly larger macroscopic sedimentary to crystalline clast content. On the microscopic scale, the intersample sediment to crystalline clast ratios are quite variable. A very small component of shocked material, in the form of shock-deformed quartz, and to an even lesser degree feldspar, and somewhat more abundant but still relatively scarce shardshaped,altered melt particles, is present throughout the section. However, between ??458 and 469 m, and between 514 and 527 m depths, the abundance of such melt particlesis notably enhanced. These sections are also chemically distinct and relatively more mafic than the other parts of the Exmore breccia. It appears that from the time of deposition of the 527 m material, calming of the ocean occurred over the crater area as a result of abatement of resurge activity, so that ejecta from the

  6. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    USGS Publications Warehouse

    Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.

    2013-01-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  7. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.

    2013-03-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  8. Total plankton respiration in the Chesapeake Bay plume

    NASA Technical Reports Server (NTRS)

    Robertson, C. N.; Thomas, J. P.

    1981-01-01

    Total plankton respiration (TPR) was measured at 17 stations within the Chesapeake Bay plume off the Virginia coast during March, June, and October 1980. Elevated rates of TPR, as well as higher concentrations of chlorophyll a and phaeopigment a, were found to be associated with the Bay plume during each survey. The TPR rates within the Bay plume were close to those found associated with the Hudson River plume for comparable times of the year. The data examined indicate that the Chesapeake Bay plume stimulates biological activity and is a source of organic loading to the contiguous shelf ecosystem.

  9. The Design and Application of a Chesapeake Bay Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Ball, W. P.; Burns, R.; Cuker, B. E.; di Toro, D. M.; Kemp, W. M.; Murray, L.; Piasecki, M.; Zaslavsky, I.; Aguayo, M.; Bosch, J.; Brady, D. C.; Murphy, R.; Perlman, E.; Rodriguez, M.; Testa, J. M.; Whitenack, T.

    2009-12-01

    The Chesapeake Bay Environmental Observatory (CBEO) is a prototypical observatory funded by the 2005 NSF program on “Cyberinfrastructure for Environmental Observatories: Prototype Systems to Address Cross-Cutting Needs (CEO:P).” For the past three years, our multi-institutional team of estuary and hydrologic scientists, environmental engineers, computer scientists, and educators has designed and built the CBEO infrastructure with an inter-disciplinary approach that integrates four parallel efforts: Network, Education, Testbed, and Science. In this project, we have used a major science question to drive cyberinfrastructure (CI) development, under the assumption that data collection, testbed structure, educational tools, and other aspects of CI can be more appropriately and efficiently designed if driven by specific science questions. The major question chosen for evaluation relates to historical hypoxia trends in the Bay. In particular, the project seeks to better understand why reduction in nutrient loads over the past few decades have apparently not resulted in reduced “hypoxic volume” (volume of Bay water with dissolved oxygen below specified criteria - e.g., 1.0 mg/L). These trends are in contrast to expectations based on decades of research that show a clear impact of excessive nutrient fluxes on algal blooms and depletion of dissolved oxygen in bottom waters. To fully investigate the reasons for this recent “regime shift” in Bay responses to management, the CBEO team required better access to multiple long-term observational datasets, new access to past modeling results (i.e., model output data from decades of calibration and simulation work), new predictive model runs, and new tools for data analysis. The breadth and depth of data and tools required has made hypoxia research in the Chesapeake Bay an ideal application for CI. In building the CBEO testbed and CI, the project team has collaborated with the Chesapeake Bay Program, multiple state

  10. Bay BC's: A Multidisciplinary Approach To Teaching about the Chesapeake Bay.

    ERIC Educational Resources Information Center

    Slattery, Britt Eckhardt

    The Chesapeake Bay is the largest estuary in North America, providing food and habitat for an abundance of fish and wildlife. This booklet provides lesson plans for lower elementary students introducing the Chesapeake, its inhabitants, and pollution problems, and suggesting ways that individuals can contribute to the Bay's restoration. Background…

  11. The Changing Chesapeake: An Introduction to the Natural History and Cultural History of the Chesapeake Bay. Revised.

    ERIC Educational Resources Information Center

    Chase, Valerie

    This book is about changes in the Chesapeake Bay, its animals, plants, and the surrounding land during the last 15,000 years. Some changes were caused by natural forces while others were made by people. "Chesapeake Challenges" tests the student's thinking skills. "Family Action" lists things families can do to learn more about the Chesapeake Bay…

  12. Pore-water chemistry from the ICDP-USGS coer hole in the Chesapeake Bay impact structure--Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, Ward E.; Voytek, Mary A.; Powars, David S.; Jones, Blair F.; Cozzarelli, Isabelle M.; Eganhouse, Robert P.; Cockell, Charles S.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between fresh and saline water from 100 to 500 m depth in the post-impact sediment section, and an underlying syn-impact section that is almost entirely filled with brine. The presence of brine in the lowermost post-impact section and the trend in the dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting its occurrence may be common in the inner crater. However, groundwater flow conditions in the structure may reduce the salt-water-intrusion hazard associated with the brine.

  13. 46 CFR 7.50 - Chesapeake Bay and tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...°56.8′ N. longitude 75°55.1′ W. (North Chesapeake Entrance Lighted Gong Buoy “NCD”); thence to latitude 36°54.8′ N. longitude 75°55.6′ W. (Chesapeake Bay Entrance Lighted Bell Buoy “CBC”); thence to latitude 36°55.0′ N. longitude 75°58.0′ W. (Cape Henry Buoy “1”); thence to Cape Henry Light....

  14. 46 CFR 7.50 - Chesapeake Bay and tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...°56.8′ N. longitude 75°55.1′ W. (North Chesapeake Entrance Lighted Gong Buoy “NCD”); thence to latitude 36°54.8′ N. longitude 75°55.6′ W. (Chesapeake Bay Entrance Lighted Bell Buoy “CBC”); thence to latitude 36°55.0′ N. longitude 75°58.0′ W. (Cape Henry Buoy “1”); thence to Cape Henry Light....

  15. 46 CFR 7.50 - Chesapeake Bay and tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...°56.8′ N. longitude 75°55.1′ W. (North Chesapeake Entrance Lighted Gong Buoy “NCD”); thence to latitude 36°54.8′ N. longitude 75°55.6′ W. (Chesapeake Bay Entrance Lighted Bell Buoy “CBC”); thence to latitude 36°55.0′ N. longitude 75°58.0′ W. (Cape Henry Buoy “1”); thence to Cape Henry Light....

  16. 46 CFR 7.50 - Chesapeake Bay and tributaries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...°56.8′ N. longitude 75°55.1′ W. (North Chesapeake Entrance Lighted Gong Buoy “NCD”); thence to latitude 36°54.8′ N. longitude 75°55.6′ W. (Chesapeake Bay Entrance Lighted Bell Buoy “CBC”); thence to latitude 36°55.0′ N. longitude 75°58.0′ W. (Cape Henry Buoy “1”); thence to Cape Henry Light....

  17. 46 CFR 7.50 - Chesapeake Bay and tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...°56.8′ N. longitude 75°55.1′ W. (North Chesapeake Entrance Lighted Gong Buoy “NCD”); thence to latitude 36°54.8′ N. longitude 75°55.6′ W. (Chesapeake Bay Entrance Lighted Bell Buoy “CBC”); thence to latitude 36°55.0′ N. longitude 75°58.0′ W. (Cape Henry Buoy “1”); thence to Cape Henry Light....

  18. The Eocene-Oligocene sedimentary record in the Chesapeake Bay impact structure: Implications for climate and sea-level changes on the western Atlantic margin

    USGS Publications Warehouse

    Schulte, P.; Wade, B.S.; Kontny, A.; Self-Trail J.M.

    2009-01-01

    A multidisciplinary investigation of the Eocene-Oligocene transition in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville core from the Chesapeake Bay impact basin was conducted in order to document environmental changes and sequence stratigraphic setting. Planktonic foraminifera and calcareous nannofossil biostratigraphy indicate that the Eyreville core includes an expanded upper Eocene (Biozones E15 to E16 and NP19/20 to NP21, respectively) and a condensed Oligocene-Miocene (NP24-NN1) sedimentary sequence. The Eocene-Oligocene contact corresponds to a =3-Ma-long hiatus. Eocene- Oligocene sedimentation is dominated by great diversity and varying amounts of detrital and authigenic minerals. Four sedimentary intervals are identified by lithology and mineral content: (1) A 30-m-thick, smectite- and illite-rich interval directly overlies the Exmore Formation, suggesting long-term reworking of impact debris within the Chesapeake Bay impact structure. (2) Subsequently, an increase in kaolinite content suggests erosion from soils developed during late Eocene warm and humid climate in agreement with data derived from other Atlantic sites. However, the kaolinite increase may also be explained by change to a predominant sediment input from outside the Chesapeake Bay impact structure caused by progradation of more proximal facies belts during the highstand systems tract of the late Eocene sequence E10.Spectral analysis based on gamma-ray and magnetic susceptibility logs suggests infl uence of 1.2 Ma low-amplitude oscillation of the obliquity period during the late Eocene. (3) During the latest Eocene (Biozones NP21 and E16), several lithological contacts (clay to clayey silt) occur concomitant with a prominent change in the mineralogical composition with illite as a major component: This lithological change starts close to the Biozone NP19/20-NP21 boundary and may correspond to sequence boundary E10-E11 as observed in

  19. Distribution and movement of shortnose sturgeon (Acipenser brevirostrum) in the Chesapeake Bay

    USGS Publications Warehouse

    Welsh, S.A.; Mangold, M.F.; Skjeveland, J.E.; Spells, A.J.

    2002-01-01

    During a reward program for Atlantic sturgeon (Acipenser oxyrinchus), 40 federally endangered shortnose sturgeon (Acipenser brevirostrum) were captured and reported by commercial fishers between January 1996 and January 2000 from the Chesapeake Bay. Since this is more than double the number of published records of shortnose sturgeon in the Chesapeake Bay between 1876 and 1995, little information has been available on distributions and movement. We used fishery dependent data collected during the reward program to determine the distribution of shortnose sturgeon in the Chesapeake Bay. Sonically-tagged shortnose sturgeon in the Chesapeake Bay and Delaware River were tracked to determine if individuals swim through the Chesapeake and Delaware Canal. Shortnose sturgeon were primarily distributed within the upper Chesapeake Bay. The movements of one individual, tagged within the Chesapeake Bay and later relocated in the canal and Delaware River, indicated that individuals traverse the Chesapeake and Delaware Canal.

  20. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation

    SciTech Connect

    Orth, R.J.; Moore, K.A.

    1983-10-07

    Data on the distribution and abundance of submerged aquatic vegetation in Chesapeake Bay indicate a significant reduction in all species in all sections of the bay during the last 15 to 20 years. This decline is unprecedented in the bay's recent history. The reduction in one major species, Zostera marina, may be greater than the decline that occurred during the pandemic demise of the 1930's. 19 references, 2 figures.

  1. NET ANTHROPOGENIC PHOSPHORUS INPUTS; SPATIAL AND TEMPORAL VARIABILITY IN THE CHESAPEAKE BAY REGION

    EPA Science Inventory

    Coastal watershed eutrophication has increasingly become a regional and global issue as larger proportions of the earth’s human population settle in coastal areas. Human activities on the land have severely impacted the water resources of the Chesapeake Bay, one of the world’s l...

  2. (U-Th)/He Zircon Dating of Chesapeake Bay Ejecta; Ocean Drilling Program Site 1073A

    NASA Astrophysics Data System (ADS)

    Biren, M. B.; van Soest, M. C.; Wartho, J.-A.; Hodges, K. V.; Glass, B. P.; Koeberl, C.; Hale, W.

    2014-09-01

    Results from our (U-Th)/He zircon dating of distal ejecta associated with the 40 km diameter Chesapeake Bay impact structure of Virginia, are in excellent agreement with previous K-Ar and Ar-Ar dating studies of the North American tektites.

  3. Progress report: long-term benthic monitoring and assessment program for the Maryland portion of Chesapeake Bay (July 1986-October 1987). Volume 1. Text

    SciTech Connect

    Holland, A.F.; Shaughnessy, A.T.; Scott, L.C.; Dickens, V.A.; Ranasinghe, J.A.

    1988-05-01

    The long-term benthic monitoring and assessment study for the Maryland portion of Chesapeake Bay is an integral component of the interdisciplinary Chesapeake Bay monitoring and assessment program. The major long-term objectives of the program are to: (1) determine the effectiveness of Baywide pollution abatement programs; (2) measure the cumulative, long-term impacts of power plant operations on Bay benthic resources; and (3) assess the status and trends for Bay water quality and biological resources. Sampling of benthic communities, sediments, and water quality was conducted from July 1, 1984 through December 1987 at 70 stations in the Maryland portion of the Chesapeake Bay and its tributaries.

  4. Detection of erosion events using 10Be profiles: example of the impact of agriculture on soil erosion in the Chesapeake Bay area (U.S.A.)

    USGS Publications Warehouse

    Valette-Silver, J. N.; Brown, L.; Pavich, M.; Klein, J.; Middleton, R.

    1986-01-01

    10Be concentration, total carbon and grain-size were measured in cores collected in undisturbed estuarine sediments of three tributaries of the Chesapeake Bay. These cores were previously studied by Davis [1] and Brush [2,3] for pollen content, age and sedimentation rate. In this work, we compare the results obtained for these various analyses. In the cores, we observed two increases in 10Be concentration concomitant with two major changes in the pollen composition of the sediments. These two pollen changes each correspond to well-dated agricultural horizons reflecting different stages in the introduction of European farming techniques [2]. In the Chesapeake Bay area, the agricultural development, associated with forest clearing, appears to have triggered the erosion, transport, and sedimentation into the river mouths of large quantities of 10Be-rich soils. This phenomenon explains the observed rise in the sedimentation rate associated with increases in agricultural land-use. ?? 1986.

  5. Measurements of spectral attenuation coefficients in the lower Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.

    1983-01-01

    The spectral transmission was measured for water samples taken in the lower Chesapeake Bay to allow characterization of several optical properties. The coefficients of total attenuation, particle attenuation, and absorption by dissolved organic matter were determined over a wavelength range from 3500 A to 8000 A. The data were taken over a 3 year period and at a number of sites so that an indication of spatial and temporal variations could be obtained. The attenuations determined in this work are, on the average, 10 times greater than those obtained by Hulburt in 1944, which are commonly accepted in the literature for Chesapeake Bay attenuation.

  6. Pre-impact tectonothermal evolution of the crystalline basement-derived rocks in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gibson, R.L.; Townsend, G.N.; Horton, J.W., Jr.; Reimold, W.U.

    2009-01-01

    Pre-impact crystalline rocks of the lowermost 215 m of the Eyreville B drill core from the Chesapeake Bay impact structure consist of a sequence of pelitic mica schists with subsidiary metagraywackes or felsic metavolcanic rocks, amphibolite, and calc-silicate rock that is intruded by muscovite (??biotite, garnet) granite and granite pegmatite. The schists are commonly graphitic and pyritic and locally contain plagioclase porphyroblasts, fi brolitic sillimanite, and garnet that indicate middle- to upper-amphibolite-facies peak metamorphic conditions estimated at ??0.4-0.5 GPa and 600-670 ??C. The schists display an intense, shallowly dipping, S1 composite shear foliation with local micrometer- to decimeter-scale recumbent folds and S-C' shear band structures that formed at high temperatures. Zones of chaotically oriented foliation, resembling breccias but showing no signs of retrogression, are developed locally and are interpreted as shear-disrupted fold hinges. Mineral textural relations in the mica schists indicate that the metamorphic peak was attained during D1. Fabric analysis indicates, however, that subhorizontal shear deformation continued during retrograde cooling, forming mylonite zones in which high-temperature shear fabrics (S-C and S-C') are overprinted by progressively lower- temperature fabrics. Cataclasites and carbonate-cemented breccias in more competent lithologies such as the calc-silicate unit and in the felsic gneiss found as boulders in the overlying impactite succession may refl ect a fi nal pulse of low-temperature cataclastic deformation during D1. These breccias and the shear and mylonitic foliations are cut by smaller, steeply inclined anastomosing fractures with chlorite and calcite infill (interpreted as D2). This D2 event was accompanied by extensive chlorite-sericitecalcite ?? epidote retrogression and appears to predate the impact event. Granite and granite pegmatite veins display local discordance to the S1 foliation, but elsewhere

  7. Pore-water chemistry from the ICDP-USGS core hole in the Chesapeake Bay impact structure-Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, W.E.; Voytek, M.A.; Powars, D.S.; Jones, B.F.; Cozzarelli, I.M.; Cockell, C.S.; Eganhouse, R.P.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between freshwater and saline water from 100 to 500 m depth in the postimpact sediment section, and an underlying synimpact section that is almost entirely filled with brine. The presence of brine in the lowermost postimpact section and the trend in dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting that its occurrence may be common in the inner crater. However, groundwater-flow conditions in the structure may reduce the saltwater-intrusion hazard associated with the brine. ?? 2009 The Geological Society of America.

  8. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment, and cultured oysters in the Chesapeake Bay, MD, USA

    PubMed Central

    Shaw, Kristi S.; Jacobs, John M.; Crump, Byron C.

    2013-01-01

    To determine if a storm event (i.e., high winds, large volumes of precipitation) could alter concentrations of Vibrio vulnificus and V. parahaemolyticus in aquacultured oysters (Crassostrea virginica) and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface (0.3 m) and near-bottom (just above the sediment). Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number (MPN) enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration for either Vibrio species by location (surface or near bottom oysters) or date sampled (oyster tissue, surface water, and sediment concentrations). V. vulnificus in oyster tissue was correlated with total suspended solids (r = 0.41, P = 0.04), and V. vulnificus in sediment was correlated with secchi depth (r = -0.93, P <0.01), salinity (r = -0.46, P = 0.02), tidal height (r = -0.45, P = 0.03), and surface water V. vulnificus (r = 0.98, P <0.01). V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth [r = -0.48, P = 0.02 (sediment); r = -0.97, P <0.01 (surface water)] and tidal height [r = -0.96, P <0.01 (sediment), r = -0.59, P <0.01 (surface water)]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4 × 105 MPN g-1, V. parahaemolyticus 1 × 105 MPN g-1), and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density changes in

  9. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    USGS Publications Warehouse

    Horton, J. Wright, Jr.; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  10. Transitioning a Chesapeake Bay Ecological Prediction System to Operations

    NASA Astrophysics Data System (ADS)

    Brown, C.; Green, D. S.; Eco Forecasters

    2011-12-01

    Ecological prediction of the impacts of physical, chemical, biological, and human-induced change on ecosystems and their components, encompass a wide range of space and time scales, and subject matter. They vary from predicting the occurrence and/or transport of certain species, such harmful algal blooms, or biogeochemical constituents, such as dissolved oxygen concentrations, to large-scale ecosystem responses and higher trophic levels. The timescales of ecological prediction, including guidance and forecasts, range from nowcasts and short-term forecasts (days), to intraseasonal and interannual outlooks (weeks to months), to decadal and century projections in climate change scenarios. The spatial scales range from small coastal inlets to basin and global scale biogeochemical and ecological forecasts. The types of models that have been used include conceptual, empirical, mechanistic, and hybrid approaches. This presentation will identify the challenges and progress toward transitioning experimental model-based ecological prediction into operational guidance and forecasting. Recent efforts are targeting integration of regional ocean, hydrodynamic and hydrological models and leveraging weather and water service infrastructure to enable the prototyping of an operational ecological forecast capability for the Chesapeake Bay and its tidal tributaries. A path finder demonstration predicts the probability of encountering sea nettles (Chrysaora quinquecirrha), a stinging jellyfish. These jellyfish can negatively impact safety and economic activities in the bay and an impact-based forecast that predicts where and when this biotic nuisance occurs may help management effects. The issuance of bay-wide nowcasts and three-day forecasts of sea nettle probability are generated daily by forcing an empirical habitat model (that predicts the probability of sea nettles) with real-time and 3-day forecasts of sea-surface temperature (SST) and salinity (SSS). In the first demonstration

  11. Scrubbing the Bay: Nutrient Removal Using Small Algal Turf Scrubbers on Chesapeake Bay Tributaries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  12. Ecosystem Services and Environmental Markets in Chesapeake Bay Restoration

    EPA Science Inventory

    This report contains two separate analyses, both of which make use of an optimization framework previously developed to evaluate trade-offs in alternative restoration strategies to achieve the Chesapeake Bay Total Maximum Daily Load (TMDL). The first analysis expands on model app...

  13. EUTROPHICATION OF CHESAPEAKE BAY: HISTORICAL TRENDS AND ECOLOGICAL INTERACTIONS

    EPA Science Inventory

    This review provides an integrated synthesis with timelines and evaluations of ecological responses to eutrophication in Chesapeake Bay, the largest estuary in the USA. Analyses of dated sediment cores reveal initial evidence of organic enrichment in approximately 200 y-old strat...

  14. Megablocks and melt pockets in the Chesapeake Bay impact structure constrained by magnetic field measurements and properties of the Eyreville and Cape Charles cores

    USGS Publications Warehouse

    Shah, A.K.; Daniels, D.L.; Kontny, A.; Brozena, J.

    2009-01-01

    We use magnetic susceptibility and remanent magnetization measurements of the Eyreville and Cape Charles cores in combination with new and previously collected magnetic field data in order to constrain structural features within the inner basin of the Chesapeake Bay impact structure. The Eyreville core shows the first evidence of several-hundred-meter-thick basement-derived megablocks that have been transported possibly kilometers from their pre-impact location. The magnetic anomaly map of the structure exhibits numerous short-wavelength (<2 km) variations that indicate the presence of magnetic sources within the crater fill. With core magnetic properties and seismic reflection and refraction results as constraints, forward models of the magnetic field show that these sources may represent basementderived megablocks that are a few hundred meters thick or melt bodies that are a few dozen meters thick. Larger-scale magnetic field properties suggest that these bodies overlie deeper, pre-impact basement contacts between materials with different magnetic properties such as gneiss and schist or gneiss and granite. The distribution of the short-wavelength magnetic anomalies in combination with observations of small-scale (1-2 mGal) gravity field variations suggest that basement-derived megablocks are preferentially distributed on the eastern side of the inner crater, not far from the Eyreville core, at depths of around 1-2 km. A scenario where additional basement-derived blocks between 2 and 3 km depth are distributed throughout the inner basin-and are composed of more magnetic materials, such as granite and schist, toward the east over a large-scale magnetic anomaly high and less magnetic materials, such as gneiss, toward the west where the magnetic anomaly is lower-provides a good model fi t to the observed magnetic anomalies in a manner that is consistent with both gravity and seismic-refraction data. ?? 2009 The Geological Society of America.

  15. Geologic columns for the ICDP-USGS Eyreville A and B cores, Chesapeake Bay impact structure: Sediment-clast breccias, 1096 to 444 m depth

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.; Gohn, G.S.; Dypvik, H.

    2009-01-01

    The Eyreville A and B cores, recovered from the "moat" of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ??867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ??867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ??855-618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940-??760 m) allows recognition of local similarities and differences in the breccias. ?? 2009 The Geological Society of America.

  16. River runoff effect on the suspended sediment property in the upper Chesapeake Bay using MODIS observations and ROMS simulations

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Wang, Menghua

    2014-12-01

    Ocean color data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua from 2002 to 2012 and simulations from the Regional Ocean Modeling System (ROMS) are used to study the impact of the Susquehanna River discharge on the total suspended sediment (TSS) concentration in the upper Chesapeake Bay. Since the water in the upper Chesapeake Bay is highly turbid, the shortwave infrared (SWIR)-based atmospheric correction algorithm is used for deriving the normalized water-leaving radiance nLw(λ) spectra from MODIS-Aqua measurements. nLw(λ) spectra are further processed into the diffuse attenuation coefficient at the wavelength of 490 nm Kd(490) and TSS. MODIS-Aqua-derived monthly TSS concentration in the upper Chesapeake Bay and in situ Susquehanna River discharge data show similar patterns in seasonal variations. The TSS monthly temporal variation in the upper Chesapeake Bay is also found in phase with the monthly averaged river discharge data. Since the Susquehanna River discharge is mainly dominated by a few high discharge events due to winter-spring freshets or tropical storms in each year, the impact of these high discharge events on the upper Chesapeake Bay TSS is investigated. Both MODIS-measured daily TSS images and sediment data derived from ROMS simulations show that the Susquehanna River discharge is the dominant factor for the variations of TSS concentration in the upper Chesapeake Bay. Although the high river discharge event usually lasts for only a few days, its induced high TSS concentration in the upper Chesapeake Bay can sustain for ˜10-20 days. The elongated TSS rebounding stage is attributed to horizontal advection of slowly settling fine sediment from the Susquehanna River.

  17. Evaluation and Validation of Case 2 Algorithms in Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Adrea

    2004-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements form Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (greater than 6,500 square kilometers) make retrievals from satellites with a spatial resolution of approximately 1 kilometer (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra. Finally, past and ongoing research efforts provided an expensive data set of optical observations that support the goal of this project.

  18. Analysis of survey data on the chemistry of twenty-three streams in the Chesapeake Bay watershed: some implications of the impact of acid deposition. Final report

    SciTech Connect

    Janicki, A.; Cummins, R.

    1983-12-01

    A survey of the chemistry of 23 streams within the Chesapeake Bay watershed was conducted in the spring of 1983 to determine whether a potential for changes in water chemistry due to atmospheric inputs of acidic materials exists in any of these streams. Sampling was conducted weekly through the months of March and April. Three streams were identified as being likely affected by acid inputs due to relatively high H(+) and SO4(-2) concentrations and low alkalinities: Stockett's Run, Lyons Creek, and Muddy Creek. Elevated dissolved aluminum concentrations were observed in some Eastern Shore streams and are likely related to the predominance of clay soils in their watersheds.

  19. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal). 162.40 Section 162.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS...

  20. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal); use, administration, and navigation. 207.100 Section 207.100 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  1. Synimpact-postimpact transition inside Chesapeake Bay crater

    NASA Astrophysics Data System (ADS)

    Poag, C. Wylie

    2002-11-01

    The transition from synimpact to postimpact sedimentation inside Chesapeake Bay impact crater began with accumulation of fallout debris, the final synimpact deposit. Evi dence of a synimpact fallout layer at this site comes from the presence of unusual, millimeter- scale, pyrite microstructures at the top of the Exmore crater-fill breccia. The porous geometry of the pyrite microstructures indicates that they originally were part of a more extensive pyrite lattice that encompassed a layer of millimeter-scale glass microspherules—fallout melt particles produced by the bolide impact. Above this microspherule layer is the initial postimpact deposit, a laminated clay-silt-sand unit, 19 cm thick. This laminated unit is a dead zone, which contains abundant stratigraphically mixed and diagenetically altered or impact-altered microfossils (foraminifera, calcareous nannofossils, dinoflagellates, ostracodes), but no evidence of indigenous biota. By extrapolation of sediment- accumulation rates, I estimate that conditions unfavorable to microbiota persisted for as little as <1 k.y. to 10 k.y. after the bolide impact. Subsequently, an abrupt improvement of the late Eocene paleoenvironment allowed species-rich assemblages of foraminifera, ostracodes, dinoflagellates, radiolarians, and calcareous nannoplankton to quickly reoccupy the crater basin, as documented in the first sample of the Chickahominy Formation above the dead zone.

  2. Rock-avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA

    USGS Publications Warehouse

    Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.

    2009-01-01

    An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated

  3. Comparison of clast frequency and size in the resurge deposits at the Chesapeake Bay impact structure (Eyreville A and Langley cores): Clues to the resurge process

    USGS Publications Warehouse

    Ormo, J.; Sturkell, E.; Horton, J.W., Jr.; Powars, D.S.; Edwards, L.E.

    2009-01-01

    Collapse and inward slumping of unconsolidated sedimentary strata expanded the Chesapeake Bay impact structure far beyond its central basement crater. During crater collapse, sediment-loaded water surged back to fill the crater. Here, we analyze clast frequency and granulometry of these resurge deposits in one core hole from the outermost part of the collapsed zone (i.e., Langley) as well as a core hole from the moat of the basement crater (i.e., Eyreville A). Comparisons of clast provenance and flow dynamics show that at both locations, there is a clear change in clast frequency and size between a lower unit, which we interpret to be dominated by slumped material, and an upper, water-transported unit, i.e., resurge deposit. The contribution of material to the resurge deposit was primarily controlled by stripping and erosion. This includes entrainment of fallback ejecta and sediments eroded from the surrounding seafloor, found to be dominant at Langley, and slumped material that covered the annular trough and basement crater, found to be dominant at Eyreville. Eyreville shows a higher content of crystalline clasts than Langley. There is equivocal evidence for an anti-resurge from a collapsing central water plume or, alternatively, a second resurge pulse, as well as a transition into oscillating resurge. The resurge material shows more of a debris-flow-like transport compared to resurge deposits at some other marine target craters, where the ratio of sediment to water has been relatively low. This result is likely a consequence of the combination of easily disaggregated host sediments and a relatively shallow target water depth. ?? 2009 The Geological Society of America.

  4. Geologic columns for the ICDP-USGS Eyreville A and C cores, Chesapeake Bay impact structure: Postimpact sediments, 444 to 0 m depth

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.; Browning, J.V.; McLaughlin, P.P., Jr.; Miller, K.G.; Self-Trail J.M.; Kulpecz, A.A.; Elbra, T.

    2009-01-01

    A 443.9-m-thick, virtually undisturbed section of postimpact deposits in the Chesapeake Bay impact structure was recovered in the Eyreville A and C cores, Northampton County, Virginia, within the "moat" of the structure's central crater. Recovered sediments are mainly fine-grained marine siliciclastics, with the exception of Pleistocene sand, clay, and gravel. The lowest postimpact unit is the upper Eocene Chickahominy Formation (443.9-350.1 m). At 93.8 m, this is the maximum thickness yet recovered for deposits that represent the return to "normal marine" sedimentation. The Drummonds Corner beds (informal) and the Old Church Formation are thin Oligocene units present between 350.1 and 344.7 m. Above the Oligocene, there is a more typical Virginia coastal plain succession. The Calvert Formation (344.7-225.4 m) includes a thin lower Miocene part overlain by a much thicker middle Miocene part. From 225.4 to 206.0 m, sediments of the middle Miocene Choptank Formation, rarely reported in the Virginia coastal plain, are present. The thick upper Miocene St. Marys and Eastover Formations (206.0-57.8 m) appear to represent a more complete succession than in the type localities. Correlation with the nearby Kiptopeke core indicates that two Pliocene units are present: Yorktown (57.8-32.2 m) and Chowan River Formations (32.2-18.3 m). Sediments at the top of the section represent an upper Pleistocene channel-fill and are assigned to the Butlers Bluff and Occohannock Members of the Nassawadox Formation (18.3-0.6 m). ?? 2009 The Geological Society of America.

  5. BOOK REVIEW OF "CHESAPEAKE BAY BLUES: SCIENCE, POLITICS, AND THE STRUGGLE TO SAVE THE BAY"

    EPA Science Inventory

    This is a book review of "Chesapeake Bay Blues: Science, Politics, and the Struggle to Save the Bay". This book is very well written and provides an easily understandable description of the political challenges faced by those proposing new or more stringent environmental regulat...

  6. 33 CFR 167.200 - In the approaches to Chesapeake Bay Traffic Separation Scheme: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Eastern Approach, and a Southern Approach. The Southern Approach consists of inbound and outbound lanes... Approaches to Chesapeake Bay should use the appropriate inbound or outbound traffic lane....

  7. 33 CFR 167.200 - In the approaches to Chesapeake Bay Traffic Separation Scheme: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Eastern Approach, and a Southern Approach. The Southern Approach consists of inbound and outbound lanes... Approaches to Chesapeake Bay should use the appropriate inbound or outbound traffic lane....

  8. 33 CFR 167.200 - In the approaches to Chesapeake Bay Traffic Separation Scheme: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Eastern Approach, and a Southern Approach. The Southern Approach consists of inbound and outbound lanes... Approaches to Chesapeake Bay should use the appropriate inbound or outbound traffic lane....

  9. 33 CFR 167.200 - In the approaches to Chesapeake Bay Traffic Separation Scheme: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Eastern Approach, and a Southern Approach. The Southern Approach consists of inbound and outbound lanes... Approaches to Chesapeake Bay should use the appropriate inbound or outbound traffic lane....

  10. 33 CFR 167.200 - In the approaches to Chesapeake Bay Traffic Separation Scheme: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Eastern Approach, and a Southern Approach. The Southern Approach consists of inbound and outbound lanes... Approaches to Chesapeake Bay should use the appropriate inbound or outbound traffic lane....

  11. Infrared view of Chesapeake Bay showing Virginia, Maryland and Delaware

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An infrared, near view of the Chesapeake Bay area showing portions of Virginia, Maryland and Delaware, as photographed from the Apollo spacecraft in Earth orbit during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) mission. Richmond and Norfolk can be seen in this picture. Tidewater, Virginia covers much of this view. The photograph was taken at an altitude of 217 kilometers (135 statute miles).

  12. Chesapeake Bay subsidence monitored as wetlands loss continues

    NASA Astrophysics Data System (ADS)

    Nerem, R. S.; van Dam, T. M.; Schenewerk, M. S.

    Fragile wetland ecosystems, which support an abundance of wildlife, are being lost around the Chesapeake Bay at an alarming rate due to an increase in sea level. For example, one third of the total area of the Blackwater National Wildlife Refuge (Figure 1) (approximately 20 km2) was lost between 1938 and 1979 [Leatherman, 1992]. Approximately 4,100 km2 of the perimeter of the Chesapeake Bay are covered by wetlands of which 58% forested wetlands and 28% are salt marshes. It is likely that many factors are responsible for the wetlands loss, some that have global implications, and some that reflect local phenomena.Understanding the mechanisms responsible for wetlands deterioration and loss, however, has been impeded by the lack of adequate data including quantitative monitoring of the types and distribution of flora, Tthe boundaries of specific habitat types, and data on the spatial variations in sea level and land subsidence. This article focuses on the latter problem, which is to determine the relative roles of sea level rise and land subsidence in the region. Over the past four years, a small network of Global Positioning System (GPS) receivers have been installed near tide gauges in the Chesapeake Bay to help determine the cause of relative sea level rise in this region. These receivers are just beginning to yield results.

  13. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.

