Science.gov

Sample records for chimeric zebrafish embryos

  1. Chimerism in piglets developed from aggregated cloned embryos.

    PubMed

    Huang, Yongye; Li, Zhanjun; Wang, Anfeng; Han, Xiaolei; Song, Yuning; Yuan, Lin; Li, Tianye; Wang, Bing; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2016-04-01

    Porcine chimeras are valuable in the study of pluripotency, embryogenesis and development. It would be meaningful to generate chimeric piglets from somatic cell nuclear transfer embryos. In this study, two cell lines expressing the fluorescent markers enhanced green fluorescent protein (EGFP) and tdTomato were used as donor cells to produce reconstructed embryos. Chimeric embryos were generated by aggregating two EGFP-cell derived embryos with two tdTomato-cell derived embryos at the 4-cell stage, and embryo transfer was performed when the aggregated embryos developed into blastocysts. Live porcine chimeras were successfully born and chimerism was observed by their skin color, gene integration, microsatellite loci composition and fluorescent protein expression. The chimeric piglets were largely composed of EGFP-expressing cells, and this phenomenon was possibly due to the hyper-methylation of the promoter of the tdTomato gene. In addition, the expression levels of tumorigenicity-related genes were altered after tdTomato transfection in bladder cancer cells. The results show that chimeric pigs can be produced by aggregating cloned embryos and that the developmental capability of the cloned embryo in the subsequent chimeric development could be affected by the growth characteristics of its donor cell. PMID:27239442

  2. Toxicity induced by emodin on zebrafish embryos.

    PubMed

    He, Qiuxia; Liu, Kechun; Wang, Sifeng; Hou, Hairong; Yuan, Yanqiang; Wang, Ximin

    2012-04-01

    Emodin, a widely available herbal remedy, has a variety of pharmacological actions and valuable clinical applications. The potential effect of emodin on zebrafish (Danio rerio) embryos was evaluated. Zebrafish embryos were incubated with 0.1-2 μg/mL of emodin from 7 hours to 6 days postfertilization (dpf). Emodin, at concentrations of 0.25 μg/mL and above, negatively affected embryo survival and hatching success. Emodin induced a large suite of abnormalities on zebrafish embryos, such as edema, crooked trunk, and abnormal morphogenesis. To elucidate the mechanism of action, the transcript levels of drug-metabolism genes (CYP3A) and a multiple drug-resistance gene (MDR1) were detected by reverse-transcript polymerase chain reaction. Embryos showed increases in mRNA accumulation of CYP3A and MDR1. The above-described results indicated that emodin impaired zebrafish embryo development and some organ morphogenesis, and CYP3A and MDR1 were involved in the process. These findings suggest that emodin was toxic to zebrafish lavae at relatively low concentrations. PMID:21834668

  3. Zebrafish Embryo Model of Bartonella henselae Infection

    PubMed Central

    Lima, Amorce; Cha, Byeong J.; Amin, Jahanshah; Smith, Lisa K.

    2014-01-01

    Abstract Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases, including bacillary angiomatosis that is characterized by vasoproliferative tumor-like lesions on the skin of some immunosuppressed individuals. The study of Bh pathogenesis has been limited to in vitro cell culture systems due to the lack of an animal model. Therefore, we wanted to investigate whether the zebrafish embryo could be used to model human infection with Bh. Our data showed that Tg(fli1:egfp)y1 zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. We showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. Infected embryos showed evidence of a Bh-induced angiogenic phenotype and an increase in the expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished host response, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis. PMID:25026365

  4. Microbead Implantation in the Zebrafish Embryo

    PubMed Central

    Gerlach, Gary F.; Morales, Elvin E.; Wingert, Rebecca A.

    2015-01-01

    The zebrafish has emerged as a valuable genetic model system for the study of developmental biology and disease. Zebrafish share a high degree of genomic conservation, as well as similarities in cellular, molecular, and physiological processes, with other vertebrates including humans. During early ontogeny, zebrafish embryos are optically transparent, allowing researchers to visualize the dynamics of organogenesis using a simple stereomicroscope. Microbead implantation is a method that enables tissue manipulation through the alteration of factors in local environments. This allows researchers to assay the effects of any number of signaling molecules of interest, such as secreted peptides, at specific spatial and temporal points within the developing embryo. Here, we detail a protocol for how to manipulate and implant beads during early zebrafish development. PMID:26274386

  5. Generation and Developmental Characteristics of Porcine Tetraploid Embryos and Tetraploid/diploid Chimeric Embryos

    PubMed Central

    He, Wenteng; Kong, Qingran; Shi, Yongqian; Xie, Bingteng; Jiao, Mingxia; Huang, Tianqing; Guo, Shimeng; Hu, Kui; Liu, Zhonghua

    2013-01-01

    The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P < 0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P > 0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P < 0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos. PMID:24120753

  6. Chemical screening with zebrafish embryos.

    PubMed

    Zhong, Hanbing; Lin, Shuo

    2011-01-01

    Functional chemicals are very useful tools for molecular biology studies. Due to its small size, large progeny clutch, and embryonic transparency, zebrafish serves as a superb in vivo animal model for chemical compound screens and characterization. During zebrafish embryogenesis, multiple developmental phenotypes can be easily examined under the microscope, therefore allowing a more comprehensive evaluation for identifying novel functional chemicals than cell-based assays. Ever since the first zebrafish-based chemical screen was conducted in the year 2000, many functional chemicals have been discovered using this strategy. In this chapter, we describe how to perform a typical zebrafish-based chemical screen and discuss the details of the protocol by using the example of the identification and characterization of two new Smo inhibitors with a Gli:GFP transgenic line. PMID:21318908

  7. Survival Study of Zebrafish Embryos Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Mena, Pamela; Allende, Miguel; Morales, José Roberto

    2010-08-01

    Zebrafish embryos have interesting biological properties for the study of human diseases. The present work uses zebrafish embryos in a particular development state, to study biological effects due to gamma radiation, arising from a calibrated 60Co source. Initially, the lethal dose for fish embryos was determined and subsequent irradiations were performed at sub-lethal doses, in order to study more subtle effects.

  8. Toxicity of chlorine to zebrafish embryos

    PubMed Central

    Kent, Michael L.; Buchner, Cari; Barton, Carrie; Tanguay, Robert L.

    2014-01-01

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish (Danio rerio) research laboratories. Most laboratories use approximately 25 – 50 ppm unbuffered chlorine solution for 5 – 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, it has reduced efficacy against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbufferred and buffered chlorine solution to embryos exposed at 6 or 24 hours post-fertilization (hpf) to determine if higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pHs, and chlorine causes elevated pH. Consistent with this, we found that unbufferred chlorine solutions (pH ca 8–9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf for 5 min with unbuffered chlorine solution at 100 ppm. One trial indicated that AB fish, a popular outbred line, are more susceptible to toxicity than 5Ds. This suggests that variability between zebrafish lines occurs, and researchers should evaluate each line or strain under their particular laboratory conditions for selection of the optimum chlorine treatment procedure. PMID:24429474

  9. Detection of Smad Signaling in Zebrafish Embryos.

    PubMed

    Liu, Xingfeng; Wang, Qiang; Meng, Anming

    2016-01-01

    Nodal and BMPs play critical roles in germ layer induction and patterning in early zebrafish embryos. Smad2/3 and Smad1/5/8 are intracellular effectors of Nodal and BMPs, respectively. These Smads regulate, in cooperation with other factors, transcription of hundreds of target genes in the nucleus. The activity and stability of Smads are regulated by phosphorylation modifications. To better understand the regulatory network of Smads-mediated signaling and its biological implications, it is necessary to monitor the signaling activity in an in vivo model system. In this chapter, we describe the methods used in zebrafish embryos for dissecting Smads signaling, including TGF-β/Nodal- and BMP-responsive luciferase reporter assays, Western blotting for Smads, co-immunoprecipitation for Smads and their interacting proteins, chromatin-immunoprecipitation for identification of Smad2-binding sites, and immunostaining for detection of active Smad1/5/8. PMID:26520131

  10. Developmental toxicity of cartap on zebrafish embryos.

    PubMed

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis. PMID:19923012

  11. Analysis of Oxidative Stress in Zebrafish Embryos

    PubMed Central

    Mugoni, Vera; Camporeale, Annalisa; Santoro, Massimo M.

    2014-01-01

    High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer. PMID:25046434

  12. Zebrafish embryo development in a microfluidic flow-through system.

    PubMed

    Wielhouwer, Eric M; Ali, Shaukat; Al-Afandi, Abdulrahman; Blom, Marko T; Riekerink, Marinus B Olde; Poelma, Christian; Westerweel, Jerry; Oonk, Johannes; Vrouwe, Elwin X; Buesink, Wilfred; vanMil, Harald G J; Chicken, Jonathan; van't Oever, Ronny; Richardson, Michael K

    2011-05-21

    The zebrafish embryo is a small, cheap, whole-animal model which may replace rodents in some areas of research. Unfortunately, zebrafish embryos are commonly cultured in microtitre plates using cell-culture protocols with static buffer replacement. Such protocols are highly invasive, consume large quantities of reagents and do not readily permit high-quality imaging. Zebrafish and rodent embryos have previously been cultured in static microfluidic drops, and zebrafish embryos have also been raised in a prototype polydimethylsiloxane setup in a Petri dish. Other than this, no animal embryo has ever been shown to undergo embryonic development in a microfluidic flow-through system. We have developed and prototyped a specialized lab-on-a-chip made from bonded layers of borosilicate glass. We find that zebrafish embryos can develop in the chip for 5 days, with continuous buffer flow at pressures of 0.005-0.04 MPa. Phenotypic effects were seen, but these were scored subjectively as 'minor'. Survival rates of 100% could be reached with buffer flows of 2 µL per well per min. High-quality imaging was possible. An acute ethanol exposure test in the chip replicated the same assay performed in microtitre plates. More than 100 embryos could be cultured in an area, excluding infrastructure, smaller than a credit card. We discuss how biochip technology, coupled with zebrafish larvae, could allow biological research to be conducted in massive, parallel experiments, at high speed and low cost. PMID:21491052

  13. A fully automated robotic system for microinjection of zebrafish embryos.

    PubMed

    Wang, Wenhui; Liu, Xinyu; Gelinas, Danielle; Ciruna, Brian; Sun, Yu

    2007-01-01

    As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operation, such as human fatigue and large variations in success rates due to poor reproducibility. Based on computer vision and motion control, the microrobotic system performs injection at a speed of 15 zebrafish embryos (chorion unremoved) per minute, with a survival rate of 98% (n = 350 embryos), a success rate of 99% (n = 350 embryos), and a phenotypic rate of 98.5% (n = 210 embryos). The sample immobilization technique and microrobotic control method are applicable to other biological injection applications such as the injection of mouse oocytes/embryos and Drosophila embryos to enable high-throughput biological and pharmaceutical research. PMID:17848993

  14. A Fully Automated Robotic System for Microinjection of Zebrafish Embryos

    PubMed Central

    Gelinas, Danielle; Ciruna, Brian; Sun, Yu

    2007-01-01

    As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operation, such as human fatigue and large variations in success rates due to poor reproducibility. Based on computer vision and motion control, the microrobotic system performs injection at a speed of 15 zebrafish embryos (chorion unremoved) per minute, with a survival rate of 98% (n = 350 embryos), a success rate of 99% (n = 350 embryos), and a phenotypic rate of 98.5% (n = 210 embryos). The sample immobilization technique and microrobotic control method are applicable to other biological injection applications such as the injection of mouse oocytes/embryos and Drosophila embryos to enable high-throughput biological and pharmaceutical research. PMID:17848993

  15. Phenotype classification of zebrafish embryos by supervised learning.

    PubMed

    Jeanray, Nathalie; Marée, Raphaël; Pruvot, Benoist; Stern, Olivier; Geurts, Pierre; Wehenkel, Louis; Muller, Marc

    2015-01-01

    Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification. PMID:25574849

  16. Phenotype Classification of Zebrafish Embryos by Supervised Learning

    PubMed Central

    Jeanray, Nathalie; Marée, Raphaël; Pruvot, Benoist; Stern, Olivier; Geurts, Pierre; Wehenkel, Louis; Muller, Marc

    2015-01-01

    Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification. PMID:25574849

  17. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  18. Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos.

    PubMed

    Raftery, Tara D; Volz, David C

    2015-01-01

    During early zebrafish embryogenesis, spontaneous tail contractions represent the first sign of locomotion and result from innervation of primary motoneuron axons to target axial muscles. Based on a high-content screen, we previously demonstrated that exposure of zebrafish embryos to abamectin--an avermectin insecticide--from 5-25 hours post-fertilization (hpf) abolished spontaneous activity in the absence of effects on survival and gross morphology. Therefore, the objective of this study was to begin investigating the mechanism of abamectin-induced hypoactivity in zebrafish. Similar to 384-well plates, static exposure of embryos to abamectin from 5-25 hpf in glass beakers resulted in elimination of activity at low micromolar concentrations. However, abamectin did not affect neurite outgrowth from spinal motoneurons and, compared with exposure from 5-25 hpf, embryos were equally susceptible to abamectin-induced hypoactivity when exposures were initiated at 10 and 23 hpf. Moreover, immersion of abamectin-exposed embryos in clean water resulted in complete recovery of spontaneous activity relative to vehicle controls, suggesting that abamectin reversibly activated ligand-gated chloride channels and inhibited neurotransmission. To test this hypothesis, we pretreated embryos to vehicle or non-toxic concentrations of fipronil or endosulfan--two insecticides that antagonize the γ-aminobutyric acid (GABA) receptor--from 5-23 hpf, and then exposed embryos to vehicle or abamectin from 23-25 hpf. Interestingly, activity levels within abamectin-exposed embryos pretreated with either antagonist were similar to embryos exposed to vehicle alone. Using quantitative PCR and phylogenetic analyses, we then confirmed the presence of GABA receptor α1 and β2 subunits at 5, 10, and 23 hpf, and demonstrated that zebrafish GABA receptor subunits are homologous to mammalian GABA receptor subunits. Overall, our data collectively suggest that abamectin induces rapid and reversible

  19. Effects of perfluorinated compounds on development of zebrafish embryos.

    PubMed

    Zheng, Xin-Mei; Liu, Hong-Ling; Shi, Wei; Wei, Si; Giesy, John P; Yu, Hong-Xia

    2011-08-01

    Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC(50). Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups. PMID:22828880

  20. Automated Zebrafish Chorion Removal and Single Embryo Placement: Optimizing Throughput of Zebrafish Developmental Toxicity Screens

    PubMed Central

    Mandrell, David; Truong, Lisa; Jephson, Caleb; Sarker, Mushfiqur R.; Moore, Aaron; Lang, Christopher; Simonich, Michael T.; Tanguay, Robert L.

    2012-01-01

    The potential of the developing zebrafish model for toxicology and drug discovery is limited by inefficient approaches to manipulating and chemically exposing zebrafish embryos—namely, manual placement of embryos into 96- or 384-well plates and exposure of embryos while still in the chorion, a barrier of poorly characterized permeability enclosing the developing embryo. We report the automated dechorionation of 1600 embryos at once at 4 h postfertilization (hpf) and placement of the dechorionated embryos into 96-well plates for exposure by 6 hpf. The process removed ≥95% of the embryos from their chorions with 2% embryo mortality by 24 hpf, and 2% of the embryos malformed at 120 hpf. The robotic embryo placement allocated 6-hpf embryos to 94.7% ± 4.2% of the wells in multiple 96-well trials. The rate of embryo mortality was 2.8% (43 of 1536) from robotic handling, the rate of missed wells was 1.2% (18 of 1536), and the frequency of multipicks was <0.1%. Embryo malformations observed at 24 hpf occurred nearly twice as frequently from robotic handling (16 of 864; 1.9%) as from manual pipetting (9 of 864; 1%). There was no statistical difference between the success of performing the embryo placement robotically or manually. PMID:22357610

  1. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Olasagasti, Maider; Alvarez, Noelia; Vera, Carolina; Rainieri, Sandra

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  2. Transferrin-a modulates hepcidin expression in zebrafish embryos

    PubMed Central

    Gibert, Yann; Holzheimer, Jason L.; Lattanzi, Victoria J.; Burnett, Sarah F.; Dooley, Kimberly A.; Wingert, Rebecca A.; Zon, Leonard I.

    2009-01-01

    The iron regulatory hormone hepcidin is transcriptionally up-regulated in response to iron loading, but the mechanisms by which iron levels are sensed are not well understood. Large-scale genetic screens in the zebrafish have resulted in the identification of hypochromic anemia mutants with a range of mutations affecting conserved pathways in iron metabolism and heme synthesis. We hypothesized that transferrin plays a critical role both in iron transport and in regulating hepcidin expression in zebrafish embryos. Here we report the identification and characterization of the zebrafish hypochromic anemia mutant, gavi, which exhibits transferrin deficiency due to mutations in transferrin-a. Morpholino knockdown of transferrin-a in wild-type embryos reproduced the anemia phenotype and decreased somite and terminal gut iron staining, while coinjection of transferrin-a cRNA partially restored these defects. Embryos with transferrin-a or transferrin receptor 2 (TfR2) deficiency exhibited low levels of hepcidin expression, however anemia, in the absence of a defect in the transferrin pathway, failed to impair hepcidin expression. These data indicate that transferrin-a transports iron and that hepcidin expression is regulated by a transferrin-a–dependent pathway in the zebrafish embryo. PMID:19047682

  3. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea. PMID:16418895

  4. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    SciTech Connect

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  5. Developmental toxicity assay using high content screening of zebrafish embryos

    PubMed Central

    Lantz-McPeak, Susan; Guo, Xiaoqing; Cuevas, Elvis; Dumas, Melanie; Newport, Glenn D.; Ali, Syed F.; Paule, Merle G.; Kanungo, Jyotshna

    2016-01-01

    Typically, time-consuming standard toxicological assays using the zebrafish (Danio rerio) embryo model evaluate mortality and teratogenicity after exposure during the first 2 days post-fertilization. Here we describe an automated image-based high content screening (HCS) assay to identify the teratogenic/embryotoxic potential of compounds in zebrafish embryos in vivo. Automated image acquisition was performed using a high content microscope system. Further automated analysis of embryo length, as a statistically quantifiable endpoint of toxicity, was performed on images post-acquisition. The biological effects of ethanol, nicotine, ketamine, caffeine, dimethyl sulfoxide and temperature on zebrafish embryos were assessed. This automated developmental toxicity assay, based on a growth-retardation endpoint should be suitable for evaluating the effects of potential teratogens and developmental toxicants in a high throughput manner. This approach can significantly expedite the screening of potential teratogens and developmental toxicants, thereby improving the current risk assessment process by decreasing analysis time and required resources. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. PMID:24871937

  6. Antioxidant Rescue of Selenomethionine-Induced Teratogenesis in Zebrafish Embryos.

    PubMed

    Arnold, M C; Forte, J E; Osterberg, J S; Di Giulio, R T

    2016-02-01

    Selenium (Se) is an essential micronutrient that can be found at toxic concentrations in surface waters contaminated by runoff from agriculture and coal mining. Zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and l-selenomethionine (SeMet) in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). l-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared with controls. SeMet exposure induced a dose-dependent increase in the catalytic subunit of glutamate-cysteine ligase (gclc) and reached an 11.7-fold increase at 100 µg/L. SeMet exposure also reduced concentrations of TGSH, RGSH, and the TGSH:GSSG ratio. Pretreatment with 100 µM N-acetylcysteine significantly reduced deformities in the zebrafish embryos secondarily treated with 400 µg/L SeMet from approximately 50–10 % as well as rescued all three of the significant glutathione level differences seen with SeMet alone. Selenite exposure induced a 6.6-fold increase in expression of the glutathione-S-transferase pi class 2 (gstp2) gene, which is involved in xenobiotic transformation and possibly oxidative stress. These results suggest that aqueous exposure to SeMet can induce significant embryonic teratogenesis in zebrafish that are at least partially attributed to oxidative stress. PMID:26498942

  7. Detecting Developmental Neurotoxicants Using Zebrafish Embryos

    EPA Science Inventory

    As part of EPA’s program on the screening and prioritization of chemicals for developmental neurotoxicity, a rapid, cost-effective in vivo vertebrate screen is being developed using an alternative species approach. Zebrafish (Danio rerio), a small freshwater fish with external f...

  8. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  9. Leptin expression affects metabolic rate in zebrafish embryos (D. rerio)

    PubMed Central

    Dalman, Mark R.; Liu, Qin; King, Mason D.; Bagatto, Brian; Londraville, Richard L.

    2013-01-01

    We used antisense morpholino oligonucleotide technology to knockdown leptin-(A) gene expression in developing zebrafish embryos and measured its effects on metabolic rate and cardiovascular function. Using two indicators of metabolic rate, oxygen consumption was significantly lower in leptin morphants early in development [<48 hours post-fertilization (hpf)], while acid production was significantly lower in morphants later in development (>48 hpf). Oxygen utilization rates in <48 hpf embryos and acid production in 72 hpf embryos could be rescued to that of wildtype embryos by recombinant leptin coinjected with antisense morpholino. Leptin is established to influence metabolic rate in mammals, and these data suggest leptin signaling also influences metabolic rate in fishes. PMID:23847542

  10. Hormetic effect induced by depleted uranium in zebrafish embryos.

    PubMed

    Ng, C Y P; Cheng, S H; Yu, K N

    2016-06-01

    The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner. PMID:27060238

  11. Does perfluorooctane sulfonate (PFOS) act as chemosensitizer in zebrafish embryos?

    PubMed

    Keiter, Susanne; Burkhardt-Medicke, Kathleen; Wellner, Peggy; Kais, Britta; Färber, Harald; Skutlarek, Dirk; Engwall, Magnus; Braunbeck, Thomas; Keiter, Steffen H; Luckenbach, Till

    2016-04-01

    Earlier studies have shown that perfluorooctane sulfonate (PFOS) increases the toxicity of other chemicals by enhancing their uptake by cells and tissues. The present study aimed at testing whether the underlying mechanism of enhanced uptake of chemicals by zebrafish (Danio rerio) embryos in the presence of PFOS is by interference of this compound with the cellular efflux transporter Abcb4. Modifications of uptake/clearance and toxicity of two Abcb4 substrates, the fluorescent dye rhodamine B (RhB) and vinblastine, by PFOS were evaluated using 24 and 48h post-fertilization (hpf) embryos. Upon 90min exposure of 24hpf embryos to 1μM RhB and different PFOS concentrations (3-300μM) accumulation of RhB in zebrafish was increased by up to 11.9-fold compared to controls, whereas RhB increases in verapamil treatments were 1.7-fold. Co-administration of PFOS and vinblastine in exposures from 0 to 48hpf resulted in higher vinblastine-caused mortalities in zebrafish embryos indicating increased uptake of this compound. Interference of PFOS with zebrafish Abcb4 activity was further studied using recombinant protein obtained with the baculovirus expression system. PFOS lead to a concentration-dependent decrease of the verapamil-stimulated Abcb4 ATPase activity; at higher PFOS concentrations (250, 500μM), also the basal ATPase activity was lowered indicating PFOS to be an Abcb4 inhibitor. In exposures of 48hpf embryos to a very high RhB concentration (200μM), accumulation of RhB in embryo tissue and adsorption to the chorion were increased in the presence of 50 or 100μM PFOS. In conclusion, the results indicate that PFOS acts as inhibitor of zebrafish Abcb4; however, the exceptionally large PFOS-caused effect amplitude of RhB accumulation in the 1μM RhB experiments and the clear PFOS effects in the experiments with 200μM RhB suggest that an additional mechanism appears to be responsible for the potential of PFOS to enhance uptake of Abcb4 substrates. PMID:26803730

  12. Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment.

    PubMed

    Kim, Jin; Kim, C-Yoon; Song, Juha; Oh, Hanseul; Kim, Cheol-Hee; Park, Jae-Hak

    2016-01-01

    Trimethyltin chloride (TMT) is a neurotoxicant widely present in the aquatic environment, primarily from effluents of the plastic industry. It is known to cause acute neuronal death in the limbic-cerebellar system, particularly in the hippocampus. However, relatively few studies have estimated the effects of TMT toxicity on neurodevelopment. In this study, we confirmed the dose-dependent effects of TMT on neurodevelopmental stages through analysis of morphological changes and fluorescence assays using HuC-GFP and olig2-dsRed transgenic zebrafish embryos. In addition, we analyzed the expression of genes and proteins related to neurodevelopment. Exposure of embryos to TMT for 4days post fertilization (dpf) elicited a concentration-related decrease in body length and increase in axial malformation. TMT affected the fluorescent CNS structure by decreasing pattern of HuC-GFP and olig2-dsRed transgenic zebrafish. In addition, it significantly modulated the expression patterns of Sonic hedgehog a (Shha), Neurogenin1 (Ngn1), Embryonic lethal abnormal vision like protein 3 (Elavl3), and Glial fibrillary acidic protein (Gfap). The overexpression of Shha and Ngn1, and downregulation of Elavl3 and Gfap, indicate repression of proneural cell differentiation. Our study demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. PMID:26687135

  13. Isolation and Characterization of Single Cells from Zebrafish Embryos.

    PubMed

    Samsa, Leigh Ann; Fleming, Nicole; Magness, Scott; Qian, Li; Liu, Jiandong

    2016-01-01

    The zebrafish (Danio rerio) is a powerful model organism to study vertebrate development. Though many aspects of zebrafish embryonic development have been described at the morphological level, little is known about the molecular basis of cellular changes that occur as the organism develops. With recent advancements in microfluidics and multiplexing technologies, it is now possible to characterize gene expression in single cells. This allows for investigation of heterogeneity between individual cells of specific cell populations to identify and classify cell subtypes, characterize intermediate states that occur during cell differentiation, and explore differential cellular responses to stimuli. This study describes a protocol to isolate viable, single cells from zebrafish embryos for high throughput multiplexing assays. This method may be rapidly applied to any zebrafish embryonic cell type with fluorescent markers. An extension of this method may also be used in combination with high throughput sequencing technologies to fully characterize the transcriptome of single cells. As proof of principle, the relative abundance of cardiac differentiation markers was assessed in isolated, single cells derived from nkx2.5 positive cardiac progenitors. By evaluation of gene expression at the single cell level and at a single time point, the data support a model in which cardiac progenitors coexist with differentiating progeny. The method and work flow described here is broadly applicable to the zebrafish research community, requiring only a labeled transgenic fish line and access to microfluidics technologies. PMID:27022828

  14. Observing Mitotic Division and Dynamics in a Live Zebrafish Embryo.

    PubMed

    Percival, Stefanie M; Parant, John M

    2016-01-01

    Mitosis is critical for organismal growth and differentiation. The process is highly dynamic and requires ordered events to accomplish proper chromatin condensation, microtubule-kinetochore attachment, chromosome segregation, and cytokinesis in a small time frame. Errors in the delicate process can result in human disease, including birth defects and cancer. Traditional approaches investigating human mitotic disease states often rely on cell culture systems, which lack the natural physiology and developmental/tissue-specific context advantageous when studying human disease. This protocol overcomes many obstacles by providing a way to visualize, with high resolution, chromosome dynamics in a vertebrate system, the zebrafish. This protocol will detail an approach that can be used to obtain dynamic images of dividing cells, which include: in vitro transcription, zebrafish breeding/collecting, embryo embedding, and time-lapse imaging. Optimization and modifications of this protocol are also explored. Using H2A.F/Z-EGFP (labels chromatin) and mCherry-CAAX (labels cell membrane) mRNA-injected embryos, mitosis in AB wild-type, auroraB(hi1045) (,) and esco2(hi2865) mutant zebrafish is visualized. High resolution live imaging in zebrafish allows one to observe multiple mitoses to statistically quantify mitotic defects and timing of mitotic progression. In addition, observation of qualitative aspects that define improper mitotic processes (i.e., congression defects, missegregation of chromosomes, etc.) and improper chromosomal outcomes (i.e., aneuploidy, polyploidy, micronuclei, etc.) are observed. This assay can be applied to the observation of tissue differentiation/development and is amenable to the use of mutant zebrafish and pharmacological agents. Visualization of how defects in mitosis lead to cancer and developmental disorders will greatly enhance understanding of the pathogenesis of disease. PMID:27501381

  15. Uptake and transient expression of chimeric genes in seed-derived embryos.

    PubMed Central

    Töpfer, R; Gronenborn, B; Schell, J; Steinbiss, H H

    1989-01-01

    Uptake of DNA in dry and viable embryos of wheat by imbibition in DNA solution was detected by monitoring the transient expression of chimeric genes. Gene expression vectors used in this study contained a neomycin phosphotransferase (NPT) II reporter gene fused to various promoters. Some of the chimeric "neo" genes were shown to yield reproducibly NPT II activity in germinating embryos. This NPT II activity was increased markedly when the neo genes were carried by a vector capable of autonomous replication. Dimers of wheat dwarf virus, a monopartite gemini virus, were thus shown to be effective in amplifying the transient expressed NPT II activity in embryos of several cereals. These and other observations indicate that the observed transient expression really results from DNA uptake and expression in plant embryo cells and is not due to contaminating microorganisms. PMID:2562504

  16. Whole-mount single molecule FISH method for zebrafish embryo.

    PubMed

    Oka, Yuma; Sato, Thomas N

    2015-01-01

    Noise in gene expression renders cells more adaptable to changing environment by imposing phenotypic and functional heterogeneity on genetically identical individual cells. Hence, quantitative measurement of noise in gene expression is essential for the study of biological processes in cells. Currently, there are two complementary methods for quantitatively measuring noise in gene expression at the single cell level: single molecule FISH (smFISH) and single cell qRT-PCR (or single cell RNA-seq). While smFISH has been developed for culture cells, tissue sections and whole-mount invertebrate organisms, the method has not been reported for whole-mount vertebrate organisms. Here, we report an smFISH method that is suitable for whole-mount zebrafish embryo, a popular vertebrate model organism for the studies of development, physiology and disease. We show the detection of individual transcripts for several cell-type specific and ubiquitously expressed genes at the single cell level in whole-mount zebrafish embryo. We also demonstrate that the method can be adapted to detect two different genes in individual cells simultaneously. The whole-mount smFISH method described in this report is expected to facilitate the study of noise in gene expression and its role in zebrafish, a vertebrate animal model relevant to human biology. PMID:25711926

  17. Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers.

    PubMed

    Oliveira, Eva; Casado, Marta; Faria, Melissa; Soares, Amadeu M V M; Navas, José María; Barata, Carlos; Piña, Benjamin

    2014-08-01

    The progressive practical applications of engineered nanoparticles results in their ever-increasing release into the environment. Accurate assessment of their environmental and health risks requires the development of methods allowing their monitoring in different environmental compartments and the evaluation of their potential toxicity at different levels of organization. Toxic effects of third-generation (G3) and fourth-generation (G4) poly(amidoamine) dendrimers (ethylenediamine cored, imine-terminated) were assessed on zebrafish embryos during the first two days post-fertilization. Particle characterization by dynamic light scattering showed no tendency to form aggregates in the assay conditions. G3 particles showed somewhat a higher acute toxicity than G4 particles, with LC50 values of 1.8 and 2.3 mg/L, respectively. At sublethal concentrations, both particles affected the zebrafish transcriptome following similar patterns, suggesting a similar mode of action. About 700 transcripts were affected by at least one of the treatments, following a pattern with significant correlations to the effects of bacterial infection in zebrafish embryos. We concluded that the response to G3 and G4 dendrimers was consistent with the activation of the innate immune response, a still unreported potential effect of these particles. These data may contribute to the characterization of hazards of these nanomaterials for both human health and the environment. PMID:24266889

  18. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo.

    PubMed

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-06-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. ɑ1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. PMID:27038211

  19. Strategies for analyzing cardiac phenotypes in the zebrafish embryo.

    PubMed

    Houk, A R; Yelon, D

    2016-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  20. Low Temperature Mitigates Cardia Bifida in Zebrafish Embryos

    PubMed Central

    Lin, Che-Yi; Huang, Cheng-Chen; Wang, Wen-Der; Hsiao, Chung-Der; Cheng, Ching-Feng; Wu, Yi-Ting; Lu, Yu-Fen; Hwang, Sheng-Ping L.

    2013-01-01

    The coordinated migration of bilateral cardiomyocytes and the formation of the cardiac cone are essential for heart tube formation. We investigated gene regulatory mechanisms involved in myocardial migration, and regulation of the timing of cardiac cone formation in zebrafish embryos. Through screening of zebrafish treated with ethylnitrosourea, we isolated a mutant with a hypomorphic allele of mil (s1pr2)/edg5, called s1pr2as10 (as10). Mutant embryos with this allele expressed less mil/edg5 mRNA and exhibited cardia bifida prior to 28 hours post-fertilization. Although the bilateral hearts of the mutants gradually fused together, the resulting formation of two atria and one tightly-packed ventricle failed to support normal blood circulation. Interestingly, cardia bifida of s1pr2as10 embryos could be rescued and normal circulation could be restored by incubating the embryos at low temperature (22.5°C). Rescue was also observed in gata5 and bon cardia bifida morphants raised at 22.5°C. The use of DNA microarrays, digital gene expression analyses, loss-of-function, as well as mRNA and protein rescue experiments, revealed that low temperature mitigates cardia bifida by regulating the expression of genes encoding components of the extracellular matrix (fibronectin 1, tenascin-c, tenascin-w). Furthermore, the addition of N-acetyl cysteine (NAC), a reactive oxygen species (ROS) scavenger, significantly decreased the effect of low temperature on mitigating cardia bifida in s1pr2as10 embryos. Our study reveals that temperature coordinates the development of the heart tube and somitogenesis, and that extracellular matrix genes (fibronectin 1, tenascin-c and tenascin-w) are involved. PMID:23922799

  1. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  2. Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo

    PubMed Central

    King-Heiden, Tisha C.; Wiecinski, Paige N.; Mangham, Andrew N.; Metz, Kevin M.; Nesbit, Dorothy; Pedersen, Joel A.; Hamers, Robert J.; Heideman, Warren; Peterson, Richard E.

    2009-01-01

    Quantum dots (QDs) hold promise for several biomedical, life sciences and photovoltaic applications. Substantial production volumes and environmental release are anticipated. QD toxicity may be intrinsic to their physicochemical properties, or result from the release of toxic components during breakdown. We hypothesized that developing zebrafish could be used to identify and distinguish these different types of toxicity. Embryos were exposed to aqueous suspensions of CdSecore/ZnSshell QDs functionalized with either poly-L-lysine or poly(ethylene glycol) terminated with methoxy, carboxylate, or amine groups. Toxicity was influenced by the QD coating, which also contributed to the QD suspension stability. At sublethal concentrations, many QD preparations produced characteristic signs of Cd toxicity that weakly correlated with metallothionein expression, indicating that QDs are only slightly degraded in vivo. QDs also produced distinctly different toxicity that could not be explained by Cd release. Using the zebrafish model, we were able to distinguish toxicity intrinsic to QDs from that caused by released metal ions. We conclude that developing zebrafish provide a rapid, low- cost approach for assessing structure-toxicity relationships of nanoparticles. PMID:19350942

  3. Three-dimensional printed millifluidic devices for zebrafish embryo tests.

    PubMed

    Zhu, Feng; Skommer, Joanna; Macdonald, Niall P; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-07-01

    Implementations of Lab-on-a-Chip technologies for in-situ analysis of small model organisms and embryos (both invertebrate and vertebrate) are attracting an increasing interest. A significant hurdle to widespread applications of microfluidic and millifluidic devices for in-situ analysis of small model organisms is the access to expensive clean room facilities and complex microfabrication technologies. Furthermore, these resources require significant investments and engineering know-how. For example, poly(dimethylsiloxane) soft lithography is still largely unattainable to the gross majority of biomedical laboratories willing to pursue development of chip-based platforms. They often turn instead to readily available but inferior classical solutions. We refer to this phenomenon as workshop-to-bench gap of bioengineering science. To tackle the above issues, we examined the capabilities of commercially available Multi-Jet Modelling (MJM) and Stereolithography (SLA) systems for low volume fabrication of optical-grade millifluidic devices designed for culture and biotests performed on millimetre-sized specimens such as zebrafish embryos. The selected 3D printing technologies spanned a range from affordable personal desktop systems to high-end professional printers. The main motivation of our work was to pave the way for off-the-shelf and user-friendly 3D printing methods in order to rapidly and inexpensively build optical-grade millifluidic devices for customized studies on small model organisms. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in poly(methyl methacrylate), we demonstrate that selected SLA technologies can achieve user-friendly and rapid production of prototypes, superior feature reproduction quality, and comparable levels of optical transparency. A caution need to be, however, exercised as majority of tested SLA and MJM resins were found toxic and caused significant developmental abnormalities

  4. Three-dimensional printed millifluidic devices for zebrafish embryo tests

    PubMed Central

    Zhu, Feng; Skommer, Joanna; Macdonald, Niall P.; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-01-01

    Implementations of Lab-on-a-Chip technologies for in-situ analysis of small model organisms and embryos (both invertebrate and vertebrate) are attracting an increasing interest. A significant hurdle to widespread applications of microfluidic and millifluidic devices for in-situ analysis of small model organisms is the access to expensive clean room facilities and complex microfabrication technologies. Furthermore, these resources require significant investments and engineering know-how. For example, poly(dimethylsiloxane) soft lithography is still largely unattainable to the gross majority of biomedical laboratories willing to pursue development of chip-based platforms. They often turn instead to readily available but inferior classical solutions. We refer to this phenomenon as workshop-to-bench gap of bioengineering science. To tackle the above issues, we examined the capabilities of commercially available Multi-Jet Modelling (MJM) and Stereolithography (SLA) systems for low volume fabrication of optical-grade millifluidic devices designed for culture and biotests performed on millimetre-sized specimens such as zebrafish embryos. The selected 3D printing technologies spanned a range from affordable personal desktop systems to high-end professional printers. The main motivation of our work was to pave the way for off-the-shelf and user-friendly 3D printing methods in order to rapidly and inexpensively build optical-grade millifluidic devices for customized studies on small model organisms. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in poly(methyl methacrylate), we demonstrate that selected SLA technologies can achieve user-friendly and rapid production of prototypes, superior feature reproduction quality, and comparable levels of optical transparency. A caution need to be, however, exercised as majority of tested SLA and MJM resins were found toxic and caused significant developmental abnormalities

  5. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation.

    PubMed

    Choi, V W Y; Yu, K N

    2015-01-01

    The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed. PMID:24176822

  6. Proteomic Analysis of Anoxia Tolerance in the Developing Zebrafish Embryo

    PubMed Central

    Mendelsohn, Bryce A.; Malone, James P.; Townsend, R. Reid; Gitlin, Jonathan D.

    2009-01-01

    While some species and tissue types are injured by oxygen deprivation, anoxia tolerant organisms display a protective response that has not been fully elucidated and is well-suited to genomic and proteomic analysis. However, such methodologies have focused on transcriptional responses, prolonged anoxia, or have used cultured cells or isolated tissues. In this study of intact zebrafish embryos, a species capable of >24 h survival in anoxia, we have utilized 2D difference in gel electrophoresis to identify changes in the proteomic profile caused by near-lethal anoxic durations as well as acute anoxia (1 h), a timeframe relevant to ischemic events in human disease when response mechanisms are largely limited to post-transcriptional and post-translational processes. We observed a general stabilization of the proteome in anoxia. Proteins involved in oxidative phosphorylation, antioxidant defense, transcription, and translation changed over this time period. Among the largest proteomic alterations was that of muscle cofilin 2, implicating the regulation of the cytoskeleton and actin assembly in the adaptation to acute anoxia. These studies in an intact embryo highlight proteomic components of an adaptive response to anoxia in a model organism amenable to genetic analysis to permit further mechanistic insight into the phenomenon of anoxia tolerance. PMID:20403745

  7. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus. PMID:26694481

  8. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  9. Robotic injection of zebrafish embryos for high-throughput screening in disease models.

    PubMed

    Spaink, Herman P; Cui, Chao; Wiweger, Malgorzata I; Jansen, Hans J; Veneman, Wouter J; Marín-Juez, Rubén; de Sonneville, Jan; Ordas, Anita; Torraca, Vincenzo; van der Ent, Wietske; Leenders, William P; Meijer, Annemarie H; Snaar-Jagalska, B Ewa; Dirks, Ron P

    2013-08-15

    The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines. PMID:23769806

  10. Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos.

    PubMed

    Jang, Gun Hyuk; Lee, Keon Yong; Choi, Jaewon; Kim, Sang Hoon; Lee, Kwan Hyi

    2016-09-01

    Recent development in the field of nanomaterials has given rise into the inquiries regarding the toxicological characteristics of the nanomaterials. While many individual nanomaterials have been screened for their toxicological effects, composites that accompany nanomaterials are not common subjects to such screening through toxicological assessment. One of the widely used composites that accompany nanomaterials is catalyst composite used to reduce air pollution, which was selected as a target composite with nanomaterials for the multifaceted toxicological assessment. As existing studies did not possess any significant data regarding such catalyst composites, this study focuses on investigating toxicological characteristics of catalyst composites from various angles in both in-vitro and in-vivo settings. Initial toxicological assessment on catalyst composites was conducted using HUVECs for cell viability assays, and subsequent in-vivo assay regarding their direct influence on living organisms was done. The zebrafish embryo and its transgenic lines were used in the in-vivo assays to obtain multifaceted analytic results. Data obtained from the in-vivo assays include blood vessel formation, mutated heart morphology, and heart functionality change. Our multifaceted toxicological assessment pointed out that chemical composites augmented with nanomaterials can too have toxicological threat as much as individual nanomaterials do and alarms us with their danger. This manuscript provides a multifaceted assessment for composites augmented with nanomaterials, of which their toxicological threats have been overlooked. PMID:27364464

  11. Assessment of developmental delay in the zebrafish embryo teratogenicity assay.

    PubMed

    Teixidó, E; Piqué, E; Gómez-Catalán, J; Llobet, J M

    2013-02-01

    In this study we analyzed some aspects of the assessment of developmental delay in the zebrafish embryotoxicity/teratogenicity test and explored the suitability of acetylcholinesterase (AChE) activity as a biochemical marker and as a higher throughput alternative to morphological endpoints such as head-trunk angle, tail length and morphological score. Embryos were exposed from 4 to 52 h post-fertilization (hpf) to a selection of known embryotoxic/teratogen compounds (valproic acid, retinoic acid, caffeine, sodium salicylate, glucose, hydroxyurea, methoxyacetic acid, boric acid and paraoxon-methyl) over a concentration range. They were evaluated for AChE activity, head-trunk angle, tail length and several qualitative parameters integrated in a morphological score. In general, the different patterns of the concentration-response curves allowed distinguishing between chemicals that produced growth retardation (valproic and methoxyacetic acid) and chemicals that produced non-growth-delay related malformations. An acceptable correlation between the morphological score, AChE activity and head-trunk angle as markers of developmental delay was observed, being AChE activity particularly sensitive to detect delay in the absence of malformations. PMID:22898132

  12. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  13. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae.

    PubMed

    Hagedorn, Elliott J; Cillis, Jennifer L; Curley, Caitlyn R; Patch, Taylor C; Li, Brian; Blaser, Bradley W; Riquelme, Raquel; Zon, Leonard I; Shah, Dhvanit I

    2016-01-01

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been  used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development. PMID:27341538

  14. Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos

    PubMed Central

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P.; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  15. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  16. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish

    PubMed Central

    Faught, Erin; Best, Carol; Vijayan, Mathilakath M.

    2016-01-01

    Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress. PMID:26998341

  17. Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo

    PubMed Central

    Yang, Lixin; Kemadjou, Jules R; Zinsmeister, Christian; Bauer, Matthias; Legradi, Jessica; Müller, Ferenc; Pankratz, Michael; Jäkel, Jens; Strähle, Uwe

    2007-01-01

    Background Early life stages are generally most sensitive to toxic effects. Our knowledge on the action of manmade chemicals on the developing vertebrate embryo is, however, rather limited. We addressed the toxicogenomic response of the zebrafish embryo in a systematic manner by asking whether distinct chemicals would induce specific transcriptional profiles. Results We exposed zebrafish embryos to a range of environmental toxicants and measured the changes in gene-expression profiles by hybridizing cDNA to an oligonucleotide microarray. Several hundred genes responded significantly to at least one of the 11 toxicants tested. We obtained specific expression profiles for each of the chemicals and could predict the identity of the toxicant from the expression profiles with high probability. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. The toxicogenomic profiles were highly stage specific and we detected tissue-specific gene responses, underscoring the sensitivity of the assay system. Conclusion Our results show that the genome of the zebrafish embryo responds to toxicant exposure in a highly sensitive and specific manner. Our work provides proof-of-principle for the use of the zebrafish embryo as a toxicogenomic model and highlights its potential for systematic, large-scale analysis of the effects of chemicals on the developing vertebrate embryo. PMID:17961207

  18. Influences of textured substrates on the heart rate of developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Chen, Chia-Yuan

    2013-07-01

    Identification of the effects of different textured substrates on zebrafish (Danio rerio) embryos provides insights into the influence of external stimuli on normal cardiovascular functions in the developmental stages of the embryos. This knowledge can be used in numerous genetic studies using zebrafish as an animal model as well as in bioanalytical assays using digital microfluidics. In this study, zebrafish embryos were systematically positioned and in vivo imaged on four types of silicon substrates. These substrates exhibited surface textures and surface wettability that were well modulated by wet chemical etching. The heart rate of the developing embryos significantly increased by 9.1% upon exposure to textured Si substrates with nanostructured surfaces compared with bare Si substrates. Modulation of surface wettability in the tested substrates also responded to the increase in the heart rate of the embryo; however, the effect of surface wettability on heart rate was slight compared with the effect of texture. In-depth experimental and statistical investigations of heart rate under the effects of substrate textures imply a pathway through which the inner mass of the embryo reacts to external stimuli. These findings contribute to zebrafish-related studies and suggest other factors to consider in the design of nanostructure-based microfluidics and other biomedical devices.

  19. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    SciTech Connect

    Xu, Ting; Zhao, Jing; Hu, Ping; Dong, Zhangji; Li, Jingyun; Zhang, Hongchang; Yin, Daqiang; Zhao, Qingshun

    2014-06-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  20. Nanotherapeutics in angiogenesis: synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos

    PubMed Central

    Cheng, Jinping; Gu, Yan-Juan; Wang, Yajun; Cheng, Shuk Han; Wong, Wing-Tak

    2011-01-01

    Background Carbon nanotubes have shown broad potential in biomedical applications, given their unique mechanical, optical, and chemical properties. In this pilot study, carbon nanotubes have been explored as multimodal drug delivery vectors that facilitate antiangiogenic therapy in zebrafish embryos. Methods Three different agents, ie, an antiangiogenic binding site (cyclic arginine-glycin-easpartic acid), an antiangiogenic drug (thalidomide), and a tracking dye (rhodamine), were conjugated onto single-walled carbon nanotubes (SWCNT). The biodistribution, efficacy, and biocompatibility of these triple functionalized SWCNT were tested in mammalian cells and validated in transparent zebrafish embryos. Results Accumulation of SWCNT-associated nanoconjugates in blastoderm cells facilitated drug delivery applications. Mammalian cell xenograft assays demonstrated that these antiangiogenic SWCNT nanoconjugates specifically inhibited ectopic angiogenesis in the engrafted zebrafish embryos. Conclusion This study highlights the potential of using SWCNT for generating efficient nanotherapeutics. PMID:21976976

  1. Semi-automated imaging of tissue-specific fluorescence in zebrafish embryos.

    PubMed

    Romano, Shannon N; Gorelick, Daniel A

    2014-01-01

    Zebrafish embryos are a powerful tool for large-scale screening of small molecules. Transgenic zebrafish that express fluorescent reporter proteins are frequently used to identify chemicals that modulate gene expression. Chemical screens that assay fluorescence in live zebrafish often rely on expensive, specialized equipment for high content screening. We describe a procedure using a standard epifluorescence microscope with a motorized stage to automatically image zebrafish embryos and detect tissue-specific fluorescence. Using transgenic zebrafish that report estrogen receptor activity via expression of GFP, we developed a semi-automated procedure to screen for estrogen receptor ligands that activate the reporter in a tissue-specific manner. In this video we describe procedures for arraying zebrafish embryos at 24-48 hours post fertilization (hpf) in a 96-well plate and adding small molecules that bind estrogen receptors. At 72-96 hpf, images of each well from the entire plate are automatically collected and manually inspected for tissue-specific fluorescence. This protocol demonstrates the ability to detect estrogens that activate receptors in heart valves but not in liver. PMID:24894681

  2. Semi-automated Imaging of Tissue-specific Fluorescence in Zebrafish Embryos

    PubMed Central

    Romano, Shannon N.; Gorelick, Daniel A.

