Science.gov

Sample records for chilled ammonia process

  1. Alstom's chilled ammonia CO{sub 2} capture process advances toward commercialization

    SciTech Connect

    Peltier, R.

    2008-02-15

    Carbon dioxide emissions aren't yet regulated by the EPA, but it is likely they will be soon. There are many technically feasible, but as-yet-undemonstrated ways to reduce the considerable carbon footprint of any coal-fired plant, whether it uses conventional or unconventional technology. One promising approach to removing CO{sub 2} from a plant's flue gas uses chilled ammonium bicarbonate to drive the separation process.

  2. Chills

    MedlinePlus

    ... of rest. Evaporation cools the skin and reduces body temperature. Sponging with lukewarm water (about 70°F [21. ... you actually shaking? What has been the highest body temperature connected with the chills? Did the chills happen ...

  3. The Ammonia-Soda Process.

    ERIC Educational Resources Information Center

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  4. Chills

    MedlinePlus

    ... fever or an increase in the body's core temperature. Chills are an important symptom with certain diseases ... rest. Evaporation cools the skin and reduces body temperature. Sponging with lukewarm water (about 70°F [21. ...

  5. Chill Down Process of Hydrogen Transport Pipelines

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Klausner, James

    2006-01-01

    A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.

  6. TREATMENT OF AMMONIA PLANT PROCESS CONDENSATE EFFLUENT

    EPA Science Inventory

    The report gives results of an examination of contaminant content and selected treatment techniques for process condensate from seven different ammonia plants. Field tests were performed and data collected on an in-plant steam stripping column with vapor injection into the reform...

  7. Ammonia

    Integrated Risk Information System (IRIS)

    Ammonia ; CASRN 7664 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  8. Ammonia measurement with a pH electrode in the ammonia/urea-SCR process

    NASA Astrophysics Data System (ADS)

    Kröcher, Oliver; Elsener, Martin

    2007-03-01

    The selective catalytic reduction of nitrogen oxides with ammonia (ammonia SCR) and urea (urea SCR), respectively, is a widespread process to clean flue and diesel exhaust gases due to its simplicity and efficiency. The main challenge of the process is to minimize the ammonia emissions downstream of the SCR catalyst. We found that ammonia emissions of >10 ppm can reliably be detected with a simple pH electrode in the presence of CO2, SOx, NOx, and moderately weak organic acids. 10-20 ppm of ammonia in the exhaust gas are sufficient to neutralize the acids and to increase the pH value from 3 to 6. On this basis a continuous measuring method for ammonia was developed, which was used to control the dosage of urea in the SCR process. While keeping the ammonia emissions after the SCR catalyst at 5-30 ppm an average NOx removal efficiency (DeNOx) of >95% were achieved at a diesel test rig. The method can also be applied for exhaust gases with higher acid contents, if a basic pre-filter is added adsorbing the acidic exhaust components. Compared to water as absorption solution, more precise ammonia measurements are possible, if a 0.1 M NH4Cl absorption solution is applied, whose pH value is changing as a Nernst function of the ammonia concentration.

  9. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    PubMed

    Wang, Shuai; Bai, Ge; Wang, Shu; Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-05-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  10. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  11. Localized stem chilling alters carbon processes in the adjacent stem and in source leaves.

    PubMed

    De Schepper, Veerle; Vanhaecke, Lynn; Steppe, Kathy

    2011-11-01

    Transport phloem is no longer associated with impermeable pipes, but is instead considered as a leaky system in which loss and retrieval mechanisms occur. Local stem chilling is often used to study these phenomena. In this study, 5-cm- lengths of stems of 3-year-old oak trees (Quercus robur L.) were locally chilled for 1 week to investigate whether observations at stem and leaf level can be explained by the leakage-retrieval mechanism. The chilling experiment was repeated three times across the growing season. Measurements were made of leaf photosynthesis, carbohydrate concentrations in leaves and bark, stem growth and maximum daily stem shrinkage. Across the growing season, a feedback inhibition in leaf photosynthesis was observed, causing increased dark respiration and starch concentration. This inhibition was attributed to the total phloem resistance which locally increased due to the cold temperatures. It is hypothesized that this higher phloem resistance increased the phloem pressure above the cold block up to the source leaves, inducing feedback inhibition. In addition, an increase in radial stem growth and carbohydrate concentration was observed above the cold block, while the opposite occurred below the block. These observations indicate that net lateral leakage of carbohydrates from the phloem was enhanced above the cold block and that translocation towards regions below the block decreased. This behaviour is probably also attributable to the higher phloem resistance. The chilling effects on radial stem growth and carbohydrate concentration were significant in the middle of the growing season, while they were not at the beginning and near the end of the growing season. Furthermore, maximum daily shrinkages were larger above the cold block during all chilling experiments, indicating an increased resistance in the xylem vessels, also generated by low temperatures. In conclusion, localized stem chilling altered multiple carbon processes in the source leaves

  12. Ammonia Process by Pressure Swing Adsorption

    SciTech Connect

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  13. Streamlined ammonia removal from wastewater using biological deammonification process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we evaluated biological deammonification process to more economically remove ammonia from livestock wastewater. The process combines partial nitritation (PN) and anammox. The anammox is a biologically mediated reaction that oxidizes ammonia (NH4+) and releases di-nitrogen gas (N2) unde...

  14. A lamp thermoelectricity based integrated bake/chill system for advanced photoresist processing

    NASA Astrophysics Data System (ADS)

    Tay, Arthur; Chua, Hui-Tong; Wu, Xiaodong; Wang, Yuheng

    2006-03-01

    The design of an integrated bake/chill module for photoresist processing in microlithography is presented, with emphasis on the spatial and temporal temperature uniformity of the substrate. The system consists of multiple radiant heating zones for heating the substrate, coupled with an array of thermoelectric devices (TEDs) which provide real-time dynamic and spatial control of the substrate temperature. The TEDs also provide active cooling for chilling the substrate to a temperature suitable for subsequent processing steps. The use of lamp for radiative heating also provide fast ramp-up and ramp-down rates during thermal cycling operations. The feasibility of the proposed approach is demonstrate via simulations based on first principle heat transfer modeling. The distributed nature of the design also means that a simple decentralized control scheme can be used to achieve tight spatial and temporal temperature uniformity specifications.

  15. Chilling-induced leaf abscission of Ixora coccinea plants. III. Enhancement by high light via increased oxidative processes.

    PubMed

    Michaeli, Rina; Philosoph-Hadas, Sonia; Riov, Joseph; Shahak, Yosepha; Ratner, Kira; Meir, Shimon

    2001-11-01

    The role of increased oxidation induced by successive stresses of chilling and high light in the induction of leaf abscission was studied in Ixora coccinea plants in relation to auxin metabolism and oxidative processes. Exposure of plants following dark chilling (7 degrees C for 3 days) to high light (500-700 &mgr;mol m-2 s-1 photosynthetically active radiation) for 5 h at 20-25 degrees C enhanced chilling-induced leaf abscission. This abscission was inhibited by pretreatment with the antioxidant butylated hydroxyanisole, alpha-naphthaleneacetic acid or the ethylene action inhibitor, 1-methylcyclopropene. The oxidative processes initiated during the low light period following the dark chilling period, such as indoleacetic acid (IAA) decarboxylation and lipid peroxidation, were further enhanced by subsequent exposure to high light. Photoinhibition, expressed by the reduction of the chlorophyll fluorescence parameter Fv/Fm, was evident following exposure to high light, irrespective of the temperature of the pretreatment, but this reduction persisted only in chilled plants. This suggests that oxidative processes generated during and after the chilling period might have inhibited the recovery from photoinhibition. The chilling stress under darkness induced a 60% reduction in superoxide dismutase (SOD) activity and significant increases (130-600%) in the activities of several other antioxidative enzymes. These data suggest that the chilling-induced reduction in SOD activity may well be responsible for the increase in the oxidative stress induced by the subsequent light treatment, as expressed by the increased enzymatic activities. Taken together, this study provides further support for the involvement of oxidative processes in the events occurring in tissues exposed to sequential chilling and light stresses, leading to reduction in free IAA content in the abscission zone and to leaf abscission. PMID:12060278

  16. Campylobacter and Salmonella in broiler processing – transport through chill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When market age broilers are transported to processing plants, feces from individual birds in a Campylobacter positive flock can contaminate transport containers (1). Feces, and therefore Campylobacter, is deposited on the floor surface of transport cages. When placed in soiled transport cages pr...

  17. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  18. Dewaxing process using agitated heat exchanger to chill solvent-oil and wax slurry to wax filtration temperature

    SciTech Connect

    Broadhurst, Th.E.

    1984-04-10

    In an improved process for dewaxing waxy hydrocarbon oils, wherein said waxy oil is cooled in an indirect chilling zone to a temperature greater than the wax separation temperature whereby wax is precipitated to form a wax-oil-solvent slurry, cooling the slurry to the wax separation temperature in an indirect chilling zone thereby precipitating a further portion of wax from said waxy oil and separating said precipitated wax from the wax-oil-solvent slurry in solid-liquid separation means, the improvement comprises using as the indirect chilling zone an indirect heat exchanger means operated at a high level of agitation. Expressed in terms of Impeller Reynolds Number the agitation is on the order of about 1,000 to 1,000,000. Alternatively, the direct chilling zone is totally replaced by the high agitation indirect heat exchanger means.

  19. Process monitoring and control: Ammonia measurements in off-gases

    SciTech Connect

    Allendorf, S.; Ottesen, D.; Johnson, H.; Lambert, D.

    1997-05-01

    This interim report describes technical progress in the development of a laser-based, real-time optical monitor for ammonia in off-gas streams from defense waste processing applications at the Savannah River Site (SRS). An optimized monitor has been fabricated by Spectrum Diagnostix using a tunable diode laser operating in the 1.55-{mu}m wavelength region. Instrument detection limits of 2-3 ppm for ammonia are demonstrated that are more than adequate for the SRS required sensitivity of 10 ppm. Laboratory research at Sandia revealed a lack of interference at the operating wavelength by other molecular species that might be present in the SRS off-gas stream. Initial tests of the ammonia monitor by Sandia were conducted at SRS using a bench-scale processing system for surrogate defense waste sludges. The results of these experiments confirmed that ammonia concentrations issuing from the ammonia-scrubber section of the bench-scale reactor were below the design limit of 10 ppm. We also found that no other molecular species in the off-gas produced observable false-positive readings from the monitor. 5 refs., 6 figs.

  20. Modeling and Analysis of Chill and Fill Processes for the EDU Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.

    2015-01-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.

  1. The chilling of carcasses.

    PubMed

    Savell, J W; Mueller, S L; Baird, B E

    2005-07-01

    Biochemical processes and structural changes that occur in muscle during the first 24h postmortem play a great role in the ultimate quality and palatability of meat and are influenced by the chilling processes that carcasses are subjected to after slaughter. For beef and lamb, employing chilling parameters that minimize cold shortening is of greatest importance and can be best addressed by ensuring that muscle temperatures are not below 10°C before pH reaches 6.2. For pork, because of the impact of high muscle temperatures and low pH on the development of pale, soft, and exudative (PSE) pork, a more rapid chilling process is needed to reduce PSE with the recommended internal muscle temperature of 10°C at 12h and 2-4°C at 24h. Spray chilling, a system whereby chilled water is applied to carcasses during the early part of postmortem cooling, is used to control carcass shrinkage and to improve chilling rates through evaporative cooling. Delayed chilling can be used to reduce or prevent the negative effects of cold shortening; however, production constraints in high-volume facilities and food safety concerns make this method less useful in commercial settings. Electrical stimulation and alternative carcass suspension programs offer processors the opportunity to negate most or all of the effects of cold shortening while still using traditional chilling systems. Rapid or blast chilling can be an effective method to reduce the incidence of PSE in pork but extreme chilling systems may cause quality problems because of the differential between the cold temperatures on the outside of the carcass compared to the warm muscle temperatures within the carcass (i.e., muscles that are darker in color externally and lighter in color internally). PMID:22063744

  2. Heat-Transfer Measurements in the Primary Cooling Phase of the Direct-Chill Casting Process

    NASA Astrophysics Data System (ADS)

    Caron, Etienne J. F. R.; Baserinia, Amir R.; Ng, Harry; Wells, Mary A.; Weckman, David C.

    2012-10-01

    Thermal modeling of the direct-chill casting process requires accurate knowledge of (1) the different boundary conditions in the primary mold and secondary direct water-spray cooling regimes and (2) their variability with respect to process parameters. In this study, heat transfer in the primary cooling zone was investigated by using temperature measurements made with subsurface thermocouples in the mold as input to an inverse heat conduction algorithm. Laboratory-scale experiments were performed to investigate the primary cooling of AA3003 and AA4045 aluminum alloy ingots cast at speeds ranging between 1.58 and 2.10 mm/s. The average heat flux values were calculated for the steady-state phase of the casting process, and an effective heat-transfer coefficient for the global primary cooling process was derived that included convection at the mold surfaces and conduction through the mold wall. Effective heat-transfer coefficients were evaluated at different points along the mold height and compared with values from a previously derived computational fluid dynamics model of the direct-chill casting process that were based on predictions of the air gap thickness between the mold and ingot. The current experimental results closely matched the values previously predicted by the air gap models. The effective heat-transfer coefficient for primary cooling was also found to increase slightly with the casting speed and was higher near the mold top (up to 824 W/m2·K) where the molten aluminum first comes in contact with the mold than near the bottom (as low as 242 W/m2·K) where an air gap forms between the ingot and mold because of thermal contraction of the ingot. These results are consistent with previous studies.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT FOR AMMONIA RECOVERY PROCESS

    EPA Science Inventory

    This Technology Verification report describes the nature and scope of an environmental evaluation of ThermoEnergy Corporation’s Ammonia Recovery Process (ARP) system. The information contained in this report represents data that were collected over a 3-month pilot study. The ti...

  4. Determination of heat transfer coefficients at metal/chill interface in the casting solidification process

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Li, Luoxing

    2013-08-01

    The present work focuses on the determination of interfacial heat transfer coefficients (IHTCs) between the casting and metal chill during casting solidification. The proposed method is established based on the least-squares technique and sequential function specification method and can be applied to calculate heat fluxes and IHTCs for other alloys. The accuracy and stability of the method has been investigated by using a typical profile of heat fluxes simulating the practical conditions of casting solidification. In the test process, the effects of various calculation parameters in the inverse algorithm are also analyzed. Moreover, numerically calculated and experimental results are compared by applying the determined IHTCs into the forward heat conduction model with the same boundary conditions. The results show that the numerically calculated temperatures are in good agreement with those measured experimentally. This confirms that the proposed method is a feasible and effective tool for determination of the casting-mold IHTCs.

  5. In situ ammonia analyzer for process control and environmental monitoring

    SciTech Connect

    Monlux, G.; Brand, J.A.; Zmarzly, P.

    1996-12-31

    An ammonia monitor designed for in situ smoke stack or exhaust duct applications is discussed here. A probe composed of a diffusion cell with a protected multipass optical measurement cavity provides the optical interaction with the sample. Other components of the system include signal processing electronics and an embedded PC104 computer platform. This instrument is useful in a wide variety of ammonia monitoring and process control applications, particularly ammonia-based NO{sub x} control technologies, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR). The in situ design eliminates sample handling problems, associated with extractive analysis of ammonia, such as sample line adsorption and heated sample trains and cells. The sensor technology exploited in this instrument is second harmonic spectroscopy using a near infrared diode laser. Data collected during field trials involving both SCR and SNCR applications demonstrate the feasibility and robust operation of this instrument in traditionally problematic operating environments. The instrument can measure other gases by changing the wavelength, either by changing the diode operational set point or by changing the diode. In addition, with straightforward modification the instrument can measure multiple species.

  6. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    EPA Science Inventory

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,
    a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causes
    swelling and efficient delignification of biomass at high temperatures. The ARP
    process solubilizes abou...

  7. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield.

    PubMed

    Buhr, R J; Walker, J M; Bourassa, D V; Caudill, A B; Kiepper, B H; Zhuang, H

    2014-06-01

    The effect of scalding and chilling procedures was evaluated on carcass and breast meat weight and yield in broilers. On 4 separate weeks (trials), broilers were subjected to feed withdrawal, weighed, and then stunned and bled in 4 sequential batches (n = 16 broilers/batch, 64 broilers/trial). In addition, breast skin was collected before scalding, after scalding, and after defeathering for proximate analysis. Each batch of 16 carcasses was subjected to either hard (60.0°C for 1.5 min) or soft (52.8°C for 3 min) immersion scalding. Following defeathering and evisceration, 8 carcasses/batch were air-chilled (0.5°C, 120 min, 86% RH) and 8 carcasses/batch were immersion water-chilled (water and ice 0.5°C, 40 min). Carcasses were reweighed individually following evisceration and following chilling. Breast meat was removed from the carcass and weighed within 4 h postmortem. There were significant (P < 0.05) differences among the trials for all weights and yields; however, postfeed withdrawal shackle weight and postscald-defeathered eviscerated weights did not differ between the scalding and chilling treatments. During air-chilling all carcasses lost weight, resulting in postchill carcass yield of 73.0% for soft-scalded and 71.3% for hard-scalded carcasses, a difference of 1.7%. During water-chilling all carcasses gained weight, resulting in heavier postchill carcass weights (2,031 g) than for air-chilled carcasses (1,899 g). Postchill carcass yields were correspondingly higher for water-chilled carcasses, 78.2% for soft-scalded and 76.1% for hard-scalded carcasses, a difference of 2.1%. Only in trials 1 and 4 was breast meat yield significantly lower for hard-scalded, air-chilled carcasses (16.1 and 17.5%) than the other treatments. Proximate analysis of skin sampled after scalding or defeathering did not differ significantly in moisture (P = 0.2530) or lipid (P = 0.6412) content compared with skin sampled before scalding. Skin protein content was significantly

  8. Study on Fabrication of AA4032/AA6069 Cladding Billet Using Direct Chill Casting Process

    NASA Astrophysics Data System (ADS)

    Han, Xing; Zhang, Haitao; Shao, Bo; Li, Lei; Liu, Xuan; Cui, Jianzhong

    2016-04-01

    AA4032/AA6069 cladding billet in size of φ130 mm/φ110 mm was prepared by the modified direct chill casting process, and the parametric effect on casting performance was investigated using numerical simulation. Microstructures, elements distribution, and mechanical properties of the bonding interface were examined. The results show that metallurgical bonding interface can be obtained with the optimal parameters: the casting speed of 130 to 140 mm/min, the internal liquid level height of 50 to 60 mm, and the contact height of 40 to 50 mm. The metallurgical bonding interface is free of any discontinuities due to the fact that the alloying elements diffused across the interface and formed Ni-containing phase. Tensile strength of the cladding billet reaches 225.3 MPa, and the fracture position was located in AA6069 side, suggesting that the interface bonding strength is higher than the strength of AA6069. The interfacial shearing strength is 159.3 MPa, indicating excellent metallurgical bonding.

  9. Photosynthetic responses to chilling in a chilling-tolerant and chilling-sensitive Miscanthus hybrid.

    PubMed

    Friesen, P C; Sage, R F

    2016-07-01

    Miscanthus is a C4 perennial grass being developed for bioenergy production in temperate regions where chilling events are common. To evaluate chilling effects on Miscanthus, we assessed the processes controlling net CO2 assimilation rate (A) in Miscanthus x giganteus (M161) and a chilling-sensitive Miscanthus hybrid (M115) before and after a chilling treatment of 12/5 °C. The temperature response of A and maximum Rubisco activity in vitro were identical below 20 °C in chilled and unchilled M161, demonstrating Rubisco capacity limits or co-limits A at cooler temperatures. By contrast, A in M115 decreased at all measurement temperatures after growth at 12/5 °C. Rubisco activity in vitro declined in proportion to the reduction in A in chilled M115 plants, indicating Rubisco capacity is responsible in part for the decline in A. Pyruvate orthophosphate dikinase activities were also reduced by the chilling treatment when assayed at 28 °C, indicating this enzyme may also contribute to the reduction in A in M115. The maximum extractable activities of PEPCase and NADP-ME remained largely unchanged after chilling. The carboxylation efficiency of the C4 cycle was depressed in both genotypes to a similar extent after chilling. ΦP :ΦCO2 remained unchanged in both genotypes indicating the C3 and C4 cycles decline equivalently upon chilling. PMID:26714623

  10. Process and apparatus for recovery of sulfur from ammonia containing acid gas streams

    SciTech Connect

    Palm, J.W.