    PubMed

    Cerco, Carl F

    2016-05-01

    The Conowingo Reservoir is situated on the Susquehanna River, immediately upstream of Chesapeake Bay, the largest estuary in the United States. Sedimentation in the reservoir provides an unintended benefit to the bay by preventing sediments, organic matter, and nutrients from entering the bay. The sediment storage capacity of the reservoir is nearly exhausted, however, and the resulting increase in loading of sediments and associated materials is a potential threat to Chesapeake Bay water quality. In response to this threat, the Lower Susquehanna River Watershed Assessment was conducted. The assessment indicates the reservoir is in a state of "dynamic equilibrium" in which sediment loads from the upstream watershed to the reservoir are balanced by sediments leaving the reservoir. Increased sediment loads are not a threat to bay water quality. Increased loads of associated organic matter and nutrients are, however, detrimental. Bottom-water dissolved oxygen declines of 0.1 to 0.2 g m are projected as a result of organic matter oxidation and enhanced eutrophication. The decline is small relative to normal variations but results in violations of standards enforced in a recently enacted total maximum daily load. Enhanced reductions in nutrient loads from the watershed are recommended to offset the decline in water quality caused by diminished retention in the reservoir. The assessment exposed several knowledge gaps that require additional investigation, including the potential for increased loading at flows below the threshold for reservoir scour and the nature and reactivity of organic matter and nutrients scoured from the reservoir bottom. PMID:27136154

  14. COMPARATIVE FORM AND FUNCTION OF OYSTER CRASSOSTREA VIRGINICA HEMOCYTES FROM CHESAPEAKE BAY (VIRGINICA) AND APALACHICOLA BAY (FLORIDA)

    EPA Science Inventory

    Oysters (Crassostrea virginica) from Chesapeake Bay, Virginia, and Apalachicola Bay, Florida, were collected in March 1992, to determine relationships among hemocyte number, morphology and size with putative defense-related activities, including hemocyte mobility, particle bindin...

  15. Possible role of remote sensing for increasing public awareness of the Chesapeake Bay environment

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Maher, P. A.; Billings, G.; Cressy, P. J.; Jarman, J. W.; Macleod, N. H.; Trombka, J. I.; Wisner, T.

    1978-01-01

    Application of remote sensing techniques to the study of the Chesapeake Bay and the availability of the resulting information are discussed in terms of public awareness of the Chesapeake Bay, its total environment, and the need to protect that environment and to preserve the Bay. Recommendations given include: (1) continue the study of remote sensing technology and its use in the Chesapeake Bay region; (2) emphasize the importance of LANDSAT imagery to the evolution of remote sensing technological developments and the awareness of the environment and its changes; (3) increase dissemination of information of the environmental applications of remote sensing technology to the public; (4) design surveys of the Chesapeake Bay environment and its manmade changes; and (5) establish a coordinating regional institution to develop a management plan for the Chesapeake Bay.

  16. Modeling Land Use Change in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Claire, J. A.; Goetz, S. J.; Bockstael, N.

    2003-12-01

    Low density, decentralized residential and commercial development is increasingly the dominant pattern of exurban land use in many developed countries, particularly the United States. The term "sprawl" is now commonly used to describe this form of development, the environmental and quality-of-life impacts of which are becoming central to debates over land use in urban and suburban areas. Continued poor health of the Chesapeake Bay, located in the Mid-Atlantic region of the United States, is due in part to disruptions in the hydrological system caused by urban and suburban development throughout the 167,000 square kilometer watershed. We present results of a spatial predictive model of land use change based on cellular automata (SLEUTH), which was calibrated using high resolution (30m cell size) maps of the built environment derived from Landsat ETM+ imagery for the period 1986-2000. The model was applied to a 23,740 square kilometer area centered on Washington DC - Baltimore MD, and predictions were made out to 2030 assuming three different policy scenarios (current trends, managed growth, and "sustainable"). Accuracy of the model was assessed at three scales (pixel, watershed and county) and overall strengths and weaknesses of the model are presented, particularly in comparison to other econometric modeling approaches.

  17. Managing manure for sustainable livestock production in the Chesapeake Bay Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure presents one of the greatest challenges to livestock operations in the Chesapeake Bay Watershed. The Chesapeake Bay is threatened by excessive nutrient loadings and, according to the U.S. Environmental Protection Agency, manure is the source of 18% of the nitrogen and 27% of the phosphorus en...

  18. Best management practices for reducing nutrient loads in a sub-watershed of Chesapeake Bay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to stream has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a set of best management practices (BMPs) has been in place for ...

  19. Best management practices for reducing nutrient loads in a sub-watershed of Chesapeake Bay area

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality improvement in the Chesapeake Bay is a grave concern. An initiative to reduce the nutrient loads to stream has been undertaken to attain a target total maximum daily load (TMDL) at Chesapeake Bay. A general guideline with a set of best management practices (BMPs) has been in place for ...

  20. MARYLAND/VIRGINIA CHESAPEAKE BAY AND TRIBUTARIES IN SITU FLUORESCENCE PROFILES

    EPA Science Inventory

    As part of the Chesapeake Bay Program, surface to bottom fluorescence measurements (vertical profiles) have been made at fixed sampling stations in the upper Chesapeake Bay, Maryland tributaries, and the Potomac River since July 1984. The data through December of 1995 are availab...

  1. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  2. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  3. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  4. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  5. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay; firing range. 334.390 Section 334.390 Navigation and Navigable Waters CORPS OF....390 Atlantic Ocean south of entrance to Chesapeake Bay; firing range. (a) The danger zone. A...

  6. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area....

  7. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area....

  8. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area....

  9. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area....

  10. 33 CFR 334.310 - Chesapeake Bay, Lynnhaven Roads; navy amphibious training area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. 334.310 Section 334.310 Navigation and Navigable Waters CORPS OF....310 Chesapeake Bay, Lynnhaven Roads; navy amphibious training area. (a) The restricted area....

  11. APPLICATION OF TWO INDICES OF BENTHIC COMMUNITY CONDITION IN CHESAPEAKE BAY

    EPA Science Inventory

    The Chesapeake Bay Benthic Index of Biotic Integrity (B-161) and the Environmental Monitoring and Assessment Program's Virginian Province Benthic Index (EMAP-VP BI) were applied to 294 sampling events in Chesapeake Bay and the results were compared. These benthic indices are inte...

  12. 33 CFR 334.320 - Chesapeake Bay entrance; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay entrance; naval... entrance; naval restricted area. (a) The area. Beginning at a point on the south shore of Chesapeake Bay at... shall be placed on or near the bottom. (2) This section shall be enforced by the Commandant, Fifth...

  13. 76 FR 12356 - A Method To Assess Climate-Relevant Decisions: Application in the Chesapeake Bay

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ...: Application in the Chesapeake Bay'' (EPA/600/R-10/096a), announced earlier (76 FR 4345, January 25, 2011). EPA... received during the public comment period from August 31 to November 1, 2010 (announced in 75 FR 168... AGENCY A Method To Assess Climate-Relevant Decisions: Application in the Chesapeake Bay...

  14. THE CHARACTERIZATION OF THE CHESAPEAKE BAY: A SYSTEMATIC ANALYSIS OF TOXIC TRACE ELEMENTS

    EPA Science Inventory

    This report describes the National Bureau of Standards (NBS) efforts in a multidisciplinary study of the Chesapeake Bay coordinated by the Chesapeake Bay Program Office of the U.S. Environmental Protection Agency. The NBS used the best available technology to determine the trace ...

  15. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Information Executive Order 13508, Chesapeake Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099... 24, 2010 (75 FR 91294, March 24). This final guidance incorporates revisions resulting from public... water pollution'' that are appropriate to restore and protect the Chesapeake Bay. Assuming that...

  16. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  17. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  18. Application of the benthic index of biotic integrity to environmental monitoring in Chesapeake Bay.

    PubMed

    Llansó, Roberto J; Dauer, Daniel M; Vølstad, Jon H; Scott, Lisa C

    2003-01-01

    The Chesapeake Bay benthic index of biotic integrity (B-IBI) was developed to assess benthic community health and environmental quality in Chesapeake Bay. The B-IBI provides Chesapeake Bay monitoring programs with a uniform tool with which to characterize bay-wide benthic community condition and assess the health of the Bay. A probability-based design permits unbiased annual estimates of areal degradation within the Chesapeake Bay and its tributaries with quantifiable precision. However, of greatest interest to managers is the identification of problem areas most in need of restoration. Here we apply the B-IBI to benthic data collected in the Bay since 1994 to assess benthic community degradation by Chesapeake Bay Program segment and water depth. We used a new B-IBI classification system that improves the reliability of the estimates of degradation. Estimates were produced for 67 Chesapeake Bay Program segments. Greatest degradation was found in areas that are known to experience hypoxia or show toxic contamination, such as the mesohaline portion of the Potomac River, the Patapsco River, and the Maryland mainstem. Logistic regression models revealed increased probability of degraded benthos with depth for the lower Potomac River, Patapsco River. Nanticoke River, lower York River, and the Maryland mainstem. Our assessment of degradation by segment and water depth provided greater resolution of relative condition than previously available, and helped define the extent of degradation in Chesapeake Bay. PMID:12620013

  19. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  20. Storm tide simulation in the Chesapeake Bay using an unstructured grid model

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Wang, Harry; Sisson, Mac; Gong, Wenping

    2006-06-01

    Hurricane Isabel made landfall near Drum Inlet, North Carolina on September 18, 2003 (UTC 17:00). Although it was classified as only a Category 2 storm (Saffir-Simpson scale), Hurricane Isabel had a significant impact on the Chesapeake Bay with a 1.5-2.0 m storm surge (above mean sea level), and was dubbed the "100-year storm". A high-resolution unstructured grid model (UnTRIM) was applied to simulate storm tide in the Chesapeake Bay. The application of an unstructured grid in the Bay offers the greatest flexibilities in representing complex estuarine geometry near the coast and encompassing a large modeling domain necessary for storm surge simulation. The resulting mesh has a total of 239,541 surface elements. The model was forced by 9 tidal harmonic constituents at the open boundary and a wind field generated by a parametric wind model. A hindcast simulation of Hurricane Isabel captures both peak storm tide and surge evolution in various sites of the Bay. Model diagnostic studies indicate that the high surge occurring in the upper Bay regions was mainly caused by the forced southerly wind, whereas the offshore surge and both the northeasterly and southeasterly winds influenced the lower Bay region more significantly.

  1. Workplan for tributary refinements to Chesapeake Bay eutrophication model package. Final report

    SciTech Connect

    Cerco, C.F.

    1994-05-01

    The Corps of Engineers, in partnership with the U.S. Environmental Protection Agency Chesapeake Bay Program Office, recently completed a three-dimensional model study of eutrophication in Chesapeake Bay and tributaries. The model package applied included an intratidal hydrodynamic model, an intertidal water-quality model, and a benthic sediment diagenesis model. This report comprises a workplan to improve model representation of Chesapeake Bay tributaries and to incorporate living resources directly into the model framework. Four tributaries have been selected for emphasis under this tributary refinements program. They are the James, York, and Rappahannock rivers, and Baltimore Harbor. The James, York, and Rappahannock were specified because tributary-specific models are required to address water-quality and living-resource benefits to be derived from nutrient reductions. Baltimore Harbor was specified because it presents unique management problems, coupled with long-term toxic impacts, which cannot be addressed in the current model framework. The time scale for the project is 4 years from initiation to completion. Anticipated commencement is April 1, 1994.

  2. Simulation of long-term trends in Chesapeake Bay eutrophication

    SciTech Connect

    Cerco, C.F.

    1995-04-01

    A predictive mathematical model was employed to examine trends in Chesapeake Bay eutrophication from 1959 to 1988. The model provided details of processes and substances for which no record existed. The simulation indicated the volume of anoxic water was largest in the decade 1969--78. Since then, anoxic volume has declined. The decline was largely due to hydrodynamic effects. In 1969--78, high runoff caused the Bay to be highly stratified and inhibited oxygen transport to bottom waters. Less runoff in the years 1979--88 diminished stratification and allowed enhanced oxygen transport to bottom waters. When only years of similar stratification were compared, an increase in anoxic volume was noted from the 1959--68 decade to the 1979--88 decade. The increase was associated with increasing nitrogen concentration in runoff from two major tributaries and with increasing chlorophyll concentration in the mainstem Bay.

  3. Endocrine disrupter--estradiol--in Chesapeake Bay tributaries.

    PubMed

    Dorabawila, Nelum; Gupta, Gian

    2005-04-11

    Exogenous chemicals that interfere with natural hormonal functions are considered endocrine disrupting chemicals (EDCs). Estradiol (17beta-estradiol or E2) is the most potent of all xenoestrogens. Induction of vitellogenin (VTG) production in male fish occurs at E2 concentrations as low as 1 ng l-1. E2 reaches aquatic systems mainly through sewage and animal waste disposal. Surface water samples from ponds, rivers (Wicomico, Manokin and Pocomoke), sewage treatment plants (STPs), and coastal bays (Assawoman, Monie, Chincoteague, and Tangier Sound-Chesapeake Bay) on the Eastern Shore of Maryland were analyzed for E2 using enzyme linked immuno-sorbent assay (ELISA). E2 concentrations in river waters varied between 1.9 and 6.0 ng l-1. Highest E2 concentrations in river waters were observed immediately downstream of STPs. E2 concentrations in all the coastal bays tested were 2.3-3.2 ng l-1. PMID:15811666

  4. Regional geochemistry of trace elements in Chesapeake Bay sediments

    NASA Astrophysics Data System (ADS)

    Sinex, S. A.; Helz, G. R.

    1981-11-01

    The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in 177 surface sediment samples from throughout Chesapeake Bay are reported. Analyses were made of both unfractionated samples and the <63 μm fractions. Analytical uncertainty, always less than ±10%, controlled reproducibility in analyses of the <63 μm fractions, but sampling variance controlled reproducibility in the unfractionated samples, especially when coarse-grained sediments were being analyzed. Sediments in the northernmost part of the bay are enriched relative to average continental crust in all elements except Cr. This reflects the composition of dissolved and suspended material being delivered to that region by the Susquehanna River. The enriched sediments appear not to be transported south of Baltimore in significant quantily. Zinc, cadmium, and lead are enriched relative to average crust throughout the bay and in most other estuaries in the eastern United States.

  5. 75 FR 54771 - Safety Zone; Thunder on the Bay, Chesapeake Bay, Buckroe Beach Park, Hampton, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... is establishing a 210-foot radius safety zone on the navigable waters of Chesapeake Bay in Hampton... be temporarily restricted within 210 feet of the fireworks launch site. Discussion of Rule The Coast... area bounded by a 210-foot radius circle centered on position 37 02'23'' N, 076 17'22'' W (NAD...

  6. Methylmercury production in a Chesapeake Bay salt marsh

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl P. J.; Gilmour, Cynthia C.

    2008-06-01

    In a detailed study of the biogeochemical factors affecting the methylation of mercury in a Chesapeake Bay salt marsh, we examined relationships between mercury methylation and numerous variables, including sulfate reduction rates, organic carbon mineralization rates, iron and sulfur chemistry, and the character of dissolved organic matter (DOM). Our data show that salt marshes are important sites of de novo methylmercury (MeHg) production in coastal ecosystems. Some of the controls on MeHg production that have been well-described in other ecosystems also impacted MeHg production in this salt marsh, specifically the effect of sulfide accumulation on mercury bioavailability. We observed some novel biogeochemical relationships with Hg(II)-methylation and MeHg accumulation, particularly the positive association of Hg(II)-methylation with zones of microbial iron reduction. On the basis of this relationship, we suggest caution in wetland and groundwater remediation approaches involving iron additions. Aqueous phase Hg complexation appeared to be the dominant control on Hg bioavailability across the marsh sites examined, rather than Hg partitioning behavior. A detailed examination of DOM character in the marsh suggested a strong positive association between Hg(II)-methylation rate constants and increasing DOM molecular weight. Overall, our results indicate that net MeHg production is controlled by a balance between microbial activity and geochemical effects on mercury bioavailability, but that a significant zone of MeHg production can persist in near surface salt marsh soils. Production of MeHg in coastal marshes may negatively impact ecosystems via export to adjacent estuaries or through direct bioaccumulation in birds, fish and amphibians that feed in these highly productive ecosystems.

  7. An educational interactive numerical model of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Crouch, Jessica R.; Shen, Yuzhong; Austin, Jay A.; Dinniman, Michael S.

    2008-03-01

    Scientists use sophisticated numerical models to study ocean circulation and other physical systems, but the complex nature of such simulation software generally make them inaccessible to non-expert users. In principle, however, numerical models represent an ideal teaching tool, allowing users to model the response of a complex system to changing conditions. We have designed an interactive simulation program that allows a casual user to control the forcing conditions applied to a numerical ocean circulation model using a graphical user interface, and to observe the results in real-time. This program is implemented using the Regional Ocean Modeling System (ROMS) applied to the Chesapeake Bay. Portions of ROMS were modified to facilitate user interaction, and the user interface and visualization capabilities represent new software development. The result is an interactive simulation of the Chesapeake Bay environment that allows a user to control wind speed and direction along with the rate of flow from the rivers that feed the bay. The simulation provides a variety of visualizations of the response of the system, including water height, velocity, and salinity across horizontal and vertical planes.

  8. Occurrence and toxicology of heavy metals in Chesapeake Bay waterfowl

    SciTech Connect

    Di Giulio, R.T.

    1982-01-01

    The goals of this study were to elucidate relationships between food habits and tissue accumulations of heavy metals in Chesapeake Bay waterfowl and to determine effects of chronic cadmium and lead ingestion on energy metabolism in waterfowl. In combination with an imposed food restriction, cadmium ingestion appeared to alter some indices of energy metabolism, such as plasma concentrations of free fatty acids and triiodothyronine, at dietary cadmium levels far below those eliciting similar responses in the absence of a food restriction. Those results suggest the importance of considering interactions with other stressors when examining potential effects of environmental contaminants on wild animals.

  9. Investigations on classification categories for wetlands of Chesapeake Bay using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1974-01-01

    The use of remote sensors to determine the characteristics of the wetlands of the Chesapeake Bay and surrounding areas is discussed. The objectives of the program are stated as follows: (1) to use data and remote sensing techniques developed from studies of Rhode River, West River, and South River salt marshes to develop a wetland classification scheme useful in other regions of the Chesapeake Bay and to evaluate the classification system with respect to vegetation types, marsh physiography, man-induced perturbation, and salinity; and (2) to develop a program using remote sensing techniques, for the extension of the classification to Chesapeake Bay salt marshes and to coordinate this program with the goals of the Chesapeake Research Consortium and the states of Maryland and Virginia. Maps of the Chesapeake Bay areas are developed from aerial photographs to display the wetland structure and vegetation.

  10. State of the Chesapeake Bay: second annual monitoring report, compendium. Report for January 1984-September 1985

    SciTech Connect

    Lynch, M.P.; Krome, E.C.

    1987-04-01

    The report is a summary of information collected at stations around the Chesapeake Bay. It is designed to be a more detailed/technical companion to the State Of The Bay Summary Report. It reports the results of the monitoring of the Chesapeake Bay in terms of its physical and chemical makeup (sediments, the distribution of toxics), the living resources, (plankton, benthos, submerged aquatic vegetation, birds), and the Patuxent River, as a case history.

  11. Birds and environmental contaminants in San Francisco and Chesapeake Bays

    USGS Publications Warehouse

    Ohlendorf, H.M.; Fleming, W.J.

    1988-01-01

    The direct and indirect effects of human activities, including environmental contamination, upon bird populations in San Francisco Bay and Chesapeake Bay are imperfectly understood, and few data are available. that allow a comparison of the contamination levels in birds from these two areas. Certain trace elements and organochlorine compounds have been found at sufficiently high concentrations in bird tissues or their foods to expect adverse effects in these birds, based upon results of field and laboratory studies conducted with other avian species. The decline and recovery of populations of many avian species have been recorded, including some associated with organochlorine contamination. The present paper summarizes available information on the occurrence and potential effects of contaminants upon birds in these two regions.

  12. Fluxes of dissolved organic carbon from Chesapeake Bay sediments

    SciTech Connect

    Burdige, D.J.; Homstead, J. )

    1994-08-01

    Benthic fluxes of dissolved organic carbon (DOC) were measured over an annual cycle at two contrasting sites in Chesapeake Bay. At an organic-rich, sulfidic site in the mesohaline portion of the Bay (site M) DOC fluxes from the sediments ranged from 1.4 to 2.9 mmol/m[sup 2]/d. Measured benthic DOC fluxes at site M corresponded to [approximately]3-13% of the depth-integrated benthic C remineralization rates ([Sigma]OCR), and agreed well with calculated diffusive DOC fluxes based on porewater DOC profiles. This agreement suggests that DOC fluxes from site M sediments were likely controlled by molecular diffusion. The second site that was studied is a heavily bioturbated site in the southern Bay (site S). The activity of macrobenthos did not appear to enhance DOC fluxes from these sediments, since measured benthic DOC fluxes (>0.5 mmol/m[sup 2]/d) were lower than those at site M. The ratios of benthic DOC fluxes to [Sigma]OCR values at site S were also slightly smaller than those observed at site M. Benthic DOC fluxes from Chesapeake Bay sediments do not appear to significantly affect the transport of DOC through this estuary, although uncertainties in the reactivity of DOC in estuaries makes this conclusion somewhat tentative at this time. However, when these results are used to make a lower limit estimate of the globally integrated benthic DOC flux from marine sediments, a value similar to that previously calculated by Burdige et al. is obtained. This observation further supports suggestions in this paper about the importance of benthic DOC fluxes in the oceanic C cycle.

  13. Wetland habitats for wildlife of the Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.

    1998-01-01

    The wetlands of Chesapeake Bay have provided the vital habitats that have sustained the impressive wildlife populations that have brought international fame to the Bay. As these wetland habitats decrease in quantity and quality we will continue to see the decline in the wildlife populations that started when European settlers first came to this continent. These declines have accelerated significantly in this century. As the human population continues to increase in the Bay watershed, one can expect that wetland habitats will continue to decline, resulting in declines in species diversity and population numbers. Although federal, state, and local governments are striving for 'no net loss' of wetlands, the results to date are not encouraging. It is unrealistic to believe that human populations and associated development can continue to increase and not adversely affect the wetland resources of the Bay. Restrictions on human population growth in the Chesapeake area is clearly the best way to protect wetland habitats and the wildlife that are dependent on these habitats. In addition, there should be more aggressive approaches to protect wetland habitats from continued perturbations from humans. More sanctuary areas should be created and there should be greater use of enhancement and management techniques that will benefit the full complement of species that potentially exist in these wetlands. The present trend in wetland loss can be expected to continue as human populations increase with resultant increases in roads, shopping malls, and housing developments. Creation of habitat for mitigation of these losses will not result in 'no net loss'. More innovative approaches should be employed to reverse the long-term trend in wetland loss by humans.

  14. Uncertainty in Model Predictions of Vibrio vulnificus Response to Climate Variability and Change: A Chesapeake Bay Case Study

    PubMed Central

    Urquhart, Erin A.; Zaitchik, Benjamin F.; Waugh, Darryn W.; Guikema, Seth D.; Del Castillo, Carlos E.

    2014-01-01

    The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3–0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist. PMID:24874082

  15. Uncertainty in model predictions of Vibrio vulnificus response to climate variability and change: a Chesapeake Bay case study.

    PubMed

    Urquhart, Erin A; Zaitchik, Benjamin F; Waugh, Darryn W; Guikema, Seth D; Del Castillo, Carlos E

    2014-01-01

    The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist. PMID:24874082

  16. Uncertainty in Model Predictions of Vibrio Vulnificus Response to Climate Variability and Change: A Chesapeake Bay Case Study

    NASA Technical Reports Server (NTRS)

    Urquhart, Erin A.; Zaitchik, Benjamin F.; Waugh, Darryn W.; Guikema, Seth D.; Del Castillo, Carlos E.

    2014-01-01

    The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4 C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.

  17. Sediment deposition from Tropical Storm Lee in the upper Chesapeake Bay: field observations and model predictions

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Halka, J. P.; Li, M.; Sanford, L. P.; Cheng, P.

    2012-12-01

    Episodic flood and storm events are important drivers of sediment dynamics in estuarine and marine environments. Event-driven sedimentation has been well-documented by field and modeling studies. Yet, few studies have integrated field observations and modeling results to overcome the limitations inherent in both techniques. A unique opportunity to integrate field observations and model results was provided in late August/early September 2011 with the passage of Hurricane Irene and the remnants of Tropical Storm Lee in the Chesapeake Bay region. These storms differed in their timing, track, and impact on the Bay region - Hurricane Irene was primarily a wind/resuspension event, whereas TS Lee was a hydrological/deposition event, with the second largest discharge of the Susquehanna River on record. Because these two storms occurred within a relatively short period of time, both are potentially represented in the sediment record obtained during rapid-response cruises in September and October 2011. The resulting sediment deposit was recognized in cores using classic flood-sediment signatures (fine grain size, uniform 7Be activity, physical stratification in x-radiographs) and was found to be <4 cm, thickest in the upper Bay. Model runs conducted for TS Lee generally agreed with these estimates. One exception with physical stratification but no 7Be activity appears to be due to extreme wave activity during Hurricane Irene. Integration of observations and modeling in this case greatly improved understanding of the transport and fate of flood sediments in the Chesapeake Bay.

  18. COMPARISON OF TWO INDICES OF BENTHIC COMMUNITY CONDITION IN CHESAPEAKE BAY

    EPA Science Inventory

    The Chesapeake Benthic Index of Biotic Integrity (B-IBI) and the EMAP-VP Benthic Index were applied to samples from 239 sites in Chesapeake Bay. The B-IBI weights several community measures equally and uses a simple scoring system while the EMAP-VP Benthic Index uses discriminant...

  19. 76 FR 4345 - A Method To Assess Climate-Relevant Decisions: Application in the Chesapeake Bay

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... AGENCY A Method To Assess Climate-Relevant Decisions: Application in the Chesapeake Bay AGENCY... review draft document titled, ``A Method to Assess Climate-Relevant Decisions: Application in the.../conferences/peerreview/register-chesapeake.htm . The draft ``A Method to Assess Climate-Relevant...

  20. Derivation of Habitat-Specific Dissolved Oxygen Criteria for Chesapeake Bay and its Tidal Tributaries

    EPA Science Inventory

    The Chesapeake 2000 Agreement committed its state and federal signatories to “define the water quality conditions necessary to protect aquatic living resources” in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a re...

  1. Enhanced stratification in the lower Chesapeake Bay following northeasterly winds

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Miller, Jerry L.; Wheless, Glen H.

    1998-11-01

    Density data from a lower Chesapeake Bay transect obtained after two northeasterly wind events were used to describe the effects of these events on the density field in the lower estuary. The first northeaster occurred in early August 1995 and the second northeaster was related to the passage of hurricane Felix off the lower bay in mid-August 1995. The latter northeaster prolonged a period of persistent winds from the N and NE that began in early August and caused storm surges of similar magnitude to the former northeaster. The salinity fields observed after the early August event suggested encroachment of coastal waters into the lower bay as reflected by high salinities throughout the transect. Two days after weakening of the winds related to Felix, the density distribution across the lower bay showed strongly stratified conditions. This behavior suggested that the inflow of coastal water into the lower bay and the wind mixing related to Felix combined to produce a vertically uniform density gradient perpendicular to the bay entrance that relaxed after the winds weakened. This weakening of the winds coincided with neap tidal currents, which were not energetic enough to maintain vertical homogeneity and must have allowed the self-adjustment of the density gradient and the seaward advection of relatively buoyant waters near the surface. These mechanisms were illustrated with simplified numerical experiments. The findings of this study are used to propose the hypothesis that, in general, enhanced stratification and flushing in the lower bay will ensue the relaxation of a northeasterly wind event, provided that this relaxation coincides with a weak friction regime, i.e., neap tides.

  2. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    USGS Publications Warehouse

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  3. Modeling the effect of hypoxia on macrobenthos production in the lower Rappahannock River, Chesapeake Bay, USA.

    PubMed

    Sturdivant, Samuel Kersey; Brush, Mark J; Diaz, Robert J

    2013-01-01

    Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass-based model was developed for the lower Rappahannock River, a Bay tributary prone to seasonal hypoxia. Phytoplankton, zooplankton, and macrobenthic state variables were modeled, with a focus on quantitatively constraining the effect of hypoxia on macrobenthic biomass. This was accomplished through regression with Z': a sigmoidal function between macrobenthic biomass and dissolved oxygen concentration, derived using macrobenthic data collected from the Rappahannock River during the summers of 2007 and 2008, and applied to compute hypoxia-induced mortality as a rate process. The model was verified using independent monitoring data collected by the Chesapeake Bay Program. Simulations showed that macrobenthic biomass was strongly linked to dissolved oxygen concentrations, with fluctuations in biomass related to the duration and severity of hypoxia. Our model demonstrated that hypoxia negatively affected macrobenthic biomass, as longer durations of hypoxia and greater hypoxic severity resulted in an increasing loss in biomass. This exercise represents an important contribution to modeling anthropogenically impacted coastal ecosystems, by providing an empirically constrained relationship between hypoxia and macrobenthic biomass, and applying that empirical relationship in a mechanistic model to quantify the effect of the severity, duration, and frequency of hypoxia on benthic biomass dynamics. PMID:24391904

  4. Modeling the Effect of Hypoxia on Macrobenthos Production in the Lower Rappahannock River, Chesapeake Bay, USA

    PubMed Central

    Sturdivant, Samuel Kersey; Brush, Mark J.; Diaz, Robert J.

    2013-01-01

    Hypoxia in Chesapeake Bay has substantially increased in recent decades, with detrimental effects on macrobenthic production; the production of these fauna link energy transfer from primary consumers to epibenthic and demersal predators. As such, the development of accurate predictive models that determine the impact of hypoxia on macrobenthic production is important. A continuous-time, biomass-based model was developed for the lower Rappahannock River, a Bay tributary prone to seasonal hypoxia. Phytoplankton, zooplankton, and macrobenthic state variables were modeled, with a focus on quantitatively constraining the effect of hypoxia on macrobenthic biomass. This was accomplished through regression with Z': a sigmoidal function between macrobenthic biomass and dissolved oxygen concentration, derived using macrobenthic data collected from the Rappahannock River during the summers of 2007 and 2008, and applied to compute hypoxia-induced mortality as a rate process. The model was verified using independent monitoring data collected by the Chesapeake Bay Program. Simulations showed that macrobenthic biomass was strongly linked to dissolved oxygen concentrations, with fluctuations in biomass related to the duration and severity of hypoxia. Our model demonstrated that hypoxia negatively affected macrobenthic biomass, as longer durations of hypoxia and greater hypoxic severity resulted in an increasing loss in biomass. This exercise represents an important contribution to modeling anthropogenically impacted coastal ecosystems, by providing an empirically constrained relationship between hypoxia and macrobenthic biomass, and applying that empirical relationship in a mechanistic model to quantify the effect of the severity, duration, and frequency of hypoxia on benthic biomass dynamics. PMID:24391904

  5. In plain sight: the Chesapeake Bay crater ejecta blanket

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  6. Application of Remote Sensing to the Chesapeake Bay Region. Volume 2: Proceedings

    NASA Technical Reports Server (NTRS)

    Chen, W. T. (Editor); Freas, G. W., Jr. (Editor); Hickman, G. D. (Editor); Pemberton, D. A. (Editor); Wilkerson, T. D. (Editor); Adler, I. (Editor); Laurie, V. J. (Editor)

    1978-01-01

    A conference was held on the application of remote sensing to the Chesapeake Bay region. Copies of the papers, resource contributions, panel discussions, and reports of the working groups are presented.

  7. MARYLAND/VIRGINIA CHESAPEAKE BAY AND TRIBUTARIES MICROZOOPLANKTON COUNT FILES (AND RELATED EVENT FILES)

    EPA Science Inventory

    As part of the Chesapeake Bay Program microzooplankton data has been collected by the Maryland Department of the Environment /Maryland Department of Natural Resources and the Virginia Department of Environmental Quality since July 1984. Maryland Microzooplankton Count Files (and...

  8. MARYLAND/VIRGINIA CHESAPEAKE BAY AND TRIBUTARIES PHYTOPLANKTON TAXONOMIC COUNT FILES (AND RELATED EVENT FILES)

    EPA Science Inventory

    As part of the Chesapeake Bay program Phytoplankton data has been collected by the Maryland Department of the Environment /Maryland Department of Natural Resources and the Virginia Department of Environmental Quality. Available datasets include: 1) Maryland Phytoplankton Taxonom...

  9. 3 CFR 13508 - Executive Order 13508 of May 12, 2009. Chesapeake Bay Protection and Restoration

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... laws, and to protect and restore the health, heritage, natural resources, and social and economic value... Historic Trail, the Chesapeake Bay Gateways and Watertrails Network, and the Star-Spangled Banner...

  10. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    EPA Science Inventory

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  11. 33 CFR 167.203 - In the approaches to Chesapeake Bay: Southern approach.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approaches to Chesapeake Bay: Southern approach. (a) An inbound traffic lane is established between... 36°49.70′ N 75°46.80′ W (b) An outbound traffic lane is established between separation lines...

  12. HANDBOOK: RETROFITTING POTWS FOR PHOSPHORUS REMOVAL IN THE CHESAPEAKE BAY DRAINAGE BASIN

    EPA Science Inventory

    This document assesses the technology, economics, and efficiency of phosphorus removal processes for use in the Chesapeake Bay Drainage basin (CBDB). ince phosphorus removal requirements in the CBDB vary widely with geographic location, this document discusses the feasibility of ...

  13. Monitoring wetland inundation dynamics in response to weather variability in the Chesapeake Bay watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetlands provide a broad range of ecosystem services, including flood control, water purification, groundwater replenishment, and biodiversity support. The provision of these services, which are especially valued in the Chesapeake Bay Watershed, is largely controlled by varying levels of wetness. ...

  14. Identifying Watershed Sediment Sources In The Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Gellis, A. C.; Pavich, M. J.; Landwehr, J. M.; Banks, W. S.; Bierman, P. R.; Reuter, J. M.