    2014-01-01

    Zebrafish embryos are a powerful tool for large-scale screening of small molecules. Transgenic zebrafish that express fluorescent reporter proteins are frequently used to identify chemicals that modulate gene expression. Chemical screens that assay fluorescence in live zebrafish often rely on expensive, specialized equipment for high content screening. We describe a procedure using a standard epifluorescence microscope with a motorized stage to automatically image zebrafish embryos and detect tissue-specific fluorescence. Using transgenic zebrafish that report estrogen receptor activity via expression of GFP, we developed a semi-automated procedure to screen for estrogen receptor ligands that activate the reporter in a tissue-specific manner. In this video we describe procedures for arraying zebrafish embryos at 24-48 hours post fertilization (hpf) in a 96-well plate and adding small molecules that bind estrogen receptors. At 72-96 hpf, images of each well from the entire plate are automatically collected and manually inspected for tissue-specific fluorescence. This protocol demonstrates the ability to detect estrogens that activate receptors in heart valves but not in liver. PMID:24894681

  3. BMP Signaling Modulates Hepcidin Expression in Zebrafish Embryos Independent of Hemojuvelin

    PubMed Central

    Gibert, Yann; Lattanzi, Victoria J.; Zhen, Aileen W.; Vedder, Lea; Brunet, Frédéric; Faasse, Sarah A.; Babitt, Jodie L.; Lin, Herbert Y.; Hammerschmidt, Matthias; Fraenkel, Paula G.

    2011-01-01

    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv. PMID:21283739

  4. Construction and Evaluation of a Maize Chimeric Promoter with Activity in Kernel Endosperm and Embryo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chimeric promoters contain DNA sequences from different promoters. Chimeric promoters are developed to increase the level of recombinant protein expression, precisely control transgene activity, or to escape homology-based gene silencing. Sets of chimeric promoters, each containing different lengt...

  5. Mesoporous silica nanoparticles as a compound delivery system in zebrafish embryos

    PubMed Central

    Sharif, Faiza; Porta, Fabiola; Meijer, Annemarie H; Kros, Alexander; Richardson, Michael K

    2012-01-01

    Silica nanoparticles can be efficiently employed as carriers for therapeutic drugs in vitro. Here, we use zebrafish embryos as a model organism to see whether mesoporous silica nanoparticles (MSNPs) can be incorporated to deliver compounds in vivo. We injected 35–40 nL (10 mg/mL) of custom-synthesized, fluorescently-tagged 200 nm MSNPs into the left flank, behind the yolk sac extension, of 2-day-old zebrafish embryos. We tracked the distribution and translocation of the MSNPs using confocal laser scanning microscopy. Some of the particles remained localized at the injection site, whereas others entered the bloodstream and were carried around the body. Embryo development and survival were not significantly affected by MSNP injection. Acridine orange staining revealed that MSNP injections did not induce significant cell death. We also studied cellular immune responses by means of lysC::DsRED2 transgenic embryos. MSNP-injected embryos showed infiltration of the injection site with neutrophils, similar to controls injected with buffer only. In the same embryos, counterstaining with L-plastin antibody for leukocytes revealed the same amount of cellular infiltration of the injection site in embryos injected with MSNPs or with buffer only. Next, we used MSNPs to deliver two recombinant cytokines (macrophage colony-stimulating factor and receptor for necrosis factor ligand) to zebrafish embryos. These proteins are known to activate cells involved in bone remodeling, and this can be detected with the marker tartrate-resistant acid phosphatase. Coinjection of these proteins loaded onto MSNPs produced a significant increase in the number of tartrate-resistant acid phosphatase-positive cells after 2–3 days of injection. Our results show that MSNPs can be used to deliver bioactive compounds into zebrafish larvae without producing higher mortality or gross evidence of teratogenicity. PMID:22605936

  6. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    PubMed

    Li, Jin; Zeng, Guofang; Qi, Yawei; Tang, Xudong; Zhang, Jingjing; Wu, Zeyong; Liang, Jie; Shi, Lei; Liu, Hongwei; Zhang, Peihua

    2015-01-01

    Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo. PMID:25849455

  7. Pax7 is required for establishment of the xanthophore lineage in zebrafish embryos

    PubMed Central

    Nord, Hanna; Dennhag, Nils; Muck, Joscha; von Hofsten, Jonas

    2016-01-01

    The pigment pattern of many animal species is a result of the arrangement of different types of pigment-producing chromatophores. The zebrafish has three different types of chromatophores: black melanophores, yellow xanthophores, and shimmering iridophores arranged in a characteristic pattern of golden and blue horizontal stripes. In the zebrafish embryo, chromatophores derive from the neural crest cells. Using pax7a and pax7b zebrafish mutants, we identified a previously unknown requirement for Pax7 in xanthophore lineage formation. The absence of Pax7 results in a severe reduction of xanthophore precursor cells and a complete depletion of differentiated xanthophores in embryos as well as in adult zebrafish. In contrast, the melanophore lineage is increased in pax7a/pax7b double-mutant embryos and larvae, whereas juvenile and adult pax7a/pax7b double-mutant zebrafish display a severe decrease in melanophores and a pigment pattern disorganization indicative of a xanthophore- deficient phenotype. In summary, we propose a novel role for Pax7 in the early specification of chromatophore precursor cells. PMID:27053658

  8. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products.

    PubMed

    Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun

    2016-04-01

    Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products. PMID:26838966

  9. The use of microangiography in detecting aberrant vasculature in zebrafish embryos exposed to cadmium.

    PubMed

    Cheng, S H; Chan, P K; Wu, R S

    2001-03-01

    Embryonic vascular patterns in zebrafish (Danio rerio) could be visualised by confocal microscopy coupled with microinjected fluorescent microbeads. This microangiographic technique was adopted here, for the first time, to study the effects of cadmium on cardiovascular development in zebrafish embryos. Zebrafish embryos were incubated in culture medium containing 100 microM cadmium from 5 h post fertilisation (hpf) to 48 hpf. At 48 hpf, embryos were examined for viability and occurrence of malformations. The 100 microM cadmium caused 32.21 +/- 3.65% mortality and 20.33 +/- 4.04% visible malformations in surviving embryos. In the remaining embryos with no visible signs of malformations, further assessments for less obvious abnormalities were performed. Assessments on craniofacial development were made by digital measurements on areas of brains and eyes. Cardiac development was assessed by immunostaining the heart with the antibody MF20 specific for myosin heavy chain. Body lengths of the embryos were also measured. Embryonic development of brains, eyes, hearts and body lengths of visibly healthy embryos in the cadmium treatment group showed no significant difference from the controls. Embryonic vasculature of these visibly healthy embryos was then studied by microinjecting fluorescent microbeads of diameter 0.02 microm into the circulation. All the cadmium treated embryos showed localised vascular defects in the dorsal aortae, segmental and cranial vessels while none of the control embryos showed any aberrant patterns in the networking of the vasculature. Improved image analyses on the anterior regions revealed that cadmium treated embryos had markedly less complex networks of cranial vessels with fewer vessels perfusing the craniofacial regions. The number of branch points in the vascular network was counted. In untreated embryos, there were 135.6 +/- 51 branches in the vasculature in entire body. In the cadmium treated embryos, there were 64.5+/-31 branches. The

  10. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    PubMed

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P < 0.05), respectively. Epifluorescence microscopy showed that the proportion of blastocysts with eGFP-positive cells in the ICM was higher in the PHA group than in the no-PHA group (40% vs. 16%; P < 0.05). Confocal laser scanning microscopy revealed that the total cell numbers of blastocysts from the PHA group of aggregation chimeras (n = 17; 207.8 ± 67.3 [mean ± standard deviation]) were higher (P < 0.05) than those of embryos without ZP and exposed to PHA (n = 30; 159.6 ± 42.2) and of handling control embryos (n = 19; 176.9 ± 53.3). The same was true for ICM cell counts (56.5 ± 22.0 vs. 37.7 ± 14.2 and 38.7 ± 12.4) and TE cell counts (151.2 ± 58.0 vs. 121.9 ± 37.4 and 138.3 ± 53.0), whereas the ICM/total cell number ratio was not different between the groups. Of the 17 chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in

  11. Itaconate and Inflammation, miRs in Zebrafish Embryos, and SHP2 Inhibitor.

    PubMed

    2016-07-21

    Every month the editors of Cell Chemical Biology bring you highlights of the most recent chemical biology literature. Our July 2016 selection includes reports on itaconate as a key metabolite that regulates inflammation, visualization of microRNA in living zebrafish embryos, and the development of a promising SHP2 inhibitor. PMID:27447041

  12. Zebrafish Embryo Disinfection with Povidone-Iodine: Evaluating an Alternative to Chlorine Bleach.

    PubMed

    Chang, Carolyn T; Amack, Jeffrey D; Whipps, Christopher M

    2016-07-01

    Mycobacteriosis is a common bacterial infection in laboratory zebrafish caused by several different species and strains of Mycobacterium, including both rapid and slow growers. One control measure used to prevent mycobacterial spread within and between facilities is surface disinfection of eggs. Recent studies have highlighted the effectiveness of povidone-iodine (PVPI) on preventing propagation of Mycobacterium spp. found in zebrafish colonies. We evaluated the effect of disinfection using 12.5-50 ppm PVPI (unbuffered and buffered) on zebrafish exposed at 6 or 24 h postfertilization (hpf) to determine if this treatment is suitable for use in research zebrafish. Our results show that 6 hpf embryos are less sensitive to treatment as fewer effects on mortality, developmental delay, and deformity were observed. We also found that buffered PVPI treatment results in a greater knockdown of Mycobacterium chelonae and Mycobacterium marinum, as well as results in decreased harmful effects on embryos. Treatments of shorter (2 min vs. 5 min) duration were also more effective at killing mycobacteria in addition to resulting in fewer effects on embryo health. In addition, we compared the efficacy of a rinsing regimen to rinsing and disinfecting. Based on the findings of this study, we recommend disinfecting embryos for 2 min with buffered PVPI at 12.5-25 ppm. PMID:27351620

  13. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  14. Divergent teratogenicity of agonists of retinoid X receptors in embryos of zebrafish (Danio rerio).

    PubMed

    Shi, Huahong; Zhu, Pan; Sun, Zhi; Yang, Bo; Zheng, Liang

    2012-07-01

    Zebrafish (Danio rerio) embryos were comparably exposed to seven known agonists of retinoid X receptors (RXRs) including two endogenous compounds (9-cis-retinoic acid and docosahexaenoic acid), four man-made selective ligands (LGD1069, SR11237, fluorobexarotene and CD3254), and a biocide (triphenyltin). The dominant phenotypes of malformation were sharp mouths and small caudal fins in 1 mg/L SR11237-treated group after 5 days exposure. 9-cis-retinoic acid and LGD1069 induced multiple malformations including small eyes, bent notochords, reduced brain, enlarged proctodaems, absence of fins, short tails and edema after 5 days exposure. Fluorobexarotene and CD3254 induced similar phenotypes of malformations after 5 days exposure at low concentration (20 μg/L) to those after the 1st d exposure at high concentrations (50 and 100 μg/L). Triphenlytin induced multiple malformations including deformed eyes, bent notochords, bent tails, and edema in hearts after 5 days exposure at concentrations of 1-10 μg Sn/L. In contrast, no discernible malformations were observed in triphenlytin-treated groups after each separate day exposure. These agonists not only showed different ability of teratogenicity but also induced different phenotypes of malformation in zebrafish embryos. In addition, the sensitive stages of zebrafish embryos were different in response to these agonists. Therefore, our results suggest that the agonists of RXRs had divergent teratogenicity in zebrafish embryos. PMID:22526925

  15. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo.

    PubMed

    Kang, Min-Cheol; Cha, Seon Heui; Wijesinghe, W A J P; Kang, Sung-Myung; Lee, Seung-Hong; Kim, Eun-A; Song, Choon Bok; Jeon, You-Jin

    2013-06-01

    In this study the protective effect of phlorotannins, including phloroglucinol, eckol, dieckol, eckstolonol and triphloroethol A, isolated from brown algae Ecklonia cava was investigated against AAPH-induced oxidative stress toxicity in zebrafish embryos. Zebrafish embryos were exposed to AAPH and compared with other groups that were co-exposed with phlorotannins until 2-days post-fertilisation. All phlorotannins scavenged intracellular ROS and prevented lipid peroxidation and reduced AAPH-induced cell death in zebrafish embryos. Negative changes in morphological phenomena, such as pericardial oedema, yolk sac oedema, and growth retardation in zebrafish embryos exposed to AAPH were not observed in groups exposed to phlorotannins. These results clearly indicate that phlorotannins possess prominent antioxidant activity against AAPH-mediated toxicity and might be potential therapeutic agents for treating or preventing several diseases implicated with oxidative stress. This study provides a useful tool for examining the protective effect of antioxidants against AAPH-induced oxidative stress in an alternative in vivo model. PMID:23411200

  16. Gambogic acid causes fin developmental defect in zebrafish embryo partially via retinoic acid signaling.

    PubMed

    Jiang, Ling-Ling; Li, Kang; Lin, Qing-Hua; Ren, Jian; He, Zhi-Heng; Li, Huan; Shen, Ning; Wei, Ping; Feng, Feng; He, Ming-Fang

    2016-08-01

    Gambogic acid (GA), the major active ingredient of gamboge, has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients due to its strong anticancer activity. However, our previous research showed that GA was teratogenic against zebrafish fin development. To explore the teratogenicity and the underlying mechanisms, zebrafish (Danio rerio) embryos were used. The morphological observations revealed that GA caused fin defects in zebrafish embryos in a concentration-dependent manner. The critical exposure time of GA to reveal teratogenicity was before 8 hpf (hours post fertilization). LC/MS/MS analysis revealed that a maximum bioconcentration of GA was occurred at 4 hpf. Q-PCR data showed that GA treatment resulted in significant inactivation of RA signaling which could be partially rescued by the exogenous supply of RA. These results indicate the potential teratogenicity of GA and provide evidence for a caution in its future clinic use. PMID:27288890

  17. A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos

    PubMed Central

    Poureetezadi, Shahram Jevin; Donahue, Eric K.; Wingert, Rebecca A.

    2014-01-01

    Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications. PMID:25407322

  18. Progress Towards the Development of a Fathead Minnow Embryo Test and Comparison to the Zebrafish Embryo Test for Assessing Acute Fish Toxicity

    EPA Science Inventory

    The Zebrafish Embryo Test (ZFET) for acute fish toxicity is a well developed method nearing adoption as an OECD Test Guideline. Early drafts of the test guideline (TG) envisioned a suite of potential test species to be covered including zebrafish, fathead minnow, Japanese Medaka...

  19. Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae.

    PubMed

    Maes, Jan; Verlooy, Lien; Buenafe, Olivia E; de Witte, Peter A M; Esguerra, Camila V; Crawford, Alexander D

    2012-01-01

    Zebrafish are rapidly growing in popularity as an in vivo model system for chemical genetics, drug discovery, and toxicology, and more recently also for natural product discovery. Experiments involving the pharmacological evaluation of small molecules or natural product extracts in zebrafish bioassays require the effective delivery of these compounds to embryos and larvae. While most samples to be screened are first solubilized in dimethyl sulfoxide (DMSO), which is then diluted in the embryo medium, often this method is not sufficient to prevent the immediate or eventual precipitation of the sample. Certain compounds and extracts are also not highly soluble in DMSO. In such instances the use of carriers and/or other solvents might offer an alternative means to achieve the required sample concentration. Towards this end, we determined the maximum tolerated concentration (MTC) of several commonly used solvents and carriers in zebrafish embryos and larvae at various developmental stages. Solvents evaluated for this study included acetone, acetonitrile, butanone, dimethyl formamide, DMSO, ethanol, glycerol, isopropanol, methanol, polyethylene glycol (PEG-400), propylene glycol, and solketal, and carriers included albumin (BSA) and cyclodextrin (2-hydroxypropyl-beta-cyclodextrin, or HPBCD). This study resulted in the identification of polyethylene glycol (PEG400), propylene glycol, and methanol as solvents that were relatively well-tolerated over a range of developmental stages. In addition, our results showed that acetone was well-tolerated by embryos but not by larvae, and 1% cyclodextrin (HPBCD) was well-tolerated by both embryos and larvae, indicating the utility of this carrier for compound screening in zebrafish. However, given the relatively small differences (2-3 fold) between concentrations that are apparently safe and those that are clearly toxic, further studies - e.g. omics analyses -should be carried out to determine which cellular processes and signalling

  20. [Toxic effects of CdSe/ZnS QDs to zebrafish embryos].

    PubMed

    Chen, Mu-Fei; Huang, Cheng-Zhi; Pu, De-Yong; Zheng, Chao-Yi; Yuan, Kai-Mi; Jin, Xing-Xing; Zhang, Yao-Guang; Jin, Li

    2015-02-01

    The toxic effects of CdSe/ZnS QDs on zebrafish (Danio rerio) embryos at different developmental stages were investigated in this study. The voluntary movement frequency, body length, hatching rate, mortality and malformation rate, SOD activities, MDA contents, mRNA expression of metallothionein (MT) and heat stress protein 70 (Hsp70) were used as indicators. The results showed that the EC50 was 316.994 nmol x L(-1) for zebrafish embryos (72 hpf) when exposed to CdSe/ZnS QDs. After the CdSe/ZnS QDs exposure, the embryos showed a significant increase in mortality and malformation rate, a decrease in hatching rate and body length, an advance in hatching time, and a changing in the spontaneous movement frequency, and many other toxic effects, such as the condensation of embryonic eggs, the formation of pericardial cysts and curvature of the spine. Moreover, it was found that the MDA contents in the embryos in CdSe/ZnS QDs groups were significantly increased, and the SOD activities were changed. In addition, the mRNA expression level of MT and Hsp70 were up-regulated. All the information suggests that exposure of CdSe/ZnS QDs can cause toxic effects on zebrafish embryos, and the effects may be related to the releasing of Cd2+, particle size and oxidative stress. PMID:26031104

  1. Visualizing Compound Distribution during Zebrafish Embryo Development: The Effects of Lipophilicity and DMSO.

    PubMed

    de Koning, Coco; Beekhuijzen, Manon; Tobor-Kapłon, Marysia; de Vries-Buitenweg, Selinda; Schoutsen, Dick; Leeijen, Nico; van de Waart, Beppy; Emmen, Harry

    2015-12-01

    The predictability of the zebrafish embryo model is highly influenced by internal exposure of the embryo/larva. As compound uptake is likely to be influenced by factors such as lipophilicity, solvent use, and chorion presence, this article focuses on investigating their effects on compound distribution within the zebrafish embryo. To visualize compound uptake and distribution, zebrafish embryos were exposed for 96 hr, starting at 4 hr postfertilization, to water-soluble dyes: Schiff's reagent (logP -4.63), Giemsa stain (logP -0.77), Van Gierson stain (logP 1.64), Cresyl fast violet (logP 3.5), Eosine Y (logP 4.8), Sudan III (logP 7.5), and Oil red O (logP 9.81), with and without 1% dimethyl-sulfoxide (DMSO). Three additional compounds were used to analytically determine the uptake and distribution: Acyclovir (logP -1.56), Zidovudine (logP 0.05), and Metoprolol Tartrate Salt (logP 1.8). Examinations were performed every 24 hr. Both methods (visualization and specific analysis) showed that exposure to higher logP values results in higher compound uptake. Specific analysis showed that for lipophilic compounds >90% of compound is taken up by the embryo. For hydrophilic compounds, >90% of compound within the complete egg could not be associated to embryo or chorion and is probably distributed into the perivitelline space. Overall, internal exposure analyses on at least two occasions (i.e., before and after hatching) is crucial for interpretation of zebrafish embryotoxicity data, especially for compounds with extreme logP values. DMSO did not affect exposure when examined with the visualization method, however, this method might be not sensitive enough to draw hard conclusions. PMID:26663754

  2. Cryopreservation of primordial germ cells by rapid cooling of whole zebrafish (Danio rerio) embryos.

    PubMed

    Higaki, Shogo; Mochizuki, Kentaro; Akashi, Yuichiro; Yamaha, Etsuro; Katagiri, Seiji; Takahashi, Yoshiyuki

    2010-04-01

    The feasibility of cryopreservation of zebrafish (Danio rerio) primordial germ cells (PGCs) by rapid cooling (i.e., vitrification) of dechorionated whole embryos at the 14- to 20-somite stage was investigated. Initially, we examined the glass-forming properties and embryo toxicities of six cryoprotectants: methanol (MeOH), ethylene glycol (EG), glycerol (GC), dimethyl sulfoxide (DMSO), propylene glycol (PG) and 1,3-butylene glycol (1,3-BG). According to the results of glass-forming and embryo toxicity tests, pretreatment solution (PS) containing 2 or 3 M cryoprotectant and vitrification solution (VS) containing 5 M cryoprotectant and 0.5 M sucrose were prepared using each cryoprotectant. Dechorionated embryos, the PGCs of which were visualized by injection of green fluorescence protein-nos1 3'UTR mRNA, were cooled rapidly by plunging into liquid nitrogen after serial exposure to PS and VS. All embryos cooled with MeOH, PG and 1,3-BG showed ice formation during cooling, and few embryos had live PGCs after warming. Most embryos cooled with GC did not show ice formation; however, few embryos had live PGCs. All embryos cooled with EG and most embryos cooled with DMSO had live PGCs when the embryos did not show ice formation during cooling. Based on the number of live PGCs in fresh embryos, the maximum survival rates of PGCs recovered from embryos cooled with EG and DMSO were estimated to be about 40 and 20%, respectively. The present study indicates that rapid cooling of dechorionated whole embryos, especially using EG-based solutions, could be utilized as a simple and promising tool for cryopreservation of PGCs. PMID:19996550

  3. No Evidence for AID/MBD4-Coupled DNA Demethylation in Zebrafish Embryos

    PubMed Central

    Kaneto, Reiya; Izawa, Toshiaki; Yokoi, Hayato; Hashimoto, Naohiro; Kikuchi, Yutaka

    2014-01-01

    The mechanisms responsible for active DNA demethylation remain elusive in Metazoa. A previous study that utilized zebrafish embryos provided a potent mechanism for active demethylation in which three proteins, AID, MBD4, and GADD45 are involved. We recently found age-dependent DNA hypomethylation in zebrafish, and it prompted us to examine if AID and MBD4 could be involved in the phenomenon. Unexpectedly, however, we found that most of the findings in the previous study were not reproducible. First, the injection of a methylated DNA fragment into zebrafish eggs did not affect either the methylation of genomic DNA, injected methylated DNA itself, or several loci tested or the expression level of aid, which has been shown to play a role in demethylation. Second, aberrant methylation was not observed at certain CpG islands following the injection of antisense morpholino oligonucleotides against aid and mbd4. Furthermore, we demonstrated that zebrafish MBD4 cDNA lacked a coding region for the methyl-CpG binding domain, which was assumed to be necessary for guidance to target regions. Taken together, we concluded that there is currently no evidence to support the proposed roles of AID and MBD4 in active demethylation in zebrafish embryos. PMID:25536520

  4. High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos.

    PubMed

    Raftery, Tara D; Isales, Gregory M; Yozzo, Krystle L; Volz, David C

    2014-01-01

    Although cell-based assays exist, rapid and cost-efficient high-content screening (HCS) assays within intact organisms are needed to support prioritization for developmental neurotoxicity testing in rodents. During zebrafish embryogenesis, spontaneous tail contractions occur from late-segmentation (∼19 h postfertilization, hpf) through early pharyngula (∼29 hpf) and represent the first sign of locomotion. Using transgenic zebrafish (fli1:egfp) that stably express eGFP beginning at ∼14 hpf, we have developed and optimized a 384-well-based HCS assay that quantifies spontaneous activity within single zebrafish embryos after exposure to test chemicals in a concentration-response format. Following static exposure of one embryo per well from 5 to 25 hpf, automated image acquisition procedures and custom analysis protocols were used to quantify total body area and spontaneous activity in live embryos. Survival and imaging success rates across control plates ranged from 87.5 to 100% and 93.3-100%, respectively. Using our optimized procedures, we screened 16 chemicals within the US EPA's ToxCast Phase-I library, and found that exposure to abamectin and emamectin benzoate-both potent avermectins-abolished spontaneous activity in the absence of gross malformations. Overall, compared to existing locomotion-based zebrafish assays conducted later in development, this method provides a simpler discovery platform for identifying potential developmental neurotoxicants. PMID:24328182

  5. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pan, Huichin; Lin, Yu-Jun; Li, Meng-Wei; Chuang, Han-Ni; Chou, Cheng-Chung

    2011-07-01

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 μg/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 μg/ml or above. Only larvae exposed to >= 5 μg/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 μg/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 μg/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 μg/ml.

  6. Non-induction of radioadaptive response in zebrafish embryos by neutrons

    PubMed Central

    Ng, Candy Y.P.; Kong, Eva Y.; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-01-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. PMID:26850927

  7. Non-induction of radioadaptive response in zebrafish embryos by neutrons.

    PubMed

    Ng, Candy Y P; Kong, Eva Y; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-06-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. PMID:26850927

  8. Combined effects of depleted uranium and ionising radiation on zebrafish embryos.

    PubMed

    Ng, C Y P; Pereira, S; Cheng, S H; Adam-Guillermin, C; Garnier-Laplace, J; Yu, K N

    2015-11-01

    In the environment, living organisms are exposed to a mixture of stressors, and the combined effects are deemed as multiple stressor effects. In the present work, the authors studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to alpha particles and depleted uranium (DU) through quantification of apoptotic signals at 24 h post-fertilisation (hpf) revealed by vital dye acridine orange staining. In each set of experiments, dechorionated zebrafish embryos were divided into 4 groups, each having 10 embryos: Group (C) in which the embryos did not receive any further treatment; Group (IU) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and were then exposed to 100 µg l(-1) of DU from 5 to 6 hpf; Group (I) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and Group (U) in which the dechorionated embryos were exposed to 100 µg l(-1) of DU from 5 to 6 hpf. The authors confirmed that an alpha-particle dose of 0.44 mGy and a DU exposure for 1 h separately led to hormetic and toxic effects assessed by counting apoptotic signals, respectively, in the zebrafish. Interestingly, the combined exposure led to an effect more toxic than that caused by the DU exposure alone, so effectively DU changed the beneficial effect (hormesis) brought about by alpha-particle irradiation into an apparently toxic effect. This could be explained in terms of the promotion of early death of cells predisposed to spontaneous transformation by the small alpha-particle dose (i.e. hormetic effect) and the postponement of cell death upon DU exposure. PMID:25948823

  9. Biological Screening of Newly Synthesized BIAN N-Heterocyclic Gold Carbene Complexes in Zebrafish Embryos

    PubMed Central

    Farooq, Muhammad; Abu Taha, Nael; Butorac, Rachel R.; Evans, Daniel Anthony; Elzatahry, Ahmed A.; Elsayed, Elsayed Ahmed; Wadaan, Mohammad A. M.; Al-Deyab, Salem S.; Cowley, Alan H.

    2015-01-01

    N-Heterocyclic carbene (NHC) metal complexes possess diverse biological activities but have yet to be extensively explored as potential chemotherapeutic agents. We have previously reported the synthesis of a new class of NHC metal complexes N-heterocyclic with acetate [IPr(BIAN)AuOAc] and chloride [IPr(BIAN)AuCl] ligands. In the experiments reported herein, the zebrafish embryos were exposed to serial dilutions of each of these complexes for 10–12 h. One hundred percent mortality was observed at concentrations ≥50 µM. At sub-lethal concentrations (10–30 µM), both compounds influenced zebrafish embryonic development. However, quite diverse categories of abnormalities were found in exposed embryos with each compound. Severe brain deformation and notochord degeneration were evident in the case of [IPr(BIAN)AuOAc]. The zebrafish embryos treated with [IPr(BIAN)AuCl] exhibited stunted growth and consequently had smaller body sizes. A depletion of 30%–40% glutathione was detected in the treated embryos, which could account for one of the possible mechanism of neurotoxicity. The fact that these compounds are capable of both affecting the growth and also compromising antioxidant systems by elevating intracellular ROS production implies that they could play an important role as a new breed of therapeutic molecules. PMID:26501273

  10. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    PubMed

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-01-01

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics. PMID:27078038

  11. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    PubMed Central

    Kong, E.Y.; Yeung, W.K.; Chan, T.K.Y.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies. PMID:27529238

  12. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo

    PubMed Central

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs. PMID:26991423

  13. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    PubMed

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs. PMID:26991423

  14. Cre-mediated site-specific recombination in zebrafish embryos.

    PubMed

    Thummel, Ryan; Burket, Christopher T; Brewer, Jeffrey L; Sarras, Michael P; Li, Li; Perry, Martin; McDermott, Jeffrey P; Sauer, Brian; Hyde, David R; Godwin, Alan R

    2005-08-01

    Cre-mediated site-specific recombination has become an invaluable tool for manipulation of the murine genome. The ability to conditionally activate gene expression or to generate chromosomal alterations with this same tool would greatly enhance zebrafish genetics. This study demonstrates that the HSP70 promoter can be used to inducibly control expression of an enhanced green fluorescent protein (EGFP) -Cre fusion protein. The EGFP-Cre fusion protein is capable of promoting recombination between lox sites in injected plasmids or in stably inherited transgenes as early as 2 hr post-heat shock induction. Finally, the levels of Cre expression achieved in a transgenic fish line carrying the HSP70-EGFP-cre transgene are compatible with viability and both male and female transgenic fish are fertile subsequent to induction of EGFP-Cre expression. Hence, our data suggests that Cre-mediated recombination is a viable means of manipulating gene expression in zebrafish. PMID:15977183

  15. Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida.

    PubMed

    Wang, Xueqian; Chong, Mei; Wang, Xin; Wang, Hongkui; Zhang, Jie; Xu, Hui; Zhang, Jingjing; Liu, Dong

    2015-03-01

    Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes encoding different nonmuscle myosin heavy chains including NM II-A, NM II-B, and NM II-C. Blebbistatin is a small molecule that has been shown to be a relatively specific inhibitor of NM II. Blocking the function of NM II by blebbistatin induces zebrafish embryo cardia bifida at a dose-dependent manner. In situ hybridization analysis with ventricular marker ventricular myosin heavy chain (vmhc) and atrial marker atrial myosin heavy chain (amhc) showed each of the heart contained both distinct atria and ventricle. However, the cardia bifida embryos had highly variable distance between two separate ventricles. We also provided evidence that time window from 12 to 20 h post fertilization (hpf) is necessary and sufficient for cardia bifida formation caused by blebbistatin treatment. Expression of spinster homolog 2 (spns2) was decreased in blebbistatin-treated embryos, suggesting the cardia bifida phenotype caused by NM II inhibition was relevant to precardiac mesoderm migration defects. Through in situ hybridization analysis, we showed that foxa1 was expressed in endoderm of blebbistatin-treated embryos at 24-hpf stage, suggesting the endoderm formation is normal in cardia bifida embryos caused by blebbistatin treatment. In addition, we demonstrated that blebbistatin treatment resulted in morphology alteration of zebrafish cardiomyocytes in vivo and neonatal mouse cardiomyocytes in vitro. PMID:25403653

  16. Identification and characterization of the RNA-binding protein Rbfox3 in zebrafish embryo.

    PubMed

    Won, Minho; Lee, Siyeo; Choi, Sunkyung; Ro, Hyunju; Kim, Ki-Jung; Kim, Jung-Hwan; Kim, Kyoon Eon; Kim, Kee K

    2016-04-01

    Rbfox3, an RNA-binding fox protein, binds to the antibody to pan-neuronal marker, neuronal nuclei (NeuN). Rbfox3 is expressed in neural tissues across a wide range of species including mammals, birds, and amphibians. However, the molecular identity of Rbfox3 in the zebrafish is largely unknown. In this study, we cloned two zebrafish Rbfox3 genes, Rbfox3a and Rbfox3b. We also cloned the Rbfox3-d31 isoform, which excludes a 93-nucleotide alternative exon within the RNA-recognition motif in both, Rbfox3a and Rbfox3b. Multiple protein sequence alignment revealed that the amino acid sequence for residues 1-20 of the zebrafish Rbfox3, which is the epitope region of NeuN antibody, was different from that of other species. Therefore, NeuN antibody lost its function as a neuronal marker antibody in zebrafish. Reverse transcriptase-polymerase chain reaction showed that both Rbfox3-d31 transcripts were abundant in the early blastula stage, after which they dramatically reduced, suggesting that these isoforms exist mainly as maternal transcripts. In contrast, full-length Rbfox3 transcripts were detected from the 24 h post-fertilization embryo, expression was also maintained at a constant level. Furthermore, full-length Rbfox3-expressing cells were located within the central nervous system during later stages of the zebrafish embryo. Our study provides insight into the molecular structure of zebrafish Rbfox3 as a step towards genetic association studies investigating the developmental role of Rbfox3. PMID:26952657

  17. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  18. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    PubMed Central

    Thomas, J. K.; Janz, D. M.

    2016-01-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes. PMID:27210033

  19. Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos.

    PubMed

    Ro, Hyunju; Soun, Kyungchull; Kim, Eun-Jung; Rhee, Myungchull

    2004-04-30

    Microinjection of nucleic acids or proteins is a useful way of studying embryonic development. In particular, injection of in vitro-transcribed capped RNA is commonly employed to achieve ectopic or increased expression of genes. Two vector systems, pCS2+ and pT7Ts, have been used for this purpose in zebrafish. However, they were initially optimized for Xenopus embryos not for zebrafish. Here we describe a vector, pcGlobin2, optimized for zebrafish, and its derivative, pcGlobin2-GST. This new vector system offers several advantages. First, pcGlobin 2 contains three critical elements 15' and 3' zebrafish beta-globin UTRs, and a poly(A) tail] for generating stable mRNAs and greatly improving translation efficiency. Second, subcloning and preparation of template DNA is easier because of the larger number of restriction sites. Third, protein-binding assays can be performed directly on the injected embryos with pcGlobin2-GST. Lastly, this vector system can be transfected into animal cells without additional subcloning. PMID:15179057

  20. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis

    PubMed Central

    Bajanca, Fernanda; Gonzalez-Perez, Vinicio; Gillespie, Sean J; Beley, Cyriaque; Garcia, Luis; Theveneau, Eric; Sear, Richard P; Hughes, Simon M

    2015-01-01

    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmdta222a/ta222a zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)ct90a that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics. DOI: http://dx.doi.org/10.7554/eLife.06541.001 PMID:26459831

  1. Toxicological effect of MPA-CdSe QDs exposure on zebrafish embryo and larvae.

    PubMed

    Zhang, Wei; Lin, Kuangfei; Sun, Xue; Dong, Qiaoxiang; Huang, Changjiang; Wang, Huili; Guo, Meijin; Cui, Xinhong

    2012-09-01

    Cadmium selenium (CdSe) quantum dots (QDs) are semiconductor nanocrystals that hold wide range of applications and substantial production volumes. Due to unique composition and nanoscale properties, their potential toxicity to aquatic organisms has increasingly gained a great amount of interest. However, the impact of CdSe QDs exposure on zebrafish embryo and larvae remains almost unknown. Therefore, the lab study was performed to determine the developmental and behavioral toxicities to zebrafish under continuous exposure to low level CdSe QDs (0.05-31.25 mg L(-1)) coated with mercaptopropionic acid (MPA). The results showed MPA-CdSe exposure from embryo to larvae stage affected overall fitness. Our findings for the first time revealed that: (1) The 120 h LC(50) of MPA-CdSe for zebrafish was 1.98 mg L(-1); (2) embryos exposed to MPA-CdSe resulted in malformations incidence and lower hatch rate; (3) abnormal vascular of FLI-1 transgenic zebrafish larvae appeared after exposure to MPA-CdSe including vascular junction, bifurcation, crossing and particle appearance; (4) larvae behavior assessment showed during MPA-CdSe exposure a rapid transition from light-to-dark elicited a similar, brief burst and a higher basal swimming rate; (5) MPA-CdSe induced embryos cell apoptosis in the head and tail region. Results of the observations provide a basic understanding of MPA-CdSe toxicity to aquatic organisms and suggest the need for additional research to identify the toxicological mechanism. PMID:22595531

  2. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos

    PubMed Central

    2013-01-01

    Background In mammals, ABCB1 constitutes a cellular “first line of defense” against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water. Results Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a

  3. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos.

    PubMed

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Cheng, S H; Yu, K N

    2013-03-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ~4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. PMID:23296313

  4. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS.

    PubMed

    Vallverdú-Queralt, Anna; Boix, Nuria; Piqué, Ester; Gómez-Catalan, Jesús; Medina-Remon, Alexander; Sasot, Gemma; Mercader-Martí, Mercè; Llobet, Juan M; Lamuela-Raventos, Rosa M

    2015-08-15

    The zebrafish embryo is a highly interesting biological model with applications in different scientific fields, such as biomedicine, pharmacology and toxicology. In this study, we used liquid chromatography/electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC/ESI-LTQ-Orbitrap-MS) to identify the polyphenol compounds in a red wine extract and zebrafish embryos. Phenolic compounds and anthocyanin metabolites were determined in zebrafish embryos previously exposed to the red wine extract. Compounds were identified by injection in a high-resolution system (LTQ-Orbitrap) using accurate mass measurements in MS, MS(2) and MS(3) modes. To our knowledge, this research constitutes the first comprehensive identification of phenolic compounds in zebrafish by HPLC coupled to high-resolution mass spectrometry. PMID:25794733

  5. In vivo imaging of zebrafish from embryo to adult stage with optical projection tomography

    NASA Astrophysics Data System (ADS)

    Bassi, Andrea; Fieramonti, Luca; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Foglia, Efrem; Cotelli, Franco

    2013-02-01

    Optical Projection Tomography (OPT) is a three dimensional imaging technique that is particularly suitable for studying millimeter sized biological samples and organisms. Similarly to x-ray computed tomography, OPT is based on the acquisition of a sequence of images taken through the sample at many angles (projections). Assuming the linearity of the optical absorption process, the projections are combined to reconstruct the 3-D volume of the sample, typically using a filtered back-projection algorithm. OPT has been applied to in-vivo imaging of zebrafish (Danio rerio). The instrument and the protocol for in vivo imaging of zebrafish embryos and juvenile specimens are described. Light scattering remains a challenge for in vivo OPT, especially when samples at the upper size limit, like zebrafish at the adult stage, are under study. We describe Time-Gated Optical Projection Tomography (TGOPT), a technique able to reconstruct adult zebrafish internal structures by counteracting the scattering effects through a fast time-gate. The time gating mechanism is based on non-linear optical upconversion of an infrared ultrashort laser pulse and allows the detection of quasi-ballistic photons within a 100 fs temporal gate. This results in a strong improvement in contrast and resolution with respect to conventional OPT. Artifacts in the reconstructed images are reduced as well. We show that TGOPT is suited for imaging the skeletal system and nervous structures of adult zebrafish.

  6. Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos.

    PubMed

    Liu, Hui; Sheng, Nan; Zhang, Wei; Dai, Jiayin

    2015-06-01

    Perfluorononanoic acid (PFNA) is a nine-carbon perfluoroalkyl acid widely used in industrial and domestic products. It is a persistent organic pollutant found in the environment as well as in the tissues of humans and wildlife. There is a concern that this chemical might be a developmental toxicant and teratogen in various ecosystems. In the present study, the toxic effects of PFNA were evaluated in zebrafish (Danio rerio) embryos. One hour post-fertilization embryos were treated with 0, 25, 50, 100, 200, 300, 350, and 400 μmol/L PFNA for 96 hr in 6-well plates. Developmental phenotypes and hatching rates were observed and recorded. Nineteen genes related to oxidative stress and lipid metabolism were examined using Quantitative RT-PCR and confirmed by whole mount in situ hybridization (WISH). Results showed that PFNA delayed the development of zebrafish embryos, reduced the hatching rate, and caused ventricular edema and malformation of the spine. In addition, the amount of reactive oxygen species in the embryo bodies increased significantly after exposure to PFNA compared with that of the control group. The Quantitative RT-PCR and WISH experiments demonstrated that mRNA expression of the lfabp and ucp2 genes increased significantly while that of sod1 and mt-nd1 decreased significantly after PFNA exposure. The mRNA expression levels of gpx1 and mt-atp6 decreased significantly in the high concentration group. However, the mRNA expression levels of both ppara and pparg did not show any significant variation after exposure. These findings suggest that PFNA affected the development of zebrafish embryos at relatively low concentrations. PMID:26040728

  7. Bioaccumulation and molecular effects of sediment-bound metals in zebrafish embryos.

    PubMed

    Redelstein, R; Zielke, H; Spira, D; Feiler, U; Erdinger, L; Zimmer, H; Wiseman, S; Hecker, M; Giesy, J P; Seiler, T-B; Hollert, H

    2015-11-01

    Predicting the bioavailability and effects of metals in sediments is of major concern in context with sediment risk assessment. This study aimed to investigate the bioavailability and molecular effects of metals spiked into riverine sediments to zebrafish (Danio rerio) embryos. Embryos were exposed to a natural and an artificial sediment spiked with cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) individually or as a mixture at concentrations ranging from 150 to 3000 mg/kg dry weight (dw) over 48 h, and uptake of metals was determined. Furthermore, transcript abundances of the metallothioneins MT1 and MT2, the metal-responsive element-binding transcription factor (MTF) and the genes sod1, hsp70 and hsp90α1 were measured as indicators of metal-induced or general cellular stress. D. rerio embryos accumulated metals from sediments at concentrations up to 100 times greater than those spiked to the sediment with the greatest bioaccumulation factor (BAF) for Cu from artificial sediment (275.4 ± 41.9 (SD)). Embryos accumulated greater concentrations of all metals from artificial than from natural sediment, and accumulation was greater when embryos were exposed to individual metals than when they were exposed to the mixture. Exposure of embryos to Zn or the mixture exhibited up to 30-fold greater transcript abundances of MT1, MT2 and hsp70 compared to controls which is related to significant uptake of Zn from the sediment. Further changes in transcript abundances could not be related to a significant uptake of metals from sediments. These studies reveal that metals from spiked sediments are bioavailable to D. rerio embryos directly exposed to sediments and that the induction of specific genes can be used as biomarkers for the exposure of early life stages of zebrafish to metal-contaminated sediments. PMID:26354112

  8. A representative retinoid X receptor antagonist UVI3003 induced teratogenesis in zebrafish embryos.

    PubMed

    Zheng, Liang; Xu, Ting; Li, Daoji; Zhou, Junliang

    2015-03-01

    Retinoid X receptor (RXR) interfering activity has been detected in different water resources. To study RXR disruptor-induced toxicological effects on vertebrates, embryos of zebrafish (Danio rerio) were exposed to a representative RXR antagonist UVI3003. Results showed that the teratogenic index (LC50 /EC50 ) of UVI3003 was as high as 5.4. UVI3003 induced multiple malformations of embryos, including deformed fins, reduced brains, small jaws, bent tails and edema in hearts, the degree of which became more severe with increasing exposure concentration. Although no significant difference was observed in the hatching rates between the exposure group and control, the whole body length was significantly reduced by 6.5% and 8.9% when exposed to 200 and 300 µg l(-1) of UVI3003, respectively. The heart rate also significantly decreased by 8.8-50.2% during exposure. Further experiments revealed that the pharyngula stage was the most sensitive development phase in terms of embryo response to UVI3003. The results demonstrated severe teratogenicity of RXR antagonist in zebrafish embryos and provided important data for ecotoxicological evaluation of RXR antagonists. PMID:25186191

  9. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos

    PubMed Central

    Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2–14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  10. Tjp3/zo-3 is critical for epidermal barrier function in zebrafish embryos.

    PubMed

    Kiener, Tanja K; Selptsova-Friedrich, Inna; Hunziker, Walter

    2008-04-01

    TJP3/ZO-3 is a scaffolding protein that tethers tight junction integral membrane proteins to the actin cytoskeleton and links the conserved Crumbs polarity complex to tight junctions. The physiological function of TJP3/ZO-3 is not known and mice lacking TJP3/ZO-3 show no apparent phenotype. Here we show that Tjp3/Zo-3 is a component of tight junctions present in the enveloping cell layer of zebrafish embryos. Silencing tjp3/zo-3 using morpholinos leads to edema, loss of blood circulation and tail fin malformations in the embryos. The ultrastructure of tight junctions of the enveloping cell layer is disrupted, without affecting the asymmetric distribution of plasma membrane proteins. Morphants show a loss of the epidermal barrier, as assessed by an increased permeability of the enveloping cell layer to low molecular weight tracers and a higher sensitivity of the embryos to osmotic stress. Subjecting wild-type embryos to osmotic stress mimicks the morphant phenotype, consistent with the phenotype being a direct consequence of failed osmoregulation. Thus, Tjp3/Zo-3 is critical for barrier function of the enveloping cell layer and osmoregulation in early stages of zebrafish development. PMID:18275946

  11. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    PubMed

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  12. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    PubMed Central

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  13. Endocrine, teratogenic and neurotoxic effects of cyanobacteria detected by cellular in vitro and zebrafish embryos assays.

    PubMed

    Jonas, Adam; Scholz, Stefan; Fetter, Eva; Sychrova, Eliska; Novakova, Katerina; Ortmann, Julia; Benisek, Martin; Adamovsky, Ondrej; Giesy, John P; Hilscherova, Klara

    2015-02-01

    Cyanobacteria contain various types of bioactive compounds, which could cause adverse effects on organisms. They are released into surface waters during cyanobacterial blooms, but there is little information on their potential relevance for effects in vivo. In this study presence of bioactive compounds was characterized in cyanobacteria Microcystis aeruginosa (Chroococcales), Planktothrix agardhii (Oscillatoriales) and Aphanizomenon gracile (Nostocales) with selected in vitro assays. The in vivo relevance of detected bioactivities was analysed using transgenic zebrafish embryos tg(cyp19a1b-GFP). Teratogenic potency was assessed by analysis of developmental disorders and effects on functions of the neuromuscular system by video tracking of locomotion. Estrogenicity in vitro corresponded to 0.95-54.6 ng estradiol equivalent(g dry weight (dw))(-1). In zebrafish embryos, estrogenic effects could not be detected potentially because they were masked by high toxicity. There was no detectable (anti)androgenic/glucocorticoid activity in any sample. Retinoid-like activity was determined at 1-1.3 μg all-trans-retinoic acid equivalent(g dw)(-1). Corresponding to the retinoid-like activity A. gracile extract also caused teratogenic effects in zebrafish embryos. Furthermore, exposure to biomass extracts at 0.3 gd wL(-1) caused increase of body length in embryos. There were minor effects on locomotion caused by 0.3 gd wL(-1)M. aeruginosa and P. agardhii extracts. The traditionally measured cyanotoxins microcystins did not seem to play significant role in observed effects. This indicates importance of other cyanobacterial compounds at least towards some species or their developmental phases. More attention should be paid to activity of retinoids, estrogens and other bioactive substances in phytoplankton using in vitro and in vivo bioassays. PMID:25170595

  14. Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo.