    1987-02-17

    This patent describes a Claus process for the recovery of sulfur, the steps comprising: passing a first stream containing hydrogen sulfide, sulfur dioxide, and ammonia through a low temperature Claus catalytic conversion zone and depositing elemental sulfur and ammonium compounds on catalyst therein; deriving a regeneration stream from the Claus process and regenerating the resulting laden catalyst therewith vaporizing sulfur and ammonia therefrom and producing a regeneration effluent stream comprising elemental sulfur and ammonia; cooling the regeneration effluent stream and condensing elemental sulfur therefrom and producing a sulfur lean regeneration effluent stream; introducing at least a portion of the sulfur lean regeneration effluent stream into a hydrogenation zone and converting substantially all sulfur compounds therein to hydrogen sulfide. The resulting hydrogen sulfide containing stream is introduced into an ammonia removal zone. The resulting stream is contacted with a first aqueous stream and produces a second aqueous stream enriched in ammonia and a sulfur lean regeneration effluent stream reduced in ammonia content; removing ammonia from the second aqueous stream and producing an ammonia enriched stream; returning the sulfur lean regeneration effluent stream reduced in ammonia content to the Claus process adjacent and downstream of the point of derivation of the regeneration stream for the further recovery of sulfur therefrom; and introducing the ammonia enriched stream into an ammonia conversion zone and reducing the concentration of ammonia therein.

  11. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of scalding and chilling profiles was evaluated on carcass and breast meat yield in broilers. On 4 separate weeks, 5 to 7 wk old broiler flocks were subjected to a 10 h feed withdrawal, cooped, transported, banded for identification, weighed (live weight), shackled, and then stunned (14...

  12. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of scalding and chilling procedures was evaluated on carcass and breast meat yield in broilers. On 4 separate weeks, broilers were subjected to feed withdrawal, weighed, and then stunned and bled in sequential batches (n=16/batch). Breast skin was collected before scalding, after scaldi...

  13. Chilling rate effects on pork loin tenderness in commercial processing plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present experiment was conducted to provide a large-scale objective comparison of pork LM tenderness and other meat quality traits between packing plants that differ in stunning method and carcass chilling rate. For each of two replicates, hogs were sourced from a single barn of a commercial fi...

  14. CO/sub 2/ removal from ammonia synthesis gas with SELEXOL Solvent Process

    SciTech Connect

    Shah, V.A.

    1987-01-01

    The high cost of energy which has prevailed since the 70's has forced ammonia producers to seek new methods to save energy and lower the ammonia production cost. The purpose of this paper is to discuss the use of SELEXOL Solvent Process for treatment of ammonia synthesis gas and discuss a patented SELEXOL process scheme which permits substantially 100% carbon dioxide recovery. This paper also describes: the SELEXOL Process Technology; treating of Ammonia Synthesis Gas; philosophy; high CO/sub 2/ Recovery Process; 100% CO2 Recovery Process; cost and Utility Requirement; plant Performance Data.

  15. Chilling tolerant U.S. processing cucumber (Cucumis sativus L.): three advanced backcross and ten inbred backcross lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental stresses such as chilling temperatures can reduce seed germination rate, seeding emergence rate, flower and fruit development, marketable yield, and postharvest fruit storage longevity in cucumber (Cucumis sativus L.). Chilling temperatures occur in unpredictable patterns, making it d...

  16. Improved process model for ammonia volatilization from anaerobic swine lagoons under varying wind speeds and gas bubbling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from treatment lagoons varies widely with the lagoon water total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model using a...

  17. Ammonia scrubber testing during IDMS SRAT and SME processing. Revision 1

    SciTech Connect

    Lambert, D.P.

    1995-04-28

    This report summarizes results of the Integrated DWPF (Defense Waste Processing Facility) Melter System (IDMS) ammonia scrubber testing during the PX-7 run (the 7th IDMS run with a Purex type sludge). Operation of the ammonia scrubber during IDMS Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processing has been completed. The ammonia scrubber was successful in removing ammonia from the vapor stream to achieve NH3 concentrations far below the 10 ppM vapor exist design basis during SRAT processing. However, during SME processing, vapor NH3 concentrations as high as 450 ppM were measured exiting the scrubber. Problems during the SRAT and SME testing were vapor bypassing the scrubber and inefficient scrubbing of the ammonia at the end of the SME cycle (50% removal efficiency; 99.9% is design basis efficiency).

  18. Aerobic and anaerobic microbiology of the immersion chilling procedure during poultry processing.

    PubMed

    Voidarou, C; Vassos, D; Kegos, T; Koutsotoli, A; Tsiotsias, A; Skoufos, J; Tzora, A; Maipa, V; Alexopoulos, A; Bezirtzoglou, E

    2007-06-01

    The development of treatments to reduce bacterial numbers on poultry carcasses is important for the overall hygienic quality of birds. The important washing effect of the immersion chilling procedure is discussed. Systematic monitoring of fecal bacterial indicators as well as some classic pathogens was performed at selected critical points in a water chiller ecosystem. Clostridium perfringens, fecal coliforms, Enterococcus sp., and Streptococcus sp. were found in all water chiller samples. The temperature of the chiller ecosystem varied according to location: Escherichia coli and Salmonella sp. were found at 16 degrees C, compared with the 4 degrees C location, where these species were found in lower numbers. Moreover, the psychrotrophic bacterium Pseudomonas was found only at this last location. The temperature of the water during the immersion chilling procedure was unfavorable for the growth of Campylobacter sp., whose presence was always strictly associated with a pH close to 6. Spore forms of C. perfringens were persistent in all locations and seemed to be a reliable indicator of contamination of the water chiller ecosystem. PMID:17495095

  19. Process for synthesis of ammonia borane for bulk hydrogen storage

    SciTech Connect

    Autrey, S Thomas; Heldebrant, David J; Linehan, John C; Karkamkar, Abhijeet J; Zheng, Feng

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  20. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  1. Control of ammonia air pollution through the management of thermal processes in cowsheds.

    PubMed

    Bleizgys, Rolandas; Bagdoniene, Indre

    2016-10-15

    Experimental researches performed in manufacturing cowsheds have demonstrated a variation of ammonia concentration and the factors influencing this most during different periods of the year. The process of ammonia evaporation from manure is influenced by many varying and interrelated factors with temperature and the intensity of air ventilation being the most critical ones. The influence of these factors on the process of ammonia evaporation was established by laboratory researches. An increase in temperature results in an exponential increase in ammonia emission, whereas the dependence of the emission on the air velocity is best expressed by a second degree polynomial. The results obtained may be used as a forecast of the ammonia emissions from cowsheds during different periods of the year. Intensive ventilation is required for the removal of excess moisture from the housing, and this limits the possibilities to reduce ammonia emissions by controlling the intensity of ventilation. A reduction in the amount of ventilation is only recommended if the air quality indices meet the requirements applied to the housing. Better opportunities to reduce ammonia emissions are provided through management of the thermal processes in a cowshed. If the average annual air temperature (11.3°C) is reduced by one degree in a cubicle housing cowshed, the ammonia emissions will decrease by 10%. PMID:27350091

  2. Chemical Processing of Pure Ammonia and Ammonia-Water Ices Induced by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Bordalo, V.; da Silveira, E. F.; Lv, X. Y.; Domaracka, A.; Rothard, H.; Seperuelo Duarte, E.; Boduch, P.

    2013-09-01

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH3) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H2O). FTIR spectroscopy is used to monitor pure NH3 and NH3-H2O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N2H4), diazene (N2H2 isomers), molecular hydrogen (H2), and nitrogen (N2) were identified after irradiation of pure NH3 ices. Nitrous oxide (N2O), nitrogen oxide (NO), nitrogen dioxide (NO2), and hydroxylamine (NH2OH) are some of the products of the NH3-H2O ice radiolysis. The spectral band at 6.85 μm was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH_{4}^{+}) and amino (NH2) radicals, data suggest a small contribution of NH2OH to this band profile after high fluences of irradiation of NH3-H2O ices. The spectral shift of the NH3 "umbrella" mode (9.3 μm) band is parameterized as a function of NH3/H2O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH3-H2O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H2O in the ice and a power law relationship between stopping power and NH3 destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  3. Ammonia production from coal by utilization of Texaco coal gasification process

    SciTech Connect

    Watson, J.R.; McClanhan, T.S.; Weatherington, R.W.

    1983-12-01

    Operating data will be presented for the coal gasification and gas purification unit which has been retrofitted to the front end of an existing ammonia plant. The plant uses 200 tons per day of coal and produces 135 tons per day of ammonia. The plant uses the Texaco coal gasification process, Haldor-Topsoe catalyst systems, Selexol acid gas removal process, and the Holmes-Stretford sulfur recovery process.

  4. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    SciTech Connect

    Bordalo, V.; Da Silveira, E. F.; Seperuelo Duarte, E.

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  5. Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process

    SciTech Connect

    Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

    2006-10-01

    Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

  6. Revamping existing ammonia plants with a new low-energy process

    SciTech Connect

    Banquy, D.

    1984-01-01

    In this process, only part of the natural gas feed is treated in the primary reformer, and the rest is reformed directly in the secondary reformer using excess air. The excess nitrogen is removed in a cryogenic separation upstream of the synthesis loop. The features of this new low energy ammonia process, and the related advantages in terms of energy savings, make it suitable for revamping existing ammonia plants, with attractive economics.

  7. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  8. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  9. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  10. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    PubMed

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens). PMID

  11. UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination.

    PubMed

    Zhang, Xinran; Li, Weiguang; Blatchley, Ernest R; Wang, Xiaoju; Ren, Pengfei

    2015-01-01

    The combined application of UV irradiation at 254 nm and chlorination (UV/chlorine process) was investigated for ammonia removal in water treatment. The UV/chlorine process led to higher ammonia removal with less chlorine demand, as compared to breakpoint chlorination. Chlorination of NH₃ led to NH₂Cl formation in the first step. The photolysis of NH₂Cl and radical- mediated oxidation of ammonia appeared to represent the main pathways for ammonia removal. The trivalent nitrogen of ammonia was oxidized, presumably by reactions with aminyl radicals and chlorine radicals. Measured products included NO₃⁻and NO₂⁻; it is likely that N₂ and N₂O were also generated. In addition, UV irradiation appeared to have altered the reactivity of NOM toward free chlorine. The UV/chlorine process had lower chlorine demand, less C-DBPs (THMs and HAAs), but more HANs than chlorination. These results indicate that the UV/chlorine process could represent an alternative to conventional breakpoint chlorination for ammonia-containing water, with several advantages in terms of simplicity, short reaction time, and reduced chemical dosage. PMID:25466638

  12. Ammonia scrubbing

    SciTech Connect

    Epperly, W.R.; Peter-Hoblyn, J.D.; Sullivan, J.C

    1989-05-16

    A process is described for reducing the concentration of ammonia in the effluent from the combustion of a carbonaceous fuel, the process comprising introducing a non-nitrogeneous treatment agent which comprises a paraffinic, olefinic, aromatic oxygenated hydrocarbon into the effluent at a ratio of non-nitrogenous treatment agent to effluent ammonia of about 2:1 to about 200:1 to combine with ammonia present in the effluent, wherein the effluent temperature is about 1350/sup 0/F to about 2000/sup 0/F, and further wherein the non-nitrogenous treatment agent is introduced under conditions effective to perform ammonia scrubbing.

  13. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  14. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. PMID:23313684

  15. DM-2 Chilling

    NASA Video Gallery

    How do you chill down 1.4 million pounds of solid rocket fuel in the hot Utah desert? Lots of air conditioning! Learn how ATK chilled down DM-2, the second Ares first stage development motor in adv...

  16. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process.

    PubMed

    Limoli, Alice; Langone, Michela; Andreottola, Gianni

    2016-07-01

    In this study, ammonia stripping by means of a turbulent mixing process followed by pH neutralization was investigated as a simple and cost-effective ammonia removal technique to treat raw manure digestate. Batch tests conducted using CaO, NaOH and H2O2 to control pH and temperature and combinations thereof showed that sodium hydroxide was the most suitable chemical, as it is easy to handle, minimizes treatment time and costs, does not increase the solid content of the sludge and allows to easily control the stripping process. NaOH dosage mainly depended on buffering capacity rather than on total solid content. The analysis of the ammonia stripping process indicated that ammonia removal was strongly dependent on pH, and ammonia removal rate followed the pseudo-first-order kinetics. Total solid content slightly influenced TAN removal efficiency. When NaOH was applied to treat raw digestate at pH 10 and mean temperature of 23 ± 2 °C, TAN removal efficiency reached 88.7% after 24 h of turbulent mixing stripping, without reaching inhibitory salinity levels. Moreover, pH neutralization with sulfuric acid following the stripping process improved raw digestate dewaterability. PMID:27031295

  17. Effect of high pressure processing on textural and microbiological quality of pink perch (Nemipterus japonicus) sausage during chilled storage

    NASA Astrophysics Data System (ADS)

    Kunnath, Sarika; Panda, Satyen Kumar; Jaganath, Bindu; Gudipati, Venkateshwarlu

    2015-10-01

    The non-thermal high pressure (HP) processing was studied on fish sausage to enhance the quality during chilled storage. Pink perch (Nemipterus japonicus) sausages, packed in poly amide casing under vacuum were subjected to 400, 500 and 600 MPa pressures (dwell time: 10 min and ramp rate: 300 MPa/min) and compared with heat-set samples for physico-chemical and microbial quality parameters. Pressurized samples formed softer and glossier gels with a slight reduction in water-holding capacity. HP made the texture of sausage softer, cohesive and less chewy and gummier than heat-treated ones. Folding test seen higher acceptance values in samples treated at 500 and 600 MPa, during storage. Maximum log reduction in microbial count was observed in 600 MPa immediately, and significant difference in cooked and pressurized sausages was seen only up to 7th day. This revealed the potential application of HP in replacing conventional heat treatment for sausages preparation with enhanced shelf-life.

  18. Temperature and bacterial profile of post chill poultry carcasses stored in processing combo held at room temperature.

    PubMed

    Handley, John A; Hanning, Irene; Ricke, Steven C; Johnson, Michael G; Jones, Frank T; Apple, Robert O

    2010-10-01

    Post chill whole poultry carcasses from a commercial processing plant were stored in a processing combo at room temperature (70 °F/21 °C) for 54 h to mimic the scenario of temperature abuse before further processing. Temperature data were collected in 1-min intervals and averaged each hour by 9 temperature data loggers. Two linear regressions were developed for the combo and internal breast temperature and slopes were nearly identical. Microbial data was collected by performing whole bird carcass rinses that were enumerated for aerobic plate count (APC), Enterobacteriaceae, Escherichia coli, and total coliform. Samples were collected from the chiller chute at time zero for initial bacterial counts. Carcass sampling continued once the internal breast temperature achieved 45 °F (7 °C 10 h) and continued every 2 h until the final internal breast temperature was 63 °F (17 °C 54 h). Linear regressions were developed for the first 26 h, which exhibited no statistically significant growth except for Enterobacteriaceae. A 2nd linear regression (28 to 54 h) exhibited significant growth for all analyses. Overall, APC increased from a log(10) colony forming unit (CFU)/mL count of 2.86 to 7.02, Enterobacteriaceae increased from 0.66 to 6.64, coliform increased from 0.72 to 4.81, and E. coli increased from 0.53 to 4.45. Denaturing gradient gel electrophoresis was performed to detect changes in the bacterial populations, which indicated 95% similarity within sampled groups, but the overall percent similarity among samples collected over 54 h was 8%. From the data, microbial growth demonstrates a period of 26 h for minimal growth; therefore, the product could be further processed rather than designated as waste. PMID:21535507

  19. Effect of Ammonia Concentration on Silica Spheres Morphology and Solution Hydroxyl Concentration in Stober Process.

    PubMed

    Zeng, Dejun; Zhang, Haihong; Wang, Bo; Sang, Kezheng; Yang, Jianfeng

    2015-09-01

    Ammonia was used as catalyst to synthesize spherical silica particles by Stober process. More details about the effect of ammonia concentration on the silica powders were investigated. With increase of ammonia concentration from 0.05 to 1.75 mol/L, it was found that particle size increased from 0.068 to 0.91 μm and number density of silica particles decreased rapidly from 9242.40 x 10(10) to 4.62 x 10(10)/mL. Besides, the ratio of standard deviation and the particle size decreased with the increase of ammonia concentration. These results were well consistent with prediction of aggregation model. It was proved that ammonia resulted in persistently high pH values of solutions, which were vital to form large silica spheres. In the formation process of silica spheres, solution hydroxyl concentration was reduced, which might be attributed to transfer of negative charge in hydroxyl groups to silica spheres. PMID:26716345

  20. Effect of Soy Protein Hydrolysates Prepared by Subcritical Water Processing on the Physicochemical Properties of Pork Patty during Chilled Storage

    PubMed Central

    Min, Sang-Gi

    2015-01-01

    The present study was carried out to investigate the effects of soy protein hydrolysates (SPHs) addition on the quality characteristics of pork patties. The SPHs was prepared by subcritical water process (SWP) at 180℃ without holding time and mixed with the pork patty components at varying concentrations (0-3%), and the patties were stored at 4℃ for 14 d. As quality parameters, instrumental color, thiobarbituric acid-reactive substances (TBARS), pH, water holding capacity (WHC) and shear force were measured at the end of storage. Regardless of SPHs concentration, the addition of SPHs significantly manifested low L* and high a* values compared to those of untreated control (p<0.05). For b* value, addition of SPHs in the 0.5-1.5% was unaffected, while >2.0% of SPHs caused significantly lower b* than control (p<0.05). The color changes in pork patties with and without SPHs were also identified in visual appearance where the pork patties containing 0.5-2.0% showed bright red color which was comparable to brownish color of control and patties containing >2.5% SPHs. Lipid oxidation was delayed by the addition of 0.5-1.5% SPHs, while it was accelerated by the addition of 3% SPHs. The pH of patties increased with increasing concentration of SPHs, whereas there were no significant differences in WHC and shear force of patties. Consequently, the results indicated that the addition of 0.5-1.5% SPHs had a potential advantage in suppressing oxidative deterioration of fat-containing meat products during chilled storage. PMID:26761879

  1. Ammonia, Dimethylamine, Trimethylamine, and Trimethylamine Oxide from Raw and Processed Fish By-Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of ammonia, monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA) and trimethylamine oxide (TMAO) in raw and processed fish by-products were determined in cold water marine fish using a capillary electrophoresis (CE) method. The CE method provides a fast and sensitive proce...

  2. Ammonia removal in the carbon contactor of a hybrid membrane process.

    PubMed

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC. PMID:25459222

  3. Impact of Anaerobic Digestion of Liquid Dairy Manure on Ammonia Volatilization Process

    NASA Astrophysics Data System (ADS)

    Koirala, K.

    2013-12-01

    The goal of this study was to determine the effect of anaerobic digestion (AD) on the mechanism of ammonia volatilization from liquid dairy manure, in storage or treatment lagoon, prior to land application. Physical-chemical properties of liquid dairy manure, which may affect ammonia volatilization process, were determined before and after AD. The properties of interest included: particle size distribution (PSD), total solids (TS), volatile solids (VS), viscosity, pH, total ammoniacal nitrogen (TAN), and ionic strength (IS). The overall mass transfer coefficient of ammonia (KoL) and the NH3 fraction of TAN (β) for the undigested (UD) and AD manures were then experimentally determined in a laboratory convective emission chamber (CEC) at a constant wind speed of 1.5 m s-1 and fixed air temperature of 25 °C at liquid manure temperatures of 15, 25, and 35 °C. The PSD indicated non-normal left skewed distribution for both AD and UD manures particles, suggestive of heavier concentrations of particles towards the lower particle size range. The volume median diameters (VMD) for solids from UD and AD were not significantly different (p= 0.65), but the geometric standard deviations (GSD) were significantly different (p = 0.001), indicating slightly larger particles but more widely distributed solids in UD than AD manure. Results also indicated significantly higher pH, TAN, ionic strength (IS) and viscosity in AD manure. The KoL and β for AD manure determined under identical conditions (air temperature, liquid temperature, and airflow) were significantly higher (p > 0.05) than for UD manure. Overall, these findings suggest that AD of dairy manure significantly increased initial ammonia volatilization potential from liquid dairy manure; with the largest increase (~62%) emanating from increased ammonium dissociation. The initial flux of ammonia, during the experiment period, was ~84% more from AD than in UD dairy manure. Keywords. Process based models, mass transfer

  4. Ammonia Leaching: A New Approach of Copper Industry in Hydrometallurgical Processes

    NASA Astrophysics Data System (ADS)

    Radmehr, Vahid; Koleini, Seyed Mohammad Javad; Khalesi, Mohammad Reza; Tavakoli Mohammadi, Mohammad Reza

    2013-10-01

    Ammonia and ammonium salts have been recognized as effective leaching agents in hydrometallurgical processes due to low toxicity and cost, easy recovery and high selective recovery of metals. New research findings on considerable advantages of leaching by these agents and elimination of problems associated with acid leaching have resulted in a new approach in the world to this method. The investigations in this field indicate more frequent use of this method for extracting copper from ore and concentrate relative to other basic metals. In this paper, an attempt was made to describe the basis and different ammonia leaching methods and present the major research activities in this field for copper. Also latest findings and related novel processes have been presented. Comparisons including assessment of advantages and disadvantages of this method relative to acid leaching method, kinetic study of copper ammonia leaching and evaluation of Eh-pH diagrams in a system containing water and ammonia are other parts of this study. Finally, by describing the studies on copper extraction from the resulting pregnant solutions, the applicable extraction agents have been reviewed.