    2004-12-01

    Attenuation of light by fine-grained suspended sediment is having an adverse affect on the living resources and habitat of the Chesapeake Bay and its watershed. Different approaches are being used to identify sediment sources at several scales for the Chesapeake Bay watershed. At the subbasin scale (1.0 to 70,200 km 2), U. S. Geological Survey suspended-sediment data from 1985 through 2001 for 35 stations with at least 3 years of record were used to determine subbasin sediment yields. In the Susquehanna River Basin results showed that four streams draining the Conestoga River Basin,(1,220 km 2) which is in the Piedmont, had the highest sediment yields (60.9 to 356 t/km 2/yr). Cosmogenic 10Be provides another method to measure erosion which can be compared to subbasin sediment yields. Two pathways of the cosmogenic radionuclide 10Be, atmospheric and in situ, were used to determine erosion rates in the Susquehanna River Basin (70,200 km 2). Atmospheric 10Be was used to generate erosion indices at 25 subbasins by taking a ratio of 10Be in fluvial sediment exported out of the subbasin against the net atmospheric delivery of 10Be (values >1 = erosion). Examining the relation of in situ10Be concentrations compared to subbasin sediment yield provided an independent method to assess instrumental vs. background erosion rates. Subbasins in equilibrium show a linear relation of instrumental sediment yield to in situ10Be concentrations. Subbasins that deviate from this relation show either export or storage of sediment. Subbasins of the Conestoga River Basin showed departure from this relation, indicating erosion. The Conestoga River Basin drains primarily agricultural land and this land use may be influencing erosion rates and sediment yields. Within Chesapeake Bay subbasins, sediment fingerprinting is being used to determine watershed sources of sediment. Sediment fingerprinting is a technique where potential sediment sources can be characterized using a number of diagnostic

  15. Decision Making: The Chesapeake Bay. An Interdisciplinary Environmental Education Curriculum Unit. Second Edition.

    ERIC Educational Resources Information Center

    Maryland Univ., College Park. Sea Grant Program.

    As the oceans rose due to melting glaciers, the Chesapeake Bay became a crowned valley. The Bay is a biologically rich system in which the success of each species depends on the quality of water in the parts of the Bay used during its life history. With the increase in human population, technological developments associated with industrial…

  16. Draft Genome Sequences for Seven Streptococcus parauberis Isolates from Wild Fish in the Chesapeake Bay.

    PubMed

    Haines, Ashley; Nebergall, Emily; Besong, Elvira; Council, Kimaya; Lambert, Onaysha; Gauthier, David

    2016-01-01

    Streptococcus parauberis is a pathogen of cattle and fish, closely related Streptococcus uberis and Streptococcus iniae We report the genomes of seven S. parauberis strains recovered from striped bass (Morone saxatilis) in the Chesapeake Bay. The availability of these genomes will allow comparative genomic analysis of Chesapeake Bay S. parauberis strains versus S. parauberis cultured from other animal hosts and geographic regions. PMID:27540054

  17. Draft Genome Sequences for Seven Streptococcus parauberis Isolates from Wild Fish in the Chesapeake Bay

    PubMed Central

    Nebergall, Emily; Besong, Elvira; Council, Kimaya; Lambert, Onaysha; Gauthier, David

    2016-01-01

    Streptococcus parauberis is a pathogen of cattle and fish, closely related Streptococcus uberis and Streptococcus iniae. We report the genomes of seven S. parauberis strains recovered from striped bass (Morone saxatilis) in the Chesapeake Bay. The availability of these genomes will allow comparative genomic analysis of Chesapeake Bay S. parauberis strains versus S. parauberis cultured from other animal hosts and geographic regions. PMID:27540054

  18. Nitrate export from forested watersheds in the Chesapeake Bay Region, USA

    SciTech Connect

    Bricker, O.P.; Kuebler, A.; Rice, K.C.; Anderson, R.T.; Kennedy, M.M.

    1994-12-31

    Current levels of nitrogen inputs to the Chesapeake Bay exceed the ecological demand, resulting in eutrophication and algal blooms which degrade water quality. The Chesapeake Bay receives nitrogen compounds from a variety of sources. Previously, much attention had been focused on point source contributions such as sewage treatment plants and industrial discharges. More recently, however, inputs from atmospheric deposition and non-point sources have been considered. Land use practices vary widely within the Chesapeake Bay watershed, however, the largest portion is forested. Given that forested watersheds occupy a large area of the Chesapeake Bay drainage system, export of nitrogen from forested watersheds could potentially play an important role in the nitrogen balance. Here, examine the nitrate input/output budgets for eight forested headwater watersheds in the Chesapeake Bay drainage, several of which have a 10-year record of chemical data. The authors explore annual and seasonal input/output budgets for these watersheds and, at several sites, define the variability in nitrate export during episodic events Seasonal and episodic information on nitrate export may be useful to watershed managers in designing and applying techniques for minimizing nitrate export from these systems. Comparison of the behavior of nitrate in these systems, and with forested watersheds in other regions across a deposition gradient, will help to elucidate the factors that control nitrate export from forested watersheds. This information will better define the expected nitrate exports from forested watersheds and contribute to improving the confidence limits of models of nutrient loading to the Chesapeake Bay.

  19. Water color and circulation southern Chesapeake Bay, part 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. M.; Gordon, H. H.

    1975-01-01

    Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.

  20. Coordinated Field Campaigns in Chesapeake Bay and Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Novak, Michael; Tzortziou, Maria A.

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). Two GEO-CAPE-sponsored multi-investigator ship-based field campaigns were conducted to coincide with the NASA Earth Venture Suborbital project DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaigns: (1) Chesapeake Bay in July 2011 and (2) northwestern Gulf of Mexico in September 2013. Goal: to evaluate whether GEO-CAPE coastal mission measurement and instrument requirements are optimized to address science objectives while minimizing ocean color satellite sensor complexity, size and cost - critical mission risk reduction activities. NASA continues to support science studies related to the analysis of data collected as part of these coordinated field campaigns and smaller efforts.

  1. Catastrophic anoxia in the Chesapeake Bay in 1984

    SciTech Connect

    Seliger, H.H.; Boggs, J.A.; Biggley, W.H.

    1985-04-05

    In 1984, four climatic sequences combined to produce what may be a major anoxic catastrophe in the northern Chesapeake Bay, sufficient to severely threaten the major benthic species. These sequences are (1) the highest late-winter streamflow on record from the Susquehanna River watershed; (2) streamflows from the Susquehanna River for the consecutive months of June, July, and August that are higher by 2 standard deviations than the respective monthly mean values measured over the last 34 years; (3) a stationary high in August off the Atlantic Coast; and (4) an absence of strong storm events in summer. An empirical equation is proposed for the prediction of the monthly trend of dissolved oxygen decrease in terms of a temperature-dependent subpycnoclinal respiration and a modified estuarine Richardson number. As of 23 August 1984, the summer pycnocline of the northern bay had eroded upward from its historically recorded depth below 10 meters to an abnormally shallow 5 meters, with higher stratification than in earlier years. Dissolved oxygen concentrations directly below the pycnocline decreased to zero during June, 2 months earlier than for previous wet years. At present, oxygen-deficient waters containing significant concentrations of hydrogen sulfide have penetrated into Eastern Bay and the Choptank and Potomac rivers. Because most remaining shellfish-spawning and seed-bed areas in these tributaries are located at depths between 4 and 8 meters, the continued absence of major destratifying events will prolong the present anoxic trend and may result in high benthic mortalities. 11 references, 2 figures.

  2. Catastrophic anoxia in the chesapeake bay in 1984.

    PubMed

    Seliger, H H; Boggs, J A; Biggley, W H

    1985-04-01

    In 1984, four climatic sequences combined to produce what may be a major anoxic catastrophe in the northern Chesapeake Bay, sufficient to severely threaten the major benthic species. These sequences are (i) the highest late-winter streamflow on record from the Susquehanna River watershed; (ii) streamflows from the Susquehanna River for the consecutive months of June, July, and August that are higher by 2 standard deviations than the respective monthly mean values measured over the last 34 years; (iii) a stationary high in August off the Atlantic Coast; and (iv) an absence of strong storm events in summer. An empirical equation is proposed for the prediction of the monthly trend of dissolved oxygen decrease in terms of a temperature-dependent subpycnoclinal respiration and a modified estuarine Richardson number. As of 23 August 1984, the summer pycnocline of the northern bay had eroded upward from its historically recorded depth below 10 meters to an abnormally shallow 5 meters, with higher stratification than in earlier years. Dissolved oxygen concentrations directly below the pycnocline decreased to zero during June, 2 months earlier than for previous wet years. At present, oxygen-deficient waters containing significant concentrations of hydrogen sulfide have penetrated into Eastern Bay and the Choptank and Potomac rivers. Because most remaining shellfish-spawning and seed-bed areas in these tributaries are located at depths between 4 and 8 meters, the continued absence of major destratifying events will prolong the present anoxic trend and may result in high benthic mortalities. PMID:17811570

  3. Estimating effective longitudinal dispersion in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Austin, Jay A.

    2004-07-01

    An analysis of Environmental Protection Agency's Chesapeake Bay Program hydrographic dataset shows that the bay responds coherently to variability in freshwater flux. Mean salinity and salinity stratification both respond to variability in freshwater flux on time scales of roughly 90 days. Stratification is also influenced by local wind forcing but on much shorter (4-5 day) time scales. The volume of available data allows the effective longitudinal dispersion coefficient to be estimated as a function of either time or space. Values for this dispersion coefficient vary between 200 and 1000 m 2 s -1, with mean values around 650 m 2 s -1. The spatially dependent structure has a maximum roughly 75 km from the head of the estuary, and decreases gradually towards the mouth. The temporally varying effective dispersion varies spatially as the inverse of the estuarine cross-section, and temporally as the cube root of the freshwater flux, and is at least qualitatively consistent with models of estuarine circulation and results of previous field studies. Estimates of the numerical values of the dispersion are useful for better understanding distributions of other tracers within the bay, as well as providing another metric against which numerical models should be measured.

  4. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    PubMed

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. PMID:24820033

  5. An evaluation of the utilization of remote sensing in resource and environmental management of the Chesapeake Bay region

    NASA Technical Reports Server (NTRS)

    Fuller, D. B.; Harmon, D. M.; Fuller, K. B.

    1976-01-01

    A nine-month study was conducted to assess the effectiveness of the NASA Wallops Chesapeake Bay Ecological Program in remote sensing. The study consisted of a follow-up investigation and information analysis of actual cases in which remote sensing was utilized by management and research personnel in the Chesapeake Bay region. The study concludes that the NASA Wallops Chesapeake Bay Ecological Program is effective, both in terms of costs and performance.

  6. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    PubMed

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-01

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use. PMID:25938877

  7. Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed

    SciTech Connect

    Hall, L.W. Jr.; Scott, M.C.; Killen, W.D.

    1998-06-01

    This ecological risk assessment was designed to characterize risk of copper and cadmium exposure in the Chesapeake Bay watershed by comparing the probability distributions of environmental exposure concentrations with the probability distributions of species response data determined from laboratory studies. The overlap of these distributions was a measure of risk to aquatic life. Dissolved copper and cadmium exposure data were available from six primary data sources covering 102 stations in 18 basins in the Chesapeake Bay watershed from 1985 through 1996. Highest environmental concentrations of copper (based on 90th percentiles) were reported in the Chesapeake and Delaware (C and D) Canal, Choptank River, Middle River, and Potomac River; the lowest concentrations of copper were reported in the lower and middle mainstem Chesapeake Bay and Nanticoke River. Based on the calculation of 90th percentiles, cadmium concentrations were highest in the C and D Canal, Potomac River, Upper Chesapeake Bay, and West Chesapeake watershed. Lowest environmental concentrations of cadmium were reported in the lower and middle mainstem Chesapeake Bay and Susquehanna River. The ecological effects data used for this risk assessment were derived primarily from acute copper and cadmium laboratory toxicity tests conducted in both fresh water and salt water; chronic data were much more limited. The 10th percentile (concentration protecting 90% of the species) for all species derived from the freshwater acute copper toxicity database was 8.3 {micro}g/L. For acute saltwater copper data, the 10th percentile for all species was 6.3 {micro}g/L copper. The acute 10th percentile for all saltwater species was 31.7 {micro}g/L cadmium. Highest potential ecological risk from copper exposures was reported in the C and D Canal area of the northern Chesapeake Bay watershed.

  8. Structure, age and origin of the bay-mouth shoal deposits, Chesapeake Bay, Virginia

    USGS Publications Warehouse

    Colman, Steven M.; Berquist, C.R., Jr.; Hobbs, C. H., III

    1988-01-01

    The mouth of Chesapeake Bay contains a distinctive shoal complex and related deposits that result from the complex interaction of three different processes: (1) progradation of a barrier spit at the southern end of the Delmarva Peninsula, (2) strong, reversing tidal currents that transport and rework sediment brought to the bay mouth from the north, and (3) landward (bayward) net non-tidal circulation and sediment transport. Together, these processes play a major role in changing the configuration of the estuary and filling it with sediment. The deposits at the mouth of the bay hold keys both to the evolution of the bay during the Holocene transgression and to the history of previous generations of the bay. The deposit associated with the shoals at the mouth of the bay, the bay-mouth sand, is a distinct stratigraphic unit composed mostly of uniform, gray, fine sand. The position and internal structure of the unit shows that it is related to near-present sea level, and thus is less than a few thousand years old. The processes affecting the upper surface of the deposit and the patterns of erosion and deposition at this surface are complex, but the geometry and structure of the deposit indicate that it is a coherent unit that is prograding bayward and tending to fill the estuary. The source of the bay-mouth sand is primarily outside the bay in the nearshore zone of the Delmarva Peninsula and on the inner continental shelf. The internal structure of the deposit, its surface morphology, its heavy-mineral composition, bottom-current studies, comparative bathymetry, and sediment budgets all suggest that sand is brought to the bay mouth by southerly longshore drift along the Delmarva Peninsula and then swept into the bay. In addition to building the southward- and bayward-prograding bay-mouth sand, these processes result in sand deposition tens of kilometers into the bay. ?? 1988.

  9. Conceptual Design of a Chesapeake Bay Environmental Observatory (CBEO)

    NASA Astrophysics Data System (ADS)

    Ball, W. P.; di Toro, D.; Gross, T. F.; Kemp, W. M.; Burns, R.; Piasecki, M.; Zaslavsky, I.; Cuker, B. E.; Murray, L.

    2006-12-01

    A new project is underway to develop and deploy a Chesapeake Bay Environmental Observatory (CBEO), which is intended to serve as a prototype of cyberinfrastructure (CI) for environmental observatory networks (EONs) that will demonstrate the transformative power of CI. The CBEO will be developed by a team of highly qualified computer scientists, ecologists, oceanographers and environmental engineers with a track record of working together on environmental observatory projects and complex cross-discipline research efforts. The project approach has been organized around the following four concurrent interacting elements, which follow the acronym "NETS": (1) The CBEO:N group will incorporate the test bed CI into the national EONs by constructing a GEON-based node for the CBEO. This will entail resolving complex cross-disciplinary issues of semantics, syntax and inter- operability as well as developing new shared CI tools for data assimilation and interpolation. (2) CBEO:E is the education element and will use the CBEO to translate observational science for public consumption. Direct participation of multicultural students and a K-12 teacher are planned. The test-bed and network components (described below and above) will provide the focus of five workshops for users, managers and science educators; (3) Prior to full integration via CBEO:N, CBEO:T will rapidly construct a locally accessible CBEO test-bed prototype that will integrate a subset of currently available large data sets characterized by multiple variables and widely disparate time and space scales ? grab and continuous sampling at fixed stations, undulating towed sensors, and satellite and aircraft remote sensing. A novel feature will be the inclusion of the fifteen year (1986-2000) simulated data from the Bay-wide fine spatial (1-10 km) and temporal (0.02-1 hr) scale hydrodynamic and water quality model. CBEO:T will serve initially as the development platform for data integration, interpolation, and

  10. Lagrangian circulation study near Cape Henry, Virginia. [Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1981-01-01

    A study of the circulation near Cape Henry, Virginia, was made using surface and seabed drifters and radar tracked surface buoys coupled to subsurface drag plates. Drifter releases were conducted on a line normal to the beach just south of Cape Henry. Surface drifter recoveries were few; wind effects were strongly noted. Seabed drifter recoveries all exhibited onshore motion into Chesapeake Bay. Strong winds also affected seabed recoveries, tending to move them farther before recovery. Buoy trajectories in the vicinity of Cape Henry appeared to be of an irrotational nature, showing a clockwise rotary tide motion. Nearest the cape, the buoy motion elongated to almost parallel depth contours around the cape. Buoy motion under the action of strong winds showed that currents to at least the depth of the drag plates substantially are altered from those of low wind conditions near the Bay mouth. Only partial evidence could be found to support the presence of a clockwise nontidal eddy at Virginia Beach, south of Cape Henry.

  11. Comments on recent canvasback habitat trends and threats on Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.

    1976-01-01

    During the last 22 years, the North American winter population of canvasbacks has fluctuated from 481,000 in 1955 to 179,000 in 1972. The Chesapeake Bay population has averaged 33 percent of the North American population and 64 percent of the Atlantic Flyway population. In Maryland, significant annual fluctuations have been recorded between the eastern and western shore of Chesapeake Bay. In 1968, 11 percent of the Bay canvasbacks were on the western shore, whereas in 1971, 87 percent of the birds wintered in this area. This increase in 1971 is believed to be in response to large populations of small Rangia cuneata clams. I n recent years, mortality of small clams and reduced spawning have resulted in a larger size class for Rangia making them less desirable as a waterfowl food. Canvasback populations in 1975 and 1976 were more dispersed in Chesapeake Bay when the predominant food of canvasbacks was Macoma balthica. In the last 5 years, the number of canvasbacks wintering in Chesapeake Bay has declined slightly, while the North American and Atlantic Flyway populations have increased. Increases have been noted in New Jersey and North Carolina. This trend may indicate that the quality of canvasback habitat in Chesapeake Bay is declining at a faster rate than other areas along the Atlantic coast.

  12. Watershed nutrient inputs, phytoplankton accumulation, and C stocks in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Fisher, T. R.; Boynton, W. R.; Hagy, J. D.

    2002-12-01

    Inputs of N and P to Chesapeake Bay have been enhanced by anthropogenic activities. Fertilizers, urbanization, N emissions, and industrial effluents contribute to point and diffuse sources currently 2-7X higher for P and 5-20X higher for N than those from undisturbed watersheds. Enhanced nutrient inputs cause phytoplankton blooms which obscure visibility, eliminate submerged grasses, and influence the distribution of C within the Bay. Accumulations of dissolved organic and particulate organic C lead to enhanced microbial respiration in isolated bottom waters, and dissolved oxygen is seasonally reduced to trace levels during summer. Cultural eutrophication is not unique to Chesapeake Bay. Although some estuaries such as the Delaware, Hudson, and San Francisco Bay also have high anthropogenic inputs, these estuaries have much shorter residence times, and much of the N and P may be exported to the coastal ocean. However, in Chesapeake Bay, with residence times >2 months, internal processing of watershed inputs results in local algal blooms within the estuary. Watershed restoration strategies for Chesapeake watersheds have had limited success to date. Groundwaters are enriched with nitrate, and the long residence times of groundwaters mean slow responses to watershed improvements. The few successes in the Chesapeake have been associated with point source reductions, although continued human population growth can easily override restoration efforts. Widespread improvement in water quality has yet to occur, but the limited successes show that the Bay responds to load changes.

  13. Dynamics of the Chesapeake Bay outflow plume: Realistic plume simulation and its seasonal and interannual variability

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Xia, Meng

    2016-02-01

    The three-dimensional unstructured-grid Finite Volume Coastal Ocean Model (FVCOM) was implemented for Chesapeake Bay and its adjacent coastal ocean to delineate the realistic Chesapeake Bay outflow plume (CBOP) as well as its seasonal and interannual variability. Applying the appropriate horizontal and vertical resolution, the model exhibited relatively high skill in matching the observational water level, temperature, and salinity from 2003 to 2012. The simulated surface plume structure was verified by comparing output to the HF radar current measurements, earlier field observations, and the MODIS and AVHRR satellite imagery. According to the orientation, shape, and size of the CBOP from both model snapshots and satellite images, five types of real-time plume behavior were detected, which implied strong regulation by wind and river discharge. In addition to the episodic plume modulation, horizontal and vertical structure of the CBOP exhibited variations on seasonal and interannual temporal scales. Seasonally, river discharge with a 1 month lag was primarily responsible for the surface plume area variation, while the plume thickness was mainly correlated to wind magnitude. On the interannual scale, river discharge was the predominant source of variability in both surface plume area and depth; however, the southerly winds also influenced the offshore plume depth. In addition, large-scale climate variability, such as the North Atlantic Oscillation, could potentially affect the plume signature in the long term by altering wind and upwelling dynamics, underlining the need to understand the impacts of climate change on buoyant plumes, such as the CBOP.

  14. Selected data for sediment cores collected in Chesapeake Bay in 1996 and 1998

    USGS Publications Warehouse

    Baucom, P.C.; Bratton, J.F.; Colman, Steven M.; Moore, Johnnie N.; King, John W.; Seal, Chip; Seal, R.R., II

    2001-01-01

    As part of a study of recent history of the Chesapeake Bay ecosystem, one- to eight- meter long sediment cores were obtained from the mesohaline section of the Chesapeake Bay between the mouths of the Potomac and Rhode Rivers. The sediments consist of three lithofacies: coarse-grained channel deposits, restricted-estuary sands and muds, and open-estuary muds. Water content, biogenic silica, magnetic susceptibility, trace metals, and nutrients (carbon, nitrogen, and their isotopes) were measured in the cores. Biogenic silica, trace-metal, and nutrient data provide a strong basis for discussing past primary productivity and water-column anoxia in the bay.

  15. Decision Making/The Chesapeake Bay. An Interdisciplinary Environmental Education Curriculum Unit.

    ERIC Educational Resources Information Center

    Maryland Univ., College Park. Science Teaching Center.

    This multidisciplinary, self-contained curriculum unit focuses on the management of the Chesapeake Bay, a threatened and complex environmental system. Major unit goals include identifying and analyzing conflicting interests, issues, and public policies concerning the Bay, and determining their effects on people and the environment. The unit…

  16. 75 FR 14152 - Executive Order 13508; Chesapeake Bay Protection and Restoration Section 502; Guidance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ...-effective tools and practices that reduce water pollution and requests public comment. The document was... Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099, May 15, 2009), requires the... Chesapeake Bay watershed describing proven, cost-effective tools and practices that reduce water...

  17. Chesapeake bay goal line 2025: Opportunities for enhancing agricultural conservation conference report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Total Maximum Daily Load (TMDL) for the Chesapeake Bay and its tributaries has been developed by the Environmental Protection Agency (EPA) and has led sub-watershed managers within the Bay watershed to develop Watershed Improvement Plans (WIPs). The goals of the WIPs are to delineate nutrient a...

  18. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay.

    PubMed

    Joshi, Sunendra R; Kukkadapu, Ravi K; Burdige, David J; Bowden, Mark E; Sparks, Donald L; Jaisi, Deb P

    2015-05-19

    Chesapeake Bay, the largest and most productive estuary in the U.S., suffers from varying degrees of water quality issues fueled by both point and nonpoint nutrient sources. Restoration of the Bay is complicated by the multitude of nutrient sources, their variable inputs, and complex interaction between imported and regenerated nutrients. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics provides information useful in identifying the exchange of dissolved constituents across the sediment-water interface as well as helps to better constrain the mechanisms and processes controlling the coupling between sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ(18)O(P)) in concert with sediment chemistry, X-ray diffraction, and Mössbauer spectroscopy on sediments retrieved from an organic rich, sulfidic site in the mesohaline portion of the mid-Bay to identify sources and pathway of sedimentary P cycling and to infer potential feedbacks on bottom water hypoxia and surface water eutrophication. Authigenic phosphate isotope data suggest that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-Bay sediments. This indicates that the excess inorganic P generated by remineralization should have overwhelmed any pore water and/or bottom water because only a fraction of this precipitates as authigenic P. This is the first research that identifies the predominance of remineralization pathway and recycling of P within the Chesapeake Bay. Therefore, these results have significant implications on the current understanding of sediment P cycling and P exchange across the sediment-water interface in the Bay, particularly in terms of the sources and pathways of P that sustain hypoxia

  19. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    SciTech Connect

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  20. Islands at bay: Rising seas, eroding islands, and waterbird habitat loss in Chesapeake Bay (USA)

    USGS Publications Warehouse

    Erwin, R.M.; Brinker, D.F.; Watts, B.D.; Costanzo, G.R.; Morton, D.D.

    2011-01-01

    Like many resources in the Chesapeake Bay region of the U. S., many waterbird nesting populations have suffered over the past three to four decades. In this study, historic information for the entire Bay and recent results from the Tangier Sound region were evaluated to illustrate patterns of island erosion and habitat loss for 19 breeding species of waterbirds. Aerial imagery and field data collected in the nesting season were the primary sources of data. From 1993/1994 to 2007/2008, a group of 15 islands in Tangier Sound, Virginia were reduced by 21% in area, as most of their small dunes and associated vegetation and forest cover were lost to increased washovers. Concurrently, nesting American black ducks (Anas rubripes) declined by 66%, wading birds (herons-egrets) by 51%, gulls by 72%, common terns (Sterna hirundo) by 96% and black skimmers (Rynchops niger) by about 70% in this complex. The declines noted at the larger Bay-wide scale suggest that this study area maybe symptomatic of a systemic limitation of nesting habitat for these species. The island losses noted in the Chesapeake have also been noted in other Atlantic U. S. coastal states. Stabilization and/or restoration of at least some of the rapidly eroding islands at key coastal areas are critical to help sustain waterbird communities. ?? 2010 US Government.

  1. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. 334.190 Section 334.190 Navigation and Navigable Waters CORPS OF ENGINEERS... Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. (a) The areas—(1) Prohibited area....

  2. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. 334.190 Section 334.190 Navigation and Navigable Waters CORPS OF ENGINEERS... Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. (a) The areas—(1) Prohibited area....

  3. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. 334.190 Section 334.190 Navigation and Navigable Waters CORPS OF ENGINEERS... Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. (a) The areas—(1) Prohibited area....

  4. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. 334.190 Section 334.190 Navigation and Navigable Waters CORPS OF ENGINEERS... Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. (a) The areas—(1) Prohibited area....

  5. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. 334.190 Section 334.190 Navigation and Navigable Waters CORPS OF ENGINEERS... Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy. (a) The areas—(1) Prohibited area....

  6. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineers also has regulations dealing with this section in 33 CFR Part 207. ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

  7. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineers also has regulations dealing with this section in 33 CFR Part 207. ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

  8. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineers also has regulations dealing with this section in 33 CFR Part 207. ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

  9. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  10. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  11. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  12. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  13. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  14. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  15. 33 CFR 334.380 - Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Dam Neck, Virginia; naval firing range. 334.380 Section 334.380 Navigation and... RESTRICTED AREA REGULATIONS § 334.380 Atlantic Ocean south of entrance to Chesapeake Bay off Dam...

  16. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  17. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  18. 33 CFR 334.400 - Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean south of entrance to Chesapeake Bay off Camp Pendleton, Virginia; naval restricted area. 334.400 Section 334.400... AND RESTRICTED AREA REGULATIONS § 334.400 Atlantic Ocean south of entrance to Chesapeake Bay off...

  19. 33 CFR 334.370 - Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. 334.370 Section 334.370 Navigation and Navigable Waters CORPS... REGULATIONS § 334.370 Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base....

  20. 33 CFR 334.370 - Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. 334.370 Section 334.370 Navigation and Navigable Waters CORPS... REGULATIONS § 334.370 Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base....

  1. 33 CFR 334.370 - Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base. 334.370 Section 334.370 Navigation and Navigable Waters CORPS... REGULATIONS § 334.370 Chesapeake Bay, Lynnhaven Roads; danger zones, U.S. Naval Amphibious Base....

  2. HYPOXIA IN CHESAPEAKE BAY, 1950-2001: LONG-TERM CHANGE IN RELATION TO NUTRIENT LOADING AND RIVER FLOW

    EPA Science Inventory

    A 52-yr record of dissolved oxygen in Chesapeake Bay (1950 to 2001) and a record of nitrate (NO3-) loading by the Susquehanna River spanning a longer period (1903, 1945 to 2001) were assembled to describe the long-term pattern of hypoxia and anoxia in Chesapeake Bay an...

  3. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south......

  4. Oyster Reef Communities in the Chesapeake Bay. Virginia Institute of Marine Science Educational Series. [CD-ROM].

    ERIC Educational Resources Information Center

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This CD-ROM, Oyster Reef Communities in the Chesapeake Bay, describes oyster reefs, reef communities, and their roles in the Chesapeake Bay ecosystem. Detailed descriptions of scientific research methods and techniques used to monitor and describe oyster reef communities as well as applications of the resulting data are provided. The CD-ROM was…

  5. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida....

  6. Food habits and distribution of wintering canvasbacks, Aythya valisineria, on Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Uhler, F.M.

    1988-01-01

    Baltic clams (Macoma balthica) were the predominant food items of 323 canvasbacks (Aythya valisineria) collected throughout Chesapeake Bay during 1970-1979. Natural vegetation constituted 4% of the food volume. Widgeongrass (Ruppia maritima) and redhead grass (Potamogeton perfoliatus) constituted the greatest percent volume and frequency of occurrence among the plant species, whereas wild celery (Vallisneria americana) constituted only a trace of the food volume. These results contrast with historical records of food habits of canvasbacks in Chesapeake Bay. Canvasback population estimates during the 1970?s were examined to detect annual and seasonal changes in distribution. Linear regression analyses of winter canvasback populations in the bay showed a significant decline in the upper-bay and middle-bay populations, but no significant changes in the lower-bay and Potomac River populations. The changes in winter distribution and abundance of the canvasback appear related to changes in natural food availability, which is the result of altered environmental conditions.

  7. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    PubMed Central

    Harding, Jr., Lawrence W.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-01-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries. PMID:27026279

  8. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter.

    PubMed

    Xu, Yongle; Jiao, Nianzhi; Chen, Feng

    2015-08-01

    Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria. PMID:26986796

  9. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay.

    PubMed

    Harding, Lawrence W; Mallonee, Michael E; Perry, Elgin S; Miller, W David; Adolf, Jason E; Gallegos, Charles L; Paerl, Hans W

    2016-01-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km(2) watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945-1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981-2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries. PMID:27026279

  10. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Harding, Lawrence W., Jr.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.

    2016-03-01

    Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.

  11. Black Ducks and Their Chesapeake Bay Habitats: Proceedings of a Symposium

    USGS Publications Warehouse

    Perry, Matthew C., (Edited By)

    2002-01-01

    The symposium 'Black Ducks and Their Chesapeake Bay Habitats,' held October 4,2000, provided a forum for scientists to share research about the American black duck (Anas rubripes), an important breeding and wintering waterfowl species dependent upon the Chesapeake Bay habitats. American black ducks have declined significantly in the last 50 years and continue to be a species of management concern. The symposium, sponsored by the Wildfowl Trust of North America and the U.S. Geological Survey, highlighted papers and posters on a range of topics, from the traditional concerns of hunting, habitat, and hybridization to the more recent concerns of human disturbance and neophobia. Other presentations provided a historical perspective of black duck management. The direction that black duck conservation initiatives could and/or should take in the future was also discussed. As populations of humans in the Chesapeake Bay region continue to increase, we can expect that these subjects will receive increased discussion in the future.

  12. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-11-01

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  13. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    USGS Publications Warehouse

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-01-01

    High salinity groundwater more than 1000 metres deep in the Atlantic Coastal Plain of the United States has been documented in several locations1,2, most recently within the 35 million-year-old Chesapeake Bay impact crater3,4,5. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution6, osmosis6, and evaporation from heating7 associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) seawater. We find that the seawater is likely 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern seawater and consistent with the nearly closed ECNA basin8. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and paleontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient seawater in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA seawater persist in deep sediments at many locations along the Atlantic margin.

  14. Hydrogen isotopes in individual alkenones from the Chesapeake Bay estuary

    NASA Astrophysics Data System (ADS)

    Schwab, Valérie F.; Sachs, Julian P.

    2011-12-01

    Hydrogen isotope ratios of individual alkenones from haptophyte algae were measured in suspended particles and surface sediment from the Chesapeake Bay (CB) estuary, eastern USA, in order to determine their relationship to water δD values and salinity. δD values of four alkenones (MeC 37:2, MeC 37:3, EtC 38:2, EtC 38:3) from particles and sediments were between -165‰ and -221‰ and increased linearly ( R2 = 0.7-0.9) with water δD values from the head to the mouth of the Bay. Individual alkenones were depleted in deuterium by 156-188‰ relative to water. The MeC 37 alkenones were consistently enriched by ˜12‰ relative to the EtC 38 alkenones, and the di-unsaturated alkenones of both varieties were consistently enriched by ˜20‰ relative to the tri-unsaturated alkenones. All of the increase in alkenone δD values could be accounted for by the water δD increase. Consequently, no net change in alkenone-water D/ H fractionation occurred as a result of the salinity increase from 10 to 29. This observation is at odds with results from culture studies with alkenone-producing marine coccolithophorids, and from two field studies, one with a dinoflagellate sterol in the CB, and one with a wide variety of lipids in saline ponds on Christmas Island, that indicate a decline in D/ H fractionation with increasing salinity. Why D/ H fractionation in alkenones in the CB showed no dependence on salinity, while D/ H fractionation in CB dinsoterol decreased by 1‰ per unit increase in salinity remains to be determined. Two hypotheses we consider to be valid are that (i) the assemblage of alkenone-producing haptophytes changes along the Bay and each species has a different sensitivity to salinity, such that no apparent trend in αalkenone-water occurs along the salinity gradient, and (ii) greater osmoregulation capacity in coastal haptophytes may result in a diminished sensitivity of alkenone-water D/ H fractionation to salinity changes.

  15. Assessing the fate of dredged sediments placed in open-water sites, Northern Chesapeake Bay

    USGS Publications Warehouse

    Halka, Jeffrey; Panageotou, William; Sanford, Lawrence; Yu-Chou, Shenn

    1994-01-01

    An integrated series of field studies and experiments have been carried out on dredged sediments placed in open water sites in Northern Chesapeake Bay. The studies include: (1) examination of the potential for fluidized sediment flow, (2) quantifying the volumetric changes that the sediments undergo during dredging process and subsequent to deposition, (3) estimating parameters for cohesive sediment erosion models from field data on currents and suspended sediment concentrations, and (4) incorporating the erosion model parameters and sediment transport equation into a 3-D hydrodynamic model for the upper Chesapeake Bay to predict transport directions and setting sites of eroded sediments under a variety of seasonal weather and river flow conditions.

  16. Ancient channels of the Susquehanna River beneath Chesapeake Bay and the Delmarva Peninsula

    USGS Publications Warehouse

    Colman, Steven M.; Halka, J.P.; Hobbs, C. H., III; Mixon, R.B.; Foster, D.S.