    PubMed

    Lin, Y-C; Wu, K-T; Lin, Z-R; Perevedentseva, E; Karmenyan, A; Lin, M-D; Cheng, C-L

    2016-08-01

    Nanodiamond (ND) has been proposed for various biomedical applications, including bioimaging, biosensing and drug delivery, owing to its physical-chemical properties and biocompatibility. Particularly, ND has been demonstrated as fluorescence- and Raman-detectable labels in many cellular models. Different surface functionalization methods have been developed, varying the ND's surface properties and rendering the possibility to attach biomolecules to provide interaction with biological targets. For this, toxicity is of major concern in animal models. Aside from cellular models, a cost-effective animal test will greatly facilitate the development of applications. In this study, we use the rapid, sensitive and reproducible zebrafish embryo model for in vivo nanotoxicity test. We optimize the conditions for using this animal model and analyze the zebrafish embryonic development in the presence of ND. ND is observed in the embryo in vivo using laser confocal fluorescence microscopy and fluorescence lifetime imaging. Using the zebrafish model for a safety evaluation of ND-based nanolabel is discussed. PMID:27093912

  15. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

    SciTech Connect

    Shi Xiongjie; Du Yongbing; Lam, Paul K.S.; Wu, Rudolf S.S.; Zhou Bingsheng

    2008-07-01

    Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential

  16. DNA Damage Assessment in Zebrafish Embryos Exposed to Monceren(®) 250 SC Fungicide Using the Alkaline Comet Assay.

    PubMed

    Ku-Centurión, Marco; González-Marín, Berenyce; Calderón-Ezquerro, María C; Martínez-Valenzuela, María C; Maldonado, Ernesto; Calderón-Segura, María E

    2016-10-01

    Monceren 250 SC is a commercial fungicide with the active ingredient 1-(4-chlorobenzyl)-1-(cyclopentyl)-3-phenylurea, also known as pencycuron. This compound inhibits the growth of fungi as Rhizoctonia solani that invades potato, rice, and cotton or as Pellicularia spp, which contaminates lettuce and tomato crops. In this study, we assessed genotoxicity or DNA damage by the alkaline comet assay in zebrafish blastula-stage embryos exposed to 250 to 1250 μg/mL of the Monceren fungicide or to Bleomycin (0.25 μg/mL) used as a positive control. Additionally, survival and spontaneous movement were monitored in embryos after exposure to different concentrations of fungicide. DNA damage was evaluated using three genotoxicity parameters of the alkaline comet assay: tail length, tail moment, and tail intensity. We found that Monceren 250 SC fungicide induces DNA damage, as shown by significant increases in the three genotoxicity parameters in zebrafish embryos compared with control embryos nonexposed to Monceren. Tail intensity was the more accurate parameter to evaluate genotoxicity levels in zebrafish embryos. At 48 h after exposure to the fungicide, the survival rate of larvae-embryos was reduced to 40-45%. This study shows that the Monceren 250 SC fungicide exerts genotoxic effects in zebrafish during early stages of development. PMID:27557408

  17. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    PubMed

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary. PMID:26545894

  18. Selective disruption of vascular endothelium of zebrafish embryos by ultrafast laser microsurgical treatment

    PubMed Central

    Woo, Suk-Yi; Moon, Heh-Young; Kim, Tag Gyum; Lee, Heung Soon; Sidhu, Mehra S.; Kim, Changho; Jeon, Jae-Phil; Jeoung, Sae Chae

    2015-01-01

    In this work, we demonstrate that ultrafast laser irradiation could selectively disrupt vascular endothelium of zebrafish embryos in vivo. Ultrafast lasers minimize the collateral damage in the vicinity of the laser focus and eventually reduce coagulation in the tissues. We have also found that the threshold fluence for lesion formation of the vascular endothelium strongly depends on the developmental stage of the embryos. The threshold laser fluence required to induce apparent lesions in the vascular structure for Somite 14, 20 and 25 stages is about 5 J/cm2 ~7 J/cm2, which is much lower than that for the later development stages of Prim 16 and Prim 20 of 30 J/cm2 ~50 J/cm2. The proposed method for treating the vascular cord of zebrafish embryos in the early stage of development has potential as a selective and effective method to induce a fatal lesion in the vascular endothelium without damaging the developed blood vessels. PMID:26713187

  19. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    PubMed

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples. PMID:22101757

  20. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS)

    PubMed Central

    Huang, Haihua; Huang, Changjiang; Wang, Lijun; Ye, Xiaowei; Bai, Chenglian; Simonich, Michael T.; Tanguay, Robert L.; Dong, Qiaoxiang

    2014-01-01

    Perfluorooctanesulphonicacid (PFOS), a persistent organic contaminant, has been widely detected in the environment, wildlife and humans, but few studies have assessed its effect on aquatic organisms. The present study evaluated the effect of PFOS on zebrafish embryos. Zebrafish embryos exhibited bent spine and developmental toxicity after exposure to various PFOS concentrations (0.01-16.0 μM) from 6 to 120 hour post-fertilization (hpf). The LC50 at 120 hpf was 4.39 μM and the EC50 at 120 hpf was 2.23 μM. PFOS induced apoptosis at 24 hpf was consistently located in the brain, eye, and tail region of embryos. PFOS elevated the basal rate of swimming after 4 days of exposure, and larvae exposed to PFOS (0.5-8.0μM) for only 1 h at 6 dpf swam faster with increasing PFOS concentration. Larvae exposed to 16.0 μM PFOS for 24 h periods from 1 to 121 hpf showed the highest incidence of malformations in the 97-121 hpf window. Continuous exposure to PFOS from 1 to 121 hpf resulted in a steady accumulation with no evidence of elimination. Our results further the understanding of the health risks of PFOS to aquatic organisms and identify additional research needed on PFOS toxicology. PMID:20171748

  1. Toxicity of sediment cores from Yangtze River estuary to zebrafish (Danio rerio) embryos.

    PubMed

    Wang, Peipei; Zhang, Lili; Liu, Li; Chen, Ling; Gao, Hongwen; Wu, Lingling

    2015-11-01

    Toxicity evaluation is an important segment in sediment quality monitoring in order to protect aquatic organisms and human health. The purpose of this study is to assess the toxicity of sediments from three sediment cores in Yangtze River Estuary, China, using the zebrafish (Danio rerio) embryo tests. Fertilized zebrafish eggs were exposed to both whole sediments and sediment organic extracts prepared from collected sediments, in order to provide a comprehensive and realistic insight into the bioavailable toxicity potential of the sediments. As end points, development parameters (mortality, hatching rate, and abnormality) in the developing embryos were recorded during the 96-h exposure. The results showed that some samples increased mortality, inhibited the hatching of embryos, and induced morphological abnormalities. The embryonic toxicities presented serrated changes and irregular distribution with depth, which may be related to hydrodynamic effect and unstable environmental input. However, lethal and sub-lethal effects were more significant at the sub-surface sediments (10∼40 cm), which indicated that the pollution is more serious in recent decades. PMID:25163567

  2. Real-time prediction of cell division timing in developing zebrafish embryo.

    PubMed

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D; Ikeda, Kazushi; Sato, Thomas N

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation-thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  3. Vitamin D receptor signaling is required for heart development in zebrafish embryo.

    PubMed

    Kwon, Hye-Joo

    2016-02-12

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. PMID:26797277

  4. Real-time prediction of cell division timing in developing zebrafish embryo

    PubMed Central

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D.; Ikeda, Kazushi; Sato, Thomas N.

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  5. Reconstruction and representation of caudal vasculature of zebrafish embryo from confocal scanning laser fluorescence microscopic images.

    PubMed

    Feng, Jun; Cheng, Shuk Han; Chan, Po K; Ip, Horace H S

    2005-12-01

    Three-dimensional (3D) reconstruction from a series of sections is an important technique in medical imaging, particularly for visualization of blood vessels from angiography. Here, we present a framework for automatic segmentation and registration of different kind of blood vessels from 2-day-old zebrafish embryos. Series of optical sections were acquired from confocal microscopy with the blood vessels labeled by fluorescent microbeads (0.02 microm) injected into blood stream of 2-day-old zebrafish embryos. Blood vessels were extracted and their morphological parameters, including length and diameter, were calculated. At the same time, individual blood vessels were registered automatically. Vasculature was represented by attributed vessel represent graph (AVRG), which contained morphological data and connectivity of every blood vessel. Using AVRG to represent a vasculature made the comparison between vasculatures of different embryos more easy. Visualization, as well as quantification, of reconstructed 3D model of AVRG was presented in an interactive interface. The framework was implemented by Visual C++ as Windows-based program. PMID:16263106

  6. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays.

    PubMed

    Macdonald, N P; Zhu, F; Hall, C J; Reboud, J; Crosier, P S; Patton, E E; Wlodkowic, D; Cooper, J M

    2016-01-21

    3D printing has emerged as a rapid and cost-efficient manufacturing technique to enable the fabrication of bespoke, complex prototypes. If the technology is to have a significant impact in biomedical applications, such as drug discovery and molecular diagnostics, the devices produced must be biologically compatible to enable their use with established reference assays and protocols. In this work we demonstrate that we can adapt the Fish Embryo Test (FET) as a new method to quantify the toxicity of 3D printed microfluidic devices. We assessed the biocompatibility of four commercially available 3D printing polymers (VisiJetCrystal EX200, Watershed 11122XC, Fototec SLA 7150 Clear and ABSplus P-430), through the observation of key developmental markers in the developing zebrafish embryos. Results show all of the photopolymers to be highly toxic to the embryos, resulting in fatality, although we do demonstrate that post-printing treatment of Fototec 7150 makes it suitable for zebrafish culture within the FET. PMID:26646354

  7. Nucleolar protein 4-like has a complex expression pattern in zebrafish embryos.

    PubMed

    Borah, Supriya; Barrodia, Praveen; Swain, Rajeeb K

    2016-01-01

    The nucleolar protein 4-like (NOL4L) gene is present on chromosome 20 (20q11.21) in humans. Parts of this gene have been shown to fuse with RUNX1 and PAX5 in acute myeloid leukemia and acute lymphoblastic leukemia, respectively. The normal function of NOL4L in humans and other organisms is not well understood. The expression patterns and functions of NOL4L homologs during vertebrate development have not been reported. We sought to address these questions by studying the expression pattern of zebrafish nol4l during embryogenesis. Our data show that Znol4l mRNA is expressed in multiple organs in zebrafish embryos. The sites of expression include parts of the brain, spinal cord, pronephros, hematopoietic cells and gut. PMID:26934290

  8. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure.

    PubMed

    Bouwmeester, Manon C; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M; van den Brandhof, Evert-Jan; Pennings, Jeroen L A; Kamstra, Jorke H; Jelinek, Jaroslav; Issa, Jean-Pierre J; Legler, Juliette; van der Ven, Leo T M

    2016-01-15

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. PMID:26712470

  9. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish.

    PubMed

    Zhao, Xuesong; Wang, Shutao; Wu, Yuan; You, Hong; Lv, Lina

    2013-07-15

    Nano-scale zinc oxide (nano-ZnO) is widely used in various industrial and commercial applications. However, the available toxicological information was inadequate to assess the potential ecological risk of nano-ZnO to aquatic organisms and the publics. In this study, the developmental toxicity, oxidative stress and DNA damage of nano-ZnO embryos were investigated in the embryo-larval zebrafish, the toxicity of Zn(2+) releasing from nano-ZnO were also investigated to ascertain the relationship between the nano-ZnO and corresponding Zn(2+). Zebrafish embryos were exposed to 1, 5, 10, 20, 50, and 100mg/L nano-ZnO and 0.59, 2.15, 3.63, 4.07, 5.31, and 6.04 mg/L Zn(2+) for 144 h post-fertilisation (hpf), respectively. Up to 144 hpf, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) contents, the genes related to oxidative damage, reactive oxygen species (ROS) generation and DNA damage in zebrafish embryos were measured. The nano-ZnO was found to exert a dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and inducing malformation and the acute toxicity to zebrafish embryos was greater than that of the Zn(2+) solution. The generation of ROS was significantly increased at 50 and 100mg/L nano-ZnO. DNA damage of zebrafish embryo was evaluated by single-cell gel electrophoresis and was enhanced with increasing nano-ZnO concentration. Moreover, the transcriptional expression of mitochondrial inner membrane genes related to ROS production, such as Bcl-2, in response to oxidative damage, such as Nqo1, and related to antioxidant response element such as Gstp2 were significantly down-regulated in the nano-ZnO treatment groups. However, the nano-ZnO up-regulated the transcriptional expression of Ucp2-related to ROS production. In conclusion, nano-ZnO induces developmental toxicity, oxidative stress and DNA damage on zebrafish embryos and the dissolved Zn(2+) only partially

  10. Automated detection and quantification of single RNAs at cellular resolution in zebrafish embryos.

    PubMed

    Stapel, L Carine; Lombardot, Benoit; Broaddus, Coleman; Kainmueller, Dagmar; Jug, Florian; Myers, Eugene W; Vastenhouw, Nadine L

    2016-02-01

    Analysis of differential gene expression is crucial for the study of cell fate and behavior during embryonic development. However, automated methods for the sensitive detection and quantification of RNAs at cellular resolution in embryos are lacking. With the advent of single-molecule fluorescence in situ hybridization (smFISH), gene expression can be analyzed at single-molecule resolution. However, the limited availability of protocols for smFISH in embryos and the lack of efficient image analysis pipelines have hampered quantification at the (sub)cellular level in complex samples such as tissues and embryos. Here, we present a protocol for smFISH on zebrafish embryo sections in combination with an image analysis pipeline for automated transcript detection and cell segmentation. We use this strategy to quantify gene expression differences between different cell types and identify differences in subcellular transcript localization between genes. The combination of our smFISH protocol and custom-made, freely available, analysis pipeline will enable researchers to fully exploit the benefits of quantitative transcript analysis at cellular and subcellular resolution in tissues and embryos. PMID:26700682

  11. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    SciTech Connect

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described in some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.

  12. Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure

    PubMed Central

    Fang, Xiefan; Corrales, Jone; Thornton, Cammi; Clerk, Tracy; Scheffler, Brian E.; Willett, Kristine L.

    2015-01-01

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene expression. Herein, we performed a genome-wide transcriptional analysis and discovered differential gene expression and splicing in developing zebrafish. Adult zebrafish were exposed to control or 42.0 ± 1.9 µg/l BaP for 7 days. Eggs were collected and raised in control conditions or continuously exposed to BaP until 3.3 and 96 h post–fertilization (hpf). RNA sequencing (RNA-Seq) was conducted on zebrafish embryos and larvae. Data were analyzed to identify differentially expressed (DE) genes (changed at the gene or transcript variant level) and genes with differential exon usage (DEU; changed at the exon level). At 3.3 hpf, BaP exposure resulted in 8 DE genes and 51 DEU genes. At 96 hpf, BaP exposure altered expression in 1153 DE genes and 159 DEU genes. Functional ontology analysis by Ingenuity Pathway Analysis revealed that many disease pathways, including organismal death, growth failure, abnormal morphology of embryonic tissue, congenital heart disease, and adverse neuritogenesis, were significantly enriched for the DE and DEU genes, providing novel insights on the mechanisms of action of BaP-induced developmental toxicities. Collectively, we discovered substantial transcriptomic changes at the gene, transcript variant, and exon levels in developing zebrafish after early life BaP waterborne exposure, and these changes may lead to long-term adverse physiological consequences. PMID:26001963

  13. Zebrafish (Danio rerio) embryo as a platform for the identification of novel angiogenesis inhibitors of retinal vascular diseases.

    PubMed

    Rezzola, Sara; Paganini, Giuseppe; Semeraro, Francesco; Presta, Marco; Tobia, Chiara

    2016-07-01

    Pathological angiogenesis of the retina is a main cause of blindness. Therapeutic approaches targeting vascular endothelial growth factor, a main angiogenesis inducer in retinal vascular diseases, show significant limitations. Thus, experimental models of retinal neovascularization remain crucial for investigating novel anti-angiogenic strategies and bringing them to patients. Recent observations have shown that eye neovascularization in zebrafish (Danio rerio) embryo may represent a novel target for the identification of angiogenesis inhibitors. This review highlights the use of zebrafish embryo as an innovative model system for the screening of anti-angiogenic molecules to be employed for the treatment of angiogenesis-dependent eye diseases. PMID:27085972

  14. Short-term chilled storage of zebrafish (Danio rerio) embryos in cryoprotectant as an alternative to cryopreservation.

    PubMed

    Desai, Kunjan; Spikings, Emma; Zhang, Tiantian

    2015-02-01

    As zebrafish embryos have never been cryopreserved, we developed a protocol to store zebrafish embryos (50% epiboly-5.3 hour post fertilization) for up to 18 h at 0°C. Initial experiments to optimize the cryoprotectant (CPA) solution demonstrated improved embryo hatching rate following chilling at 0°C for 18 h with 1 M MeOH+0.1 M sucrose (56 ± 5%) compared with other combinations of methanol (0.2-0.5 M) and sucrose (0.05-0.1 M). This combination of CPAs that protects against chilling injury was further tested to assess its impact on sox gene and protein expression. Significant decreases in sox3 gene expression were observed in hatched embryos that had been chilled for 18 h in 1 M MeOH+0.1 sucrose compared with non-chilled controls, however the expression of both sox2 and sox3 proteins was unaffected. Significant decreases in sox2 protein expression were, however, observed in embryos that had been chilled without CPAs and these embryos also had lower hatching rates than those chilled with the optimal CPA solution. We, therefore, conclude that the CPA combination of 1 M MeOH+0.1 M sucrose facilitates chilled storage of early stage (50% epiboly) zebrafish embryos for up to 18 h without compromising transcriptional response. PMID:25545702

  15. Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments

    PubMed Central

    Browning, Lauren M.; Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Lowman, Jill E.; Xu, Xiao-Hong Nancy

    2010-01-01

    We have synthesized and characterized stable (non-aggregation, non-photobleaching and non-blinking), nearly monodisperse and highly-purified Au nanoparticles, and used them to probe transport of cleavage-stage zebrafish embryos and to study their effects on embryonic development in real time. We found that single Au nanoparticles (11.6 ± 0.9 nm in diameter) passively diffused into chorionic space of the embryos via their chorionic-pore-canals and continued their random-walk through chorionic space and into inner mass of embryos. Diffusion coefficients of single nanoparticles vary dramatically (2.8×10-11 to 1.3×10-8 cm2/s) as nanoparticles diffuse through various parts of embryos, suggesting highly diverse transport barriers and viscosity gradients of embryos. The amount of Au nanoparticles accumulated in embryos increase with its concentration. Interestingly, their effects on embryonic development are not proportionally related to the concentration. Majority of embryos (74% on average) incubated chronically with 0.025-1.2 nM Au nanoparticles for 120 h developed to normal zebrafish, with some (24%) being dead and few (2%) deformed. We developed a new approach to image and characterize individual Au nanoparticles embedded in tissues using histology sample preparation methods and LSRP spectra of single nanoparticles. We found that Au nanoparticles in various parts of normally developed and deformed zebrafish, suggesting that random-walk of nanoparticles in embryos during their development might have led to stochastic effects on embryonic development. These results show that Au nanoparticles are much more biocompatible (less toxic) to the embryos than Ag nanoparticles that we reported previously, suggesting that they are better suited as biocompatible probes for imaging embryos in vivo. The results provide powerful evidences that biocompatibility and toxicity of nanoparticles highly depend on their chemical properties, and the embryos can serve as effective in

  16. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions

    SciTech Connect

    Teraoka, Hiroki . E-mail: hteraoka@rakuno.ac.jp; Urakawa, Satsuki; Nanba, Satomi; Nagai, Yuhki; Wu Dong; Imagawa, Tomohiro; Tanguay, Robert L.; Svoboda, Kurt; Handley-Goldstone, Heather M.; Stegeman, John J.; Hiraga, Takeo

    2006-04-01

    Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 {mu}g/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation or mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC{sub 5} values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, {alpha}-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism.

  17. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.

    PubMed

    Wehmas, Leah Christine; Tanguay, Robert L; Punnoose, Alex; Greenwood, Juliet A

    2016-08-01

    Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development. PMID:27158859

  18. Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos

    PubMed Central

    Lee, Hyung Joo; Lowdon, Rebecca F; Maricque, Brett; Zhang, Bo; Stevens, Michael; Li, Daofeng; Johnson, Stephen L; Wang, Ting

    2015-01-01

    DNA methylation undergoes dynamic changes during development and cell differentiation. Recent genome-wide studies discovered that tissue-specific differentially methylated regions (DMRs) often overlap tissue-specific distal cis-regulatory elements. However, developmental DNA methylation dynamics of the majority of the genomic CpGs outside gene promoters and CpG islands has not been extensively characterized. Here we generate and compare comprehensive DNA methylome maps of zebrafish developing embryos. From these maps we identify thousands of developmental stage-specific DMRs (dsDMR) across zebrafish developmental stages. The dsDMRs contain evolutionarily conserved sequences, are associated with developmental genes, and are marked with active enhancer histone post-translational modifications. Their methylation pattern correlates much stronger than promoter methylation with expression of putative target genes. When tested in vivo using a transgenic zebrafish assay, 20 out of 20 selected candidate dsDMRs exhibit functional enhancer activities. Our data suggest that developmental enhancers are a major target of DNA methylation changes during embryogenesis. PMID:25697895

  19. Interactions of hydroxyapatite with proteins and its toxicological effect to zebrafish embryos development.

    PubMed

    Xu, Zhen; Zhang, Ya-Lei; Song, Cao; Wu, Ling-Ling; Gao, Hong-Wen

    2012-01-01

    The increased application of nanomaterials has raised the level of public concern regarding possible toxicities caused by exposure to nanostructures. The interactions of nanosized hydroxyapatite (HA) with cytochrome c and hemoglobin were investigated by zeta-potential, UV-vis, fluorescence and circular dichroism. The experimental results indicated that the interactions were formed via charge attraction and hydrogen bond and obeyed Langmuir adsorption isotherm. The two functional proteins bridged between HA particles to aggregate into the coralloid form, where change of the secondary structure of proteins occurred. From effects of nanosized HA, SiO(2) and TiO(2) particles on the zebrafish embryos development, they were adsorbed on the membrane surface confirmed by the electronic scanning microscopy. Nano-HA aggregated into the biggest particles around the membrane protein and then caused a little toxicity to development of zebrafish embryos. The SiO(2) particles were distributed throughout the outer surface and caused jam of membrane passage, delay of the hatching time and axial malformation. Maybe owing to the oxygen free radical activity, TiO(2) caused some serious deformity characters in the cardiovascular system. PMID:22509249

  20. Interactions of Hydroxyapatite with Proteins and Its Toxicological Effect to Zebrafish Embryos Development

    PubMed Central

    Xu, Zhen; Zhang, Ya-Lei; Song, Cao; Wu, Ling-Ling; Gao, Hong-Wen

    2012-01-01

    The increased application of nanomaterials has raised the level of public concern regarding possible toxicities caused by exposure to nanostructures. The interactions of nanosized hydroxyapatite (HA) with cytochrome c and hemoglobin were investigated by zeta-potential, UV-vis, fluorescence and circular dichroism. The experimental results indicated that the interactions were formed via charge attraction and hydrogen bond and obeyed Langmuir adsorption isotherm. The two functional proteins bridged between HA particles to aggregate into the coralloid form, where change of the secondary structure of proteins occurred. From effects of nanosized HA, SiO2 and TiO2 particles on the zebrafish embryos development, they were adsorbed on the membrane surface confirmed by the electronic scanning microscopy. Nano-HA aggregated into the biggest particles around the membrane protein and then caused a little toxicity to development of zebrafish embryos. The SiO2 particles were distributed throughout the outer surface and caused jam of membrane passage, delay of the hatching time and axial malformation. Maybe owing to the oxygen free radical activity, TiO2 caused some serious deformity characters in the cardiovascular system. PMID:22509249

  1. Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos.

    PubMed

    Fetter, Eva; Baldauf, Lisa; Da Fonte, Dillon F; Ortmann, Julia; Scholz, Stefan

    2015-11-01

    Craniofacial malformations, reduced locomotion and induction of genes encoding for enzymes involved in thyroid hormone synthesis were assessed using methimazole and N-phenylthiourea in zebrafish embryos. Gene expression, the most sensitive endpoint (EC50_MMI=372-765μM, EC50_PTU=7.6-8.6μM), was analysed in wild-type and in a transgenic strain, tg(tg:mCherry), expressing mCherry fluorescence protein under the control of the thyroglobulin gene. Reduction of locomotion and craniofacial malformations were observed at one or two orders of magnitude above concentrations affecting gene expression, respectively. Both effects could be linked to the malformations caused by reduced thyroxin levels. Our results show that due to the presence of the autoregulatory loop of the hypothalamus-pituitary-thyroid axis, various molecular initiating events of thyroid disruption are amenable for the zebrafish embryo. We propose the tg(tg:mCherry) bioassay as a sensitive tool in medium scale screening of goitrogens, given the minimal effort for sample preparation and analysis of gene expression. PMID:25962731

  2. Intrinsic Expression of a Multiexon Type 3 Deiodinase Gene Controls Zebrafish Embryo Size

    PubMed Central

    Guo, Cuicui; Chen, Xia; Song, Huaidong; Maynard, Michelle A.; Zhou, Yi; Lobanov, Alexei V.; Gladyshev, Vadim N.; Ganis, Jared J.; Wiley, David; Jugo, Rebecca H.; Lee, Nicholas Y.; Castroneves, Luciana A.; Zon, Leonard I.; Scanlan, Thomas S.; Feldman, Henry A.

    2014-01-01

    Thyroid hormone is a master regulator of differentiation and growth, and its action is terminated by the enzymatic removal of an inner-ring iodine catalyzed by the selenoenzyme type 3 deiodinase (dio3). Our studies of the zebrafish reveal that the dio3 gene is duplicated in this species and that embryonic deiodination is an important determinant of embryo size. Although both dio3 paralogs encode enzymatically active proteins with high affinity for thyroid hormones, their anatomic patterns of expression are markedly divergent and only embryos with knockdown of dio3b, a biallelically expressed selenoenzyme expressed in the developing central nervous system, manifest severe thyroid hormone-dependent growth restriction at 72 hours post fertilization. This indicates that the embryonic deficiency of dio3, once considered only a placental enzyme, causes microsomia independently of placental physiology and raises the intriguing possibility that fetal abnormalities in human deiodination may present as intrauterine growth retardation. By mapping the gene structures and enzymatic properties of all four zebrafish deiodinases, we also identify dio3b as the first multiexon dio3 gene, containing a large intron separating its open reading frame from its selenocysteine insertion sequence (SECIS) element. PMID:25004091

  3. Enantioselective separation and zebrafish embryo toxicity of insecticide beta-cypermethrin.

    PubMed

    Xu, Chao; Tu, Wenqing; Lou, Chun; Hong, Yingying; Zhao, Meirong

    2010-01-01

    Enantioselectivity of chiral pollutants is receiving growing concern due to the difference in toxicology and environment fate between enantiomers. In this study, enantiomers of insecticide beta-cypermethrin (beta-CP) were separated on selected chiral column by HPLC, and the toxicity of enantiomers was evaluated using the zebrafish embryo-larval assays. The enantiomers of beta-CP were baseline separated on Chiralcel OD and Chiralpak AD columns and detected by circular dichroism (CD) at 236 nm. Better separation could be achieved at lower temperature (e.g., 20 degrees C) and with lower levels of polar modifiers. Pure enantiomers were obtained on Chiralcel OD. The CD spectra of enantiomers were recorded. By comparing the elution order with a previous similar study, the absolute configuration of beta-CP enantiomers was determined. The individual enantiomers were used in zebrafish embryo test, and the results showed that beta-CP enantioselectively induced yolk sac edema, pericardial edema and crooked body. The IR-cis-alphaS and 1R-trans-alphaS enantiomers showed strong developmental toxicities at concentration of 0.1 mg/L, while the 1S-cis-alphaR and 1S-trans-alphaR induced no malformations at higher concentration (e.g., 0.3 mg/L). The results suggest that the enantioselective toxicological effects of beta-CP should be considered when evaluating its ecotoxicological effects. PMID:20608511

  4. Evaluation of cytotoxicity and genotoxicity of insecticide carbaryl to flounder gill cells and its teratogenicity to zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pandey, Manish Raj; Guo, Huarong

    2015-04-01

    In this study, we determined the cytotoxicity and genotoxicity of carbamate insecticide carbaryl to flounder gill (FG) cells and its teratogenicity to zebrafish embryos. The cytotoxicity of carbaryl to FG cells was determined with methods including MTT and neutral red uptaking (NRU), lactate dehydrogenase (LDH) releasing and Hoechst 33342 and propidium idodide (PI) double staining. Moderate cytotoxicity in a concentration-dependent manner was observed. The 24 h-IC50 value of 53.48 ± 1.21, 59.13 ± 1.19 and 46.21 ± 1.24 mg L-1 carbaryl was obtained through MTT, NRU and LDH assays, respectively. Double fluorescence staining demonstrated that carbaryl induced the death of FG cells mainly through necrosis. There was no significant genotoxicity found in the FG cells exposed to the highest testing concentration of carbaryl (20 mg L-1, P > 0.05) as was demonstrated by Comet assay. Zebrafish embryos exposed to carbaryl at concentrations ≥10 mg L-1 displayed moderate toxic effects on the survival, spontaneous movement, hatching, heart rates of the embryos and their development, which were evidenced by yolk and pericardial sac edemas, body length reduction and tail flexure in time- and concentration-dependent manners at specific stages. The 24 h-, 48 h- and 96 h-LC50 values of carbaryl to zebrafish embryos were 41.80 ± 1.10, 17.80 ± 1.04 and 14.46 ± 1.05 mg L-1, respectively. These results suggested that carbaryl is moderately toxic to FG cells cultured in vitro and zebrafish embryos, and the FG cells were similar to zebrafish embryos in their sensitivity to carbaryl as 24 h-IC50 and LC50 indicated.

  5. The Chromosomal Passenger Protein Birc5b Organizes Microfilaments and Germ Plasm in the Zebrafish Embryo

    PubMed Central

    Nair, Sreelaja; Marlow, Florence; Abrams, Elliott; Kapp, Lee; Mullins, Mary C.; Pelegri, Francisco

    2013-01-01

    Microtubule-microfilament interactions are important for cytokinesis and subcellular localization of proteins and mRNAs. In the early zebrafish embryo, astral microtubule-microfilament interactions also facilitate a stereotypic segregation pattern of germ plasm ribonucleoparticles (GP RNPs), which is critical for their eventual selective inheritance by germ cells. The precise mechanisms and molecular mediators for both cytoskeletal interactions and GP RNPs segregation are the focus of intense research. Here, we report the molecular identification of a zebrafish maternal-effect mutation motley as Birc5b, a homolog of the mammalian Chromosomal Passenger Complex (CPC) component Survivin. The meiosis and mitosis defects in motley/birc5b mutant embryos are consistent with failed CPC function, and additional defects in astral microtubule remodeling contribute to failures in the initiation of cytokinesis furrow ingression. Unexpectedly, the motley/birc5b mutation also disrupts cortical microfilaments and GP RNP aggregation during early cell divisions. Birc5b localizes to the tips of astral microtubules along with polymerizing cortical F-actin and the GP RNPs. Mutant Birc5b co-localizes with cortical F-actin and GP RNPs, but fails to associate with astral microtubule tips, leading to disorganized microfilaments and GP RNP aggregation defects. Thus, maternal Birc5b localizes to astral microtubule tips and associates with cortical F-actin and GP RNPs, potentially linking the two cytoskeletons to mediate microtubule-microfilament reorganization and GP RNP aggregation during early embryonic cell cycles in zebrafish. In addition to the known mitotic function of CPC components, our analyses reveal a non-canonical role for an evolutionarily conserved CPC protein in microfilament reorganization and germ plasm aggregation. PMID:23637620

  6. Cortisol Regulates Acid Secretion of H+-ATPase-rich Ionocytes in Zebrafish (Danio rerio) Embryos

    PubMed Central

    Lin, Chia-Hao; Shih, Tin-Han; Liu, Sian-Tai; Hsu, Hao-Hsuan; Hwang, Pung-Pung

    2015-01-01

    Systemic acid-base regulation is vital for physiological processes in vertebrates. Freshwater (FW) fish live in an inconstant environment, and thus frequently face ambient acid stress. FW fish have to efficiently modulate their acid secretion processes for body fluid acid-base homeostasis during ambient acid challenge; hormonal control plays an important role in such physiological regulation. The hormone cortisol was previously proposed to be associated with acid base regulation in FW fish; however, the underlying mechanism has not been fully described. In the present study, mRNA expression of acid-secreting related transporters and cyp11b (encoding an enzyme involved in cortisol synthesis) in zebrafish embryos was stimulated by treatment with acidic FW (AFW, pH 4.0) for 3 d. Exogenous cortisol treatment (20 mg/L, 3 d) resulted in upregulated expression of transporters related to acid secretion and increased acid secretion function at the organism level in zebrafish embryos. Moreover, cortisol treatment also significantly increased the acid secretion capacity of H+-ATPase-rich cells (HRCs) at the cellular level. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR) morpholino (MO) suppressed the expression of acid-secreting related transporters, and decreased acid secretion function at both the organism and cellular levels; on the other hand, mineralocorticoid receptor (MR) MO did not induce any effects. Such evidence supports the hypothesized role of cortisol in fish acid-base regulation, and provides new insights into the roles of cortisol; cortisol-GR signaling stimulates zebrafish acid secretion function through transcriptional/translational regulation of the transporters and upregulation of acid secretion capacity in each acid-secreting ionocyte. PMID:26635615

  7. Retinoic acid receptor subtype-specific transcriptotypes in the early zebrafish embryo.

    PubMed

    Samarut, Eric; Gaudin, Cyril; Hughes, Sandrine; Gillet, Benjamin; de Bernard, Simon; Jouve, Pierre-Emmanuel; Buffat, Laurent; Allot, Alexis; Lecompte, Odile; Berekelya, Liubov; Rochette-Egly, Cécile; Laudet, Vincent

    2014-02-01

    Retinoic acid (RA) controls many aspects of embryonic development by binding to specific receptors (retinoic acid receptors [RARs]) that regulate complex transcriptional networks. Three different RAR subtypes are present in vertebrates and play both common and specific roles in transducing RA signaling. Specific activities of each receptor subtype can be correlated with its exclusive expression pattern, whereas shared activities between different subtypes are generally assimilated to functional redundancy. However, the question remains whether some subtype-specific activity still exists in regions or organs coexpressing multiple RAR subtypes. We tackled this issue at the transcriptional level using early zebrafish embryo as a model. Using morpholino knockdown, we specifically invalidated the zebrafish endogenous RAR subtypes in an in vivo context. After building up a list of RA-responsive genes in the zebrafish gastrula through a whole-transcriptome analysis, we compared this panel of genes with those that still respond to RA in embryos lacking one or another RAR subtype. Our work reveals that RAR subtypes do not have fully redundant functions at the transcriptional level but can transduce RA signal in a subtype-specific fashion. As a result, we define RAR subtype-specific transcriptotypes that correspond to repertoires of genes activated by different RAR subtypes. Finally, we found genes of the RA pathway (cyp26a1, raraa) the regulation of which by RA is highly robust and can even resist the knockdown of all RARs. This suggests that RA-responsive genes are differentially sensitive to alterations in the RA pathway and, in particular, cyp26a1 and raraa are under a high pressure to maintain signaling integrity. PMID:24422634

  8. Thymosin beta4 regulates cardiac valve formation via endothelial-mesenchymal transformation in zebrafish embryos.

    PubMed

    Shin, Sun-Hye; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo; Cha, Hee-Jae; Lee, You Mie

    2014-04-01

    Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelialmesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor β (TGFβ) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-β-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.1. PMID:24732964

  9. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    PubMed Central

    2012-01-01

    Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that

  10. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia.

    PubMed

    Leet, Jessica K; Lindberg, Casey D; Bassett, Luke A; Isales, Gregory M; Yozzo, Krystle L; Raftery, Tara D; Volz, David C

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05-50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO)--an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors--flumioxazin--resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism

  11. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis

  12. Whole-Mount Immunohistochemistry for Anti-F59 in Zebrafish Embryos (1-5 Days Post Fertilization (dpf)).

    PubMed

    Doganli, Canan; Bukata, Lucas; Lykke-Hartmann, Karin

    2016-01-01

    Immunohistochemistry (IHC) is a powerful method to determine localization of tissue components by the interaction of target antigens with labeled antibodies. Here we describe an IHC protocol for localizing the myosin heavy chain of zebrafish embryos at 1-2 and 3-5 days post fertilization (dpf). PMID:26695047

  13. Efficacy of UV-C photolysis of bisphenol A on transcriptome alterations of genes in zebrafish embryos.

    PubMed

    Saeed, Asma; Hashmi, Imran; Zare, Ava; Mehrabani-Zeinabad, Mitra; Achari, Gopal; Habibi, Hamid R

    2016-09-18

    The purpose of this study was to investigate the efficacy of UV-C direct photolysis of bisphenol A (BPA) as a remediation method of BPA contamination. We used zebrafish embryos as a model organism to test the toxicity and residual biological activity by measuring cytochrome P4501A1 (CYP1A), aromatase B (Aro B) and heat shock proteins (HSP-70) transcript levels. The mRNA levels of CYP1A gene increased about two fold while exposure of zebrafish embryos at 72 hpf resulted in significant induction (P = 0.048) of Aro B at 100 µg/L of BPA. Exposure of zebrafish embryos at 72 hpf to increasing concentrations of BPA resulted in significant induction (P = 0.0031) of HSP-70 transcript level. UV treatment of BPA resulted in a significant reduction in toxicity by reducing mortality of zebrafish embryos. The results suggest that UV-C direct photolysis may be an effective method for remediation of BPA contamination. Further studies will be necessary for better understanding of the identity and relative activity of the UV degradation by-products. PMID:27314163

  14. Individual and joint toxic effects of cadmium sulfate and α-naphthoflavone on the development of zebrafish embryo.

    PubMed

    Yin, Jian; Yang, Jian-ming; Zhang, Feng; Miao, Peng; Lin, Ying; Chen, Ming-li

    2014-09-01

    This paper aims to evaluate the individual and joint toxicities of cadmium sulfate (CdSO4) and α-naphthoflavone (ANF) in zebrafish embryos. As a result, CdSO4 caused both lethal and sub-lethal effects, such as 24 h post-fertilization (hpf) death and 72 hpf delayed hatching. However, ANF only caused sub-lethal effects, including 48 hpf cardiac edema and 72 hpf delayed hatching. Taking 24 hpf death and 48 hpf cardiac edema as endpoints, the toxicities of CdSO4 and ANF were significantly enhanced by each other. Consistently, both CdSO4 and ANF caused significant oxidative stress, including decreases in the reduced glutathione (GSH) level, inhibition of superoxide dismutase (SOD) activity, as well as increases in malondialdehyde (MDA) content in zebrafish embryos, but these mixtures produced much more significant alterations on the biomarkers. Co-treatment of CdSO4 and ANF significantly down-regulated the mRNA level of multidrug resistance-associated protein (mrp) 1 and cytochrome P450 (cyp) 1a, which constituted the protective mechanisms for zebrafish embryos to chemical toxins. In conclusion, co-treatment of CdSO4 and ANF exhibited a much more severe damage in zebrafish embryos than individual treatment. Meanwhile, production of oxidative stress and altered expression of mrp1 and cyp1a could be important components of such joint toxicity. PMID:25183031

  15. Total synthesis of Herbarin A and B, determination of their antioxidant properties and toxicity in zebrafish embryo model.

    PubMed

    Heimberger, Julia; Cade, Hannah C; Padgett, Jihan; Sittaramane, Vinoth; Shaikh, Abid

    2015-03-15

    Herbarin A and B were isolated from the fungal strains of Cladosporium herbarum found in marine sponges Aplysina aerophoba and Callyspongia aerizusa. Total synthesis of Herbarin A and B was achieved by carrying out a multi-step synthesis approach, and the antioxidant properties were evaluated using FRAP assay. Toxicity of these compounds was determined using a zebrafish embryo model. PMID:25690788

  16. Individual and joint toxic effects of cadmium sulfate and α-naphthoflavone on the development of zebrafish embryo*

    PubMed Central

    Yin, Jian; Yang, Jian-ming; Zhang, Feng; Miao, Peng; Lin, Ying; Chen, Ming-li

    2014-01-01

    This paper aims to evaluate the individual and joint toxicities of cadmium sulfate (CdSO4) and α-naphthoflavone (ANF) in zebrafish embryos. As a result, CdSO4 caused both lethal and sub-lethal effects, such as 24 h post-fertilization (hpf) death and 72 hpf delayed hatching. However, ANF only caused sub-lethal effects, including 48 hpf cardiac edema and 72 hpf delayed hatching. Taking 24 hpf death and 48 hpf cardiac edema as endpoints, the toxicities of CdSO4 and ANF were significantly enhanced by each other. Consistently, both CdSO4 and ANF caused significant oxidative stress, including decreases in the reduced glutathione (GSH) level, inhibition of superoxide dismutase (SOD) activity, as well as increases in malondialdehyde (MDA) content in zebrafish embryos, but these mixtures produced much more significant alterations on the biomarkers. Co-treatment of CdSO4 and ANF significantly down-regulated the mRNA level of multidrug resistance-associated protein (mrp) 1 and cytochrome P450 (cyp) 1a, which constituted the protective mechanisms for zebrafish embryos to chemical toxins. In conclusion, co-treatment of CdSO4 and ANF exhibited a much more severe damage in zebrafish embryos than individual treatment. Meanwhile, production of oxidative stress and altered expression of mrp1 and cyp1a could be important components of such joint toxicity. PMID:25183031

  17. Acetylcholinesterase in zebrafish embryos as a tool to identify neurotoxic effects in sediments.

    PubMed

    Kais, Britta; Stengel, Daniel; Batel, Annika; Braunbeck, Thomas

    2015-11-01

    In order to clarify the suitability of zebrafish (Danio rerio) embryos for the detection of neurotoxic compounds, the acetylcholinesterase assay was adapted and validated with a series of priority pollutants listed as relevant for the European water policy (Aroclor 1254, 2,3-benzofuran, bisphenol A, chlorpyrifos, paraoxon-methyl, quinoline, and methyl mercury chloride) as well as acetonic extracts from three sediments of known contamination. The acute toxicities of the model substances and the sediment extracts were determined by means of the fish embryo test as specified in OECD TG 236, and concentrations as low as the effective concentration at 10% inhibition (EC10) were used as the highest test concentration in the acetylcholinesterase test in order to avoid nonspecific systemic effects mimicking neurotoxicity. Among the model compounds, only the known acetylcholinesterase inhibitors paraoxon-methyl and chlorpyrifos produced a strong inhibition to about 20 and 33%, respectively, of the negative controls. For the sediment extracts, a reduction of acetylcholinesterase activity to about 60% could only be shown for the Vering Canal sediment extracts; this could be correlated to high contents of acetylcholinesterase-inhibiting polycyclic aromatic hydrocarbons (PAHs) as identified by chemical analyses. Co-incubation of the Vering Canal sediment extracts with chlorpyrifos at EC10 concentrations each did not significantly increase the inhibitory effect of chlorpyrifos, indicating that the mode of action of acetylcholinesterase inhibition by the sediment-borne PAHs is different to that of the typical acetylcholinesterase blocker chlorpyrifos. Overall, the study documents that zebrafish embryos represent a suitable model not only to reveal acetylcholinesterase inhibition, but also to investigate various modes of neurotoxic action. PMID:25567057

  18. The toxicity of silver nanoparticles to zebrafish embryos increases through sewage treatment processes.

    PubMed

    Muth-Köhne, Elke; Sonnack, Laura; Schlich, Karsten; Hischen, Florian; Baumgartner, Werner; Hund-Rinke, Kerstin; Schäfers, Christoph; Fenske, Martina

    2013-10-01

    Silver nanoparticles (AgNPs) are widely believed to be retained in the sewage sludge during sewage treatment. The AgNPs and their derivatives, however, re-enter the environment with the sludge and via the effluent. AgNP were shown to occur in surface water, while evidence of a potential toxicity of AgNPs in aquatic organisms is growing. This study aims to examine the toxicity of AgNPs to the embryos of the aquatic vertebrate model zebrafish (Danio rerio) before and after sewage treatment plants (STPs) processes. Embryos were treated with AgNP (particle size: >90 % <20 nm) and AgNO3 in ISO water for 48 h and consequently displayed effects such as delayed development, tail malformations and edema. For AgNP, the embryos were smaller than the controls with conspicuously smaller yolk sacs. The corresponding EC50 values of 48 hours post fertilization (hpf) were determined as 73 μg/l for AgNO3 and 1.1 mg/l for AgNP. Whole-mount immunostainings of primary and secondary motor neurons also revealed secondary neurotoxic effects. A TEM analysis confirmed uptake of the AgNPs, and the distribution within the embryo suggested absorption across the skin. Embryos were also exposed (for 48 h) to effluents of AgNP-spiked model STP with AgNP influent concentrations of 4 and 16 mg/l. These embryos exhibited the same malformations than for AgNO3 and AgNPs, but the embryo toxicity of the sewage treatment effluent was higher (EC50 = 142 μg/l; 48 hpf). On the other hand, control STP effluent spiked with AgNPs afterwards was less toxic (EC50 = 2.9 mg/l; 48 hpf) than AgNPs in ISO water. This observation of an increased fish embryo toxicity of STP effluents with increasing AgNP influent concentrations identifies the accumulation of AgNP in the STP as a potential source of effluent toxicity. PMID:23975539

  19. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test.

    PubMed

    Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D

    2014-05-01

    Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction. PMID:24464135

  20. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108.

    PubMed

    Wang, Ruhung; N Meredith, Alicea; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford

    2016-08-01

    Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity. PMID:26559437

  1. Indole Alkaloids from Fischerella Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Walton, Katherine; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2014-01-01

    Cyanobacteria are recognized producers of toxic or otherwise bioactive metabolite associated, in particular, with so-called “harmful algal blooms” (HABs) and eutrophication of freshwater systems. In the present study, two apparently teratogenic indole alkaloids from a freshwater strain of the widespread cyanobacterial genus, Fischerella (Stigonemataceae), were isolated by bioassay-guided fractionation, specifically using the zebrafish (Danio rerio) embryo, as a model of vertebrate development. The two alkaloids include the previously known 12-epi-hapalindole H isonitrile (1), and a new nitrile-containing variant, 12-epi-ambiguine B nitrile (2). Although both compounds were toxic to developing embryos, the former compound was shown to be relatively more potent, and to correlate best with the observed embryo toxicity. Related indole alkaloids from Fischerella, and other genera in the Stigonemataceae, have been widely reported as antimicrobial compounds, specifically in association with apparent allelopathy. However, this is the first report of their vertebrate toxicity, and the observed teratogenicity of these alkaloids supports a possible contribution to the toxicity of this widespread cyanobacterial family, particularly in relation to freshwater HABs and eutrophication. PMID:25533520

  2. Guarding Embryo Development of Zebrafish by Shell Engineering: A Strategy to Shield Life from Ozone Depletion

    PubMed Central

    Wang, Ben; Liu, Peng; Tang, Yanyan; Pan, Haihua; Xu, Xurong; Tang, Ruikang

    2010-01-01

    Background The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm) reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. Methodology/Principal Findings Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo) of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. Conclusions We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research. PMID:20376356

  3. Analyzing In Vivo Cell Migration using Cell Transplantations and Time-lapse Imaging in Zebrafish Embryos.

    PubMed

    Giger, Florence A; Dumortier, Julien G; David, Nicolas B

    2016-01-01

    Cell migration is key to many physiological and pathological conditions, including cancer metastasis. The cellular and molecular bases of cell migration have been thoroughly analyzed in vitro. However, in vivo cell migration somehow differs from in vitro migration, and has proven more difficult to analyze, being less accessible to direct observation and manipulation. This protocol uses the migration of the prospective prechordal plate in the early zebrafish embryo as a model system to study the function of candidate genes in cell migration. Prechordal plate progenitors form a group of cells which, during gastrulation, undergoes a directed migration from the embryonic organizer to the animal pole of the embryo. The proposed protocol uses cell transplantation to create mosaic embryos. This offers the combined advantages of labeling isolated cells, which is key to good imaging, and of limiting gain/loss of function effects to the observed cells, hence ensuring cell-autonomous effects. We describe here how we assessed the function of the TORC2 component Sin1 in cell migration, but the protocol can be used to analyze the function of any candidate gene in controlling cell migration in vivo. PMID:27168357

  4. Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos.