  5. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia

    PubMed Central

    2013-01-01

    Background Use of lignocellulosic biomass has received attention lately because it can be converted into various versatile chemical compounds by biological processes. In this study, a two-step pretreatment with dilute sulfuric acid and aqueous ammonia was performed efficiently on rice straw to obtain fermentable sugar. The soaking in aqueous ammonia process was also optimized by a statistical method. Results Response surface methodology was employed. The determination coefficient (R2) value was found to be 0.9607 and the coefficient of variance was 6.77. The optimal pretreatment conditions were a temperature of 42.75°C, an aqueous ammonia concentration of 20.93%, and a reaction time of 48 h. The optimal enzyme concentration for saccharification was 30 filter paper units. The crystallinity index was approximately 60.23% and the Fourier transform infrared results showed the distinct peaks of glucan. Ethanol production using Saccharomyces cerevisiae K35 was performed to verify whether the glucose saccharified from rice straw was fermentable. Conclusions The combined pretreatment using dilute sulfuric acid and aqueous ammonia on rice straw efficiently yielded fermentable sugar and achieved almost the same crystallinity index as that of α-cellulose. PMID:23898802

  6. Study of an ammonia-based wet scrubbing process in a continuous flow system

    SciTech Connect

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-01

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  7. The chemistry, waste form development, and properties of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Youngblood, E.L.; Walker, J.F. Jr.; Tiegs, T.N.

    1994-06-01

    A process for the conversion of alkaline, aqueous nitrate wastes to ammonia gas at low temperature, based upon the use of the active metal reductant aluminum, has been developed at the Oak Ridge National Laboratory (ORNL). The process is also well suited for the removal of low-level waste (LLW) radioelements and hazardous metals which report to the solid, alumina-based by-product. ne chemistry of the interaction of aluminum powders with nitrate, and other waste stream metals is presented.

  8. Enhanced ammonia content in compost leachate processed by black soldier fly larvae.

    PubMed

    Green, Terrence R; Popa, Radu

    2012-03-01

    Black soldier fly (BSF) larvae (Hermetia illucens), feeding on leachate from decaying vegetable and food scrap waste, increase ammonia (NH (4) (+) ) concentration five- to sixfold relative to leachate unprocessed by larvae. NH (4) (+) in larva-processed leachate reached levels as high as ∼100 mM. Most of this NH (4) (+) appears to have come from organic nitrogen within the frass produced by the larvae as they fed on leachate. In nitrate-enriched solutions, BSF larvae also facilitate dissimilatory nitrate reduction to ammonia. The markedly higher concentration of NH (4) (+) recovered in leachates processed with BSF larvae and concomitant diversion of nutrients into insect biomass (itself a valuable feedstock) indicate that the use of BSF larvae in processing leachate of decaying organic waste could be advantageous in offsetting capital and environmental costs incurred in composting. PMID:22238016

  9. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Laubach, Johannes; Taghizadeh-Toosi, Arezoo; Sutton, Mark A.

    2016-03-01

    In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. The GAG model (Generation of Ammonia from Grazing) is capable of simulating the TAN (total ammoniacal nitrogen) and the water content of the soil under a urine patch and also soil pH dynamics. The model tests suggest that ammonia volatilization from a urine patch can be affected by the possible restart of urea hydrolysis after a rain event as well as CO2 emission from the soil. The vital role of temperature in NH3 exchange is supported by our model results; however, the GAG model provides only a modest overall temperature dependence in total NH3 emission compared with the literature. This, according to our findings, can be explained by the higher sensitivity to temperature close to urine application than in the later stages and may depend on interactions with other nitrogen cycling processes. In addition, we found that wind speed and relative humidity are also significant influencing factors. Considering that all the input parameters can be obtained for larger scales, GAG is potentially suitable for field and regional scale application, serving as a tool for further investigation of the effects of climate change on ammonia emissions and deposition.

  10. Passivation of InGaAs surfaces with an integrated process including an ammonia DECR plasma

    SciTech Connect

    Lescaut, B.; Nissim, Y.I.; Bresse, J.F.

    1996-12-31

    Stable and optimum characteristics of micro-optoelectronic devices and circuits require the passivation of the free surface of the III-V materials. An integrated process using a combination of surface cleaning and photochemical dielectric encapsulation is proposed for passivation. The passivation of InGaAs with a short ammonia plasma cleaning has been obtained. The treated surface has been protected with a photochemical dielectric encapsulation. MIS structures fabricated on treated InGaAs surfaces have shown a low density of interface traps and a small hysteresis. This process is an integration of two cold processes that enable its use at the end of the process fabrication of circuits.

  11. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    DOEpatents

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  12. Effects of lactic acid and commercial chilling processes on survival of Salmonella, Yersinia enterocolitica, and Campylobacter coli in pork variety meats.

    PubMed

    King, Amanda M; Miller, Rhonda K; Castillo, Alejandro; Griffin, Davey B; Hardin, Margaret D

    2012-09-01

    Current industry chilling practices with and without the application of 2% L-lactic acid were compared for their effectiveness at reducing levels of Salmonella, Yersinia enterocolitica, and Campylobacter coli on pork variety meats. Pork variety meats (livers, intestines, hearts, and stomachs) were inoculated individually with one of the three pathogens and subjected to five different treatment combinations that included one or more of the following: water wash (25°C), lactic acid spray (2%, 40 to 50°C), chilling (4°C), and freezing (-15°C). Samples were analyzed before treatment, after each treatment step, and after 2, 4, and 6 months of frozen storage. Results showed that when a lactic acid spray was used in combination with water spray, immediate reductions were approximately 0.5 log CFU per sample of Salmonella, 0.8 log CFU per sample of Y. enterocolitica, and 1.1 log CFU per sample of C. coli. Chilling, both alone and in combination with spray treatments, had little effect on pathogens, while freezing resulted in additional 0.5-log CFU per sample reductions in levels of Salmonella and Y. enterocolitica, and an additional 1.0-log CFU per sample reduction in levels of C. coli. While reductions of at least 1 log CFU per sample were observed on variety meats treated with only a water wash and subsequently frozen, samples treated with lactic acid had greater additional reductions than those treated with only a water spray throughout frozen storage. The results of this study suggest that the use of lactic acid as a decontamination intervention, when used in combination with good manufacturing practices during processing, causes significant reductions in levels of Salmonella, Y. enterocolitica, and C. coli on pork variety meats. PMID:22947465

  13. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30 - 70 percent moisture was contacted with anhydrous ammonia in ...

  14. Experimental investigation of the start-up phase during direct chill and low frequency electromagnetic casting of 6063 aluminum alloy processes

    NASA Astrophysics Data System (ADS)

    Wang, Xiangjie; Zhang, Haitao; Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Jiang, Huixue; Cui, Jianzhong

    2010-06-01

    On the basis of conventional hot-top casting and Casting, Refining and Electromagnetic process, a lower frequency electromagnetic field was applied during the conventional hot-top casting process. Nine thermocouples (type K) were introduced into the metal to study the temperature profile in the ingot during the start-up phase of casting process. The experimental results show that under the effect of the low frequency electromagnetic filed, the heat transfer is changed greatly and the film boiling disappears, which could restrain the formation of fine subsurface cracks; the sump is shallow, and the macrostructure of the ingot butt is fine during the start-up phase of direct chill casting process.

  15. Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions.

    PubMed

    Xiao, Shuhu; Qu, Jiuhui; Zhao, Xu; Liu, Hujuan; Wan, Dongjin

    2009-03-01

    An electrochemical process combined with ultraviolet light irradiation (UPE) using nonphotoactive dimensionally stable anodes (DSAs) like RuO2/Ti and IrO2/Ti in the presence of chlorides was investigated for ammonia degradation. In this process, the in situ electrogenerated active chlorine and in situ photogenerated chlorine radicals were responsible for the high efficiency of ammonia degradation. More than 97% of ammonia was converted to nitrogen and a significantly synergistic effect was confirmed. Compared with the single electrochemical (E) and photochemical (P) process, the degradation rates of ammonia and the average current efficiencies (ACEs) of the UPE process increased by 1.5 and 1.7 times using RuO2/Ti and IrO2/Ti electrodes, respectively. On the basis of the linear voltammograms, Electrochemical Impedance Spectra (EIS), UV-vis spectra, Electron Spin Resonance (ESR) analysis and a series of experiments designed, the synergistic mechanism was investigated. In addition, this unique process succeeded in transferring the reaction from the electrode surface to the bulk of the solution compared with the conventional photoelectrocatalytic (PEC) process. The loss of chloride decreased from 21.0% to 7.2% and the recycle of chloride was accelerated in the UPE process. Finally the effects of initial pH, current density and ammonia-nitrogen concentration were discussed. Results indicated that pH and ammonia concentration exerted little influences on the degradation rates and current density was the "rate-determining" factor. PMID:19135227

  16. Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; Wang, Cheng-Wen; Wu, Wei-Min

    2016-01-19

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days. PMID:26678011

  17. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  18. Effect of cooled and chlorinated chiller water on Campylobacter and coliform counts on broiler carcasses during chilling at a middle-size poultry processing plant.

    PubMed

    Kameyama, Mitsuhiro; Chuma, Takehisa; Nishimoto, Tadahiro; Oniki, Hiroyuki; Yanagitani, Yasuo; Kanetou, Ryouichi; Gotou, Kouichi; Shahada, Francis; Iwata, Hiroyuki; Okamoto, Karoku

    2012-01-01

    To evaluate the effect of cooled and chlorinated chill water for Campylobacter and coliforms at a middle-size processing plant which was considered to be difficult for eliminate pathogenic bacteria on carcasses, following three conditions were examined; keeping temperature at < 20, < 10 and < 10°C, and chlorine concentration at < 50, < 50 and 50 to 70 ppm during processing in experiment 1, 2 and 3 respectively. Fifteen prechill and 15 postchill carcasses were examined in each experiment. In lower temperature of experiment 2, decreasing rate (%) of coliforms was significantly higher (P<0.01) than that in experiment 1. In higher chlorination of experiment 3, no Campylobacter was detected from all postchill carcasses. PMID:21897062

  19. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  20. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  1. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals. PMID:24645466

  2. The Full-Scale Implementation of an Innovative Biological Ammonia Treatment Process

    EPA Science Inventory

    Across the United States, high levels of ammonia in drinking water sources can be found, including small communities like Palo, Iowa (approximate population of 1,026). Although ammonia in water does not pose a direct health concern, ammonia nitrification can cause a number of iss...

  3. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces.

    PubMed Central

    Smith, L T

    1996-01-01

    Listeria monocytogenes is a food-borne pathogen that is widely distributed in nature and is found in many kinds of fresh and processed foods. The pervasiveness of this organism is due, in part, to its ability to tolerate environments with elevated osmolarity and reduced temperatures. Previously, we showed that L. monocytogenes adapts to osmotic and chill stress by transporting the osmolyte glycine betaine from the environment and accumulating it intracellularly (R. Ko, L. T. Smith, and G. M. Smith, J. Bacteriol. 176:426-431, 1994). In the present study, the influence of various environmental conditions on the accumulation of glycine betaine and another osmolyte, carnitine, was investigated. Carnitine was shown to confer both chill and osmotic tolerance to the pathogen but was less effective than glycine betaine. The absolute amount of each osmolyte accumulated by the cell was dependent on the temperature, the osmolarity of the medium, and the phase of growth of the culture. L. monocytogenes also accumulated high levels of osmolytes when grown on a variety of processed meats at reduced temperatures. However, the contribution of carnitine to the total intracellular osmolyte concentration was much greater in samples grown on meat than in those grown in liquid media. While the amount of each osmolyte in meat was less than 1 nmol/mg (fresh weight), the overall levels of osmolytes in L. monocytogenes grown on meat were about the same as those in liquid samples, from about 200 to 1,000 nmol/mg of cell protein for each osmolyte. This finding suggests that the accumulation of osmolytes is as important in the survival of L. monocytogenes in meat as it is in liquid media. PMID:8795194

  4. Control of salmonella at the chill tank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of Salmonella on poultry meat should be in the form of a continuous effort from the breeder farm to the fully processed and further processed product, as well as, consumer education. However, control is often measured at the chill tank and efforts are made to relate prevalence to processing...

  5. Process modeling of an advanced NH₃ abatement and recycling technology in the ammonia-based CO₂ capture process.

    PubMed

    Li, Kangkang; Yu, Hai; Tade, Moses; Feron, Paul; Yu, Jingwen; Wang, Shujuan

    2014-06-17

    An advanced NH3 abatement and recycling process that makes great use of the waste heat in flue gas was proposed to solve the problems of ammonia slip, NH3 makeup, and flue gas cooling in the ammonia-based CO2 capture process. The rigorous rate-based model, RateFrac in Aspen Plus, was thermodynamically and kinetically validated by experimental data from open literature and CSIRO pilot trials at Munmorah Power Station, Australia, respectively. After a thorough sensitivity analysis and process improvement, the NH3 recycling efficiency reached as high as 99.87%, and the NH3 exhaust concentration was only 15.4 ppmv. Most importantly, the energy consumption of the NH3 abatement and recycling system was only 59.34 kJ/kg CO2 of electricity. The evaluation of mass balance and temperature steady shows that this NH3 recovery process was technically effective and feasible. This process therefore is a promising prospect toward industrial application. PMID:24850444

  6. Thermal and energetic processing of ammonia and carbon dioxide bearing solid mixtures.

    PubMed

    Lv, X Y; Boduch, P; Ding, J J; Domaracka, A; Langlinay, T; Palumbo, M E; Rothard, H; Strazzulla, G

    2014-02-28

    We present new experimental results on thermal and ion irradiation processing of frozen ammonia-carbon dioxide mixtures. Some mixtures were deposited at low temperatures (T ≈ 16 K). Upon warming up to 160 K, complex chemical reactions occur leading to the formation of new molecules and, in particular, of ammonium carbamate. We also show that the same species are produced when water is the dominant species in the ternary mixture with ammonia and carbon dioxide. The samples have been irradiated with 144 keV S(9+) ions at 16 K and 50 K. Also in this case, new chemical species are formed as e.g. ammonium formate, CO and OCN(-). The results are discussed in the light of their relevance to the chemical evolution of ices in the interstellar medium and in the solar system. In particular, we suggest searching for them among the gas phase species sublimating from grains around young stellar objects and from the cometary nuclei approaching the Sun. PMID:24358469

  7. Chilling temperatures affect flavor quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomatoes are harvested green in Florida and gassed with ethylene, then stored at chilling temperatures. These chilled temperatures of 12-13ºC can cause a decrease in aroma. Green fruit are more susceptible to chilling injury (CI) which manifests as a pitting of the peel through which decay organisms...

  8. Quality and safety of broiler meat in various chilling systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chilling is a critical step in poultry processing to attain high quality meat and to meet the USDA-FSIS temperature standards. This study was conducted to determine the effects of commercially available chilling systems on quality and safety of broiler meat. A total of 300 carcasses in two replica...

  9. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. PMID:27243932

  10. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  11. Mathematical modeling of the evolution of thermal field during start-up phase of the direct chill casting process for AA5182 sheet ingots

    NASA Astrophysics Data System (ADS)

    Sengupta, Joydeep

    The control of the thermal cooling conditions at the start-up phase of the Direct Chill (DC) casting process for aluminum sheet ingots is difficult, and is critical from the standpoint of defect formation. Firstly, boiling water heat transfer governs the secondary cooling experienced by the ingot surfaces as they emerge from the mould. This results in varying rates of heat transfer from the ingot faces as the surface temperature of the ingot changes with time during the start-up phase. Moreover, if the ingot surface temperature at locations below the point of water impingement is high enough to promote film boiling, the water is ejected away from the surface. This can result in a sudden decrease in heat transfer and the formation of local hot spots. Also, the chill water may enter into the gap formed between the ingot base and the bottom block with the evolution of the butt curl. This process of water incursion alters the heat transfer from the base of the ingot, and in turn affects the surface temperature of the ingot faces. A comprehensive mathematical model has been developed to describe heat transfer during the start-up phase of the D.C. casting process. The model, based on the commercial finite element package ABAQUS, includes primary cooling to the mould, secondary cooling to water, and ingot base cooling. The algorithm used to account for secondary cooling to the water includes boiling curves that are a function of surface temperature, water flow rate, impingement point temperature, and position relative to the point of water impingement. In addition, the secondary cooling algorithm accounts for water ejection, which can occur at low water flow rates (low heat extraction rates). The algorithm used to describe ingot base cooling includes the drop in contact heat transfer due to base deformation (butt curl), and also the increase in heat transfer due to the process of water incursion between the ingot base and bottom block. The model has been extensively

  12. A Chilling Experience.

    ERIC Educational Resources Information Center

    Knill, George; Fawcett, George

    1982-01-01

    Wind chill is detailed and noted as an estimate of how cold the wind makes a person feel in cold weather. A worksheet master that provides a table of temperatures and wind speeds is provided along with a set of problems. Answers to the brief question set are provided. (MP)

  13. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jiří; Fortelný, Zdeněk

    2012-04-01

    The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous) mixtures of refrigerants and absorbents. The working mixture isn't only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  14. Thio residue from thermal processing of cometary ices containing carbon disulfide and ammonia

    NASA Astrophysics Data System (ADS)

    Methikkalam, R. R. J.; Pavithraa, S.; Murali Babu, S. P.; Hill, H.; Raja Sekhar, B. N.; Pradeep, T.; Sivaraman, B.

    2016-08-01

    We have carried out experimental investigation on binary ice mixture containing carbon disulfide (CS2) and ammonia (NH3) ices formed at 10 K. Icy films were formed in various combinations to investigate the reactivity of CS2 and NH3 molecules on cometary nucleus. In the case of NH3 ices, deposition carried out at 10 K was found to contain NH3 homo-dimers that was found to reorient upon annealing to 40 K. Phase transition was found to take place as the 10 K ice was warmed to higher temperatures and the phase transition temperature was found to be 5 K higher for the mixed ice in comparison to the layered deposits. Thermal processing of the mixed deposition of CS2sbnd NH3 ice was found to leave thio residue, which could be ammonium dithiocarbamate that was even found to be present at 340 K.

  15. Chilling requirement of Ribes cultivars

    PubMed Central

    Jones, Hamlyn G.; Gordon, Sandra L.; Brennan, Rex M.