    1990-01-01

    The trunk channels of each system are 2 to 4 km wide and are incised 30 to 50 m into underlying strata; they have irregular longitudinal profiles and very low gradients within the Chesapeake Bay area. The youngest paleochannel is clearly of late Wisconsinan age, about 18 ka, and the intermediate one appears to be late Illinoian in age, or about 150 ka. The age of the oldest is in the range of about 200 to 400 ka. The three paleochannel systems imply a dynamic coastal-plain environment and at least two previous generations of the Chesapeake Bay. -from Authors

  17. Reproductive health of yellow perch, Perca flavescens, in Chesapeake Bay Tributaries

    USGS Publications Warehouse

    Blazer, Vicki; Pinkney, A.E.; Uphoff, James H.

    2013-01-01

    Yellow perch live in creeks, rivers, ponds, lakes, and estuaries across the central and eastern United States and Canada. In Chesapeake Bay, they tolerate salinities up to one-third that of seawater. The adults reside in the brackish waters of the bay’s tributaries and migrate upstream to spawn. Yellow perch are eagerly sought by recreational fishermen for their excellent taste and, because their late winter spawning runs are the earliest of the year, they are regarded as a harbinger of spring. Yellow perch also support a small but valuable, tightly regulated commercial fishery in the part of Chesapeake Bay that lies in Maryland.

  18. Chesapeake Bay coordinated split sample program annual report, 1990-1991: Analytical methods and quality assurance workgroup of the Chesapeake Bay program monitoring subcommittee

    SciTech Connect

    Not Available

    1991-01-01

    The Chesapeake Bay Program is a federal-state partnership with a goal of restoring the Chesapeake Bay. Its ambient water quality monitoring programs, started in 1984, sample over 150 monitoring stations once or twice a month a month. Due to the size of the Bay watershed (64,000 square miles) and the cooperative nature of the CBP, these monitoring programs involve 10 different analytical laboratories. The Chesapeake Bay Coordinated Split Sample Program (CSSP), initialed in 1988, assesses the comparability of the water quality results from these laboratories. The report summarizes CSSP results for 1990 and 1991, its second and third full years of operation. The CSSP has two main objectives: identifying parameters with low inter-organization agreement, and estimating measurement system variability. The identification of parmeters with low agreement is used as part of the overall Quality Assurance program. Laboratory and program personnel use the information to investigate possible causes of the differences, and take action to increase agreement if possible. Later CSSP results will document any improvements in inter-organization agreement. The variability estimates are most useful to data analysts and modelers who need confidence estimates for monitoring data.

  19. Climate Change and the Evolution and Fate of the Tangier Islands of Chesapeake Bay, USA.

    PubMed

    Schulte, David M; Dridge, Karin M; Hudgins, Mark H

    2015-01-01

    Climate change and associated sea level rise (SLR) are already impacting low-lying coastal areas, including islands, throughout the world. Many of these areas are inhabited, many will need to be abandoned in coming decades as SLR continues. We examine the evolution (1850-2013) of the last inhabited offshore island in Virginia waters of Chesapeake Bay USA, the Tangier Islands. Three SLR scenarios, a low, mid, and high, were considered. Since 1850, 66.75% of the islands landmass has been lost. Under the mid-range SLR scenario, much of the remaining landmass is expected to be lost in the next 50 years and the Town will likely need to be abandoned. The high SLR scenario will accelerate the land loss and subsidence, such that the Town may need to be abandoned in as few as 25 years. We propose a conceptual plan that would significantly extend the lifespan of the islands and Town. PMID:26657975

  20. Climate Change and the Evolution and Fate of the Tangier Islands of Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Schulte, David M.; Dridge, Karin M.; Hudgins, Mark H.

    2015-12-01

    Climate change and associated sea level rise (SLR) are already impacting low-lying coastal areas, including islands, throughout the world. Many of these areas are inhabited, many will need to be abandoned in coming decades as SLR continues. We examine the evolution (1850-2013) of the last inhabited offshore island in Virginia waters of Chesapeake Bay USA, the Tangier Islands. Three SLR scenarios, a low, mid, and high, were considered. Since 1850, 66.75% of the islands landmass has been lost. Under the mid-range SLR scenario, much of the remaining landmass is expected to be lost in the next 50 years and the Town will likely need to be abandoned. The high SLR scenario will accelerate the land loss and subsidence, such that the Town may need to be abandoned in as few as 25 years. We propose a conceptual plan that would significantly extend the lifespan of the islands and Town.

  1. Climate Change and the Evolution and Fate of the Tangier Islands of Chesapeake Bay, USA

    PubMed Central

    Schulte, David M.; Dridge, Karin M.; Hudgins, Mark H.

    2015-01-01

    Climate change and associated sea level rise (SLR) are already impacting low-lying coastal areas, including islands, throughout the world. Many of these areas are inhabited, many will need to be abandoned in coming decades as SLR continues. We examine the evolution (1850-2013) of the last inhabited offshore island in Virginia waters of Chesapeake Bay USA, the Tangier Islands. Three SLR scenarios, a low, mid, and high, were considered. Since 1850, 66.75% of the islands landmass has been lost. Under the mid-range SLR scenario, much of the remaining landmass is expected to be lost in the next 50 years and the Town will likely need to be abandoned. The high SLR scenario will accelerate the land loss and subsidence, such that the Town may need to be abandoned in as few as 25 years. We propose a conceptual plan that would significantly extend the lifespan of the islands and Town. PMID:26657975

  2. Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries

    USGS Publications Warehouse

    Batiuk, R.A.; Breitburg, D.L.; Diaz, R.J.; Cronin, T. M.; Secor, D.H.; Thursby, G.

    2009-01-01

    The Chesapeake 2000 Agreement committed its state and federal signatories to "define the water quality conditions necessary to protect aquatic living resources" in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a result of the above Agreement. This paper summarizes the protection goals and specific criteria intended to achieve those goals for addressing hypoxia. The criteria take into account the variety of Bay habitats and the tendency towards low dissolved oxygen in some areas of the Bay. Stressful dissolved oxygen conditions were characterized for a diverse array of living resources of the Chesapeake Bay by different aquatic habitats: migratory fish spawning and nursery, shallow-water, open-water, deep-water, and deep-channel. The dissolved oxygen criteria derived for each of these habitats are intended to protect against adverse effects on survival, growth, reproduction and behavior. The criteria accommodate both spatial and temporal aspects of low oxygen events, and have been adopted into the Chesapeake Bay states - Maryland, Virginia, and Delaware - and the District of Columbia's water quality standards regulations. These criteria, now in the form of state regulatory standards, are driving an array of land-based and wastewater pollution reduction actions across the six-watershed.

  3. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    USGS Publications Warehouse

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  4. A summary report of sediment processes in Chesapeake Bay and watershed

    USGS Publications Warehouse

    Langland, Michael, (Edited By); Cronin, Thomas

    2003-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded because of diminished water quality, loss of habitat, and over-harvesting of living resources. Consequently, the bay was listed as an impaired water body due to excess nutrients and sediment. The Chesapeake Bay Program (CBP), a multi-jurisdictional partnership, completed an agreement called ?Chesapeake 2000? that revises and establishes new restoration goals through 2010 in the bay and its watershed. The goal of this commitment is the removal of the bay from the list of impaired waterbodies by the year 2010. The CBP is committed to developing sediment and nutrient allocations for major basins within the bay watershed and to the process of examining new and innovative management plans in the estuary itself and along the coastal zones of the bay. However, additional information is required on the sources, transport, and deposition of sediment that affect water clarity. Because the information and data on sediment processes in the bay were not readily accessible to the CBP or to state, and local managers, a Sediment Workgroup (SWGP) was created in 2001. The primary objective of this report, therefore, is to provide a review of the literature on the sources, transport, and delivery of sediment in Chesapeake Bay and its watershed with discussion of potential implications for various management alternatives. The authors of the report have extracted, discussed, and summarized the important aspects of sediment and sedimentation that are most relevant to the CBP and other sediment related-issues with which resources managers are involved. This report summarizes the most relevant studies concerning sediment sources, transport and deposition in the watershed and estuary, sediments and relation to water clarity, and provides an extensive list of references for those wanting more information.

  5. Apparent genetic homogeneity of spawning striped bass in the upper Chesapeak Bay

    SciTech Connect

    Sidell, B.D.; Otto, R.G.; Powers, D.A. Karweit, M.; Smith, J.

    1980-01-01

    The possible existence of genetically distinct populations of spawning striped bass (Morone saxatilis) in the river systems of the upper Chesapeake Bay was investigated by a biochemical genetic approach. Samples of blood and liver from adult fish were obtained during the 1976 spawning runs from the Rappanhannock (Virginia), Potomac, Choptank, Sassafras, Bohemia, and Elk rivers (Maryland), and Maryland waters of the Chesapeake and Delaware Canal. Samples were analyzed for frequency of occurrence of a polymorphic liver enzyme, glycerol-3-phosphate dehydrogenase, and variable serum proteins which were not correlated with age or sex. Multivariate and Bayesian analyses of these data indicate apparent genetic homogeneity of spawning bass within the upper Chesapeake Bay. If natal stream homing occurs, a sufficient number of wanderers may provide significant gene flow among river systems. The results suggest that long-term management of the fishery need not be totally on the basis of separate river units.

  6. Developing Oxidized Nitrogen Atmospheric Deposition Source Attribution from CMAQ for Air-Water Trading for Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Dennis, R. L.; Napelenok, S. L.; Linker, L. C.; Dudek, M.

    2012-12-01

    Estuaries are adversely impacted by excess reactive nitrogen, Nr, from many point and nonpoint sources, including atmospheric deposition to the watershed and the estuary itself as a nonpoint source. For effective mitigation, trading among sources of Nr is being considered. The Chesapeake Bay Program is working to bring air into its trading scheme, which requires some special air computations. Airsheds are much larger than watersheds; thus, wide-spread or national emissions controls are put in place to achieve major reductions in atmospheric Nr deposition. The tributary nitrogen load reductions allocated to the states to meet the TMDL target for Chesapeake Bay are large and not easy to attain via controls on water point and nonpoint sources. It would help the TMDL process to take advantage of air emissions reductions that would occur with State Implementation Plans that go beyond the national air rules put in place to help meet national ambient air quality standards. There are still incremental benefits from these local or state-level controls on atmospheric emissions. The additional air deposition reductions could then be used to offset water quality controls (air-water trading). What is needed is a source to receptor transfer function that connects air emissions from a state to deposition to a tributary. There is a special source attribution version of the Community Multiscale Air Quality model, CMAQ, (termed DDM-3D) that can estimate the fraction of deposition contributed by labeled emissions (labeled by source or region) to the total deposition across space. We use the CMAQ DDM-3D to estimate simplified state-level delta-emissions to delta-atmospheric-deposition transfer coefficients for each major emission source sector within a state, since local air regulations are promulgated at the state level. The CMAQ 4.7.1 calculations are performed at a 12 km grid size over the airshed domain covering Chesapeake Bay for 2020 CAIR emissions. For results, we first present

  7. Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay

    EPA Science Inventory

    The Choptank and Patuxent tributaries of Chesapeake Bay have become eutrophic over the last 50–100 years. Systematic monitoring of nutrient inputs began in ;1970, and there have been 2–5-fold increases in nitrogen (N) and phosphorus (P) inputs during 1970–2004 due to sewage disch...

  8. Chesapeake Bay ecosystem modeling program. Technical synthesis report 1993-94

    SciTech Connect

    Brandt, S.B.; Boynton, W.R.; Kemp, W.M.; Wetzel, R.; Bartleson, R.

    1995-03-01

    ;Contents: Ecosystem models for management; Ecosystem regession models; Patuxent River Sav-Littoral Ecosystem Process Model; Lower Chesapeake Bay Polyhaline Sav Model; Emergent Intertidal Marsh Process Model; Plankton-Benthos Ecosystem Process Model; Fish Bioenergetics Models; Linking Water Quality with Fish Habitat; Data Visualization; Publications and Scientific Presentations Resulting From This Research.

  9. 33 CFR 165.507 - Security Zone; Chesapeake Bay, between Sandy Point and Kent Island, MD.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., between Sandy Point and Kent Island, MD. 165.507 Section 165.507 Navigation and Navigable Waters COAST... Guard District § 165.507 Security Zone; Chesapeake Bay, between Sandy Point and Kent Island, MD. (a... to the eastern shore at Kent Island, Maryland. (c) Regulations. (1) All persons are required...

  10. 33 CFR 165.507 - Security Zone; Chesapeake Bay, between Sandy Point and Kent Island, MD.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., between Sandy Point and Kent Island, MD. 165.507 Section 165.507 Navigation and Navigable Waters COAST... Guard District § 165.507 Security Zone; Chesapeake Bay, between Sandy Point and Kent Island, MD. (a... to the eastern shore at Kent Island, Maryland. (c) Regulations. (1) All persons are required...

  11. 33 CFR 165.507 - Security Zone; Chesapeake Bay, between Sandy Point and Kent Island, MD.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., between Sandy Point and Kent Island, MD. 165.507 Section 165.507 Navigation and Navigable Waters COAST... Guard District § 165.507 Security Zone; Chesapeake Bay, between Sandy Point and Kent Island, MD. (a... to the eastern shore at Kent Island, Maryland. (c) Regulations. (1) All persons are required...

  12. CULTURAL EUTROPHICATION IN THE CHOPTANK AND PATUXENT ESTUARIES OF CHESAPEAKE BAY

    EPA Science Inventory

    The Choptank and Patuxent tributaries of Chesapeake Bay have become eutrophic over the last 50-100 years. Systematic monitoring of nutrient inputs began in ~1970, and there have been 2-5-fold increases in nitrogen (N) and phosphorus (P) inputs during 1970-2004 due to sewage disch...

  13. CLIMATE CHANGE AND EUTROPHICATION RESPONSES IN THE POTOMAC ESTUARY AND CHESAPEAKE BAY

    EPA Science Inventory

    Our analysis of tree ring and sediment core data indicates that climate variability in the 1900s had different consequences in the Potomac Estuary and Chesapeake Bay than in the previous two centuries as a result of anthropogenic activity affecting nutrient loadings in associated...

  14. A SIMPLE MODEL FOR FORECASTING THE EFFECTS OF NITROGEN LOADS ON CHESAPEAKE BAY HYPOXIA

    EPA Science Inventory

    The causes and consequences of oxygen depletion in Chesapeake Bay have been the focus of research, assessment, and policy action over the past several decades. An ongoing scientific re-evaluation of what nutrients load reductions are necessary to meet the water quality goals is ...

  15. ANIMAL-SEDIMENT RELATIONSHIPS OF THE UPPER AND CENTRAL CHESAPEAKE BAY

    EPA Science Inventory

    Fifty-two bottom sediment box core samples were taken in fall 1978 and summer 1979 to investigate the relationship between benthic biota and the sedimentary environment of the upper and central Chesapeake Bay. Examination of the vertical distribution of the benthos and radiograph...

  16. Biofuels for the Bay: Cellulosic Double Crops in the Chesapeake Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For over two decades, technical experts and policy makers have been encouraging the use of cover crops throughout the Chesapeake Bay watershed as a way to reduce nutrient and soil losses and improve water quality. While such practices have been heavily adopted in some regions, the economic incentiv...

  17. ORGANIC COMPOUNDS IN SURFACE SEDIMENTS AND OYSTER TISSUES FROM THE CHESAPEAKE BAY. APPENDICES

    EPA Science Inventory

    Detailed in the first part of this report is a development and discussion of the methodology used to extract and analyze sediment and oyster tissue samples from Chesapeake Bay for organic compounds. The method includes extraction, fractionation, and subsequent analysis using glas...

  18. Suspended particulate matter in the Chesapeake Bay entrance and adjacent shelf waters

    NASA Technical Reports Server (NTRS)

    Gingerich, K. J.; Oertel, G. F.

    1981-01-01

    Approximately 400 samples were collected from the mouth of the Chesapeake Bay for various analyses, including 138 for suspended solids. Characteristics of suspended solids that were analyzed included: total suspended matter; total suspended inorganics, total suspended organics; percent organics; particle size distribution; and presence or absence of 11 of the most prominent particle types.

  19. CHESAPEAKE BAY EARTH SCIENCE STUDY: INTERSTITIAL WATER CHEMISTRY-CHEMICAL ZONATION, TRIBUTARIES STUDY AND TRACE METALS

    EPA Science Inventory

    The sediments of the Chesapeake Bay constitute a large reservoir of chemical species derived from natural and anthropogenic sources. The behavior of these materials in the estuary is determined by the physiochemical sedimentary environments in which they are found. Three major en...

  20. Determining contaminate sources to the Chesapeake Bay and developing mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants and excess nutrients from atmospheric deposition and non-point sources contribute to water quality impairment in the Chesapeake Bay watershed. Assessment of landscape metrics and air and water quality data have provided insight into the fate, delivery, and transport mechanisms of pollu...

  1. INPUTS, TRANSFORMATIONS, AND TRANSPORT OF NITROGEN AND PHOSPHORUS IN CHESAPEAKE BAY AND SELECTED TRIBUTARIES

    EPA Science Inventory

    In this paper we assemble and analyze quantitative annual input-export budgets for total nitrogen (TN) and total phosphorus (TP) for Chesapeake Bay and three of its tributary estuaries (Potomac, Patuxent, and Choptank rivers). he budgets include estimates of TN and TP sources (po...

  2. 75 FR 26226 - Executive Order 13508 Chesapeake Bay Protection and Restoration Section 203 Final Coordinated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... released for public comment on November 9, 2009 (74 FR 57675, November 9, 2009). This final strategy... Order 13508, Chesapeake Bay Protection and Restoration, dated May 12, 2009 (74 FR 23099, May 15, 2009... May 12, 2009 (74 FR 23099, May 15, 2009), required a Federal Leadership Committee composed of...

  3. 33 CFR 334.140 - Chesapeake Bay; U.S. Army Proving Ground Reservation, Aberdeen, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... approximately 9,275 yards S. 51°04′ W. to a point in Chesapeake Bay about 1,700 yards due east from Taylor... Bush River from Pond Point to Chelsea Chimney are closed for fishing purposes. (2) The remainder of the... purposes of water skiing as outlined above) including, but not limited to, swimming, scuba diving, or...

  4. 33 CFR 334.140 - Chesapeake Bay; U.S. Army Proving Ground Reservation, Aberdeen, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... approximately 9,275 yards S. 51°04′ W. to a point in Chesapeake Bay about 1,700 yards due east from Taylor... Bush River from Pond Point to Chelsea Chimney are closed for fishing purposes. (2) The remainder of the... purposes of water skiing as outlined above) including, but not limited to, swimming, scuba diving, or...

  5. 33 CFR 334.140 - Chesapeake Bay; U.S. Army Proving Ground Reservation, Aberdeen, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approximately 9,275 yards S. 51°04′ W. to a point in Chesapeake Bay about 1,700 yards due east from Taylor... Bush River from Pond Point to Chelsea Chimney are closed for fishing purposes. (2) The remainder of the... purposes of water skiing as outlined above) including, but not limited to, swimming, scuba diving, or...

  6. 33 CFR 334.140 - Chesapeake Bay; U.S. Army Proving Ground Reservation, Aberdeen, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... approximately 9,275 yards S. 51°04′ W. to a point in Chesapeake Bay about 1,700 yards due east from Taylor... Bush River from Pond Point to Chelsea Chimney are closed for fishing purposes. (2) The remainder of the... purposes of water skiing as outlined above) including, but not limited to, swimming, scuba diving, or...

  7. An outbreak of fowl cholera in waterfowl on the Chesapeake Bay

    USGS Publications Warehouse

    Locke, L.N.; Stotts, V.; Wolfhard, G.

    1970-01-01

    An outbreak of fowl cholera (Pasteurella multocida infection) occurred in waterfowl wintering on the Chesapeake Bay during February to March 1970. Losses were primarily confined to sea ducks: oldsquaws (Clangula hyemalis), white-winged scoters (Melanitta deglandi), goldeneyes (Bucephala clangula), and buffleheads (Bucephala albeola).

  8. Capture locations and growth rates of Atlantic sturgeon in the Chesapeake Bay

    USGS Publications Warehouse

    Welsh, S.A.; Eyler, S.M.; Mangold, M.F.; Spells, A.J.

    2002-01-01

    Little information exists on temporal and spatial distributions of wild and hatchery-reared Atlantic sturgeon Acipenser oxyrinchus oxyrinchus in the Chesapeake Bay. Approximately 3,300 hatchery-reared Atlantic sturgeon comprised of two size groups were released into the Nanticoke River, a tributary of the Chesapeake Bay, on 8 July 1996. During January 1996-May 2000, 1099 Atlantic sturgeon were captured incidentally (i.e., bycatch) by commercial watermen in the Chesapeake Bay, including 420 hatchery-reared individuals. Wild and hatchery-reared Atlantic sturgeon were captured primarily in pound nets and gill nets. Biologists tagged each fish and recorded weight, length, and location of capture. Although two adults greater than 2000 mm fork length (FL) were captured in Maryland waters, wild sturgeon were primarily juveniles from Maryland and Virginia waters (415 and 259 individuals below 1000 mm FL, respectively). A growth rate of 0.565 mm/d (N = 15, SE = 0.081) was estimated for wild individuals (487-944 mm TL at release) at liberty from 30 to 622 d. The average growth of the group of hatchery-reared Atlantic sturgeon raised at 10??C exceeded that of the group raised at 17??C. Our distributional data based on capture locations are biased by fishery dependence and gear selectivity. These data are informative to managers, however, because commercial effort is widely distributed in the Chesapeake Bay, and little distributional data were available before this study.

  9. ATMOSPHERIC DEPOSITION OF PESTICIDES TO AN AGRICULTURAL WATERSHED OF THE CHESAPEAKE BAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Choptank River watershed, located on the Delmarva Peninsula of the Chesapeake Bay, is dominated by agricultural land use which makes it vulnerable to runoff and atmospheric deposition of pesticides. Agricultural and wildlife areas are in close proximity, and off-site losses of pesticides may co...

  10. 33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Va.; naval firing range. 334.220 Section 334.220 Navigation and Navigable Waters CORPS OF....220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... especially notified to the contrary. (2) All vessels, other than naval craft, are forbidden to anchor...

  11. 33 CFR 334.220 - Chesapeake Bay, south of Tangier Island, Va.; naval firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, Va.; naval firing range. 334.220 Section 334.220 Navigation and Navigable Waters CORPS OF....220 Chesapeake Bay, south of Tangier Island, Va.; naval firing range. (a) The danger zone. Beginning... especially notified to the contrary. (2) All vessels, other than naval craft, are forbidden to anchor...

  12. Comparative productivity of American black ducks and mallards nesting on Chesapeake Bay Islands

    USGS Publications Warehouse

    Krementz, D.G.; Stotts, D.B.; Pendleton, G.W.; Hines, J.E.; Stotts, V.D.

    1992-01-01

    The authors estimated laying dates, clutch sizes, and nest success rates of sympatrically breeding populations of American black ducks (Anas rubripes ) and mallards (Anas platyrhynchos ) on Chesapeake Bay islands between 1986 and 1989. Neither average laying date nor clutch size differed between black ducks and mallards. Nest success rates were higher for mallards in 2 of 4 years, but were area dependent.

  13. 75 FR 53298 - A Method to Assess Climate-Relevant Decisions: Application in the Chesapeake Bay

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... AGENCY A Method to Assess Climate-Relevant Decisions: Application in the Chesapeake Bay AGENCY... 60-day public comment period for the draft document titled, ``A Method to Assess Climate-Relevant... and must be received by EPA by November 1, 2010. ADDRESSES: The draft ``A Method To Assess...

  14. Agricultural Pesticides and Selected Degradation Products in Five Tidal Regions and the Mainstem of Chesapeake Bay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrients, sediment, air pollution, and toxics from the water sources and the surrounding airshed are major problems contributing to poor water quality in many regions of the Chesapeake Bay (CB). Toxics are defined as chemicals that may affect the reproduction, development, and ultimately, the surv...

  15. Predicting thermal regimes of stream networks across the Chesapeake Bay Watershed: Natural and anthropogenic influences

    EPA Science Inventory

    Thermal regimes are a critical factor in models predicting joint effects of watershed management activities and climate change on fish habitat suitability. We have compiled a database of lotic temperature time series across the Chesapeake Bay Watershed (725 station-year combinat...

  16. 75 FR 78667 - Cooperative Conservation Partnership Initiative-Chesapeake Bay Watershed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ...The purpose of this request for proposals is to solicit proposals from potential partner applicants who seek to enter into partnership agreements with the Natural Resources Conservation Service (NRCS) through the Cooperative Conservation Partnership Initiative-- Chesapeake Bay Watershed (CCPI-CBW) in order to provide assistance to producers enrolled in a conservation program. The NRCS is the......

  17. SETTLEMENT AND SURVIVAL OF THE OYSTER CRASSOSTREA VIRGINICA ON CREATED OYSTER REEF HABITATS IN CHESAPEAKE BAY

    EPA Science Inventory

    Efforts to restore the Eastern oyster (Crassostrea virginica) reef habitats in Chesapeake Bay typically begin with the placement of hard substrata to form three-dimensional mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of oyster shell for ...

  18. Effects of power-plant generated contaminants on trophic relationships in Chesapeake Bay

    SciTech Connect

    Sanders, J.G.; Riedel, G.F.; Connell, D.B.

    1997-09-01

    This project tested the hypothesis that shifts in phytoplankton species composition that occur when Chesapeake Bay phytoplankton communities are chronically exposed to low levels of toxic trace metals can lead to altered (reduced) flow of carbon to higher trophic levels of the conventional food web and increased movement of carbon through microbial food chains and degradation pathways.

  19. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    ERIC Educational Resources Information Center

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  20. DATABASE OF THE OCCURENCE AND DISTRIBUTION OF PESTICIDES IN THE CHESAPEAKE BAY

    EPA Science Inventory

    This U.S. Department of Agriculture database provided by the Agricultural Research Service compiled most of the pesticide residue data measured in surface water, surface microlayer, groundwater, sediment, and biota, of Chesapeake Bay from 1976 to 1994. It was prepared to facilita...

  1. Incidence of malaria in a wintering population of canvasbacks (Aythya valisineria) on Chesapeake Bay

    USGS Publications Warehouse

    Kocan, R.M.; Knisley, J.O.

    1970-01-01

    Canvasback ducks wintering on Chesapeake Bay had a 6% incidence of Leucocytozoon sirnondi and 2% incidence of Haemoproteus. Sub-inoculation of whole blood into Pekin ducklings produced a Plasmodium infection rate of 31%. Females were more frequently infected (12/22) than males (15/68). The parasite was identified as P. circumflexum.

  2. Characteristics of total suspended matter and associated hydrocarbon concentration adjacent to the Chesapeake Bay entrance

    NASA Technical Reports Server (NTRS)

    Oertel, G. F.; Wade, T. L.

    1981-01-01

    Methodologies used to determine concentrations of hydrocarbons and associated suspended particulates at stations in and adjacent to the entrance to the Chesapeake Bay are described and the results are presented. Passive and active remote sensing data were acquired in conjunction with sea truth data collection.

  3. Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1980-01-01

    The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.

  4. Wetland restoration and birds: lessons from Florida, San Francisco Bay, and Chesapeake Bay

    USGS Publications Warehouse

    Erwin, R.M.; Frederick, P.C.

    2005-01-01

    Many wetland restoration projects are underway across the North American landscape, ranging from small, community - based projects of less than 1 ha, to thousands of ha, as in San Francisco Bay or the Everglades. The goals of small projects are generally focused on replanting and sustaining native wetland vegetation, while larger projects often incorporate populations of birds and other vertebrates as part of the criteria for 'success.' Here, I use examples from a number of larger restoration projects from Florida, San Francisco Bay, and Chesapeake Bay, to illustrate several major challenges in planning and implementing those parts of the projects that include waterbirds. These include: (1) setting species priorities at the onset of the project, (2) negotiating among various stakeholders the goals that support wetland ecosystem structural elements (i.e. species and communities) versus those more functionally driven, (3) monitoring reproductive and survival parameters, as well as abundance, to avoid 'sink' situations, and (4) rationalizing control measures for opportunistic species that are not part of the restoration plan. Such projects often provide an ideal setting for the application of adaptive management, but long-term data management and oversight are required to ensure that project 'success' (or failure) is not short-term only.

  5. Data Management Solutions for Tracking Restoration Progress in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Ravi, S. R.; Johnston, M.; Sweeney, J.

    2014-12-01

    The decline of the Chesapeake Bay estuarine ecosystem due to agricultural and industrial activities has been a great concern, where excess of dissolved nutrients combined with global climate change has lead to increased storm surges, habitat destruction, and low dissolved oxygen, reduced water clarity, and increased algal growth. In 2010 The US Environmental Protection Agency established the Chesapeake Bay Total Maximum Daily Load (TMDL), which seeks to protect the Bay's living resources by reducing nutrient and sediment runoff to its waters, and sets pollution reduction targets for sediment, nitrogen and phosphorus across 64000 sq. miles watershed that includes parts of six states - Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia — and the entire District of Columbia. The Chesapeake Bay Program and the US EPA have developed a number of tools to track the progress of restoration. In this study we describe data management solutions, which were used in the integration of data such as land use, nutrient applications, management practices, policies among the bay jurisdictions, and a summary of a suite of tools that were developed and are being used to collect, process, and report data at various spatial scales for tracking the progress made by the seven Bay jurisdictions in achieving reductions in nutrient and sediment runoff. The described integration strategy and data management solutions can be used in the development and application of similar regulatory local or regional scale environmental management tools.

  6. Integrated analysis of ecosystem interactions with land use Change: The Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Goetz, Scott J.; Jantz, Claire A.; Prince, Stephen D.; Smith, Andrew J.; Varlyguin, Dmitry; Wright, Robb K.

    The Chesapeake Bay is the largest estuary in the United States, encompassed by a watershed extending 168,000 km2 over portions of six states and Washington, D.C. Restoration of the Bay has been the focus of a two-decade regional partnership of local, state and federal agencies, including a network of scientists, politicians and activists interacting through various committees, working groups, and advisory panels. The effectiveness of the restoration effort has been mixed, with both notable successes and failures. The overall health of the Bay has not declined since the restoration was initiated in 1983, but many of the advances have been offset by the pressure of increasing population and exurban sprawl across the watershed. The needs of the Chesapeake Bay Program are many, but the greatest is accurate information on land cover and land use change, primarily to assess the implications for water quality, examine various restoration scenarios, and calibrate spatial models of the urbanization process. We report here on a number of new land cover and land use data products, and associated applications to assist vulnerability assessment, integrated ecosystem analysis, and ultimately Bay restoration. We provide brief overviews of applications to model new residential development, assess losses and vulnerability of resource lands, and identify the factors that disrupt the health of streams in small watersheds. These data products and approaches are being applied by a number of agencies involved with the restoration effort, including the Chesapeake Bay Program's activities focused on living resources, water quality, and sound land use.

  7. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    USGS Publications Warehouse

    Townsend, G.N.; Gibson, R.L.; Horton, J.W., Jr.; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  8. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright, Jr.; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  9. Modeling spatial and temporal variation of suitable nursery habitats for Atlantic sturgeon in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Niklitschek, Edwin J.; Secor, David H.

    2005-07-01

    For rare and endangered species, bioenergetics modeling can represent a valuable approach for understanding issues of habitat value and connectivity among potential habitats within nurseries in restoration programs. We used multivariable bioenergetics and survival models for Atlantic sturgeon to generate spatially explicit maps of potential production in the Chesapeake Bay. For the period 1993-2002, spatial and temporal patterns in water quality effects (temperature, dissolved oxygen [DO] and salinity) on potential production were evaluated. In addition, two forecasted scenarios were modeled: one implementing newly revised U.S. Environmental Protection Agency (EPA) DO-criteria for the Chesapeake Bay, and the other assuming a bay-wide increase of 1 °C due to an underlying trend in regional climate. Atlantic sturgeon's low (survival/growth) tolerance to temperatures >28 °C was a critical constraint during their first 1-2 summers of life. Hatched in freshwater (spring to mid-summer), young-of-the-year were predicted to occupy cooler (deeper) areas as temperature approached sub-lethal levels. While most thermal refuges were located down-estuary, a large fraction of potential refuges were unsuitable due to persistent hypoxia and/or salinity levels beyond the limited osmoregulatory capabilities of early juvenile Atlantic sturgeon. As a result, suitable summer habitats for juvenile Atlantic sturgeons in the Chesapeake Bay were predicted to be spatially restricted and variable between years, ranging from 0 to 35% of the modeled bay surface area. In critical (drought) years, almost no summer habitat was predicted to be available for juvenile Atlantic sturgeon. Value and size of nursery habitat was highly sensitive to climatic oscillations and anthropogenic interventions affecting freshwater inflow, water temperature and/or DO. Achieving EPA DO-criteria for the Chesapeake Bay was predicted to increase total suitable habitat by 13% for an average year, while increasing

  10. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.

    2015-01-01

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  11. Multi-decadal variation in size of juvenile Summer Flounder (Paralichthys dentatus) in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nys, Lauren N.; Fabrizio, Mary C.; Tuckey, Troy D.

    2016-01-01

    During the last quarter-century, management of Summer Flounder Paralichthys dentatus along the Atlantic coast resulted in significant increases in abundance such that rebuilding targets were recently achieved. Although spawning stock biomass is high, recruitment of young-of-the-year (YOY) Summer Flounder remains variable. Chesapeake Bay is one of the principal nursery areas for this species, but processes such as growth and survival that affect production of YOY Summer Flounder in this estuary have not been explored. Here, we investigated the relationship between abundance and size of Summer Flounder recruits from the 1988 to 2012 year classes in Chesapeake Bay. We also considered the effects of environmental factors on fish size because conditions in the bay vary spatially during the time that fish occupy nursery areas. To describe variations in Summer Flounder size, we used monthly length observations from 13,018 YOY fish captured by bottom trawl from the lower Chesapeake Bay and the James, York, and Rappahannock river subestuaries where Summer Flounder are commonly observed. We applied a generalized additive model to describe spatial, temporal, and environmental effects on observed fish size; we also considered the density of Summer Flounder and an index of productivity as factors in the model. Summer Flounder in Chesapeake Bay exhibited density-dependent and spatially related variations in mean length: larger fish were found mostly in the Bay and smaller fish in the subestuaries. Additionally, low (< 13 °C) and high (> 26 °C) temperatures and low salinities (< 10 psu) had a negative effect on fish size, indicating that individuals found in these environments were typically smaller than conspecifics inhabiting areas of moderate temperatures and higher salinities. Variable nursery habitat conditions in temperate estuaries affect fish size and, subsequently, may influence production of Summer Flounder year classes through effects on maturation and survival. As

  12. Multi-decadal variation in size of juvenile Summer Flounder (Paralichthys dentatus) in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nys, Lauren N.; Fabrizio, Mary C.; Tuckey, Troy D.