    PubMed

    S, Chandirasekar; C, Chandrasekaran; T, Muthukumarasamyvel; G, Sudhandiran; N, Rajendiran

    2016-07-01

    We report the biosurfactant (sodium cholate) templated bright bluish-green emitting gold nanoclusters (AuNCs) by green chemical approach. Optical properties of the AuNCs were studied using UV-vis and luminescence spectroscopy. Lifetime of the fluorescent AuNCs was measured using time correlated single photon counting technique (TCSPC). High-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS) were used to measure the sizes of the clusters. In-vivo toxicity and bioimaging studies of sodium cholate (NaC) templated AuNCs were carried out at different developmental stages of zebrafish embryos. The survival rate, hatching rate, heart rate, malformation and apoptotic gene expression experiments shows no significant toxicity in developing embryos up to 100μL/mL of AuNCs concentration and the AuNCs stained embryos exhibited green fluorescence with high intensity over the period from 4 to 96hpf (hours post fertilization) which shows that AuNCs were stable in living organisms. PMID:27037785

  5. Parental exposure to natural mixtures of POPs reduced embryo production and altered gene transcription in zebrafish embryos.

    PubMed

    Lyche, Jan L; Grześ, Irena M; Karlsson, Camilla; Nourizadeh-Lillabadi, Rasoul; Berg, Vidar; Kristoffersen, Anja B; Skåre, Janneche U; Alestrøm, Peter; Ropstad, Erik

    2013-01-15

    Determination of toxicity of complex mixtures has been proposed to be one of the most important challenges for modern toxicology. In this study we performed genome wide transcriptome profiling to assess potential toxicant induced changes in gene regulation in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POPs). The mixtures used were extracted from burbot (Lota lota) liver originating from two lakes (Lake Mjøsa and Lake Losna) belonging to the same freshwater system in Norway. The dominating groups of contaminants were polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane metabolites (DDTs). Because both mixtures used in the present study induced similar effects, it is likely that the same toxicants are involved. The Mjøsa mixture contains high levels of PBDEs while this group of pollutants is low in the Losna mixture. However, both mixtures contain substantial concentrations of PCB and DDT suggesting these contaminants as the predominant contributors to the toxicity observed. The observed effects included phenotypic traits, like embryo production and survival, and gene transcription changes corresponding with disease and biological functions such as cancer, reproductive system disease, cardiovascular disease, lipid and protein metabolism, small molecule biochemistry and cell cycle. The changes in gene transcription included genes regulated by HNF4A, insulin, LH, FSH and NF-κB which are known to be central regulators of endocrine signaling, metabolism, metabolic homeostasis, immune functions, cancer development and reproduction. The results suggest that relative low concentrations of the natural mixtures of POPs used in the present study might pose a threat to wild freshwater fish living in the lakes from which the POPs mixtures originated. PMID:23063069

  6. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda

    PubMed Central

    2011-01-01

    Background The zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection. Results Mortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function. Conclusions Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically

  7. A Caged Ret Kinase Inhibitor and its Effect on Motoneuron Development in Zebrafish Embryos

    PubMed Central

    Bliman, David; Nilsson, Jesper R.; Kettunen, Petronella; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    Proto-oncogene tyrosine-protein kinase receptor RET is implicated in the development and maintenance of neurons of the central and peripheral nervous systems. Attaching activity-compromising photocleavable groups (caging) to inhibitors could allow for external spatiotemporally controlled inhibition using light, potentially providing novel information on how these kinase receptors are involved in cellular processes. Here, caged RET inhibitors were obtained from 3-substituted pyrazolopyrimidine-based compounds by attaching photolabile groups to the exocyclic amino function. The most promising compound displayed excellent inhibitory effect in cell-free, as well as live-cell assays upon decaging. Furthermore, inhibition could be efficiently activated with light in vivo in zebrafish embryos and was shown to effect motoneuron development. PMID:26300345

  8. Modulation by Cocaine of Dopamine Receptors through miRNA-133b in Zebrafish Embryos

    PubMed Central

    Barreto-Valer, Katherine; López-Bellido, Roger; Macho Sánchez-Simón, Fátima; Rodríguez, Raquel E.

    2012-01-01

    The use of cocaine during pregnancy can affect the mother and indirectly might alter the development of the embryo/foetus. Accordingly, in the present work our aim was to study in vivo (in zebrafish embryos) the effects of cocaine on the expression of dopamine receptors and on miR-133b. These embryos were exposed to cocaine hydrochloride (HCl) at 5 hours post-fertilization (hpf) and were then collected at 8, 16, 24, 48 and 72 hpf to study the expression of dopamine receptors, drd1, drd2a, drd2b and drd3, by quantitative real time PCR (qPCR) and in situ hybridization (ISH, only at 24 hpf). Our results indicate that cocaine alters the expression of the genes studied, depending on the stage of the developing embryo and the type of dopamine receptor. We found that cocaine reduced the expression of miR-133b at 24 and 48 hpf in the central nervous system (CNS) and at the periphery by qPCR and also that the spatial distribution of miR-133b was mainly seen in somites, a finding that suggests the involvement of miR-133b in the development of the skeletal muscle. In contrast, at the level of the CNS miR-133b had a weak and moderate expression at 24 and 48 hpf. We also analysed the interaction of miR-133b with the Pitx3 and Pitx3 target genes drd2a and drd2b, tyrosine hydroxylase (th) and dopamine transporter (dat) by microinjection of the Pitx3-3'UTR sequence. Microinjection of Pitx3-3'UTR affected the expression of pitx3, drd2a, drd2b, th and dat. In conclusion, in the present work we describe a possible mechanism to account for cocaine activity by controlling miR-133b transcription in zebrafish. Via miR-133b cocaine would modulate the expression of pitx3 and subsequently of dopamine receptors, dat and th. These results indicate that miRNAs can play an important role during embryogenesis and in drug addiction. PMID:23285158

  9. Mixture toxicity of water contaminants-effect analysis using the zebrafish embryo assay (Danio rerio).

    PubMed

    Schmidt, Susanne; Busch, Wibke; Altenburger, Rolf; Küster, Eberhard

    2016-06-01

    Three water contaminants were selected to be tested in the zebrafish embryo toxicity test (DarT) in order to investigate the sensitivity of the zebrafish embryo toxicity test with respect to mixture effect detection. The concentration-response curves for the observed effects lethality and hypo-pigmentation were calculated after an exposure of the embryos for 96 h with a fungicide (carbendazim), a plasticizer or propellent precursor (2,4-DNT: 2,4- dinitrotoluene) and an aromatic compound (AαC: 2-amino-9H-pyrido[2,3-b]indol), respectively. Follow-up mixture tests were based on the calculated LC50 or EC50 of the single compounds and combined effects were predicted according to the mixture concepts of concentration addition (CA) and independent action (IA). The order of toxicity for the single substances was carbendazim (LC50 = 1.25 μM) < AαC (LC50 = 8.16 μM) < 2,4-DNT (LC50 = 177.05 μM). For AαC and 2,4 DNT hypo-pigmentation was observed in addition (AαC EC50 = 1.81 μM; 2,4-DNT EC50 = 8.81 μM). Two binary and one ternary mixture were studied on lethality and one on hypo-pigmentation: 2,4-DNT/AαC (LC50 = 119.21 μM, EC50 = 5.37 μM), carbendazim/AαC (LC50 = 4.49 μM) and AαC/Carbendazim/2,4 DNT (LC50 = 108.62 μM). Results showed that the effects were in agreement with the CA model when substances were tested in mixtures. Therefore, in a reasonable worst case scenario substance combination effects in fish embryos were at maximum only prone to overestimation when using CA as the mixture concept. PMID:27011319

  10. Toxicological implications of microcystins for zebrafish embryos in the presence of other environmental pollutants.

    PubMed

    Pavagadhi, Shruti; Gong, Zhiyuan; Balasubramanian, Rajasekhar

    2013-07-01

    Microcystins (MCs) interact with environmental contaminants as well as various other congeners of the MC family in the natural environment and with antioxidants in the exposed organisms. These interactions are likely to modify the toxicological behavior of MCs at the cellular level. The present study was conducted to determine the toxicological response of extracellular MCs in aquatic systems under environmentally relevant conditions. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) were introduced at different concentrations in a single-component (MCLR or MCRR) or dual-component (MCLR and MCRR) system to zebrafish embryos in the presence of inorganic elements (Hg, As, Pb, and Cd) and nutrient species (NO3 (-) , PO4 (3-) , and Cl(-1) ). Hatchability, heart rate, and mortality of zerbrafish embryos were monitored together with changes in the activity of glutathione-S-transferase (GST) to evaluate their response on exposure to MCLR and MCRR. There was a significant reduction in all these parameters at higher doses of MCLR and MCRR (>100 ng/mL), implying bioaccumulation of these MCs in embryos and adverse effects on early development stages of the fish. It was further observed that PO4 (3-) and Cl(-) enhanced the toxic effects of MCLR and MCRR while NO3 (-) attenuated their toxic effects. In contrast, all 4 toxic elements together increased the toxicity of MCLR and MCRR to embryos compared with their single-component counterparts. Thus, the toxic effects of MCs depend not only on their relative environmental concentrations, but also on those of other environmental pollutants and the levels of antioxidants in exposed organisms. PMID:23440872

  11. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos

    PubMed Central

    Jank, Thomas; Eckerle, Stephanie; Steinemann, Marcus; Trillhaase, Christoph; Schimpl, Marianne; Wiese, Sebastian; van Aalten, Daan M. F.; Driever, Wolfgang; Aktories, Klaus

    2015-01-01

    Yersinia species cause zoonotic infections, including enterocolitis and plague. Here we studied Yersinia ruckeri antifeeding prophage 18 (Afp18), the toxin component of the phage tail-derived protein translocation system Afp, which causes enteric redmouth disease in salmonid fish species. Here we show that microinjection of the glycosyltransferase domain Afp18G into zebrafish embryos blocks cytokinesis, actin-dependent motility and cell blebbing, eventually abrogating gastrulation. In zebrafish ZF4 cells, Afp18G depolymerizes actin stress fibres by mono-O-GlcNAcylation of RhoA at tyrosine-34; thereby Afp18G inhibits RhoA activation by guanine nucleotide exchange factors, and blocks RhoA, but not Rac and Cdc42 downstream signalling. The crystal structure of tyrosine-GlcNAcylated RhoA reveals an open conformation of the effector loop distinct from recently described structures of GDP- or GTP-bound RhoA. Unravelling of the molecular mechanism of the toxin component Afp18 as glycosyltransferase opens new perspectives in studies of phage tail-derived protein translocation systems, which are preserved from archaea to human pathogenic prokaryotes. PMID:26190758

  12. Ruthenium-Caged Antisense Morpholinos for Regulating Gene Expression in Zebrafish Embryos

    PubMed Central

    Griepenburg, J.C.; Rapp, T.L.; Carroll, P.J.; Eberwine, J.; Dmochowski, I.J.

    2015-01-01

    Photochemical approaches afford high spatiotemporal control over molecular structure and function, for broad applications in materials and biological science. Here, we present the first example of a visible light responsive ruthenium-based photolinker, Ru(bipyridine)2(3-ethynylpyridine)2 (RuBEP), which was reacted stoichiometrically with a 25mer DNA or morpholino (MO) oligonucleotide functionalized with 3′ and 5′ terminal azides, via Cu(I)-mediated [3+2] Huisgen cycloaddition reactions. RuBEP-caged circular morpholinos (Ru-MOs) targeting two early developmental zebrafish genes, chordin and notail, were synthesized and tested in vivo. One-cell-stage zebrafish embryos microinjected with Ru-MO and incubated in the dark for 24 h developed normally, consistent with caging, whereas irradiation at 450 nm dissociated one 3-ethynylpyridine ligand (ϕ = 0.33) and uncaged the MO to achieve gene knockdown. As demonstrated, Ru photolinkers provide a versatile method for controlling structure and function of biopolymers. PMID:26023327

  13. Hypoxia-Induced Retinal Neovascularization in Zebrafish Embryos: A Potential Model of Retinopathy of Prematurity

    PubMed Central

    Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2–4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression. PMID:25978439

  14. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae

    PubMed Central

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  15. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae.

    PubMed

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS)], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO)] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  16. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos.

    PubMed

    Jank, Thomas; Eckerle, Stephanie; Steinemann, Marcus; Trillhaase, Christoph; Schimpl, Marianne; Wiese, Sebastian; van Aalten, Daan M F; Driever, Wolfgang; Aktories, Klaus

    2015-01-01

    Yersinia species cause zoonotic infections, including enterocolitis and plague. Here we studied Yersinia ruckeri antifeeding prophage 18 (Afp18), the toxin component of the phage tail-derived protein translocation system Afp, which causes enteric redmouth disease in salmonid fish species. Here we show that microinjection of the glycosyltransferase domain Afp18(G) into zebrafish embryos blocks cytokinesis, actin-dependent motility and cell blebbing, eventually abrogating gastrulation. In zebrafish ZF4 cells, Afp18(G) depolymerizes actin stress fibres by mono-O-GlcNAcylation of RhoA at tyrosine-34; thereby Afp18(G) inhibits RhoA activation by guanine nucleotide exchange factors, and blocks RhoA, but not Rac and Cdc42 downstream signalling. The crystal structure of tyrosine-GlcNAcylated RhoA reveals an open conformation of the effector loop distinct from recently described structures of GDP- or GTP-bound RhoA. Unravelling of the molecular mechanism of the toxin component Afp18 as glycosyltransferase opens new perspectives in studies of phage tail-derived protein translocation systems, which are preserved from archaea to human pathogenic prokaryotes. PMID:26190758

  17. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    PubMed

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression. PMID:25978439

  18. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  19. Rereplication in emi1-Deficient Zebrafish Embryos Occurs through a Cdh1-Mediated Pathway

    PubMed Central

    Robu, Mara E.; Zhang, Yong; Rhodes, Jennifer

    2012-01-01

    Disruption of early mitotic inhibitor 1 (Emi1) interferes with normal cell cycle progression and results in early embryonic lethality in vertebrates. During S and G2 phases the ubiquitin ligase complex APC/C is inhibited by Emi1 protein, thereby enabling the accumulation of Cyclins A and B so they can regulate replication and promote the transition from G2 phase to mitosis, respectively. Depletion of Emi1 prevents mitotic entry and causes rereplication and an increase in cell size. In this study, we show that the developmental and cell cycle defects caused by inactivation of zebrafish emi1 are due to inappropriate activation of APC/C through its cofactor Cdh1. Inhibiting/slowing progression into S-phase by depleting Cdt1, an essential replication licensing factor, partially rescued emi1 deficiency-induced rereplication and the increased cell size. The cell size effect was enhanced by co-depletion of cell survival regulator p53. These data suggest that the increased size of emi1-deficient cells is either directly or indirectly caused by the rereplication defects. Moreover, enforced expression of Cyclin A partially ablated the rereplicating population in emi1-deficient zebrafish embryos, consistent with the role of Cyclin A in origin licensing. Forced expression of Cyclin B partially restored the G1 population, in agreement with the established role of Cyclin B in mitotic progression and exit. However, expression of Cyclin B also partially inhibited rereplication in emi1-deficient embryos, suggesting a role for Cyclin B in regulating replication in this cellular context. As Cyclin A and B are substrates for APC/C-Cdh1 - mediated degradation, and Cdt1 is under control of Cyclin A, these data indicate that emi1 deficiency-induced defects in vivo are due to the dysregulation of an APC/C-Cdh1 molecular axis. PMID:23082190

  20. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae

    PubMed Central

    Sun, Yan; Zhang, Gong; He, Zizi; Wang, Yajie; Cui, Jianlin; Li, Yuhao

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. PMID:27022258

  1. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae.

    PubMed

    Sun, Yan; Zhang, Gong; He, Zizi; Wang, Yajie; Cui, Jianlin; Li, Yuhao

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin-eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. PMID:27022258

  2. Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos.

    PubMed

    Andrade, Thayres S; Henriques, Jorge F; Almeida, Ana Rita; Machado, Ana Luísa; Koba, Olga; Giang, Pham Thai; Soares, Amadeu M V M; Domingues, Inês

    2016-01-01

    Carbendazim is a widely used broad spectrum benzimidazole fungicide; however, its effects to non-target aquatic organisms are poorly studied. The aim of this study was to investigate the toxic effects of carbendazim to zebrafish early life stages at several levels of biological organization, including developmental, biochemical and behavioural levels. The embryo assay was done following the OECD guideline 236 and using a concentration range between 1.1 and 1.8mg/L. Lethal and developmental endpoints such as hatching, edemas, malformations, heart beat rate, body growth and delays were assessed in a 96h exposure. A sub-teratogenic range (from 0.16 to 500μg/L) was then used to assess effects at biochemical and behavioural levels. Biochemical markers included cholinesterase (ChE), glutathione-S-transferase (GST), lactate dehydrogenase (LDH) and catalase (CAT) and were assessed at 96h. The locomotor behaviour was assessed using an automated video tracking system at 120h. Carbendazim (96h-LC50 of 1.75mg/L) elicited several developmental anomalies in zebrafish embryos with EC50 values ranging from 0.85 to 1.6mg/L. ChE, GST and LDH activities were increased at concentrations equal or above 4μg/L. The locomotor assay showed to be extremely sensitive, detecting effects in time that larvae spent swimming at concentrations of 0.16μg/L and thus, being several orders of magnitude more sensitive that developmental parameters or lethality. These are ecological relevant concentrations and highlight the potential of behavioural endpoints as early warning signs for environmental stress. Further studies should focus on understanding how the behavioural disturbances measured in these types of studies translate into fitness impairment at the adult stage. PMID:26653011

  3. Functional expressions of adenosine triphosphate-binding cassette transporters during the development of zebrafish embryos and their effects on the detoxification of cadmium chloride and β-naphthoflavone.

    PubMed

    Yin, Huancai; Bai, Pengli; Miao, Peng; Chen, Mingli; Hu, Jun; Deng, Xudong; Yin, Jian

    2016-07-01

    Adenosine triphosphate-binding cassette (ABC) transporters, including ABCB, ABCC and ABCG families represent general biological defenses against environmental toxicants in varieties of marine and freshwater organisms, but their physiological functions at differential developmental stages of zebrafish embryos remain undefined. In this work, functional expressions of typical ABC transporters including P-glycoprotein (Pgp), multiresistance associated protein 1 (Mrp1) and Mrp2 were studied in zebrafish embryos at 4, 24, 48 and 72 h post-fertilization (hpf). As a result, both the gene expressions and activities of Pgp and Mrps increased with the development of embryos. Correspondingly, 4-72 hpf embryos exhibited an increased tolerance to the toxicity caused by cadmium chloride (CdCl2 ) and β-naphthoflavone (BNF) with time. Such a correlation was assumed caused by the involvement of ABC transporters in the detoxification of chemicals. In addition, the assumption was supported by the fact that model efflux inhibitors of Pgp and Mrps such as reversine 205 and MK571 significantly inhibited the efflux of toxicants and increased the toxicity of Cd and BNF in zebrafish embryos. Moreover, exposure to CdCl2 and BNF induced the gene expressions of Pgp and Mrp1 in 72 hpf embryos. Thus, functional expressions of Pgp and Mrps increased with the development of zebrafish embryos, which could cause an increasing tolerance of zebrafish embryos to CdCl2 and BNF. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26387481

  4. Toxicity of cylindrospermopsin, and other apparent metabolites from Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum, to the zebrafish (Danio rerio) embryo

    PubMed Central

    Berry, John P.; Gibbs, Patrick D.L.; Schmale, Michael C.; Saker, Martin L.

    2012-01-01

    Cyanobacteria produce a diverse array of toxic or otherwise bioactive compounds that pose growing threats to human and environmental health. We utilized the zebrafish (Danio rerio) embryo, as a model of vertebrate development, to investigate the inhibition of development pathways (i.e. developmental toxicity) by the cyanobacterial toxin, cylindrospermopsin (CYN), as well as extracts from various isolates of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum. CYN was toxic only when injected directly into embryos, but not by direct immersion at doses up to 50 μg/ml. Despite the dose dependency of toxicity observed following injection of CYN, no consistent patterns of developmental defects were observed, suggesting that toxic effects of CYN may not target specific developmental pathways. In contrast, direct immersion of embryos in all of the extracts resulted in both increased mortality and reproducible, consistent, developmental dysfunctions. Interestingly, there was no correlation of developmental toxicity observed for these extracts with the presence of CYN or with previously reported toxicity for these strains. These results suggest that CYN is lethal to zebrafish embryos, but apparently inhibits no specific developmental pathways, whereas other apparent metabolites from C. raciborskii and A. ovalisporum seem to reproducibly inhibit development in the zebrafish model. Continued investigation of these apparent, unknown metabolites is needed. PMID:19087885

  5. Rapid high performance liquid chromatography-high resolution mass spectrometry methodology for multiple prenol lipids analysis in zebrafish embryos.

    PubMed

    Martano, Chiara; Mugoni, Vera; Dal Bello, Federica; Santoro, Massimo M; Medana, Claudio

    2015-09-18

    The analysis of lipid molecules in living organism is an important step in deciphering metabolic pathways. Recently, the zebrafish has been adopted as a valuable animal model system to perform in vivo metabolomics studies, however limited methodologies and protocols are currently available to investigate zebrafish lipidome and even fewer to analyze specific classes of lipids. Here we present an HPLC-HRMS based method to rapidly measure multiple prenol lipid molecules from zebrafish tissues. In particular, we have optimized our method for concurrent detection of ubiquinones (Coenzyme Q6, Coenzyme Q9, Coenzyme Q10), cholesterol, vitamin E (α-tocopherol), vitamin K1 and vitamin K2. The purpose of this study was to compare different ionization modes, mobile phases and stationary phases in order to optimize lipid molecules separation. After HPLC-HRMS parameters selection, several extraction conditions from zebrafish embryos were evaluated. We assessed our methodology by quantitation of analytical recovery on zebrafish extracts from wild-type or zebrafish mutants (barolo) affected by impaired biosynthesis of ubiquinones. PMID:26283533

  6. Early exclusion of hand1-deficient cells from distinct regions of the left ventricular myocardium in chimeric mouse embryos.

    PubMed

    Riley, P R; Gertsenstein, M; Dawson, K; Cross, J C

    2000-11-01

    The basic helix-loop-helix transcription factor gene Hand1 has been implicated in development of the heart. However, the early lethality of Hand1-null mutant mouse embryos has precluded a precise understanding of its function. In this study, we have generated Hand1 homozygous mutant ES cells and performed in vitro differentiation experiments and chimeric analysis to study the role of Hand1 function during cardiac development. Hand1-null ES cells were able to differentiate into beating cardiomyocytes in vitro that expressed cardiac myosin and several cardiac-specific transcripts including Nkx2-5, alpha-cardiac actin, and the myofilament genes myosin light chain 2a and 2v. In chimeras derived from Hand1-null ES cells and ROSA26 embryos, mutant cells were underrepresented in the left caudal region of the linear heart tube at E8.0. By E9.5, after cardiac looping, mutant cells were underrepresented in the anterior region of the outer curvature of the left ventricular myocardium, but did contribute to other parts of the left ventricle and to other cardiac chambers. These results imply that Hand1 is not essential for differentiation of ventricular cardiomyocytes. Hand1-null cells were also underrepresented in several other regions of later embryos, including the rhombencephalic neural tube that was associated with a deficiency of mutant cells in the neural crest cell-derived cardiac outflow tract and first branchial arch. In summary, Hand1 has cell-autonomous functions during cardiac morphogenesis in both mesodermal and neural crest derivatives. PMID:11076684

  7. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    PubMed Central

    2014-01-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture. PMID:25177222

  8. Steroid androgen 17α-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos.

    PubMed

    Rivero-Wendt, Carla Letícia Gediel; Oliveira, Rhaul; Monteiro, Marta Sofia; Domingues, Inês; Soares, Amadeu Mortágua Velho Maia; Grisolia, Cesar Koppe

    2016-06-01

    The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l). PMID:27137108

  9. Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues.

    PubMed

    Davis, J Muse; Haake, David A; Ramakrishnan, Lalita

    2009-01-01

    Leptospirosis is an extremely widespread zoonotic infection with outcomes ranging from subclinical infection to fatal Weil's syndrome. Despite the global impact of the disease, key aspects of its pathogenesis remain unclear. To examine in detail the earliest steps in the host response to leptospires, we used fluorescently labelled Leptospira interrogans serovar Copenhageni to infect 30 hour post fertilization zebrafish embryos by either the caudal vein or hindbrain ventricle. These embryos have functional innate immunity but have not yet developed an adaptive immune system. Furthermore, they are optically transparent, allowing direct visualization of host-pathogen interactions from the moment of infection. We observed rapid uptake of leptospires by phagocytes, followed by persistent, intracellular infection over the first 48 hours. Phagocytosis of leptospires occasionally resulted in formation of large cellular vesicles consistent with apoptotic bodies. By 24 hours, clusters of infected phagocytes were accumulating lateral to the dorsal artery, presumably in early hematopoietic tissue. Our observations suggest that phagocytosis may be a key defense mechanism in the early stages of leptospirosis, and that phagocytic cells play roles in immunopathogenesis and likely in the dissemination of leptospires to specific target tissues. PMID:19547748

  10. Quantitative toxicoproteomic analysis of zebrafish embryos exposed to a retinoid X receptor antagonist UVI3003.

    PubMed

    Zheng, Liang; Yu, Jianlan; Shi, Huahong; Xia, Liang; Xin, Qi; Zhang, Qiang; Zhao, Heng; Luo, Ji; Jin, Wenhai; Li, Daoji; Zhou, Junliang

    2015-09-01

    Retinoid X receptor (RXR) antagonists, including some environmental endocrine disruptors, have a teratogenic effect on vertebrate embryos. To investigate the toxicological mechanism on the protein expression level, a quantitative proteomic study was conducted to analyze the proteome alterations of zebrafish (Danio rerio) embryos exposed to gradient concentrations of a representative RXR antagonist UVI3003. Using isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling coupled nano high-performance liquid chromatography-tandem mass spectrometry (nano HPLC-MS/MS), in total 6592 proteins were identified, among which 195 proteins were found to be differentially expressed by more than a two-fold change in exposed groups compared with the control. Gene ontology analysis showed that these differential proteins were mostly involved in anatomical structure development, biosynthetic process, ion binding and oxidoreductase activity. Moreover, the biological pathways of translation, lipoprotein metabolism, cell survival and gluconeogenesis were intensively inhibited after exposure. Some significantly downregulated proteins such as apolipoprotein A-I and vitellogenin and upregulated proteins such as calcium activated nucleotidase 1b, glutathione S-transferase and glucose 6-dehydrogenases showed a strong dose-dependent response. The results provided new insight into the molecular details of RXR antagonist-induced teratogenicity and added novel information of pathways and potential biomarkers for evaluation of RXR interfering activity. PMID:25581642

  11. River waters induced neurotoxicity in an embryo-larval zebrafish model.

    PubMed

    García-Cambero, Jesús Pablo; Catalá, Myriam; Valcárcel, Yolanda

    2012-10-01

    Some investigations have revealed an increased release of psychoactive drugs into the aquatic environments near big cities. However, despite the alert generated by the presence of such neurotoxic compounds, there is a lack of studies evaluating the impact on living organisms. One solution consists in the development of bioassays able to address specific risks, such as neurotoxicity, but on the other hand suitable to assess complex matrices like river samples. The objective of this work was to assess surface water toxicity by means of a zebrafish embryo-larval combined toxicity assay, which is based on a variety of toxicological endpoints, especially those related to neurodevelopment. For such a purpose, we selected the Tagus River in which a previous monitoring study revealed the presence of psychoactive drugs. Results showed that most of the toxicological endpoints evaluated remained unaltered in the exposed embryos, except for the tail length that was larger in the exposed larvae, and the locomotor activity in the 6-day larvae, which was decreased in four groups of exposure (n=5 sampling points). In the absence of systemic toxicity, changes in larval locomotion are indicative of neurotoxicity. This result suggests that the Tagus River can convey neurotoxic compounds at levels that may represent an early and specific threat over the aquatic species of vertebrates, what can have dramatic consequences under the ecological point of view. PMID:22906717

  12. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Lin, Bencheng; Hu, Chuanlu; Zhang, Huashan; Lin, Zhiqing; Xi, Zhuge

    2014-08-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture.

  13. Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina

    PubMed Central

    Wang, Ya-Jie; He, Zi-Zi; Fang, Yang-Wu; Xu, Yang; Chen, Ya-Nan; Wang, Guan-Qun; Yang, Yong-Qiang; Yang, Zhuo; Li, Yu-Hao

    2014-01-01

    AIM To investigate the impact of titanium dioxide nanoparticles (TiO2 NPs) on embryonic development and retinal neurogenesis. METHODS The agglomeration and sedimentation of TiO2 NPs solutions at different dilutions were observed, and the ultraviolet-visible spectra of their supernatants were measured. Zebrafish embryos were experimentally exposed to TiO2 NPs until 72h postfertilization (hpf). The retinal neurogenesis and distribution of the microglia were analyzed by immunohistochemistry and whole mount in situ hybridization. RESULTS The 1 mg/L was determined to be an appropriate exposure dose. Embryos exposed to TiO2 NPs had a normal phenotype. The neurogenesis was initiated on time, and ganglion cells, cones and rods were well differentiated at 72 hpf. The expression of fms mRNA and the 4C4 antibody, which were specific to microglia in the central nervous system (CNS), closely resembled their endogenous profile. CONCLUSION These data demonstrate that short-term exposure to TiO2 NPs at a low dose does not lead to delayed embryonic development or retinal neurotoxicity. PMID:25540739

  14. Formation of copper complexes in landfill leachate and their toxicity to zebrafish embryos

    SciTech Connect

    Fraser, J.K.; Butler, C.A.; Timperley, M.H.; Evans, C.W.

    2000-05-01

    Toxic metal organic complexes have not been found in natural waters, although some organic acids form bioavailable lipophilic and metabolite-type metal complexes. Landfill leachates usually contain organic acids and in the urban environment these leachates, when mixed with storm waters containing Cu, could be a source of toxic Cu organic complexes in streams and estuaries. The authors investigated the formation of Cu complexes in the leachate from an active urban landfill and found that some of the complexes formed were toxic to zebrafish embryos. High and low nominal molecular weight (NMWT) fractions; >5,000 Da and <700 Da, of leachate both formed Cu complexes with almost identical Cu complexing characteristics but the toxicity was due solely to the low NMWT complexes formed in the <700 Da fraction. Chemical equilibrium modeling with MINTEQA2 and H and Cu complex conditional association constants and ligand concentrations obtained from pH and Cu titrations with a Cu ion-selective electrode and van den Berg-Ruzic analyses of the titration data was used to calculate the copper speciation in the embryo test solutions. This calculated speciation, which was confirmed by measurements of Cu{sup 2+} in the test solutions, enabled the toxicity due to the free Cu ion and to the Cu complexes to be distinguished.

  15. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  16. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  17. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos.

    PubMed

    Wragg, J; Müller, F

    2016-01-01

    Embryo development commences with the fusion of two terminally differentiated haploid gametes into the totipotent fertilized egg, which through a series of major cellular and molecular transitions generate a pluripotent cell mass. The activation of the zygotic genome occurs during the so-called maternal to zygotic transition and prepares the embryo for zygotic takeover from maternal factors, in the control of the development of cellular lineages during differentiation. Recent advances in next generation sequencing technologies have allowed the dissection of the genomic and epigenomic processes mediating this transition. These processes include reorganization of the chromatin structure to a transcriptionally permissive state, changes in composition and function of structural and regulatory DNA-binding proteins, and changeover of the transcriptome as it is overhauled from that deposited by the mother in the oocyte to a zygotically transcribed complement. Zygotic genome activation in zebrafish occurs 10 cell cycles after fertilization and provides an ideal experimental platform for elucidating the temporal sequence and dynamics of establishment of a transcriptionally active chromatin state and helps in identifying the determinants of transcription activation at polymerase II transcribed gene promoters. The relatively large number of pluripotent cells generated by the fast cell divisions before zygotic transcription provides sufficient biomass for next generation sequencing technology approaches to establish the temporal dynamics of events and suggest causative relationship between them. However, genomic and genetic technologies need to be improved further to capture the earliest events in development, where cell number is a limiting factor. These technologies need to be complemented with precise, inducible genetic interference studies using the latest genome editing tools to reveal the function of candidate determinants and to confirm the predictions made by classic

  18. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos.

    PubMed

    Almond, Kelly M; Trombetta, Louis D

    2016-03-01

    A substitute for the organotins has been the use of metal pyrithiones, principally zinc and copper (CuPT) as antifouling agents. Zebrafish, Danio rerio, embryos were exposed after fertilization to increasing concentrations of CuPT (2, 4, 8, 12, 16, 32 and 64 μg/L) for 24 h. Morphological abnormalities at 30, 96 and 120 hours post fertilization (hpf) were recorded. Abnormalities at concentrations of 12 μg/L and higher were observed. Notochords became severely twisted as concentrations increased. These distortions of the notochord originated in the tail at the lower concentrations and proceeded rostrally with increasing dose. Edema was observed in the cardiac and yolk sac regions at the 12 and 16 μg/L CuPT concentrations. Light microscopy showed disorganization of muscle fibers, disruption and distortion of the transverse myoseptum and vacuolization of the myocyte. Hatching was measured every 12 h for 5 days following the 24 h exposure. Hatching decreased in a dose dependent manner. At 120 hpf, 47 % of the 64 μg/L CuPT treated embryos hatched. Inductively coupled plasma atomic absorbance spectrophotometry (ICPAAS) revealed copper bioaccumulation in whole embryo tissue and was significantly elevated in 32 and 64 μg/L CuPT treatment groups as compared to controls. Lipid peroxidation end products were significantly increased in animals exposed to 32 and 64 μg/L of CuPT. These data demonstrate that oxidative stress may play a role in the toxicity. The abnormalities and deformities observed in fish larvae would significantly decrease survival in polluted aqua-systems and question the use of this product as an antifouling agent. PMID:26686506

  19. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling.

    PubMed

    Driessen, Marja; Kienhuis, Anne S; Pennings, Jeroen L A; Pronk, Tessa E; van de Brandhof, Evert-Jan; Roodbergen, Marianne; Spaink, Herman P; van de Water, Bob; van der Ven, Leo T M

    2013-05-01

    The whole zebrafish embryo model (ZFE) has proven its applicability in developmental toxicity testing. Since functional hepatocytes are already present from 36 h post fertilization onwards, whole ZFE have been proposed as an attractive alternative to mammalian in vivo models in hepatotoxicity testing. The goal of the present study is to further underpin the applicability of whole ZFE for hepatotoxicity testing by combining histopathology and next-generation sequencing-based gene expression profiling. To this aim, whole ZFE and adult zebrafish were exposed to a set of hepatotoxic reference compounds. Histopathology revealed compound and life-stage-specific effects indicative of toxic injury in livers of whole ZFE and adult zebrafish. Next-generation sequencing (NGS) was used to compare transcript profiles in pooled individual RNA samples of whole ZFE and livers of adult zebrafish. This revealed that hepatotoxicity-associated expression can be detected beyond the overall transcription noise in the whole embryo. In situ hybridization verified liver specificity of selected highly expressed markers in whole ZFE. Finally, cyclosporine A (CsA) was used as an illustrative case to support applicability of ZFE in hepatotoxicity testing by comparing CsA-induced gene expression between ZFE, in vivo mouse liver and HepaRG cells on the levels of single genes, pathways and transcription factors. While there was no clear overlap on single gene level between the whole ZFE and in vivo mouse liver, strong similarities were observed between whole ZFE and in vivo mouse liver in regulated pathways related to hepatotoxicity, as well as in relevant overrepresented transcription factors. In conclusion, both the use of NGS of pooled RNA extracts analysis combined with histopathology and traditional microarray in single case showed the potential to detect liver-related genes and processes within the transcriptome of a whole zebrafish embryo. This supports the applicability of the whole ZFE

  20. Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (Danio rerio) embryo.

    PubMed

    Jaja-Chimedza, Asha; Gantar, Miroslav; Mayer, Gregory D; Gibbs, Patrick D L; Berry, John P

    2012-06-01

    Cyanobacteria ("blue-green algae") are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems. PMID:22822454

  1. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development.

    PubMed

    Jiang, Jinhua; Chen, Yanhong; Yu, Ruixian; Zhao, Xueping; Wang, Qiang; Cai, Leiming

    2016-03-01

    The objectives of the present study were to investigate the toxic effects of pretilachlor on zebrafish during its embryo development. The results demonstrated that the transcription of genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis was increased after exposure to 50, 100, 200μg/L pretilachlor for 96h, the aromatase activity, vitellogenin (VTG) and thyroid hormones T3 and T4 levels in zebrafish were also up-regulated simultaneously. Pretilachlor exposure induced a noticeable increase in ROS level, increased the transcription and level of antioxidant proteins (e.g., CAT, SOD and GPX). Moreover, the up-regulation of P53, Mdm2, Bbc3 expression and Caspase3 and Caspase9 activities in the apoptosis pathway suggested pretilachlor might trigger cell apoptosis in zebrafish. In addition, the transcription of CXCL-C1C, IL-1β and IL-8 related to the innate immunity was down-regulated after pretilachlor exposure. These data suggested that pretilachlor could simultaneously induce endocrine disruption, apoptosis, oxidative stress and immunotoxicity during zebrafish embryo development. PMID:26851375

  2. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    PubMed

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (<2.5-fold) in the GST isoforms, ahr2 and AOE genes response. However, expression of cyp1a and cyp3a65 mRNA was markedly and consistently induced by high doses of atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes. PMID:25158112

  3. Development of a pheasant interspecies primordial germ cell transfer to chicken embryo: effect of donor cell sex on chimeric semen production.

    PubMed

    Kang, S J; Choi, J W; Park, K J; Lee, Y M; Kim, T M; Sohn, S H; Lim, J M; Han, J Y

    2009-09-01

    This study was conducted to evaluate whether the sex of donor primordial germ cells (PGCs) influences production of chimeric semen from recipient hatchlings produced by interspecies transfer between pheasant (Phasianus colchicus) and chicken (Gallus gallus). Pheasant PGCs were retrieved from 7-d-old embryos and subsequently transferred into circulatory blood of 2.5-d-old (Stage 17) embryos. The sex of embryos was discerned 3 to 6 days after laying, and in preliminary study, overall rate of embryo survival after sexing was 74.6% with male-to-female ratio of 0.49 to 0.51. In Experiment 1, magnetic-activated cell sorting (MACS) using QCR1 antibody was effective for enriching the population of male and female PGCs in gonadal cells (9.2- to 12.5-fold and 10.8- to 19.5-fold increase, respectively). In Experiment 2, an increase in the number of hatchlings producing chimeric semen was detected after the homosexual transfer of male-to-male compared with that after the heterosexual transfer of female-to-male (68% to 88%). Significant increase was found in the frequency of chimeric semen production (0.96 to 1.68 times); production of pheasant progenies by artificial insemination using chimeric semen was also increased in the homosexual transfer (0 to 3 cases). In conclusion, the homosexual PGC transfer of male-to-male yielded better rate of generating pheasant progenies after test cross-reproduction than that of the heterosexual transfer of female-to-male, which could improve the efficiency of interspecies germ cell transfer system. PMID:19515408

  4. The impact of endocrine-disrupting chemicals on oxidative stress and innate immune response in zebrafish embryos.

    PubMed

    Xu, Hai; Yang, Ming; Qiu, Wenhui; Pan, Chenyuan; Wu, Minghong

    2013-08-01

    Bisphenol A (BPA) and nonylphenol (NP) are well known endocrine-disrupting chemicals (EDCs) ubiquitous in the aquatic environment and are an ecotoxicological risk for the health of aquatic organisms. Limited attention has been given to the immunotoxicity of these chemicals. The present study revealed a concentration-dependent increase of reactive oxygen species content and an induced expression of redox-sensitive transcription factors in zebrafish embryos after exposure to various concentrations of BPA, NP, and BPA/NP mixture for 4 h to 168 h postfertilization. Transcription of genes related to the immune response, including IFNγ, IL1β, IL10, Mx, TNFα, CC-chemokine, and CXCL-clc, were significantly up-regulated on exposure to EDCs. A significant induction of concentrations of proinflammatory mediator, nitric oxide, accompanied by an increase in the activity of nitric oxide synthase (NOS) and an upregulation of inducible NOS gene expression, was detected in zebrafish embryos on exposures to EDCs. To elucidate the potential mechanisms by which BPA and NP activate the innate immune response, expression profiles of genes related to the Toll-like receptors (TLRs) signaling pathway were examined. Expressions of TLR3, TRIF, MyD88, SARM, IRAK4, and TRAF6 were altered on exposure to EDCs. The authors' results demonstrate that exposure to BPA and NP significantly affects the expression of genes related to immune response in zebrafish embryos following oxidative stress. PMID:23606268

  5. Transcriptomic Analysis of Purified Embryonic Neural Stem Cells from Zebrafish Embryos Reveals Signaling Pathways Involved in Glycine-Dependent Neurogenesis

    PubMed Central

    Samarut, Eric; Bekri, Abdelhamid; Drapeau, Pierre

    2016-01-01

    How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signaling that promotes calcium transients in neural stem cells (NSCs) and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signaling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signaling pathways (signaling by calcium, TGF-beta, sonic hedgehog, Wnt, and p53-related apoptosis) that are likely to mediate the promotion of neurogenesis by glycine. PMID:27065799

  6. The multiple stressor effect in zebrafish embryos from simultaneous exposure to ionising radiation and cadmium.

    PubMed

    Ng, C Y P; Choi, V W Y; Lam, A C L; Cheng, S H; Yu, K N

    2013-03-01

    Living organisms are exposed to a mixture of environmental stressors, and the resultant effects are referred to as multiple stressor effects. In the present work, we studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to ionising radiation (alpha particles) and cadmium through quantification of apoptotic signals at 24 h postfertilisation (hpf) revealed by vital dye acridine orange staining. For each set of experiments, 32-40 dechorionated embryos were deployed, which were divided into four groups each having 8-10 embryos. The four groups of embryos were referred to as (1) the control group (C), which received no further treatments after dechorionation; (2) the Cd-dosed and irradiated group (CdIr), which was exposed to 100 μM Cd from 5 to 24 hpf, and also received about 4.4 mGy from alpha particles at 5 hpf; (3) the irradiated group (Ir), which received about 4.4 mGy from alpha particles at 5 hpf; and (4) the Cd-dosed group (Cd), which was exposed to 100 μM Cd from 5 to 24 hpf. In general, the CdIr, Ir and Cd groups had more apoptotic signals than the C group. Within the 12 sets of experimental results, two showed significant synergistic effects, one showed a weakly synergistic effect and nine showed additive effects. The multiple stressor effect of 100 μM Cd with ~4.4 mGy alpha-particle radiation resulted in an additive or synergistic effect, but no antagonistic effect. The failure to identify significant synergistic effects for some sets of data, and thus their subsequent classification as additive effects, might be a result of the relatively small magnitude of the synergistic effects. The results showed that the radiation risk could be perturbed by another environmental stressor such as a heavy metal, and as such a realistic human radiation risk assessment should in general take into account the multiple stressor effects. PMID:23296360

  7. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  8. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines.

    PubMed

    Bodewein, Lambert; Schmelter, Frank; Di Fiore, Stefano; Hollert, Henner; Fischer, Rainer; Fenske, Martina

    2016-08-15

    Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96h and human cancer cell lines for 24h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7μM at 24 and 48hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values≥402μM (PAMAMs) and ≤240μM (PPIs) for HepG2 and ≤13.24μM (PAMAMs) and ≤12.84μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. PMID:27288734

  9. Immunostaining Phospho-epitopes in Ciliated Organs of Whole Mount Zebrafish Embryos.

    PubMed

    Rothschild, Sarah C; Francescatto, Ludmila; Tombes, Robert M

    2016-01-01

    The rapid proliferation of cells, the tissue-specific expression of genes and the emergence of signaling networks characterize early embryonic development of all vertebrates. The kinetics and location of signals - even within single cells - in the developing embryo complements the identification of important developmental genes. Immunostaining techniques are described that have been shown to define the kinetics of intracellular and whole animal signals in structures as small as primary cilia. The techniques for fixing, imaging and processing images using a laser-scanning confocal compound microscope can be completed in as few as 36 hr. Zebrafish (Danio rerio) is a desirable organism for investigators who seek to conduct studies in a vertebrate species that is affordable and relevant to human disease. Genetic knockouts or knockdowns must be confirmed by the loss of the actual protein product. Such confirmation of protein loss can be achieved using the techniques described here. Clues into signaling pathways can also be deciphered by using antibodies that are reactive with proteins that have been post-translationally modified by phosphorylation. Preserving and optimizing the phosphorylated state of an epitope is therefore critical to this determination and is accomplished by this protocol. This study describes techniques to fix embryos during the first 72 hr of development and co-localize a variety of relevant epitopes with cilia in the Kupffer's Vesicle (KV), the kidney and the inner ear. These techniques are straightforward, do not require dissection and can be completed in a relatively short period of time. Projecting confocal image stacks into a single image is a useful means of presenting these data. PMID:26967668

  10. Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos.

    PubMed

    Gao, Jiejun; Sepúlveda, Maria S; Klinkhamer, Christopher; Wei, Alexander; Gao, Yu; Mahapatra, Cecon T

    2015-01-01

    Silver nanoparticles (AgNPs) are being incorporated and are known to be released from various consumer products such as textiles. However, no data are available on the toxicity of AgNPs released from any of these commercial products. In this study, we quantified total silver released from socks into wash water by inductively coupled plasma mass spectrometry (ICP-MS) and determined the presence of AgNPs using transmission electron microscopy (TEM). We then exposed zebrafish (Danio rerio) embryos for 72 h to either this leachate ("sock-AgNP") or to the centrifugate ("spun-AgNP") free of AgNPs and compared their toxicity to that of ionic silver (Ag(+)). Our data suggest that AgNPs do get released into the wash water, and centrifugation eliminated AgNPs but did not decrease total silver concentrations, indicating that most of the silver in the sock-AgNP solution was in the ionic form. All embryos died during the first 24 h when exposed to undiluted sock-AgNP and spun-AgNP solutions resulting in significantly lower LC50 values (0.14 and 0.26 mg L(-1)) compared to AgNO3 (0.80 mg L(-1)). Similarly, at 72 hpf, both sock-derived solutions were more potent at affecting hatching and inducing abnormal development. These results suggest that both sock-AgNP and spun-AgNP solutions were more toxic than AgNO3. Previous studies have consistently shown the opposite, i.e., AgNPs are about 10 times less toxic that Ag(+). All together our results show that the high toxicity induced by the leachate of these socks is likely not caused by AgNPs or Ag(+). More studies are needed to evaluate the toxicity of the myriad of AgNP-coated commercial products that are now estimated to be close to 500. PMID:25303653

  11. Transcription regulation of the vegf gene by the BMP/Smad pathway in the angioblast of zebrafish embryos

    SciTech Connect

    He Chen; Chen Xiaozhuo . E-mail: chenx@ohiou.edu

    2005-04-01

    Vascular endothelial growth factor (VEGF) is a mitogen that is critically involved in vasculogenesis, angiogenesis, and hematopoiesis. However, what and how transcription factors participate in the regulation of vegf gene expression are not fully understood. Here we report the cloning and sequencing of the zebrafish vegf promoter which revealed that the promoter contains a number of bone morphogenetic protein (BMP)-activated Smad binding elements (SBE), implicating Smad1 and Smad5 in the regulation of BMP-induced expression of vegf. Electrophoretic mobility shift assays of adding recombinant Smad proteins to the SBE-containing DNA oligonucleotides that represent portions of zebrafish vegf promoter resulted in mobility shift of the oligonucleotides. These changes demonstrate potential interactions between Smad1/5 and the vegf promoter. Reporter activity assays using the wild-type or SBE-deleted vegf promoters to drive the luciferase reporter gene expression revealed that Smad1 stimulated while Smad5 repressed the vegf promoter activity in zebrafish embryos. These data indicate that the BMP/Smad signaling pathway is involved in the regulation of zebrafish vegf transcription. In addition, we demonstrate that transgenic expression of human BMP4 in zebrafish embryos induced an expansion of the posterior intermediate cell mass (ICM, also commonly called blood island), a population of cells containing endothelial and hematopoietic precursors. In the expanded ICM, vegf and VEGF receptor 2 (flk-1) were ectopically co-expressed, suggesting that an autocrine/paracrine regulation of vegf expression may exist and contribute to the BMP-induced hemangiogenic cell proliferation.