    2015-01-01

    It is usually thought that adequate winter chill is required for the full flowering of many temperate woody species. This paper investigates the sensitivity of blackcurrant bud burst and flowering to natural weather fluctuations in a temperate maritime climate, and compares a range of chill models that have been proposed for assessing the accumulation of winter chill. Bud break for four contrasting cultivars are compared in an exceptionally cold and in a mild winter in Eastern Scotland. The results confirm the importance of chilling at temperatures lower than 0°C and demonstrate that no single chilling function applies equally to all blackcurrant cultivars. There is a pressing need for further model development to take into account the relationship between chilling temperatures and warming temperatures occurring both during and after the chill accumulation period. PMID:25610448

  16. Carcinogenicity study of ammonia-process caramel in F344 rats.

    PubMed

    Maekawa, A; Ogiu, T; Matsuoka, C; Onodera, H; Furuta, K; Tanigawa, H; Hayashi, Y; Odashima, S

    1983-06-01

    The carcinogenicity of ammonia-process caramel, a food colouring, was examined in F344 rats. Caramel was dissolved in distilled water at levels of 0, 1 and 4% and groups of 50 male and 50 female rats were given 20-25 ml of one of these solutions/rat/day as their drinking water for 2 yr. There were no significant differences between the total incidences of tumours or mean survival times of control and experimental groups. A variety of tumours developed in all groups including the control group, and no dose-related effects were found either in the incidence or induction time of tumours in the various organs and tissues except in the pituitary gland of males, in which the incidence of tumours in males given 4% caramel solution was significantly higher than that in controls. Pituitary tumours are among the most common spontaneous tumours in ageing rats of this strain and have a variable incidence. In addition, almost all pituitary tumours detected in males given the 4% solution were microscopic tumours, and there was no significant difference between controls and treated groups in the incidence of hyperplasia or pre-neoplastic lesions in the pituitary gland. These results indicate that the significantly higher incidence of pituitary tumours in males given the 4% caramel solution was not related to caramel administration, but could be explained by the variability of the incidence of spontaneous pituitary tumours. Thus it is concluded that under these experimental conditions ammonia-process caramel was not carcinogenic in F344 rats. PMID:6683219

  17. Stress-Strain Predictions of Semisolid Al-Mg-Mn Alloys During Direct Chill Casting: Effects of Microstructure and Process Variables

    NASA Astrophysics Data System (ADS)

    Jamaly, Nasim; Phillion, A. B.; Drezet, J.-M.

    2013-10-01

    The occurrence of hot tearing during the industrial direct chill (DC) casting process results in significant quality issues and a reduction in productivity. In order to investigate their occurrence, a new semisolid constitutive law (Phillion et al.) for AA5182 that takes into account cooling rate, grain size, and porosity has been incorporated within a DC casting finite element process model for round billets. A hot tearing index was calculated from the semisolid strain predictions from the model. This hot tearing index, along with semisolid stress-strain predictions from the model, was used to perform a sensitivity analysis on the relative effects of microstructural features ( e.g., grain size, coalescence temperature) as well as process parameters ( e.g., casting speed) on hot tearing. It was found that grain refinement plays an important role in the formation of hot cracks. In addition, the combination of slow casting speeds and a low temperature for mechanical coalescence was found to improve hot tearing resistance.

  18. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds.

    PubMed

    Pope, Katherine S; Dose, Volker; Da Silva, David; Brown, Patrick H; DeJong, Theodore M

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond (Prunus dulcis), pistachio (Pistacia vera), and walnut (Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change. PMID:25119825

  19. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    NASA Astrophysics Data System (ADS)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  20. Process Modeling of Ammonia Volatilization from Ammonium Solution and Manure Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emissions occur from manure surfaces on the barn floor, during storage, and following field application. Based upon theoretical principles and associated published information on ammonia emission, relationships were refined for modeling the dissociation constant (Ka), Henry’s law constant (K...

  1. Process modeling of ammonia volatilization from ammonium solution and manure surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emissions from animal feeding operations have become an important concern because of their potential effects on animal and human health and the environment. Emissions occur from manure surfaces on the barn floor, during storage, and following field application. To better quantify ammonia emi...

  2. Results of TDLS application for ammonia monitoring in a process of high-purity arsine and phosphine production

    NASA Astrophysics Data System (ADS)

    Kotkov, A. P.; Ivanov, V. A.; Grishnova, N. D.; Shirayev, A. V.; Berezin, A. G.; Nadezhdinskii, A. I.; Ponurovskii, Y. Y.; Popov, I. P.; Shapovalov, Y. P.; Stavrovskii, D. B.; Vyazov, I. E.

    2010-08-01

    Using the TDLS method it has been found that ammonia (NH3) is the main impurity in arsine (AsH3) and phosphine (PH3), produced by hydrolysis of magnesium arsinide and phosphinide, respectively. NH3 behavior is abnormal in solutions of these hydrides: NH3 reveals the properties of a more volatile impurity in relation to arsine and phosphine, although its boiling temperature is higher than that of AsH3 and PH3. The observable anomaly is connected with the fact that in solutions of arsine and phosphine NH3 shows properties differing from the properties of pure ammonia. It was supposed that the influence of intermolecular interaction between ammonia molecules, when diluted by arsine or phosphine, decreases. During the purification of arsine or phosphine one must continuously monitor the NH3.concentration in the extraction of the light fraction in order to define the point at which to terminate the purification process.

  3. ATMOSPHERIC AMMONIA EMISSIONS FROM THE LIVESTOCK SECTOR: DEVELOPMENT AND EVALUATION OF A PROCESS-BASED MODELING APPROACH

    EPA Science Inventory

    We propose multi-faceted research to enhance our understanding of NH3 emissions from livestock feeding operations. A process-based emissions modeling approach will be used, and we will investigate ammonia emissions from the scale of the individual farm out to impacts on region...

  4. Quantum states for quantum processes: A toy model for ammonia inversion spectra

    SciTech Connect

    Arteca, Gustavo A.; Tapia, O.

    2011-07-15

    Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the ''chemical species.'' This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.

  5. Identification of chilling and heat requirements of cherry trees—a statistical approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M.

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. `Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. `Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (`chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. `Payne') at Davis, California.

  6. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    SciTech Connect

    Ochoa-Landin, R.; Sastre-Hernandez, J.; Vigil-Galan, O.; Ramirez-Bon, R.

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  7. Ammonia removal from wastewaters using natural Australian zeolite. 2. Pilot-scale study using continuous packed column process

    SciTech Connect

    Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W.

    1999-10-01

    A pilot-scale process was designed and operated to investigate the continuous removal of ammonia from sewage using natural zeolite from Australia. The process consisted of a fixed-bed ion-exchange system operated in the downflow mode. Evaluation of the pilot process was initially undertaken for ammonia removal from tap water spiked with ammonium chloride to provide performance data in the absence of competing cations. The performance of the pilot process was then assessed using sewage as feed. Breakthrough curves were constructed for a range of treatment flow rates. Existing models for packed bed performance were shown to be able to predict the breakthrough behavior of the process. The results of a study are presented that show that Australian natural zeolite, clinoptilolite, may be successfully employed in a fixed-bed ion-exchange process to achieve high ammonia removal efficiencies from aqueous solution at rates commensurate with sand filtration. The rate of uptake of ammonium by the zeolite is sufficient to support a continuous high rate process.

  8. Ammonia-LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2016-06-01

    In the current study it has been hypothesized that, when organic loading of an anaerobic reactor is increased, the additional cell biomass biosynthesis would capture more ammonia nitrogen and thereby reduce the ammonia toxicity. Therefore, the alleviation of the toxicity of high ammonia levels using lipids (glycerol trioleate-GTO) or carbohydrates (glucose-GLU) as co-substrates in manure-based thermophilic continuous stirred-tank reactors (R(GTO) and R(GLU), respectively) was tested. At 5gNH4(+)-NL(-1), relative methane production of R(GTO) and R(GLU), was 10.5% and 41% compared to the expected uninhibited production, respectively. At the same time control reactor (R(CTL)), only fed with manure, reached 32.7% compared to the uninhibited basis production. Therefore, it seems that using lipids to counteract the ammonia effect in CSTR reactors creates an "ammonia-LCFA (long chain fatty acids) synergetic co-inhibition" effect. Moreover, co-digestion with glucose in R(GLU) was more robust to ammonia toxicity compared to R(CTL). PMID:26985628

  9. Photoinduced radical processes on the spinel (MgAl2O4) surface involving methane, ammonia, and methane/ammonia.

    PubMed

    Emeline, A V; Abramkin, D A; Zonov, I S; Sheremetyeva, N V; Rudakova, A V; Ryabchuk, V K; Serpone, N

    2012-05-15

    The present study explored photoinduced radical processes caused by interaction of CH(4) and NH(3) with a photoexcited surface of a complex metal oxide: magnesium-aluminum spinel (MgAl(2)O(4); MAS). UV irradiation of MAS in vacuo yielded V-type color centers as evidenced by the 360 nm band in difference diffuse reflectance spectra. Interaction of these H-bearing molecules with photogenerated surface-active hole states (O(S)(-)•) yielded radical species which on recombination produced more complex molecules (including heteroatomic species) relative to the initial molecules. For the MAS/CH(4) system, photoinduced dissociative adsorption of CH(4) on surface-active hole centers produced •CH(3) radicals that recombined to yield CH(3)CH(3). For MAS/NH(3), a similar dissociative adsorption process led to formation of •NH(2) radicals with formation of NH(2)NH(2) as an intermediate product; continued UV irradiation ultimately yielded N(2). For the mixed MAS/CH(4)/NH(3) system, however, interaction of adsorbed NH(3) and CH(4) on the UV-activated surface of MAS yielded •NH(2) and •CH(3) radicals, respectively, which produced CH(3)-NH(2) followed by loss of the remaining hydrogens to form a surface-adsorbed cyanide, CN(S), species. Recombination of photochemically produced radicals released sufficient energy to re-excite the solid spinel, generating new surface-active sites and a flash luminescence (emission decay time at 520 nm, τ ~ 6 s for the MAS/NH(3) case) referred to as the PhICL effect. PMID:22497296

  10. Ammonia recycled percolation as a complementary pretreatment to the dilute-acid process

    SciTech Connect

    Wu, Zhangwen, Lee, Y.Y.

    1997-12-31

    A two-stage dilute-acid percolation (DA) was investigated as a pre-treatment method for switchgrass. With use of extremely low acid (0.078 wt% sulfuric acid) under moderate temperature (145-170{degrees}C), hemicellulose in switchgrass was completely solubilized showing no sugar decomposition. The treated switchgrass contained about 70% glucan and 30% lignin. The high lignin content in the treated feedstock raises a concern that it may cause a high enzyme consumption because of irreversible adsorption of cellulose enzymes to lignin. This problem may be amplified in the SSF operation since it is usually run in fed-batch mode and the residual lignin is accumulated. The DA pretreatment was, therefore, combined with the ammonia recycled percolation (ARP) process that has been proven to be effective in delignification. The combined pretreatment essentially fractionated the switchgrass into three major components. The treated feedstock contained about 90% glucan and 10% lignin. The digestibility of these samples was consistently higher than that of DA treated samples. Further study on the interaction of cellulase with xylan and that with lignin has shown that the enzymatic hydrolysis of cellulose is inhibited by lignin as well as xylan. The external xylan was found to be a noncompetitive inhibitor to cellulose hydrolysis. The cellulose used in this study was proven to have the xylanase activity. 23 refs., 8 figs., 4 tabs.

  11. Synthesis and photocatalytic performances of BiVO 4 by ammonia co-precipitation process

    NASA Astrophysics Data System (ADS)

    Yu, Jianqiang; Zhang, Yan; Kudo, Akihiko

    2009-02-01

    This paper reports the preparation and photocatalytic performance of Bismuth vanadate (BiVO 4) by a facile and inexpensive approach. An amorphous BiVO 4 was first prepared by a co-precipitation process from aqueous solutions of Bi(NO 3) 3 and NH 4VO 3 using ammonia. Followed by heating treatment at various temperatures, the amorphous phase converted to crystalline BiVO 4 with a structure between monoclinic and tetragonal scheelite. The crystallization of BiVO 4 occurred at about 523 K, while the nanocrystalline BiVO 4 were formed with a heat-treatment of lower than 673 K. However, when the heat-treatment was carried out at 773 K, the accumulation of nanocrystals to bulk particles was observed. The photocatalytic performances of the materials were investigated by O 2 evolution under visible-light, and MB decomposition under solar simulator. The results demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO 4 gives a major influence on the activity of O 2 evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition.

  12. Improved temporal resolution in process-based modelling of agricultural soil ammonia emissions

    NASA Astrophysics Data System (ADS)

    Beuning, J. D.; Pattey, E.; Edwards, G.; Van Heyst, B. J.

    An emerging environmental issue in Canada is how to quantify the contribution of agricultural soil emissions of ammonia (NH 3) to environmental pollution. Emission inventories are essential to predict these emissions and their subsequent atmospheric transportation, transformation, and deposition. Due to the high spatial and temporal variability associated with NH 3 emissions, emission inventories based on measurements become expensive and emission factors lose accuracy. Process-based models are capable of accounting for the complex soil interactions, but current models lack temporal refinement and few models consider NH 3 emissions. This paper presents the development of a one-dimensional (vertical), time-dependent model capable of predicting NH 3 emissions from a slurry applied to a bare soil. The model is based on chemical, physical and biological relationships that govern soil heat, moisture, and nitrogen movement. Processes considered include convection, diffusion, decomposition, nitrification, denitrification, and surface to atmosphere transport. The model is tested with experimental data from Agriculture and Agri-Food Canada which conducted NH 3 measurements following application of dairy cattle slurry to a bare field. An investigation into the sensitivity of emissions to pH and slurry infiltration rate is conducted and model predictions are best fit to measurements based on this investigation. Testing demonstrated the model's ability to predict the large NH 3 emissions immediately following application and subsequent emission trends associated with diurnal patterns that emission factors cannot capture. Results showed that model performance could benefit from a more in depth measurement program and empirical or process models of surface pH. Potential exists for the model to become a useful tool in predicting emissions on local, regional, or national scales.

  13. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description, validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Móring, A.; Vieno, M.; Doherty, R. M.; Laubach, J.; Taghizadeh-Toosi, A.; Sutton, M. A.

    2015-07-01

    In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. This model, the GAG model (Generation of Ammonia from Grazing) was developed as a part of a suite of weather-driven NH3 exchange models, as a necessary basis for assessing the effects of climate change on NH3 related atmospheric processes. GAG is capable of simulating the TAN (Total Ammoniacal Nitrogen) content, pH and the water content of the soil under a urine patch. To calculate the TAN budget, GAG takes into account urea hydrolysis as a TAN input and NH3 volatilization as a loss. In the water budget, in addition to the water content of urine, precipitation and evaporation are also considered. In the pH module we assumed that the main regulating processes are the dissociation and dissolution equilibria related to the two products of urea hydrolysis: ammonium and bicarbonate. Finally, in the NH3 exchange flux calculation we adapted a canopy compensation point model that accounts for exchange with soil pores and stomata as well as deposition to the leaf surface. We validated our model against measurements, and carried out a sensitivity analysis. The validation showed that the simulated parameters (NH3 exchange flux, soil pH, TAN budget and water budget) are well captured by the model (r > 0.5 for every parameter at p < 0.01 significance level). We found that process-based modelling of pH is necessary to reproduce the temporal development of NH3 emission. In addition, our results suggested that more sophisticated simulation of CO2 emission in the model could potentially improve the modelling of pH. The sensitivity analysis highlighted the vital role of temperature in NH3 exchange; however, presumably due to the TAN limitation, the GAG model currently provides only a modest overall temperature dependence in total NH3 emission compared with the values in the literature. Since all the input parameters

  14. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    PubMed Central

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  15. Continuous monitoring of ammonia slip in deNOx processes: extending the detection limits of UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Barshad, Yoav; Barshad, Yael S.

    2002-02-01

    Studies have shown that nitrogen oxides released to the atmosphere as a result of combustion processes can be linked to the formation of acid rain and ground level ozone (smog). Several different processes to reduce the amount of NOx (deNOx process) have been developed and applied. A common factor in all is the need to control the ammonia slip below the low PPM levels. The flue gas stream contains ammonia, nitrogen oxides and in some cases sulfur dioxide. These components all absorb UV radiation, and therefore can be monitored by a UV diode array process spectrometer. In some applications, however, the sulfur dioxide concentration in the gas can be too high to allow for the accurate and direct measurements of the ammonia slip. To overcome this difficulty a fast separation cell is utilized to remove the SO2 from the stream prior to measurement. The analyzer measures the spectrum of the almost separated components; the spectra are then analyzed by a multicomponent method to give the concentration of the individual components. Withdrawing a representative sample across the stack is a crucial factor in this application; spatial averaging across the stack is obtained by drawing a sample through 12 holes with non-equal diameters. The spectroscopic methods, separation of stream components, and the in-situ sampling will be discussed.

  16. Ammonia diffusion through Nalophan™ bags.

    PubMed

    Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato

    2014-01-01

    The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film. PMID:24552718

  17. Photophosphorylation after Chilling in the Light 1

    PubMed Central

    Wise, Robert R.; Ort, Donald R.

    1989-01-01

    The response of in situ photophosphorylation in attached cucumber (Cucumis sativus L. cv Ashley) leaves to chilling under strong illumination was investigated. A single-beam kinetic spectrophotometer fitted with a clamp-on, whole leaf cuvette was used to measure the flash-induced electrochromic absorbance change at 518 minus 540 nanometers (ΔA518−540) in attached leaves. The relaxation kinetics of the electric field-indicating ΔA518−540 measures the rate of depolarization of the thylakoid membrane. Since this depolarization process is normally dominated by proton efflux through the coupling factor during ATP synthesis, this technique can be used, in conjuction with careful controls, as a monitor of in situ ATP formation competence. Whole, attached leaves were chilled at 5°C and 1000 microeinsteins per square meter per second for up to 6 hours then rewarmed in the dark at room temperature for 30 minutes and 100% relative humidity. Leaf water potential, chlorophyll content, and the effective optical pathlength for the absorption measurements were not affected by the treatment. Light- and CO2-saturated leaf disc oxygen evolution and the quantum efficiency of photosynthesis were inhibited by approximately 50% after 3 hours of light chilling and by approximately 75% after 6 hours. Despite the large inhibition to net photosynthesis, the measurements of ΔA518−540 relaxation kinetics showed photophosphorylation to be largely unaffected by the chilling and light exposure. The amplitude of the ΔA518-540 measures the degree of energization of the photosynthetic membranes and was reduced significantly by chilling in the light. The cause of the decreased energization was traced to impaired turnover of photosystem II. Our measurements showed that the chilling of whole leaves in the light caused neither an uncoupling of photophosphorylation from photosynthetic electron transport nor any irreversible inhibition of the chloroplast coupling factor in situ. The sizeable

  18. Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes

    DOEpatents

    Zaczepinski, Sioma; Billimoria, Rustom M.; Tao, Frank; Lington, Christopher G.; Plumlee, Karl W.

    1984-01-01

    Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

  19. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na(2)CO(3) addition.

    PubMed

    Whang, L M; Yang, K H; Yang, Y F; Han, Y L; Chen, Y J; Cheng, S S

    2009-01-01

    This study evaluated nitrification performance and microbial ecology of AOB in a full-scale biological process, powder activated carbon treatment (PACT), and a pilot-scale biological process, moving bed biofilm reactor (MBBR), treating wastewater collected from a petrochemical industry park. The petrochemical influent wastewater characteristics showed a relative low carbon to nitrogen ratio around 1 with average COD and ammonia concentrations of 310 mg/L and 325 mg-N/L, respectively. The average nitrification efficiency of the full-scale PACT process was around 11% during this study. For the pilot-scale MBBR, the average nitrification efficiency was 24% during the Run I operation mode, which provided a slightly better performance in nitrification than that of the PACT process. During the Run II operation, the pH control mode was switched from addition of NaOH to Na(2)CO(3), leading to a significant improvement in nitrification efficiency of 51%. In addition to a dramatic change in nitrification performance, the microbial ecology of AOB, monitored with the terminal restriction fragment length polymorphism (T-RFLP) molecular methodology, was found to be different between Runs I and II. The amoA-based TRFLP results indicated that Nitrosomonas europaea lineage was the dominant AOB population during Run I operation, while Nitrosospira-like AOB was dominant during Run II operation. To confirm the effects of Na(2)CO(3) addition on the nitrification performance and AOB microbial ecology observed in the MBBR process, batch experiments were conducted. The results suggest that addition of Na(2)CO(3) as a pH control strategy can improve nitrification performance and also influence AOB microbial ecology as well. Although the exact mechanisms are not clear at this time, the results showing the effects of adding different buffering chemicals such as NaOH or Na(2)CO(3) on AOB populations have never been demonstrated until this study. PMID:19182331

  20. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immersion chilling during broiler processing can be a site for cross contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as a chill tank antimicrobial but it can be overcome with heavy organic loads associated with the constant supp...