    2015-09-01

    During the last quarter-century, management of Summer Flounder Paralichthys dentatus along the Atlantic coast resulted in significant increases in abundance such that rebuilding targets were recently achieved. Although spawning stock biomass is high, recruitment of young-of-the-year (YOY) Summer Flounder remains variable. Chesapeake Bay is one of the principal nursery areas for this species, but processes such as growth and survival that affect production of YOY Summer Flounder in this estuary have not been explored. Here, we investigated the relationship between abundance and size of Summer Flounder recruits from the 1988 to 2012 year classes in Chesapeake Bay. We also considered the effects of environmental factors on fish size because conditions in the bay vary spatially during the time that fish occupy nursery areas. To describe variations in Summer Flounder size, we used monthly length observations from 13,018 YOY fish captured by bottom trawl from the lower Chesapeake Bay and the James, York, and Rappahannock river subestuaries where Summer Flounder are commonly observed. We applied a generalized additive model to describe spatial, temporal, and environmental effects on observed fish size; we also considered the density of Summer Flounder and an index of productivity as factors in the model. Summer Flounder in Chesapeake Bay exhibited density-dependent and spatially related variations in mean length: larger fish were found mostly in the Bay and smaller fish in the subestuaries. Additionally, low (< 13 °C) and high (> 26 °C) temperatures and low salinities (< 10 psu) had a negative effect on fish size, indicating that individuals found in these environments were typically smaller than conspecifics inhabiting areas of moderate temperatures and higher salinities. Variable nursery habitat conditions in temperate estuaries affect fish size and, subsequently, may influence production of Summer Flounder year classes through effects on maturation and survival. As

  13. Radiocarbon dating, chronologic framework, and changes in accumulation rates of holocene estuarine sediments from Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Baucom, P.C.; Bratton, J.F.; Cronin, T. M.; McGeehin, J.P.; Willard, D.; Zimmerman, A.R.; Vogt, P.R.

    2002-01-01

    Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20 m in length and used numerous radiocarbon ages measured by accelarator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210 Pb and 137 Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.

  14. Climatic variability in the eastern United States over the past millenium from Chesapeake Bay sediments

    USGS Publications Warehouse

    Cronin, T.; Willard, D.; Karlsen, A.; Ishman, S.; Verardo, S.; McGeehin, J.; Kerhin, R.; Holmes, C.; Colman, S.; Zimmerman, A.

    2000-01-01

    Salinity oscillations caused by multidecadal climatic variability had major impacts on the Chesapeake Bay estuarine ecosystem during the past 1000 yr. Microfossils from sediments dated by radiometry (14C, 137Cs, 210Pb) and pollen stratigraphy indicate that salinity in mesohaline regions oscillated 10-15 ppt during periods of extreme drought (low fresh-water discharge) and wet climate (high discharge). During the past 500 yr, 14 wet-dry cycles occurred, including sixteenth and early seventeenth century megadroughts that exceeded twentieth century droughts in their severity. These droughts correspond to extremely dry climate also recorded in North American tree-ring records and by early colonists. Wet periods occurred every ~60-70 yr, began abruptly, lasted <20 yr, and had mean annual rainfall ~25%-30% and fresh-water discharge ~40%-50% greater than during droughts. A shift toward wetter regional climate occurred in the early nineteenth century, lowering salinity and compounding the effects of agricultural land clearance on bay ecosystems.

  15. Bio-Optical and Remote Sensing Observations in Chesapeake Bay. Chapter 7

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Andrea

    2003-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements from Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (> 6,500 km2) make retrievals from satellites with a spatial resolution of approx. 1 km (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra.

  16. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  17. Postimpact heat conduction and compaction-driven fluid flow in the Chesapeake Bay impact structure based on downhole vitrinite reflectance data, ICDP-USGS Eyreville deep core holes and Cape Charles test holes

    USGS Publications Warehouse

    Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J., Jr.

    2009-01-01

    Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The

  18. Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study

    PubMed Central

    Magny, Guillaume Constantin de; Long, Wen; Brown, Christopher W.; Hood, Raleigh R.; Huq, Anwar; Murtugudde, Raghu; Colwell, Rita R.

    2010-01-01

    Vibrio cholerae, the causative agent of cholera, is a naturally occurring inhabitant of the Chesapeake Bay and serves as a predictor for other clinically important vibrios, including Vibrio parahaemolyticus and Vibrio vulnificus. A system was constructed to predict the likelihood of the presence of V. cholerae in surface waters of the Chesapeake Bay, with the goal to provide forecasts of the occurrence of this and related pathogenic Vibrio spp. Prediction was achieved by driving an available multivariate empirical habitat model estimating the probability of V. cholerae within a range of temperatures and salinities in the Bay, with hydrodynamically generated predictions of ambient temperature and salinity. The experimental predictions provided both an improved understanding of the in situ variability of V. cholerae, including identification of potential hotspots of occurrence, and usefulness as an early warning system. With further development of the system, prediction of the probability of the occurrence of related pathogenic vibrios in the Chesapeake Bay, notably V. parahaemolyticus and V. vulnificus, will be possible, as well as its transport to any geographical location where sufficient relevant data are available. PMID:20145974

  19. Estimation of annual trace element deposition to the Chesapeake Bay watershed

    SciTech Connect

    Miller, P.E.

    1997-12-31

    The mid-Atlantic region of the Chesapeake Bay watershed is subject to wet deposition of atmospherically released contaminants from mid-western US and comparable deposition from the southeastern region as well. Deposition from events originating in the mid-western sector are dominated by emissions strength while those originating in the southeastern sector are most strongly influenced by meteorology. Trace element concentrations precipitation and aerosol in weekly integrated samples at rural sites adjacent to Chesapeake Bay are highly variable in space and time. Influence of regional coal combustion appear to peak in aerosol samples during winter and mean concentrations of Cu, Ni, Pb and Zn in precipitation samples were 50-100% higher at the southern site (Haven Beach, VA). Annual atmospheric loads of Al, Cd, Cr, Pb and Zn deposited to the surface of Chesapeake Bay are within 2-fold quantities of the dissolved fluvial loads delivered by the Susquehanna river. The atmospheric load of Cd, Pb, Cr, Zn and Cu directly to the Bay below the fall line is comparable in magnitude to point sources below the fall line and the contribution of erosion. Atmospheric deposition (wet + dry) of Fe, Al, Mn, Cr, Cu, Ni, Cd, Zn and Pb to the Susquehanna, Potomac and James sub-basins were calculated from existing data. The atmospheric load to the watershed for crustal elements (Fe, Al, Mn) was less than the fluvial export and up to 40x greater than fluvial export for non-crustal elements (Ni, Cd, Zn, Pb).

  20. Shipboard magnetic field "noise" reveals shallow heavy mineral sediment concentrations in Chesapeake Bay

    USGS Publications Warehouse

    Shah, Anjana K.; Vogt, Peter R.; Rosenbaum, Joseph G.; Newell, Wayne; Cronin, Thomas M.; Willard, Debra A.; Hagen, Rick A.; Brozena, John; Hofstra, Albert

    2012-01-01

    Shipboard magnetic field data collected over Chesapeake Bay exhibit low-amplitude, short-wavelength anomalies that most likely indicate shallow concentrations of heavy mineral sediments. Piston core layers and black sand beach samples exhibit enhanced magnetic susceptibilities and carry remanent magnetization, with mineralogical analyses indicating ilmenite and trace magnetite and/or maghemite and hematite. The anomalies are subtle and would be filtered as noise using traditional approaches, but can instead be highlighted using spectral methods, thus providing nearly continuous coverage along survey tracks. The distribution of the anomalies provides constraints on relevant sorting mechanisms. Comparisons to sonar data and previous grab samples show that two of three areas surveyed exhibit short-wavelength anomalies that are clustered over sand-covered areas, suggesting initial sorting through settling mechanisms. This is supported by a correlation between core magnetic susceptibility and grain size. Near the Choptank River, where sediment resuspension is wave-dominated, anomalies show a sharp decrease with seafloor depth that cannot be explained by signal attenuation alone. In Pocomoke Sound, where both tidal currents and wave-action impact sediment resuspension, anomalies show a more gradual decrease with depth. Near the mouth of the bay, where there is a higher influx of sediments from the continental shelf, short-wavelength anomalies are isolated and do not appear to represent heavy mineral sand concentrations. These combined observations suggest the importance of further sorting by erosional processes in certain parts of the bay. Additionally, comparisons of these data to cores sampling pre-Holocene sediments suggest that the sorting of heavy minerals in higher energy, shallow water environments provides a mechanism for correlations between core magnetic susceptibility and sea-level changes.

  1. Determination of phytoplankton chlorophyll concentrations in the Chesapeake Bay with aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Itsweire, Eric C.; Esaias, Wayne E.

    1992-01-01

    Remote sensing measurements of the distribution of phytoplankton chlorophyll concentrations in Chesapeake Bay during 1989 are described. It is shown that remote sensing from light aircraft can complement and extend measurements made from traditional platforms and provide data of improved temporal and spatial resolution, leading to a better understanding of phytoplankton dynamics in the estuary. The developments of the winter-spring diatom bloom in the polyhaline to mesohaline regions of the estuary and of the late-spring and summer dinoflagellate blooms in oligohaline and mesohaline regions are traced. The study presents the local chlorophyll algorithm developed using the NASA Ocean Data Acquisition System data and in situ chlorophyll data, interpolated maps of chlorophyll concentration generated by applying the algorithm to aircraft radiance data, ancillary in situ data on nutrients, turbidity, streamflow, and light availability, and an interpretation of phytoplankton dynamics in terms of the chlorophyll distribution in Chesapeake Bay during 1989.

  2. What drives interannual variability of hypoxia in Chesapeake Bay: Climate forcing versus nutrient loading?

    NASA Astrophysics Data System (ADS)

    Li, Ming; Lee, Younjoo J.; Testa, Jeremy M.; Li, Yun; Ni, Wenfei; Kemp, W. Michael; Di Toro, Dominic M.

    2016-03-01

    Oxygen depletion in estuaries is a worldwide problem with detrimental effects on many organisms. Although nutrient loading has been stabilized for a number of these systems, seasonal hypoxia persists and displays large year-to-year variations, with larger hypoxic volumes in wetter years and smaller hypoxic volumes in drier years. Data analysis points to climate as a driver of interannual hypoxia variability, but nutrient inputs covary with freshwater flow. Here we report an oxygen budget analysis of Chesapeake Bay to quantify relative contributions of physical and biogeochemical processes. Vertical diffusive flux declines with river discharge, whereas longitudinal advective flux increases with river discharge, such that their total supply of oxygen to bottom water is relatively unchanged. However, water column respiration exhibits large interannual fluctuations and is correlated with primary production and hypoxic volume. Hence, the model results suggest that nutrient loading is the main mechanism driving interannual hypoxia variability in Chesapeake Bay.

  3. Evaluation of CALPUFF nitrogen deposition modeling in the Chesapeake Bay Watershed Area using NADP data

    SciTech Connect

    Garrison, M.; Mayes, P.; Sherwell, J.

    1998-12-31

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. This paper discusses the results of an evaluation of predicted nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland, Wye and White Rock. Underprediction of wet deposition rates is investigated through the use of sensitivity and diagnostic evaluations of model performance. A suggested change to the calculation of NO{sub x} transformation rates involving an alternative specification of minimum NO{sub x} concentrations was made to CALPUFF and the performance evaluation was re-done. Results of the new evaluation show significantly improved model performance, and therefore the modification is tentatively proposed for use in further applications of CALPUFF to the assessment of nitrogen deposition in the Chesapeake Bay watershed.

  4. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958-1975

    USGS Publications Warehouse

    Bayley, S.; Stotts, V.D.; Springer, P.F.; Steenis, J.

    1978-01-01

    Submerged aquatic plant populations in the Susquehanna Flats of the Chesapeake Bay were followed for 18 years. An exotic species, eurasian water milfoil, Myriophyllum spicatum, increased dramatically from 1958 to 1962; at the same time the dominant native species declined. After 1962, milfoil populations declined and the native rooted aquatics gradually began to return to their former levels. In the late 1960's all species declined and in 1972 almost disappeared from the Susquehanna Flats. These fluctuations may have been related to several interrelated environmental factors in the Chesapeake Bay, including tropical storms, turbidity, salinity and disease. The utilization of the Susquehanna Flats by waterfowl appears to be related to the abundance and species composition of the submerged macrophytes present.

  5. Remote sensing of submerged aquatic vegetation in the lower Chesapeake Bay. [(sea grasses)

    NASA Technical Reports Server (NTRS)

    Orth, R. J.; Gordon, H. R.

    1975-01-01

    An experimental water penetration film and black and white near infrared film were used to study the distribution of submerged aquatic vegetation in the lower Chesapeake Bay. Detailed description of the grass beds was obtained by flying at an altitude of 5,000 feet, at low tide when wind conditions were minimal. Results show that there was a 36% reduction in the amount of submerged aquatic vegetation in the lower Chesapeake Bay from 1971 to 1974, the greatest losses occurring in the York, Piankatank and Rappahannock rivers (tabulated data is given). Recovery of some grass beds occurs primarily through seedling recruitment and subsequent vegetative growth. Cownose rays are suspected as a main factor for the decimation of some of the grass beds. Maps and photographs of the areas studied are given.

  6. Is there a signal of sea-level rise in Chesapeake Bay salinity?

    NASA Astrophysics Data System (ADS)

    Hilton, T. W.; Najjar, R. G.; Zhong, L.; Li, M.

    2008-09-01

    We evaluate the hypothesis that sea-level rise over the second half of the 20th century has led to detectable increases in Chesapeake Bay salinity. We exploit a simple, statistical model that predicts monthly mean salinity as a function of Susquehanna River flow in 23 segments of the main stem Chesapeake Bay. The residual (observed minus modeled) salinity exhibits statistically significant linear (p < 0.05) trends between 1949 and 2006 in 13 of the 23 segments of the bay. The salinity change estimated from the trend line over this period varies from -2.0 to 2.2, with 10 of the 13 cells showing positive changes. The mean and median salinity changes over all 23 cells are 0.47 and 0.72; over the 13 cells with significant trends they are 0.71 and 1.1. We ran a hydrodynamic model of the bay under present-day and reduced sea level conditions and found a bay-average salinity increase of about 0.5, which supports the hypothesis that the salinity residual trends have a significant component due to sea-level rise. Uncertainties remain, however, due to the spatial and temporal extent of historical salinity data and the infilling of the bay due to sedimentation. The salinity residuals also exhibit interannual variability, with peaks occurring at intervals of roughly 7 to 9 years, which are partially explained by Atlantic Shelf salinity, Potomac River flow and the meridional component of wind stress.

  7. Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2016-01-01

    Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.

  8. Decoupling the influence of biological and physical processes on the dissolved oxygen in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2015-01-01

    is instructive and essential to decouple the effects of biological and physical processes on the dissolved oxygen condition, in order to understand their contribution to the interannual variability of hypoxia in Chesapeake Bay since the 1980s. A conceptual bottom DO budget model is applied, using the vertical exchange time scale (VET) to quantify the physical condition and net oxygen consumption rate to quantify biological activities. By combining observed DO data and modeled VET values along the main stem of the Chesapeake Bay, the monthly net bottom DO consumption rate was estimated for 1985-2012. The DO budget model results show that the interannual variations of physical conditions accounts for 88.8% of the interannual variations of observed DO. The high similarity between the VET spatial pattern and the observed DO suggests that physical processes play a key role in regulating the DO condition. Model results also show that long-term VET has a slight increase in summer, but no statistically significant trend is found. Correlations among southerly wind strength, North Atlantic Oscillation index, and VET demonstrate that the physical condition in the Chesapeake Bay is highly controlled by the large-scale climate variation. The relationship is most significant during the summer, when the southerly wind dominates throughout the Chesapeake Bay. The seasonal pattern of the averaged net bottom DO consumption rate (B'20) along the main stem coincides with that of the chlorophyll-a concentration. A significant correlation between nutrient loading and B'20 suggests that the biological processes in April-May are most sensitive to the nutrient loading.

  9. 76 FR 38300 - Safety Zone; Shore Thing and Independence Day Fireworks, Chesapeake Bay, Norfolk, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ...The Coast Guard is establishing a temporary safety zone on the Chesapeake Bay in the vicinity of Ocean View Beach Park, Norfolk, VA in support of the Shore Thing and Independence Day Fireworks event. This action is necessary to provide for the safety of life on navigable waters during the Shore Thing and Independence Day Fireworks show. This action is intended to restrict vessel traffic......

  10. Application of Remote Sensing to the Chesapeake Bay Region. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chen, W. T.; Freas, G. W., Jr.; Hickman, G. D.; Pemberton, D. A.; Wilkerson, T. D.; Adler, I.; Laurie, V. J.

    1978-01-01

    The proceedings are presented of a conference, jointly sponsored by the National Aeronautics and Space Administration, the U.S. Environmental Protection Agency, and the University of Maryland. The purpose of the Conference was to assemble representatives of federal and state government agencies engaged in research on the condition and evolution of the Chesapeake Bay to compose a status report, to present current activities and future plans, and to recommend a long-range future course of policies and programs.

  11. Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.

    1975-01-01

    A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.

  12. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

    USGS Publications Warehouse

    Ruhl, H.A.; Rybicki, N.B.

    2010-01-01

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  13. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.

    PubMed

    Ruhl, Henry A; Rybicki, Nancy B

    2010-09-21

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay. PMID:20823243

  14. Land subsidence and relative sea-level rise in the southern Chesapeake Bay region

    USGS Publications Warehouse

    Eggleston, Jack; Pope, Jason

    2013-01-01

    The southern Chesapeake Bay region is experiencing land subsidence and rising water levels due to global sea-level rise; land subsidence and rising water levels combine to cause relative sea-level rise. Land subsidence has been observed since the 1940s in the southern Chesapeake Bay region at rates of 1.1 to 4.8 millimeters per year (mm/yr), and subsidence continues today. This land subsidence helps explain why the region has the highest rates of sea-level rise on the Atlantic Coast of the United States. Data indicate that land subsidence has been responsible for more than half the relative sea-level rise measured in the region. Land subsidence increases the risk of flooding in low-lying areas, which in turn has important economic, environmental, and human health consequences for the heavily populated and ecologically important southern Chesapeake Bay region. The aquifer system in the region has been compacted by extensive groundwater pumping in the region at rates of 1.5- to 3.7-mm/yr; this compaction accounts for more than half of observed land subsidence in the region. Glacial isostatic adjustment, or the flexing of the Earth’s crust in response to glacier formation and melting, also likely contributes to land subsidence in the region.

  15. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.

    PubMed

    Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H

    2016-06-01

    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries. PMID:27217572

  16. δ15N as a Potential Paleoenvironmental Proxy for Nitrogen Loading in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Black, H. D.; Andrus, C. F.; Rick, T.; Hines, A.

    2013-12-01

    Stable isotope analysis of Eastern Oyster (Crassostrea virginica) and other mollusk shells from archaeological sites is a useful means of acquiring paleoenvironmental data. Recently, nitrogen isotopes have been identified as a potential new proxy in these shells. δ15N content in mollusk shells is affected by numerous anthropogenic and natural influences and may be used as an environmental proxy for nitrogen loading conditions. Chesapeake Bay is well known for both historic and modern pollution problems from numerous anthropogenic sources, such as fertilizer runoff, sewage discharge, and densely populated land use and serves as an ideal study location for long-term nitrogen loading processes. Longer records of these processes may be recorded in abundant archaeological remains around the bay, however, little is known about the stability of δ15N and %N in shell material over recent geologic time. In this study, 90 archaeological C. virginica shells were collected by the Smithsonian Institution from the Rhode River Estuary within Chesapeake Bay and range in age from ~150 to 3200 years old. Twenty-two modern C. virginica shells were also collected from nearby beds in the bay. All shell samples were subsampled from the resilifer region of the calcitic shell using a hand-held micro drill and were analyzed using EA-IRMS analysis to determine the potential temporal variability of δ15N and %N as well as creating a baseline for ancient nitrogen conditions in the bay area. Modern POM water samples and C. virginica soft tissues were also analyzed in this study to determine the degree of seasonal variation of δ15N and %N in Chesapeake Bay.

  17. Ensemble data assimilation and breeding in the ocean, Chesapeake Bay, and Mars

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew J.

    My dissertation focuses on studying instabilities of different time scales using breeding and data assimilation in the oceans, as well as the Martian atmosphere. The breeding method of Toth and Kalnay finds the perturbations that grow naturally in a dynamical system like the atmosphere or the ocean. Here breeding is applied to a global ocean model forced by reanalysis winds in order to identify instabilities on weekly and monthly timescales. The method is extended to show how the energy equations for the bred vectors can be derived with only very minimal approximations and used to assess the physical mechanisms that give rise to the instabilities. Tropical Instability Waves in the tropical Pacific are diagnosed, confirming the existence of bands of both baroclinic and barotropic energy conversions indicated by earlier studies. For regional prediction of smaller timescale phenomena, an advanced data assimilation system has been developed for the Chesapeake Bay Forecast System, a regional Earth System Prediction model. To accomplish this, the Regional Ocean Modeling System (ROMS) implementation on the Chesapeake Bay has been interfaced with the Local Ensemble Transform Kalman Filter (LETKF). The LETKF is among the most advanced data assimilation methods and is very effective for large, non-linear dynamical systems in both sparse and dense data coverage situations. In perfect model experiments using ChesROMS, the filter converges quickly and reduces the analysis and subsequent forecast errors in the temperature, salinity, and velocity fields. This error reduction has proved fairly robust to sensitivity studies such as reduced data coverage and realistic data coverage experiments. The LETKF also provides a method for error estimation and facilitates the investigation of the spatial distribution of the error. This information has been used to determine areas where more monitoring is needed. The LETKF framework is also applied here to a global model of the Martian

  18. Circulation in the Chesapeake Bay entrance region: Estuary-shelf interaction

    NASA Technical Reports Server (NTRS)

    Boicourt, W. C.

    1981-01-01

    Current meters and temperature-salinity recorders confirm the assumption that the upper layers of the continental shelf waters off Chesapeake Bay can be banded in summer, such that the coastal boundary layer (consisting of the Bay outflow) and the outer shelf flow southward while the inner shelf flows to the north, driven by the prevailing southerly winds. These measurements show that the estuary itself may also be banded in its lower reaches such that the inflow is confined primarily to the deep channel, while the upper layer outflow is split into two flow maxima on either side of this channel.

  19. A survey for the use of remote sensing in the Chesapeake Bay region

    NASA Technical Reports Server (NTRS)

    Ulanowicz, R. E.

    1974-01-01

    Environmental problem areas concerning the Chesapeake Bay region are reviewed along with ongoing remote sensing programs pertaining to these problems, and recommendations are presented to help fill lacunae in present research and to utilize the remote sensing capabilities of NASA to their fullest. A list of interested organizations and individuals is presented for each category. The development of technologies to monitor dissolved nutrients in bay waters, the initiation of a census of the disappearing rooted acquatic plants in the littoral zones, and the mapping of natural building constraints in the growth regions of the states of Maryland and Virginia are among the recommendations presented.

  20. Coprostanol as a potential tracer of particulate sewage effluent to shelf waters adjacent to the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; Wade, T. L.

    1981-01-01

    Samples were collected in the Chesapeake Bay entrance and contiguous shelf waters and were subsequently analyzed for particulate coprostanol and cholesterol concentrations. Surface coprostanol concentrations were fairly uniform, with a slight increase with depth. This increase with depth may be due to sewage-associated particulates settling as they leave the Bay, or the resuspension of contaminated sediment. Preliminary findings indicate sewage-associated materials are being transported from the Chesapeake Bay to shelf waters, where they may have a detrimental affect on living marine resources.

  1. Maryland Environmental Education Survey. Part One: The Chesapeake Bay as an Integral Part of the Environmental Education Program. Progress Report.

    ERIC Educational Resources Information Center

    Foster, Oma Ruth

    This report is the result of a survey of educators using the Chesapeake Bay in environmental education courses. The goal of the survey was threefold: first, to identify persons using the Bay area in their educational programs; second, to ascertain the level of environmental education programs being offired; and third, to determine the services…

  2. Development of baseline water quality stormwater detention pond model for Chesapeake Bay catchments

    SciTech Connect

    Musico, W.J.; Yoon, J.

    1999-07-01

    An environmental impact assessment is required for every proposed development in the Commonwealth of Virginia to help identify areas of potential concerns. The purpose of the Chesapeake Bay Local Assistance Department (CBLAD), Guidance Calculation Procedures is to ensure that development of previously constructed areas do not further exacerbate current problems of stormwater-induced eutrophication and downstream flooding. The methodology is based on the post development conditions that will not generate greater peak flows and will result in a 10% overall reduction of total phosphorus. Currently, several well-known models can develop hydrographs and pollutographs that accurately model the real response of a given watershed to any given rainfall event. However, conventional method of achieving the desired peak flow reduction and pollutant removal is not a deterministic procedure, and is inherently a trail and error process. A method of quickly and accurately determining the required size of stormwater easements was developed to evaluate the effectiveness of alternative stormwater collection and treatment systems. In this method, predevelopment conditions were modeled first to estimate the peak flows and subsequent pollutants generation that can be used as a baseline for post development plan. Resulting stormwater easement estimates facilitate decision-making processes during the planning and development phase of a project. The design can be optimized for the minimum cost or the smallest-possible pond size required for peak flow reduction and detention time given the most basic data such as: inflow hydrograph and maximum allowable pond depth.

  3. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    USGS Publications Warehouse

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  4. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay

    USGS Publications Warehouse

    Blazer, Vicki; Pinkney, Alfred E.; Jenkins, Jill A.; Iwanowicz, Luke R.; Minkkinen, Steven; Draugelis-Dale, Rassa O.; Uphoff, James H.

    2013-01-01

    Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007–2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.

  5. Control of trace element toxicity in Chesapeake Bay by dominant phytoplankton. Final report

    SciTech Connect

    Sanders, J.G.; Riedel, G.F.; Connell, D.B.; Ferrier, D.P.

    1992-02-01

    Copper (Cu) and arsenic (As), but not chromium (Cr), underwent large changes in chemical form during the development and senescence of natural phytoplankton blooms. In general, the percentage of organically-associated Cu was lowest during periods of rapid cell growth and highest during periods of cell decline or periods of dominance by red tide-forming dinoflagellates, a pattern tied to periods of release of organic compounds during either bloom senescence or during unusual algal blooms. Chromium, in contrast, was unreactive. The end result of biological mediation of both As and Cu was to increase the proportion of the element present in a less toxic form, at least to phytoplankton, thus affecting the potential toxicity of either element to a natural ecosystem. The results of the project provide a framework for the construction of general predictive models of likely trace element behavior in productive ecosystems and provide a conceptual theory of how such toxic contaminants may affect ecosystem structure and food webs within Chesapeake Bay. Predictive models of ecosystem impact will require further experimentation with multi-trophic level food chains.

  6. Joint NASA/EPA AVIRIS Analysis in the Chesapeake Bay Region: Plans and Initial Results

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Stokely, Peter; Lobitz, Brad; Shelton, Gary

    1998-01-01

    NASA's Ames Research Center is performing an AVIRIS demonstration project in conjunction with the U. S. Environmental Protection Agency (Region 3). NASA and EPA scientists have jointly defined a Study Area in eastern Virginia to include portions of the Chesapeake Bay, southern Delmarva Peninsula, and the mouths of the York and James Rivers. Several environmental issues have been identified for study. These include, by priority: 1) water constituent analysis in the Chesapeake Bay, 2) mapping of submerged aquatic vegetation in the Bay, 3) detection of vegetation stress related to Superfund sites at the Yorktown Naval Weapons Station, and 4) wetland species analysis in the York River vicinity. In support of this project, three lines of AVIRIS data were collected during the Wallops Island deployment on 17 August 1997. The remote sensing payload included AVIRIS, MODIS Airborne Simulator and an RC-10 color infrared film camera. The AVIRIS data were delivered to Ames from the JPL AVIRIS Data Facility, on 29 September 1997. Quicklook images indicate nominal data acquisition, and at the current time an atmospheric correction is being applied. Water constituent analysis of the Bay is our highest priority based on EPA interest and available collateral data, both from the surface and from other remote sensing instruments. Constituents of interest include suspended sediments, chlorophyll-a and accessory pigments, Analysis steps will include: verification of data quality, location of study sites in imagery, incorporation of relevant field data from EPA and other Chesapeake Bay cooperators, processing of imagery to show phenomenon of interest, verification of results with cooperators. By 1st quarter CY98 we plan to circulate initial results to NASA and EPA management for review. In the longer term we will finalize documentation, prepare results for publication, and complete any needed technology transfer to EPA remote sensing personnel.

  7. Geospatial Interpolation of Remotely Sensed Observations in the Chesapeake Bay: an Ecological Forecasting Application

    NASA Astrophysics Data System (ADS)

    Urquhart, E.; Hoffman, M. J.; Murphy, R.; Zaitchik, B. F.

    2012-12-01

    In dynamic coastal systems such as the Chesapeake Bay, limited coverage and frequency of in situ measurements often makes generalizability of an ecological forecasting system difficult. Satellite-derived environmental variables have the potential to address this problem, but satellite datasets suffer from incomplete coverage as well: atmospheric conditions—most notably cloud cover—lead to data gaps that significantly hinder the broad application of satellite-informed ecological predictions. In this study, the Chesapeake Bay estuary was used as a model "test bed" to which we applied the power of near real-time satellite-derived observations to the issue of monitoring and ecological forecasting of environmental Vibrio spp. bacterium. To use remote sensing in support of spatially complete estimates of Vibrio spp. in the Bay, we tested geospatial interpolation techniques as a method for filling gaps and minimizing errors in the satellite record. These interpolated values were then compared to direct satellite retrievals and to ChesROMS hydrodynamic modeled fields in order to assess the relative value of each method for generating inputs to empirical Vibrio spp. forecasting models. Results show that satellite-derived salinity and temperature can be interpolated with acceptable accurately in the Bay, with a MAE of 1.88ppt and 0.59°C. These errors differed systematically from ChesROMS errors both spatially and seasonally, indicating that the two techniques offer complementary information that can be applied to Vibrio spp. monitoring, and to other ecological monitoring systems, in complex estuaries like Chesapeake Bay.

  8. Osmium isotopes demonstrate distal transport of contaminated sediments in Chesapeake Bay

    USGS Publications Warehouse

    Helz, G.R.; Adelson, J.M.; Miller, C.V.; Cornwell, J.C.; Hill, J.M.; Horan, M.; Walker, R.J.

    2000-01-01

    Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated sediments in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated sediments bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal Plain deposits due to post- Miocene 187Re decay. The upper Susquehanna Basin yields sediments also with higher 187Os/188Os. Beginning in the late 1970s, this signal was overprinted by a low 187Os/188Os (anthropogenic) source in the lower Susquehanna Basin. In the vicinity of Baltimore, which is a major center of heavy industry as well as biomedical research, anthropogenic Os has been found only in sediments impacted by the principal wastewater treatment plant. Surprisingly, a mid-Bay site distant from anthropogenic sources contains the strongest anthropogenic Os signal in the data set, having received anthropogenic Os sporadically since the mid-20th Century. Transport of particles to this site overrode the northward flowing bottom currents. Finding anthropogenic Os at this site cautions that other particle-borne substances, including hazardous ones, could be dispersed broadly in this estuary.Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated sediments in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated sediments bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal

  9. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vessels using the waterway. The District Engineer's representative is the Chesapeake City Resident Engineer. The Chesapeake City Resident Engineer through the dispatcher on duty will enforce these... transit the canal. (e) Anchorage and wharfage facilities. The anchorage basin at Chesapeake City and...

  10. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vessels using the waterway. The District Engineer's representative is the Chesapeake City Resident Engineer. The Chesapeake City Resident Engineer through the dispatcher on duty will enforce these... transit the canal. (e) Anchorage and wharfage facilities. The anchorage basin at Chesapeake City and...

  11. Temporal changes of populations and trophic relationships of wintering diving ducks in Chesapeake Bay

    USGS Publications Warehouse

    Perry, Matthew C.; Wells-Berlin, Alicia M.; Kidwell, David M.; Osenton, Peter C.

    2007-01-01

    Population and trophic relationships among diving ducks in Chesapeake Bay are diverse and complex as they include five species of bay ducks (Aythya spp.), nine species of seaducks (Tribe Mergini), and the Ruddy Duck (Oxyura jamaicensis). Here we considered the relationships between population changes and diet over the past half century to assess the importance of prey changes to wintering waterfowl in the Bay. Food habits of 643 diving ducks collected from Chesapeake Bay during 1999-2006 were determined by analyses of their gullet (esophagus and proventriculus) and gizzard contents and compared to historical data (1885-1979) of 1,541 diving ducks. Aerial waterfowl surveys, in general, suggest that six species of seaducks were more commonly located in the meso- to polyhaline areas of the Bay, whereas five species of bay ducks and Ruddy Ducks were in the oligo- to mesohaline areas. Seaducks fed on a molluscan diet of Hooked Mussel (Ischadium recurvum), Amethyst Gemclam (Gemma gemma), and Dwarf Surfclarn (Mulinia lateralis). Bay ducks and Ruddy Ducks fed more on Baltic Macoma (Macoma balthica), the adventive Atlantic Rangia (Rangia cuneata), and submerged aquatic vegetation (SAV). Mergansers were found over the widest salinity range in the Bay, probably because of their piscivorous diet. Each diving duck species appears to fill a unique foraging niche, although there is much overlap of selected prey. When current food habits are compared to historic data, only the Canvasback (Aythya valisineria) has had major diet changes, although SAV now accounts for less food volume for all diving duck species, except the Redhead (Aythya americana). Understanding the trophic-habitat relationships of diving ducks in coastal wintering areas will give managers a better understanding of the ecological effects of future environmental changes. Intensive restoration efforts on SAV and oyster beds should greatly benefit diving duck populations.

  12. Spectral reflectance characteristics and automated data reduction techniques which identify wetland and water quality conditions in the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.

    1970-01-01

    Progress on research designed to test the usability of multispectral, high altitude, remotely sensed data to analyze ecological and hydrological conditions in estuarine environments is presented. Emphasis was placed on data acquired by NASA aircraft over the Patuxent River Chesapeake Bay Test Site, No. 168. Missions were conducted over the Chesapeake Bay at a high altitude flight of 18,460 m and a low altitude flight of 3070. The principle objectives of the missions were: (1) to determine feasibility of identifying source and extent of water pollution problems in Baltimore Harbor, Chesapeake Bay and major tributaries utilizing high altitude, ERTS analogous remote sensing data; (2) to determine the feasibility of mapping species composition and general ecological condition of Chesapeake Bay wetlands, utilizing high altitude, ERTS analogous data; (3) to correlate ground spectral reflectance characteristics of wetland plant species with tonal characteristics on multispectral photography; (4) to determine usefulness of high altitude thermal imagery in delinating isotherms and current patterns in the Chesapeake Bay; and (5) to investigate automated data interpretive techniques which may be usable on high altitude, ERTS analogous data.