  12. Pomalidomide is nonteratogenic in chicken and zebrafish embryos and nonneurotoxic in vitro

    PubMed Central

    Mahony, Chris; Erskine, Lynda; Niven, Jennifer; Greig, Nigel H.; Figg, William Douglas; Vargesson, Neil

    2013-01-01

    Thalidomide and its analog, Lenalidomide, are in current use clinically for treatment of multiple myeloma, complications of leprosy and cancers. An additional analog, Pomalidomide, has recently been licensed for treatment of multiple myeloma, and is purported to be clinically more potent than either Thalidomide or Lenalidomide. Using a combination of zebrafish and chicken embryos together with in vitro assays we have determined the relative anti-inflammatory activity of each compound. We demonstrate that in vivo embryonic assays Pomalidomide is a significantly more potent anti-inflammatory agent than either Thalidomide or Lenalidomide. We tested the effect of Pomalidomide and Lenalidomide on angiogenesis, teratogenesis, and neurite outgrowth, known detrimental effects of Thalidomide. We found that Pomalidomide, displays a high degree of cell specificity, and has no detectable teratogenic, antiangiogenic or neurotoxic effects at potent anti-inflammatory concentrations. This is in marked contrast to Thalidomide and Lenalidomide, which had detrimental effects on blood vessels, nerves, and embryonic development at anti-inflammatory concentrations. This work has implications for Pomalidomide as a treatment for conditions Thalidomide and Lenalidomide treat currently. PMID:23858438

  13. Organization and function of microfilaments during late epiboly in zebrafish embryos.

    PubMed

    Cheng, Jackie C; Miller, Andrew L; Webb, Sarah E

    2004-10-01

    We report that, during epiboly in zebrafish, three F-actin--based structures appear only after the blastoderm migrates past the embryonic equator. They are composed of two ring-like F-actin structures that form at the deep cell and enveloping layer margins of the blastoderm and a punctate actin band that develops in the external yolk syncytial layer. Treatment with cytochalasin B or the calcium chelator dibromo-BAPTA results in the disruption of all three of these actin-based structures, leading to the slowing or immediate arrest of epiboly, respectively, followed by a failure of yolk cell occlusion and the eventual lysis of the embryo through the vegetal pole region. We suggest, therefore, that these structures function in the occlusion of the vegetal portion of the yolk cell during the latter stages of epiboly. Possible roles for these new structures, their modulation by Ca2+, as well as the functions of other previously described F-actin--based structures observed throughout epiboly, are discussed. PMID:15366008

  14. The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view

    PubMed Central

    Xu, Ting; Zhao, Jing; Xu, Zhifa; Pan, Ruijie; Yin, Daqiang

    2016-01-01

    Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk. PMID:27181905

  15. The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view.

    PubMed

    Xu, Ting; Zhao, Jing; Xu, Zhifa; Pan, Ruijie; Yin, Daqiang

    2016-01-01

    Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk. PMID:27181905

  16. The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Zhao, Jing; Xu, Zhifa; Pan, Ruijie; Yin, Daqiang

    2016-05-01

    Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.

  17. 3D Imaging of Transition Metals in the Zebrafish Embryo by X-ray Fluorescence Microtomography

    PubMed Central

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Yi, Hong; Will, Fabian; Richter, Heiko; Shin, Chong Hyun; Fahrni, Christoph J.

    2014-01-01

    Synchrotron X-ray fluorescence (SXRF) microtomography has emerged as a powerful technique for the 3D visualization of the elemental distribution in biological samples. The mechanical stability, both of the instrument and the specimen, is paramount when acquiring tomographic projection series. By combining the progressive lowering of temperature method (PLT) with femtosecond laser sectioning, we were able to embed, excise, and preserve a zebrafish embryo at 24 hours post fertilization in an X-ray compatible, transparent resin for tomographic elemental imaging. Based on a data set comprised of 60 projections, acquired with a step size of 2 μm during 100 hours of beam time, we reconstructed the 3D distribution of zinc, iron, and copper using the iterative maximum likelihood expectation maximization (MLEM) reconstruction algorithm. The volumetric elemental maps, which entail over 124 million individual voxels for each transition metal, revealed distinct elemental distributions that could be correlated with characteristic anatomical features at this stage of embryonic development. PMID:24992831

  18. Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip

    PubMed Central

    Li, Yinbao; Yang, Xiujuan; Zhang, Beibei; Pan, Jianbin; Li, Xinchun; Yang, Fan; Sun, Duanping

    2015-01-01

    Investigations were conducted to determine acute effects of Pb2+ and Cu2+ presented individually and collectively on zebrafish embryos. Aquatic safety testing requires a cheap, fast, and highly efficient platform for real-time evaluation of single and mixture of metal toxicity. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic effects of Pb2+ and Cu2+ using zebrafish (Danio rerio) embryos. The microfluidic chip is composed of a disc-shaped concentration gradient generator and 24 culture chambers, which can generate one blank solution, seven mixture concentrations, and eight single concentrations for each metal solution, thus enabling the assessment of zebrafish embryos. To test the accuracy of this new chip platform, we have examined the toxicity and teratogenicity of Pb2+ and Cu2+ on embryos. The individual and combined impact of Pb2+ and Cu2+ on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators, such as spontaneous motion at 22 hours post fertilization (hpf), mortality at 24 hpf, heartbeat and body length at 96 hpf, etc. It was found that Pb2+ or Cu2+ could induce deformity and cardiovascular toxicity in zebrafish embryos and the mixture could induce more severe toxicity. This chip is a multiplexed testing apparatus that allows for the examination of toxicity and teratogenicity for substances and it also can be used as a potentially cost-effective and rapid aquatic safety assessment tool. PMID:25825620

  19. Lipid Abundance in Zebrafish Embryos Is Regulated by Complementary Actions of the Endocannabinoid System and Retinoic Acid Pathway.

    PubMed

    Fraher, Daniel; Ellis, Megan K; Morrison, Shona; McGee, Sean L; Ward, Alister C; Walder, Ken; Gibert, Yann

    2015-10-01

    The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization (WISH). Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA-modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. In addition, RA treatment increased expression of CCAAT/enhancer-binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development. PMID:26181105

  20. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development.

    PubMed

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron; Berry, John P

    2016-02-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  1. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    PubMed Central

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  2. Body Mass Parameters, Lipid Profiles and Protein Contents of Zebrafish Embryos and Effects of 2,4-Dinitrophenol Exposure

    PubMed Central

    Hachicho, Nancy; Reithel, Sarah; Miltner, Anja; Heipieper, Hermann J.; Küster, Eberhard; Luckenbach, Till

    2015-01-01

    Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos. PMID:26292096

  3. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    PubMed Central

    Morash, Michael G.; Douglas, Susan E.; Robotham, Anna; Ridley, Christina M.; Gallant, Jeffrey W.; Soanes, Kelly H.

    2011-01-01

    SUMMARY The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 μg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 μg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 μM; ∼64 μg/ml) and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf) embryos immediately after exposure to 1 μM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 μM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours) with higher lethal doses (≥5 μM). Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer

  4. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network.

    PubMed

    Díaz-Casado, María E; Lima, Elena; García, José A; Doerrier, Carolina; Aranda, Paula; Sayed, Ramy Ka; Guerra-Librero, Ana; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-08-01

    Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease. PMID:27064726

  5. Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching.

    PubMed

    Shih, Yu-Jen; Su, Chia-Chi; Chen, Chiu-Wen; Dong, Cheng-Di; Liu, Wen-Sheng; Huang, C P

    2016-07-01

    The characteristics of nanoparticles (NPs) uptake may fundamentally alter physicochemical effects of engineered NPs on aquatic organisms, thereby yielding different ecotoxicology assessment results. The adsorption behavior of nano-TiO2 (P-25) on zebrafish embryos in Holtfreter's medium (pH 7.2, I ∼ 7.2 × 10(-2) M) and the presence of sodium alginate (100 mg/L) as dispersant was investigated. Zebrafish embryos (total 100) were exposed to nano-TiO2 at different concentrations (e.g., 0, 10, 20, 60, 120 mg/L) in batch-mode assay. The adsorption capacity of nano-TiO2 on fish eggs was determined by measuring the Ti concentration on the egg surface using ICP-OES analysis. Results showed that the adsorption capacity increased rapidly in the first hour, and then declined to reach equilibrium in 8 h. The adsorption characteristics was visualized as a three-step process of rapid initial layer formation, followed by break-up of aggregates and finally rearrangement of floc structures; the maximum adsorption capacity was the sum of an inner rigid layers of aggregates of 0.81-0.84 μg-TiO2/#-egg and an outer softly flocculated layers of 1.01 μg-TiO2/#-egg. The Gibbs free energy was 543.29-551.26 and 100.75 kJ/mol, respectively, for the inner-layer and the outer-layer aggregates. Adsorption capacity at 0.5-1.0 μg-TiO2/#-egg promoted egg hatching; but hatching was inhibited at higher adsorption capacity. Results clearly showed that the configuration of TiO2 aggregates could impact the hatching efficiency of zebrafish embryos. PMID:27043376

  6. Enantioselectivity in Developmental Toxicity of rac-metalaxyl and R-metalaxyl in Zebrafish (Danio rerio) Embryo.

    PubMed

    Zhang, Yinjun; Zhang, Yi; Chen, An; Zhang, Wei; Chen, Hao; Zhang, Quan

    2016-06-01

    Enantioselectivity of chiral pesticides in environmental safety has attracted more and more attention. In this study, we evaluated the enantioselective toxicity of rac-metalaxyl and R-metalaxyl to zebrafish (Danio rerio) embryos through various malformations including pericardial edema, yolk sac edema, crooked body, and short tails. The results showed that there were significant differences in toxicity to zebrafish embryos caused by rac-metalaxyl and R-metalaxyl, and the LC50 s at 96 h are 416.41 (353.91, 499.29) mg · L(-1) and 320.650 (279.80, 363.46) mg · L(-1) , respectively. In order to explore the possible mechanism of the development defects, the genes involved in the hypothalamic-pituitary-gonadal axis (vtg1, vtg2, cyp17, cyp19a, cyp19b) and hypothalamic-pituitary-thyroid axis (dio1, dio2, nis, tg, tpo) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that there were no significant differences in the expression of vtg1, vtg2, cyp17, cyp19a, and cyp19b after exposure to rac-metalaxyl. However, the expression of vtg1, cyp19a, and cyp19b decreased significantly after exposure to R-metalaxyl. And likewise, rac-metalaxyl only caused the upregulation of dio2, while R-metalaxyl suppressed the expression of dio1 and tpo and induced the expression of dio2 and nis. The change of gene expression may cause the enantioselectivity in developmental toxicity in zebrafish embryo. The data provided here will be helpful for us to comprehensively understand the potential ecological risks of the currently used chiral fungicides. Chirality 28:489-494, 2016. © 2016 Wiley Periodicals, Inc. PMID:27103609

  7. Is UV radiation changing the toxicity of compounds to zebrafish embryos?

    PubMed

    Almeida, Ana Rita; Andrade, Thayres S; Burkina, Viktoriia; Fedorova, Ganna; Loureiro, Susana; Soares, Amadeu M V M; Domingues, Inês

    2015-12-01

    At ecosystems level, environmental parameters such as temperature, pH, dissolved oxygen concentration and intensity of UV radiation (UVR) have an important role on the efficiency of organisms' physiological and behavioral performances and consequently on the capacity of response to contaminants. Insignificant alterations of these parameters may compromise this response. In addition, these parameters can additionally alter chemical compounds by inducing their degradation, producing thereafter other metabolites. Understanding the combined effects of chemicals and environmental parameters is absolutely necessary for an adequate prediction of risk in aquatic environments. According to this scenario, this work aims at studying the combined toxicity of UVR and three xenobiotics: the biocide triclosan (TCS), the metal chromium (as potassium dichromate, PD) and the fungicide prochloraz (PCZ). To achieve this goal zebrafish (Danio rerio) embryos (3h post fertilization (hpf)) were exposed to several concentrations of each chemical combined with different UV intensities; mortality and eggs were recorded every 24h for the all test duration (96 h). Results showed different response patterns depending on the toxicant, stress levels and duration of exposure. The combination of UVR and TCS indicated a dose ratio deviation where synergism was observed when UVR was the dominant stressor (day 2). The combination of UVR and PD presented a dose level dependency at day 3 indicating antagonism at low stress levels, changing with time where at day 4, a dose ratio deviation showed statistically that synergism occurred at higher PD concentrations. Finally, UVR combined with PCZ indicated a dose ratio at day 3 and dose level deviation at day 4 of exposure, suggesting a synergistic response when PCZ is the dominant stressor in the combination. The obtained results in this study highlighted the importance of taking into account the possible interaction of stressors and time of exposure to

  8. Light-Addressable Measurement of in Vivo Tissue Oxygenation in an Unanesthetized Zebrafish Embryo via Phase-Based Phosphorescence Lifetime Detection

    PubMed Central

    Huang, Shih-Hao; Yu, Chu-Hung; Chien, Yi-Lung

    2015-01-01

    We have developed a digital light modulation system that utilizes a modified commercial projector equipped with a laser diode as a light source for quantitative measurements of in vivo tissue oxygenation in an unanesthetized zebrafish embryo via phase-based phosphorescence lifetime detection. The oxygen-sensitive phosphorescent probe (Oxyphor G4) was first inoculated into the bloodstream of 48 h post-fertilization (48 hpf) zebrafish embryos via the circulation valley to rapidly disperse probes throughout the embryo. The unanesthetized zebrafish embryo was introduced into the microfluidic device and immobilized on its lateral side by using a pneumatically actuated membrane. By controlling the illumination pattern on the digital micromirror device in the projector, the modulated excitation light can be spatially projected to illuminate arbitrarily-shaped regions of tissue of interest for in vivo oxygen measurements. We have successfully measured in vivo oxygen changes in the cardiac region and cardinal vein of a 48 hpf zebrafish embryo that experience hypoxia and subsequent normoxic conditions. Our proposed platform provides the potential for the real-time investigation of oxygen distribution in tissue microvasculature that relates to physiological stimulation and diseases in a developing organism. PMID:25856326

  9. Development of inter-family nuclear transplant embryos by transplanting the nuclei from the loach blastulae into the non-enucleated zebrafish eggs

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Shicui; Yuan, Jinduo; Li, Hongyan

    2003-03-01

    The developmental fate of the pronuclei in recombined embryos obtained by transplanting the donor nuclei into the non-enucleated eggs remains controversial in the case of fish. In the present study, the nuclei from the loach blastulae were transplanted into non-enucleated zebrafish eggs, the resulting 9 inter-family nuclear transplant embryos developed to larval stages. Although the development timing of the nuclear transplants resembled that of zebrafish, chromosome examination revealed that most of the recombined embryos were diploids with karyotype characteristic of loach, which was also proved by RAPD analysis. Moreover, 3 out of the 9 larval fish formed barb rudiments specific to loach. It was therefore concluded that the nuclear transplant larval fish were inter-family nucleo-cytoplasmic hybrids; and that only the donor nuclei were involved in the development of the nuclear transplant embryos, while the pronuclei in the non-enucleated eggs were likely automatically eliminated during the development.

  10. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.

    PubMed

    Duan, Junchao; Yu, Yang; Li, Yang; Li, Yanbo; Liu, Hongcui; Jing, Li; Yang, Man; Wang, Ji; Li, Chunqi; Sun, Zhiwei

    2016-06-01

    The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos. PMID:26551753

  11. [A comparison of the knockout efficiencies of two codon-optimized Cas9 coding sequences in zebrafish embryos].

    PubMed

    Fenghua, Zhang; Houpeng, Wang; Siyu, Huang; Feng, Xiong; Zuoyan, Zhu; Yonghua, Sun

    2016-02-01

    Recent years have witnessed the rapid development of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas9)system. In order to realize gene knockout with high efficiency and specificity in zebrafish, several labs have synthesized distinct Cas9 cDNA sequences which were cloned into different vectors. In this study, we chose two commonly used zebrafish-codon-optimized Cas9 coding sequences (zCas9_bz, zCas9_wc) from two different labs, and utilized them to knockout seven genes in zebrafish embryos, including the exogenous egfp and six endogenous genes (chd, hbegfa, th, eef1a1b, tyr and tcf7l1a). We compared the knockout efficiencies resulting from the two zCas9 coding sequences, by direct sequencing of PCR products, colony sequencing and phenotypic analysis. The results showed that the knockout efficiency of zCas9_wc was higher than that of zCas9_bz in all conditions. PMID:26907778

  12. The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos

    PubMed Central

    Bestman, Jennifer E.; Stackley, Krista D.; Rahn, Jennifer J.; Williamson, Tucker J.; Chan, Sherine S. L.

    2015-01-01

    The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease. PMID:25771346

  13. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio) Embryos and Eleutheroembryos Exposed to Methylmercury

    PubMed Central

    Mora-Zamorano, Francisco X.; Svoboda, Kurt R.; Carvan, Michael J.

    2016-01-01

    This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine. PMID:27123921

  14. Effect of fluorescent whitening agent on the transcription of cell damage-related genes in zebrafish embryos.

    PubMed

    Jung, Hyun; Seok, Seung-Hyeok; Han, Ju-Hee; Abdelkader, Tamer Said; Kim, Tae-Hyoun; Chang, Seo-Na; Ko, Ae-Sun; Choi, Seung-Kyu; Lee, Cho-Rong; Seo, Ji-Eun; Byun, Soo-Hyun; Kim, Jung-A; Park, Jae-Hak

    2012-09-01

    7-Diethylamino-4-methylcoumarin (DEMC) is a fluorescent whitening agent (FWAs). There have been some studies on DEMC's protective effects against biological activity but there are few papers about the in vivo toxicity of DEMC. In this study, we used wild-type zebrafish embryos 3 days post fertilization (dpf). Test solutions with DEMC concentrations were negative control (without vehicle), 0 (with vehicle, 0.01% v/v ethanol), 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 ppm. Embryos and larvae were counted for survival rate and hatching rate. Heart rates were also counted at 2.5 and 3.0 dpf. At 3.0 dpf, quantitative RT-PCR was performed with some samples (0, 0.25, 0.75 and 1.25 ppm) to determine the toxic effect to DEMC by detecting the expression levels of toxic-responsive genes. We used 11 genes, which included oxidative stress-related genes [sod(Mn), sod(Cu,Zn) and hsp70], mitochondrial metabolism-related genes (coxI, pyc, cyt and cyclinG1) and apoptosis-related genes (c-jun, bcl2, bax and p53). High-concentration DEMC-treated groups showed significant different survival rate, hatching rate and heart rate compared with low-concentration DEMC-treated groups. The LC50 of this chemical, 0.959 ppm, was calculated. We also confirmed that some genes in the DEMC exposure groups showed significantly up-regulations in expression levels compared with control groups. We concluded that the fluorescence agent, DEMC, has possible developmental toxicities and alteration effect of gene expression, which are related to oxidative stress, mitochondrial metabolism and apoptosis in zebrafish embryos. PMID:21538407

  15. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.

    PubMed

    Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel

    2015-01-01

    Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression. PMID:25937383

  16. Toxicity to embryo and adult zebrafish of copper complexes with two malonic acids as models for dissolved organic matter

    SciTech Connect

    Palmer, F.B.; Evans, C.W.; Butler, C.A.; Timperley, M.H.

    1998-08-01

    The toxicity to embryo and adult zebrafish (Danio rerio) of Cu complexes with two substituted malonic acids, benzyl- and n-hexadecyl-, chosen as models for low-molecular-weight natural dissolved organic matter, were investigated. Toxicity test solutions at pH 6.5 {+-} 0.1 with the required Cu ion-specific electrode. In the absence of malonic acids, concentrations of Cu{sup 2+} up to 1.13 {mu}mol/L increased the embryo hatching time from approx. 2 d in control solutions (no Cu or malonic acid) and solutions containing malonic acids without Cu to approx. 8 d. The Cu-benzylmalonic acid complex in the presence of inorganic Cu species did not delay hatching beyond that attributable to Cu{sup 2+}. In contrast, 0.60 {mu}mol/L Cu-n-hexadecylmalonic complexes delayed hatching by 5.5 d in excess of that attributable to 1.13 {mu}mol/L Cu{sup 2+}, assuming that the hatching delays caused by the different Cu species were additive, possibly because of Cu entry into the embryo as the lipophilic Cu-n-hexadecylmalonic complex. None of the Cu-malonic acid complexes was acutely toxic to adult zebrafish at concentrations up to 1.4 {mu}mol/L, possibly because Cu was removed from the Cu-malonic acid complexes by stronger chelating groups at the gill surface. Substituted malonic acids with similar proton and Cu association constants can be readily prepared with a variety of simple substituents, radiolabeled if required. Their results show that these acids could be useful ligands for investigating intracellular transport and metabolism of metal-organic complexes.

  17. Study of Pluripotency Markers in Zebrafish Embryos and Transient Embryonic Stem Cell Cultures

    PubMed Central

    Robles, Vanesa; Martí, Mercé

    2011-01-01

    Abstract Targeted genomic manipulation using embryonic stem (ES) cells has not yet been achieved in zebrafish, although methods for zebrafish ES cell culture has been described in literature. The knowledge of pluripotency markers in this species is almost nonexistent and this is a very limiting factor in the definition of the ideal culture conditions for ES cells. Here, we studied the expression of several genes associated with pluripotency in zebrafish embryonic cells versus differentiated cells and the expression of some of these genes is recorded throughout embryonic development. Some of the commonly accepted pluripotency markers are also tested in embryonic cells, transient embryonic cell cultures, and differentiated cells. Our results support the hypothesis that stage-specific embryonic antigen 1 (SSEA1) is a marker that precedes the expression of pluripotency genes in a zebrafish embryonic cell colony, in the same way that SOX2 precedes nestin expression in those colonies that have already started differentiation toward neurons. We consider this study a step forward in the knowledge of zebrafish pluripotency markers and, therefore, an important tool for the monitoring of zebrafish embryonic cell cultures. PMID:21563922

  18. A high-throughput lab-on-a-chip interface for zebrafish embryo tests in drug discovery and ecotoxicology

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Delaage, Pierre; Wlodkowic, Donald

    2013-12-01

    Drug discovery screenings performed on zebrafish embryos mirror with a high level of accuracy. The tests usually performed on mammalian animal models, and the fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, conventional methods utilising 96-well microtiter plates and manual dispensing of fish embryos are very time-consuming. They rely on laborious and iterative manual pipetting that is a main source of analytical errors and low throughput. In this work, we present development of a miniaturised and high-throughput Lab-on-a-Chip (LOC) platform for automation of FET assays. The 3D high-density LOC array was fabricated in poly-methyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining while the off-chip interfaces were fabricated using additive manufacturing processes (FDM and SLA). The system's design facilitates rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It has been conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. We also present proof-of-concept interfacing with a high-speed imaging cytometer Plate RUNNER HD® capable of multispectral image acquisition with resolution of up to 8192 x 8192 pixels and depth of field of about 40 μm. Furthermore, we developed a miniaturized and self-contained analytical device interfaced with a miniaturized USB microscope. This system modification is capable of performing rapid imaging of multiple embryos at a low resolution for drug toxicity analysis.

  19. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    SciTech Connect

    Teraoka, Hiroki Kubota, Akira; Dong, Wu; Kawai, Yusuke; Yamazaki, Koji; Mori, Chisato; Harada, Yoshiteru; Peterson, Richard E.; Hiraga, Takeo

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.

  20. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. PMID:26493272

  1. High-throughput screening of zebrafish embryos using automated heart detection and imaging.

    PubMed

    Spomer, Waldemar; Pfriem, Alexander; Alshut, Rüdiger; Just, Steffen; Pylatiuk, Christian

    2012-12-01

    Over the past decade, the zebrafish has become a key model organism in genetic screenings and drug discovery. A number of genes have been identified to affect the development of the shape and functioning of the heart, leading to zebrafish mutants with heart defects. The development of semiautomated microscopy systems has allowed for the investigation of drugs that reverse a disease phenotype on a larger scale. However, there is a lack of automated feature detection, and commercially available computer-aided microscopes are expensive. Screening of the zebrafish heart for drug discovery typically includes the identification of heart parameters, such as the frequency or fractional shortening. Until now, screening processes have been characterized by manual handling of the larvae and manual microscopy. Here, an intelligent robotic microscope is presented, which automatically identifies the orientation of a zebrafish in a micro well. A predefined region of interest, such as the heart, is detected automatically, and a video with higher magnification is recorded. Screening of a 96-well plate takes 35 to 55 min, depending on the length of the videos. Of the zebrafish hearts, 75% are recorded accurately without any user interaction. A description of the system, including the graphical user interface, is given. PMID:23053930

  2. Rapid targeting of plasmid DNA to zebrafish embryo nuclei by the nuclear localization signal of SV40 T antigen.

    PubMed

    Collas, P; Aleström, P

    1997-03-01

    Binding SV40 T antigen nuclear localization signals (NLSs) to plasmid DNA promotes transgene expression following injection of DNA-NLS complexes into the cytoplasm of zebrafish eggs. We now demonstrate that NLS peptides mediate import of DNA from the cytoplasm into embryo nuclei, under conditions in which naked DNA is not imported. Plasmid DNA was localized by polymerase chain reaction (PCR) in isolated nuclei, and relative amounts were quantified by densitometry. Binding DNA to NLSs, but not to nuclear-import-deficient peptides, promoted rapid targeting of DNA-NLS complexes to nuclei, and transport across the nuclear envelope. Import of DNA-NLS complexes was competed by co-injected albumin-NLS conjugates. NLS, but not reverse NLS, was detected on blots of nuclei probed with 32P-labeled DNA. The results suggest that NLS-mediated DNA transfer into nuclei may constitute a valuable tool for several gene transfer applications. PMID:9116870

  3. Developmental toxicity and neurotoxicity of two matrine-type alkaloids, matrine and sophocarpine, in zebrafish (Danio rerio) embryos/larvae.

    PubMed

    Lu, Zhao-Guang; Li, Ming-Hui; Wang, Jun-Song; Wei, Dan-Dan; Liu, Qing-Wang; Kong, Ling-Yi

    2014-08-01

    Matrine and sophocarpine are two major matrine-type alkaloids included in the traditional Chinese medicine (TCM) Kushen (the root of Sophora flavescens Ait.). They have been widely used clinically in China, however with few reports concerning their potential toxicities. This study investigated the developmental toxicity and neurotoxicity of matrine and sophocarpine on zebrafish embryos/larvae from 0 to 96/120h post fertilization (hpf). Both drugs displayed teratogenic and lethal effects with the EC50 and LC50 values at 145 and 240mg/L for matrine and 87.1 and 166mg/L for sophocarpine, respectively. Exposure of matrine and sophocarpine significantly altered spontaneous movement and inhibited swimming performance at concentrations below those causing lethality and malformations, indicating a neurotoxic potential of both drugs. The results are in agreement with most mammalian studies and clinical observations. PMID:24911943

  4. A relational-tubular (ReTu) deformable model for vasculature quantification of zebrafish embryo from microangiography image series.

    PubMed

    Feng, Jun; Ip, Horace H S; Cheng, Shuk H; Chan, Po K

    2004-09-01

    Embryonic cardiovascular system plays a vital role in embryonic development of human and animal. In this work, we introduce a novel deformable model, which we called Relational-tubular (ReTu) deformable model for segmenting and quantifying the embryonic vasculature of zebrafish embryo from microangiography image series. Particularly, to incorporate additional constraints on the spatial relationships among vessel branches, we introduce a new energy term called relation energy into the model energy function. This energy item acts as a repulsion force between neighboring vessels during the deformation to encourage them to move towards their respective volume data. Using the ReTu deformable model, the deformation process is an iterative two-stage procedure: vascular axis deformation and vascular surface deformation. The efficiency and robustness of this approach are demonstrated by experiments which show that satisfactory quantifications of the vasculature can be obtained after 3-4 iterations. PMID:15294311

  5. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.

    PubMed

    Lindeman, Leif C; Winata, Cecilia L; Aanes, Hvard; Mathavan, Sinnakaruppan; Alestrom, Peter; Collas, Philippe

    2010-01-01

    Embryo development proceeds from a cascade of gene activation and repression events controlled by epigenetic modifications of DNA and histones. Little is known about epigenetic states in the developing zebrafish, despite its importance as a model organism. We report here DNA methylation and histone modification profiles of promoters of developmentally-regulated genes (pou5f1, sox2, sox3, klf4, nnr, otx1b, nes, vasa), as well as tert and bactin2, in zebrafish embryos at the mid-late blastula transition, shortly after embryonic genome activation. We identify four classes of promoters based on the following profiles: (i) those enriched in marks of active genes (H3K9ac, H4ac, H3K4me3) without transcriptionally repressing H3K9me3 or H3K27me3; (ii) those enriched in H3K9ac, H4ac and H3K27me3, without H3K9me3; one such gene was klf4, shown by in situ hybridization to be mosaically expressed, likely accounting for the detection of both activating and repressive marks on its promoter; (iii) those enriched in H3K4me3 and H3K27me3 without acetylation; and (iv) those enriched in all histone modifications examined. Culture of embryo-derived cells under differentiation conditions leads to H3K9 and H4 deacetylation and H3K9 and H3K27 trimethylation on genes that are inactivated, yielding an epigenetic profile similar to those of fibroblasts or muscle. All promoters however retain H3K4me3, indicating an uncoupling of H3K4me3 occupancy and gene expression. All non-CpG island developmentally-regulated promoters are DNA unmethylated in embryos, but hypermethylated in fibroblasts. Our results suggest that differentially expressed embryonic genes are regulated by various patterns of histone modifications on unmethylated DNA, which create a developmentally permissive chromatin state. PMID:20336603

  6. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos.

    PubMed

    Li, Vincent Wai Tsun; Tsui, Mei Po Mirabelle; Chen, Xueping; Hui, Michelle Nga Yu; Jin, Ling; Lam, Raymond H W; Yu, Richard Man Kit; Murphy, Margaret B; Cheng, Jinping; Lam, Paul Kwan Sing; Cheng, Shuk Han

    2016-05-01

    The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects. PMID:26888529

  7. No correlation between multilamellar bodies in the inner ear and further organs of mutant (backstroke, bks) and wildtype zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Anken, R.; Ibsch, M.; Kniesel, U.; Rahmann, H.

    2004-01-01

    The origin of the proteinacious matrix of the inner ear stones (otoliths) of vertebrates has not yet been clarified. Using the backstroke mutant (bks) of the zebrafish Danio rerio, which is characterized by a complete lack of otoliths, we searched for possibly missing or aberrant structural components within the macular epithelia of the inner ears of embryos on the ultrastructural level. Numerous multilamellar bodies (MLBs) were found. The MLBs were, however, not restricted to the inner ears of mutants but were also found in wildtype individuals and in further organs such as brain and liver. MLBs have hitherto never been described from the inner ear of fish and are generally estimated to be rare structures. Their occurrence in fish liver can, however, be induced by using particular chemical substances, which seem to effect adaptive compensatory processes on the cellular level. Such a chemical treatment also affects the ultrastructure of further organelles. Since the occurrence of MLBs in the liver of zebrafish was not accompanied by an alteration of the morphology of other organelles, their occurrence seems not to be due to environmental stress. The findings indicate that the MLBs cannot be correlated with bks-inherent features as well as with missing otolith development/growth. Since the occurrence of MLBs was independent from the developmental stage of a specimen and its overall tissue preservation, it can moreover be excluded that these MLBs merely represent fixation artifacts. Their presence more likely indicates cellular remodelling processes of hitherto unknown significance.

  8. Deficiency in the mRNA export mediator Gle1 impairs Schwann cell development in the zebrafish embryo.

    PubMed

    Seytanoglu, A; Alsomali, N I; Valori, C F; McGown, A; Kim, H R; Ning, K; Ramesh, T; Sharrack, B; Wood, J D; Azzouz, M

    2016-05-13

    GLE1 mutations cause lethal congenital contracture syndrome 1 (LCCS1), a severe autosomal recessive fetal motor neuron disease, and more recently have been associated with amyotrophic lateral sclerosis (ALS). The gene encodes a highly conserved protein with an essential role in mRNA export. The mechanism linking Gle1 function to motor neuron degeneration in humans has not been elucidated, but increasing evidence implicates abnormal RNA processing as a key event in the pathogenesis of several motor neuron diseases. Homozygous gle1(-/-) mutant zebrafish display various aspects of LCCS, showing severe developmental abnormalities including motor neuron arborization defects and embryonic lethality. A previous gene expression study on spinal cord from LCCS fetuses indicated that oligodendrocyte dysfunction may be an important factor in LCCS. We therefore set out to investigate the development of myelinating glia in gle1(-/-) mutant zebrafish embryos. While expression of myelin basic protein (mbp) in hindbrain oligodendrocytes appeared relatively normal, our studies revealed a prominent defect in Schwann cell precursor proliferation and differentiation in the posterior lateral line nerve. Other genes mutated in LCCS have important roles in Schwann cell development, thereby suggesting that Schwann cell deficits may be a common factor in LCCS pathogenesis. These findings illustrate the potential importance of glial cells such as myelinating Schwann cells in motor neuron diseases linked to RNA processing defects. PMID:26921650

  9. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine.

    PubMed

    Adeyemi, Joseph A; da Cunha Martins-Junior, Airton; Barbosa, Fernando

    2015-01-01

    Arsenic and atrazine are common environmental contaminants probably due to their extensive use as pesticides on agricultural farmlands. In this study, zebrafish embryos were exposed to 0.8mM arsenic, 0.1mM atrazine or mixture of both for 96h, and various indices which are indicative of teratogenicity (egg coagulation, growth retardation, edema formation, hatching success, scoliosis), genotoxicity (DNA tail moments) and oxidative stress (lipid peroxidation and reduced glutathione (GSH) levels, catalase and glutathione peroxidase activities) were determined. The negative control were exposed to 0.5% DMSO while the positive control group were exposed to 4mg/L 3,4 dichloroaniline. Egg coagulation was highest in the positive control (85%), followed by the group that was exposed to mixture of arsenic and atrazine (30%) and least in the arsenic-exposed group (20%). The incidences of edema (59%) and growth retardation (35.2%) were more frequent in the group that was exposed to contaminant mixture and least in atrazine-exposed group where incidences of both edema and growth retardation were 15%. The incidence of scoliosis ranged between 20% in arsenic-exposed group and 10% in atrazine-exposed group. Hatching success was generally high in all the groups ranging between 95% in atrazine-exposed group and 88% in the group that was exposed to mixture of arsenic and atrazine. There was no evidence of teratogenic effect in the negative control group. DNA tail moments and lipid peroxidation levels increased significantly while GSH levels and catalase activity decreased significantly in contaminant-exposed groups, especially the mixture compared to the negative control. There was no significant change in GPx activity in the exposed groups compared to the negative control. The results of this study demonstrate that both arsenic and atrazine are potentially teratogenic and genotoxic, and can cause oxidative stress in zebrafish embryos, and these effects are potentiated by toxic

  10. Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide

    SciTech Connect

    Strecker, Ruben; Weigt, Stefan; Braunbeck, Thomas

    2013-04-15

    In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fractures of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head.

  11. Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos.

    PubMed

    López-Bellido, Roger; Barreto-Valer, Katherine; Sánchez-Simón, Fátima Macho; Rodríguez, Raquel E

    2012-01-01

    Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them.In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process. PMID:23226419

  12. Cocaine Modulates the Expression of Opioid Receptors and miR-let-7d in Zebrafish Embryos

    PubMed Central

    López-Bellido, Roger; Barreto-Valer, Katherine; Sánchez-Simón, Fátima Macho; Rodríguez, Raquel E.

    2012-01-01

    Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them. In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process. PMID:23226419

  13. Cardiac toxicity by sublethal 2,3,7,8-tetrachlorodibenzo-p-dioxin correlates with its anti-proliferation effect on cardiomyocytes in zebrafish embryos.

    PubMed

    Chen, Jing

    2015-02-01

    The cardiac toxicity of zebrafish embryos in response to the lethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been well characterized. Dioxin contamination levels in nature are usually lower, however, and sublethal TCDD toxicity is less investigated. The present study found that the nonlethal doses of TCDD for 72-h-postfertilization (hpf) zebrafish embryos were 25 pg/mL and lower. For the present study, sublethal TCDD concentrations of 10 pg/mL and 25 pg/mL were selected, and their toxicity was then characterized. The results showed that embryos still exhibited acute and subchronic cardiac toxicity at these 2 dosages. The stroke volume and cardiac output of these embryos significantly declined early until 8 d postexposure. Embryos' heart size became smaller, and the hearts contained fewer cardiomyocytes per heart, with decreased cardiomyocyte proliferation. Apoptosis was not detected either in the TCDD-treated or the control hearts. Real-time polymerase chain reaction (PCR) revealed that the transcription of a battery of cell-cycle-related genes was suppressed within the sublethal TCDD-treated heart. In contrast, embryonic jaw development seemed not to be affected. The present study suggests that dioxin contamination, even at lower levels, might lead to cardiac toxicity in fish embryos. Such cardiac toxicity presents as disrupted normal heart function, originating from the anti-proliferative effect of sublethal TCDD on cardiomyocytes. PMID:25477153

  14. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...

  15. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    de Luca, Elisa; Zaccaria, Gian Maria; Hadhoud, Marwa; Rizzo, Giovanna; Ponzini, Raffaele; Morbiducci, Umberto; Santoro, Massimo Mattia

    2014-05-01

    Heartbeat measurement is important in assesssing cardiac function because variations in heart rhythm can be the cause as well as an effect of hidden pathological heart conditions. Zebrafish (Danio rerio) has emerged as one of the most useful model organisms for cardiac research. Indeed, the zebrafish heart is easily accessible for optical analyses without conducting invasive procedures and shows anatomical similarity to the human heart. In this study, we present a non-invasive, simple, cost-effective process to quantify the heartbeat in embryonic zebrafish. To achieve reproducibility, high throughput and flexibility (i.e., adaptability to any existing confocal microscope system and with a user-friendly interface that can be easily used by researchers), we implemented this method within a software program. We show here that this platform, called ZebraBeat, can successfully detect heart rate variations in embryonic zebrafish at various developmental stages, and it can record cardiac rate fluctuations induced by factors such as temperature and genetic- and chemical-induced alterations. Applications of this methodology may include the screening of chemical libraries affecting heart rhythm and the identification of heart rhythm variations in mutants from large-scale forward genetic screens.

  16. Generating Chimeric Mice by Using Embryos from Nonsuperovulated BALB/c Mice Compared with Superovulated BALB/c and Albino C57BL/6 Mice.

    PubMed

    Esmail, Michael Y; Qi, Peimin; Connor, Aurora Burds; Fox, James G; García, Alexis

    2016-01-01

    The reliable generation of high-percentage chimeras from gene-targeted C57BL/6 embryonic stem cells has proven challenging, despite optimization of cell culture and microinjection techniques. To improve the efficiency of this procedure, we compared the generation of chimeras by using 3 different inbred, albino host, embryo-generating protocols: BALB/cAnNTac (BALB/c) donor mice superovulated at 4 wk of age, 12-wk-old BALB/c donor mice without superovulation, and C57BL/6NTac-Tyr(tm1Arte) (albino B6) mice superovulated at 4 wk of age. Key parameters measured included the average number of injectable embryos per donor, the percentage of live pups born from the total number of embryos transferred to recipients, and the number of chimeric pups with high embryonic-stem-cell contribution by coat color. Although albino B6 donors produced significantly more injectable embryos than did BALB/c donors, 12-wk-old BALB/c donor produced high-percentage (at least 70%) chimeras more than 2.5 times as often as did albino B6 mice and 20 times more efficiently than did 4-wk-old BALB/c donors. These findings clearly suggest that 12-wk-old BALB/c mice be used as blastocyst donors to reduce the number of mice used to generate each chimera, reduce the production of low-percentage chimeras, and maximize the generation of high-percentage chimeras from C57BL/6 embryonic stem cells. PMID:27423145

  17. DarT: The embryo test with the Zebrafish Danio rerio--a general model in ecotoxicology and toxicology.

    PubMed

    Nagel, Roland

    2002-01-01

    The acute fish test is an animal test whose ecotoxicological relevance is worthy of discussion. The primary aim of protection in ecotoxicology is the population and not the individual. Furthermore the concentration of pollutants in the environment is normally not in the lethal range. Therefore the acute fish test covers solely the situation after chemical spills. Nevertheless, acute fish toxicity data still belong to the base set used for the assessment of chemicals. The embryo test with the zebrafish Danio rerio (DarT) is recommended as a substitute for the acute fish test. For validation an international laboratory comparison test was carried out. A summary of the results is presented in this paper. Based on the promising results of testing chemicals and waste water the test design was validated by the DIN-working group "7.6 Fischei-Test". A normed test guideline for testing waste water with fish is available. The test duration is short (48 h) and within the test different toxicological endpoints can be examined. Endpoints from the embryo test are suitable for QSAR-studies. Besides the use in ecotoxicology the introduction as a toxicological model was investigated. Disturbance of pigmentation and effects on the frequency of heart-beat were examined. A further important application is testing of teratogenic chemicals. Based on the results DarT could be a screening test within preclinical studies. PMID:12096329

  18. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos.

    PubMed

    Pozzi, Paolo; Sironi, Laura; D'Alfonso, Laura; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe; Pallavicini, Piersandro; Cotelli, Franco; Foglia, Efrem A

    2014-06-01

    Biomedical issues in vasculogenesis and cardiogenesis require methods to follow hemodynamics with high spatial (micrometers) and time (milliseconds) resolution. At the same time, we need to follow relevant morphogenetic processes on large fields of view. Fluorescence cross-correlation spectroscopy coupled to scanning or wide-field microscopy meets these needs but has limited flexibility in the excitation pattern. To overcome this limitation, we develop here a two-photon two-spots setup coupled to an all-reflective near-infrared (NIR) optimized scanning system and to an electron multiplying charge-coupled device. Two NIR laser spots are spaced at adjustable micron-size distances (1 to 50 μm) by means of a Twyman-Green interferometer and repeatedly scanned on the sample, allowing acquisition of information on flows at 4 ms-3 μm time-space resolution in parallel on an extended field of view. We analyze the effect of nonhomogeneous and variable flow on the cross-correlation function by numerical simulations and show exemplary application of this setup in studies of blood flow in zebrafish embryos in vivo. By coupling the interferometer with the scanning mirrors and by computing the cross-correlation function of fluorescent red blood cells, we are able to map speed patterns in embryos' vessels. PMID:24946713

  19. Long-Chain Acyl CoA Synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo

    PubMed Central

    Miyares, Rosa Linda; Stein, Cornelia; Renisch, Björn; Anderson, Jennifer Lynn; Hammerschmidt, Matthias; Farber, Steven Arthur

    2013-01-01

    Summary Long-chain polyunsaturated fatty acids (LC-PUFA) and their metabolites are critical players in cell biology and embryonic development. Here we show that long-chain acyl CoA synthetase 4a (Acsl4a), an LC-PUFA activating enzyme, is essential for proper patterning of the zebrafish dorsoventral axis. Loss of Acsl4a results in dorsalized embryos due to attenuated Bmp signaling. We demonstrate that Acsl4a modulates the activity of Smad transcription factors, the downstream mediators of Bmp signaling. Acsl4a promotes the inhibition of p38 MAPK and the Akt-mediated inhibition of glycogen synthase kinase 3 (GSK3), critical inhibitors of Smad activity. Consequently, introduction of a constitutively active Akt can rescue the dorsalized phenotype of Acsl4a deficient embryos. Our results reveal a critical role for Acsl4a in modulating Bmp-Smad activity and provide a potential avenue for LC-PUFAs to influence a variety of developmental processes. PMID:24332754

  20. Erk-Creb pathway suppresses glutathione-S-transferase pi expression under basal and oxidative stress conditions in zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Fa, Svetlana; Pogrmic-Majkic, Kristina; Andric, Nebojsa

    2016-01-01

    Transcriptional activation of phase II enzymes including glutathione-S-transferase pi class (Gst Pi) is important for redox regulation and defense from xenobiotics. The role of extracellular signal-regulated kinase (Erk) and protein kinase B (Akt) in regulation of Gst Pi expression has been described using adult mammalian cells. Whether these signaling pathways contribute to Gst Pi expression during embryogenesis is unknown. Using zebrafish embryo model, we provide novel evidence that Erk signaling acts as a specific suppressor of gstp1-2 mRNA during early embryogenesis. Addition of Erk inhibitor U0126 enhanced gstp1-2 mRNA expression during transition from blastula to the segmentation stage and from pharyngula until the hatching stage. Basal Erk activity did not affect gstp1-2 expression in tert-butylhydroquinone-exposed embryos. Addition of phorbol 12-myristate 13-acetate increased Erk activity leading to suppression of gstp1-2 mRNA. Activation of cAMP/Creb pathway by forskolin prevented gstp1-2 expression, whereas U0126 suppressed Creb phosphorylation, thus setting up Creb as a proximal transmitter of Erk inhibitory effect. Collectively, these findings suggest that Erk-Creb pathway exerts suppressive effect on gstp1-2 mRNA in a narrow developmental window. This study also provides a novel link between Erk and gstp1-2 expression, setting apart a possible differential regulation of gstp1-2 in adult and embryonic cells. PMID:26494252

  1. Influence of the perivitelline space on the quantification of internal concentrations of chemicals in eggs of zebrafish embryos (Danio rerio).

    PubMed

    Brox, Stephan; Ritter, Axel P; Küster, Eberhard; Reemtsma, Thorsten

    2014-12-01

    The chorion and the perivitelline space which surround unhatched zebrafish embryos (ZFE, Danio rerio) may affect the determination of internal concentrations of study compounds taken up in early life-stages of ZFE. Internal concentration-time profiles were gathered for benzocaine, caffeine, clofibric acid, metribuzin and phenacetin as study compounds over 96 h of exposure starting with ZFE at 4h post-fertilization. Liquid chromatography coupled to tandem-mass spectrometry (LC-MS/MS) was used to determine the concentration of the study compounds from intact (i.e. unhatched), dechorionated and from hatched ZFE. The mass of the study compounds per ZFE was 5-30 ng higher for intact ZFE compared to dechorionated ones. Thus, internal concentrations were overestimated if only intact ZFE were analyzed. Dechorionation of unhatched ZFE after their exposure is proposed to determine the true internal concentration in the embryo. For the compounds studied here the mass of the study compounds determined in unhatched ZFE after a short term (5 min) exposure provided a reasonable estimate of the mass taken up by the chorion and the PVS. This mass can be subtracted from the total mass found in unhatched ZFE to calculate the true internal mass. Estimating the mass in the chorion and the PVS from the concentration of the study compound in the external exposure medium and the volume of the PVS provided no reasonable results. PMID:25456227

  2. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    SciTech Connect

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  3. Retinoic acid negatively regulates dact3b expression in the hindbrain of zebrafish embryos

    PubMed Central

    Mandal, Amrita; Waxman, Joshua

    2014-01-01

    Wnt signaling plays important roles in normal development as well as pathophysiological conditions. The Dapper antagonist of β-catenin (Dact) proteins are modulators of both canonical and non-canonical Wnt signaling via direct interactions with Dishevelled (Dvl) and Van Gogh like-2 (Vangl2). Here, we report the dynamic expression patterns of two zebrafish dact3 paralogs during early embryonic development. Our whole mount in situ hybridization (WISH) analysis indicates that specific dact3a expression starts by the tailbud stage in adaxial cells. Later, it is expressed in the anterior lateral plate mesoderm, somites, migrating cranial neural crest, and hindbrain neurons. By comparison, dact3b expression initiates on the dorsal side at the dome stage and soon after is expressed in the dorsal forerunner cells (DFCs) during gastrulation. At later stages, dact3b expression becomes restricted to the branchial neurons of the hindbrain and to the 2nd pharyngeal arch. To investigate how zebrafish dact3 gene expression is regulated, we manipulated retinoic acid (RA) signaling during development and found it negatively regulates dact3b in the hindbrain. Our study is the first to document the expression of the paralogous zebrafish dact3 genes during early development and demonstrate dact3b can be regulated by RA signaling. Therefore, our study opens up new avenues to study Dact3 function in the development of multiple tissues and suggests a previously unappreciated cross regulation of Wnt signaling by RA signaling in the developing vertebrate hindbrain. PMID:25266145

  4. Toxicity Assessments of Near-infrared Upconversion Luminescent LaF3:Yb,Er in Early Development of Zebrafish Embryos

    PubMed Central

    Wang, Kan; Ma, Jiebing; He, Meng; Gao, Guo; Xu, Hao; Sang, Jie; Wang, Yuxia; Zhao, Baoquan; Cui, Daxiang

    2013-01-01

    This study reports the effects of upconversion nanoparticles (UCNPs) LaF3:Yb,Er on zebrafish, with the aim of investigating UCNPs toxicity. LaF3:Yb,Er were prepared by an oleic acid/ionic liquid two-phase system, and characterized by transmission electron microscope and X-ray powder diffraction. 140 zebrafish embryos were divided into six test groups and one control group, and respectively were injected into 5, 25, 50, 100, 200, 400 μg/mL LaF3:Yb,Er@SiO2 solution, and respectively were raised for 5 days. Each experiment was repeated ten times. Results showed that water-soluble LaF3:Yb,Er were successfully prepared, and did not exhibit obvious toxicity to zebrafish embryos under 100 μg/mL, but exhibited chronic toxicities 200 μg/mL in vivo, resulting in malformations and delayed hatching rate and embryonic and larval development. The excretion channels of LaF3:Yb,Er in adult zebrafish were mainly found in the intestine after being injected evenly for 24 h. In conclusion, the exploration of LaF3:Yb,Er for in vivo applications in animals and humans must consider UCNPs biocompatibility. PMID:23606912

  5. Assessment of anti-inflammatory effect of 5β-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model.

    PubMed

    Wijesinghe, W A J P; Kim, Eun-A; Kang, Min-Cheol; Lee, Won-Woo; Lee, Hyi-Seung; Vairappan, Charles S; Jeon, You-Jin

    2014-01-01

    5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient. PMID:24317194

  6. No Correlation between Multiamellar Bodies in the inner Ear and further Organs of mutant (backstroke, bks) and wildtype Zebrafish Embryos

    NASA Astrophysics Data System (ADS)

    Anken, R.; Ibsch, M.; Kniesel, U.; Rahmann, H.