  1. Influence of Citric Acid on the Pink Color and Characteristics of Sous Vide Processed Chicken Breasts During Chill Storage

    PubMed Central

    Lim, Ki-Won

    2015-01-01

    Chicken breast dipped with citric acid (CA) was treated by sous vide processing and stored in a refrigerated state for 0, 3, 6, 9, and 14 d. A non-dipped control group (CON) and three groups dipped in different concentrations of citric acid concentration were analyzed (0.5%, 0.5CIT; 2.0%, 2CIT and 5.0%, 5CIT; w/v). Cooking yield and moisture content increased due to the citric acid. While the redness of the juice and meat in all groups showed significant increase during storage, the redness of the citric acid groups was reduced compared to the control group (p<0.05). The percentage of myoglobin denaturation (PMD) of the CA groups was also increased according to the level of CA during storage. Total aerobic counts, Enterobacteriaceae counts, volatile basic nitrogen and thiobarbituric acid reactive substances (TBARS) were generally lower in the citric acid-treated samples than in untreated ones, indicating extended shelf life of the cooked chicken breast dipped in citric acid solution. The shear force of the 2CIT and 5CIT groups was significantly lower (p<0.05). The findings indicated positive effects in the physicochemical properties and storage ability of sous vide chicken breast at 2% and 5% citric acid concentrations. PMID:26761885

  2. Welding Using Chilled-Inert-Gas Purging

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  3. Photosynthesis of ammonia

    SciTech Connect

    Mallow, W.A.

    1984-09-24

    This study has demonstrated the technical feasibility of producing ammonia using an innovative technique of combining air, water and sunlight. The technique involves passing moist air over a catalyst-doped, open-celled silica foam bed illuminated by concentrated sunlight. A catalytic reaction results in tounts of ammonia. The work summarized in this report included testing of a pilot (small scale) ammonia production system located on the roof of a Southwest Research Institute (SwRI) Laboratory located in San Antonio, Texas. The system consisted of a catalyst foam bed located in a glass tube about three meters long and 5 centimeters in diameter and mounted on the focal line of a parabolic trough solar collector focused at the sun. The primary active ingredient in the catalyst was titanium dioxide. Moist air was blown through the glass tube, over illuminated catalyst foam bed. A catalytic reaction took place in the foam bed resulting in the production of ammonia gas. The ammonia gas was bubbled through a water scrubber where the ammonia was dissolved. The ammonia concentration in the scrubber water was then measured using chemiluminescence and spectrophotometry techniques to determine the ammonia production rate. Thirty-one tests were conducted in the roof top facility. A number of important process parameters were evaluated. The ammonia production rate from these tests varied from several milligrams per hour to a few micrograms per hour. The tests showed that ammonia production was possible although the yields were relatively low. Several aspects of the process could be improved to increase the yield rates. Specifically, better techniques for illuminating the catalyst with concentrated sunlight and for providing moisture at the catalyst surface should enhance the ammonia production rate. 13 references, 7 figures, 1 table.

  4. Short and long term effects of root and shoot chilling of ransom soybean.

    PubMed

    Musser, R L; Thomas, S A; Kramer, P J

    1983-11-01

    The immediate short term effects on some physiological processes and the long term effects on morphology and reproductive development of root- and shoot-chilled soybeans (Glycine max L. cv Ransom) were studied. Roots or shoots of 16- or 17-day-old plants were chilled at 10 degrees C for one week, and then rewarmed to 25 degrees C. Leaf elongation rate, net CO(2) uptake rate, and stomatal conductance decreased during root or shoot chilling. Root chilling had only temporary effects on water relations, while shoot chilling caused large changes in potentials during chilling. Most processes measured returned to control levels after two days of rewarming. Root-chilled plants harvested 90 days after emergence were similar in morphology and seed weight to controls. Shoot-chilled plants showed a large increase over controls in axillary branch growth, but an early abortion of flowers and a delayed resumption of flowering caused a 78% reduction in seed weight. Root chilling in this study was found to have little or no long term effect on the plants, while shoot chilling caused significant changes in vegetative morphology, and a delay in flowering and subsequent pod filling. PMID:16663300

  5. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    SciTech Connect

    Mattus, A.J.; Walker, J.F. Jr.; Youngblood, E.L.; Farr, L.L.; Lee, D.D.; Dillow, T.A.; Tiegs, T.N.

    1994-12-01

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid. The process may be able to use contaminated aluminum scrap metal from DOE sites to effect the conversion. The final, nitrate-free ceramic product can be pressed and sintered like other ceramics or silica and/or fluxing agents can be added to form a glassy ceramic or a flowable glass product. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 70% were obtained for the waste form produced. Sintered pellets produced from supernate from Melton Valley Storage Tanks (MVSTs) have been leached in accordance with the 16.1 leach test for the radioelements {sup 85}Sr and {sup 137}Cs. Despite lengthy counting times, {sup 85}Sr could not be detected in the leachates. {sup 137}Cs was only slightly above background and corresponded to a leach index of 12.2 to 13.7 after 8 months of leaching. Leach testing of unsintered and sintered reactor product spiked with hazardous metals proved that both sintered and unsintered product passed the Toxicity Characteristic Leaching Procedure (TCLP) test. Design of the equipment and flowsheet for a pilot demonstration-scale system to prove the nitrate destruction portion of the NAC process and product formation is under way.

  6. Investigation of nitriding and reduction processes in a nanocrystalline iron-ammonia-hydrogen system at 350 °C.

    PubMed

    Bartłomiej, Wilk; Arabczyk, Walerian

    2015-08-21

    In this paper, the series of phase transitions occurring during the gaseous nitriding of nanocrystalline iron was studied. The nitriding process of nanocrystalline iron and the reduction process of the obtained nanocrystalline iron nitrides were carried out at 350 °C in a tubular differential reactor equipped with systems for thermogravimetric measurements and analysis of gas phase composition. The samples were reduced with hydrogen at 500 °C in the above mentioned reactor. Then the sample was nitrided at 350 °C in a stream of ammonia-hydrogen mixtures of various nitriding potentials, P = pNH3/pH2(3/2). At each nitriding potential stationary states were obtained - the nitriding reaction rate is zero and the catalytic ammonia decomposition reaction rate is constant. The reduction process of the obtained nanocrystalline iron nitrides was studied at 350 °C in the stationary states as well. The phase composition of products obtained in both reaction directions (nitriding and reduction) was different despite the identical concentration of nitrogen in the nitriding mixture. The hysteresis phenomenon, occurring at the iron nitriding degree - nitriding potential system, was explained. In the single-phase areas of α-Fe(N), γ'-Fe4N or ε-Fe3-2N, a state of chemical equilibrium between the ammonia-hydrogen mixture, nanocrystalline iron surface and volume was observed. In the multi-phase areas, between the gas phase and the iron surface a state of chemical equilibrium holds, but between the gas phase and solid phase volume a state of quasi-equilibrium exists. The model of the nitriding process of nanocrystalline iron to iron nitride (γ'-Fe4N) was presented. It was found that nanocrystallites reacted in the order of their sizes from the largest to the smallest. PMID:26182186

  7. Impact of Added Sand on the Recovery of Salmonella, Campylobacter, Escherichia coli, and Coliforms from Pre-Chill and Post-Chill Broiler Carcass Halves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the use of sand to a rinse for bacterial enumeration and determining the incidence of pathogens from broiler carcasses. During each of 4 replications, 6 pre-chill and 6 post-chill broiler carcasses were collected from a commercial processing plant. All carcasses wer...

  8. Impact of the sampling method and chilling on the Salmonella recovery from pig carcasses.

    PubMed

    Vanantwerpen, Gerty; De Zutter, Lieven; Berkvens, Dirk; Houf, Kurt

    2016-09-01

    Differences in recovery of Salmonella on pig carcasses using non-destructive and destructive sampling methods is not well understood in respect to the chilling processes applied in slaughterhouses. Therefore, in two slaughterhouses, four strains at two different concentrations were inoculated onto pork skin. Inoculated skin samples were sampled before and after chilling with two sampling methods: swabbing and destruction. Both slaughterhouses were visited three times and all tests were performed in triplicate. All samples were analysed using the ISO-method and recovered isolates were confirmed by PFGE. The chilling system (fast or conventional cooling) nor the sampling step (before and after chilling) did not significantly influence the recovery of Salmonella. However, swabbing after chilling leads to an underestimation of the real number of contaminated carcasses. Therefore, destructive sampling is the more designated sampling method after chilling. PMID:27236225

  9. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  10. Process-based modelling of ammonia emission over a urine patch - Towards developing a field scale emission model for regional use

    NASA Astrophysics Data System (ADS)

    Moring, Andrea; Vieno, Massimo; Doherty, Ruth; Sutton, Mark A.

    2014-05-01

    This work investigates the influence of meteorological factors on ammonia related atmospheric processes, with a special focus on emission from grazing. For this purpose we are developing a process-based model (GAG: Generation of Ammonia from Grazing) driven by meteorology that can simulate the ammonia emission from a field covered by urine patches. The aim of this work is to implement the GAG model into the EMEP atmospheric chemical transport model (ACTM), and examine the changes of surface ammonia concentrations under future climate scenarios. The research is carried out within the framework of the ECLAIRE project (Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems). To estimate the sensitivity of surface concentrations of ammonia to a temperature dependent emission approach, we applied a temperature function in the EMEP model for the agricultural ammonia emissions from the UK. With the original emissions the resulting surface ammonia concentration has a bimodal seasonal tendency, with a peak in the beginning of the spring when agricultural management starts and with a second maximum during the autumn when fertilizer is typically spread. With our new temperature dependent approach the seasonal cycle became unimodal with a peak in June. This significant difference supports the need for a dynamic emission approach in ACTMs. The GAG model currently works for a single urine patch. Before it calculates the ammonia emission flux over the urine patch the model simulates the ammoniacal nitrogen budget and the water budget under the patch. The preliminary results for emission fluxes are in good agreement with the measurements. However, the differences highlight that further improvements are necessary.

  11. Ammonia mobility in chabazite: insight into the diffusion component of the NH3-SCR process.

    PubMed

    O'Malley, Alexander J; Hitchcock, Iain; Sarwar, Misbah; Silverwood, Ian P; Hindocha, Sheena; Catlow, C Richard A; York, Andrew P E; Collier, P J

    2016-06-29

    The diffusion of ammonia in commercial NH3-SCR catalyst Cu-CHA was measured and compared with H-CHA using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations to assess the effect of counterion presence on NH3 mobility in automotive emission control relevant zeolite catalysts. QENS experiments observed jump diffusion with a jump distance of 3 Å, giving similar self-diffusion coefficient measurements for both Cu- and H-CHA samples, in the range of ca. 5-10 × 10(-10) m(2) s(-1) over the measured temperature range. Self-diffusivities calculated by MD were within a factor of 6 of those measured experimentally at each temperature. The activation energies of diffusion were also similar for both studied systems: 3.7 and 4.4 kJ mol(-1) for the H- and Cu-chabazite respectively, suggesting that counterion presence has little impact on ammonia diffusivity on the timescale of the QENS experiment. An explanation is given by the MD simulations, which showed the strong coordination of NH3 with Cu(2+) counterions in the centre of the chabazite cage, shielding other molecules from interaction with the ion, and allowing for intercage diffusion through the 8-ring windows (consistent with the experimentally observed jump length) to carry on unhindered. PMID:27306298

  12. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators.

    PubMed

    Hwang, In-Hee; Minoya, Hiroshi; Matsuto, Toshihiko; Matsuo, Takayuki; Matsumoto, Akihiro; Sameshima, Ryoji

    2009-03-01

    The selective non-catalytic reduction (SNCR) process is one of the methods used to reduce NO(x) to N(2) and H(2)O by injecting NH(3) or urea solution into a high-temperature furnace. Merits of this method include simple handling, low cost, and energy savings. However, a critical problem of the SNCR process is the generation of ammonia slip; in reactions with HCl in flue gas, ammonium chloride is generated and forms detached white plumes near the stack. Using a laboratory-scale experimental apparatus, we examined the possibility of NH(4)Cl collection and removal by a bag filter (BF). The molar NH(3)/HCl ratio of the compound collected at the filter was nearly one, regardless of gas temperature, retention time, and concentration, confirming the formation of NH(4)Cl. The NH(4)Cl generation ratio increased as reaction temperature decreased, indicating that the collection efficiency of NH(4)Cl should increase if the BF is operated at the lowest possible temperature while avoiding the critical point causing low-temperature corrosion (e.g., 150 degrees C). In addition, the use of activated carbon injection in the front of the BF and the dust layer on the BF are expected to capture slipped ammonia at the BF and reduce NH(4)Cl fume generation in the stack. PMID:19108871

  13. Synthesis of D- and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process.

    PubMed

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-04-01

    The synthesis of substituted D-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural D-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the D-configured product. Furthermore, the system was extended to the preparation of those L-phenylalanines which are obtained with a low ee value using PAL amination. PMID:25728350

  14. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    PubMed

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. PMID:24216266

  15. Identification of chilling and heat requirements of cherry trees--a statistical approach.

    PubMed

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. 'Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. 'Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package ('chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. 'Payne') at Davis, California. PMID

  16. Salmonella Recovery Following Immersion Chilling for Matched Neck Skin and Whole Carcass Enrichment Sampling Methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence and serogroups of Salmonella recovered following immersion chilling were determined for both neck skin and the matching whole carcass enriched samples. Commercially processed and eviscerated broiler carcasses were immersion chilled in ice and tap water for 40 min. Following immersio...

  17. Effect of Immersion or Dry Chilling on Broiler Carcass Moisture Retention and Breast Fillet Functionality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to investigate the effect of chilling method on broiler carcass skin color, carcass moisture retention, and breast fillet quality and functionality. One hundred fifty eviscerated broilers carcasses were removed from a commercial processing line prior to chilling, transported to...

  18. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  19. Effect of chilling method and post-mortem aging time on broiler breast fillet quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effects of chilling method and post-mortem aging time on broiler breast fillet quality. One hundred-fifty eviscerated broiler carcasses were removed from a commercial processing line prior to chilling and transported to the laboratory. Half of the carcasses we...

  20. Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chilling temperatures (<10 degrees C) may cause damage to Korean market-type cucumber (Cucumis sativus L.) plants during winter and early spring growing seasons. Inheritance to chilling in U.S. processing cucumber is controlled by cytoplasmic (maternally) and nuclear factors. To understand inherit...

  1. Effects of Dry Chilling on the Microflora on Beef Carcasses at a Canadian Beef Packing Plant.

    PubMed

    Liu, Y; Youssef, M K; Yang, X

    2016-04-01

    The aim of this study was to determine the course of effects on the microflora on beef carcasses of a commercial dry chilling process in which carcasses were dry chilled for 3 days. Groups of 25 carcasses selected at random were sampled when the chilling process commenced and after the carcasses were chilled for 1, 2, 4, 6, 8, 24, and 67 h for determination of the numbers of aerobes, coliforms, and Escherichia coli. The temperatures of the surfaces and the thickest part of the hip (deep leg) of carcasses, as well as the ambient air conditions, including air temperature, velocity, and relative humidity (RH), were monitored throughout the chilling process. The chiller was operated at 0°C with an off-coil RH of 88%. The air velocity was 1.65 m/s when the chiller was loaded. The initial RH levels of the air in the vicinity of carcasses varied with the locations of carcasses in the chiller and decreased rapidly during the first hour of chilling. The average times for shoulder surfaces, rump surfaces, and the deep leg of carcasses to reach 7°C were 13.6 ± 3.1, 16.0 ± 2.4 and 32.4 ± 3.2 h, respectively. The numbers of aerobes, coliforms, and E. coli on carcasses before chilling were 5.33 ± 0.42, 1.95 ± 0.77, 1.42 ± 0.78 log CFU/4,000 cm(2), respectively. The number of aerobes on carcasses was reduced by 1 log unit each in the first hour of chilling and in the subsequent 23 h of chilling. There was no significant difference (P > 0.05) between the numbers of aerobes recovered from carcasses after 24 and 67 h of chilling. The total numbers (log CFU/100,000 cm(2)) on carcasses before chilling and after the first hour of chilling were 3.86 and 2.24 for coliforms and 3.30 and 2.04 for E. coli. The subsequent 23 h of chilling reduced the numbers of both groups of organisms by a further log unit. No coliforms or E. coli were recovered after 67 h of chilling. The findings show that the chilling regime investigated in this study resulted in significant reductions of all

  2. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels. PMID:25034826

  3. Quality and bacteriological consequences of beef carcass spray-chilling: Effects of spray duration and boxed beef storage temperature.

    PubMed

    Greer, G G; Jones, S D

    1997-01-01

    The effects of water spray-chilling on beef carcass traits and muscle quality, bacteriology and retail case life were determined in a research abattoir. Chilling treatments were compared using 10 crossbred steer carcasses (280 ± 4 kg) at each spray duration (4, 8, 12 and 16 h) and each vacuum storage temperature (1, 4, 8 and 12 °C). Control sides were air-chilled (1 °C, 24 h) while spray-chilled sides were sprayed with an intermittent water mist at 1 °C in four, 60 s cycles/h for the initial 4-16 h of chilling. The effects of storage temperature were evaluated using vacuum packaged longissimus thoracis (LT) muscle at post-chill intervals of 2, 16, 30 and 44 days. Chilling treatment effects were similar at all spray-chill durations and LT vacuum storage times and temperatures. Carcass spray-chilling did not effect pH, lean colour, % moisture, sarcomere length, shear value or weight loss during the vacuum storage of LT muscle. Carcass fat colour tended to brighten as spray duration was extended up to 12 h, but there was a grey discoloration of fat at spray durations beyond 12 h. Chilling treatment had only marginal effects on anaerobic bacteria during the vacuum storage of LT muscles, or aerobic bacteria during the retail display of rib-eye steaks, and the retail case life of steaks was largely unaffected by spray-chilling. A linear relationship between spray-chill duration and carcass weight loss was determined and carcass shrinkage was reduced by 0.08 g/100 g for every hour of spray-chilling. It was estimated that a major beef processing abattoir could utilize spray-chilling to save more than 2000 kg daily in carcass shrinkage, without compromising quality or increasing spoilage losses. PMID:22061138

  4. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-12-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper.

  5. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover

    SciTech Connect

    Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri; Garold L. Gresham; Janette Moore

    2014-07-01

    Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  6. Alternative E ammonia feedstock

    SciTech Connect

    Lentz, M.J.; Wright, R.A.

    1999-07-01

    Power plants are using more Ammonia for increasing precipitator and baghouse efficiency, for SCR and SNCR processes, and for controlling acid stack plumes and dewpoint corrosion. These simple systems inject ammonia and air into the furnace or the precipitator or baghouse inlet ductwork. The common feedstocks in use today are Anhydrous ammonia [NH{sub 3}] and Aqueous ammonia [NH{sub 4}OH], both defined as poison gases by US authorities and most Western nations. Storage and handling procedures for these products are strictly regulated. Wilhelm Environmental Technologies Inc. is developing use of solid, formed or prilled Urea [CO(NH{sub 2}){sub 2}] as the feedstock. When heated in moist air, Urea sublimes to ammonia [NH{sub 3}] and carbon dioxide [CO{sub 2}]. Urea is stored and handled without restrictions or environmental concerns. Urea is a more expensive feedstock than NH{sub 3}, but much less expensive than [NH{sub 4}OH]. The design, and operating results, of a pilot system at Jacksonville Electric St. John's River Plant [Unit 2] are described. The pilot plant successfully sublimed Urea up to 100 pounds/hour. Further testing is planned. Very large ammonia use may favor NH{sub 3}, but smaller quantities can be produced at attractive prices with Urea based ammonia systems. Storage costs are far less. Many fluidized-bed boilers can use pastille or solid urea metered directly into the existing cyclones for NO{sub x} control. This is more economical than aqueous ammonia or aqueous urea based technology.

  7. From the Solution Processing of Hydrophilic Molecules to Polymer-Phthalocyanine Hybrid Materials for Ammonia Sensing in High Humidity Atmospheres

    PubMed Central

    Gaudillat, Pierre; Jurin, Florian; Lakard, Boris; Buron, Cédric; Suisse, Jean-Moïse; Bouvet, Marcel

    2014-01-01

    We have prepared different hybrid polymer-phthalocyanine materials by solution processing, starting from two sulfonated phthalocyanines, s-CoPc and CuTsPc, and polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), poly(acrylic acid-co-acrylamide) (PAA-AM), poly(diallyldimethylammonium chloride) (PDDA) and polyaniline (PANI) as polymers. We also studied the response to ammonia (NH3) of resistors prepared from these sensing materials. The solvent casted films, prepared from s-CoPc and PVP, PEG and PAA-AM, were highly insulating and very sensitive to the relative humidity (RH) variation. The incorporation of s-CoPc in PDDA by means of layer-by-layer (LBL) technique allowed to stabilize the film, but was too insulating to be interesting. We also prepared PANI-CuTsPc hybrid films by LBL technique. It allowed a regular deposition as evidenced by the linear increase of the absorbance at 688 nm as a function of the number of bilayers. The sensitivity to ammonia (NH3) of PANi-CuTsPc resistors was very high compared to that of individual materials, giving up to 80% of current decrease when exposed to 30 ppm NH3. Contrarily to what happens with neutral polymers, in PANI, CuTsPc was stabilized by strong electrostatic interactions, leading to a stable response to NH3, whatever the relative humidity in the range 10%–70%. Thus, the synergy of PANI with ionic macrocycles used as counteranions combined with their simple aqueous solution processing opens the way to the development of new gas sensors capable of operating in real world conditions. PMID:25061841

  8. Effect of dry-air chilling on sensory descriptive profiles of cooked broiler breast meat deboned four hours after the initiation of chilling.