  13. Contamination in Chesapeake Bay and Delaware Estuary: Results from the NOAA NS and T program

    SciTech Connect

    Valette-Silver, N.J.; Daskalakis, K.D.; Velinsky, D.J.

    1994-12-31

    Since 1986, the NOAA National Status and Trends Program through its Mussel Watch Project has been collecting and analyzing sediments and bivalves (oysters and mussels) at about 350 sites distributed around the United States. Since 1984, sediments where also collected and analyzed through the Benthic Surveillance Project. The data used for the sediments include most of the data previously available as well as the NOAA newly developed COSED data base. The analysis includes 17 trace metals and over 70 organic compounds. When comparing the results obtained for the bivalves collected in the Chesapeake Bay and the Delaware Estuary to those obtained in the rest of the United States, it appears that the concentrations of Cd in Chesapeake and Cd, Ni, and total DDT in Delaware Estuary, are high. In an effort to understand the reasons for these high concentrations, the authors compared bivalves and sediments data in relation to the various inputs (including river transport, point source, urban runoff and atmospheric deposition) to these estuarine systems. From this study, it appears that depending on the compound and on the location, natural and/or anthropogenic inputs are responsible for the observed concentrations. For example, in Chesapeake Bay, urban runoff and riverine transport appear to play major roles.

  14. Antropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, J.F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300-400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  15. Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay

    USGS Publications Warehouse

    Colman, Steven M.; Bratton, John F.

    2003-01-01

    Sediment cores as long as 20 m, dated by 14C, 210Pb, and 137Cs methods and pollen stratigraphy, provide a history of diatom productivity and sediment-accumulation rates in Chesapeake Bay. We calculated the flux of biogenic silica and total sediment for the past 1500 yr for two high-sedimentation-rate sites in the mesohaline section of the bay. The data show that biogenic silica flux to sediments, an index of diatom productivity in the bay, as well as its variability, were relatively low before European settlement of the Chesapeake Bay watershed. In the succeeding 300–400 yr, the flux of biogenic silica has increased by a factor of 4 to 5. Biogenic silica fluxes still appear to be increasing, despite recent nutrient-reduction efforts. The increase in diatom-produced biogenic silica has been partly masked (in concentration terms) by a similar increase in total sediment flux. This history suggests the magnitude of anthropogenic disturbance of the estuary and indicates that significant changes had occurred long before the twentieth century.

  16. Quantifying groundwater’s role in delaying improvements to Chesapeake Bay water quality

    USGS Publications Warehouse

    Sanford, Ward E.; Pope, Jason P.

    2013-01-01

    A study has been undertaken to determine the time required for the effects of nitrogen-reducing best management practices (BMPs) implemented at the land surface to reach the Chesapeake Bay via groundwater transport to streams. To accomplish this, a nitrogen mass-balance regression (NMBR) model was developed and applied to seven watersheds on the Delmarva Peninsula. The model included the distribution of groundwater return times obtained from a regional groundwater-flow (GWF) model, the history of nitrogen application at the land surface over the last century, and parameters that account for denitrification. The model was (1) able to reproduce nitrate concentrations in streams and wells over time, including a recent decline in the rate at which concentrations have been increasing, and (2) used to forecast future nitrogen delivery from the Delmarva Peninsula to the Bay given different scenarios of nitrogen load reduction to the water table. The relatively deep porous aquifers of the Delmarva yield longer groundwater return times than those reported earlier for western parts of the Bay watershed. Accordingly, several decades will be required to see the full effects of current and future BMPs. The magnitude of this time lag is critical information for Chesapeake Bay watershed managers and stakeholders.

  17. Opportunities for Reducing Total Maximum Daily Load (TMDL) compliance costs: lessons from the Chesapeake Bay.

    PubMed

    Wainger, Lisa A

    2012-09-01

    The Chesapeake Bay Total Maximum Daily Load (TMDL) program is an unprecedented opportunity to restore the Chesapeake Bay, yet program costs threaten to undermine its complete implementation. Analyses of Bay TMDL program design and implementation were used to relate program cost-effectiveness to choices in (1) compliance definitions, (2) geographic load allocations, and (3) approaches to engaging unregulated sources. A key finding was that many design choices require choosing an acceptable level of risk of achieving water quality outcomes, and a lack of data can lead to precautionary choices, which increase compliance costs. Furthermore, although some choices managed costs, others decisions may have reduced the potential for cost savings from water quality trading and payment programs. In particular, the choice by some states to distribute the portion of load reductions that improve water quality in the Bay mainstem to many small basins is likely to diminish the potential for market development or reduce funding for the most cost-effective nutrient and sediment reduction practices. Strategies for reducing costs of future TMDLs include considering diminishing marginal returns early in the TMDL design to balance costs and risks in regulatory goal setting and to design rules and incentives that promote innovation and cost-effective compliance strategies. PMID:22891870

  18. Quantifying groundwater's role in delaying improvements to Chesapeake Bay water quality.

    PubMed

    Sanford, Ward E; Pope, Jason P

    2013-01-01

    A study has been undertaken to determine the time required for the effects of nitrogen-reducing best management practices (BMPs) implemented at the land surface to reach the Chesapeake Bay via groundwater transport to streams. To accomplish this, a nitrogen mass-balance regression (NMBR) model was developed and applied to seven watersheds on the Delmarva Peninsula. The model included the distribution of groundwater return times obtained from a regional groundwater-flow (GWF) model, the history of nitrogen application at the land surface over the last century, and parameters that account for denitrification. The model was (1) able to reproduce nitrate concentrations in streams and wells over time, including a recent decline in the rate at which concentrations have been increasing, and (2) used to forecast future nitrogen delivery from the Delmarva Peninsula to the Bay given different scenarios of nitrogen load reduction to the water table. The relatively deep porous aquifers of the Delmarva yield longer groundwater return times than those reported earlier for western parts of the Bay watershed. Accordingly, several decades will be required to see the full effects of current and future BMPs. The magnitude of this time lag is critical information for Chesapeake Bay watershed managers and stakeholders. PMID:24152097

  19. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  20. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    USGS Publications Warehouse

    Pinkney, A.E.; Harshbarger, J.C.; Karouna-Renier, N. K.; Jenko, K.; Balk, L.; Skarpheinsdottir, H.; Liewenborg, B.; Rutter, M.A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2'-deoxyguanosine (O6Me-dG) and O6-ethyl-2'-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors. ?? 2011.

  1. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries

    USGS Publications Warehouse

    Pinkney, Alfred E.; Harshbarger, John C.; Karouna-Renier, Natalie K.; Jenko, Kathryn; Balk, Lennart; Skarphéðinsdóttir, Halldora; Liewenborg, Birgitta; Rutter, Michael A.

    2011-01-01

    We surveyed four Chesapeake Bay tributaries for skin and liver tumors in brown bullhead (Ameiurus nebulosus). We focused on the South River, where the highest skin tumor prevalence (53%) in the Bay watershed had been reported. The objectives were to 1) compare tumor prevalence with nearby rivers (Severn and Rhode) and a more remote river (Choptank); 2) investigate associations between tumor prevalence and polynuclear aromatic hydrocarbons (PAHs) and alkylating agents; and 3) statistically analyze Chesapeake Bay bullhead tumor data from 1992 through 2008. All four South River collections exhibited high skin tumor prevalence (19% to 58%), whereas skin tumor prevalence was 2%, 10%, and 52% in the three Severn collections; 0% and 2% in the Choptank collections; and 5.6% in the Rhode collection. Liver tumor prevalence was 0% to 6% in all but one South River collection (20%) and 0% to 6% in the three other rivers. In a subset of samples, PAH-like biliary metabolites and 32P-DNA adducts were used as biomarkers of exposure and response to polycyclic aromatic compounds (PACs). Adducts from alkylating agents were detected as O6-methyl-2'-deoxyguanosine (O6Me-dG) and O6-ethyl-2'-deoxyguanosine (O6Et-dG) modified DNA. Bullheads from the contaminated Anacostia River were used as a positive control for DNA adducts. 32P-DNA adduct concentrations were significantly higher in Anacostia bullhead livers compared with the other rivers. We identified alkyl DNA adducts in bullhead livers from the South and Anacostia, but not the Choptank. Neither the PAH-like bile metabolite data, sediment PAH data, nor the DNA adduct data suggest an association between liver or skin tumor prevalence and exposure to PACs or alkylating agents in the South, Choptank, Severn, or Rhode rivers. Logistic regression analysis of the Chesapeake Bay database revealed that sex and length were significant covariates for liver tumors and length was a significant covariate for skin tumors.

  2. A modeling study on the response of Chesapeake Bay to hurricane events of Floyd and Isabel

    NASA Astrophysics Data System (ADS)

    Cho, Kyoung-Ho; Wang, Harry V.; Shen, Jian; Valle-Levinson, Arnoldo; Teng, Yi-cheng

    2012-06-01

    The response of Chesapeake Bay to forcing from two hurricanes is investigated using an unstructured-grid three-dimensional hydrodynamic model SELFE. The model domain includes Chesapeake Bay, its tributaries, and the extended continental shelf in the mid-Atlantic Bight. The hurricanes chosen for the study are Hurricane Floyd (1999) and Hurricane Isabel (2003), both of which made landfall within 100 km of the mouth of the Bay. The model results agree reasonably well with field observations of water level, velocity, and salinity. From the Bay's water level response to the hurricanes, it was found that the storm surge in the Bay has two distinct stages: an initial stage set up by the remote winds and the second stage - a primary surge induced by the local winds. For the initial stage, the rising of the coastal sea level was setup by the remote wind of both hurricanes similarly, but for the second stage, the responses to the two hurricanes' local winds are significantly different. Hurricane Floyd was followed by down-Bay winds that canceled the initial setup and caused a set-down from the upper Bay. Hurricane Isabel, on the other hand, was followed by up-Bay winds, which reinforced the initial setup and continued to rise up against the head of the Bay. From the perspective of volume and salt fluxes, it is evident that an oceanic saltwater influx is pushed into the Bay from the continental shelf by the remote wind fields in the initial stages of the storm surge for both Floyd and Isabel. In the second stage after the hurricane made landfall, the Bay's local wind plays a key role in modulating the salinity and velocity fields through vertical mixing and longitudinal salt transport. Controlled numerical experiments are conducted in order to identify and differentiate the roles played by the local wind in stratified and destratified conditions. Down-estuary local wind stress (of Hurricane Floyd-type) tends to enhance stratification under moderate winds, but exhibits an

  3. Radar monitoring of wetland hydrology: Water quality implications for the Chesapeake Bay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetlands are hydrologically dynamic ecosystems which have the potential to improve water quality. Unfortunately, many of the Chesapeake Bay’s wetlands, especially forested wetlands, have been lost or degraded due to human impacts primarily associated with agriculture and urban/suburban development. ...

  4. Chemical Identification of Source Waters in a Rural Sub Estuary of Chesapeake Bay (Chester River)

    NASA Astrophysics Data System (ADS)

    Hobbs, E. A.; Kehm, K.; Krahforst, C.

    2014-12-01

    Complimentary trace metal and water quality surveys were conducted along a 45-km longitudinal transect of the Chester River, a tidal tributary of Chesapeake Bay, to identify potential chemical differences associated with input from different water sources. The Chester River serves as the receiving waters of a largely agricultural watershed on Maryland's Eastern Shore. Delineating water sources within the system can inform management and nutrient reduction strategies. Surface water samples were collected and syringe- filtered in the field. Samples were analyzed to determine the concentrations of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sn, Ba, W, Pb and U. Dissolved nitrate and orthophosphate, Chlorophyll a and total suspended matter were also determined for each sample. Hydrocasts of salinity, temperature, pH, and relative fluorescence of chlorophyll were used to reconstruct water column characteristics and provide insight into mixing with Chesapeake Bay. Results from a complete transect survey conducted over a single tidal maximum (+/- 2 hours) show that Ba is elevated in the Chester River (621 nMol/L) relative to Chesapeake Bay, but exhibits no distinguishable trend with salinity in the river. The Ba results suggest complex input from groundwater along the transect and potential dissociation from riverine sediments and suspended particles. Arsenic, Cr, and V demonstrate marked conservative mixing along the salinity gradient. Arsenic ranged from 23 nMol/L at the lowest salinity and the highest concentration (218 nMol/L) at the mouth where the Chester River enters Chesapeake Bay. This apparent conservative behavior is likely the result of simple mixing between fresh- and saltwater over what is assumed to be a relatively short residence time (days) for water in the river system. The plots of U and W with salinity show curvilinear distributions with positive slopes and may reflect the importance of uptake by sediments and vegetation in the upper reaches of the river

  5. Nitrate deposition in Maryland: Effects on water quality in the Chesapeake Bay

    SciTech Connect

    Sherwell, J.

    1997-12-31

    Anoxia (dissolved oxygen, DO < 2 ppm) and hypoxia (DO 2 - 5 ppm) are regularly occurring events in the estuarine waters of the United States. These events have been studied in the Chesapeake Bay for many years due to their adverse effect on the ecology, and commercial and recreational potential of the largest estuary in the country. Oxygen depletion is associated with excess nutrient supply (eutrophication), and the approach to control and prevention is through limiting this supply, particularly nitrogen. Oxides of nitrogen are a product of combustion, and on release are typically oxidized to nitrates and ultimately deposited. This deposition contributes to the total nitrogen loading to the Bay and its watershed. The application of the Clean Air Act Amendments of 1990 will result in reductions of nitrogen emissions from combustion sources; this paper reviews contributions of deposition to the Bay and watershed in Maryland, and estimates the reductions that may be achieved through the CAAA.

  6. Particle size distribution of suspended solids in the Chesapeake Bay entrance and adjacent shelf waters

    NASA Technical Reports Server (NTRS)

    Byrnes, M. R.; Oertel, G. F.

    1981-01-01

    Characteristics of suspended solids, including total suspended matter, total suspended inorganics, total suspended organics, particle size distribution, and the presence of the ten most prominent particle types were determined. Four research vessels simultaneously collected samples along four transects. Samples were collected within a 2-hour period that coincided with the maximum ebb penetration of Chesapeake Bay outwelling. The distribution of primary and secondary particle size modes indicate the presence of a surface or near-surface plume, possibly associated with three sources: (1) runoff, (2) resuspension of material within the Bay, and/or (3) resuspension of material in the area of shoals at the Bay mouth. Additional supportive evidence for this conclusion is illustrated with ocean color scanner data.

  7. The effects of changes in land cover and land use on nutrient loadings to the Chesapeake Bay using forecasts of urbanization

    NASA Astrophysics Data System (ADS)

    Roberts, Allen Derrick

    This dissertation examined the effects of land cover and land use (LC/LU) change on nutrient loadings (mass for a specified time) to the Chesapeake Bay, after future projections of urbanization were applied. This was accomplished by quantifying the comprehensive impacts of landscape on nutrients throughout the watershed. In order to quantify forecasted impacts of future development and LC/LU change, the current (2000) effects of landscape composition and configuration on total nitrogen (TN) and total phosphorus (TP) were examined. The effects of cover types were examined not only at catchment scales, but within riparian stream buffer to quantify the effects of spatial arrangement. Using the SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model, several compositional and configurational metrics at both scales were significantly (p value ≤ 0.05) correlated to nutrient genesis and transport and helped estimate loadings to the Chesapeake Bay with slightly better accuracy and precision. Remotely sensed forecasts of future (2030) urbanization were integrated into SPARROWusing these metrics to project TN and TP loadings into the future. After estimation of these metrics and other LC/LU-based sources, it was found that overall nutrient transport to the Chesapeake Bay will decrease due to agricultural land losses and fertilizer reductions. Although point and non-point source urban loadings increased in the watershed, these gains were not enough to negate decreased agricultural impacts. In catchments forecasted to undergo urban sprawl conditions by 2030, the response of TN locally generated within catchments varied. The forecasted placement of smaller patches of development within agricultural lands of higher nutrient production was correlated to projected losses. However, shifting forecasted growth onto or adjacent to existing development, not agricultural lands, resulted in projected gains. This indicated the importance of forecasted spatial

  8. Horizontal and vertical distribution of air pollution over Maryland and the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Loughner, C. P.; Goldberg, D.; Tzortziou, M.; Cede, A.; Abuhassan, N.; Retscher, C.; Weinheimer, A. J.; Ferrare, R. A.; Hostetler, C. A.; Lee, P.; Pickering, K. E.; Crawford, J. H.; Mannino, A.; Herman, J. R.; Knapp, D. J.; Montzka, D.; Marufu, T. L.; Dickerson, R. R.; Hair, J. W.; Rogers, R.; Obland, M. D.

    2011-12-01

    Understanding planetary boundary layer (PBL) development and collapse and the transport of pollutants between the PBL and free troposphere are critical in understanding air quality and climate. The PBL height controls the depth of the atmosphere where emissions near the surface are diluted. Transporting pollutants from the PBL to the free troposphere increases their lifetime and the distance they can travel. This causes pollutants to have a larger impact on climate and allow pollutants to impact air quality farther downwind. Regional models have difficulty calculating a large daytime surface temperature gradient present during the summer along coastlines between relatively cool surface waters and the warm ground. The cooler surface waters cause lower PBL heights over water than over land, and the temperature gradient along the coastline causes local circulations, like sea breezes, to develop and transport pollutants. The horizontal and vertical distribution of air pollution and the PBL height over Maryland and the Chesapeake Bay will be contrasted using ground-, ship-, and aircraft-based observations obtained during the DISCOVER-AQ and GeoCAPE-CBODAQ field campaigns during July 2011 and a regional air quality model. Airborne lidar observations of PBL height and in-situ aircraft profiles of O3, NO, NO2, and NOy mixing ratios; ship-based and ground-based observations of NO2 and O3 integrated column measurements; and ship-based and ground-based in-situ O3, NO, and NOy mixing ratios will be analyzed alongside model output. Model biases and future work on how to improve regional air quality model simulations will be identified.

  9. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Shen, Jian

    2012-06-01

    Understanding the changes of hydrodynamics in estuaries with respect to magnitudes of sea-level rise is important to understanding the changes of biogeochemical processes that are coupled tightly with the physical processes. Based on the 21st century sea-level rise scenarios projected by the U.S. Climate Change Science Program (CCSP, 2009), the Chesapeake Bay was chosen as a prototype to study the responses of the estuary to potential future sea-level rise. The numerical model results show that the average salt content, salt intrusion length, and stratification will increase as sea level rises. The changes of these parameters have obvious seasonal and inter-annual variations. Both the salt content and stratification show more increase in spring (following the high-flow periods) and wet years than in autumn (following the low-flow periods) and dry years. The salt intrusion length has larger increase and greater standard deviation in autumn than in spring. The transport time scales are used to illustrate the variations of transport processes as sea level rises, and results indicate that (1) the exchange flow would be strengthened but the downstream transport of fresh water would be slower; (2) the residence time of the Bay would increase due to the increased volume and change of circulation; (3) the vertical transport time (reference to water surface) has more pronounced increase and the volume of water mass with different age groups increases with different rates. As a result, the retention time of dissolved substances in the Bay would increase. Although the increased tidal currents would strengthen the vertical mixing, the increased stratification would weaken the vertical exchange. The increase of vertical transport time is due to the impact of stratification changes, which overwhelms the impact of tidal changes. As the bottom dissolved oxygen (DO) supply is predominated by the vertical exchanges in the Chesapeake Bay, the increased upstream transport time has a

  10. Why metrics matter: evaluating policy choices for reactive nitrogen in the Chesapeake Bay watershed.

    PubMed

    Birch, Melissa B L; Gramig, Benjamin M; Moomaw, William R; Doering, Otto C; Reeling, Carson J

    2011-01-01

    Despite major efforts, the reduction of reactive nitrogen (Nr) using traditional metrics and policy tools for the Chesapeake Bay has slowed in recent years. In this article, we apply the concept of the Nitrogen Cascade to the chemically dynamic nature and multiple sources of Nr to examine the temporal and spatial movement of different forms of Nr through multiple ecosystems and media. We also demonstrate the benefit of using more than the traditional mass fluxes to set criteria for action. The use of multiple metrics provides additional information about where the most effective intervention point might be. Utilizing damage costs or mortality metrics demonstrates that even though the mass fluxes to the atmosphere are lower than direct releases to terrestrial and aquatic ecosystems, total damage costs to all ecosystems and health are higher because of the cascade of Nr and the associated damages, and because they exact a higher human health cost. Abatement costs for reducing Nr releases into the air are also lower. These findings have major implications for the use of multiple metrics and the additional benefits of expanding the scope of concern beyond the Bay itself and support improved coordination between the Clean Air and Clean Water Acts while restoring the Chesapeake Bay. PMID:20853823

  11. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanistic–empirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  12. Sediment deposition from tropical storms in the upper Chesapeake Bay: Field observations and model simulations

    NASA Astrophysics Data System (ADS)

    Palinkas, Cindy M.; Halka, Jeffrey P.; Li, Ming; Sanford, Lawrence P.; Cheng, Peng

    2014-09-01

    Episodic flood and storm events are important drivers of sediment dynamics in estuarine and marine environments. Event-driven sedimentation has been well-documented by field and modeling studies, though both techniques have inherent limitations. A unique opportunity to integrate field observations and model results was provided in late August/early September 2011 with the passage of Hurricane Irene and Tropical Storm Lee in the Chesapeake Bay region. Because these two storms occurred within a relatively short period of time, both are potentially represented in the sediment record obtained during rapid-response cruises in September and October 2011. Associated sediment deposits were recognized in cores using classic flood-sediment signatures (fine grain size, uniform 7Be activity, physical stratification in x-radiographs) and were found to be <4 cm, thickest in the upper Bay. A coupled hydrodynamic-sediment transport model is used to simulate the sediment plume and sediment deposition onto the seabed. The predicted deposition thickness for TS Lee is in general agreement with the observational estimates. One exception with physical stratification but no 7Be activity appears to be due to extreme wave activity during Hurricane Irene. Integration of observations and modeling in this case greatly improved understanding of the transport and fate of flood sediments in the Chesapeake Bay.

  13. Isolation and characterization of mycobacteria from striped bass Morone saxatilis from the Chesapeake Bay

    USGS Publications Warehouse

    Rhodes, M.W.; Kator, H.; Kaattari, I.; Gauthier, D.; Vogelbein, W.; Ottinger, C.A.

    2004-01-01

    Mycobacteriosis in striped bass Morone saxatilis of Chesapeake Bay, USA, was first diagnosed in 1997 based on the presence of granulomatous inflammation and acid-fast bacteria in skin and spleen. To confirm histopathology, bacteriological detection and identification of mycobacteria were begun using splenic tissue from fish with and without skin ulcerations. On the basis of initial studies using a variety of selective and nonselective media, decontamination, homogenization and incubation conditions, a simple and quantitative recovery method using aseptic necropsy of splenic tissue was developed. Optimal recovery was obtained by spread-plating homogenates on Middlebrook 7H10 agar with incubation for 3 mo at 23??C. Mycobacteria were recovered from 76% (n = 149/196) of fish examined. Mycobacterial densities exceeded 104 colony forming units??g tissue-1 in 38% of samples (n = 63/168) that were examined using a quantitative approach. The most frequently recovered mycobacterium, present in 57% (n = 109/192) of characterized samples, was the recently named new species Mycobacterium shottsii. Polyinfections of M. shottsii and other mycobacteria were observed in 25% of samples (n = 47/192) with densities of M. shottsii usually 1 or more orders of magnitude higher than co-isolate(s). Other mycobacteria recovered included isolates that, based on phenotypic traits, resembled M. interjectum, M. marinum, M. scrofulaceum, M. szulgai and M. triplex. M. marinum, commonly associated with fish mycobacteriosis and human disease, was recovered infrequently (3%, n = 6/192). The presence of multiple mycobacterial types occurring at high densities suggests that a variety of mycobacteria could be causative agents of mycobacteriosis in striped bass from the Chesapeake Bay. Striped bass is the major recreational fish species in the Chesapeake Bay, and the significance of the current epizootic to human health and the potential adverse effects on fish stocks are not known.

  14. Direct and indirect estimates of natural mortality for Chesapeake Bay blue crab

    USGS Publications Warehouse

    Hewitt, D.A.; Lambert, D.M.; Hoenig, J.M.; Lipcius, R.N.; Bunnell, D.B.; Miller, T.J.

    2007-01-01

    Analyses of the population dynamics of blue crab Callinectes sapidus have been complicated by a lack of estimates of the instantaneous natural mortality rate (M). We developed the first direct estimates of M for this species by solving Baranov's catch equation for M given estimates of annual survival rate and exploitation rate. Annual survival rates were estimated from a tagging study on adult female blue crabs in Chesapeake Bay, and female-specific exploitation rates for the same stock were estimated by comparing commercial catches with abundances estimated from a dredge survey. We also used eight published methods based on life history parameters to calculate indirect estimates of M for blue crab. Direct estimates of M for adult females in Chesapeake Bay for the years 2002–2004 ranged from 0.42 to 0.87 per year and averaged 0.71 per year. Indirect estimates of M varied considerably depending on life history parameter inputs and the method used. All eight methods yielded values for M between 0.99 and 1.08 per year, and six of the eight methods yielded values between 0.82 and 1.35 per year. Our results indicate that natural mortality of blue crab is higher than previously believed, and we consider M values between 0.7 and 1.1 per year to be reasonable for the exploitable stock in Chesapeake Bay. Remaining uncertainty about Mmakes it necessary to evaluate a range of estimates in assessment models.

  15. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison

    NASA Astrophysics Data System (ADS)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Friedrichs, Carl T.; Bever, Aaron J.; Hood, Raleigh R.; Lanerolle, Lyon W. J.; Li, Ming; Linker, Lewis; Scully, Malcolm E.; Sellner, Kevin; Shen, Jian; Testa, Jeremy; Wang, Hao; Wang, Ping; Xia, Meng

    2016-04-01

    As three-dimensional (3-D) aquatic ecosystem models are used more frequently for operational water quality forecasts and ecological management decisions, it is important to understand the relative strengths and limitations of existing 3-D models of varying spatial resolution and biogeochemical complexity. To this end, 2-year simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically compared to each other and to historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen concentrations about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, which may be possible with very simple oxygen parameterizations, in contrast to the more complex full biogeochemical models required for scenario-based forecasting. However, models have difficulty simulating correct density and oxygen mixed layer depths, which are important ecologically in terms of habitat compression. Observations indicate a much stronger correlation between the depths of the top of the pycnocline and oxycline than between their maximum vertical gradients, highlighting the importance of the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus depend more on the ability of models to reproduce the correct mean and variability of the depth of the physically driven surface mixed layer than the precise magnitude of the vertical density gradient.

  16. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison

    NASA Astrophysics Data System (ADS)

    Irby, I. D.; Friedrichs, M. A. M.; Friedrichs, C. T.; Bever, A. J.; Hood, R. R.; Lanerolle, L. W. J.; Scully, M. E.; Sellner, K.; Shen, J.; Testa, J.; Li, M.; Wang, H.; Wang, P.; Linker, L.; Xia, M.

    2015-12-01

    As three-dimensional (3-D) aquatic ecosystem models are becoming used more frequently for operational water quality forecasts and ecological management decisions, it is important to understand the relative strengths and limitations of existing 3-D models of varying spatial resolution and biogeochemical complexity. To this end, two-year simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically compared to each other and to historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen concentrations about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, which may be possible with very simple oxygen parameterizations, in contrast to the more complex full biogeochemical models required for scenario-based forecasting. However, models have difficulty simulating correct density and oxygen mixed layer depths, which are important ecologically in terms of habitat compression. Observations indicate a much stronger correlation between the depths of the top of the pycnocline and oxycline than between their maximum vertical gradients, highlighting the importance of the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus depend more on the ability of models to reproduce the correct mean and variability of the depth of the physically driven surface mixed layer than the precise magnitude of the vertical density

  17. Chesapeake Bay fish–osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage

    USGS Publications Warehouse

    Lazarus, Rebecca; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Karouna-Reiner, Natalie K.; Erickson, Richard A.; Ottinger, Mary Ann

    2016-01-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p′-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p′-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population.

  18. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs.

    PubMed

    Hirsch, Robert M; Moyer, Douglas L; Archfield, Stacey A

    2010-10-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.Hirsch, Robert M., Douglas L. Moyer, and Stacey A. Archfield, 2010. Weighted Regressions on Time, Discharge, and Season (WRTDS), With an Application to Chesapeake Bay River Inputs. Journal of the American Water Resources Association (JAWRA) 46(5):857-880. DOI: 10.1111/j.1752-1688.2010.00482.x. PMID:22457569

  19. Algorithms for the remote estimation of chlorophyll-a in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ioannou, I.; Gilerson, A.; Ondrusek, M.; Foster, Robert; El-Habashi, Ahmed; Bastani, K.; Ahmed, S.

    2014-05-01

    Remote estimation of chlorophyll-a concentration [Chl-a] in the Chesapeake Bay from reflectance spectra is challenging because of the optical complexity and variability of the water composition as well as atmospheric corrections for this area. This work is focused on algorithms for near surface measurements. The performance and tuning of several well established global inversion algorithms that use the NIR and Blue-Green parts of the spectrum are analyzed together with recently proposed algorithm that use the Red-Green part of the spectrum. These algorithms are evaluated and tuned on our field data collected during summer 2013 field campaign in the in the Chesapeake Bay region . These data consist of a full range of water optical properties as well as chlorophyll concentrations and specific absorption spectra from in water samples. We then compare these algorithms with a multiband retrieval algorithm that was developed using neural networks (NN) and which was trained on simulated data generated through bio-optical modeling typical for a broad range of coastal water parameters, including those known for the Chesapeake Bay. This NN algorithm was then applied to our field measurements and used to retrieve the phytoplankton absorption at 443nm which was then related to [Chl-a]. In this process, special attention was paid to field data consistency in terms of both measured reflectance and [Chl-a] values, to avoid undesirable biases and trends. All algorithm retrievals were finally evaluated by several statistical indicators to arrive at their relative merits and potential for further improvements and application to satellite data.

  20. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing

  1. Chesapeake Bay fish-osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage.

    PubMed

    Lazarus, Rebecca S; Rattner, Barnett A; McGowan, Peter C; Hale, Robert C; Karouna-Renier, Natalie K; Erickson, Richard A; Ottinger, Mary Ann

    2016-06-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p'-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p'-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population. Environ Toxicol Chem 2016;35:1560-1575. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26822899

  2. Digital data used to relate nutrient input to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.; Martucci, Sarah K.

    2001-01-01

    Digital data sets compiled by the U.S. Geological Survey were used as input for a collection of Spatially Referenced Regressions On Watershed (SPARROW) attributes for the Chesapeake Bay region including parts of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. These regressions use a nonlinear statistical approach to relate nutrient sources and land-surface characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. A digital segmented-watershed network serves as the primary framework for spatially referencing nutrient-source and land-surface characteristic data within a geographic information system. Flow direction and flow accumulation generated from a 30-meter cell-size Digital Elevation Model and attributes from 1:500,000-scale stream data were used to generate stream and watershed networks. Spatial data sets representing nutrient inputs of total nitrogen and total phosphorus from the early 1990's were created and compiled from numerous sources. Data include atmospheric deposition, septic systems, point-source locations, land use, land cover, and agricultural sources such as commercial fertilizer and manure. Some land-surface characteristic data sets representing factors that affect the transport of nutrients also were compiled. Data sets include land use, land cover, average-annual precipitation and temperature, slope, hydrogeomorphic regions, and soil permeability. Nutrient-input and land-surface characteristic data sets merged with the segmented-watershed network provide the spatial detail by watershed segment required by SPARROW. Stream-nutrient load estimates for 132 sampling sites representing the early 1990's (103 for total nitrogen and 121 for total phosphorus) serve as the dependent variables for the regressions. These estimates were used to calibrate models of total nitrogen and total phosphorus depicting 1992 land-surface conditions. Examples of model predictions consist of

  3. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  4. Coastal seas as a context for science teaching: a lesson from Chesapeake Bay.

    PubMed

    Bell, Wayne H; Fowler, Erin M; Stein, J Andrew

    2003-01-01

    Lessons that employ authentic environmental data can enhance the ability of students to understand fundamental science concepts. This differs from traditional "environmental education" in that school curricula need not set aside time for educators to teach only environmental topics. Rather, the "environment" is used to advance student learning in science and technology. The success of this approach depends on programs that encourage scientists to communicate more effectively with teachers at all education levels. The expanding diversity of research and monitoring activities on the world's marine waters constitutes an outstanding potential education resource. Many of these projects involve remote sensing with sophisticated instrumentation and employ Internet technology to compile measurements, interpret data using graphs and satellite imagery, and share the results among scientific colleagues and the general public alike. Unfortunately, these resources, which constitute a much shortened path between research findings and textbook presentation, are seldom interpreted for use by K-12 educators. We have developed an example that uses the Chesapeake Bay as a paradigm to demonstrate how such interpretation can assist educators in teaching important principles in physical oceanography and marine ecology. We present this example using PowerPoint to conduct a virtual tour of selected Internet sources. Our example begins with the conceptual "salt wedge" circulation model of Chesapeake Bay as a partially mixed estuary. Teachers have the opportunity to explore this model using salinity, temperature, and dissolved oxygen data taken from a research vessel platform during summer professional development programs. This source of authentic data, originally obtained by teachers themselves, clearly demonstrates the presence of a picnocline and deep-water anoxia. Our lesson plan proceeds to interpret these data using additional Internet-based resources at increasing scales of time and

  5. Phytoplankton assemblages within the Chesapeake Bay plume and adjacent waters of the continental shelf

    NASA Technical Reports Server (NTRS)

    Marshall, H. G.

    1981-01-01

    The Chesapeake Bay plume was identified and plotted in relation to the presence and high concentrations of phytoplankton assemblages. Seasonal differences occurred within the plume during the collection period, with Skeletonema costatum and an ultraplankton component the dominant forms. Patchiness was found along the transects, with variations in composition and concentrations common on consecutive day sampling within the plume in its movement along the shelf. The presence of 236 species is noted, with their presence indicated for plume and shelf stations during the March, June, and October 1980 collections.

  6. Air- and Stream-Water-Temperature Trends in the Chesapeake Bay Region, 1960-2014

    USGS Publications Warehouse

    Jastram, John D.; Rice, Karen C.