    Previous experiments have shown that altered gravity affects the size of fish inner ear otoliths and thus the provision of the otoliths' proteinacious matrix. The origin of this matrix has not yet been clarified. Using the backstroke mutant (bks) of the zebrafish Danio rerio, which is characterized by a complete lack of otoliths, we searched for possibly missing or aberrant structural components within the macular epithelia of the inner ears of embryos on the ultrastructural level. Numerous multilamellar bodies (ML s) were found. The MLBs were, however,B not restricted to the inner ears of mutants but were also found in wildtype individuals and in further organs such as brain and liver. MLBs have hitherto never been described from the inner ear of fish and are generally estimated to be rare structures. In fish liver, however, MLBs can be observed after treatment of the animals with particular chemical substances, which seem to effect adaptive compensatory processes on the cellular level. Such a chemical treatment also affects the ultrastructure of further organelles. Since MLBs in the liver of zebrafish were not accompanied by an alteration of the morphology of other organelles, their occurrence seemed not to be due to environmental stress. The findings indicate that t he MLBs cannot be correlated with bks-inherent features as well as with missing otolith development/growth. Since MLBs occurred independently from the developmental stage of a specimen and its overall tissue preservation, it can moreover be excluded that hese MLBs merely representt fixation artifacts. Their presence more likely indicates cellular remodelling processes of hitherto unknown significance. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  7. Cryobiological properties of immature zebrafish oocytes assessed by their ability to be fertilized and develop into hatching embryos.

    PubMed

    Seki, Shinsuke; Kouya, Toshimitsu; Tsuchiya, Ryoma; Valdez, Delgado M; Jin, Bo; Koshimoto, Chihiro; Kasai, Magosaburo; Edashige, Keisuke

    2011-02-01

    As a step to develop a cryopreservation method for zebrafish oocytes, we investigated the cryobiological properties of immature oocytes at stage III by examining their ability to mature and to develop into hatching embryos after fertilization. When oocytes were chilled at -5°C for 30min, the maturation rate decreased, but the rates of fertilization and hatching were not significantly different from those of controls. When oocytes were exposed to hypotonic solutions for 60min at 25°C, the rates of maturation, fertilization, and hatching decreased in a solution with 0.16Osm/kg or below. When oocytes were exposed to hypertonic solutions (containing sucrose) at 25°C for 30min, the maturation rate decreased in solution with 0.51Osm/kg, whereas the hatching rate decreased with lower osmolality (0.40Osm/kg). In an experiment on the toxicity of cryoprotectants (∼10%, at 25°C), it was found that glycerol and ethylene glycol were toxic both by the assessment of maturation and hatching. Propylene glycol, DMSO and methanol were less toxic by the assessment of maturation, but were found to be toxic by the assessment of hatching. Methanol was the least toxic, but it was less effective to make a solution vitrify than propylene glycol. Therefore, a portion of methanol was replaced with propylene glycol. The replacement increased the toxicity, but could be effective to reduce chilling injury at -5°C. These results clarified the sensitivity of immature oocytes to various cryobiological properties accurately, which will be useful for realizing cryopreservation of zebrafish oocytes. PMID:21114971

  8. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos.

    PubMed

    Lacave, José María; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P; Orbea, Amaia

    2016-08-12

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l(-1) for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l(-1) of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos. PMID:27363512

  9. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    María Lacave, José; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P.; Orbea, Amaia

    2016-08-01

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l‑1 for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l‑1 of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.

  10. Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.

    PubMed

    Song, Jing E; Si, Jing; Zhou, Rong; Liu, Hua Peng; Wang, Zhen Guo; Gan, Lu; Gui, Fang; Liu, Bin; Zhang, Hong

    2016-06-01

    The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity. PMID:27470107

  11. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  12. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos

    PubMed Central

    Etard, Christelle; Roostalu, Urmas; Strähle, Uwe

    2010-01-01

    The chaperones Unc45b and Hsp90a are essential for folding of myosin in organisms ranging from worms to humans. We show here that zebrafish Unc45b, but not Hsp90a, binds to the putative cytidine deaminase Apobec2 (Apo2) in an interaction that requires the Unc45/Cro1p/She4p-related (UCS) and central domains of Unc45b. Morpholino oligonucleotide-mediated knockdown of the two related proteins Apo2a and Apo2b causes a dystrophic phenotype in the zebrafish skeletal musculature and impairs heart function. These phenotypic traits are shared with mutants of unc45b, but not with hsp90a mutants. Apo2a and -2b act nonredundantly and bind to each other in vitro, which suggests a heteromeric functional complex. Our results demonstrate that Unc45b and Apo2 proteins act in a Hsp90a-independent pathway that is required for integrity of the myosepta and myofiber attachment. Because the only known function of Unc45b is that of a chaperone, Apo2 proteins may be clients of Unc45b but other yet unidentified processes cannot be excluded. PMID:20440001

  13. Foxa2 and Hif1ab regulate maturation of intestinal goblet cells by modulating agr2 expression in zebrafish embryos.

    PubMed

    Lai, Yun-Ren; Lu, Yu-Fen; Lien, Huang-Wei; Huang, Chang-Jen; Hwang, Sheng-Ping L

    2016-07-15

    Mammalian anterior gradient 2 (AGR2), an endoplasmic reticulum (ER) protein disulfide-isomerase (PDI), is involved in cancer cell growth and metastasis, asthma and inflammatory bowel disease (IBD). Mice lacking Agr2 exhibit decreased Muc2 protein in intestinal goblet cells, abnormal Paneth cell development, ileitis and colitis. Despite its importance in cancer biology and inflammatory diseases, the mechanisms regulating agr2 expression in the gastrointestinal tract remain unclear. In the present study, we investigated the mechanisms that control agr2 expression in the pharynx and intestine of zebrafish by transient/stable transgenesis, coupled with motif mutation, morpholino knockdown, mRNA rescue and ChIP. A 350 bp DNA sequence with a hypoxia-inducible response element (HRE) and forkhead-response element (FHRE) within a region -4.5 to -4.2 kbp upstream of agr2 directed EGFP expression specifically in the pharynx and intestine. No EGFP expression was detected in the intestinal goblet cells of Tg(HREM:EGFP) or Tg(FHREM:EGFP) embryos with mutated HRE or FHRE, whereas EGFP was expressed in the pharynx of Tg(HREM:EGFP), but not Tg(FHREM:EGFP), embryos. Morpholino knockdown of foxa1 (forkhead box A1) reduced agr2 levels in the pharynx, whereas knockdown of foxa2 or hif1ab decreased intestinal agr2 expression and affected the differentiation and maturation of intestinal goblet cells. These results demonstrate that Foxa1 regulates agr2 expression in the pharynx, whereas both Foxa2 and Hif1ab control agr2 expression in intestinal goblet cells to regulate maturation of these cells. PMID:27222589

  14. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp.

    PubMed Central

    Eshwar, Athmanya K.; Tall, Ben D.; Gangiredla, Jayanthi; Gopinath, Gopal R.; Patel, Isha R.; Neuhauss, Stephan C. F.; Stephan, Roger; Lehner, Angelika

    2016-01-01

    Bacteria belonging to the genus Cronobacter have been recognized as causative agents of life-threatening systemic infections primarily in premature, low-birth weight and immune-compromised neonates. Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Whole genome comparisons and in silico analysis have proven to be powerful tools in elucidating potential virulence determinants, the presence/absence of which may explain the differential virulence behaviour of strains. However, validation of these factors has in the past been hampered by the availability of a suitable neonatal animal model. In the present study we have used zebrafish embryos to model Cronobacter infections in vivo using wild type and genetically engineered strains. Our experiments confirmed the role of the RepF1B-like plasmids as “virulence plasmids” in Cronobacter and underpinned the importantce of two putative virulence factors—cpa and zpx—in in vivo pathogenesis. We propose that by using this model in vivo infection studies are now possible on a large scale level which will boost the understanding on the virulence strategies employed by these pathogens. PMID:27355472

  15. Turnover of the actomyosin complex in zebrafish embryos directs geometric remodelling and the recruitment of lipid droplets

    PubMed Central

    Dutta, Asmita; Kumar Sinha, Deepak

    2015-01-01

    Lipid droplets (LDs), reservoirs of cholesterols and fats, are organelles that hydrolyse lipids in the cell. In zebrafish embryos, the actomyosin complex and filamentous microtubules control the periodic regulation of the LD geometry. Contrary to the existing hypothesis that LD transport involves the kinesin-microtubule system, we find that their recruitment to the blastodisc depends on the actomyosin turnover and is independent of the microtubules. For the first time we report the existence of two distinct states of LDs, an inactive and an active state, that occur periodically, coupled weakly to the cleavage cycles. LDs are bigger, more circular and more stable in the inactive state in which the geometry of the LDs is maintained by actomyosin as well as microtubules. The active state has smaller and irregularly shaped LDs that show shape fluctuations that are linked to actin depolymerization. Because most functions of LDs employ surface interactions, our findings on the LD geometry and its regulation bring new insights to the mechanisms associated with specific functions of LDs, such as their storage capacity for fats or proteins, lipolysis etc. PMID:26355567

  16. Brain Intraventricular Injection of Amyloid-β in Zebrafish Embryo Impairs Cognition and Increases Tau Phosphorylation, Effects Reversed by Lithium

    PubMed Central

    Nery, Laura Roesler; Eltz, Natalia Silva; Hackman, Cristiana; Fonseca, Raphaela; Altenhofen, Stefani; Guerra, Heydi Noriega; Freitas, Vanessa Morais; Bonan, Carla Denise; Vianna, Monica Ryff Moreira Roca

    2014-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with no effective treatment and commonly diagnosed only on late stages. Amyloid-β (Aβ) accumulation and exacerbated tau phosphorylation are molecular hallmarks of AD implicated in cognitive deficits and synaptic and neuronal loss. The Aβ and tau connection is beginning to be elucidated and attributed to interaction with different components of common signaling pathways. Recent evidences suggest that non-fibrillary Aβ forms bind to membrane receptors and modulate GSK-3β activity, which in turn phosphorylates the microtubule-associated tau protein leading to axonal disruption and toxic accumulation. Available AD animal models, ranging from rodent to invertebrates, significantly contributed to our current knowledge, but complementary platforms for mechanistic and candidate drug screenings remain critical for the identification of early stage biomarkers and potential disease-modifying therapies. Here we show that Aβ1–42 injection in the hindbrain ventricle of 24 hpf zebrafish embryos results in specific cognitive deficits and increased tau phosphorylation in GSK-3β target residues at 5dpf larvae. These effects are reversed by lithium incubation and not accompanied by apoptotic markers. We believe this may represent a straightforward platform useful to identification of cellular and molecular mechanisms of early stage AD-like symptoms and the effects of neuroactive molecules in pharmacological screenings. PMID:25187954

  17. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. PMID:26302921

  18. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp.

    PubMed

    Eshwar, Athmanya K; Tall, Ben D; Gangiredla, Jayanthi; Gopinath, Gopal R; Patel, Isha R; Neuhauss, Stephan C F; Stephan, Roger; Lehner, Angelika

    2016-01-01

    Bacteria belonging to the genus Cronobacter have been recognized as causative agents of life-threatening systemic infections primarily in premature, low-birth weight and immune-compromised neonates. Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Whole genome comparisons and in silico analysis have proven to be powerful tools in elucidating potential virulence determinants, the presence/absence of which may explain the differential virulence behaviour of strains. However, validation of these factors has in the past been hampered by the availability of a suitable neonatal animal model. In the present study we have used zebrafish embryos to model Cronobacter infections in vivo using wild type and genetically engineered strains. Our experiments confirmed the role of the RepF1B-like plasmids as "virulence plasmids" in Cronobacter and underpinned the importantce of two putative virulence factors-cpa and zpx-in in vivo pathogenesis. We propose that by using this model in vivo infection studies are now possible on a large scale level which will boost the understanding on the virulence strategies employed by these pathogens. PMID:27355472

  19. Metabolism of clofibric acid in zebrafish embryos (Danio rerio) as determined by liquid chromatography-high resolution-mass spectrometry.

    PubMed

    Brox, Stephan; Seiwert, Bettina; Haase, Nora; Küster, Eberhard; Reemtsma, Thorsten

    2016-01-01

    The zebrafish embryo (ZFE) is increasingly used in ecotoxicology research but detailed knowledge of its metabolic potential is still limited. This study focuses on the xenobiotic metabolism of ZFE at different life-stages using the pharmaceutical compound clofibric acid as study compound. Liquid chromatography with quadrupole-time-of-flight mass spectrometry (LC-QToF-MS) is used to detect and to identify the transformation products (TPs). In screening experiments, a total of 18 TPs was detected and structure proposals were elaborated for 17 TPs, formed by phase I and phase II metabolism. Biotransformation of clofibric acid by the ZFE involves conjugation with sulfate or glucuronic acid, and, reported here for the first time, with carnitine, taurine, and aminomethanesulfonic acid. Further yet unknown cyclization products were identified using non-target screening that may represent a new detoxification pathway. Sulfate containing TPs occurred already after 3h of exposure (7hpf), and from 48h of exposure (52hpf) onwards, all TPs were detected. The detection of these TPs indicates the activity of phase I and phase II enzymes already at early life-stages. Additionally, the excretion of one TP into the exposure medium was observed. The results of this study outline the high metabolic potential of the ZFE with respect to the transformation of xenobiotics. Similarities but also differences to other test systems were observed. Biotransformation of test chemicals in toxicity testing with ZFE may therefore need further consideration. PMID:26945519

  20. Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos

    SciTech Connect

    Ming Liwai; Webb, Sarah E.; Lee, Karen W.; Miller, Andrew L. . E-mail: almiller@ust.hk

    2006-10-15

    Cytokinesis is the final stage in cell division that serves to partition cytoplasm and daughter nuclei into separate cells. Membrane remodeling at the cleavage plane is a required feature of cytokinesis in many species. In animal cells, however, the precise mechanisms and molecular interactions that mediate this process are not yet fully understood. Using real-time imaging in live, early stage zebrafish embryos, we demonstrate that vesicles labeled with the v-SNARE, VAMP-2, are recruited to the cleavage furrow during deepening in a microtubule-dependent manner. These vesicles then fuse with, and transfer their VAMP-2 fluorescent label to, the plasma membrane during both furrow deepening and subsequent apposition. This observation indicates that new membrane is being inserted during these stages of cytokinesis. Inhibition of SNAP-25 (a cognate t-SNARE of VAMP-2), using a monoclonal antibody, blocked VAMP-2 vesicle fusion and furrow apposition. Transient expression of mutant forms of SNAP-25 also produced defects in furrow apposition. SNAP-25 inhibition by either method, however, did not have any significant effect on furrow deepening. Thus, our data clearly indicate that VAMP-2 and SNAP-25 play an essential role in daughter blastomere apposition, possibly via the delivery of components that promote the cell-to-cell adhesion required for the successful completion of cytokinesis. Our results also support the idea that new membrane addition, which occurs during late stage cytokinesis, is not required for furrow deepening that results from contractile band constriction.

  1. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    PubMed Central

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field. PMID:26495320

  2. Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos.

    PubMed

    Liu, Chunsheng; Yan, Wei; Zhou, Bingsheng; Guo, Yongyong; Liu, Hongling; Yu, Hongxia; Giesy, John P; Wang, Jianghua; Li, Guangyu; Zhang, Xiaowei

    2012-08-15

    This study was conducted to evaluate possible bystander effects induced by the model chemical 6-propyl-2-thiouracil (PTU) on melanin synthesis. Zebrafish (Danio rerio) embryos were treated with PTU by either microinjection exposure, via waterborne exposure or indirectly through bystander exposure. Melanin content, related mRNA and protein expression were examined at the end of exposure (36 h post-fertilization). Direct exposure to PTU decreased the melanin content, up-regulated mRNA expressions of oculocutaneous albinism type 2 (OCA2), tyrosinase (TYR), dopachrometautomerase (DCT), tyrosinase-related protein 1 (TYRP1) and silver (SILV), and increased the protein expressions of TYR and SILV. Bystander exposure also up-regulated mRNA and protein expressions of TYR and SILV but increased melanin contents. Correlation analysis demonstrated that mRNA expressions of OCA2, TYR, DCT, TYRP1, SILV and protein expressions of TYR and SILV in bystander exposure groups were positively correlated with corresponding expressions in microinjection exposure groups. The results might have environmental implications and highlight the need to consider the bystander effects when assessing potential risks of endocrine-disrupting chemicals. PMID:22542736

  3. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    PubMed Central

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  4. Gradual recruitment and selective clearing generate germ plasm aggregates in the zebrafish embryo.

    PubMed

    Eno, Celeste; Pelegri, Francisco

    2013-01-01

    Determination of primordial germ cells (PGCs) is one of the earliest decisions in animal embryogenesis. In many species, PGCs are determined through maternally-inherited germ plasm ribonucleoparticles (RNPs). In zebrafish, these are transmitted during oogenesis as dispersed RNPs, which after fertilization multimerize and become recruited as large aggregates at furrows for the first and second cell cycles. Here, we show that the number of recruited germ plasm RNPs is halved every cell cycle. We also show that germ plasm RNPs are recruited during the third cell cycle, but only transiently. Our data support a mechanism in which systematic local gathering of germ plasm RNPs during cytokinesis and threshold-dependent clearing contribute to forming germ plasm aggregates with the highest RNP number and germ cell-inducing potential. PMID:24721731

  5. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development.

    PubMed

    Loponte, Sara; Segré, Chiara V; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  6. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections.

    PubMed

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-02-19

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11-37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals. PMID:26740623

  7. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos

    SciTech Connect

    Jenny, Matthew J.; Aluru, Neelakanteswar; Hahn, Mark E.

    2012-10-15

    Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular

  8. Ewing sarcoma fusion protein EWSR1/FLI1 interacts with EWSR1 leading to mitotic defects in zebrafish embryos and human cell lines.

    PubMed

    Embree, Lisa J; Azuma, Mizuki; Hickstein, Dennis D

    2009-05-15

    The mechanism whereby the fusion of EWSR1 with the ETS transcription factor FLI1 contributes to malignant transformation in Ewing sarcoma remains unclear. We show that injection of human or zebrafish EWSR1/FLI1 mRNA into developing zebrafish embryos leads to mitotic defects with multipolar and disorganized mitotic spindles. Expression of human EWSR1/FLI1 in HeLa cells also results in mitotic defects, along with mislocalization of Aurora kinase B, a key regulator of mitotic progression. Because these mitotic abnormalities mimic those observed with the knockdown of EWSR1 in zebrafish embryos and HeLa cells, we investigated whether EWSR1/FLI1 interacts with EWSR1 and interferes with its function. EWSR1 coimmunoprecipitates with EWSR1/FLI1, and overexpression of EWSR1 rescues the mitotic defects in EWSR1/FLI1-transfected HeLa cells. This interaction between EWSR1/FLI1 and EWSR1 in Ewing sarcoma may induce mitotic defects leading to genomic instability and subsequent malignant transformation. PMID:19417137

  9. The Effect of a Depth Gradient on the Mating Behavior, Oviposition Site Preference, and Embryo Production in the Zebrafish, Danio rerio

    PubMed Central

    Sessa, Anna K.; White, Richard; Houvras, Yariv; Burke, Christopher; Pugach, Emily; Baker, Barry; Gilbert, Rharaka; Look, A. Thomas

    2008-01-01

    Abstract Captive zebrafish (Danio rerio) exhibit a limited repertoire of mating behaviors, likely due to the somewhat unnatural environment of aquaria. Observations in their natural habitat led us to believe that a depth gradient within the mating setup would positively affect fish mating. By tilting the tank to produce a depth gradient, we observed novel behaviors along with a preference for oviposition in the shallow area. Although we did not see an increase in the likelihood of a pair of fish to mate, we did see an increase in the embryo output in both adults and juveniles. In the adults, tilting led to a significant increase in embryo production (436 ± 35 tilted vs. 362 ± 34 untilted; p < 0.05). A similar effect was seen in juvenile fish as they progressed through sexual maturity. These results suggest that tilting of mating cages in the laboratory setting will lead to demonstrable improvements in embryo production for zebrafish researchers, and highlights the possibility of other manipulations to increase fecundity. PMID:19133832

  10. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A.

    PubMed

    Chow, Wing Shan; Chan, Winson Ka-Lun; Chan, King Ming

    2013-07-01

    Organochlorine pesticides and brominated flame retardants, such as tetrabromobisphenol A and polybrominated diphenyl ethers, pose an environmental hazard owing to their persistence, low solubility and estrogenic effects, and concerns have been raised regarding their effects on aquatic biota. In the present study, zebrafish embryos and larvae were used as a model to investigate the sublethal and lethal effects of three different organochlorine pesticides, namely methoxychlor, endosulfan and heptachlor, as well as the flame retardant tetrabromobisphenol A, and its precursor compound bisphenol A. Preliminary data for chemical exposure tests were obtained by determining the 96 h median effective concentration EC50 (hatching rate) and 96 h median lethal concentration LC50 . Quantitative polymerase chain reaction was used to investigate the gene expression levels of the biomarker vitellogenin (vtg1) after 96 h exposures to 10, 25, 50 and 75% of the 96 h EC50 value for embryos and 96 h LC50 value for larvae. The use of vtg1 mRNA induction in zebrafish embryos and larvae was found to be a sensitive biomarker of exposure to these organic compounds, and was helpful in elucidating their adverse effects and setting water quality guidelines. PMID:22351617

  11. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  12. EZR1: A Novel Family of Highly Expressed Retroelements Induced by TCDD and Regulated by a NF-κB-Like Factor in Embryos of Zebrafish (Danio rerio)

    PubMed Central

    Goldstone, Heather M.H.; Tokunaga, Saimi; Schlezinger, Jennifer J.; Goldstone, Jared V.

    2012-01-01

    Abstract Transcript profiling using a zebrafish heart cDNA library previously revealed abundant expressed sequence tags (ESTs) upregulated in zebrafish embryos treated with the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Here, we identify those ESTs as LTR-containing retroelements termed EZR1 (Expressed-Zebrafish-Retroelement group 1). EZR1 is highly redundant in the genome and includes canonical long terminal repeats (LTRs) flanking an integrase-like open reading frame and a region similar to retroviral envelope protein genes. EZR1 sequences lack reverse transcriptase, RNase H, or protease, indicating retrotransposition would be nonautonomous. No AHR binding motifs were found in the EZR1 promoter region. A putative NF-κB-binding site was found, and TCDD-treated zebrafish embryos had significantly increased levels of nuclear protein(s) binding to this sequence. Protein–EZR1 DNA complex formation was partially competed by a mammalian consensus κB sequence, consistent with NF-κB-like activation contributing to increased protein binding to this site. Mobility of the TCDD-induced protein-EZR1 complex differed from that of authentic NF-κB protein bound to the consensus κB site. The results suggest that EZR1 is regulated by interaction with NF-κB or NF-κB-like protein(s) different from the NF-κB protein binding to the consensus κB site. The nature of the NF-κB-like protein and the relationship between EZR1 induction and cardiovascular toxicity caused by TCDD warrant further investigation. PMID:22356696

  13. Induction of Angiogenesis in Zebrafish Embryos and Proliferation of Endothelial Cells by an Active Fraction Isolated from the Root of Astragalus membranaceus using Bioassay-guided Fractionation

    PubMed Central

    Lai, Patrick Kwok-Kin; Chan, Judy Yuet-Wa; Kwok, Hin-Fai; Cheng, Ling; Yu, Hua; Lau, Ching-Po; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San

    2014-01-01

    The objective of the study was to identify the active fraction(s) from AR aqueous extract responsible for promoting angiogenesis using bioassay-guided fractionation. The angiogenic activity was screened by monitoring the increase of sprout number in sub-intestinal vessel (SIV) of the transgenic zebrafish embryos after they were treated with 0.06-0.25 mg/ml of AR aqueous extract or its fraction(s) for 96 h. Furthermore, the angiogenic effect was evaluated in treated zebrafish embryos by measuring the gene expression of angiogenic markers (VEGFA, KDR, and Flt-1) using real-time polymerase chain reaction (RT-PCR), and in human microvascular endothelial cell (HMEC-1) by measuring cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 3H-thymidine uptake assay, and cell cycle analysis. A major active fraction (P1-1-1), which was identified as glycoproteins, was found to significantly stimulate sprout formation (2.03 ± 0.27) at 0.125 mg/ml (P < 0.001) and up-regulate the gene expression of VEGFA, KDR, and Flt-1 by 2.6-fold to 8.2-fold. Additionally, 0.031-0.125 mg/ml of P1-1-1 was demonstrated to significantly stimulate cell proliferation by increasing cell viability (from 180% to 205%), 3H-thymidine incorporation (from 126% to 133%) during DNA synthesis, and the shift of cell population to S phase of cell cycle. A major AR active fraction consisting of glycoproteins was identified, and shown to promote angiogenesis in zebrafish embryos and proliferation of endothelial cells in vitro. PMID:25379465

  14. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae.

    PubMed

    Liu, Chunsheng; Wang, Qiangwei; Liang, Kang; Liu, Jingfu; Zhou, Bingsheng; Zhang, Xiaowei; Liu, Hongling; Giesy, John P; Yu, Hongxia

    2013-03-15

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC(50)) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in the six receptor-centered gene networks in zebrafish embryos/larvae, and TDCPP seemed to have higher potency in changing the mRNA expression of these genes. PMID:23306105

  15. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos

    PubMed Central

    Chung, Eunah; Genco, Maria C.; Megrelis, Laura; Ruderman, Joan V.

    2011-01-01

    Estrogen regulates numerous developmental and physiological processes. Most effects are mediated by estrogen receptors (ERs), which function as ligand-regulated transcription factors. Estrogen also regulates the activity of GPR30, a membrane-associated G protein-coupled receptor. Many different types of environmental contaminants can activate ERs; some can bind GPR30 as well. There is growing concern that exposure to some of these compounds, termed xenoestrogens, is interfering with the behavior and reproductive potential of numerous wildlife species, as well as affecting human health. Here, we investigated how two common, environmentally pervasive chemicals affect the in vivo expression of a known estrogen target gene in the brain of developing zebrafish embryos, aromatase AroB, which converts androgens to estrogens. We confirm that, like estrogen, the well-studied xenoestrogen bisphenol A (BPA, a plastics monomer), induces strong brain-specific overexpression of aromatase. Experiments using ER- and GPR30-selective modulators argue that this induction is largely through nuclear ERs. BPA induces dramatic overexpression of AroB RNA in the same subregions of the developing brain as estrogen. The antibacterial triclocarban (TCC) by itself stimulates AroB expression only slightly, but TCC strongly enhances the overexpression of AroB that is induced by exogenous estrogen. Thus, both BPA and TCC have the potential to elevate levels of aromatase and, thereby, levels of endogenous estrogens in the developing brain. In contrast to estrogen, BPA-induced AroB overexpression was suppressed by TCC. These results indicate that exposures to combinations of certain hormonally active pollutants can have outcomes that are not easily predicted from their individual effects. PMID:22006313

  16. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure☛

    PubMed Central

    Corrales, J.; Fang, X.; Thornton, C.; Mei, W.; Barbazuk, W.B.; Duke, M.; Scheffler, B.E.; Willett, K.L.

    2014-01-01

    Benzo[a]pyrene (BaP) is an established carcinogen and reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methylation patterns has become an important tool for understanding pathologic gene expression events. The goal of this study was to investigate aberrant changes in promoter DNA methylation in zebrafish embryos and larvae following a parental and continued embryonic waterborne BaP exposure. A total of 21 genes known for their role in human diseases were selected to measure percent methylation by multiplex deep sequencing. At 96 hours post fertilization (hpf) compared to 3.3 hpf, dazl, nqo1, sox3, cyp1b1, and gstp1 had higher methylation percentages while c-fos and cdkn1a had decreased CG methylation. BaP exposure significantly reduced egg production and offspring survival. Moreover, BaP decreased global methylation and altered CG, CHH, and CHG methylation both at 3.3 and 96 hpf. CG methylation changed by 10% or more due to BaP in six genes (c-fos, cdkn1a, dazl, nqo1, nrf2, and sox3) at 3.3 hpf and in ten genes (c-fos, cyp1b1, dazl, gstp1, mlh1, nqo1, pten, p53, sox2, and sox3) at 96 hpf. BaP also induced gene expression of cyp1b1 and gstp1 at 96 hpf which were found to be hypermethylated. Further studies are needed to link aberrant CG, CHH, and CHG methylation to heritable epigenetic consequences associated with disease in later life. PMID:24576477

  17. The effect of different kinds of electrolyte and non-electrolyte solutions on the survival rate and morphology of zebrafish Danio rerio embryos.

    PubMed

    Lahnsteiner, F

    2009-11-01

    The effect of electrolyte and non-electrolyte solutions on the survival and on the morphology of zebrafish Danio rerio embryos was investigated. Embryos in different ontogenetic stages were incubated in electrolyte (NaCl, KCl, MgCl2 and CaCl2) and non-electrolyte solutions [sucrose and polyvinylalcohol (PVA)] of different concentrations for 5-15 min. The embryos were hatched to the long-pec stage and the effective concentrations which caused a 50% decrease in embryo development (EC50) were determined. The morphometric changes, which were caused by the test solutions, were measured. Ion channel blockers were used to see if active ion transport played a role for embryo survival. Finally, dechorionated embryos were exposed to the test solutions to get indications about the importance of chorion and perivitelline space. For 12 hours post fertilization (hpf) embryos and a 15 min exposure period, EC50 was highest for MgCl2 (1.60 mol l(-1)), followed by sucrose (0.73 mol l(-1)), NaCl (0.49 mol l(-1)), KCl (0.44 mol l(-1)), CaCl2 (0.43 mol l(-1)) and PVA [0.0005 mol l(-1) (2.2%)]. EC50 were lower for early embryonic stages than for advanced stages for all solutions with exception of MgCl2 and sucrose. At the EC50, MgCl2 and CaCl2 solutions did not induce morphometric changes. NaCl and sucrose solutions induced reversible morphometric changes, which were compensated within 10 min. Only the EC50 of KCl and PVA solutions induced permanent morphometric changes, which could not be compensated. Incubation of embryos in electrolyte and non-electrolyte solutions together with ouabain (blocker of Na+- K+ ATPase), HgCl3 (dose-dependent inhibition of aquaporine channels), verapamil (inhibition of calcium and magnesium uptake) and amiloride (inhibition of sodium uptake) significantly decreased the per cent of embryos developing to the long-pec stage in comparison to the same solutions without blockers. Ouabain and HgCl(3) also induced morphometric changes. For dechorionated embryos

  18. Bis-GMA affects craniofacial development in zebrafish embryos (Danio rerio).

    PubMed

    Kramer, Alexander G; Vuthiganon, Jompobe; Lassiter, Christopher S

    2016-04-01

    Estrogen is a steroid hormone that is vital in vertebrate development and plays a role in a variety of developmental processes including cartilage and craniofacial formation. The effects of estrogen can be mimicked by other compounds found in the environment known as xenoestrogens. Bisphenol-A (BPA) is a known xenoestrogen and is combined with glycidyl methacrylate to make Bisphenol A glycidyl methacrylate (Bis-GMA), a major component in dental resin based composites (RBCs). Bis-GMA based RBCs can release their components into the saliva and bloodstream. Exposure to 1μM and 10μM Bis-GMA in Danio rerio embryos results in increased mortality of approximately 30% and 45% respectively. Changes to gross morphology, specifically craniofacial abnormalities, were seen at concentrations as low as 10nM. While the molecular pathways of Bis-GMA effects have not been studied extensively, more is known about one of the components, BPA. Further research of Bis-GMA could lead to a better understanding of xenoestrogenic activity resulting in improved public and environmental health. PMID:26994444

  19. Toxicity assessment of TiO₂ nanoparticles in zebrafish embryos under different exposure conditions.

    PubMed

    Clemente, Z; Castro, V L S S; Moura, M A M; Jonsson, C M; Fraceto, L F

    2014-02-01

    The popularity of TiO2 nanoparticles (nano-TiO2) lies in their wide range of nanotechnological applications, together with low toxicity. Meanwhile, recent studies have shown that the photocatalytic properties of this material can result in alterations in their behavior in the environment, causing effects that have not yet been fully elucidated. The objective of this study was to evaluate the toxicity of two formulations of nano-TiO2 under different illumination conditions, using an experimental model coherent with the principle of the three Rs of alternative animal experimentation (reduction, refinement, and replacement). Embryos of the fish Danio rerio were exposed for 96h to different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM), under either visible light or a combination of visible and ultraviolet light (UV). The acute toxicity and sublethal parameters evaluated included survival rates, malformation, hatching, equilibrium, and overall length of the larvae, together with biochemical biomarkers (specific activities of catalase (CAT), glutathione S-transferase (GST), and acid phosphatase (AP)). Both TA and TM caused accelerated hatching of the larvae. Under UV irradiation, there was greater mortality of the larvae of the groups exposed to TM, compared to those exposed to TA. Exposure to TM under UV irradiation altered the equilibrium of the larvae. Alterations in the activities of CAT and GST were indicative of oxidative stress, although no clear dose-response relationship was observed. The effects of nano-TiO2 appeared to depend on both the type of formulation and the illumination condition. The findings contribute to elucidation of the factors involved in the toxicity of these nanoparticles, as well as to the establishment of protocols for risk assessments of nanotechnology. PMID:24418748

  20. Analysis of the Enantioselective Effects of PCB95 in Zebrafish (Danio rerio) Embryos through Targeted Metabolomics by UPLC-MS/MS

    PubMed Central

    Xu, Nana; Mu, Pengqian; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qian, Yongzhong; Qiu, Jing

    2016-01-01

    As persistent organic pollutants, polychlorinated biphenyls (PCBs) accumulate in the bodies of animals and humans, resulting in toxic effects on the reproductive, immune, nervous, and endocrine systems. The biological and toxicological characteristics of enantiomers of chiral PCBs may differ, but these enantioselective effects of PCBs have not been fully characterized. In this study, we performed metabolomics analysis, using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to investigate the enantioselective toxic effects of PCB95 in zebrafish (Danio rerio) embryos after exposure to three dose levels of 0.1, 1, and 10 μg/L for 72 h. Multivariate analysis directly reflected the metabolic perturbations caused by PCB95. The effects of (-)-PCB95 and (+)-PCB95 were more prominent than those of the racemate in zebrafish embryos. A total of 26 endogenous metabolites were selected as potential marker metabolites with variable importance at projection values larger than 1 and significant differences (p<0.05). These metabolites included amino acids, organic acids, nucleosides, betaine, and choline. The changes in these biomarkers were dependent on the enantiomer-specific structures of PCB95. Fifteen metabolic pathways were significantly affected, and several nervous and immune system-related metabolites were significantly validated after exposure. These metabolic changes indicated that the toxic effects of PCB95 may be associated with the interaction of PCB95 with the nervous and immune systems, thus resulting in disruption of energy metabolism and liver function. PMID:27500732

  1. The Kinase Activity-deficient Isoform of the Protein Araf Antagonizes Ras/Mitogen-activated Protein Kinase (Ras/MAPK) Signaling in the Zebrafish Embryo*

    PubMed Central

    Xiong, Cong; Liu, Xingfeng; Meng, Anming

    2015-01-01

    Raf kinases are important components of the Ras-Raf-Mek-Erk pathway and also cross-talk with other signaling pathways. Araf kinase has been demonstrated to inhibit TGF-β/Smad2 signaling by directly phosphorylating and accelerating degradation of activated Smad2. In this study, we show that the araf gene expresses in zebrafish embryos to produce a shorter transcript variant, araf-tv2, in addition to the full-length variant araf-tv1. araf-tv2 is predicted to encode a C-terminally truncated peptide without the kinase activity domain. Araf-tv2 can physically associate with Araf-tv1 but does not antagonize the inhibitory effect of Araf-tv1 on TGF-β/Smad2 signaling. Instead, Araf-tv2 interacts strongly with Kras and Nras, ultimately blocking MAPK activation by these Ras proteins. In zebrafish embryos, overexpression of araf-tv2 is sufficient to inhibit Fgf/Ras-promoted Erk activation, mesodermal induction, dorsal development, and neuroectodermal posteriorization. Therefore, different isoforms of Araf may participate in similar developmental processes but by regulating different signaling pathways. PMID:26306042

  2. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    SciTech Connect

    Ganeshkumar, Moorthy; Sastry, Thotapalli Parvathaleswara; Sathish Kumar, Muniram; Dinesh, Murugan Girija; Kannappan, Sudalyandi; Suguna, Lonchin

    2012-09-15

    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC{sub 50}) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  3. Analysis of the Enantioselective Effects of PCB95 in Zebrafish (Danio rerio) Embryos through Targeted Metabolomics by UPLC-MS/MS.

    PubMed

    Xu, Nana; Mu, Pengqian; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qian, Yongzhong; Qiu, Jing

    2016-01-01

    As persistent organic pollutants, polychlorinated biphenyls (PCBs) accumulate in the bodies of animals and humans, resulting in toxic effects on the reproductive, immune, nervous, and endocrine systems. The biological and toxicological characteristics of enantiomers of chiral PCBs may differ, but these enantioselective effects of PCBs have not been fully characterized. In this study, we performed metabolomics analysis, using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to investigate the enantioselective toxic effects of PCB95 in zebrafish (Danio rerio) embryos after exposure to three dose levels of 0.1, 1, and 10 μg/L for 72 h. Multivariate analysis directly reflected the metabolic perturbations caused by PCB95. The effects of (-)-PCB95 and (+)-PCB95 were more prominent than those of the racemate in zebrafish embryos. A total of 26 endogenous metabolites were selected as potential marker metabolites with variable importance at projection values larger than 1 and significant differences (p<0.05). These metabolites included amino acids, organic acids, nucleosides, betaine, and choline. The changes in these biomarkers were dependent on the enantiomer-specific structures of PCB95. Fifteen metabolic pathways were significantly affected, and several nervous and immune system-related metabolites were significantly validated after exposure. These metabolic changes indicated that the toxic effects of PCB95 may be associated with the interaction of PCB95 with the nervous and immune systems, thus resulting in disruption of energy metabolism and liver function. PMID:27500732

  4. Generation of Chimeric Rhesus Monkeys

    PubMed Central

    Tachibana, Masahito; Sparman, Michelle; Ramsey, Cathy; Ma, Hong; Lee, Hyo-Sang; Penedo, Maria Cecilia T.; Mitalipov, Shoukhrat

    2011-01-01

    Summary Totipotent cells in early embryos are progenitors of all stem cells and are capable of developing into a whole organism, including extraembryonic tissues such as placenta. Pluripotent cells in the inner cell mass (ICM) are the descendants of totipotent cells and can differentiate into any cell type of a body except extraembryonic tissues. The ability to contribute to chimeric animals upon reintroduction into host embryos is the key feature of murine totipotent and pluripotent cells. Here, we demonstrate that rhesus monkey embryonic stem cells (ESCs) and isolated ICMs fail to incorporate into host embryos and develop into chimeras. However, chimeric offspring were produced following aggregation of totipotent cells of the 4-cell embryos. These results provide insights into the species-specific nature of primate embryos and suggest that a chimera assay using pluripotent cells may not be feasible. PMID:22225614

  5. A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos.

    PubMed

    Schiwy, Sabrina; Bräunig, Jennifer; Alert, Henriette; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    The European Water Framework Directive aims to achieve a good ecological and chemical status in surface waters until 2015. Sediment toxicology plays a major role in this intention as sediments can act as a secondary source of pollution. In order to fulfill this legal obligation, there is an urgent need to develop whole-sediment exposure protocols, since sediment contact assays represent the most realistic scenario to simulate in situ exposure conditions. Therefore, in the present study, a vertebrate sediment contact assay to determine aryl hydrocarbon receptor (AhR)-mediated activity of particle-bound pollutants was developed. Furthermore, the activity and the expression of the CYP1 family in early life stages of zebrafish after exposure to freeze-dried sediment samples were investigated. In order to validate the developed protocol, effects of β-naphthoflavone and three selected sediment on zebrafish embryos were investigated. Results documented clearly AhR-mediated toxicity after exposure to β-naphthoflavone (β-NF) and to the sediment from the Vering canal. Upregulation of mRNA levels was observed for all investigated sediment samples. The highest levels of all investigated cyp genes (cyp1a, cyp1b1, cyp1c1, and cyp1c2) were recorded after exposure to the sediment sample of the Vering canal. In conclusion, the newly developed sediment contact assay can be recommended for the investigation of dioxin-like activities of single substances and the bioavailable fraction of complex environmental samples. Moreover, the exposure of whole zebrafish embryos to native (freeze-dried) sediment samples represents a highly realistic and ecologically relevant exposure scenario. PMID:24958532

  6. Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy.

    PubMed

    Garcia-Käufer, M; Gartiser, S; Hafner, C; Schiwy, S; Keiter, S; Gründemann, C; Hollert, H

    2015-11-01

    The embryotoxic potential of three model sediment samples with a distinct and well-characterized pollutant burden from the main German river basins Rhine and Elbe was investigated. The Fish Embryo Contact Test (FECT) in zebrafish (Danio rerio) was applied and submitted to further development to allow for a comprehensive risk assessment of such complex environmental samples. As particulate pollutants are constructive constituents of sediments, they underlay episodic source-sink dynamics, becoming available to benthic organisms. As bioavailability of xenobiotics is a crucial factor for ecotoxicological hazard, we focused on the direct particle-exposure pathway, evaluating throughput-capable endpoints and considering toxicokinetics. Fish embryo and larvae were exposed toward reconstituted (freeze-dried) sediment samples on a microcosm-scale experimental approach. A range of different developmental embryonic stages were considered to gain knowledge of potential correlations with metabolic competence during the early embryogenesis. Morphological, physiological, and molecular endpoints were investigated to elucidate induced adverse effects, placing particular emphasis on genomic instability, assessed by the in vivo comet assay. Flow cytometry was used to investigate the extent of induced cell death, since cytotoxicity can lead to confounding effects. The implementation of relative toxicity indices further provides inter-comparability between samples and related studies. All of the investigated sediments represent a significant ecotoxicological hazard by disrupting embryogenesis in zebrafish. Beside the induction of acute toxicity, morphological and physiological embryotoxic effects could be identified in a concentration-response manner. Increased DNA strand break frequency was detected after sediment contact in characteristic non-monotonic dose-response behavior due to overlapping cytotoxic effects. The embryonic zebrafish toxicity model along with the in vivo comet

  7. Amiodarone Induces Overexpression of Similar to Versican b to Repress the EGFR/Gsk3b/Snail Signaling Axis during Cardiac Valve Formation of Zebrafish Embryos

    PubMed Central

    Lee, Hung-Chieh; Lo, Hao-Chan; Lo, Dao-Ming; Su, Mai-Yan; Hu, Jia-Rung; Wu, Chin-Chieh; Chang, Sheng-Nan; Dai, Ming-Shen; Tsai, Chia‐Ti; Tsai, Huai-Jen

    2015-01-01

    Although Amiodarone, a class III antiarrhythmic drug, inhibits zebrafish cardiac valve formation, the detailed molecular pathway is still unclear. Here, we proved that Amiodarone acts as an upstream regulator, stimulating similar to versican b (s-vcanb) overexpression at zebrafish embryonic heart and promoting cdh-5 overexpression by inhibiting snail1b at atrioventricular canal (AVC), thus blocking invagination of endocardial cells and, as a result, preventing the formation of cardiac valves. A closer investigation showed that an intricate set of signaling events ultimately caused the up-regulation of cdh5. In particular, we investigated the role of EGFR signaling and the activity of Gsk3b. It was found that knockdown of EGFR signaling resulted in phenotypes similar to those of Amiodarone-treated embryos. Since the reduced phosphorylation of EGFR was rescued by knockdown of s-vcanb, it was concluded that the inhibition of EGFR activity by Amiodarone is s-vcanb-dependent. Moreover, the activity of Gsk3b, a downstream effector of EGFR, was greatly increased in both Amiodarone-treated embryos and EGFR-inhibited embryos. Therefore, it was concluded that reduced EGFR signaling induced by Amiodarone treatment results in the inhibition of Snail functions through increased Gsk3b activity, which, in turn, reduces snail1b expression, leading to the up-regulation the cdh5 at the AVC, finally resulting in defective formation of valves. This signaling cascade implicates the EGFR/Gsk3b/Snail axis as the molecular basis for the inhibition of cardiac valve formation by Amiodarone. PMID:26650936

  8. Epicatechin gallate, a naturally occurring polyphenol, alters the course of infection with β-lactam-resistant Staphylococcus aureus in the zebrafish embryo

    PubMed Central

    Stevens, Christina S.; Rosado, Helena; Harvey, Robert J.; Taylor, Peter W.