    PubMed

    Zhuang, H; Savage, E M; Smith, D P; Berrang, M E

    2009-06-01

    The objective of this study was to evaluate the effect of a dry air-chilling (AC) method on sensory texture and flavor descriptive profiles of broiler pectoralis major (fillet) and pectoralis minor (tender). The profiles of the muscles immersion-chilled and deboned at the same postmortem time and the profiles of the muscles hot-boned (or no chill) were used for the comparison. A total of 108 eviscerated carcasses (6-wk-old broilers) were obtained from a commercial processing line before the chillers. Carcasses were transported to a laboratory facility where they were either i) chilled by a dry AC method (0.7 degrees C, 150 min in a cold room), ii) chilled by immersion chilling (IC; 0.3 degrees C, 50 min in a chiller), or iii) not chilled (9 birds per treatment per replication). Both IC and AC fillets and tenders were removed from the bone at 4 h after the initiation of chilling (approximately 4.75 h postmortem) in a processing area (18 degrees C). The no-chill muscles were removed immediately upon arrival. The sensory properties (21 attributes) of cooked broiler breast meat were evaluated by trained panelists using 0- to 15-point universal intensity scales. The average intensity scores of the 9 flavor attributes analyzed ranged from 0.9 to 4.0. Regardless of breast muscle type, there were no significant differences in sensory flavor descriptive profiles between the 3 treatments. The average intensity scores of the 12 texture attributes ranged from 1.5 to 7.5 and there were no significant differences between the AC and IC samples. The average intensity scores of the texture attributes, cohesiveness, hardness, cohesiveness of mass, rate of breakdown, and chewiness of the no chill fillets and tenders were significantly higher than those of either of the chilled samples. These results demonstrate that chicken breast meat from AC retains sensory flavor profile characteristics but AC results in sensory texture profile differences when compared with no-chill meat. Sensory

  9. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.

    1983-01-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  10. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak,D.L.

    1983-04-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase clouds of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind.

  11. Atmospheric dispersion of ammonia: an ammonia fog model

    SciTech Connect

    Kansa, E.J.; Ermak, D.L.; Chan, S.T.; Rodean, H.C.

    1983-07-01

    Ammonia (NH/sub 3/), a by-product of many chemical processes, is widely used as a fertilizer and as a raw material for many chemical syntheses. The purpose of this paper is to discuss the atmospheric dispersion of ammonia resulting from a high pressure release. The resulting nature of the two-phase cloud of ammonia vapor and droplets has a significant effect on its dispersion characteristics. Our calculations of a 40 ton release show that even under moderately high wind conditions, the resulting ammonia cloud remains negatively buoyant for considerable distances downwind. 10 references, 15 figures.

  12. Molecular basis of chill resistance adaptations in poikilothermic animals.

    PubMed

    Hayward, Scott A L; Manso, Bruno; Cossins, Andrew R

    2014-01-01

    Chill and freeze represent very different components of low temperature stress. Whilst the principal mechanisms of tissue damage and of acquired protection from freeze-induced effects are reasonably well established, those for chill damage and protection are not. Non-freeze cold exposure (i.e. chill) can lead to serious disruption to normal life processes, including disruption to energy metabolism, loss of membrane perm-selectivity and collapse of ion gradients, as well as loss of neuromuscular coordination. If the primary lesions are not relieved then the progressive functional debilitation can lead to death. Thus, identifying the underpinning molecular lesions can point to the means of building resistance to subsequent chill exposures. Researchers have focused on four specific lesions: (i) failure of neuromuscular coordination, (ii) perturbation of bio-membrane structure and adaptations due to altered lipid composition, (iii) protein unfolding, which might be mitigated by the induced expression of compatible osmolytes acting as 'chemical chaperones', (iv) or the induced expression of protein chaperones along with the suppression of general protein synthesis. Progress in all these potential mechanisms has been ongoing but not substantial, due in part to an over-reliance on straightforward correlative approaches. Also, few studies have intervened by adoption of single gene ablation, which provides much more direct and compelling evidence for the role of specific genes, and thus processes, in adaptive phenotypes. Another difficulty is the existence of multiple mechanisms, which often act together, thus resulting in compensatory responses to gene manipulations, which may potentially mask disruptive effects on the chill tolerance phenotype. Consequently, there is little direct evidence of the underpinning regulatory mechanisms leading to induced resistance to chill injury. Here, we review recent advances mainly in lower vertebrates and in arthropods, but increasingly

  13. Engineering Design and Operation Report: Biological Treatment Process for the Removal of Ammonia from a Small Drinking Water System in Iowa: Pilot to Full-Scale

    EPA Science Inventory

    Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment...

  14. Summary Report: Pilot Study of an Innovative Biological Treatment Process for the Removal of Ammonia from a Small Drinking Water System

    EPA Science Inventory

    The use of biologically active filtration to oxidize ammonia as a full-scale drinking water treatment process has not been thoroughly considered in the United States. A number of concerns with biological water treatment exist including the potential release of excessive numbers o...

  15. Membrane-Based Gas Traps for Ammonia, Freon-21, and Water Systems to Simplify Ground Processing

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.

    2003-01-01

    is when particles adhere to the hydrophobic membrane, promoting formation of a water layer about it that can blind the membrane for gas transport (Figure 1). This mechanism is the most probable cause for observed failures with the existing design. The objective of this project was to devise a strategy for choosing new membrane materials (database development and procedure), redesign of the gas trap to mitigate blinding effects, and to develop a design that can be used in ammonia and Freon-21 coolant loops.

  16. Interaction of chill and heat in peach flower bud dormancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peach bud dormancy requirement is a critical factor in selecting adapted cultivars, but the dormancy process is not well-understood. The Utah model proposes bloom occurs after a cultivar-specific amount of chilling followed by 5000 heat units above 4 °C. This model works well in colder climates, but...

  17. Cooling of Poultry Using Immersion or air chilling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During processing, poultry carcasses must be cooled to 40 F or below within 4 to 8 hours after slaughter to retard growth of pathogenic and spoilage microorganisms. In the U.S., poultry has traditionally been cooled using immersion chilling because this method is both economical and efficient; howe...

  18. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in Cassava

    PubMed Central

    2014-01-01

    Background Stress acclimation is an effective mechanism that plants acquired for adaption to dynamic environment. Even though generally considered to be sensitive to low temperature, Cassava, a major tropical crop, can be tolerant to much lower temperature after chilling acclimation. Improvement to chilling resistance could be beneficial to breeding. However, the underlying mechanism and the effects of chilling acclimation on chilling tolerance remain largely unexplored. Results In order to understand the mechanism of chilling acclimation, we profiled and analyzed the transcriptome and microRNAome of Cassava, using high-throughput deep sequencing, across the normal condition, a moderate chilling stress (14°C), a harsh stress (4°C) after chilling acclimation (14°C), and a chilling shock from 24°C to 4°C. The results revealed that moderate stress and chilling shock triggered comparable degrees of transcriptional perturbation, and more importantly, about two thirds of differentially expressed genes reversed their expression from up-regulation to down-regulation or vice versa in response to hash stress after experiencing moderate stress. In addition, microRNAs played important roles in the process of this massive genetic circuitry rewiring. Furthermore, function analysis revealed that chilling acclimation helped the plant develop immunity to further harsh stress by exclusively inducing genes with function for nutrient reservation therefore providing protection, whereas chilling shock induced genes with function for viral reproduction therefore causing damage. Conclusions Our study revealed, for the first time, the molecular basis of chilling acclimation, and showed potential regulation role of microRNA in chilling response and acclimation in Euphorbia. PMID:25090992

  19. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO{sub 3}/h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting.

  20. Ammonia Test

    MedlinePlus

    ... be ordered, along with other tests such as glucose , electrolytes , and kidney and liver function tests , to help diagnose the cause of ... Pages tab.) An increased ammonia level and decreased glucose ... may indicate that severe liver or kidney damage has impacted the body's ability ...

  1. Broiler carcass bacterial counts after immersion chilling using either a low or high volume of water.

    PubMed

    Northcutt, J K; Cason, J A; Smith, D P; Buhr, R J; Fletcher, D L

    2006-10-01

    A study was conducted to investigate the bacteriological impact of using different volumes of water during immersion chilling of broiler carcasses. Market-aged broilers were processed, and carcasses were cut into left and right halves along the keel bone immediately after the final bird wash. One half of each carcass pair was individually chilled at 4 degrees C in a separate bag containing either 2.1 L/kg (low) or 16.8 L/kg (high) of distilled water. Carcass halves were submersed in a secondary chill tank containing approximately 150 L of an ice-water mix (0.6 degrees C). After chilling for 45 min, carcass halves were rinsed with 100 mL of sterile water for 1 min. Rinses and chill water were analyzed for total aerobic bacteria (APC), Escherichia coli, Enterobacteriaceae, and Campylobacter. After chilling with a low volume of water, counts were 3.7, 2.5, 2.6, and 2.1 log(10) cfu/mL of rinse for APC, E. coli, Enterobacteriaceae, and Campylobacter, respectively. When a high volume of chill water was used, counts were 3.2, 1.7, 1.6, and 1.8 log(10) cfu/mL of rinse for APC, E. coli, Enterobacteriaceae, and Campylobacter, respectively. There was no difference in bacterial counts per milliliter of chill water among treatments. These results show that using additional water during immersion chilling of inoculated broilers will remove more bacteria from the carcass surfaces, but numbers of bacteria per milliliter in the chiller water will remain constant. The bacteriological impact of using more water during commercial immersion chilling may not be enough to offset economic costs. PMID:17012173

  2. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    PubMed

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology. PMID:24455923

  3. Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, Yud-Ren; Wang, C. Y.; Chan, D. E.; Kim, Moon S.

    2004-11-01

    Hyperspectral images of cucumbers were acquired before and during cold storage treatments as well as during subsequent room temperature (RT) storage to explore the potential for the detection of chilling induced damage in whole cucumbers. Region of interest (ROI) spectral features of chilling injured areas, resulting from cold storage treatments at 0°C or 5°C, showed a reduction in reflectance intensity during multi-day post chilling periods of RT storage. Large spectral differences between good-smooth skins and chilling injured skins occurred in the 700-850 nm visible/NIR region. A number of data processing methods, including simple spectral band algorithms, second difference, and principal component analysis (PCA), were attempted to discriminate the ROI spectra of good cucumber skins from those of chilling injured skins. Results revealed that using either a dual-band ratio algorithm (Q811/756) or a PCA model from a narrow spectral region of 733-848 nm could detect chilling injured skins with a success rate of over 90%. Furthermore, the dual-band algorithm was applied to the analysis of images of cucumbers at different conditions, and the resultant images showed more correct identification of chilling injured spots than other processing methods.

  4. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. PMID:26363328

  5. Acidification of In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) process to reduce ammonia volatilization: Model development and validation.

    PubMed

    Madani-Hosseini, Mahsa; Mulligan, Catherine N; Barrington, Suzelle

    2016-06-01

    In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is an ambient temperature treatment system for wastewaters stored for over 100days under temperate climates, which produces a nitrogen rich digestate susceptible to ammonia (NH3) volatilization. Present acidification techniques reducing NH3 volatilization are not only expensive and with secondary environmental effects, but do not apply to ISPAD relying on batch-to-batch inoculation. The objectives of this study were to identify and validate sequential organic loading (OL) strategies producing imbalances in acidogen and methanogen growth, acidifying ISPAD content one week before emptying to a pH of 6, while also preserving the inoculation potential. This acidification process is challenging as wastewaters often offer a high buffering capacity and ISPAD operational practices foster low microbial populations. A model simulating the ISPAD pH regime was used to optimize 3 different sequential OLs to decrease the ISPAD pH to 6.0. All 3 strategies were compared in terms of biogas production, volatile fatty acid (VFA) concentration, microbial activity, glucose consumption, and pH decrease. Laboratory validation of the model outputs confirmed that a sequential OL of 13kg glucose/m(3) of ISPAD content over 4days could indeed reduce the pH to 6.0. Such OL competes feasibly with present acidification techniques. Nevertheless, more research is required to explain the 3-day lag between the model results and the experimental data. PMID:27060886

  6. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit....

  7. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit....

  8. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit....

  9. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit....

  10. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit....

  11. Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  12. Process-based Modeling of Ammonia Emission from Beef Cattle Feedyards with the Integrated Farm Systems Model.

    PubMed

    Waldrip, Heidi M; Rotz, C Alan; Hafner, Sasha D; Todd, Richard W; Cole, N Andy

    2014-07-01

    Ammonia (NH) volatilization from manure in beef cattle feedyards results in loss of agronomically important nitrogen (N) and potentially leads to overfertilization and acidification of aquatic and terrestrial ecosystems. In addition, NH is involved in the formation of atmospheric fine particulate matter (PM), which can affect human health. Process-based models have been developed to estimate NH emissions from various livestock production systems; however, little work has been conducted to assess their accuracy for large, open-lot beef cattle feedyards. This work describes the extension of an existing process-based model, the Integrated Farm Systems Model (IFSM), to include simulation of N dynamics in this type of system. To evaluate the model, IFSM-simulated daily per capita NH emission rates were compared with emissions data collected from two commercial feedyards in the Texas High Plains from 2007 to 2009. Model predictions were in good agreement with observations and were sensitive to variations in air temperature and dietary crude protein concentration. Predicted mean daily NH emission rates for the two feedyards had 71 to 81% agreement with observations. In addition, IFSM estimates of annual feedyard emissions were within 11 to 24% of observations, whereas a constant emission factor currently in use by the USEPA underestimated feedyard emissions by as much as 79%. The results from this study indicate that IFSM can quantify average feedyard NH emissions, assist with emissions reporting, provide accurate information for legislators and policymakers, investigate methods to mitigate NH losses, and evaluate the effects of specific management practices on farm nutrient balances. PMID:25603064

  13. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2013-02-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization) and total growing season NH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m-2 s-1. A key finding of the surface chemistry measurements was the observation of high pH (7.0-8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak

  14. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2012-06-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short term (i.e., post fertilization) and total growing seasonNH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈125 ng N m-2 s-1 A key finding of the surface chemistry measurements was the observation of high pH (7.0 - 8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak LAI

  15. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  16. Prevalence of Salmonella Following Immersion Chilling for Matched Neck Skin, Whole Carcass Rinse, and Whole Carcass Enrichment Sampling Methodologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella prevalence and the serogroups recovered following immersion chilling were determined for matched enriched neck skin, whole carcass rinse, and whole carcass samples. Commercially processed and eviscerated broiler carcasses were chilled in ice/tap water 40 min with or without 20 ppm free c...

  17. Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon).

    PubMed

    Siboza, Xolani Irvin; Bertling, Isa; Odindo, Alfred Oduor

    2014-11-15

    Chilling injury (CI) is associated with the degradation of membrane integrity which can be aligned to phenolic oxidation activated by polyphenol oxidase (PPO) and peroxidase (POD), enzymes responsible for tissue browning. Phenylalanine ammonia-lyase (PAL) is a further enzyme prominent in the phenolic metabolism that is involved in acclimation against chilling stress. It was hypothesized that treatment with methyl jasmonate (MJ) and salicylic acid (SA) may enhance chilling tolerance in lemon fruit by increasing the synthesis of total phenolics and PAL by activating the key enzyme regulating the shikimic acid pathway whilst inhibiting the activity of POD and PPO. Lemon fruit were treated with 10μM MJ, 2mM SA or 10μM MJ plus 2mM SA, waxed, stored at -0.5, 2 or 4.5°C for up to 28 days plus 7 days at 23°C. Membrane integrity was studied by investigating membrane permeability and the degree of membrane lipid peroxidation in lemon flavedo following cold storage. The 10μM MJ plus 2mM SA treatment was most effective in enhancing chilling tolerance of lemon fruit, significantly reducing chilling-induced membrane permeability and membrane lipid peroxidation of lemon flavedo tissue. This treatment also increased total phenolics and PAL activity in such tissue while inhibiting POD activity, the latter possibly contributing to the delay of CI manifestation. PPO activity was found to be a poor biochemical marker of CI. Treatment with 10μM MJ plus 2mM SA resulted in an alteration of the phenolic metabolism, enhancing chilling tolerance, possibly through increased production of total phenolics and the activation of PAL and inhibition of POD. PMID:25216124

  18. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates

    PubMed Central

    Friesen, Patrick C.; Peixoto, Murilo M.; Busch, Florian A.; Johnson, Daniel C.; Sage, Rowan F.

    2014-01-01

    Miscanthus hybrids are leading candidates for bioenergy feedstocks in mid to high latitudes of North America and Eurasia, due to high productivity associated with the C4 photosynthetic pathway and their tolerance of cooler conditions. However, as C4 plants, they may lack tolerance of chilling conditions (0–10 °C) and frost, particularly when compared with candidate C3 crops at high latitudes. In higher latitudes, cold tolerance is particularly important if the feedstock is to utilize fully the long, early-season days of May and June. Here, leaf gas exchange and fluorescence are used to assess chilling tolerance of photosynthesis in five Miscanthus hybrids bred for cold tolerance, a complex Saccharum hybrid (energycane), and an upland sugarcane variety with some chilling tolerance. The chilling treatment consisted of transferring warm-grown plants (25/20 °C day/night growth temperatures) to chilling (12/5 °C) conditions for 1 week, followed by assessing recovery after return to warm temperatures. Chilling tolerance was also evaluated in outdoor, spring-grown Miscanthus genotypes before and after a cold front that was punctuated by a frost event. Miscanthus×giganteus was found to be the most chilling-tolerant genotype based on its ability to maintain a high net CO2 assimilation rate (A) during chilling, and recover A to a greater degree following a return to warm conditions. This was associated with increasing its capacity for short-term dark-reversible photoprotective processes (ΦREG) and the proportion of open photosystem II reaction centres (qL) while minimizing photoinactivation (ΦNF). Similarly, in the field, M.×giganteus exhibited a significantly greater A and pre-dawn F v/F m after the cold front compared with the other chilling-sensitive Miscanthus hybrids. PMID:24642848

  19. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates.

    PubMed

    Friesen, Patrick C; Peixoto, Murilo M; Busch, Florian A; Johnson, Daniel C; Sage, Rowan F

    2014-07-01

    Miscanthus hybrids are leading candidates for bioenergy feedstocks in mid to high latitudes of North America and Eurasia, due to high productivity associated with the C4 photosynthetic pathway and their tolerance of cooler conditions. However, as C4 plants, they may lack tolerance of chilling conditions (0-10 °C) and frost, particularly when compared with candidate C3 crops at high latitudes. In higher latitudes, cold tolerance is particularly important if the feedstock is to utilize fully the long, early-season days of May and June. Here, leaf gas exchange and fluorescence are used to assess chilling tolerance of photosynthesis in five Miscanthus hybrids bred for cold tolerance, a complex Saccharum hybrid (energycane), and an upland sugarcane variety with some chilling tolerance. The chilling treatment consisted of transferring warm-grown plants (25/20 °C day/night growth temperatures) to chilling (12/5 °C) conditions for 1 week, followed by assessing recovery after return to warm temperatures. Chilling tolerance was also evaluated in outdoor, spring-grown Miscanthus genotypes before and after a cold front that was punctuated by a frost event. Miscanthus×giganteus was found to be the most chilling-tolerant genotype based on its ability to maintain a high net CO2 assimilation rate (A) during chilling, and recover A to a greater degree following a return to warm conditions. This was associated with increasing its capacity for short-term dark-reversible photoprotective processes (ΦREG) and the proportion of open photosystem II reaction centres (qL) while minimizing photoinactivation (ΦNF). Similarly, in the field, M.×giganteus exhibited a significantly greater A and pre-dawn F v/F m after the cold front compared with the other chilling-sensitive Miscanthus hybrids. PMID:24642848

  20. Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From the point of view of biogeochemistry, manure is a complex of organic matter containing minor minerals. When manure is excreted by animals, it undergoes a series of reactions such as decomposition, hydrolysis, ammonia volatilization, nitrification, denitrification, and fermentation from which ca...