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

  7. Pilot study for ambient toxicity testing in Chesapeake bay. Year two report

    SciTech Connect

    Hall, L.W.; Ziegenfuss, M.C.; Fischer, S.A.; Anderson, R.D.; Killen, W.D.

    1992-11-01

    The primary goal of the ambient toxicity testing pilot study was to identify toxic areas in living resource habitats of the Chesapeake Bay watershed by using a battery of standardized, directly modified or recently developed water column, sediment and suborganismal toxicity tests. Tests were conducted twice at the following stations: Potomac River-Morgantown, Potomac River-Dahlgren, Patapsco River and Wye River. A suite of inorganic and organic contaminants was evaluated in the water column and sediment during these tests. Standard water quality conditions were also evaluated in water and sediment from all stations.

  8. Activities of the US Geological Survey in Applications of Remote Sensing in the Chesapeake Bay Region

    NASA Technical Reports Server (NTRS)

    Wray, J. R.

    1978-01-01

    The application of remote sensing in the Chesapeake Bay region has been a central concern of three project activities of the U.S. Geological Survey: two are developmental, and one is operational. The two developmental activities were experiments in land-use and land-cover inventory and change detection using remotely sensed data from aircraft and from the LANDSAT and Skylab satellites. One of these is CARETS (Central Atlantic Regional Ecological Test Site). The other developmental task is the Census Cities Experiment in Urban Change Detection. The present major concern is an operational land-use and land-cover data-analysis program, including a supporting geographical information system.

  9. Factors affecting herbicide yields in the Chesapeake Bay watershed, June 1994

    USGS Publications Warehouse

    Hainly, R.A.; Kahn, J.M.

    1996-01-01

    Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 199094 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990-94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could

  10. An overview of dredging operations in the Chesapeake Bay. [environment effects and coastal ecology

    NASA Technical Reports Server (NTRS)

    Silver, R. H.

    1978-01-01

    Maintenance of the Baltimore and the Newport News/Norfolk harbors as well as of the Chesapeake and Delaware Canal is accomplished by different dredging operations which depend on the amount and type of material to be moved, water depth, and location of disposal sites. Methods for determining the physical or chemical-biological interactive effects of these activities on the environment and on the shellfish and finfish industries on the Bay are discussed. The types of dredges used are classed according to their mode of operation.

  11. Food habits of mute swans in the Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Osenton, P.C.; Lohnes, E.J.R.

    2004-01-01

    Unlike the tundra swan (Cygnus columbianus) that migrate to the Bay for the winter, the mute swan (Cygnus olor) is a year long resident and therefore has raised concerns among research managers over reports of conflicts with nesting native water birds and the consumption of submerged aquatic vegetation (SAV). Although data on the reduction of SAV by nesting mute swans and their offspring during the spring and summer are limited, food-habits data show that mute swans rely heavily on SAV during these months. Analyses of the gullet and gizzard of mute swans indicate that widgeon grass (Ruppia maritima) and eelgrass (Zostera marina) were the most important food items to mute swans during the winter and spring. Other organisms were eaten by mute swans, but represent small percentages of food. Corn (Zea mays) fed to the swans by Bay residents in late winter probably supplements their limited vegetative food resources at that time of year.

  12. Blue crab megalopal influx to Chesapeake Bay: Evidence for a wind-driven mechanism

    NASA Astrophysics Data System (ADS)

    Goodrich, David M.; van Montfrans, Jacques; Orth, Robert J.

    1989-09-01

    Field surveys indicate that blue crab larvae and postlarvae develop in shelf waters adjacent to the Chesapeake Bay entrance, and that postlarvae return to the estuary for settlement into nursery areas. The postlarval form is the megalopa, and in the offshore area most of these are found near the surface. However, the surface mean flow at the Bay entrance is seaward. Megalopae must either drop to the bottom to become entrained in the density-driven inflow or employ another transport process in the surface. A potentially important mechanism by which these megalopae can return is through episonic wind-driven exchange, which is a prominent feature of the circulation in this region. Using sea level data, the magnitude of the wind-induced changes in Bay volume can be calculated for any period when these data are available. During 1985-1987, megalopae were collected daily in the York River (a tributary of Chesapeake Bay) from August through November. Their temporal distribution was characterized by pulses of individuals, separated by periods when very few were collected. A total of 12 of 16 observed megalopal pulses occurred during positive volume anomalies. In particular, the largest peak of 1985 occurred during the massive storm surge associated with Hurricane Juan, implying large-scale transport of megalopae from the shelf. Analysis of 28 years of subtidal volume data indicates that an average of 10 major inflow events per year occur during the period when megalopae are present. This indicates that these wind-induced inflow events are not fortuitous but rather are a stable feature of the flow climate at the Bay entrance.

  13. The effect of sea level rise on coastal plain estuaries, with examples from Chesapeake Bay

    SciTech Connect

    Colman, S.M. )

    1990-05-01

    Estuaries are geologically transitory features whose evolution depends on a delicate balance among relative sea level basin geometry, shoreline erosion, fluvial sediment discharge, littoral drift, and tidal exchange. Models of modern estuarine development require specific sea level scenarios; almost all assume a continuation of the decelerating sea level rise of the last few thousand years. However, under constant external conditions, estuaries are ephemeral because they rapidly fill with fluvial and marine sediment. The rate of filling changes with time, but only a few thousand years are required to fill most estuaries. The persistence of estuaries, therefore, requires that relative sea level rises at a rate sufficient to compensate for the inherent tendency of estuaries to fill with sediment. Coastal plain estuaries, of which Chesapeake Bay is a prime example, are often referred to as drowned river valleys. Although this description is appropriate for the first-order morphology of Chesapeake Bay, the implied passivity can be misleading, especially in the high-tidal-energy area of the bay mouth where dramatic spit progradation and channel migration have occurred in the last few thousand years. Holocene sediment accumulation rates are more irregular along the length of the estuary than most models would predict; but in general, sediment accumulation has been greater at the mouth and at the head of the bay and less along the middle reaches. If relative sea level were to stabilize, the estuary would fill with sediment from both ends within a few thousand years. Evidence for two previous generations of the bay is preserved as the estuarine fill of major fluvial valleys, demonstrating that estuarine episodes have been closely tied to cyclic sea level changes.

  14. Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores

    USGS Publications Warehouse

    Karlsen, A.W.; Cronin, T. M.; Ishmans, S.E.; Willard, D.A.; Kerhin, R.; Holmes, C.W.; Marot, M.

    2000-01-01

    Environmentally sensitive benthic foraminifera (protists) from Chesapeake Bay were used as bioindicators to estimate the timing and degree of changes in dissolved oxygen (DO) over the past five centuries. Living foraminifers from 19 surface samples and fossil assemblages from 11 sediment cores dated by 210Pb, 137Cs, 14C, and pollen stratigraphy were analyzed from the tidal portions of the Patuxent, Potomac, and Choptank Rivers and the main channel of the Chesapeake Bay. Ammonia parkinsoniana, a facultative anaerobe tolerant of periodic anoxic conditions, comprises an average of 74% of modern Chesapeake foraminiferal assemblages (DO = 0.47 and 1.72 ml l-1) compared to 0% to 15% of assemblages collected in the 1960s. Paleoecological analyses show that A. parkinsoniana was absent prior to the late 17th century, increased to 10-25% relative frequency between approximately 1670-1720 and 1810-1900, and became the dominant (60-90%) benthic foraminiferal species in channel environments beginning in the early 1970s. Since the 1970s, deformed tests of A. parkinsoniana occur in all cores (10-20% of Ammonia), suggesting unprecedented stressful benthic conditions. These cores indicate that prior to the late 17th century, there was limited oxygen depletion. During the past 200 years, decadal scale variability in oxygen depletion has occurred, as dysoxic (DO = 0.1-1.0 ml l-1), perhaps short-term anoxic (DO < 0.1 ml l-1) conditions developed. The most extensive (spatially and temporally) anoxlc conditions were reached during the 1970s. Over decadal timescales, DO variability seems to be linked closely to climatological factors influencing river discharge; the unprecedented anoxia since the early 1970s is attributed mainly to high freshwater flow and to an increase in nutrient concentrations from the watershed.

  15. Larval transport and its association with recruitment of blue crabs to Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Johnson, Donald R.; Hester, Betty S.

    1989-05-01

    The blue crab ( Calinectes sapidus) harvest in Chesapeake Bay has undergone large yearly fluctuations, creating hardships in the fishing industry and uncertainties in its management. It has previously been suggested that part of the fluctuation may be due to environmental influences during a sensitive period in their life history when blue crab larvae are planktonic outside the bay. During this period, they reside principally in the neuston where wind forced transport has the maximum influence. It is shown, through vector/scalar correlations of wind stress with harvest, that approximately 36% of the harvest variation can be accounted for by the wind patterns during the months from June through September. The influence of alongshore sea level slope and cummulative estuarine discharge (both relating to transport through pressure gradient forcing) on harvest were investigated, but the results were negligible, or ambiguous at best.

  16. An investigation into using the CALMET/CALPUFF modeling system for assessing atmospheric nitrogen deposition in the Chesapeake Bay

    SciTech Connect

    Sherwell, J.; Garrison, M.

    1997-12-31

    The Maryland Department of Natural Resources Power Plant Research Program (PPRP) has a long-standing interest in the water quality of the Chesapeake Bay. A plan has been developed for the ten tributary regions in Maryland that feed into the Chesapeake Bay. Possible reductions in NO{sub x} deposition rates achievable from reductions in airborne NO{sub x} due to Clean Air Act mandates for power plants are of interest in helping to meet the nutrient reduction targets. The Regional Acid Deposition Model (RADM) has been used to estimate NO{sub x} deposition quantities and the extent of the airshed for the Chesapeake Bay. The CALMET/CALPUFF modeling system, recently made available to the public via EPA`s Technology Transfer Network (TTN), is a meteorological and concentration/deposition modeling system that offers a great deal of flexibility for modeling airborne NO{sub x} deposition and for possibly complementing the RADM analyses. A study by PPRP is underway to explore different ways in which the CALMET/CALPUFF modeling system can provide insights into magnitudes, sources, and possible reductions of NO{sub x} deposition to the Bay. The Penn State/NCAR Mesoscale Model (MM4) gridded data set for 1990 has been used for meteorological inputs, and EPA`s 1990 National Emissions Inventory for NO{sub x} has been used to derive source inputs. The CALPUFF analysis is being conducted to provide information in three primary areas: first, detailed deposition estimates for the northern part of the Chesapeake Bay around Baltimore; second, source or source group-specific estimates of deposition in the receptor region for both local and distant sources; and third, time series of deposition patterns throughout the receptor region. This paper reports on the experiences gained in preparing and running the CALMET/CALPUFF system, and on the preliminary results of the analysis of NO{sub x} deposition to the Chesapeake Bay.

  17. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments^1

    NASA Astrophysics Data System (ADS)

    Adelson, J. M.; Helz, G. R.; Miller, C. V.

    2001-01-01

    Sporadic, direct observations over a 50 yr period inadequately characterize the history of seasonal hypoxia and anoxia in Chesapeake Bay, a large estuary threatened by eutrophication. Here, we undertake a reconstruction of 20th century oxygen depletion in this estuary using Mo concentrations in 210Pb-dated sediments; Cu concentrations are used to control for anthropogenic influences. Cores from the central channel display mild Mo enrichments above crustal backgrounds (up to 5 μg/g) and strong Cu enrichments (up to 35 μg/g). Temporally, Cu enrichment (mostly anthropogenic) began earlier and stabilized in the last two thirds of the 20th century. In contrast, Mo enrichment has grown during the last two thirds of the century. Molybdenum enrichment is mostly hydrogenic, except in a section of the channel that receives additional Mo from erosion of Early Miocene shore deposits. Two geochemical mechanisms promote Mo enrichment: manganese refluxing concentrates dissolved MoO 42- at the sediment-water interface and sulfide substitution into MoO 42- produces thiomolybdates, which can be fixed by particles. The Mo enrichment mechanisms operate primarily during periods when bottom waters are anoxic and thiomolybdate formation can occur near the sediment-water interface. This implies a temporal coupling between water-column anoxia and Mo fixation even though fixation occurs only within sediments. The Mo enrichment profiles suggest that Chesapeake Bay has experienced growing O 2 depletion since the first half of the 20th century, but especially after 1960.

  18. An aerial photographic census of Chesapeake Bay and North Carolina canvasbacks

    USGS Publications Warehouse

    Haramis, G.M.; Goldsberry, J.R.; McAuley, D.G.; Derleth, E.L.

    1985-01-01

    Conventional 35 mm photography was used to conduct an aerial photographic census of canvasbacks (A. valisineria) throughout Chesapeake Bay (tidal Maryland and Virginia) and coastal North Carolina, Jan. 26-30, 1981. Flock size and sex ratio characteristics were determined from examination of color transparencies of 165 canvasback flocks totaling > 95,000 birds. A sex ratio of 2.91 males/female was determined from 68,769 birds, 80% of the birds in 150 flocks. Sex ratio for the Atlantic Flyway was projected as 2.90 males/female. The greatest number of canvasbacks and the widest range of flock size were recorded in Maryland waters; the fewest canvasbacks and the smallest average flock size in Virginia; and the fewest but on average the largest flocks of canvasbacks in North Carolina. Sex ratio varied latitudinally in the flyway with a tendency for males to occupy more northern and females more southern latitudes in winter. Sex ratio (males/female) was highest in Maryland (3.98), slightly lower in Virginia (3.71), and lowest in North Carolina (1.70). Locally, sex ratio varied with flock size. In Chesapeake Bay, small flocks ( 1000) flocks. By providing large-sample sex ratio information, as well as exact counts of birds, low-level 35-mm aerial photography is the most efficient and accurate means of determining canvasback population status in eastern coastal habitats.

  19. Bio-Optics of the Chesapeake Bay from Measurements and Radiative Transfer Calculations

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin

    2005-01-01

    We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.

  20. Water quality functions of riparian forest buffers in Chesapeake bay watersheds

    USGS Publications Warehouse

    Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.

    1997-01-01

    Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.

  1. Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes

    NASA Astrophysics Data System (ADS)

    Tang, Kam W.; Freund, Curtis S.; Schweitzer, Christopher L.

    2006-07-01

    We tested and refined the Neutral Red staining method for separating live and dead copepods in natural samples. Live copepods were stained red whereas dead copepods remained unstained. The staining results were not affected by method of killing, time of death or staining time. Tow duration had no significant effect on the percent dead copepods collected. The Neutral Red staining method was applied to study the occurrence of dead copepods along the York River and the Hampton River in the lower Chesapeake Bay during June-July, 2005. The zooplankton community was dominated by copepods; on average 29% of the copepod population appeared dead. Recovery of percent dead copepods did not differ between horizontal tows and vertical tows, suggesting that dead copepods were homogenously distributed in the water column. No significant relationship was found between the percent dead copepods and surface water temperature, salinity, Secchi depth or chlorophyll concentration. In laboratory experiments, dead copepods were decomposed by ambient bacteria and the rate of decomposition was temperature-dependent. Combining field and laboratory results we estimated that the non-consumptive mortality (mortality not due to predation) of copepods in the lower Chesapeake Bay was 0.12 d -1 under steady-state condition, which is within the global average of copepod mortality rate.

  2. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Kamiya, T.; Schwede, S.; Willard, D.A.

    2003-01-01

    We present paleoclimate evidence for rapid (< 100 years) shifts of ??? 2-4??C in Chesapeake Bay (CB) temperature ???2100, 1600, 950, 650, 400 and 150 years before present (years BP) reconstructed from magnesium/calcium (Mg/Ca) paleothermometry. These include large temperature excursions during the Little Ice Age (???1400-1900 AD) and the Medieval Warm Period (???800-1300 AD) possibly related to changes in the strength of North Atlantic thermohaline circulation (THC). Evidence is presented for a long period of sustained regional and North Atlantic-wide warmth with low-amplitude temperature variability between ???450 and 1000 AD. In addition to centennial-scale temperature shifts, the existence of numerous temperature maxima between 2200 and 250 years BP (average ???70 years) suggests that multi-decadal processes typical of the North Atlantic Oscillation (NAO) are an inherent feature of late Holocene climate. However, late 19th and 20th century temperature extremes in Chesapeake Bay associated with NAO climate variability exceeded those of the prior 2000 years, including the interval 450-1000 AD, by 2-3??C, suggesting anomalous recent behavior of the climate system. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  4. Two epizootic diseases in Chesapeake Bay commercial clams, Mya arenaria and Tagelus plebeius.

    PubMed

    Dungan, Christopher F; Hamilton, Rosalee M; Hudson, Karen L; McCollough, Carol B; Reece, Kimberly S

    2002-06-21

    Declining Chesapeake Bay harvests of softshell clams, together with historical and emerging reports of epizootic diseases in Mya arenaria, prompted a survey in summer 2000 of the health status of selected commercial clam populations. All sampled populations (8 M arenaria softshell clam, 2 Tagelus plebeius razor clam) were infected by Perkinsus sp. protozoans at prevalences ranging from 30 to 100% of sampled clams. Nucleotide sequences for the internal transcribed spacer (ITS) region of the rRNA gene complex were determined for clonal in vitro Perkinsus sp. isolates propagated from both M. arenaria and T plebeius. Multiple polymorphic sequences were amplified from each isolate, but phylogenetic analysis placed all sequences into 2 clades of a monophyletic group, which included both recently described clam parasites P. chesapeaki and P. andrewsi. Sequences amplified from each clonal isolate were found in both sister clades, one containing P. andrewsi and the other P. chesapeaki. Most (7 of 8) M. arenaria samples were also affected with disseminated neoplasia (DN), at prevalences of 3 to 37%, but neither T. plebeius sample showed DN disease. Disease mortalities projected for sampled clam populations, especially those affected by both diseases, may further deplete subtidal commercial clam populations in mesohaline portions of Chesapeake Bay. PMID:12152906

  5. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  6. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Gilerson, Alexander; Ondrusek, Michael; Tzortziou, Maria; Foster, Robert; El-Habashi, Ahmed; Tiwari, Surya Prakash; Ahmed, Sam

    2015-10-01

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive.

  7. Wind effects on the lateral structure of density-driven circulation in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Guo, Xinyu; Valle-Levinson, Arnoldo

    2008-10-01

    The response of the density-driven circulation in the Chesapeake Bay to wind forcing was studied with numerical experiments. A model of the bay with realistic bathymetry was first applied to produce the density-driven flow under average river discharge and tidal forcing. Subsequently, four spatially uniform wind fields (northeasterly, northwesterly, southwesterly, and southeasterly) were imposed to examine the resulting cross-estuary structure of salinity and flow fields. In general, northeasterly and northwesterly winds intensified the density-driven circulation in the upper and middle reaches of the bay, whereas southeasterly and southwesterly winds weakened it. The response was different in the lower bay, where downwind flow from the upper and middle reaches of the bay competed with onshore/offshore coastal flows. Wind remote effects were dominant, over local effects, on volume transports through the bay entrance. However, local effects were more influential in establishing the sea-level slopes that drove subtidal flows and salinity fields in most of the bay. The effect of vertical stratification on wind-induced flows was also investigated by switching it off. The absence of stratification allowed development of Ekman layers that reached depths of the same order as the water depth. Consequently, bathymetric effects became influential on the homogeneous flow structure causing the wind-induced flow inside the bay to show a marked transverse structure: downwind over the shallow areas and upwind in the channels. In the presence of stratification, Ekman layers became shallower and the wind-induced currents showed weaker transverse structure than those that developed in the absence of stratification. In essence, the wind-driven flows were horizontally sheared under weak stratification and vertically sheared under stratified conditions.

  8. USING THE REGIONAL ACID DEPOSITION MODEL TO DETERMINE THE NITROGEN DEPOSITION AIRSHED OF THE CHESAPEAKE BAY WATERSHED

    EPA Science Inventory

    The Regional Acid Deposition Model, RADM, an advanced Eulerian model, is used to develop an estimate of the primary airshed of nitrogen oxide (NOx) emissions that is contributing nitrogen deposition to the Chesapeake Bay watershed. rief description of RADM together with a summary...

  9. Comparison of SWAT and AnnAGNPS Applications to a Sub-Watershed Within the Chesapeake Bay Watershed in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted under the USDA-CEAP program on the Choptank watershed which is located within the Chesapeake Bay watershed in the Eastern Shore region of Maryland. The watershed is nearly 400 square mile and is dominated by corn and soybean productions. Poultry manure is being used heavil...

  10. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  11. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  12. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  13. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  14. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  15. Assessment of Superflux relative to fisheries research and monitoring. [airborne remote sensing of the Chesapeake bay plume and shelf regions

    NASA Technical Reports Server (NTRS)

    Thomas, J. P.

    1981-01-01

    Some of the findings of the Superflux program relative to fishery research and monitoring are reviewed. The actual and potential influences of the plume on the shelf ecosystem contiguous to the mouth of Chesapeake Bay are described and insights derived from the combined use of in situ and remotely sensed data are presented.

  16. Determining the influence of land-use on urea sources and transport within the Chesapeake Bay watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urea, a form of organic nitrogen found in fertilizers, manures and septic waste, has increasingly been discovered in surface waters throughout the Chesapeake Bay watershed and similar coastal systems. This nutrient is gaining recognition as a driver for the development of Harmful Algal Blooms (HABs)...

  17. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of St. Marks, Fla. 162.65 Section 162.65 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS...

  18. Monitoring of atrazine in the mainstream, major tributaries and streams of the Chesapeake Bay watershed: Ecological significance

    SciTech Connect

    Hall, L.W. Jr.; Anderson, R.D.

    1996-10-01

    The goal of this study was to provide exposure data for the atrazine in the mainstream tributaries of the Chesapeake Bay watershed. In 1995, ten stations were sampled four times per year. Atrazine was also measured at 4 hour intervals for 72 hours at all stream sites during one rain event during the spring. Results are described.

  19. ADDITIONAL BENEFICIAL OUTCOMES OF IMPLEMENTING THE CHESAPEAKE BAY TMDL: Quantification and description of ecosystem services not monetized

    EPA Science Inventory

    Over the last 60 years, the Chesapeake Bay water quality and seagrass beds have diminished to the point that the system is less able to support abundant crabs and diverse fish, feed waterfowl, and produce safe recreational opportunities. Further, the long-term resilience of the B...

  20. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  1. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  2. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  3. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  4. 33 CFR 165.501 - Chesapeake Bay entrance and Hampton Roads, VA and adjacent waters-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Hampton Roads, VA and adjacent waters-Regulated Navigation Area. 165.501 Section 165.501 Navigation and... Areas Fifth Coast Guard District § 165.501 Chesapeake Bay entrance and Hampton Roads, VA and adjacent... Sector Hampton Roads. Designated representative of the Captain of the Port means a person, including...

  5. DELIVERING TIMELY WATER QUALITY INFORMATION TO YOUR COMMUNITY: THE CHESAPEAKE BAY/NATIONAL AQUARIUM IN BALTIMORE EMPACT PROJECTS

    EPA Science Inventory

    The TTSD in conjunction with a multi-agency Chesapeake Bay Project team, has developed this handbook to provide state and local governments and others "How-to" steps needed to design, employ, and maintain water quality monitoring, data management/delivery, and communications syst...

  6. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et al. (2006)

    EPA Science Inventory

    Pomeroy et al. (2006) proposed that temporal and spatial mismatches between eastern oyster filtration and phytoplankton abundance will preclude restored stocks of eastern oysters from reducing the severity of hypoxia in the deep channel of central Chesapeake Bay. We refute this c...

  7. A benchmark-multi-disciplinary study of the interaction between the Chesapeake Bay and adjacent waters of the Virginian Sea

    NASA Technical Reports Server (NTRS)

    Hargis, W. J., Jr.

    1981-01-01

    The social and economic importance of estuaries are discussed. Major focus is on the Chesapeake Bay and its interaction with the adjacent waters of the Virginia Sea. Associated multiple use development and management problems as well as their internal physical, geological, chemical, and biological complexities are described.

  8. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  9. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  10. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  11. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  12. 33 CFR 165.502 - Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zone; Cove Point Liquefied Natural Gas Terminal, Chesapeake Bay, Maryland. 165.502 Section 165.502 Navigation and... Areas Fifth Coast Guard District § 165.502 Safety and Security Zone; Cove Point Liquefied Natural...

  13. Development of a web-based runoff forecasting tool to guide fertilizer and manure application in the Chesapeake Bay watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managing the land application of fertilizers and manures is critical to protecting water quality in the Chesapeake Bay watershed. While modern nutrient management tools are designed to help farmers with their long-term field management planning, they do not support daily decisions such as when to a...

  14. Pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in transport in two Atlantic coastal plain tributaries and loadings to Chesapeake Bay

    USGS Publications Warehouse

    Foster, G.D.; Miller, C.V.; Huff, T.B.; Roberts, E., Jr.

    2003-01-01

    Concentrations of current-use pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine (OC) insecticides were determined above the reach of tide in the Chesterville Branch and Nanticoke River on the eastern shore of Chesapeake Bay during base-flow and storm-flow hydrologic regimes to evaluate mass transport to Chesapeake Bay. The two rivers monitored showed relatively high concentrations of atrazine, simazine, alachlor, and metolachlor in comparison to previously investigated western shore tributaries, and reflected the predominant agricultural land use in the eastern shore watersheds. The four current use pesticides showed the greatest seasonal contribution to annual loadings to tidal waters of Chesapeake Bay from the two rivers, and the relative order of annual loadings for the other contaminant classes was PAHs > PCBs > OC insecticides. Annual loadings normalized to the landscape areas of selected Chesapeake Bay watersheds showed correlations to identifiable source areas, with the highest pesticide yields (g/km2/yr) occurring in eastern shore agricultural landscapes, and the highest PAH yields derived from urban regions.

  15. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant,...

  16. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant,...

  17. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant,...

  18. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and... Areas Fifth Coast Guard District § 165.505 Security Zone; Calvert Cliffs Nuclear Power Plant,...

  19. 33 CFR 165.505 - Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Calvert Cliffs Nuclear Power Plant, Chesapeake Bay, Calvert County, Maryland. 165.505 Section 165.505 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED...

  20. Estimation of Bottom Trawl Catch Efficiency for Two Demersal Fishes, Atlantic Croaker and White Perch in Chesapeake Bay

    EPA Science Inventory

    We present an efficiency analysis of a fisheries-independent demersal trawl survey in Chesapeake Bay, the largest estuary in the United States, that is presently being used for multi-species fisheries assessment and management. The manuscript presents an in situ analysis of demer...

  1. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  2. Contaminant exposure and reproductive success of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern.

    PubMed

    Rattner, B A; McGowan, P C; Golden, N H; Hatfield, J S; Toschik, P C; Lukei, R F; Hale, R C; Schmitz-Afonso, I; Rice, C P

    2004-07-01

    The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of DDT and other toxic organochlorine contaminants in the 1970s. Ospreys are now nesting in the most highly polluted portions of the Bay. In 2000 and 2001, contaminant exposure and reproduction were monitored in ospreys nesting in regions of concern, including Baltimore Harbor and the Patapsco River, the Anacostia and middle Potomac rivers, and the Elizabeth River, and a presumed reference site consisting of the South, West, and Rhode rivers. A "sample egg" from each study nest was collected for contaminant analysis, and the fate of eggs remaining in each nest (n = 14-16/site) was monitored at 7- to 10-day intervals from egg incubation through fledging of young. Ospreys fledged young in regions of concern (observed success: 0.88-1.53 fledglings/active nest), although productivity was marginal for sustaining local populations in Baltimore Harbor and the Patapsco River and in the Anacostia and middle Potomac rivers. Concentrations of p,p'-DDE and many other organochlorine pesticides or metabolites, total PCBs, some arylhydrocarbon receptor-active PCB congeners and polybrominated diphenyl ether congeners, and perfluorooctanesulfonate were often greater in sample eggs from regions of concern compared to the reference site. Nonetheless, logistic regression analyses did not provide evidence linking marginal productivity to p,p'-DDE, total PCBs, or arylhydrocarbon receptor-active PCB congener exposure in regions of concern. In view of the moderate concentrations of total PCBs in eggs from the reference site, concerns related to new and emerging toxicants, and the absence of ecotoxicological data for terrestrial vertebrates in many Bay tributaries, a more thorough spatial evaluation of contaminant exposure in ospreys throughout the Chesapeake may be warranted. PMID:15346786

  3. Connectivity in estuarine white perch populations of Chesapeake Bay: evidence from historical fisheries data

    NASA Astrophysics Data System (ADS)

    Kraus, Richard T.; Secor, David H.

    2005-07-01

    The role of complex life cycles in patterns of estuarine habitat use can be evaluated by studying stage-specific changes in abundances between principal habitats. Here, we evaluated how two primary habitats, tidal freshwater (salinity <3) and brackish water (salinity 3-15), structured juvenile white perch ( Morone americana) abundance for eight sub-estuaries of the Chesapeake Bay. In addition, abundances of juveniles in the two primary habitats were related to indices of overall sub-estuary (population) adult abundance. Smaller sub-estuaries (e.g., Patuxent, Nanticoke, Rappahannock) showed higher juvenile abundances in brackish habitats whereas larger systems (e.g., Head of Bay, Potomac, and James) exhibited higher juvenile abundances in freshwater. Within each sub-estuary, we observed strong and positive correlations between freshwater and brackish juvenile abundances. Though adult abundance indices were poor predictors of juvenile abundance in either habitat, a significant amount of variability in adult abundance was explained by juvenile abundances in prior years for most sub-estuaries. The strength of the association varied by sub-estuary and habitat and suggested that juvenile habitats may make disproportionate contributions to the adult population, dependent upon sub-estuary. There were also significant correlations in juvenile abundance between sub-estuaries, indicating inter-annual synchrony in recruitment among populations. Within sub-estuaries, river discharge did not provide a direct indication of recruitment variability, and currently there is no clear explanation for correlation in juvenile abundances between sub-estuaries. Still, a positive association between correlations in river discharge and significant correlations in juvenile abundances supported previous hypotheses that freshwater flow may be an important factor influencing juvenile abundance, but it is likely that other environmental factors are also driving synchronous fluctuations in

  4. Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay estuary

    USGS Publications Warehouse

    Rattner, Barnett A.; McGowan, Peter C.

    2007-01-01

    A search of the Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database revealed that 70% of the 839 Chesapeake Bay records deal with avian species. Studies conducted on waterbirds in the past 15 years indicate that organochlorine contaminants have declined in eggs and tissues, although p,p'-DDE, total polychlorinated biphenyls (PCBs) and coplanar PCB congeners may still exert sublethal and reproductive effects in some locations. There have been numerous reports of avian die-off events related to organophosphorus and carbamate pesticides. More contemporary contaminants (e.g., alkylphenols, ethoxylates, perfluorinated compounds, polybrominated diphenyl ethers) are detectable in bird eggs in the most industrialized portions of the Bay, but interpretation of these data is difficult because adverse effect levels are incompletely known for birds. Two moderaterized oil spills resulted in the death of several hundred birds, and about 500 smaller spill events occur annually in the watershed. With the exception of lead, concentrations of cadmium, mercury, and selenium in eggs and tissues appear to be below toxic thresholds for waterbirds. Fishing tackle and discarded plastics, that can entangle and kill young and adults, are prevalent in nests in some Bay tributaries. It is apparent that exposure and potential effects of several classes of contaminants (e.g., dioxins, dibenzofurans, rodenticides, pharmaceuticals, personal care products, lead shot, and some metals) have not been systematically examined in the past 15 years, highlighting the need for toxicological evaluation of birds found dead, and perhaps an avian ecotoxicological monitoring program. Although oil spills, spent lead shot, some pesticides, and industrial pollutants occasionally harm Chesapeake avifauna, contaminants no longer evoke the population level effects that were observed in Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) through the 1970s.

  5. Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay Estuary

    USGS Publications Warehouse

    Rattner, B.A.; McGowan, P.C.

    2007-01-01

    A search of the Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database revealed that 70% of the 839 Chesapeake Bay records deal with avian species. Studies conducted on waterbirds in the past 15 years indicate that organochlorine contaminants have declined in eggs and tissues, although p,p?DDE, total polychlorinated biphenyls (PCBs) and coplanar PCB congeners may still exert sublethal and reproductive effects in some locations. There have been numerous reports of avian die-off events related to organophosphorus and carbamate pesticides. More contemporary contaminants (e.g., alkylphenols, ethoxylates, pertluorinated compounds, polybrominated diphenyl ethers) are detectable in bird eggs in the most industrialized portions of the Bay, but interpretation of these data is difficult because adverse effect levels are incompletely known for birds. Two moderate-sized oil spills resulted in the death of several hundred birds, and about 500 smaller spill events occur annually in the watershed. With the exception of lead, concentrations of cadmium, mercury, and selenium in eggs and tissues appear to be below toxic thresholds for waterbirds. Fishing tackle and discarded plastics, that can entangle and kill young and adults, are prevalent in nests in some Bay tributaries. It is apparent that exposure and potential effects of several classes of contaminants (e.g., dioxins, dibenzofurans, rodenticides, pharmaceuticals, personal care products, lead shot, and some metals) have not been systematically examined in the past 15 years, highlighting the need for toxicological evaluation of birds found dead, and perhaps an avian ecotoxicological monitoring program. Although oil spills, spent lead shot, some pesticides, and industrial pollutants occasionally harm Chesapeake avifauna, contaminants no longer evoke the population level effects that were observed in Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) through the 1970s.

  6. Contaminant exposure and reproductive success of Ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern

    USGS Publications Warehouse

    Rattner, B.A.; McGowan, P.C.; Golden, N.H.; Hatfield, J.S.; Toschik, P.C.; Lukei, R.F., Jr.; Hale, R.C.; Schmitz-Afonso, I.; Rice, C.P.

    2004-01-01

    The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of DDT and other toxic organochlorine contaminants in the 1970s. Ospreys are now nesting in the most highly polluted portions of the Bay. In 2000 and 2001, contaminant exposure and reproduction were monitored in ospreys nesting in regions of concern, including Baltimore Harbor and the Patapsco River, the Anacostia and middle Potomac rivers, and the Elizabeth River, and a presumed reference site consisting of the South, West, and Rhode rivers. A 'sample egg' from each study nest was collected for contaminant analysis, and the fate of eggs remaining in each nest (n = 14-16/site) was monitored at 7- to 10-day intervals from egg incubation through fledging of young. Ospreys fledged young in regions of concern (observed success: 0.88 -1.53 fledglings/active nest), although productivity was marginal for sustaining local populations in Baltimore Harbor and the Patapsco River and in the Anacostia and middle Potomac rivers. Concentrations of p,p'DDE and many other organochlorine pesticides or metabolites, total PCBs, some arylhydrocarbon receptor-active PCB congeners and polybrominated diphenyl ether congeners, and perfluorooctanesulfonate were often greater in sample eggs from regions of concern compared to the reference site. Nonetheless, logistic regression analyses did not provide evidence linking marginal productivity to p,p' -DDE, total PCBs, or arylhydrocarbon receptor-active PCB congener exposure in regions of concern. In view of the moderate concentrations of total PCBs in eggs from the reference site, concerns related to new and emerging toxicants, and the absence of ecotoxicological data for terrestrial vertebrates in many Bay tributaries, a more thorough spatial evaluation of contaminant exposure in ospreys throughout the Chesapeake may be warranted.