    2015-01-01

    (-)-epicatechin gallate (ECg) substantially modifies the properties of Staphylococcus aureus and reversibly abrogates β-lactam resistance in methicillin/oxacillin resistant (MRSA) isolates. We have determined the capacity of ECg to alter the course of infection in zebrafish embryos challenged with epidemic clinical isolate EMRSA-16. At 30 h post fertilization (hpf), embryos were infected by injection of 1–5 × 103 colony forming units (CFU) of EMRSA-16 into the circulation valley or yolk sac. Infection by yolk sac injection was lethal with a challenge dose above 3 × 103 CFU, with no survivors at 70 hpf. In contrast, survival at 70 hpf after injection into the circulation was 83 and 44% following challenge with 3 × 103 and 1–5 × 103 CFU, respectively. No significant increases in survival were noted when infected embryos were maintained in medium containing 12.5–100 μg/mL ECg with or without 4 or 16 μg/mL oxacillin. However, when EMRSA-16 was grown in medium containing 12.5 μg/mL ECg and the bacteria used to infect embryos by either the circulation valley or yolk sac, there were significant increases in embryo survival in both the presence and absence of oxacillin. ECg-modified and unmodified, GFP-transformed EMRSA-16 bacteria were visualized within phagocytic cells in the circulation and yolk sac; pre-treatment with ECg also significantly increased induction of the respiratory burst and suppressed increases in IL-1β expression typical of infection with untreated EMRSA-16. We conclude that exposure to ECg prior to infection reduces the lethality of EMRSA-16, renders cells more susceptible to elimination by immune processes and compromises their capacity to establish an inflammatory response in comparison to non-exposed bacteria. PMID:26441953

  9. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos

    PubMed Central

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin WH; Hinton, David E; Ferguson, P Lee; Stapleton, Heather M

    2015-01-01

    Polybrominated diphenyl ethers and their hydroxyl-metabolites (OH-BDEs) are commonly detected contaminants in human serum in the US population. They are also considered to be endocrine disruptors, and are specifically known to affect thyroid hormone regulation. In this study, we investigated and compared the effects of a PBDE and its OH-BDE metabolite on developmental pathways regulated by thyroid hormones using zebrafish as a model. Exposure to 6-OHBDE 47 (10–100 nM), but not BDE 47 (1–50 μM), led to decreased melanin pigmentation and increased apoptosis in the retina of zebrafish embryos in a concentration-dependent manner in short-term exposures (4 – 30 hours). Six-OH-BDE 47 exposure also significantly decreased thyroid hormone receptor β (THRβ) mRNA expression, which was confirmed using both RT-PCR and in situ hybridization (whole mount and paraffin- section). Interestingly, exposure to the native thyroid hormone, triiodothyronine (T3) also led to similar responses: decreased THRβ mRNA expression, decreased melanin pigmentation and increased apoptosis, suggesting that 6-OH-BDE 47 may be acting as a T3 mimic. To further investigate short-term effects that may be regulated by THRβ, experiments using a morpholino gene knock down and THRβ mRNA over expression were conducted. Knock down of THRβ led to decreases in melanin pigmentation and increases in apoptotic cells in the eye of zebrafish embryos, similar to exposure to T3 and 6-OH-BDE 47, but THRβ mRNA overexpression rescued these effects. Histological analysis of eyes at 22 hpf from each group revealed that exposure to T3 or to 6-OH-BDE 47 was associated with a decrease of melanin and diminished proliferation of cells in layers of retina near the choroid. This study suggests that 6-OH-BDE 47 disrupts the activity of THRβ in early life stages of zebrafish, and warrants further studies on effects in developing humans. PMID:25767823

  10. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA.

    PubMed

    Chan, Winson K; Chan, King Ming

    2012-02-01

    We performed waterborne exposures of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), tetrabromobisphenol A (TBBPA) or bisphenol A (BPA) on zebrafish (Danio rerio) embryo-larvae and quantitatively measured the expression of genes belonging to the hypothalamic-pituitary-thyroid (HPT) axis to assess for adverse thyroid function. For analysis on the effects of BDE-47, TBBPA and BPA on the hypothalamic-pituitary-thyroid genes, zebrafish embryo-larvae were acutely exposed to lethal concentrations of the chemical agents in order to determine the 96 h-LC50 (96 h lethal median concentration) and 96 h-EC50 (96 h effective median concentration) values. Further exposures at sub-lethal concentrations were then carried out and total RNA samples were extracted to quantify the mRNA expression levels of the genes of interest. In larvae, BDE-47 was found to have significantly induced many genes of interest, namely thyroglobulin, thyroid peroxidase, thyroid receptors α and β, thyroid stimulating hormone, and transthyretin. TBBPA only significantly induced three genes of interest (thyroid receptor α, thyroid stimulating hormone, and transthyretin) while BPA only induced thyroid stimulating hormone. In embryos, BDE-47 significantly induced the sodium iodide symporter and thyroid stimulating hormone. TBBPA significantly induced thyroid receptor α and thyroid stimulating hormone, while BPA did not significantly induce any of the genes. Most genes were only induced at the 75% 96 h-LC50 or 96 h-EC50 value; however, thyroid peroxidase and thyroid stimulating hormone demonstrated upregulation in a level as little as the 10% 96 h-LC50 value. The present study provides a new set of data on zebrafish mRNA induction of hypothalamic-pituitary-thyroid genes from exposure to BDE-47, TBBPA, or BPA. This information would serve useful for elucidating the toxicological mechanism of brominated flame retardants, assessing appropriate safety levels in the environment for these compounds, as well as

  11. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.

    PubMed

    Formstone, Caroline J; Mason, Ivor

    2005-06-15

    The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence. PMID:15882862

  12. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    Microcystin (MC) and nodularin are structurally similar cyanobacterial toxins that inhibit protein phosphatases. Additional modes of action are poorly known, in particular for nodularin. In our associated work, we showed that active cellular uptake is mediated by the organic anion transporting polypeptide drOatp1d1 in zebrafish (Faltermann et al., 2016). Here, we assessed the transcriptional expression of three genes encoding three uptake transporters during embryonic development from 24h post fertilization (hpf) to 168 hpf. Transcripts of drOatp1d1 and drOatp2b1 are present at 24 hpf. The abundance increased after hatching and remained about constant up to 168 hpf. Transcripts of drOatp2b1 were most abundant, while drOapt1f transcripts showed very low relative abundance compared to drOatp1d1 and drOatp2b1. We further demonstrated the uptake of fluorescent labeled MC-LR in eleuthero-embryos and its accumulation in the glomerulus of the pronephros. An important molecular effect of MC-LR in human liver cells is the induction of endoplasmic reticulum (ER)-stress. Here, we investigated, whether MC-LR and nodularin similarly lead to induction of ER-stress in zebrafish by analyzing changes of mRNA levels of genes indicative of ER-stress. In zebrafish liver organ cultures short- and long-term exposures to 0.15 and 0.3 μmol L(-1) MC-LR, and 0.5 and 1 μM L(-1) nodularin led to significant transcriptional induction of several ER-stress marker genes, including the chaperone glucose regulated protein 78 (bip), the spliced form of x-box binding protein (xbp-1s), the CCAAT-enhancer-binding protein homologous protein (chop) and activating transcription factor 4 (atf4). Furthermore, strong transcriptional changes occurred for tumor necrosis factor alpha (tnfa) and dual specificity phosphatase 5 (dusp5), associated with mitogen activated protein kinase (MAPK) pathway. However, no alterations in transcript levels of pro-apoptotic genes Bcl-2 like protein 4 (bax) and p53 occurred

  13. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness

    PubMed Central

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-01-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead. PMID:26951078

  14. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  15. Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach.

    PubMed

    Perrichon, Prescilla; Le Menach, Karyn; Akcha, Farida; Cachot, Jérôme; Budzinski, Hélène; Bustamante, Paco

    2016-10-15

    Petroleum compounds from chronic discharges and oil spills represent an important source of environmental pollution. To better understand the deleterious effects of these compounds, the toxicity of water-accommodated fractions (WAF) from two different oils (brut Arabian Light and Erika heavy fuel oils) were used in this study. Zebrafish embryos (Danio rerio) were exposed during 96h at three WAF concentrations (1, 10 and 100% for Arabian Light and 10, 50 and 100% for Erika) in order to cover a wide range of polycyclic aromatic hydrocarbon (PAH) concentrations, representative of the levels found after environmental oil spills. Several endpoints were recorded at different levels of biological organization, including lethal endpoints, morphological abnormalities, photomotor behavioral responses, cardiac activity, DNA damage and exposure level measurements (EROD activity, cyp1a and PAH metabolites). Neither morphological nor behavioral or physiological alterations were observed after exposure to Arabian Light fractions. In contrast, the Erika fractions led a high degree of toxicity in early life stages of zebrafish. Despite of defense mechanisms induced by oil, acute toxic effects have been recorded including mortality, delayed hatching, high rates of developmental abnormalities, disrupted locomotor activity and cardiac failures at the highest PAH concentrations (∑TPAHs=257,029±47,231ng·L(-1)). Such differences in toxicity are likely related to the oil composition. The use of developing zebrafish is a good tool to identify wide range of detrimental effects and elucidate their underlying foundations. Our work highlights once more, the cardiotoxic action (and potentially neurotoxic) of petroleum-related PAHs. PMID:27312275

  16. Parental exposure to natural mixtures of persistent organic pollutants (POP) induced changes in transcription of apoptosis-related genes in offspring zebrafish embryos.

    PubMed

    Lyche, Jan L; Grześ, Irena M; Karlsson, Camilla; Nourizadeh-Lillabadi, Rasoul; Aleström, Peter; Ropstad, Erik

    2016-01-01

    Apoptosis is an integral element of development that may also be initiated by environmental contaminants. The aim of the present study was to assess potential changes in the regulation of apoptotic genes in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POP). The mixture from Lake Mjøsa contained exceptionally high concentrations of polybrominated diphenyl ethers (PBDE), as well as relatively high levels of polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT). The mixture from Lake Losna contained background concentrations of POP. Genes involved in the apoptotic machinery were screened for their expression profile at four time points during embryonic development. Thirteen and 15 genes involved in apoptosis were found to be significantly upregulated in the high-exposure and background exposure groups, respectively, compared with controls. Modulation of apoptotic genes was restricted only to the first time point, which corresponds with the blastula stage. Although there were substantial differences in POP concentrations between mixtures, genes underlying the apoptosis process showed almost similar responses to the two mixtures. In both exposure groups the main executors of apoptosis p53, casp 2, casp 6, cassp 8, and BAX displayed upregulation compared to controls, suggesting that these POP induce apoptosis via a p53-dependent mechanism. Upregulation of genes that play a critical role in apoptosis suggests that disturbance of normal apoptotic signaling during gametogenesis and embryogenesis may be one of the central mechanisms involved in adverse reproductive effects produced by POP in zebrafish. PMID:27484141

  17. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  18. Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate.

    PubMed

    Han, Zhihua; Wang, Qiangwei; Fu, Jie; Chen, Hongshan; Zhao, Ye; Zhou, Bingsheng; Gong, Zhiyuan; Wei, Si; Li, Jun; Liu, Hongling; Zhang, Xiaowei; Liu, Chunsheng; Yu, Hongxia

    2014-05-01

    The flame retardant tris(2-butoxyethyl) phosphate (TBEP) is a frequently detected contaminant in the environment, wildlife and human milk. The potentially toxic effects of TBEP and their underlying molecular mechanisms have not been elucidated. Here, zebrafish embryos were exposed to different concentrations of TBEP from 4 hours of post-fertilization (hpf) to 120 hpf, and effects on embryonic development and global protein expression patterns examined. Our results demonstrate that treatment with TBEP (0.8-100mg/L) causes a concentration- and time-dependent decrease in embryonic survival and the hatching percentage. The median lethal concentration was 10.7 mg/L at 120 hpf. Furthermore, exposure to 150 or 800 μg/L TBEP inhibited the degradation and utilization of vitellogenins and down-regulated the expression of proteins related to cation binding, and lipid transport, uptake and metabolism, accompanied by a decrease in heart rate and body length. Exposure to TBEP (150 or 800 μg/L) also decreased the expression of proteins involved in cell proliferation and DNA repair, and led to an increased number of apoptotic cells in the tail region. Collectively, our results suggest that exposure to TBEP causes toxicity in the developing zebrafish by inhibiting the degradation and utilization of nutrients from the mother and inducing apoptosis. PMID:24685621

  19. Hypoxia-Inducible Factor 2 Alpha Is Essential for Hepatic Outgrowth and Functions via the Regulation of leg1 Transcription in the Zebrafish Embryo

    PubMed Central

    Lin, Tzung-Yi; Chou, Chi-Fu; Chung, Hsin-Yu; Chiang, Chia-Yin; Li, Chung-Hao; Wu, Jen-Leih; Lin, Han-Jia; Pai, Tun-Wen; Hu, Chin-Hwa; Tzou, Wen-Shyong

    2014-01-01

    The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment. PMID:25000307

  20. BFCOD activity in fish cell lines and zebrafish embryos and its modulation by chemical ligands of human aryl hydrocarbon and nuclear receptors.

    PubMed

    Creusot, N; Brion, F; Piccini, B; Budzinski, H; Porcher, J M; Aït-Aïssa, S

    2015-11-01

    Assessment of exposure and effect of fish to pharmaceuticals that contaminate aquatic environment is a current major issue in ecotoxicology and there is a need to develop specific biological marker to achieve this goal. Benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) enzymatic activity has been commonly used to monitor CYP3A activity in fish. In this study, we assessed the capacity of a panel of toxicologically relevant chemicals to modulate BFCOD activity in fish, by using in vitro and in vivo bioassays based on fish liver cell lines (PLHC-1, ZFL, RTL-W1) and zebrafish embryos, respectively. Basal BFCOD activity was detectable in all biological models and was differently modulated by chemicals. Ligands of human androgens, glucocorticoids, or pregnanes X receptors (i.e., dexamethasone, RU486, rifampicin, SR12813, T0901317, clotrimazole, ketoconazole, testosterone, and dihydrotestosterone) moderately increased or inhibited BFCOD activity, with some variations between the models. No common feature could be drawn by regards to their capacity to bind to these receptors, which contrasts with their known effect on mammalian CYP3A. In contrast, dioxins and polycyclic aromatic hydrocarbons (PAHs) strongly induced BFCOD activity (up to 30-fold) in a time- and concentration-dependent manner, both in vitro in all cell lines and in vivo in zebrafish embryos. These effects were AhR dependent as indicated by suppression of induced BFCOD by the AhR pathway inhibitors 8-methoxypsoralen and α-naphthoflavone. Altogether our result further question the relevance of using liver BFCOD activity as a biomarker of fish exposure to CYP3A-active compounds such as pharmaceuticals. PMID:25471715

  1. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  2. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  3. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos

    PubMed Central

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes

  4. Benzotriazole UV-stabilizers and benzotriazole: Antiandrogenic activity in vitro and activation of aryl hydrocarbon receptor pathway in zebrafish eleuthero-embryos.

    PubMed

    Fent, Karl; Chew, Geraldine; Li, Jun; Gomez, Elena

    2014-06-01

    Benzotriazole UV-stabilizers (BUVs) are applied in materials for protection against UV-irradiation. They are widely used, bioaccumulate and share structural similarities to benzotriazole. Benzotriazole (1HBT) finds application as corrosion inhibitor in dishwashing detergents, antifreeze (vehicles) and aircraft de-icing agent. BUVs and 1HBT are persistent and ubiquitous in the aquatic environment, but there is little understanding of the ecotoxicological implications. Here, we comparatively analyze the hormonal activity in vitro and effects in zebrafish eleuthero-embryos in vivo. 2-(2-Hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (UV-326), UV-327, UV-328, UV-329 and UV-320 showed no estrogenicity (YES assay) and androgenicity (YAS assay). However, UV-P and 1HBT showed significant antiandrogenic activity. We assessed the transcription profiles of up to 26 genes associated with different toxicological pathways in zebrafish eleuthero-embryos to elucidate potential modes of action of UV-P, UV-326 and 1HBT. Embryos were experimentally exposed for 144hpf to three measured concentrations of 15.8, 70.8, and 690μg/L UV-P, 7.5, 31.7, and 84.3μg/L UV-326 and 7.9, 97.3 and 1197.3μg/L 1HBT. Among the 26 transcripts, the induction of the aryl hydrocarbon receptor (AHR) pathway by UV-P and UV-326 was the most significant finding. UV-P led to dose-related induction of AHR1, ARNT2 and cyp1a1, as well as of phase II enzymes glutathione-S-transferase (gstp1) and ugt1a. UV-326 led to a significant induction of cyp1a1 and AHR2, but down-regulation of gstp1 at 84μg/L. Only little transcriptional alterations occurred in genes related to apoptosis, oxidative stress, hormone receptors, and steroidogenesis including aromatase. 1HBT led to only a few expressional changes at 1197μg/L. Our data lead to the conclusion that UV-P and UV-326 activate the AHR-pathway, whereas 1HBT shows only little transcriptional alterations. It

  5. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos.

    PubMed

    Duan, Junchao; Yu, Yang; Li, Yang; Wang, Yapei; Sun, Zhiwei

    2016-05-01

    Given the severe situation of world-wide particulate matter air pollution, it is urgent to explore the combined effects of particulate matter components on cardiovascular system. Using zebrafish model, this study was aimed to determine whether the low level co-exposure to silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) had a pronounced cardiovascular toxicity than the single exposure to either SiNPs or B[a]P alone. The FTIR and TGA analysis showed that the co-exposure system possessed of high absorption and thermal stability. Embryos exposed to SiNPs or B[a]P alone did not show cardiac toxicity phenotype at the NOAEL level. However, embryos co-exposed to SiNPs and B[a]P exhibited pericardial edema and bradycardia. While ROS generation remained unaffected, the co-exposure induced significant neutrophil-mediated inflammation and caused erythrocyte aggregation in caudal vein of embryos. Microarray analysis and STC analysis were performed to screen the cardiovascular-related differential expression genes and the expression trend of genes in each group. The co-exposure of SiNPs and B[a]P significantly enhanced the expression of proinflammatory and procoagulant genes. Moreover, the co-exposure markedly increased the phosphorylated AP-1/c-Jun and induced TF expression, but not NF-κB p65. This study for the first time demonstrated the inflammatory response and blood hypercoagulable state were triggered by the combination of SiNPs and B[a]P at low level exposure. PMID:26943738

  6. Zinc and cadmium accumulation in single zebrafish ( Danio rerio) embryos — A total reflection X-ray fluorescence spectrometry application

    NASA Astrophysics Data System (ADS)

    Mages, Margarete; Bandow, Nicole; Küster, Eberhard; Brack, Werner; von Tümpling, Wolf

    2008-12-01

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 µg/g with a median of 5740 µg/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 µg/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.

  7. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay

    SciTech Connect

    Chen, G.-D.; Chou, C.-M.; Hwang, S.-P.L.; Wang, F.-F.; Chen, Y.-C.; Hung, C.-C.; Chen, Jeou-Yuan . E-mail: bmchen@ibms.sinica.edu.tw; Huang, C.-J. . E-mail: cjibc@gate.sinica.edu.tw

    2006-05-26

    We expressed zebrafish p53 protein fused to GFP by a neuron-specific HuC promoter in zebrafish embryos. Instead of displaying neuronal expression patterns, p53-GFP was targeted to zebrafish YSL nuclei. This YSL targeting is p53 sequence-specific because GFP fusion proteins of p63 and p73 displayed neuronal-specific patterns. To dissect the underlying mechanisms, various constructs encoding a series of p53 mutant proteins under the control of different promoters were generated. Our results showed that expression of p53, in early zebrafish embryo, is preferentially targeted to the nuclei of YSL, which is mediated by importin. Similarly, this targeting is abrogated when p53 nuclear localization signal is disrupted. In addition, the transcriptional activity of p53 is required for this targeting. We further showed that fusion of pro-apoptotic BAD protein to p53-GFP led to apoptosis of YSL cells, and subsequent imperfect microtubule formation and abnormal blastomere movements.

  8. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    NASA Astrophysics Data System (ADS)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  9. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos.

    PubMed

    Chetty, S Shashank; Praneetha, S; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A Vadivel

    2016-01-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale "sustainable" MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI). PMID:27188464

  10. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process: Acute toxicity and zebrafish embryo toxicity.

    PubMed

    Na, Chunhong; Zhang, Ying; Deng, Minjie; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-07-01

    Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants. PMID:27037768

  11. Angiogenesis in zebrafish.

    PubMed

    Schuermann, Annika; Helker, Christian S M; Herzog, Wiebke

    2014-07-01

    The vasculature consists of an extensively branched network of blood and lymphatic vessels that ensures the efficient circulation and thereby the supply of all tissues with oxygen and nutrients. Research within the last decade has tremendously advanced our understanding of how this complex network is formed, how angiogenic growth is controlled and how differences between individual endothelial cells contribute to achieving this complex pattern. The small size and the optical clarity of the zebrafish embryo in combination with the advancements in imaging technologies cleared the way for the zebrafish as an important in vivo model for elucidating the mechanisms of angiogenesis. In this review we discuss the recent contributions of the analysis of zebrafish vascular development on how vessels establish their characteristic morphology and become patent. We focus on the morphogenetic cellular behaviors as well as the molecular mechanisms that drive these processes in the developing zebrafish embryo. PMID:24813365

  12. An Assessment of the Long-Term Effects of Simulated Microgravity on Cranial Neural Crest Cells in Zebrafish Embryos with a Focus on the Adult Skeleton

    PubMed Central

    Edsall, Sara C.; Franz-Odendaal, Tamara A.

    2014-01-01

    It is becoming increasingly important to address the long-term effects of exposure to simulated microgravity as the potential for space tourism and life in space become prominent topics amongst the World’s governments. There are several studies examining the effects of exposure to simulated microgravity on various developmental systems and in various organisms; however, few examine the effects beyond the juvenile stages. In this study, we expose zebrafish embryos to simulated microgravity starting at key stages associated with cranial neural crest cell migration. We then analyzed the skeletons of adult fish. Gross observations and morphometric analyses show that exposure to simulated microgravity results in stunted growth, reduced ossification and severe distortion of some skeletal elements. Additionally, we investigated the effects on the juvenile skull and body pigmentation. This study determines for the first time the long-term effects of embryonic exposure to simulated microgravity on the developing skull and highlights the importance of studies investigating the effects of altered gravitational forces. PMID:24586670

  13. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems.

    PubMed

    Qi, Xin; Liu, Ge; Qiu, Lin; Lin, Xiukun; Liu, Ming

    2015-10-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol compound derived from marine algae. Our previous reports have shown that BDDE possessed anticancer activity in vitro. However, its antiangiogenesis activity and possible mechanisms remain unclear. The present study demonstrated that BDDE displayed in vitro antiangiogenesis capabilities by significantly inhibiting HUVEC cells proliferation, migration, and tube formation, without any effect on the preformed vascular tube. Western blot analysis revealed that BDDE decreased the protein level of VEGF and VEGFR but not that of EGFR, FGFR, and IGFR. In addition, BDDE inactivated the VEGF downstream signaling molecules including mTOR and Src, whereas activated Akt and ERK. Moreover, BDDE blocked subintestinal vessel formation in zebrafish embryos in vivo and showed toxicity under high concentrations of BDDE. The results of this present study indicated that BDDE, which has unique chemical structure different from current antiangiogenesis agents, could be used as a potential drug candidate for cancer prevention and therapy. PMID:26463632

  14. The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae.

    PubMed

    Berry, John P; Gantar, Miroslav; Gibbs, Patrick D L; Schmale, Michael C

    2007-02-01

    The zebrafish (Danio rerio) embryo has emerged as an important model of vertebrate development. As such, this model system is finding utility in the investigation of toxic agents that inhibit, or otherwise interfere with, developmental processes (i.e. developmental toxins), including compounds that have potential relevance to both human and environmental health, as well as biomedicine. Recently, this system has been applied increasingly to the study of microbial toxins, and more specifically, as an aquatic animal model, has been employed to investigate toxins from marine and freshwater microalgae, including those classified among the so-called "harmful algal blooms" (HABs). We have developed this system for identification and characterization of toxins from cyanobacteria (i.e. "blue-green algae") isolated from the Florida Everglades and other freshwater sources in South and Central Florida. Here we review the use of this system as it has been applied generally to the investigation of toxins from marine and freshwater microalgae, and illustrate this utility as we have applied it to the detection, bioassay-guided fractionation and subsequent characterization of developmental toxins from freshwater cyanobacteria. PMID:17020820

  15. A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen.

    PubMed

    Driessen, Marja; Vitins, Alexa P; Pennings, Jeroen L A; Kienhuis, Anne S; Water, Bob van de; van der Ven, Leo T M

    2015-01-22

    The zebrafish embryo (ZFE) is a promising alternative, non-rodent model in toxicology, which has an advantage over the traditionally used models as it contains complete biological complexity and provides a medium to high-throughput setting. Here, we assess how the ZFE compares to the traditionally used models for liver toxicity testing, i.e., in vivo mouse and rat liver, in vitro mouse and rat hepatocytes, and primary human hepatocytes. For this comparison, we analyzed gene expression changes induced by three model compounds for cholestasis, steatosis, and necrosis. The three compounds, cyclosporine A, amiodarone, and acetaminophen, were chosen because of their relevance to human toxicity and these compounds displayed hepatotoxic-specific changes in the mouse in vivo data. Compound induced expression changes in the ZFE model shared similarity with both in vivo and in vitro. Comparison on single gene level revealed the presence of model specific changes and no clear concordance across models. However, concordance was identified on the pathway level. Specifically, the pathway "regulation of metabolism - bile acids regulation of glucose and lipid metabolism via FXR" was affected across all models and compounds. In conclusion, our study with three hepatotoxic model compounds shows that the ZFE model is at least as comparable to traditional models in identifying hepatotoxic activity and has the potential for use as a pre-screen to determine the hepatotoxic potential of compounds. PMID:25448281

  16. Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model.

    PubMed

    García-Cambero, J P; García-Cortés, H; Valcárcel, Y; Catalá, M

    2015-12-30

    Several studies have found cocaine and its main active metabolite benzoylecgonine (BE) in the aquatic environment and drinking water, derived from its consumption by humans as well as the inability of water treatment processes to eliminate it. A few studies have already investigated the ecotoxicology of BE to aquatic invertebrates, but none has still addressed the effects of BE on aquatic vertebrates or vascular plants. The goal of this publication is to provide information on the toxicity of environmental concentrations of BE during animal and vascular plant development, in order to contribute to a better understanding of the potential risk of this substance for the environment. BE induced alterations in mitochondrial activity and DNA levels of fern spores at environmental concentrations (1 ng L(-1)), which could disrupt gametophyte germination. However, BE at concentrations ranging from 1 ng L(-1) to 1 mg L(-1) did not disturb morphogenesis, hatching, heartbeat rate or larval motility in a zebrafish embryo-larval model. Adverse effects on ferns agree with the allelophathic role described for alkaloids and their unspecific interference with plant germination. Therefore, the anthropogenic dispersion of alkaloid allelochemicals may pose a risk for biodiversity and irrigated food production that should be further investigated. PMID:26340554

  17. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  18. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.

    PubMed

    McDougall, Melissa Q; Choi, Jaewoo; Stevens, Jan F; Truong, Lisa; Tanguay, Robert L; Traber, Maret G

    2016-08-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H2(18)O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos. PMID:26774753

  19. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos

    PubMed Central

    McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.

    2016-01-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753

  20. Carbon Quantum Dots for Zebrafish Fluorescence Imaging.

    PubMed

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  1. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  2. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  3. Lagos lagoon sediment organic extracts and polycyclic aromatic hydrocarbons induce embryotoxic, teratogenic and genotoxic effects in Danio rerio (zebrafish) embryos.

    PubMed

    Sogbanmu, Temitope O; Nagy, Eszter; Phillips, David H; Arlt, Volker M; Otitoloju, Adebayo A; Bury, Nic R

    2016-07-01

    An expansion of anthropogenic activity around Lagos lagoon, Nigeria, has raised concerns over increasing contaminants entering the lagoon's ecosystem. The embryotoxicity, teratogenicity and genotoxicity of sediment organic extracts from four sampling zones around Lagos lagoon, Ilaje, Iddo, Atlas Cove and Apapa, as well as the dominant polycyclic aromatic hydrocarbons (PAHs) identified in water measured during the wet season (naphthalene, phenanthrene, pyrene, benzo[a]pyrene and a mixture of these), were assessed with Danio rerio embryos. Embryos were exposed to varying concentrations of toxicants from 0-72 h post-fertilization (hpf). Embryotoxicity at 72 hpf showed a dose-dependent increase in mortality upon exposure to extracts from all zones, except Atlas Cove. Similarly, higher levels of teratogenic effects, such as increased oedema, and haemorrhage and developmental abnormalities resulted from exposure to extracts from Ilaje, Iddo and Apapa zones. Treatment with single PAHs revealed that significant levels of detrimental effects were obtained only for phenanthrene. The modified comet assay revealed that the oxidative damage to DNA was generally low (<12 %) overall for all sediment extracts, but was significantly elevated with Ilaje and Iddo sediment extracts when compared with solvent controls. Oxidative damage was observed with the single PAHs, phenanthrene and benzo[a]pyrene, as well as with the PAH mixture. This study highlights that Lagos lagoon sediment extracts have teratogenic, embryotoxic and genotoxic properties, which are likely due to the high molecular weight PAHs present in the extracts, some of which are known or are suspected human carcinogens. PMID:27068906

  4. aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition.

    PubMed

    Eno, Celeste; Solanki, Bharti; Pelegri, Francisco

    2016-05-01

    Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. We show that the cytokinesis defects are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternative anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 interacting protein 1 like (Mid1ip1l), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene product Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1l fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1l protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura (mid1ip1l) acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period. PMID:26965374

  5. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    PubMed Central

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-01-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI). PMID:27188464

  6. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio).

    PubMed

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou

    2015-09-01

    The broad spectrum applications of CoFe2O4 NPs have attracted much interest in medicine, environment and industry, resulting in exceedingly higher exposures to humans and environmental systems in succeeding days. Their health effects and potential biological impacts need to be determined for risk assessment. Zebrafish (Danio rerio) embryos were exposed to environmentally relevant doses of nano-CoFe2O4 (mean diameter of 40nm) with a concentration range of 10-500μM for 96h. Acute toxic end points were evaluated by survival rate, malformation, hatching delay, heart dysfunction and tail flexure of larvae. Dose and time dependent developmental toxicity with severe cardiac edema, down regulation of metabolism, hatching delay and tail/spinal cord flexure and apoptosis was observed. The biochemical changes were evaluated by ROS, Catalase (CAT), Lipid peroxidation (LPO), Acid phophatase (AP) and Glutatione s- transferase (GST). An Agglomeration of NPs and dissolution of ions induces severe mechanical damage to membranes and oxidative stress. Severe apoptosis of cells in the head, heart and tail region with inhibition of catalase confirms ROS induced acute toxicity with increasing concentration. Increased activity of GST and AP at lower concentrations of CoFe2O4 NPs demonstrates the severe oxidative stress. Circular dichroism (CD) spectra indicated the weak interactions of NPs with BSA and slight changes in α-helix structure. In addition, CoFe2O4 NPs at lower concentrations do not show any considerable interference with assay components and analytical instruments. The results are possible elucidation of pathways of toxicity induced by these particles, as well as contributing in defining the protocols for risk assessment of these nanoparticles. PMID:26197244

  7. The fish embryo toxicity test as a replacement for the larval growth and survival test: A comparison of test sensitivity and identification of alternative endpoints in zebrafish and fathead minnows.

    PubMed

    Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Stephens, Dane A; Rawlings, Jane M; Belanger, Scott E; Oris, James T

    2015-06-01

    The fish embryo toxicity (FET) test has been proposed as an alternative to the larval growth and survival (LGS) test. The objectives of the present study were to evaluate the sensitivity of the FET and LGS tests in fathead minnows (Pimephales promelas) and zebrafish (Danio rerio) and to determine if the inclusion of sublethal metrics as test endpoints could enhance test utility. In both species, LGS and FET tests were conducted using 2 simulated effluents. A comparison of median lethal concentrations determined via each test revealed significant differences between test types; however, it could not be determined which test was the least and/or most sensitive. At the conclusion of each test, developmental abnormalities and the expression of genes related to growth and toxicity were evaluated. Fathead minnows and zebrafish exposed to mock municipal wastewater-treatment plant effluent in a FET test experienced an increased incidence of pericardial edema and significant alterations in the expression of genes including insulin-like growth factors 1 and 2, heat shock protein 70, and cytochrome P4501A, suggesting that the inclusion of these endpoints could enhance test utility. The results not only show the utility of the fathead minnow FET test as a replacement for the LGS test but also provide evidence that inclusion of additional endpoints could improve the predictive power of the FET test. PMID:25929752

  8. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish.

    PubMed

    Gamse, Joshua T; Gorelick, Daniel A

    2016-10-01

    For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals. PMID:27618129

  9. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  10. Imaging blood vessels in the zebrafish.

    PubMed

    Kamei, Makoto; Isogai, Sumio; Pan, Weijun; Weinstein, Brant M

    2010-01-01

    Understanding on the mechanisms of vascular branching morphogenesis has become a subject of enormous scientific and clinical interest. Zebrafish, which have small, accessible, transparent embryos and larvae, provides a unique living animal model to facilitating high-resolution imaging on ubiquitous and deep localization of vessels within embryo development and also in adult tissues. In this chapter, we have summarized various methods for vessel imaging in zebrafish, including in situ hybridization for vascular-specific genes, resin injection- or dye injection-based vessel visualization, and alkaline phosphatase staining. We also described detail protocols for live imaging of vessels by microangiography or using various transgenic zebrafish lines. PMID:21111213

  11. An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage.

    PubMed

    He, Xiaojia; Aker, Winfred G; Hwang, Huey-Min

    2014-08-01

    The role of light on the acute toxicities of S-doped and Sigma TiO2 nanoparticles in zebrafish was studied. Metrics included mortality for both, and rheotaxis dysfunction and DNA damage for S-doped only. It was found that the acute toxicity of S-TiO2 nanoparticles was enhanced by simulated sunlight (SSL) irradiation (96-h LC50 of 116.56 ppm) and exceeded that of Sigma TiO2, which was essentially non-toxic. Behavioral disorder, in terms of rheotaxis, was significantly increased by treatment with S-TiO2 nanoparticles under SSL irradiation. In order to further understand its toxicity mechanism, we investigated hair cells in neuromasts of the posterior lateral line (PLL) using DASPEI staining. Significant hair cell damage was observed in the treated larvae. The Comet assay was employed to investigate the DNA damage, which might be responsible for the loss of hair cells. Production of the superoxide anion ([Formula: see text]), a major ROS generated by TiO2 nanoparticles, was assayed and used to postulate causative factors to account for these damages. Oxidative effects were most severe in the liver, heart, intestine, pancreatic duct, and pancreatic islet - results consistent with our earlier findings in the investigation of embryonic malformation. TEM micrographs, used to further investigate the fate of S-TiO2 nanoparticles at the cellular level, suggested receptor-mediated autophagy and vacuolization. Our findings validate the benefit of using the transparent zebrafish embryo as an in vivo model for evaluating photo-induced nanotoxicity. These results highlight the importance of conducting a systematic risk assessment in connection with the use of doped TiO2 nanoparticles in aquatic ecosystems. PMID:24766231

  12. Epicatechin isolated from Tripterygium wilfordii extract reduces tau-GFP-induced neurotoxicity in zebrafish embryo through the activation of Nrf2.

    PubMed

    Wu, Bo-Kai; Yuan, Rey-Yue; Chang, Yen-Pu; Lien, Huang-Wei; Chen, Ting-Shou; Chien, Hung-Chi; Tong, Tien-Soung; Tsai, Hui-Ping; Fang, Cheng-Li; Liao, Yung-Feng; Chang, Chun-Che; Chen, Rita P-Y; Huang, Chang-Jen

    2016-08-19

    Tau plays important roles in the assembly and stabilization of the microtubule structure to facilitate axonal transport in mammalian brain. The intracellular tau aggregates to form paired helical filaments leading to neurodegenerative disorders, collectively called tauopathies. In our previous report, we established a zebrafish model to express tau-GFP to induce neuronal death, which could be directly traced in vivo. Recently, we used this model to screen 400 herbal extracts and found 45 of them to be effective on reducing tau-GFP-induced neuronal death. One of the effective herbal extracts is the Tripterygium wilfordii stem extract. HPLC analysis and functional assay demonstrated that epicatechin (EC) is the major compound of Tripterygium wilfordii stem extract to decrease the neurotoxicity induced by tau-GFP. Using a luciferase reporter assay in the zebrafish, we confirmed that EC could activate Nrf2-dependent antioxidant responses to significantly increase the ARE-controlled expression of luciferase reporter gene. These data suggest that EC from the Tripterygium wilfordii stem extract could diminish tau-GFP-induced neuronal death through the activation of Nrf2. PMID:27301640

  13. Zebrafish as a model for human osteosarcoma.

    PubMed

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented. PMID:24924177

  14. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles

    SciTech Connect

    Jong, Esther de; Barenys, Marta; Hermsen, Sanne A.B.; Verhoef, Aart; Ossendorp, Bernadette C.; Bessems, Jos G.M.; Piersma, Aldert H.

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.

  15. Microgavage of zebrafish larvae.

    PubMed

    Cocchiaro, Jordan L; Rawls, John F

    2013-01-01

    The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be

  16. Chimerism of buccal membrane cells in a monochorionic dizygotic twin.

    PubMed

    Fumoto, Seiko; Hosoi, Kenichiro; Ohnishi, Hiroaki; Hoshina, Hiroaki; Yan, Kunimasa; Saji, Hiroh; Oka, Akira

    2014-04-01

    No monochorionic dizygotic twins (MCDZTs) with cellular chimerism involving cells other than blood cells have been reported in the literature to date. Here we report a probable first case of MCDZTs with buccal cell chimerism. A 32-year-old woman conceived twins by in vitro fertilization by using 2 cryopreserved blastocysts that were transferred into her uterus. An ultrasound scan at 8 weeks' gestation showed signs indicative of monochorionic twins. A healthy boy and a healthy girl were born, showing no sexual ambiguity. Cytogenetic analyses and microsatellite studies demonstrated chimerism in blood cells of both twins. Notably, repeated fluorescence in situ hybridization and microsatellite studies revealed chimerism in buccal cells obtained from 1 of the twins. Although the mechanism through which buccal cell chimerism was generated remains to be elucidated, ectopic differentiation of chimeric hematopoietic cells that migrated to the buccal membrane or the cellular transfer between the 2 embryos at the early stage of development might be responsible for the phenomenon. This hypothesis raises an interesting issue regarding embryonic development and cellular differentiation into organs during fetal development. Given the possibility of cryptic chimerism in various organs including gonadal tissues in MCDZTs, close observation will be required to determine whether complications develop in the course of the patients' growth. PMID:24685957

  17. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  18. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos.

    PubMed

    Cobbina, Samuel Jerry; Xu, Hai; Zhao, Ting; Mao, Guanghua; Zhou, Zhaoxiang; Wu, Xueshan; Liu, Hongyang; Zou, Yanmin; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    Concerns over the potential health effects of mixtures of low concentration heavy metals on living organisms keep growing by the day. However, the toxicity of low concentration metal mixtures on the immune system of fish species has rarely been investigated. In this study, the zebrafish model was employed to investigate the effect on innate immune and antioxidant-related gene expressions, on exposure to environmentally relevant concentrations of individual and mixtures of Pb (0.01 mg/L), Hg (0.001 mg/L), As (0.01 mg/L) and Cd (0.005 mg/L). Messenger-RNA (mRNA) levels of IL1β, TNF-α, IFNγ, Mx, Lyz, C3B and CXCL-Clc which are closely associated with the innate immune system were affected after exposing zebrafish embryos to metals for 120 h post fertilization (hpf). Individual and mixtures of metals exhibited different potentials to modulate innate-immune gene transcription. IL1β genes were significantly up regulated on exposure to Pb + As (2.01-fold) and inhibited on exposure to Pb + Hg + Cd (0.13-fold). TNF-α was significantly inhibited on exposure to As (0.40-fold) and Pb + As (0.32-fold) compared to control. Metal mixtures generally up regulated IFNγ compared to individual metals. Additionally, antioxidant genes were affected, as CAT and GPx gene expressions generally increased, whiles Mn-SOD and Zn/Cu-SOD reduced. Multivariate analysis showed that exposure to individual metals greatly influenced modulation of innate immune genes; whiles metal mixtures influenced antioxidant gene expressions. This suggests that beside oxidative stress, there may be other pathways influencing gene expressions of innate immune and antioxidant-related genes. Low concentration heavy metals also affect expression of development-related (wnt8a and vegf) genes. Altogether, the results of this study clearly demonstrate that low concentration individual and mixtures of metals in aquatic systems will greatly influence the immune system. It is indicative that mechanisms associated with

  19. Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro and in Zebrafish Embryos In Vivo via Activation of the ERK Signaling Pathway

    PubMed Central

    Wu, Fei; Song, Haibo; Zhang, Yuan; Zhang, Yuzhu; Mu, Qian; Jiang, Miao; Wang, Fang; Zhang, Wen; Li, Liang; Li, Huanjie; Wang, Yunshan; Zhang, Mingxiang; Li, Shiwu; Yang, Lijun; Meng, Yan; Tang, Dongqi

    2015-01-01

    As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway. PMID:26241478

  20. Histopathological alterations and induction of hsp70 in ramshorn snail (Marisa cornuarietis) and zebrafish (Danio rerio) embryos after exposure to PtCl(2).

    PubMed

    Osterauer, Raphaela; Köhler, Heinz-R; Triebskorn, Rita

    2010-08-01

    The platinum group metals (PGMs) platinum (Pt), palladium (Pd), and rhodium (Rh) are used in automobile catalytic converters, from which they have been emitted into the environment to an increasing degree during the last 20 years. Despite the bioavailability of these metals to plants and animals, studies determining the effects of PGMs on organisms are extremely rare. In the present study, effects of various concentrations of PtCl(2) (0.1, 1, 10, 50 and 100 microg/L) were investigated with respect to the induction of hsp70 and histopathological alterations in the zebrafish, Danio rerio and the ramshorn snail, Marisa cornuarietis. Histopathological investigations revealed effects of Pt on both species, which varied between slight and strong cellular reactions, depending on the PtCl(2) concentration. The hsp70 level in M. cornuarietis did not show an increase following Pt exposure whereas it was significantly elevated at 100 micorg/L PtCl(2) in D. rerio. PMID:20444508

  1. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio).

    PubMed

    Kwon, Oh Kwang; Kim, Sun Ju; Lee, You-Mie; Lee, Young-Hoon; Bae, Young-Seuk; Kim, Jin Young; Peng, Xiaojun; Cheng, Zhongyi; Zhao, Yingming; Lee, Sangkyu

    2016-01-01

    The zebrafish (Danio rerio) is a popular animal model used for studies on vertebrate development and organogenesis. Recent research has shown a similarity of approximately 70% between the human and zebrafish genomes and about 84% of human disease-causing genes have common ancestry with that of the zebrafish genes. Zebrafish embryos have a number of desirable features, including transparency, a large size, and rapid embryogenesis. Protein phosphorylation is a well-known PTM, which can carry out various biological functions. Recent MS developments have enabled the study of global phosphorylation patterns by using MS-based proteomics coupled with titanium dioxide phosphopeptide enrichment. In the present study, we identified 3500 nonredundant phosphorylation sites on 2166 phosphoproteins and quantified 1564 phosphoproteins in developing embryos of zebrafish. The distribution of Ser/Thr/Tyr phosphorylation sites in zebrafish embryos was found to be 88.9, 10.2, and 0.9%, respectively. A potential kinase motif was predicted using Motif-X analysis, for 80% of the identified phosphorylation sites, with the proline-directed motif appearing most frequently, and 35 phosphorylation sites having the pSF motif. In addition, we created six phosphoprotein clusters based on their dynamic pattern during the development of zebrafish embryos. Here, we report the largest dataset of phosphoproteins in zebrafish embryos and our results can be used for further studies on phosphorylation sites or phosphoprotein dynamics in zebrafish embryos. PMID:26449285

  2. Developmental toxicity screening in zebrafish.

    PubMed

    McCollum, Catherine W; Ducharme, Nicole A; Bondesson, Maria; Gustafsson, Jan-Ake

    2011-06-01

    Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies. PMID:21671351

  3. The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes.

    PubMed

    Rastegar, S; Strähle, U

    2016-01-01

    Despite enormous progress to map cis-regulatory modules (CRMs), like enhancers and promoters in genomes, elucidation of the regulatory landscape of the developing embryo remains a challenge. The zebrafish embryo with its experimental virtues has a great potential to contribute to this endeavor. However, so far progress remained behind expectation. We discuss here available methods and their limitations and how the zebrafish embryo could contribute in the future to unravel the wiring of the vertebrate genome. PMID:27503358

  4. Electroejaculation of chimeric rats

    PubMed Central

    McCoy, Marina R.; Montonye, Daniel; Bryda, Elizabeth C.

    2014-01-01

    With the advent of genetic engineering of rodents came the need to assess fertility and germline competency, especially in chimeric rodents generated using embryonic stem cells. Traditional methods rely on natural mating and progeny testing, which is time- and cost-intensive. Electroejaculation is a faster method of collecting sperm for genetic analysis and offers the additional benefit of using fewer animals. This column describes a refined electroejaculation technique for chimeric rats using light gas anesthesia and a custom-made platform for sperm collection. PMID:23689457

  5. Electroejaculation of chimeric rats.

    PubMed

    McCoy, Marina R; Montonye, Daniel; Bryda, Elizabeth C

    2013-06-01

    With the advent of genetic engineering of rodents came the need to assess fertility and germline competency, especially in chimeric rodents generated using embryonic stem cells. Traditional methods rely on natural mating and progeny testing, which is time- and cost-intensive. Electroejaculation is a faster method of collecting sperm for genetic analysis and offers the additional benefit of using fewer animals. This column describes a refined electroejaculation technique for chimeric rats using light gas anesthesia and a custom-made platform for sperm collection. PMID:23689457

  6. Chimeric Pestivirus Experimental Vaccines.

    PubMed

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics. PMID:26458840

  7. Ewing sarcoma ewsa protein regulates chondrogenesis of Meckel's cartilage through modulation of Sox9 in zebrafish.

    PubMed

    Merkes, Chris; Turkalo, Timothy K; Wilder, Nicole; Park, Hyewon; Wenger, Luke W; Lewin, Seth J; Azuma, Mizuki

    2015-01-01

    Ewing sarcoma is the second most common skeletal (bone and cartilage) cancer in adolescents, and it is characterized by the expression of the aberrant chimeric fusion gene EWS/FLI1. Wild-type EWS has been proposed to play a role in mitosis, splicing and transcription. We have previously shown that EWS/FLI1 interacts with EWS, and it inhibits EWS activity in a dominant manner. Ewing sarcoma is a cancer that specifically develops in skeletal tissues, and although the above data suggests the significance of EWS, its role in chondrogenesis/skeletogenesis is not understood. To elucidate the function of EWS in skeletal development, we generated and analyzed a maternal zygotic (MZ) ewsa/ewsa line because the ewsa/wt and ewsa/ewsa zebrafish appeared to be normal and fertile. Compared with wt/wt, the Meckel's cartilage of MZ ewsa/ewsa mutants had a higher number of craniofacial prehypertrophic chondrocytes that failed to mature into hypertrophic chondrocytes at 4 days post-fertilization (dpf). Ewsa interacted with Sox9, which is the master transcription factor for chondrogenesis. Sox9 target genes were either upregulated (ctgfa, ctgfb, col2a1a, and col2a1b) or downregulated (sox5, nog1, nog2, and bmp4) in MZ ewsa/ewsa embryos compared with the wt/wt zebrafish embryos. Among these Sox9 target genes, the chromatin immunoprecipitation (ChIP) experiment demonstrated that Ewsa directly binds to ctgfa and ctgfb loci. Consistently, immunohistochemistry showed that the Ctgf protein is upregulated in the Meckel's cartilage of MZ ewsa/ewsa mutants. Together, we propose that Ewsa promotes the differentiation from prehypertrophic chondrocytes to hypertrophic chondrocytes of Meckel's cartilage through inhibiting Sox9 binding site of the ctgf gene promoter. Because Ewing sarcoma specifically develops in skeletal tissue that is originating from chondrocytes, this new role of EWS may provide a potential molecular basis of its pathogenesis. PMID:25617839

  8. Bioenergetic Profiling of Zebrafish Embryonic Development

    PubMed Central

    Stackley, Krista D.; Beeson, Craig C.; Rahn, Jennifer J.; Chan, Sherine S. L.

    2011-01-01

    Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility. PMID:21980518

  9. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  10. Zebrafish Rhabdomyosarcoma.

    PubMed

    Phelps, Michael; Chen, Eleanor

    2016-01-01

    In vivo models of Rhabdomyosarcoma (RMS) have proven instrumental in understanding the development and progression of this devastating pediatric sarcoma. Both vertebrate and invertebrate model systems have been developed to study the tumor biology of both embryonal (ERMS) and alveolar (ARMS) RMS subtypes. Zebrafish RMS models have been particularly amenable for high-throughput studies to identify drug targetable pathways because of their short tumor latency, ease of ex vivo manipulation and conserved tumor biology. The transgenic KRASG12D-induced ERMS model allows for molecular and cellular characterization of distinct tumor cell subpopulations including the tumor propagating cells. Comparative genomic approaches have also been utilized in zebrafish ERMS to identify conserved candidate driver genes. Recent advances in zebrafish genome engineering have further enabled the ability to probe the functional significance of potential driver genes. Using the unique strengths of the zebrafish model organisms with the wealth of cellular and molecular tools currently available, zebrafish RMS models provide a powerful in vivo system for which to study RMS tumorigenesis. PMID:27165362

  11. Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens.