  1. Process-based modeling of ammonia emission from beef cattle feedyards with the integrated farm systems model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization from manure in beef cattle feedyards results in loss of agronomically important nitrogen (N), and potentially leads to over-fertilization and acidification of aquatic and terrestrial ecosystems and formation of atmospheric fine particulate matter that can impact human health. ...

  2. Effect of 24-epibrassinolide treatment on the metabolism of eggplant fruits in relation to development of pulp browning under chilling stress.

    PubMed

    Gao, Hui; Kang, LiNa; Liu, Qing; Cheng, Ni; Wang, BiNi; Cao, Wei

    2015-06-01

    This study aims to investigate the effect of 24-epibrassinolide (EBR) on the metabolism in relation to development of chilling injury-induced pulp browning of eggplant fruit. The fruits were dipped for 10 min in solutions containing 10 μmM EBR and then stored at 1 °C for 15 days. Chilling injury index, weight loss, electrolyte leakage and malondialdehyde (MDA) content of control fruit increased during storage. Chilling injury improved phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) activities, which are correlated with the increase of total phenolic content and pulp browning of eggplant fruit. The inhibition of pulp browning by EBR treatment was possibly attributed to preserving the cell membrane integrity, reducing total phenolic content, and decreasing PAL, PPO, and POD activities. These results suggest that EBR may inhibit chilling injury and pulp browning in eggplant fruit during cold storage. PMID:26028720

  3. Mutagenic activity at different stages of an industrial ammonia caramel process detected in Salmonella typhimurium TA100 following pre-incubation.

    PubMed

    Jensen, N J; Willumsen, D; Knudsen, I

    1983-10-01

    Mutagenic activity of a commercial ammonia caramel colouring was demonstrated in Salmonella typhimurium TA100 without metabolic activation. The activity in strain TA100 was increased using a 10-min pre-incubation, and a clear dose-response relationship was seen using this method. Investigation of samples taken from the different stages in the industrial process showed a constant level of mutagenic activity in samples from the middle to the end of the heating process with a steep increase in the sample taken after the end of heating. No mutagenic activity was seen in assays with S. typhimurium strains TA1535 and TA98. PMID:6360827

  4. Phosphatidylglycerol and Chilling Sensitivity in Plants

    PubMed Central

    Roughan, P. Grattan

    1985-01-01

    The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures. `Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment. Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol. Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus. PMID:16664127

  5. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chilling exposure of tomatoes to 5°C for longer than 6-8 days can cause surface pitting, irregular (blotchy) color development and other symptoms of chilling injury (CI). The objectives for this study were to investigate whether a 4-day exposure of tomato fruit to chilling at the mature green stage ...

  6. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chilling exposure of tomato fruit to 5 °C for less than 5 days at mature green stage does not cause visual symptom of chilling injury (CI), however, it is unknown whether such conditions would impact flavor quality (internal CI) after ripening, and if a pre-chilling heat treatment could alleviate in...

  7. Microbiological evaluation of chicken carcasses in an immersion chilling system with water renewal at 8 and 16 hours.

    PubMed

    Souza, L C T; Pereira, J G; Spina, T L B; Izidoro, T B; Oliveira, A C; Pinto, J P A N

    2012-05-01

    Since 2004, Brazil has been the leading exporter of chicken. Because of the importance of this sector in the Brazilian economy, food safety must be ensured by control and monitoring of the production stages susceptible to contamination, such as the chilling process. The goal of this study was to evaluate changes in microbial levels on chicken carcasses and in chilling water after immersion in a chilling system for 8 and 16 h during commercial processing. An objective of the study was to encourage discussion regarding the Brazilian Ministry of Agriculture Livestock and Food Supply regulation that requires chicken processors to completely empty, clean, and disinfect each tank of the chilling system after every 8-h shift. Before and after immersion chilling, carcasses were collected and analyzed for mesophilic bacteria, Enterobacteriaceae, coliforms, and Escherichia coli. Samples of water from the chilling system were also analyzed for residual free chlorine. The results do not support required emptying of the chiller tank after 8 h; these tanks could be emptied after 16 h. The results for all carcasses tested at the 8- and 16-h time points indicated no significant differences in the microbiological indicators evaluated. These data provide both technical and scientific support for discussing changes in federal law regarding the management of immersion chilling water systems used as part of the poultry processing line. PMID:22564950

  8. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance. PMID:26463999

  9. Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana

    PubMed Central

    2012-01-01

    Background The plant tolerance mechanisms to low temperature have been studied extensively in the model plant Arabidopsis at the transcriptional level. However, few studies were carried out in plants with strong inherited cold tolerance. Chorispora bungeana is a subnival alpine plant possessing strong cold tolerance mechanisms. To get a deeper insight into its cold tolerance mechanisms, the transcriptome profiles of chilling-treated C. bungeana seedlings were analyzed by Illumina deep-sequencing and compared with Arabidopsis. Results Two cDNA libraries constructed from mRNAs of control and chilling-treated seedlings were sequenced by Illumina technology. A total of 54,870 unigenes were obtained by de novo assembly, and 3,484 chilling up-regulated and 4,571 down-regulated unigenes were identified. The expressions of 18 out of top 20 up-regulated unigenes were confirmed by qPCR analysis. Functional network analysis of the up-regulated genes revealed some common biological processes, including cold responses, and molecular functions in C. bungeana and Arabidopsis responding to chilling. Karrikins were found as new plant growth regulators involved in chilling responses of C. bungeana and Arabidopsis. However, genes involved in cold acclimation were enriched in chilling up-regulated genes in Arabidopsis but not in C. bungeana. In addition, although transcription activations were stimulated in both C. bungeana and Arabidopsis, no CBF putative ortholog was up-regulated in C. bungeana while CBF2 and CBF3 were chilling up-regulated in Arabidopsis. On the other hand, up-regulated genes related to protein phosphorylation and auto-ubiquitination processes were over-represented in C. bungeana but not in Arabidopsis. Conclusions We conducted the first deep-sequencing transcriptome profiling and chilling stress regulatory network analysis of C. bungeana, a subnival alpine plant with inherited cold tolerance. Comparative transcriptome analysis suggests that cold acclimation is not

  10. Semi-empirical process-based models for ammonia emissions from beef, swine, and poultry operations in the United States

    NASA Astrophysics Data System (ADS)

    McQuilling, Alyssa M.; Adams, Peter J.

    2015-11-01

    Farm-level ammonia emissions factors in the literature vary by an order of magnitude due to variations in manure management practices and meteorology, and it is essential to capture this variability in emission inventories used for atmospheric modeling. Loss of ammonia to the atmosphere is modeled here through a nitrogen mass balance with losses controlled by mass transfer resistance parameters, which vary with meteorological conditions and are tuned to match literature-reported emissions factors. Variations due to management practices are captured by having tuned parameters that are specific to each set of management practices. The resulting farm emissions models (FEMs) explain between 20% and 70% of the variability in published emissions factors and typically estimate emission factors within a factor of 2. The r2 values are: 0.53 for swine housing (0.67 for shallow-pit houses); 0.48 for swine storage; 0.29 for broiler chickens; 0.70 for layer chickens; and 0.21 for beef feedlots (0.36 for beef feedlots with more farm-specific input data). Mean fractional error was found to be 22-44% for beef feedlots, swine housing, and layer housing; fractional errors were greater for swine lagoons (90%) and broiler housing (69%). Unexplained variability and errors result from model limitations, measurement errors in reported emissions factors, and a lack of information about measurement conditions.

  11. Recovery of bacteria from broiler carcasses after immersion chilling in different volumes of water, part 2.

    PubMed

    Northcutt, J K; Cason, J A; Ingram, K D; Smith, D P; Buhr, R J; Fletcher, D L

    2008-03-01

    Experiments were conducted to determine the relationship between poultry chilling water volume and carcass microbiology. In the first study, the volume of water used during immersion chilling was found to have a significant effect on the counts of bacteria recovered from broiler carcass halves; however, these volumes (2.1 and 16.8 L/kg) were extreme and did not reflect commercial levels. A second study using commercial chilling volumes was conducted with 3.3 L/kg (low) or 6.7 L/kg (high) distilled water in the chiller. Prechill broiler carcasses were removed from a commercial processing line, cut into left and right halves, and one-half of each pair was individually chilled in a bag containing low or high volume of water. Bags containing halves were submersed in a secondary chill tank containing approximately 150 L of an ice-water mix (0.6 degrees C). After 45 min, halves were removed, allowed to drip for 5 min, and rinsed with 100 mL of sterile water for 1 min. Rinses were analyzed for total aerobic bacteria, Escherichia coli, Enterobacteriaceae, and Campylobacter. When the numbers of bacteria in the half-carcass rinses (HCR) were compared, counts recovered from halves chilled in a low volume of water were the same as those recovered from the halves chilled with a high volume of water (P > 0.05). Levels found in the HCR ranged from 4.0 to 4.2 log(10) cfu/mL for aerobic bacteria, 3.3 to 3.5 log(10) cfu/mL for E. coli, 3.6 to 3.8 log(10) cfu/mL for Enterobacteriaceae, and 2.4 to 2.6 log(10) cfu/mL for Campylobacter. Data were also analyzed using a paired comparison t-test, and this analysis showed that there was no difference (P > 0.05) in the numbers of aerobic bacteria, E. coli, Enterobacteriaceae, or Campylobacter recovered from paired-halves chilled in different volumes of water. The present study shows that under the conditions outlined in this experiment, doubling the amount of water during immersion chilling (3.3 vs. 6.7 L/kg) did not improve the removal of

  12. Removal of ammonia from tarry water using a tubular furnace

    SciTech Connect

    V.V. Grabko; V.A. Kofanova; V.M. Li; M.A. Solov'ev

    2009-07-15

    An ammonia-processing system without the use of live steam from OAO Alchevskkoks plant's supply network is considered. Steam obtained from the wastewater that leaves the ammonia column is used to process the excess tarry water, with the release of volatile ammonia.

  13. Inhibiting Wet Oxidation of Ammonia

    NASA Technical Reports Server (NTRS)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  14. On the accretion process in a high-mass star forming region. A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    NASA Astrophysics Data System (ADS)

    Hajigholi, M.; Persson, C. M.; Wirström, E. S.; Black, J. H.; Bergman, P.; Olofsson, A. O. H.; Olberg, M.; Wyrowski, F.; Coutens, A.; Hjalmarson, Å.; Menten, K. M.

    2016-01-01

    Aims: Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. Methods: The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. Results: The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J = 3 ← 2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10-00 ortho-NH3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10-00. An ammonia abundance on the order of 10-9 relative to H2 is needed to fit the profiles. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km s-1, relative to the source systemic velocity. Attempts to model the inward motion with a single gas cloud in free-fall collapse did not succeed. Herschel is an ESA space

  15. [Music-induced chills as a strong emotional experience].

    PubMed

    Mori, Kazuma; Iwanaga, Makoto

    2014-12-01

    While enjoying music and other works of art, people sometimes experience "chills," a strong emotional response characterized by a sensation of goose bumps or shivers. Such experiences differ from having goose bumps as a defense response or from shivering in reaction to cold temperatures. The current paper presents the phenomenon of music-induced chills and reviews the chill-related emotional response, autonomic nervous system activity, and brain activity. It also reviews the musico-acoustic features, listening contexts, and individual differences that cause chills. Based on the review, we propose a hypothetical model regarding the evocation of music-induced chills. Furthermore, we investigate the strong emotional response associated with chills by exploring the relationship between music-related chills and non-music-related chills, and discuss future research directions. PMID:25639033

  16. The New Wind Chill Equivalent Temperature Chart.

    NASA Astrophysics Data System (ADS)

    Osczevski, Randall; Bluestein, Maurice

    2005-10-01

    The formula used in the U.S. and Canada to express the combined effect of wind and low temperature on how cold it feels was changed in November 2001. Many had felt that the old formula for equivalent temperature, derived in the 1960s from Siple and Passel's flawed but quite useful Wind Chill Index, unnecessarily exaggerated the severity of the weather. The new formula is based on a mathematical model of heat flow from the upwind side of a head-sized cylinder moving at walking speed into the wind. The paper details the assumptions that were made in generating the new wind chill charts. It also points out weaknesses in the concept of wind chill equivalent temperature, including its steady-state character and a seemingly paradoxical effect of the internal thermal resistance of the cylinder on comfort and equivalent temperature. Some improvements and alternatives are suggested.

  17. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    PubMed

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved. PMID:27003628

  18. Decontaminating Aluminum/Ammonia Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1985-01-01

    Internal gas slugs reduced or eliminated. Manufacturing method increases efficiency of aluminum heat pipes in which ammonia is working fluid by insuring pipe filled with nearly pure charge of ammonia. In new process heat pipe initially closed with stainless-steel valve instead of weld so pipe put through several cycles of filling, purging, and accelerated aging.

  19. Ammonia emissions from land application of manures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia volatilization can be a major nitrogen (N) loss process for surface-applied manures. There is concern that current manure management practices are contributing to ammonia losses in the Mid-Atlantic region with subsequent reductions in air quality and increases in N losses to streams and est...

  20. Chilling stress response of post-emergent cotton seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • Early season development of cotton is often impaired by sudden episodes of chilling temperature. We determined the chilling response specific to post-emergent 13-d-old cotton seedlings. • Seedlings were gradually chilled during the dark period and rewarmed during the night-to-day transition. Fo...

  1. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description (SYS 47-4)

    SciTech Connect

    IRWIN, J.J.

    2000-06-13

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid P&ID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water P&ID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO.

  2. A demonstration of chill block melt spinning of metal

    NASA Technical Reports Server (NTRS)

    Pond, Robert B.

    1990-01-01

    One of the most exciting adventures in materials in recent times has been the discovery of amorphous metals and the pursuit of methods of manufacturing various alloys into various shapes which are amorphous. Some of these alloys possess electrical properties which are extremely beneficial, whereas others offer different benefits such as corrosion resistence and no solidification shrinkage anomalies. There are a number of techniques for producing such amorphous shapes, but one of the earliest systems used is referred to as chill block melt spinning. The object of this demonstration is to show the simplicity of the process. The equipment and procedures are described.

  3. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  4. Guns on Campus: A Chilling Effect

    ERIC Educational Resources Information Center

    Mash, Kenneth M.

    2013-01-01

    The author of this article observes that, while much has been written on the overall topic of safety with regard to allowing guns on college campuses, little has been said about how allowing the possession of deadly weapons can create a "chilling effect" on academic discussions. This article considers how some universities have…

  5. Argon purge gas cooled by chill box

    NASA Technical Reports Server (NTRS)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  6. Quality assessment of rainbow trout (Oncorhynchus mykiss) fillets during super chilling and chilled storage.

    PubMed

    Shen, Song; Jiang, Yan; Liu, Xiaochang; Luo, Yongkang; Gao, Liang

    2015-08-01

    In order to evaluate the effect of super chilling (-3 °C) and chilled (3 °C) storage on the quality of rainbow trout fillets, total volatile base nitrogen (TVB-N), drip loss, pH, electric conductivity (EC), total aerobic count (TAC), K and related values, adenosine triphosphate (ATP) and related compounds, color and sensory score were determined and correlation between these indicators were analyzed. According to the comprehensive evaluation of TAC, K value and sensory score, the limit for acceptability of rainbow trout fillets was 5 days at 3 °C and 11 days at -3 °C. Additionally, the correlation coefficients between TVB-N and other freshness indicators (TAC, K value, sensory score) were relatively low. TVB-N may be inadequate for evaluating freshness changes of rainbow trout fillets compared with other indicators. Among the K and related values, H value was a better freshness indicator in rainbow trout fillets during chilled and super chilling storage for its better correlation coefficients with other freshness indicators. Super chilling storage could extend the shelf life of rainbow trout fillets by 6 days compared to chilled storage. PMID:26243943

  7. Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Noguchi, Yohei; Yamamoto, Taibou; Hieda, Junko; Saito, Nagahiro; Takai, Osamu; Tsuchimoto, Akiharu; Nojima, Kazuhiro; Okabe, Youji

    2013-12-01

    Solution plasma processing (SPP) has been performed on multiwalled carbon nanotubes (MWCNTs) in ammonia aqueous solution. The MWCNTs, which do not disperse in aqueous solution, uniformly dispersed after the SPP. Only 2 h was required to obtain 10 g of the dispersed MWCNTs, while 7 days and additional chemicals were required for 185 mg in a previous study. The X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the SPP-treated MWCNTs revealed that nitrogen- and oxygen-containing groups are formed on the MWCNTs. Serious damage to the MWCNT structure was not observed in the Raman spectrum or transmission electron microscopy images of the SPP-treated MWCNTs. The composite materials prepared using polyamide 6 with the SPP-treated MWCNTs showed better tensile, bending, and impact strength than those prepared with nontreated MWCNTs.

  8. Long-term toxicity and carcinogenicity test of ammonia-process caramel colouring given to B6C3F1 mice in the drinking-water.

    PubMed

    Hagiwara, A; Shibata, M; Kurata, Y; Seki, K; Fukushima, S; Ito, N

    1983-12-01

    Caramel colouring (ammonia process) was given at levels of 0 (control), 1.25 and 5.0% in the drinking-water to groups of 50 male and 50 female mice for 96 wk, and then all all the animals were maintained without caramel for a further 8 wk. Males given 5.0% caramel showed increased cumulative mortality from wk 100 to the end of the experiment. The white blood cell count in treated males was significantly elevated in a dose-related manner. However, these changes were not considered to be biologically significant. There were no treatment-related effects on clinical signs, body or organ weights, results of urine analyses, or histological features. Therefore, this study did not demonstrate any carcinogenic effect of caramel on mice at levels of up to 5.0% in the drinking-water. PMID:6686574

  9. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling

    PubMed Central

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the

  10. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling.

    PubMed

    Li, Jie; Yang, Ping; Kang, Jungen; Gan, Yantai; Yu, Jihua; Calderón-Urrea, Alejandro; Lyu, Jian; Zhang, Guobin; Feng, Zhi; Xie, Jianming

    2016-01-01

    Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the

  11. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  12. N2O emission in short-cut simultaneous nitrification and denitrification process: dynamic emission characteristics and succession of ammonia-oxidizing bacteria.

    PubMed

    Yan, Yingyan; Li, Ping; Wu, Jinhua; Zhu, Nengwu; Wu, Pingxiao; Wang, Xiangde

    2014-01-01

    A sequencing batch airlift reactor was used to investigate the characteristics of nitrous oxide (N2O) emission and the succession of an ammonia-oxidizing bacteria (AOB) community. The bioreactor could successfully switch from the complete simultaneous nitrification and denitrification (SND) process to the short-cut SND process by increasing the influent pH from 7.0-7.3 to 8.0-8.3. The results obtained showed that, compared with the complete SND process, the TN removal rate and SND efficiency were improved in the short-cut SND process by approximately 13 and 11%, respectively, while the amount of N2O emission was nearly three times larger than that in the complete SND process. The N2O emission was closely associated to nitrite accumulation. Analysis of the AOB microbial community showed that nitrifier denitrification by Nitrosomonas-like AOB could be an important pathway for the enhancement of N2O emission in the short-cut SND process. PMID:24960019

  13. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Mulder, Arnold; Versprille, Bram

    2006-11-01

    This paper reports about the successful laboratory testing of a new nitrogen removal process called DEAMOX (DEnitrifying AMmonium OXidation) for treatment of typical strong nitrogenous wastewater such as baker's yeast effluent. The concept of this process combines the recently discovered anammox (anaerobic ammonium oxidation) reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. To generate sulphide and ammonia, a Upflow Anaerobic Sludge Bed (UASB) reactor was used as a pre-treatment step. The UASB effluent was split and partially fed to a nitrifying reactor (to generate nitrate) and the remaining part was directly fed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance and volumetric nitrogen loading rates of the DEAMOX reactor well above 1000 mgN/l/d with total nitrogen removal efficiencies of around 90% were obtained after long-term (410 days) optimisation of the process. Important prerequisites for this performance are appropriate influent ratios of the key species fed to the DEAMOX reactor, namely influent N-NO(x)/N-NH(4) ratios >1.2 (stoichiometry of the anammox reaction) and influent S-H(2)S/N-NO(3) ratios >0.57 mgS/mgN (stoichiometry of the sulphide-driven denitrification of nitrate to nitrite). The paper further describes some characteristics of the DEAMOX sludge as well as the preliminary results of its microbiological characterisation. PMID:16893559

  14. Pre-chill antimicrobial treatment to enhance the safety of chicken parts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: There is an increase in microbial prevalence as a chicken carcass transitions from a whole broiler to cut-up parts. One hypothesis to explain this occurrence is that bacteria in water retained during the pre-chill processing step is released upon cut-up, leading to contamination of chi...