  7. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  8. MARYLAND/VIRGINIA CHESAPEAKE BAY AND TRIBUTARIES BENTHIC COUNT, BIOMASS, AND SEDIMENT AND BOTTOM WATER ANALYSIS FILES (AND RELATED EVENT FILES)

    EPA Science Inventory

    The Chesapeake Bay Program in conjunction with Maryland Department of the Environment /Maryland Department of Natural Resources and the Virginia Department of Environmental Quality has conducted benthic sampling, sediment and bottom water analysis. Available datasets include: 1...

  9. Photoproduction of Peroxides and CDOM Photobleaching in Surface Waters of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Osburn, C.; O'Sullivan, D. W.; Boyd, T. J.; Neale, P. J.

    2002-12-01

    Chromophoric dissolved organic matter (CDOM) is the optically active component of DOM in surface waters that undergoes chemical change upon absorption of sunlight. Photochemical peroxide generation is an important component of the photochemical oxidation of CDOM in natural waters as well as in redox cycling. However, little work has been done to relate the change in optical properties of CDOM with the change in DOM concentration caused by peroxide-induced oxidation, especially in the transition zone between terriginous CDOM and marine CDOM in the coastal ocean. We have begun to investigate the relationship between CDOM optical properties and the production of hydrogen peroxide (HP) and methylhydroperoxide (MHP) in water samples collected along a salinity gradient in the Chesapeake Bay. We found that waters with strong CDOM absorbance (presumably terriginous in source) produced substantial amounts of HP and MHP, the latter being, to our knowledge, the first data showing photochemical production of MHP in natural waters. Filtered water samples were exposed to a solar simulator (roughly 2x surface irradiance at solar noon for August in Washington, DC) for 4-5 hours in a controlled laboratory setting. Dissolved absorbance (ad[λ ]), CDOM fluorescence normalized to 0.1 N quinine sulfate (QSU), dissolved organic carbon (DOC) concentration (μM C), and HP/MHP (nM) were measured in samples after irradiation and compared to dark-corrected initial results. Loss of absorbance or fluorescence indicated photobleaching of CDOM. Changes in synchronous fluorescence spectra indicated photooxidation of carbon moieties in DOM. These results were compared to production of peroxides. Our results suggest a substantial production of peroxides from waters containing abundant terriginous C (humic substances), supporting the assertion that photochemically-mediated oxidation of DOM is a dominant mechanism for its removal in coastal waters. The Elizabeth River (VA), which drains the Dismal

  10. Near-shore hypoxia in the Chesapeake Bay: Patterns and relationships among physical factors

    NASA Astrophysics Data System (ADS)

    Breitburg, Denise L.

    1990-06-01

    Near-shore, shallow waters in the Chesapeake Bay periodically experience episodes of anoxia or severe hypoxia during summer. In order to examine the severity and temporal pattern of hypoxia, and environmental factors that may lead to such episodes, dissolved oxygen, salinity and temperature were measured at 15-min intervals during the summers of 1987 and 1988 in a western shore oyster bed. Bottom dissolved oxygen concentrations averaged lower at a 4-m site than at a 2-m site. At the 4-m site, dissolved oxygen concentrations dropped below 2 mg l -1 during approximately 40% of days and below 1 mg l -1 during approximately 10% of days each summer. However, diel fluctuations in oxygen concentrations were sufficiently large that even on days of the most severe oxygen minima, dissolved oxygen concentrations always reached or exceeded a level tolerable by most estuarine organisms during some part of the day. During episodes of severe hypoxia on the western shore of the Chesapeake Bay, oxygen minima (1) coincided with increased salinities and ebb tides, (2) were preceded by winds from the S-SSE (minima of ⩽0·5 1 mg l -1) or SW (minima of 0·6-1·1 mg l -1), and (3) were reached during 22.00-06.00 hours. Severe hypoxia at the study site therefore appeared to result from intrusions of bottom water, which were most effectively driven by southerly winds. Tidal currents were required to provide the final force that brought deep water close to shore. The diel pattern of intrusions is most likely caused by winds, which were often either too strong or had too weak a southerly component to permit intrusions (without near-shore mixing and reaeration) to occur during afternoon-early evening hours, and the diel periodicity of tides. Short-term fluctuations in temperature and salinity were not as great as fluctuations in dissolved oxygen when compared to seasonal fluctuations of each parameter. For many organisms, short-term fluctuations in temperature and salinity may therefore be

  11. Bacterioplankton and organic carbon dynamics in the lower mesohaline chesapeake bay.

    PubMed

    Jonas, R B; Tuttle, J H

    1990-03-01

    The mesohaline portion of the Chesapeake Bay is subject to annual summertime hypoxia and anoxia in waters beneath the pycnocline. This dissolved oxygen deficit is directly related to salinity-based stratification of the water column in combination with high levels of autochthonously produced organic matter and a very high abundance of metabolically active bacteria. Throughout the water column in the lower, mesohaline part of the bay, between the Potomac and Rappahannock rivers, near the southern limit of the mainstem anoxia, bacterial abundance often exceeded 10 x 10 cells per ml and bacterial production exceeded 7 x 10 cells per liter per day during summer. Bacterial biomass averaged 34% (range, 16 to 126%) of the phytoplankton biomass in summer. These values are equal to or greater than those found farther north in the bay, where the oxygen deficit is more severe. Seasonal variations in bacterial abundance and production were correlated with phytoplankton biomass (lag time, 7 to 14 days), particulate organic carbon and nitrogen, and particulate biochemical oxygen demand in spring; but during summer, they were significantly correlated only with dissolved biochemical oxygen demand. During summer, dissolved biochemical oxygen demand can account for 50 to 60% of the total biochemical oxygen demand throughout the water column and 80% in the bottom waters. There is a clear spring-summer seasonal shift in the production of organic matter and in the coupling of bacteria and autochthonous organic matter. The measurement of dissolved, microbially labile organic matter concentrations is crucial in understanding the trophic dynamics of the lower mesohaline part of the bay. The absolute levels of organic matter in the water column and the bacterial-organic carbon relationships suggest that a lower bay source of organic matter fuels the upper mesohaline bay oxygen deficits. PMID:16348148

  12. Stable-isotope analysis of canvasback winter diet in upper Chesapeake Bay

    USGS Publications Warehouse

    Haramis, G.M.; Jorde, D.G.; Macko, S.A.; Walker, J.L.

    2001-01-01

    A major decline in submerged aquatic vegetation (SAV) in Chesapeake Bay has altered the diet of wintering Canvasbacks (Aythya valisineria) from historically plant to a combination of benthic animal foods, especially the ubiquitous Baltic clam (Macoma balthica), supplemented with anthropogenic corn (Zea mays). Because the isotopic signature of corn is readily discriminated from bay benthos, but not SAV, we used stable-isotope methodology to investigate the corn-SAV component of the winter diet of Canvasbacks. Feeding trials with penned Canvasbacks were conducted to establish turnover rates and fractionation end-point loci of *13C and *15N signatures of whole blood for individual ducks fed ad libitum diets of (1) Baltic clams, (2) Baltic clams and corn, and (3) tubers of wild celery (Vallisneria americana). Turnover time constants averaged 4.5 weeks, indicating that signatures of wild ducks would be representative of bay diets by late February. Isotopic signatures of wild Canvasbacks sampled in February fell on a continuum between end-point loci for the Baltic clam and the combination Baltic clam and corn diet. Although that finding verifies a clear dependence on corn-SAV for wintering Canvasbacks, it also reveals that not enough corn-SAV is available to establish ad libitum consumption for the 15,000+ Canvasbacks wintering in the upper bay. On the basis of mean *13C signature of bay Canvasbacks (n=59) and ingestion rates from feeding trials, we estimated that 258 kg corn per day would account for the observed *13C enrichment and supply 18% of daily energetic needs for 15,000 Canvasbacks. That level of corn availability is so realistic that we conclude that SAV is likely of little dietary importance to Canvasbacks in that portion of the bay.

  13. Cytochrome P450 and organochlorine contaminants in black-crowned night-herons from the Chesapeake Bay region, USA

    SciTech Connect

    Rattner, B.A.; Melancon, M.J.; Rice, C.P.; Riley, W. Jr.; Eisemann, J.; Hines, R.K.

    1997-11-01

    Black-crowned night-heron offspring were collected from a relatively uncontaminated coastal reference site and two sites in the Chesapeake Bay watershed. Hepatic microsomal activities of benzyloxyresorufin-O-dealkylase and ethoxyresorufin-O-dealkylase were elevated in pipping embryos from the Baltimore Harbor colony compared to the reference site, whereas values in embryos from the Rock Creek Park colony were intermediate. Concentrations of organochlorine pesticides and metabolites in pipping embryos from both sites in the Chesapeake watershed were greater than at the reference site but below the known threshold for reproductive impairment. However, concentrations of 10 arylhydrocarbon receptor-active polychlorinated biphenyl (PCB) congeners and estimated toxic equivalents were up to 37-fold greater in embryos collected from these two sites in the Chesapeake Bay region, with values for toxic congeners 77 and 126 exceeding those observed in pipping heron embryos from the Great Lakes. Monooxygenase activity of pipping embryos was associated with concentrations of several organochlorine pesticides, total PCBs, arylhydrocarbon receptor-active PCB congeners, and toxic equivalents, providing further evidence of the value of cytochrome P450 as a biomarker of organic contaminant exposure. Organochlorine contaminant levels were greater in 10-d-old nestlings from Baltimore Harbor than the reference site but had no apparent effect on monooxygenase activity or growth. These findings demonstrate induction of cytochrome P450 in pipping black-crowned night-heron embryos in the Chesapeake Bay region, probably by exposure to PCB congeners of local origin, and the accumulation of organochlorine pesticides and metabolites in nestling herons from Baltimore Harbor. Biomonitoring and additional waterbird species that appear to be more sensitive to PCBs than black-crowned night-herons is recommended to document health of waterbirds and remediation of the Chesapeake Bay.

  14. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality

    USGS Publications Warehouse

    Orth, Robert J.; Williams, Michael R.; Marion, Scott R.; Wilcox, David J.; Carruthers, Tim J.B.; Moore, Kenneth A.; Kemp, W.M.; Dennison, William C.; Rybicki, Nancy B.; Peter Bergstrom; Batiuk, Richard A.

    2010-01-01

    Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance (1984-2006). Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAVabundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high

  15. Delineation of surf scoter habitat in Chesapeake Bay, Maryland: macrobenthic and sediment composition of surf scoter feeding sites

    USGS Publications Warehouse

    Kidwell, D.M.; Perry, M.C.

    2005-01-01

    Surveys of surf scoters (Melanitta perspicillata) along the Atlantic coast of the United States have shown population declines in recent decades. The Chesapeake Bay has traditionally been a key wintering area for surf scoters. Past and present research has shown that bivalves constitute a major food item for seaducks in the Chesapeake Bay, with surf scoters feeding primarily on hooked mussel (Ischadium recurvum) and dwarf surf clam (Mulinia lateralis). Degraded water quality conditions in the Chesapeake Bay have been well documented and have been shown to greatly influence the composition of benthic communities. Large concentrations of feeding surf scoters (>500 individuals) in the Bay were determined through monthly boat surveys. Locations consistently lacking surf scoters were also determined. Macrobenthos were seasonally sampled at 3 locations containing scoters and 3 locations without scoters. A 1 kilometer square grid was superimposed over each location using GIS and sampling sites within the square were randomly chosen. Benthos were sampled at each site using SCUBA and a meter square quadrat. Biomass and size class estimates were determined for all bivalves within each kilometer square. Results indicated that scoter feeding sites contained significantly greater biomass of M. lateralis, I. recurvum, and Gemma gemma than locations where no scoters were present. Substrate differences were also detected, with scoter feeding sites being composed of a sand/shell mix while non-scoter sites consisted primarily of mud. This data indicates that surf scoters in the Chesapeake Bay are selecting areas with high densities of preferred food items, potentially maximizing there foraging energetics. In addition, two scoter feeding sites also contained a patchwork of eastern oyster (Crassostrea virginica) and oyster shell, on which much of the I. recurvum was attached. This suggests the possibility that surf scoters utilize eastern oyster habitat and the dramatic depletion of

  16. An association of benthic foraminifera and gypsum in Holocene sediments of estuarine Chesapeake Bay, USA

    USGS Publications Warehouse

    Cann, J.; Cronin, T.

    2004-01-01

    Two cores of Holocene sediments recovered from the Cape Charles Channel of Chesapeake Bay yielded radiocarbon ages of about 6.8 to 5.8 ka for the lower intervals. Fossil foraminifera preserved in these lower sediments are dominated by species of Elphidium, which make up about 90% of the assemblage throughout, and probably signify deposition in hypersaline waters. Buccella frigida and Ammonia beccarii are the only other species commonly present. Hypersalinity of bottom waters seems to have been maintained by water-density stratification in a basin-like section of the channel. In core PTXT-4-P-1 transition to modern Chesapeake conditions, in which numbers of Ammonia beccarii exceed those of Elphidium, commenced about 400 years ago. In core PTXT-3-P-2 hypersalinity is further signified by the presence of abundant euhedral crystals of gypsum in association with the fossil Elphidium. This occurrence of gypsum is not attributed to palaeoclimatic aridity, but rather to inflow of groundwater from adjacent gypsiferous Miocene strata. The study shows that in palaeoclimatic investigations the significance of the presence of gypsum should be evaluated with caution - it does not necessarily signify an evaporative regime.

  17. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    SciTech Connect

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.

  18. Concentration of hydrocarbons associated with particles in the shelf waters adjacent to the entrance of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Wade, T. L.; Oertel, G. F.

    1981-01-01

    Particulate hydrocarbon concentrations were measured in 94 water samples. The concentrations ranged from below the detection limit ( 0.7 micro-G/L) to 32 micro-g/l. The mean for all samples was 5.6 micro-g/l. Particulate hydrocarbon concentrations are higher in the Bay mouth and lower in the shelf waters adjacent to the entrance of Chesapeake Bay. No coherent particulate hydrocarbon distribution is seen with depth in the water column. The Bay is postulated as one of the possible chronic sources of particulate hydrocarbons for the adjacent shelf waters.

  19. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  20. Quaternary geologic map of the Chesapeake Bay 4 degrees x 6 degrees quadrangle, United States

    USGS Publications Warehouse

    State compilations by Cleaves, Emery T.; Glaser, John D.; Howard, Alan D.; Johnson, Gerald H.; Wheeler, Walter H.; Sevon, William D.; Judson, Sheldon; Owens, James P.; Peebles, Pamela C.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Weide, David L.

    1987-01-01

    The Quaternary Geologic Map of the Chesapeake Bay 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  1. Chesapeake Bay nutrient pollution: contribution from the land application of sewage sludge in Virginia.

    PubMed

    Land, Lynton S

    2012-11-01

    Human health concerns and the dissemination of anthropogenic substances with unknown consequences are the reasons most often given why disposal of municipal sewage sludge in landfills or using the organic waste as biofuel is preferable to land application. But no "fertilizer" causes more nitrogen pollution than sludge when applied according to Virginia law. Poultry litter is the only other "fertilizer" that causes more phosphorus pollution than sludge. Cost savings by the few farmers in Virginia who use sludge are far less than the costs of the nitrogen pollution they cause. A ban on the land application of all forms of animal waste is very cost-effective and would reduce Chesapeake Bay nutrient pollution by 25%. PMID:22831861

  2. Water protection in the Baltic Sea and the Chesapeake Bay: institutions, policies and efficiency.

    PubMed

    Iho, Antti; Ribaudo, Marc; Hyytiäinen, Kari

    2015-04-15

    The Baltic Sea and the Chesapeake Bay share many characteristics. Both are shallow, brackish marine areas that suffer from eutrophication. Successful policies targeting point source pollution have lowered nutrient loads in both areas, but achieving the desired marine quality will require further abatement: efforts may be extended to more complicated and expensive pollution sources, notably agricultural nonpoint loads. Despite their ecological similarities, the two watersheds have different histories and institutional settings and have thus adopted different policies. Comparing and contrasting the policies reveal ways to improve the efficiency of each and ways to avoid the path of trial and error. No comparison of the parallel protection efforts, which involve expenditures of hundreds of millions of dollars annually, has been carried out to date. The present paper analyzes the policies applied in the two regions, distilling the results into six recommendations for future steps in preserving what are valuable sea areas. PMID:25752532

  3. Applications of remote sensing to estuarine management. [environmental surveys of the Chesapeake Bay (U.S.)

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.

    1976-01-01

    Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.

  4. Consolidation and erosion of deposited cohesive sediments in Northern Chesapeake Bay, USA

    USGS Publications Warehouse

    Halka, J.; Panageotou, W.; Sanford, L.

    1991-01-01

    Deposits of dredged cohesive sediments were monitored for changes in volume, bulk characteristics, and susceptibility to resuspension and erosion at disposal sites in Chesapeake Bay. There is a 23-48% volume reduction during the first six months, with correspondingly greater changes over longer time periods. A bulk density increase from 1.15 to 1.3 g/cm3 due to dewatering and compaction accounts for the majority of the volume change. Tidal current induced resuspension is a minor process. The observed suspended sediment load can be accounted for by erosion of only a fraction of a millimeter of sediment on each tidal cycle. ?? 1991 Springer-Verlag New York Inc.

  5. Identification of largemouth bass virus in the introduced Northern Snakehead inhabiting the Chesapeake Bay watershed.

    PubMed

    Iwanowicz, L; Densmore, C; Hahn, C; McAllister, P; Odenkirk, J

    2013-09-01

    The Northern Snakehead Channa argus is an introduced species that now inhabits the Chesapeake Bay. During a preliminary survey for introduced pathogens possibly harbored by these fish in Virginia waters, a filterable agent was isolated from five specimens that produced cytopathic effects in BF-2 cells. Based on PCR amplification and partial sequencing of the major capsid protein (MCP), DNA polymerase (DNApol), and DNA methyltransferase (Mtase) genes, the isolates were identified as Largemouth Bass virus (LMBV). Nucleotide sequences of the MCP (492 bp) and DNApol (419 pb) genes were 100% identical to those of LMBV. The nucleotide sequence of the Mtase (206 bp) gene was 99.5% identical to that of LMBV, and the single nucleotide substitution did not lead to a predicted amino acid coding change. This is the first report of LMBV from the Northern Snakehead, and provides evidence that noncentrarchid fishes may be susceptible to this virus. PMID:23895368

  6. Total selenium and selenium (IV) in the James River estuary and southern Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Takayanagi, Kazufumi; Wong, George T. F.

    1984-01-01

    The concentrations of total selenium (Se) and Se (IV) were determined in the surface waters of 30 stations located in the James River and southern Chesapeake Bay. The concentrations of total Se and Se (IV) ranged from 0·28 to 1·91 nM and from 0·07 to 1·36 nM, respectively, between salinities of 31·78 and 0·06‰. The concentration of Se (VI), calculated as the difference between the concentrations of total Se and Se (IV), ranged from 0·08 to 0·67 nM. While total Se seemed to be conservative in this study area at salinities above 0·36‰, Se (IV) might have been removed during estuarine mixing. The removal of Se (IV) occurred primarily at salinities below 4‰ possibly via the oxidation of Se (IV) to Se (VI).

  7. Remote in-situ elemental analysis systems for underwater application. [measuring pollutants in the chesapeake bay

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Stehling, K. R.

    1978-01-01

    The systems approach, theoretical measurement calculations, and preliminary measurements to be used in monitoring and mapping pollutants (such as traces of heavy metals) in the Chesapeake Bay are discussed. A neutron gamma-ray method is under development for demonstrating the system. The excitation source to be used is a machine accelerator using a deuterium/tritium reaction to produce 14-MeV neutrons. The neutrons excite characteristic gamma ray emission from the neutron irradiated surface. The discrete line emission produced can be used to infer both qualitative and quantitative elemental composition. A data preprocessor will accumulate, digitize, store, format, and prepare the data for transmission which can be accomplished by telephone, microwave, and possibly satellite link to central processors.

  8. Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay.

    PubMed Central

    West, P A; Okpokwasili, G C; Brayton, P R; Grimes, D J; Colwell, R R

    1984-01-01

    Phenanthrene-degrading bacteria were isolated from Chesapeake Bay samples by the use of a solid medium which had been overlaid with an ethanol solution of phenanthrene before inoculation. Eighteen representative strains of phenanthrene-degrading bacteria with 21 type and reference bacteria were examined for 123 characteristics representing physiological, biochemical, and nutritional properties. Relationships between strains were computed with several similarity coefficients. The phenogram constructed by unweighted-pair-group arithmetic average linkage and use of the simple Jaccard (SJ) coefficient was used to identify seven phena. Phenanthrene-degrading bacteria were identified as Vibrio parahaemolyticus and Vibrio fluvialis by their clustering with type and reference strains. Several phenanthrene-degrading bacteria resembled Enterobacteriaceae family members, although some Vibrio-like phenanthrene degraders could not be identified. PMID:6508314

  9. Movements and bioenergetics of canvasbacks wintering in the upper Chesapeake Bay

    USGS Publications Warehouse

    Howerter, D.W.

    1990-01-01

    The movement patterns, range areas and energetics of canvasbacks (Aythya valisineria) wintering in the upper Chesapeake Bay, Maryland, were investigated. Eighty-seven juvenile female canvasbacks were radio-tracked between 30 December 1988 and 25 March 1989. Diurnal time and energy budgets were constructed for a time of day-season matrix for canvasbacks using riverine and main bay habitats. Canvasbacks were very active at night, making regular and often lengthy crepuscular movements (x = 11.7 km) from near shore habitats during the day to off shore habitats at night. Movement patterns were similar for birds using habitats on the eastern and western shores of the Bay. Canvasbacks had extensive home ranges averaging 14,286 ha, and used an average of 1.97 core areas. Sleeping was the predominant diurnal behavior. Telemetry indicated that canvasbacks actively fed at night. Canvasbacks spent more time in active behaviors (e.g. swimming, alert) on the eastern shore than on the western shore. Similarly, canvasbacks were more active during daytime hours at locations where artificial feeding occurred. Behavioral patterns were only weakly correlated with weather patterns. Canvasbacks appeared to reduce energy expenditure in mid-winter by reducing distances moved, reducing feeding activities and increasing the amount of time spent sleeping. This pattern was observed even though 1988-89 mid-winter weather conditions were very mild.

  10. Long-term distribution patterns of remotely sensed water quality parameters in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Le, Chengfeng; Hu, Chuanmin; Cannizzaro, Jennifer; Duan, Hongtao

    2013-08-01

    Chesapeake Bay is the largest and one of the most productive estuaries in the U.S., where long-term monitoring and assessment of its water quality are necessary to understand trends and events in order to support management decisions. Significant progress has been made during the past decade in developing remote sensing algorithms for estimating two key water quality parameters, chlorophyll-a concentration (Chla, mg m-3) and diffuse light attenuation coefficient at 490 nm (Kd (490), m-1), from satellite ocean color measurements in oceanic, coastal, and estuarine waters. Yet deriving a robust Chla data product for Chesapeake Bay still remains a challenge because of its complex optical properties. Here, a recently developed algorithm approach (Red-Green Chlorophyll Index or RGCI, based on red-green remote-sensing reflectance (Rrs (λ)) ratios) was tested, validated, and applied to Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to establish a 14-year (September 1997 to December 2011) Chla Environmental Data Record (EDR). The new approach showed significant improvement over the traditional blue-green Rrs (λ) band-ratio algorithms (e.g., OC4, OC3M), with consistent performance for MODIS (mean relative error = 40.9%, mean ratio = 1.09) and SeaWiFS (MRE = 45.8%, mean ratio = 1.09) for Chla ranging between 1 and 50 mg m-3. Anomaly and EOF analyses revealed strong spatial gradients, seasonality, and climate-driven inter-annual changes in the satellite-based Chla EDR. These changes were highly correlated with satellite-based Kd (490) EDR, leading to the development of a Water Quality Decision Matrix (WQDM) and providing support to on-going nutrient reduction management programs for this estuary.

  11. Role of wetlands in attenuation of storm surges using coastal circulation model (ADCIRC), Chesapeake Bay region

    NASA Astrophysics Data System (ADS)

    Deb, Mithun; Ferreira, Celso; Lawler, Seth

    2014-05-01

    The Chesapeake Bay, Virginia is subject to storm surge from extreme weather events nearly year-round; from tropical storms and hurricanes during the summer and fall, (e.g., hurricanes Isabel [2003] and Sandy [2012]), and from nor'easters during the winter (e.g., winter storms Nemo and Saturn [2013]). Coastal wetlands can deliver acute fortification against incoming hurricane storm surges. Coastal wetlands and vegetation shape the hydrodynamics of storm surge events by retaining water and slowing the propagation of storm surge, acting as a natural barrier to flooding. Consequently, a precise scheme to quantify the effect of wetlands on coastal surge levels was also prerequisite. Two wetland sites were chosen in the Chesapeake Bay region for detailed cataloging of vegetation characteristics, including: height, stem diameter, and density. A framework was developed combining these wetlands characterizations with numerical simulations. Storms surges were calculated using Coastal circulation model (ADCIRC) coupled to a wave model (SWAN) forced by an asymmetric hurricane vortex model using an unstructured mesh (comprised of 1.8 million nodes) under a High Performance Computing environment. The Hurricane Boundary Layer (HBL) model was used to compute wind and pressure fields for historical tropical storms and for all of the synthetic storms. Wetlands were characterized in the coupled numerical models by bathymetric and frictional resistance. Multiple model simulations were performed using historical hurricane data and hypothetical storms to compare the predicted storm surge inundation resulting from various levels of wetlands expansion or reduction. The results of these simulations demonstrate the efficacy of wetlands in storm surge attenuation and also the outcome will scientifically support planning of wetlands restoration projects with multi-objective benefits for society.

  12. Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture.

    PubMed

    Boesch, D F; Brinsfield, R B; Magnien, R E

    2001-01-01

    Chesapeake Bay has been the subject of intensive research on cultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce controllable sources of nitrogen (N) and phosphorous (P) by 40% by the year 2000, although the causes and effects of eutrophication were incompletely known. Subsequent research, modeling, and monitoring have shown that: (i) the estuarine ecosystem had been substantially altered by increased loadings of N and P of approximately 7- and 18-fold, respectively; (ii) hypoxia substantially increased since the 1950s; (iii) eutrophication was the major cause of reductions in submerged vegetation; and (iv) reducing nutrient sources by 40% would improve water quality, but less than originally thought. Strong public support and political commitment have allowed the Chesapeake Bay Program to reduce nutrient inputs, particularly from point sources, by 58% for P and 28% for N. However, reductions of nonpoint sources of P and N were projected by models to reach only 19% and 15%, respectively, of controllable loadings. The lack of reductions in nutrient concentrations in some streams and tidal waters and field research suggest that soil conservation-based management strategies are less effective than assumed. In 1997, isolated outbreaks of the toxic dinoflagellate Pfiesteria piscicida brought attention to the land application of poultry manure as a contributing factor to elevated soil P and ground water N concentrations. In addition to developing more effective agricultural practices, emerging issues include linking eutrophication and living resources, reducing atmospheric sources of N, enhancing nutrient sinks, controlling sprawling suburban development, and predicting and preventing harmful algal blooms. PMID:11285890

  13. Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhong, Liejun; Boicourt, William C.

    2005-12-01

    Regional Ocean Modeling System (ROMS) is used to develop a new three-dimensional hydrodynamic model for the Chesapeake Bay estuary. Hindcast simulations are conducted for 2 years with markedly different annual river discharges and are compared with time series measurements and high-resolution hydrographic data. The model shows skill in reproducing observed temporal variability in sea level height, salinity, and subtidal current. The agreement with observations is better in the normal runoff year 1997 than in the high runoff year 1996. The model qualitatively reproduces the along-channel and cross-channel salinity distributions during low-to-medium runoff periods. However, during high runoff periods it predicts weaker stratification and a more diffuse halocline than shown by observations. This model/data discrepancy is related to the deficiency of turbulent mixing parameterizations in strong stratification. We have experimented with four turbulence closure schemes (Mellor-Yamada/k-kl, k-ɛ, k-ω, and KPP models) in ROMS but found little difference in the model results. However, vertical stratification shows a strong sensitivity to the background diffusivity. The vertical diffusivity inferred from the model is found to be set by the background diffusivity except in the surface and bottom boundary layers where the turbulence schemes produce similar diffusivity distributions. Among the schemes explored, KPP and k-kl scheme with a background diffusivity of 10-5 or 10-6 m2 s-1 provide the best simulations of the Chesapeake Bay estuary. Both the model sensitivity study and model/data comparison highlight the importance of obtaining a more realistic parameterization for turbulence mixing in a strong pycnocline.

  14. Using GIS to Quantify Riparian Buffer Bypassing on Agricultural Fields in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Funkhouser, L.; Hancock, G. S.; Kaste, J. M.

    2011-12-01

    Forested riparian buffers are intended to reduce the sediment and nutrient loads to streams delivered by agricultural runoff. Within the Chesapeake Bay Watershed, buffers are mandated to be 100' wide along agricultural fields bordered by perennial streams. When flow into buffers is widely disseminated buffers have the potential to significantly reduce pollutant levels entering streams. However, several studies show that flow across buffers is often concentrated, producing channelized flow that bypasses the buffer and presumably reduces buffer effectiveness. Previous studies have relied on field observations in relatively few locations, however, and the extent of bypassing is not well constrained. We hypothesize that buffer bypassing and the associated reduction in buffer effectiveness is a widespread phenomenon. Here we use GIS to determine flow patterns on agricultural fields and to identify locations of concentrated flow through buffers in the Virginia Coastal Plain within the Chesapeake Bay Watershed. Using DEMs with ≤10m resolution, we determine flow accumulation along field margins and identify points with flow accumulation sufficient to generate concentrated flow into buffers. Preliminary data from ~20 fields has been obtained by creating a field outline attached to flow accumulation points generated in ArcMap. We find that 66% to 91% of the total area draining to the field margins pass through discrete points representing <5% of the field margin length. On-field observations show evidence for surface flow and channelization at approximately 90% of the discrete drainage points identified in our hydrologic analysis using GIS. Our preliminary observations suggest buffer bypassing is widespread in this region of relatively low relief. We will present GIS and field analysis from a total of ~50 fields and attempt to identify the area/slope relationship necessary to generate channelization and bypassing at field margins.

  15. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    PubMed

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  16. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    PubMed Central

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  17. Marine radiocarbon reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic Coast of North America

    NASA Astrophysics Data System (ADS)

    Rick, Torben C.; Henkes, Gregory A.; Lowery, Darrin L.; Colman, Steven M.; Culleton, Brendan J.

    2012-01-01

    Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ∆R, ranging from 148 ± 46 14C yr on the Potomac River to - 109 ± 38 14C yr at Swan Point, Maryland. The ∆R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (- 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ∆R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.

  18. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay.

    PubMed

    Dauer, Daniel M; Llansó, Roberto J

    2003-01-01

    The extent of degradation of benthic communities of the Chesapeake Bay was determined by applying a previously developed benthic index of biotic integrity at three spatial scales. Allocation of sampling was probability-based allowing areal estimates of degradation with known confidence intervals. The three spatial scales were: (1) the tidal Chesapeake Bay; (2) the Elizabeth River watershed: and (3) two small tidal creeks within the Southern Branch of the Elizabeth River that are part of a sediment contaminant remediation effort. The areas covered varied from 10(-1) to 10(4) km2 and all were sampled in 1999. The Chesapeake Bay was divided into ten strata, the Elizabeth River into five strata and each of the two tidal creeks was a single stratum. The determination of the number and size of strata was based upon consideration of both managerially useful units for restoration and limitations of funding. Within each stratum 25 random locations were sampled for benthic community condition. In 1999 the percent of the benthos with poor benthic community condition for the entire Chesapeake Bay was 47% and varied from 20% at the mouth of the Bay to 72% in the Potomac River. The estimated area of benthos with poor benthic community condition for the Elizabeth River was 64% and varied from 52-92%. Both small tidal creeks had estimates of 76% of poor benthic community condition. These kinds of estimates allow environmental managers to better direct restoration efforts and evaluate progress towards restoration. Patterns of benthic community condition at smaller spatial scales may not be correctly inferred from larger spatial scales. Comparisons of patterns in benthic community condition across spatial scales, and between combinations of strata, must be cautiously interpreted. PMID:12620014

  19. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    NASA Astrophysics Data System (ADS)

    Feng, Yang; Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr-1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr-1) and buried (46 × 109 g N yr-1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr-1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  20. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed, version 3.0

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    2004-01-01

    Chesapeake Bay restoration efforts are focused on improving water quality, living resources, and ecological habitats by 2010. One aspect of the water-quality restoration is the refinement of strategies designed to implement nutrient-reduction practices within the Bay watershed. These strategies are being refined and implemented by resource managers of the Chesapeake Bay Program (CBP), a partnership comprised of various Federal, State, and local agencies that includes jurisdictions within Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia. The U.S. Geological Survey (USGS), an active member of the CBP, provides necessary water-quality information for these Chesapeake Bay nutrient-reduction strategy revisions and evaluations. The formulation and revision of effective nutrient-reduction strategies requires detailed scientific information and an analytical understanding of the sources, transport, and delivery of nutrients to the Chesapeake Bay. The USGS is supporting these strategies by providing scientific information to resource managers that can help them evaluate and understand these processes. One statistical model available to resource managers is a collection of SPAtially Referenced Regressions On Watershed (SPARROW) attributes, which uses a nonlinear regression approach to spatially relate nutrient sources and watershed characteristics to nutrient loads of streams throughout the Chesapeake Bay watershed. Developed by the USGS, information generated by SPARROW can help resource managers determine the geographical distribution and relative contribution of nutrient sources and the factors that affect their transport to the Bay. Nutrient source information representing the late 1990s time period was obtained from several agencies and used to create and compile digital spatial datasets of total nitrogen and total phosphorus contributions that served as input sources to the SPARROW models. These data represent