    PubMed

    Park, Kyung Je; Kang, Seok Jin; Kim, Tae Min; Lee, Young Mok; Lee, Hyung Chul; Song, Gwonhwa; Han, Jae Yong

    2010-12-01

    The production of chimeric birds is an important tool for the investigation of vertebrate development, the conservation of endangered birds, and the development of various biotechnological applications. This study examined whether gamma (γ)-irradiation depletes endogenous primordial germ cells and enhances the efficiency of somatic chimerism in chickens. An optimal irradiation protocol for stage X embryos was determined after irradiation at various doses (0, 100, 300, 500, 600, 700, and 2,000 rad). Exposure to 500 rad of γ-irradiation for 73 s significantly decreased the number of primordial germ cells (P < 0.0001). Somatic chimera hatchlings were then produced by transferring blastodermal cells from a Korean Oge into either an irradiated (at 500 rad) or intact stage X White Leghorn embryo. An analysis of feather color pattern and polymerase chain reaction-based species-specific amplification of various tissues of the hatchlings confirmed chimerism in most organs of the chick produced from the irradiated recipient; a lesser degree of chimerism was observed in the non-irradiated control recipient. In conclusion, the exposure of chick embryos to an optimized dose of γ-irradiation effectively depleted germ cells and yielded greater somatic chimerism than non-irradiated control embryos. This technique can be applied to interspecies reproduction or the production of transgenic birds. PMID:21057980

  12. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology. PMID:27165365

  13. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  14. Imaging blood vessels and lymphatic vessels in the zebrafish.

    PubMed

    Jung, H M; Isogai, S; Kamei, M; Castranova, D; Gore, A V; Weinstein, B M

    2016-01-01

    Blood vessels supply tissues and organs with oxygen, nutrients, cellular, and humoral factors, while lymphatic vessels regulate tissue fluid homeostasis, immune trafficking, and dietary fat absorption. Understanding the mechanisms of vascular morphogenesis has become a subject of intense clinical interest because of the close association of both types of vessels with pathogenesis of a broad spectrum of human diseases. The zebrafish provides a powerful animal model to study vascular morphogenesis because of their small, accessible, and transparent embryos. These unique features of zebrafish embryos permit sophisticated high-resolution live imaging of even deeply localized vessels during embryonic development and even in adult tissues. In this chapter, we summarize various methods for blood and lymphatic vessel imaging in zebrafish, including nonvital resin injection-based or dye injection-based vessel visualization, and alkaline phosphatase staining. We also provide protocols for vital imaging of vessels using microangiography or transgenic fluorescent reporter zebrafish lines. PMID:27263409

  15. Zebrafish small molecule screen in reprogramming/cell fate modulation

    PubMed Central

    Munson, Kathleen M.; Yeh, Jing-Ruey J.

    2010-01-01

    Embryonic zebrafish have long been used for lineage tracing studies. In zebrafish embryos, the cell fate identities can be determined by whole-mount in situ hybridization, or by visualization of live embryos if using fluorescent reporter lines. We use embryonic zebrafish to study the effects of a leukemic oncogene AML1-ETO on modulating hematopoietic cell fate. Induced expression of AML1-ETO is able to efficiently reprogram hematopoietic progenitor cells from erythroid to myeloid cell fate. Using the zebrafish model of AML1-ETO, we performed a chemical screen to identify small molecules that suppress the cell fate switch in the presence of AML1-ETO. The methods discussed herein may be broadly applicable for identifying small molecules that modulate other cell fate decisions. PMID:20336532

  16. Zebrafish Invade Valparaiso: Third Meeting and Symposium of the Latin American Zebrafish Network.

    PubMed

    Whitlock, Kathleen E

    2014-11-01

    Abstract Zebrafish are an excellent model system for research and teaching. Because of their relatively low maintenance costs, beautiful and bountiful embryos, and tool box of molecular genetic technique, zebrafish are ideal for countries with smaller research budgets and less well-developed science infrastructure. For these reasons, zebrafish are growing in popularity as a model system for research in Latin America. In response to this growing need, we held the Third Latin American Zebrafish Network (LAZEN) Course and Symposium in Valparaiso, Chile, in April 4-13, 2014. The course covered a wide variety of topics from fish husbandry to outreach and ended with a symposium hosting excellent scientists from Latin America and beyond. PMID:25372497

  17. Zebrafish invade Valparaiso: third meeting and symposium of the Latin American zebrafish network.

    PubMed

    Whitlock, Kathleen E

    2014-12-01

    Zebrafish are an excellent model system for research and teaching. Because of their relatively low maintenance costs, beautiful and bountiful embryos, and tool box of molecular genetic technique, zebrafish are ideal for countries with smaller research budgets and less well-developed science infrastructure. For these reasons, zebrafish are growing in popularity as a model system for research in Latin America. In response to this growing need, we held the Third Latin American Zebrafish Network (LAZEN) Course and Symposium in Valparaiso, Chile, in April 4-13, 2014. The course covered a wide variety of topics from fish husbandry to outreach and ended with a symposium hosting excellent scientists from Latin America and beyond. PMID:25470532

  18. Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish.

    PubMed

    Long, Yong; Li, Qing; Li, Jie; Cui, Zongbin

    2011-01-01

    ABCC5/MRP5 is an organic anion transporter that participates in tissue defense and cellular signal transduction through efflux of anticancer drugs, toxicants and a second messenger cGMP, but its physiological functions in zebrafish remain to be defined. Herein, we report the characterization, spatiotemporal expression and developmental function of zebrafish ABCC5 and its transcriptional responses to heavy metals. Zebrafish abcc5 gene is located on chromosome 18 and comprised of 28 exons. The deduced polypeptide of zebrafish ABCC5 consists of 1426 amino acids, which shares high sequence identity with those from other species. Zebrafish abcc5 is maternally expressed and its transcripts are mainly distributed in brain, lens, liver and intestine of developing embryos. In adults, zebrafish abcc5 is extensively expressed, at higher levels in testis, brain, eye, ovary, intestine and kidney, but at relatively lower levels in gill, liver, heart and muscle. Blockage of endogenous ABCC5 activity by its dominant-negative led to the developmental retardation of zebrafish embryos in which activity of p21 signaling was markedly stimulated and cellular cGMP content was significantly increased. In addition, expression of abcc5 in ZF4 cells and zebrafish embryos was significantly induced by cadmium (Cd), lead (Pb), mercury (Hg) or arsenic (As). The induced expression of ABCC5 by heavy metals was mainly detected in the liver of embryos at 96-h post-fertilization (hpf). In adult zebrafish, expression of abcc5 in brain, intestine, liver, kidney and ovary was significantly induced by one or more of these heavy metals. Furthermore, overexpression of ABCC5 attenuated the toxicity of Cd to zebrafish embryos, but did not affect the toxicity of Hg or As. Thus, ABCC5 is likely to play an active role in embryonic development and heavy metal detoxification through the export of second messenger molecules and toxicants out of cells in zebrafish. PMID:20869459

  19. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. PMID:26283286

  20. Developmental Toxicity of Louisiana Crude Oil-Spiked Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory w...

  1. Evaluating alterations in Zebrafish retino-tectal projections as an indication of developmental neurotoxicity

    EPA Science Inventory

    The U.S. EPA is developing alternative screening methods to identify putative developmental neurotoxicants and prioritize chemicals for additional testing. One method developmentally exposes zebrafish embryos and assesses nervous system structure at 2 days post-fertilization (dpf...

  2. Zebrafish – As an Integrative Model for Twenty-first Century Toxicity Testing

    EPA Science Inventory

    The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the...

  3. Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications forAgrobacterium-mediated transformation.

    PubMed

    Polito, V S; McGranahan, G; Pinney, K; Leslie, C

    1989-04-01

    Early stages of somatic embryo development from embryogenic cultures ofJuglans regia (Persian or English walnut) are described. Histological examination reveals that secondary somatic embryos arise from cotyledons and hypocotyls of primary embryos cultured in the dark. The embryos originate by transverse to oblique divisions of surface cells. Single-cell origin of the secondary embryos confirms the potential of the repetitive embryogenesis system forAgrobacterium-mediated transformation and regeneration of non-chimeric, transgenic walnut plants. PMID:24233141

  4. A MULTIFACETED, MEDIUM-THROUGHPUT APPROACH FOR DETECTING AND CHARACTERIZING DEVELOPMENTAL NEUROTOXICITY USING ZEBRAFISH.

    EPA Science Inventory

    To address the EPA's need to prioritize hundreds to thousands of chemicals for testing, we are developing a rapid, cost-effective in vivo screen for developmental neurotoxicity using zebrafish (Danio rerio), a small freshwater fish with external fertilization. Zebrafish embryos d...

  5. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  6. Functionally conserved effects of rapamycin exposure on zebrafish.

    PubMed

    Sucularli, Ceren; Shehwana, Huma; Kuscu, Cem; Dungul, Dilay Ciglidag; Ozdag, Hilal; Konu, Ozlen

    2016-05-01

    Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure. PMID:27035657

  7. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    SciTech Connect

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  8. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome

    PubMed Central

    Miller, Galen W.; Truong, Lisa; Barton, Carrie L.; Labut, Edwin M.; Lebold, Katie M.; Traber, Maret G.; Tanguay, Robert L.

    2014-01-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin Edeficient parental diet (E−) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E− diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E− embryos at 48 h post-fertilization (hpf), embryos were collected from each group at 36 hpf. Lab embryos differentially expressed (p < 0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E− embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E + diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E−embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. PMID:24657723

  9. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome.

    PubMed

    Miller, Galen W; Truong, Lisa; Barton, Carrie L; Labut, Edwin M; Lebold, Katie M; Traber, Maret G; Tanguay, Robert L

    2014-06-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin E-deficient parental diet (E-) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E- diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E- embryos at 48h post-fertilization (hpf), embryos were collected from each group at 36hpf. Lab embryos differentially expressed (p<0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E- embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E+ diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E- embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. PMID:24657723

  10. Making waves in cancer research: new models in the zebrafish.

    PubMed

    Berghmans, Stephane; Jette, Cicely; Langenau, David; Hsu, Karl; Stewart, Rodney; Look, Thomas; Kanki, John P

    2005-08-01

    The zebrafish (Danio rerio) has proven to be a powerful vertebrate model system for the genetic analysis of developmental pathways and is only beginning to be exploited as a model for human disease and clinical research. The attributes that have led to the emergence of the zebrafish as a preeminent embryological model, including its capacity for forward and reverse genetic analyses, provides a unique opportunity to uncover novel insights into the molecular genetics of cancer. Some of the advantages of the zebrafish animal model system include fecundity, with each female capable of laying 200-300 eggs per week, external fertilization that permits manipulation of embryos ex utero, and rapid development of optically clear embryos, which allows the direct observation of developing internal organs and tissues in vivo. The zebrafish is amenable to transgenic and both forward and reverse genetic strategies that can be used to identify or generate zebrafish models of different types of cancer and may also present significant advantages for the discovery of tumor suppressor genes that promote tumorigenesis when mutationally inactivated. Importantly, the transparency and accessibility of the zebrafish embryo allows the unprecedented direct analysis of pathologic processes in vivo, including neoplastic cell transformation and tumorigenic progression. Ultimately, high-throughput modifier screens based on zebrafish cancer models can lead to the identification of chemicals or genes involved in the suppression or prevention of the malignant phenotype. The identification of small molecules or gene products through such screens will serve as ideal entry points for novel drug development for the treatment of cancer. This review focuses on the current technology that takes advantage of the zebrafish model system to further our understanding of the genetic basis of cancer and its treatment. PMID:16116796

  11. Zebrafish: A marvel of high-throughput biology for 21st century toxicology

    PubMed Central

    Bugel, Sean M.; Tanguay, Robert L.; Planchart, Antonio

    2015-01-01

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing. PMID:25678986

  12. Transcriptome analysis of Rpl11-deficient zebrafish model of Diamond-Blackfan Anemia.

    PubMed

    Zhang, Zhaojun; Jia, Haibo; Zhang, Qian; Wan, Yang; Song, Binfeng; Jia, Qiong; Liu, Hanzhi; Zhu, Xiaofan; Fang, Xiangdong

    2014-12-01

    To comprehensively reflect the roles of Rpl11 on the transcriptome of zebrafish model of Diamond-Blackfan Anemia (DBA), we performed whole-genome transcriptome sequencing on the Illumina Hi-Seq 2000 sequencing platform. Two different transcriptomes of zebrafish Rpl11-deficient and control Morpholino (Mo) embryos were collected and analyzed. The experimental design and methods, including sample preparation, RNA-Seq data evaluation and treatment, were described in details so that representative high-throughput sequencing data were acquired for assessing the actual impacts of Rpl11 on zebrafish embryos. We provided the accession number GSE51326 for easy access to the database. PMID:26484089

  13. Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals.

    PubMed

    Long, Yong; Li, Qing; Zhong, Shan; Wang, Youhui; Cui, Zongbin

    2011-05-01

    Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5μM mercury or 5μM lead. Moreover, exposure to 0.125-1μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals. PMID:21266201

  14. Host-Pathogen Interactions Made Transparent with the Zebrafish Model

    PubMed Central

    Meijer, Annemarie H; Spaink, Herman P

    2011-01-01

    The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening. PMID:21366518

  15. Zebrafish: a new companion for translational research in oncology.

    PubMed

    Barriuso, Jorge; Nagaraju, Raghavendar; Hurlstone, Adam

    2015-03-01

    In an era of high-throughput "omic" technologies, the unprecedented amount of data that can be generated presents a significant opportunity but simultaneously an even greater challenge for oncologists trying to provide personalized treatment. Classically, preclinical testing of new targets and identification of active compounds against those targets have entailed the extensive use of established human cell lines, as well as genetically modified mouse tumor models. Patient-derived xenografts in zebrafish may in the near future provide a platform for selecting an appropriate personalized therapy and together with zebrafish transgenic tumor models represent an alternative vehicle for drug development. The zebrafish is readily genetically modified. The transparency of zebrafish embryos and the recent development of pigment-deficient zebrafish afford researchers the valuable capacity to observe directly cancer formation and progression in a live vertebrate host. The zebrafish is amenable to transplantation assays that test the serial passage of fluorescently labeled tumor cells as well as their capacity to disseminate and/or metastasize. Progress achieved to date in genetic engineering and xenotransplantation will establish the zebrafish as one of the most versatile animal models for cancer research. A model organism that can be used in transgenesis, transplantation assays, single-cell functional assays, and in vivo imaging studies make zebrafish a natural companion for mice in translational oncology research. PMID:25573382

  16. Zebrafish as an appealing model for optogenetic studies.

    PubMed

    Simmich, Joshua; Staykov, Eric; Scott, Ethan

    2012-01-01

    Optogenetics, the use of light-based protein tools, has begun to revolutionize biological research. The approach has proven especially useful in the nervous system, where light has been used both to detect and to manipulate activity in targeted neurons. Optogenetic tools have been deployed in systems ranging from cultured cells to primates, with each offering a particular combination of advantages and drawbacks. In this chapter, we provide an overview of optogenetics in zebrafish. Two of the greatest attributes of the zebrafish model system are external fertilization and transparency in early life stages. Combined, these allow researchers to observe the internal structures of developing zebrafish embryos and larvae without dissections or other interference. This transparency, combined with the animals' small size, simple husbandry, and similarity to mammals in many structures and processes, has made zebrafish a particularly popular model system in developmental biology. The easy optical access also dovetails with optogenetic tools, allowing their use in intact, developing, and behaving animals. This means that optogenetic studies in embryonic and larval zebrafish can be carried out in a high-throughput fashion with relatively simple equipment. As a consequence, zebrafish have been an important proving ground for optogenetic tools and approaches and have already yielded important new knowledge about the neural circuits underlying behavior. Here, we provide a general introduction to zebrafish as a model system for optogenetics. Through descriptions and analyses of important optogenetic studies that have been done in zebrafish, we highlight the advantages and liabilities that the system brings to optogenetic experiments. PMID:22341325

  17. Generation of mt:egfp transgenic zebrafish biosensor for the detection of aquatic zinc and cadmium.

    PubMed

    Liu, Lili; Yan, Yanchun; Wang, Jian; Wu, Wei; Xu, Lei

    2016-08-01

    Zebrafish embryo toxicity testing has become a popular method for detecting environmental pollutions. However, the present research showed that zebrafish embryos exhibited no visible paramorphia, malformation, or mortality when exposed to heavy metals in a range above environmental standard limits, indicating that zebrafish embryos are an imprecise model for monitoring environmental heavy metals concentrations above regulatory limits. Aiming to obtain a biosensor for aquatic heavy metals, a metal-sensitive vector including zebrafish metallothionein (MT) promoter and enhanced green fluorescent protein (EGFP) was reconstructed and microinjected into 1-cell stage zebrafish embryos. The authors obtained an mt:egfp transgenic zebrafish line sensitive to aquatic zinc and cadmium. A quantitative experiment showed that zinc and cadmium treatment significantly induced the expression of EGFP in a dose- and time-dependent manner. In particular, EGFP messenger RNA levels increased remarkably when exposed to heavy metals above the standard limits. The results suggest that the transgenic zebrafish is a highly sensitive biosensor for detecting environmental levels of zinc and cadmium. Environ Toxicol Chem 2016;35:2066-2073. © 2016 SETAC. PMID:26752424

  18. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling

    PubMed Central

    Kenyon, Emma J.; Campos, Isabel; Bull, James C.; Williams, P. Huw; Stemple, Derek L.; Clark, Matthew D.

    2015-01-01

    The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. PMID:25478908

  19. Toxicity of silver nanoparticles in zebrafish models

    NASA Astrophysics Data System (ADS)

    Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

    2008-06-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  20. Cadmium affects retinogenesis during zebrafish embryonic development

    SciTech Connect

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-02-15

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos.

  1. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases

    PubMed Central

    Bragato, Cinzia; Gaudenzi, Germano; Blasevich, Flavia; Pavesi, Giulio; Maggi, Lorenzo; Giunta, Michele; Cotelli, Franco; Mora, Marina

    2016-01-01

    Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo. PMID:26842864

  2. Toxic effect of palladium on embryonic development of zebrafish.

    PubMed

    Chen, Mingliang; Chen, Sangxia; Du, Mi; Tang, Shaoheng; Chen, Mei; Wang, Wei; Yang, Hui; Chen, Qiaoyu; Chen, Jianming

    2015-02-01

    Since palladium (Pd) is now increasingly used in modern industry, it progressively accumulates in the environment, especially in aquatic ecosystem. The potential toxicity of Pd has therefore caused extensive concern worldwidely. In the present study, we investigated the toxic effect of Pd on zebrafish development. Acute Pd exposure significantly decreased both the survival rate (LC50: 292.6 μg/L, viz. 2.75 μM) and hatching rate (IC50: 181.5 μg/L, viz. 1.71 μM) of zebrafish during embryonic development. The most common developmental defect observed in Pd treated embryos is pericardiac edema, which occurs in a dose-dependent manner. Whole mount immunostaining and histological studies revealed that Pd exposure would produce the elongated, string-like heart. The heartbeat rate of zebrafish embryos was also decreased after Pd exposure. Consistently, mRNA expression levels of several cardiac-related genes were affected by Pd, suggesting a potential molecular mechanism of Pd-induced cardiac malformation of zebrafish embryo. Moreover, similar to other metals, Pd exposure resulted in the elevated expression of general metal-inducible genes. It was also found that the expression of several antioxidant enzymes was significantly down-regulated in the presence of Pd. Taken together, our study investigated the effects of Pd on zebrafish embryonic development and its potential molecular mechanisms, paving the way for the full understanding of Pd toxicity. PMID:25550166

  3. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage

    EPA Science Inventory

    The zebrafish (Danio rerio) embryo has been increasingly used as a model to evaluate toxicity of manufactured nanomaterials. Many studies indicate that the embryo chorion may protect animals from toxic effects of nanomaterials, suggesting that post-hatch life stages may be more s...

  4. Life-stage dependent response in zebrafish (Danio rerio) to phototoxicity of TiO2 nanoparticles

    EPA Science Inventory

    The Zebrafish, and especially its embryo stage, has been increasingly used as a model to evaluate toxicity of manufactured nanomaterials. However, many studies have indicated that the chorion may protect developing embroys from the toxic effects of nanomaterials, suggesting that ...

  5. Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction

    PubMed Central

    Martin-Iverson, Mathew T.; Mondal, Alinda; Ong, Daniel; Rainey-Smith, Stephanie; Taddei, Kevin; Lardelli, Michael; Groth, David M.; Verdile, Giuseppe; Martins, Ralph N.

    2012-01-01

    This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model. PMID:23183629

  6. Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning.

    PubMed

    Doganli, Canan; Nyengaard, Jens Randel; Lykke-Hartmann, Karin

    2016-01-01

    In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization protocol for whole-mount zebrafish embryos. PMID:26695046

  7. The zebrafish as a model to study polycystic liver disease.

    PubMed

    Tietz Bogert, Pamela S; Huang, Bing Q; Gradilone, Sergio A; Masyuk, Tetyana V; Moulder, Gary L; Ekker, Stephen C; Larusso, Nicholas F

    2013-06-01

    In the polycystic liver diseases (PLD), genetic defects initiate the formation of cysts in the liver and kidney. In rodent models of PLD (i.e., the PCK rat and Pkd2(WS25/-) mouse), we have studied hepatorenal cystic disease and therapeutic approaches. In this study, we employed zebrafish injected with morpholinos against genes involved in the PLD, including sec63, prkcsh, and pkd1a. We calculated the liver cystic area, and based on our rodent studies, we exposed the embryos to pasireotide [1 μM] or vitamin K3 [100 μM] and assessed the endoplasmic reticulum (ER) in cholangiocytes in embryos treated with 4-phenylbutyrate (4-PBA). Our results show that (a) morpholinos against sec63, prkcsh, and pkd1a eliminate expression of the respective proteins; (b) phenotypic body changes included curved tail and the formation of hepatic cysts in zebrafish larvae; (c) exposure of embryos to pasireotide inhibited hepatic cystogenesis in the zebrafish models; and (d) exposure of embryos to 4-PBA resulted in the ER in cholangiocytes resolving from a curved to a smooth appearance. Our results suggest that the zebrafish model of PLD may provide a means to screen drugs that could inhibit hepatic cystogenesis. PMID:23668934

  8. Toxicity of Vascular Disrupting Chemicals to Developing Zebrafish

    EPA Science Inventory

    Vascular development is integral to proper embryonic development and disruption of that process can have serious developmental consequences. We performed static 48-hr exposures of transgenic TG(kdr:EGFP)s843 zebrafish (Danio rerio) embryos with the known vascular inhibitors Vatal...

  9. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

  10. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  11. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  12. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-01-01

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required. PMID:24747778

  13. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  14. Chimeric enzymes with improved cellulase activities

    SciTech Connect

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  15. Immunostaining of dissected zebrafish embryonic heart.

    PubMed

    Yang, Jingchun; Xu, Xiaolei

    2012-01-01

    Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. PMID:22258109

  16. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    SciTech Connect

    Schmidt, Hayden R.; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A.

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  17. Microfluidic EmbryoSort technology: towards in flow analysis, sorting and dispensing of individual vertebrate embryos

    NASA Astrophysics Data System (ADS)

    Fuad, Nurul M.; Wlodkowic, Donald

    2013-12-01

    The demand to reduce the numbers of laboratory animals has facilitated the emergence of surrogate models such as tests performed on zebrafish (Danio rerio) or African clawed frog's (Xenopus levis) eggs, embryos and larvae. Those two model organisms are becoming increasingly popular replacements to current adult animal testing in toxicology, ecotoxicology and also in drug discovery. Zebrafish eggs and embryos are particularly attractive for toxicological analysis due their size (diameter 1.6 mm), optical transparency, large numbers generated per fish and very straightforward husbandry. The current bottleneck in using zebrafish embryos for screening purposes is, however, a tedious manual evaluation to confirm the fertilization status and subsequent dispensing of single developing embryos to multitier plates to perform toxicity analysis. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present a proofof- concept design of a continuous flow embryo sorter capable of analyzing, sorting and dispensing objects ranging in size from 1.5 - 2.5 mm. The prototypes were fabricated in polymethyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining. The application of additive manufacturing processes to prototype Lab-on-a-Chip sorters using both fused deposition manufacturing (FDM) and stereolithography (SLA) were also explored. The operation of the device was based on a revolving receptacle capable of receiving, holding and positioning single fish embryos for both interrogation and subsequent sorting. The actuation of the revolving receptacle was performed using a DC motor and/or microservo motor. The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers.

  18. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  19. Clinically Approved Iron Chelators Influence Zebrafish Mortality, Hatching Morphology and Cardiac Function

    PubMed Central

    Hamilton, Jasmine L.; Hatef, Azadeh; Imran ul-haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N.

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity. PMID:25329065

  20. Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers

    SciTech Connect

    McAleer, Mary Frances . E-mail: adam.dicker@mail.tju.edu; Davidson, Christian; Davidson, William Robert; Yentzer, Brad; Farber, Steven A.; Rodeck, Ulrich; Dicker, Adam P.

    2005-01-01

    Purpose: Zebrafish (Danio rerio) embryos provide a unique vertebrate model to screen therapeutic agents easily and rapidly because of their relatively close genetic relationship to humans, ready abundance and accessibility, short embryonal development, and optical clarity. To validate zebrafish embryos as a screen for radiation modifiers, we evaluated the effects of ionizing radiation in combination with a known radioprotector (free radical scavenger Amifostine) or radiosensitizing agent (tyrosine kinase inhibitor AG1478). Methods and materials: Viable zebrafish embryos were exposed to 0-10 Gy single-fraction 250 kVp X-rays with or without either Amifostine (0-4 mM) or AG1478 (0-10 {mu}M) at defined developmental stages from 1-24 h postfertilization (hpf). Embryos were examined for morphologic abnormalities and viability until 144 hpf. Results: Radiation alone produced a time- and dose-dependent perturbation of normal embryonic development and survival with maximal sensitivity at doses {>=}4 Gy delivered before 4 hpf. Amifostine markedly attenuated this effect, whereas AG1478 enhanced teratogenicity and lethality, particularly at therapeutically relevant (2-6 Gy) radiation doses. Conclusions: Collectively, these data validate the use of zebrafish as a vertebrate model to assess the effect of radiation alone or with radiation response modulators. Zebrafish embryos may thus provide a rapid, facile system to screen novel agents ultimately intended for human use in the context of therapeutic or accidental radiation exposure.

  1. Gelsolin is a dorsalizing factor in zebrafish

    PubMed Central

    Kanungo, Jyotshnabala; Kozmik, Zbynek; Swamynathan, Shivalingappa K.; Piatigorsky, Joram

    2003-01-01

    The gene for gelsolin (an actin-binding, cytoskeletal regulatory protein) was shown earlier to be specialized for high corneal expression in adult zebrafish. We show here that zebrafish gelsolin is required for proper dorsalization during embryogenesis. Inhibition of gelsolin expression by injecting fertilized eggs with a specific morpholino oligonucleotide resulted in a range of concentration-dependent ventralized phenotypes, including those lacking a brain and eyes. These were rescued by coinjection of zebrafish gelsolin or chordin (a known dorsalizing agent) mRNAs, or human gelsolin protein. Moreover, injection of gelsolin mRNA or human gelsolin protein by itself dorsalized the developing embryos, often resulting in axis duplication. Injection of the gelsolin-specific morpholino oligonucleotide enhanced the expression of Vent mRNA, a ventral marker downstream of bone morphogenetic proteins, whereas injection of gelsolin mRNA enhanced the expression of chordin and goosecoid mRNAs, both dorsal markers. Our results indicate that gelsolin also modulates embryonic dorsal/ventral pattern formation in zebrafish. PMID:12629212

  2. Development of a new rapid measurement technique for fish embryo membrane permeability studies using impedance spectroscopy

    PubMed Central

    Zhang, T.; Wang, R.Y.; Bao, Q-Y.; Rawson, D.M.

    2006-01-01

    Information on fish embryo membrane permeability is vital in their cryopreservation. Whilst conventional volumetric measurement based assessment methods have been widely used in fish embryo membrane permeability studies, they are lengthy and reduce the capacity for multi-embryo measurement during an experimental run. A new rapid ‘real-time’ measurement technique is required to determine membrane permeability during cryoprotectant treatment. In this study, zebrafish (Danio rerio) embryo membrane permeability to cryoprotectants was investigated using impedance spectroscopy. An embryo holding cell, capable of holding up to 10 zebrafish embryos was built incorporating the original system electrods for measuring the impedance spectra. The holding cell was tested with deionised water and a series of KCl solutions with known conductance values to confirm the performance of the modified system. Untreated intact embryos were then tested to optimise the loading capacity and sensitivity of the system. To study the impedance changes of zebrafish embryos during cryoprotectant exposure, three, six or nine embryos at 50% epiboly stage were loaded into the holding cell in egg water, which was then removed and replaced by 0.5, 1.0, 2.0 or 3 M methanol or dimethyl sulfoxide (DMSO). The impedance changes of the loaded embryos in different cryoprotectant solutions were monitored over 30 min at 22 °C, immediately following embryo exposure to cryoprotectants, at the frequency range of 10–106 Hz. The impedance changes of the embryos in egg water were used as controls. Results from this study showed that the optimum embryo loading level was six embryos per cell for each experimental run. The optimum frequency was identified at 103.14 or 1380 Hz which provided good sensitivity and reproducibility. Significant impedance changes were detected after embryos were exposed to different concentrations of cryoprotectants. The results agreed well with those obtained from conventional

  3. Toxic effects of thifluzamide on zebrafish (Danio rerio).

    PubMed

    Yang, Yang; Qi, Suzhen; Wang, Donghui; Wang, Kai; Zhu, Lizhen; Chai, Tingting; Wang, Chengju

    2016-04-15

    Thifluzamide is a fungicide widely used to control crop diseases, and it therefore constitutes a hazard to the environment. In this study, zebrafish were selected to assess the aquatic toxicity of thifluzamide. The acute and development toxicity of thifluzamide to embryos, larvae, and adult zebrafish were measured and the corresponding 96h-LC50 values were as follows: adult fish (4.19mg/L) embryos (3.08mg/L). A large suite of symptoms was found in these three stages of zebrafish, including abnormal spontaneous movement, slow heartbeat, hatching inhibition, growth regression, and morphological deformities. In addition, for adult zebrafish, distinct pathological changes were noted in liver and kidney 21 days post exposure (dpe) to 0.19, 1.33, and 2.76mg/L. Liver damage was more severe than kidney damage. In another 28 days exposure of adult zebrafish to 0.019, 0.19, and 1.90mg/L, negative changes in mitochondrial structure and enzymes activities [succinate dehydrogenase (SDH) and respiratory chain complexes] were found. These might be responsible for the adverse expansion of the apoptosis- and immune-related genes, which would facilitate the action of these factors in programmed cell death and might play a key role during the toxic events. PMID:26780700

  4. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. PMID:26267709

  5. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  6. Zebrafish as a model to study chemokine function.

    PubMed

    Kochhan, Eva; Siekmann, Arndt F

    2013-01-01

    Zebrafish have emerged as a powerful model organism to study embryo morphogenesis. Due to their optical clarity, they are uniquely suited for time-lapse imaging studies, providing insights into the dynamic processes underlying tissue formation and cell migration. These studies have been tremendously facilitated by the availability of transgenic zebrafish lines, labelling distinct embryonic structures, individual cells, or even subcellular structures, such as the nucleus. Zebrafish studies have revealed that the migration of several different cell types in the embryo is controlled by chemokines, small vertebrate-specific proteins. Here, we report methods to analyze the expression pattern of a given chemokine and its receptor in transgenic zebrafish using fluorescent in situ hybridization in combination with an anti-green fluorescent protein (GFP) antibody staining. We furthermore illustrate how to image migrating cell populations using time-lapse microscopy in double-transgenic embryos. We show how to investigate cell number and direction of migration by using a nuclear-localized GFP. The combination of this transgene with a membrane-targeted red fluorescent protein allows for the simultaneous determination of changes in cell shape, such as the formation of filopodial extensions. We exemplify this by describing how a mutation in the chemokine receptor cxcr4a affects endothelial cell migration and blood vessel formation. Finally, we provide a method to perform fluorescent angiography to monitor blood vessel perfusion in chemokine receptor mutants. PMID:23625497

  7. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to

  8. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.

    PubMed

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6h and 24h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24h at 0.1 and 5mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. PMID:23800688

  9. MicroRNA-140-5p impairs zebrafish embryonic bone development via targeting BMP-2.

    PubMed

    Gan, Shiquan; Huang, Zhaoqin; Liu, Ning; Su, Renxiang; Xie, Guie; Zhong, Beibei; Zhang, Kai; Wang, Shang; Hu, Xiang; Zhang, Jian; Xiang, Shuanglin

    2016-05-01

    MicroRNA-140-5p (miRNA-140-5p) is important for embryonic bone development. In this study, we found that miRNA-140-5p and its binding site in the 3'UTR of bone morphogenetic protein 2 (BMP-2) are highly conserved among vertebrates, and miRNA-140-5p negatively regulates both zebrafish and human BMP-2 genes. Microinjection of miRNA-140-5p or BMP-2b morpholino into zebrafish embryos led to a similar phenotype, including shortened tails, curved trunks, and defects in cranial cartilage. Moreover, miRNA-140-5p injection induced zebrafish embryo malformation that could be significantly rescued by microinjection of BMP-2 mRNA. In conclusion, our results indicated that miRNA-140-5p regulates zebrafish embryonic bone development via targeting BMP-2. PMID:27130837

  10. Reverse genetic screening reveals poor correlation between Morpholino-induced and mutant phenotypes in zebrafish

    PubMed Central

    Gupta, A.; Grosse, A. S.; van Impel, A.; Kirchmaier, B. C.; Peterson-Maduro, J.; Kourkoulis, G.; Male, I.; DeSantis, D.F.; Sheppard-Tindell, S.; Ebarasi, L.; Betsholtz, C.; Schulte-Merker, S.; Wolfe, S. A.; Lawson, N. D.

    2014-01-01

    SUMMARY The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than twenty genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately eighty percent of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses. PMID:25533206

  11. 16S rRNA amplicon sequencing dataset for conventionalized and conventionally raised zebrafish larvae.

    PubMed

    Davis, Daniel J; Bryda, Elizabeth C; Gillespie, Catherine H; Ericsson, Aaron C

    2016-09-01

    Data presented here contains metagenomic analysis regarding the sequential conventionalization of germ-free zebrafish embryos. Zebrafish embryos that underwent a germ-free sterilization process immediately after fertilization were promptly exposed to and raised to larval stage in conventional fish water. At 6 days postfertilization (dpf), these "conventionalized" larvae were compared to zebrafish larvae that were raised in conventional fish water never undergoing the initial sterilization process. Bacterial 16S rRNA amplicon sequencing was performed on DNA isolated from homogenates of the larvae revealing distinct microbiota variations between the two groups. The dataset described here is also related to the research article entitled "Microbial modulation of behavior and stress responses in zebrafish larvae" (Davis et al., 2016) [1]. PMID:27508247

  12. montalcino, a Zebrafish Model for Variegate Porphyria

    PubMed Central

    Dooley, Kimberly A.; Fraenkel, Paula G.; Langer, Nathaniel B.; Schmid, Bettina; Davidson, Alan J.; Weber, Gerhard; Chiang, Ken; Foott, Helen; Dwyer, Caitlin; Wingert, Rebecca A.; Zhou, Yi; Paw, Barry H.; Zon, Leonard I.

    2008-01-01

    Objective Inherited or acquired mutations in the heme biosynthetic pathway lead to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. Methods Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with RT-PCR was utilized to identify the genetic mutation, which was confirmed via allele specific oligo hybridizations. Whole mount in situ hybridizations and 0-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. Results Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hpf are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. Conclusion In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria. PMID:18550261

  13. Faith-based perspectives on the use of chimeric organisms for medical research.

    PubMed

    Degeling, Chris; Irvine, Rob; Kerridge, Ian

    2014-04-01

    Efforts to advance our understanding of neurodegenerative diseases involve the creation chimeric organisms from human neural stem cells and primate embryos--known as prenatal chimeras. The existence of potential mentally complex beings with human and non-human neural apparatus raises fundamental questions as to the ethical permissibility of chimeric research and the moral status of the creatures it creates. Even as bioethicists find fewer reasons to be troubled by most types of chimeric organisms, social attitudes towards the non-human world are often influenced by religious beliefs. In this paper scholars representing eight major religious traditions provide a brief commentary on a hypothetical case concerning the development and use of prenatal human-animal chimeric primates in medical research. These commentaries reflect the plurality and complexity within and between religious discourses of our relationships with other species. Views on the moral status and permissibility of research on neural human animal chimeras vary. The authors provide an introduction to those who seek a better understanding of how faith-based perspectives might enter into biomedical ethics and public discourse towards forms of biomedical research that involves chimeric organisms. PMID:24293125

  14. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy.

    PubMed

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Tšuiko, Olga; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris R

    2016-05-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term "heterogoneic division" to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals. PMID:27197242

  15. Developmental toxicity of low generation PAMAM dendrimers in zebrafish

    SciTech Connect

    King Heiden, Tisha C.; Dengler, Emelyne; Kao, Weiyuan John; Heideman, Warren; Peterson, Richard E.

    2007-11-15

    Biological molecules and intracellular structures operate at the nanoscale; therefore, development of nanomedicines shows great promise for the treatment of disease by using targeted drug delivery and gene therapies. PAMAM dendrimers, which are highly branched polymers with low polydispersity and high functionality, provide an ideal architecture for construction of effective drug carriers, gene transfer devices and imaging of biological systems. For example, dendrimers bioconjugated with selective ligands such as Arg-Gly-Asp (RGD) would theoretically target cells that contain integrin receptors and show potential for use as drug delivery devices. While RGD-conjugated dendrimers are generally considered not to be cytotoxic, there currently exists little information on the risks that such materials pose to human health. In an effort to compliment and extend the knowledge gleaned from cell culture assays, we have used the zebrafish embryo as a rapid, medium throughput, cost-effective whole-animal model to provide a more comprehensive and predictive developmental toxicity screen for nanomaterials such as PAMAM dendrimers. Using the zebrafish embryo, we have assessed the developmental toxicity of low generation (G3.5 and G4) PAMAM dendrimers, as well as RGD-conjugated forms for comparison. Our results demonstrate that G4 dendrimers, which have amino functional groups, are toxic and attenuate growth and development of zebrafish embryos at sublethal concentrations; however, G3.5 dendrimers, with carboxylic acid terminal functional groups, are not toxic to zebrafish embryos. Furthermore, RGD-conjugated G4 dendrimers are less potent in causing embryo toxicity than G4 dendrimers. RGD-conjugated G3.5 dendrimers do not elicit toxicity at the highest concentrations tested and warrant further study for use as a drug delivery device.

  16. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  17. VEGF-B-Neuropilin-1 signaling is spatiotemporally indispensable for vascular and neuronal development in zebrafish

    PubMed Central

    Jensen, Lasse D.; Nakamura, Masaki; Bräutigam, Lars; Li, Xuri; Liu, Yizhi; Samani, Nilesh J.; Cao, Yihai

    2015-01-01

    Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling. PMID:26483474

  18. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish.

    PubMed

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7-9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  19. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing

    PubMed Central

    2014-01-01

    Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Results Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. Conclusions The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods. PMID:24886511

  20. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    PubMed Central

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  1. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish.

    PubMed

    Lieschke, G J; Oates, A C; Crowhurst, M O; Ward, A C; Layton, J E

    2001-11-15

    The zebrafish is a useful model organism for developmental and genetic studies. The morphology and function of zebrafish myeloid cells were characterized. Adult zebrafish contain 2 distinct granulocytes, a heterophil and a rarer eosinophil, both of which circulate and are generated in the kidney, the adult hematopoietic organ. Heterophils show strong histochemical myeloperoxidasic activity, although weaker peroxidase activity was observed under some conditions in eosinophils and erythrocytes. Embryonic zebrafish have circulating immature heterophils by 48 hours after fertilization (hpf). A zebrafish myeloperoxidase homologue (myeloid-specific peroxidase; mpx) was isolated. Phylogenetic analysis suggested it represented a gene ancestral to the mammalian myeloperoxidase gene family. It was expressed in adult granulocytes and in embryos from 18 hpf, first diffusely in the axial intermediate cell mass and then discretely in a dispersed cell population. Comparison of hemoglobinized cell distribution, mpx gene expression, and myeloperoxidase histochemistry in wild-type and mutant embryos confirmed that the latter reliably identified a population of myeloid cells. Studies in embryos after tail transection demonstrated that mpx- and peroxidase-expressing cells were mobile and localized to a site of inflammation, indicating functional capability of these embryonic granulocytes. Embryonic macrophages removed carbon particles from the circulation by phagocytosis. Collectively, these observations have demonstrated the early onset of zebrafish granulopoiesis, have proved that granulocytes circulate by 48 hpf, and have demonstrated the functional activity of embryonic granulocytes and macrophages. These observations will facilitate the application of this genetically tractable organism to the study of myelopoiesis. PMID:11698295

  2. Proximal and distal sequences control UV cone pigment gene expression in transgenic zebrafish.

    PubMed

    Luo, Wenqin; Williams, John; Smallwood, Philip M; Touchman, Jeffrey W; Roman, Laura M; Nathans, Jeremy

    2004-04-30

    The molecular basis of cone photoreceptor-specific gene expression is largely unknown. In this study, we define cis-acting DNA sequences that control the cell type-specific expression of the zebrafish UV cone pigment gene by transient expression of green fluorescent protein transgenes following their injection into zebrafish embryos. These experiments show that 4.8 kb of 5'-flanking sequences from the zebrafish UV pigment gene direct expression specifically to UV cones and that this activity requires both distal and proximal sequences. In addition, we demonstrate that a proximal region located between -215 and -110 bp (with respect to the initiator methionine codon) can function in the context of a zebrafish rhodopsin promotor to convert its specificity from rod-only expression to rod and UV cone expression. These experiments demonstrate the power of transient transgenesis in zebrafish to efficiently define cis-acting regulatory sequences in an intact vertebrate. PMID:14966125

  3. On the diabetic menu: Zebrafish as a model for pancreas development and function

    PubMed Central

    Kinkel, Mary D.; Prince, Victoria E.

    2009-01-01

    Summary Development of the vertebrate pancreas is a complex stepwise process comprising regionalization, cell differentiation, and morphogenesis. Studies in zebrafish are contributing to an emerging picture of pancreas development in which extrinsic signaling molecules influence intrinsic transcriptional programs to allow ultimate differentiation of specific pancreatic cell types. Zebrafish experiments have revealed roles for several signaling molecules in aspects of this process; for example our own work has shown that Retinoic Acid signals specify the pre-pancreatic endoderm. Time-lapse imaging of live zebrafish embryos has started to provide detailed information about early pancreas morphogenesis. In addition to modeling embryonic development, the zebrafish has recently begun to be used as a model for pancreas regeneration studies. Here we review the significant progress in these areas and consider the future potential of zebrafish as a diabetes research model. PMID:19204986

  4. Cardiac and somatic parameters in zebrafish: tools for the evaluation of cardiovascular function.

    PubMed

    Vargas, Rafael; Vásquez, Isabel Cristina

    2016-04-01

    Cardiovascular diseases are a worldwide public health problem. To date, extensive research has been conducted to elucidate the pathophysiological mechanisms that trigger cardiovascular diseases and to evaluate therapeutic options. Animal models are widely used to achieve these goals, and zebrafish have emerged as a low-cost model that produces rapid results. Currently, a large body of research is devoted to the cardiovascular development and diverse cardiovascular disorders of zebrafish embryos and larvae. However, less research has been conducted on adult zebrafish specimens. In this study, we evaluated a method to obtain and to evaluate morphometric parameters (of both the entire animal and the heart) of adult zebrafish. We used these data to calculate additional parameters, such as body mass index, condition factor and cardiac somatic index. This method and its results can be used as reference for future studies that aim to evaluate the pathophysiological aspects of the zebrafish cardiovascular system. PMID:26553553

  5. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays† †Electronic supplementary information (ESI) available: Supporting Fig. S1–2 and Table T1. See DOI: 10.1039/c5lc01374g Click here for additional data file. ‡ ‡We would also want to draw the attention of the reader to the availability of the dataset associated with this paper, available here (http://dx.doi.org/10.5525/gla.researchdata.238).

    PubMed Central

    Macdonald, N. P.; Zhu, F.; Hall, C. J.; Reboud, J.; Crosier, P. S.; Patton, E. E.; Wlodkowic, D.

    2016-01-01

    3D printing has emerged as a rapid and cost-efficient manufacturing technique to enable the fabrication of bespoke, complex prototypes. If the technology is to have a significant impact in biomedical applications, such as drug discovery and molecular diagnostics, the devices produced must be biologically compatible to enable their use with established reference assays and protocols. In this work we demonstrate that we can adapt the Fish Embryo Test (FET) as a new method to quantify the toxicity of 3D printed microfluidic devices. We assessed the biocompatibility of four commercially available 3D printing polymers (VisiJetCrystal EX200, Watershed 11122XC, Fototec SLA 7150 Clear and ABSplus P-430), through the observation of key developmental markers in the developing zebrafish embryos. Results show all of the photopolymers to be highly toxic to the embryos, resulting in fatality, although we do demonstrate that post-printing treatment of Fototec 7150 makes it suitable for zebrafish culture within the FET. PMID:26646354

  6. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis

    PubMed Central

    Fujii, Tomoaki; Tsunesumi, Shin-ichiro; Sagara, Hiroshi; Munakata, Miyo; Hisaki, Yoshihiro; Sekiya, Takao; Furukawa, Yoichi; Sakamoto, Kazuhiro; Watanabe, Sumiko

    2016-01-01

    Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis. PMID:27377701

  7. Smyd5 plays pivotal roles in both primitive and definitive hematopoiesis during zebrafish embryogenesis.

    PubMed

    Fujii, Tomoaki; Tsunesumi, Shin-Ichiro; Sagara, Hiroshi; Munakata, Miyo; Hisaki, Yoshihiro; Sekiya, Takao; Furukawa, Yoichi; Sakamoto, Kazuhiro; Watanabe, Sumiko

    2016-01-01

    Methylation of histone tails plays a pivotal role in the regulation of a wide range of biological processes. SET and MYND domain-containing protein (SMYD) is a methyltransferase, five family members of which have been identified in humans. SMYD1, SMYD2, SMYD3, and SMYD4 have been found to play critical roles in carcinogenesis and/or the development of heart and skeletal muscle. However, the physiological functions of SMYD5 remain unknown. To investigate the function of Smyd5 in vivo, zebrafish were utilised as a model system. We first examined smyd5 expression patterns in developing zebrafish embryos. Smyd5 transcripts were abundantly expressed at early developmental stages and then gradually decreased. Smyd5 was expressed in all adult tissues examined. Loss-of-function analysis of Smyd5 was then performed in zebrafish embryos using smyd5 morpholino oligonucleotide (MO). Embryos injected with smyd5-MO showed normal gross morphological development, including of heart and skeletal muscle. However, increased expression of both primitive and definitive hematopoietic markers, including pu.1, mpx, l-plastin, and cmyb, were observed. These phenotypes of smyd5-MO zebrafish embryos were also observed when we introduced mutations in smyd5 gene with the CRISPR/Cas9 system. As the expression of myeloid markers was elevated in smyd5 loss-of-function zebrafish, we propose that Smyd5 plays critical roles in hematopoiesis. PMID:27377701

  8. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  9. Antibiotic Toxicity and Absorption in Zebrafish Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  10. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development

    PubMed Central

    Bassi, Andrea; Schmid, Benjamin; Huisken, Jan

    2015-01-01

    Fluorescently labeled structures can be spectrally isolated and imaged at high resolution in living embryos by light sheet microscopy. Multimodal imaging techniques are now needed to put these distinct structures back into the context of the surrounding tissue. We found that the bright-field contrast of unstained specimens in a selective plane illumination microscopy (SPIM) setup can be exploited for in vivo tomographic reconstructions of the three-dimensional anatomy of zebrafish, without causing phototoxicity. We report multimodal imaging of entire zebrafish embryos over several hours of development, as well as segmentation, tracking and automatic registration of individual organs. PMID:25655702