  15. Directional distribution of chilling winds in Estonia

    NASA Astrophysics Data System (ADS)

    Saue, Triin

    2015-11-01

    Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature <-10 °C, which could be classified as "uncomfortable or worse," were investigated. Additional thresholds were used to measure weather risk. The 25th percentile of daily minimum WCET was tested to measure classical prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

  16. Directional distribution of chilling winds in Estonia

    NASA Astrophysics Data System (ADS)

    Saue, Triin

    2016-08-01

    Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature <-10 °C, which could be classified as "uncomfortable or worse," were investigated. Additional thresholds were used to measure weather risk. The 25th percentile of daily minimum WCET was tested to measure classical prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

  17. Growth of Salmonella on chilled meat.

    PubMed Central

    Mackey, B. M.; Roberts, T. A.; Mansfield, J.; Farkas, G.

    1980-01-01

    Growth rates of a mixture of Salmonella serotypes inoculated on beef from a commercial abattoir were measured at chill temperatures. The minimum recorded mean generation times were 8.1 h at 10 degrees C; 5.2 h at 12.5 degrees C and 2.9 h at 15 degrees C. Growth did not occur at 7-8 degrees C. From these data the maximum extent of growth of Salmonella during storage of meat for different times at chill temperatures was calculated. Criteria for deciding safe handling temperatures for meat are discussed. Maintaining an internal temperature below 10 degrees C during the boning operation would be sufficient to safeguard public health requirements. PMID:7052227

  18. Directional distribution of chilling winds in Estonia.

    PubMed

    Saue, Triin

    2016-08-01

    Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature <-10 °C, which could be classified as "uncomfortable or worse," were investigated. Additional thresholds were used to measure weather risk. The 25th percentile of daily minimum WCET was tested to measure classical prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning. PMID:26585350

  19. Identification of chilling-responsive microRNAs and their targets in vegetable soybean (Glycine max L.)

    PubMed Central

    Xu, Shengchun; Liu, Na; Mao, Weihua; Hu, Qizan; Wang, Guofu; Gong, Yaming

    2016-01-01

    Chilling stress is a major factor limiting the yield and quality of vegetable soybean (Glycine max L.) on a global scale. In the present study, systematic identification and functional analysis of miRNAs under chilling stress were carried out to clarify the molecular mechanism of chilling resistance. Two independent small RNA libraries from leaves of soybean were constructed and sequenced with the high-throughput Illumina Solexa system. A total of 434 known miRNAs and 3 novel miRNAs were identified. Thirty-five miRNAs were verified by qRT-PCR analysis. Furthermore, their gene targets were identified via high-throughput degradome sequencing. A total of 898 transcripts were targeted by 54 miRNA families attributed to five categories. More importantly, we identified 51 miRNAs differentially expressed between chilling stress and control conditions. The targets of these miRNAs were enriched in oxidation-reduction, signal transduction, and metabolic process functional categories. Our qRT-PCR analysis confirmed a negative relationship among the miRNAs and their targets under chilling stress. Our work thus provides comprehensive molecular evidence supporting the involvement of miRNAs in chilling-stress responses in vegetable soybean. PMID:27216963

  20. Identification of chilling-responsive microRNAs and their targets in vegetable soybean (Glycine max L.).

    PubMed

    Xu, Shengchun; Liu, Na; Mao, Weihua; Hu, Qizan; Wang, Guofu; Gong, Yaming

    2016-01-01

    Chilling stress is a major factor limiting the yield and quality of vegetable soybean (Glycine max L.) on a global scale. In the present study, systematic identification and functional analysis of miRNAs under chilling stress were carried out to clarify the molecular mechanism of chilling resistance. Two independent small RNA libraries from leaves of soybean were constructed and sequenced with the high-throughput Illumina Solexa system. A total of 434 known miRNAs and 3 novel miRNAs were identified. Thirty-five miRNAs were verified by qRT-PCR analysis. Furthermore, their gene targets were identified via high-throughput degradome sequencing. A total of 898 transcripts were targeted by 54 miRNA families attributed to five categories. More importantly, we identified 51 miRNAs differentially expressed between chilling stress and control conditions. The targets of these miRNAs were enriched in oxidation-reduction, signal transduction, and metabolic process functional categories. Our qRT-PCR analysis confirmed a negative relationship among the miRNAs and their targets under chilling stress. Our work thus provides comprehensive molecular evidence supporting the involvement of miRNAs in chilling-stress responses in vegetable soybean. PMID:27216963

  1. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  2. Economic uncertainties in chilled water system design

    SciTech Connect

    Kammerud, R.; Gillespie, K.L. Jr.; Hydeman, M.M.

    1999-07-01

    The analysis described here examines how uncertainties in engineering and economic assumptions made during chilled water system design translate to uncertainty in commonly used design decision metrics. The metric used is the benefit-cost ratio based on discounted cash flow. This analysis was performed as part of a project that is developing engineering tools for use in selecting energy-efficient chilled water system components, controls, and operating strategies. These tools include cooling thermal load prediction capabilities and performance data and models for chillers and cooling towers. The purpose of this study is to estimate accuracy requirements for the load and performance data that will be provided as part of the chilled water system tools. The logic is that there is inherent uncertainty in the decision metric due to uncertainty in inputs other than load and equipment performance, and, consequently, there is a limit below which further improvements in the accuracy of the load and equipment performance do not appreciably improve the quality of information available to the decision maker.

  3. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  4. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

    NASA Astrophysics Data System (ADS)

    Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

    2016-02-01

    A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

  5. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping.

    PubMed

    Quan, Xuejun; Ye, Changying; Xiong, Yanqi; Xiang, Jinxin; Wang, Fuping

    2010-06-15

    The paper presented an efficient integrated physicochemical process, which consists of chemical precipitation and air stripping, for the simultaneous removal of NH(3)-N, total P and COD from anaerobically digested piggery wastewater. In the integrated process, Ca(OH) (2) was used as the precipitant for NH(4)(+), PO(4)(3-) and organic phosphorous compounds, and as the pH adjuster for the air stripping of residual ammonia. The possibility of the suggested process and the related mechanisms were first investigated through a series of equilibrium tests. Laboratory scale tests were carried out to validate the application possibility of the integrated process using a new-patented water sparged aerocyclone reactor (WSA). The WSA could be effectively used for the simultaneous removal of NH(3)-N, total P and COD. 3g/L of Ca(OH) (2) is a proper dosage for the simultaneous removal. The simultaneous removal of NH(3)-N, total P and COD in the WSA reactor could be easily optimized by selecting a proper air inlet velocity and a proper jet velocity of the liquid phase. In all the cases, the removal efficiencies of the NH(3)-N, total P and COD were over 91%, 99.2% and 52% for NH(3)-N, total P and COD, respectively. The formed precipitates in the process could be easily settled down from the suspension system. Therefore, the integrated process provided an efficient alternative for the simultaneous removal of NH(3)-N, total P and COD from the wastewater. PMID:20189301

  6. Assessing Ammonia Treatment Options

    EPA Science Inventory

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  7. Method for forming ammonia

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  8. Bacteria recovery from genetically feathered and featherless broiler carcasses after immersion chilling.

    PubMed

    Buhr, R J; Bourassa, D V; Northcutt, J K; Hinton, A; Ingram, K D; Cason, J A

    2005-09-01

    Feathered and featherless (scaleless) sibling broilers were reared and processed together to evaluate the influence of feathers and feather follicles on carcass bacteria recovery after chilling. In each experiment, broilers were inoculated 1 wk prior to processing by oral gavage with a suspension of salmonellae or Campylobacter at 106 cells/mL. Broilers were stunned and bled, and carcasses were single-tank or triple-tank scalded, defeathered, eviscerated, and washed. Carcasses were chilled for 45 min in ice and water immersion chillers with or without 20 mg of chlorine/L added. Postchill carcass rinsates were evaluated for Escherichia coli, coliforms, total aerobes, and salmonellae or Campylobacter. Following processing and immersion chilling, genetically featherless carcasses had slightly higher counts (by log10 0.35 cfu/100 mL of carcass rinsate) for E. coli, coliforms, and total aerobes than feathered carcasses. However, there were no significant differences in the prevalence of salmonellae (25%) or Campylobacter (93%) between feathered and featherless carcasses. Recovery of E. coli, coliforms, and total aerobic bacteria were lower for carcasses that were single-tank scalded, and following enrichment, salmonellae were recovered from fewer carcasses subjected to the single-tank (71%) than triple-tank (86%) scalding. Addition of chlorine to chiller water significantly decreased carcass bacteria recovery (by log10 0.43 cfu/100 mL of carcass rinsate) for E. coli, coliforms, total aerobes, and Campylobacter but did not affect salmonellae recovery. The presence of feathers and feather follicles during processing and immersion chilling appears to have minimal influence on the recovery of salmonellae or Campylobacter from carcasses sampled after immersion chilling. PMID:16206575

  9. Ethylene Production by Chilled Cucumbers (Cucumis sativus L.).

    PubMed

    Wang, C Y; Adams, D O

    1980-11-01

    Chilling at 2.5 C accelerated the synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and C(2)H(4) production in cucumber fruit. Skin tissue contained higher levels of ACC and was more sensitive to chilling than was cortex tissue. Accumulation of ACC in chilled tissue was detected after 1 day of chilling and remained elevated even after C(2)H(4) production started to decline. These data suggest that ACC synthesis is readily stimulated by chilling, whereas the system that converts ACC to C(2)H(4) is vulnerable to chilling injury. Chilling-induced C(2)H(4) production was inhibited by amino-ethoxyvinylglycine, sodium benzoate, propyl gallate, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and cycloheximide. The utilization of methionine for ACC formation and chilling-induced C(2)H(4) biosynthesis was established using l-[3,4-(14)C]methionine. Chilled tissue had a higher capacity to convert l-[3,4-(14)C]methionine to ACC and C(2)H(4) than did nonchilled tissue. PMID:16661538

  10. Ethylene Production by Chilled Cucumbers (Cucumis sativus L.) 1

    PubMed Central

    Wang, Chien Yi; Adams, Douglas O.

    1980-01-01

    Chilling at 2.5 C accelerated the synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and C2H4 production in cucumber fruit. Skin tissue contained higher levels of ACC and was more sensitive to chilling than was cortex tissue. Accumulation of ACC in chilled tissue was detected after 1 day of chilling and remained elevated even after C2H4 production started to decline. These data suggest that ACC synthesis is readily stimulated by chilling, whereas the system that converts ACC to C2H4 is vulnerable to chilling injury. Chilling-induced C2H4 production was inhibited by amino-ethoxyvinylglycine, sodium benzoate, propyl gallate, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and cycloheximide. The utilization of methionine for ACC formation and chilling-induced C2H4 biosynthesis was established using l-[3,4-14C]methionine. Chilled tissue had a higher capacity to convert l-[3,4-14C]methionine to ACC and C2H4 than did nonchilled tissue. PMID:16661538

  11. Ultrafast dynamics of electrons in ammonia.

    PubMed

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron. PMID:25493716

  12. Ultrafast Dynamics of Electrons in Ammonia

    NASA Astrophysics Data System (ADS)

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  13. Effect of catalyst on electrolysis of ammonia effluents

    NASA Astrophysics Data System (ADS)

    Bonnin, Egilda P.; Biddinger, Elizabeth J.; Botte, Gerardine G.

    The electrolysis of ammonia (NH 3) was studied as a remediation process for the removal of ammonia from wastewater, with the advantage of producing hydrogen while returning clean water to the environment. An electro-catalyst able to support the electro-oxidation of ammonia at low concentrations was designed. Two substrates were tested, Raney nickel and carbon fiber. Carbon fiber was found to be a better substrate for the electrolysis of ammonia at low concentrations. The performance of noble metals such as Rh, Pt and Ir, electroplated on the carbon fiber substrate was also evaluated. Rh-Pt-Ir and Pt-Ir on carbon fiber substrate were found to be the most promising electrodes for the electrolysis of ammonia at low concentrations. The maximum ammonia conversion was 91.49 ± 0.01% for a typical concentration of ammonia found in sewage water and the Faradaic efficiency was 91.81 ± 0.13% on the selected anode.

  14. The big chill: accidental hypothermia.

    PubMed

    Davis, Robert Allan

    2012-01-01

    A potential cause of such emergent issues as cardiac arrhythmias, hypotension, and fluid and electrolyte shifts, accidental hypothermia can be deadly, is common among trauma patients, and is often difficult to recognize. The author discusses predisposing conditions, the classic presentation, and the effects on normal thermoregulatory processes; explains how to conduct a systems assessment of the hypothermic patient; and describes crucial management strategies. PMID:22186703

  15. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

    PubMed

    Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

    2011-01-01

    The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage. PMID:21535722

  16. Tomato flavor changes at chilling and non-chilling temperatures as influenced by controlled atmospheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest temperatures recommended as safe to avoid chilling injury (CI) based on lack of visible symptoms suppress tomato aroma development. We investigated how temperatures at or above the putative CI threshold of 12.5°C affected aroma of pink ‘Tasti Lee’ tomatoes and if controlled atmosphere (C...

  17. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  18. Performance of a chill ATES system

    SciTech Connect

    Midkiff, K.C.; Song, Y.K.; Schaetzle, W.J.

    1989-03-01

    An aquifer air-conditioning system has been installed to cool the Student Recreation Center on the University of Alabama Campus. This research program encompasses the monitoring of the operation of the aquifer system and provision of emplacements to the system. The monitoring includes establishing the instrumentation, acquiring data, and analyzing the results. The instrumentation allows the measurement of water flow rates and corresponding temperatures, electrical energy input, aquifer temperatures at nineteen monitoring wells, and aquifer levels at six monitoring wells. Recent acquifer performance data indicate that 76% of the chill energy stored was recovered for the period Oct/86 - Sep/87 and 70% for the period Oct/87 - Sep/88. This is a substantial improvement over recoveries of 38% for the 1985 season and 55% for 1986. The overall coefficient of performance was 5.4 for Oct/86 - Sep/87 and 4.6 for Oct/87 - Sep/88. THe system has supplied 100% of the cooling with only about one-half of the energy input required by a conventional system. Some of the increased recovery of chilled water is a result of modifying the production well operation to reduce the regional flow of water toward the northwest. All warm water is withdrawn form the southeast wells, chilled, and injected in northwest wells. The cold water then withdrawn from the cold wells is used for air-conditioning but not reinjected into the aquifer. Additional flow control is provided by pumping (and discarding) water out of a southeast well, although the complete results of this new strategy are as yet unclear.

  19. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  20. Increasing chilling reduces heat requirement for floral budbreak in peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Response to chilling temperatures is a critical factor in the suitability of peach [Prunus persica (L.) Batsch] cultivars to moderate climates such as in the southeastern United States. Time of bloom depends on the innate chilling requirement of the cultivar as well as the timing and quantity of co...

  1. 76 FR 166 - Fresh and Chilled Atlantic Salmon From Norway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... imports of fresh and chilled Atlantic salmon from Norway (56 FR 14920, 14921). Following five-year reviews... imports of fresh and chilled Atlantic salmon from Norway (71 FR 7512). The Commission is now conducting...), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ \\1\\ No response to this request...

  2. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  3. Incidence of chilling injury in fresh-cut 'Kent' mangoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The preferred storage temperature for fresh-cut fruits in terms of visual quality retention is around 5 °C, which is considered to be a chilling temperature for chilling sensitive tropical fruits like mango (Mangifera indica L.). Changes in visual and compositional quality factors, aroma volatile pr...

  4. The Chilled-Mirror Humidity Sensor: Improved Radiosonde Measurements

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1999-01-01

    Chilled-mirror humidity sensor technology recently was adapted for use with the VIZ radiosonde. The principle of the chilled-mirror operation is to lower its temperature until dew forms on the mirror, at that point the dew point temperature is noted and the mirror is then heated to evaporate the moisture. The cycle is repeated. Research conducted from NASA's Wallops Flight Facility has provided comparisons between the chilled-mirror sensor and the carbon hygristor of VIZ, and the capacitive sensors of AIR Inc. and Vaisala Co. We believe the chilled-mirror sensor is accurate and would serve as a reference standard for evaluating operational radiosonde relative humidity sensors. Thus, differences seen in the comparisons are beginning to furnish insight into developing better humidity sensors. We discuss these comparison results as well as reproducibility results from a dual chilled-mirror measurement.

  5. Sugar metabolism in relation to chilling tolerance of loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Zheng, Yonghua

    2013-01-01

    The relationship between chilling injury and sugar metabolism was investigated in loquat fruit stored at 1°C for 35days. No symptoms of chilling injury occurred in the fruit, of 'Ninghaibai' cultivar, during the whole storage whereas, in 'Dahongpao' fruit, severe chilling symptoms were observed after 20days of storage at 1°C. 'Ninghaibai' fruit had higher levels of glucose and fructose and higher activities of sucrose hydrolyzing enzymes, such as sucrose synthase-cleavage and invertase, than had 'Dahongpao'. Furthermore, the chilling resistant 'Ninghaibai' fruit also showed higher activities of hexokinase and fructokinase, involved in hexose phoshorylation and sugar signal generation. These results suggest that the higher content of hexoses and activities of hexose sensors were likely part of the mechanism for chilling tolerance of loquat fruit. PMID:23017404

  6. Diurnal variation of wind-chill at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Balafoutis, Ch. J.

    1989-12-01

    The diurnal variations of wind-chill at Thessaloniki, Greece, are considered using hourly data from January 1960 to December 1977. This is the first attempt in Greece to describe bioclimatic conditions using wind-chill data. The hourly values of wind-chill were calculated by Siple-Passel's formula which still appears to be most widely used. The values of wind-chill are discussed in terms of Terjung's scale. Thessaloniki does not experience “frost-bite” conditions during the coldest months but does experience “warm” conditions during the summer period. A comparison of hourly and daily mean values show that the means do not indicate the real range of wind-chill during the day.

  7. Effects of chilling on protein synthesis in tomato suspension cultures

    SciTech Connect

    Matadial, B.; Pauls, K.P. )

    1989-04-01

    The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2{degrees}C but when cultures were transferred to 25{degree}C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. {sup 35}S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in {sup 35}S-methionine labelled proteins, between chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25{degrees}C.

  8. Ammonia Release on ISS

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  9. Reactor for removing ammonia

    DOEpatents

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  10. Ammonia and sediment toxicity

    SciTech Connect

    Ogle, R.S.; Hansen, S.R.

    1994-12-31

    Ammonia toxicity to aquatic organisms has received considerable study, with most of these studies focusing on water column organisms. However, with the development and implementation of sediment (and pore water) toxicity tests, the toxicity of ammonia to benthic infauna and other sediment toxicity test organisms has become important, especially since sediment/porewater ammonia occurs at higher concentrations than in the water column. Unfortunately, there has been very little of this type information, especially for marine/estuarine organisms. This laboratory determined the toxicity of ammonia to three key marine/estuarine test organisms: the amphipod Eohaustorius estuarius, the bivalve Mytilus edulis, and the echinoderm Strongylocentrotus purpuratus. Because sediment/porewater pH can differ substantially from typical seawater pH, the toxicity evaluations covered a range of pH levels (6, 7, 8, and 9). Eohaustorius results indicate that while Total Ammonia increased in toxicity (measured as EC50) as pH increased (from 460 mg/L at pH 6, to 13 mg/L at pH 9), unionized ammonia toxicity decreased from 0.13 mg/L at pH 6 to 2.8 mg/L at pH 9. The amphipod was much less sensitive to ammonia than were the bivalve and echinoderm, with an unionized ammonia EC50 at pH 8 of 2.14 mg/L relative to 0.43 mg/L for the mussel and 0.13 mg/L for the purple urchin. These results are discussed with respect to design and interpretation of sediment toxicity test results, including an interpretation approach based on partitioning of Toxic Units (TU).