Sample records for chip study protocol

  1. Chromatin Immunoprecipitation (ChIP) Protocol for Low-abundance Embryonic Samples.

    PubMed

    Rehimi, Rizwan; Bartusel, Michaela; Solinas, Francesca; Altmüller, Janine; Rada-Iglesias, Alvaro

    2017-08-29

    Chromatin immunoprecipitation (ChIP) is a widely-used technique for mapping the localization of post-translationally modified histones, histone variants, transcription factors, or chromatin-modifying enzymes at a given locus or on a genome-wide scale. The combination of ChIP assays with next-generation sequencing (i.e., ChIP-Seq) is a powerful approach to globally uncover gene regulatory networks and to improve the functional annotation of genomes, especially of non-coding regulatory sequences. ChIP protocols normally require large amounts of cellular material, thus precluding the applicability of this method to investigating rare cell types or small tissue biopsies. In order to make the ChIP assay compatible with the amount of biological material that can typically be obtained in vivo during early vertebrate embryogenesis, we describe here a simplified ChIP protocol in which the number of steps required to complete the assay were reduced to minimize sample loss. This ChIP protocol has been successfully used to investigate different histone modifications in various embryonic chicken and adult mouse tissues using low to medium cell numbers (5 x 10 4 - 5 x 10 5 cells). Importantly, this protocol is compatible with ChIP-seq technology using standard library preparation methods, thus providing global epigenomic maps in highly relevant embryonic tissues.

  2. Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP).

    PubMed

    Desvoyes, Bénédicte; Sequeira-Mendes, Joana; Vergara, Zaida; Madeira, Sofia; Gutierrez, Crisanto

    2018-01-01

    Identification of chromatin modifications, e.g., histone acetylation and methylation, among others, is widely carried out by using a chromatin immunoprecipitation (ChIP) strategy. The information obtained with these procedures is useful to gain an overall picture of modifications present in all cells of the population under study. It also serves as a basis to figure out the mechanisms of chromatin organization and gene regulation at the population level. However, the ultimate goal is to understand gene regulation at the level of single chromatin fibers. This requires the identification of chromatin modifications that occur at a given genomic location and within the same chromatin fiber. This is achieved by following a sequential ChIP strategy using two antibodies to distinguish different chromatin modifications. Here, we describe a sequential ChIP protocol (Re-ChIP), paying special attention to the controls needed and the required steps to obtain meaningful and reproducible results. The protocol is developed for young Arabidopsis seedlings but could be adapted to other plant materials.

  3. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.

    PubMed

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2017-06-15

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Human Lung Small Airway-on-a-Chip Protocol.

    PubMed

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  5. IFSA: a microfluidic chip-platform for frit-based immunoassay protocols

    NASA Astrophysics Data System (ADS)

    Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia

    2013-03-01

    Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.

  6. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    NASA Astrophysics Data System (ADS)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  7. Performance oriented guidance for Mississippi chip seals - volume II.

    DOT National Transportation Integrated Search

    2013-12-01

    A laboratory and field study was conducted related to long term chip seal performance. This reports primary : objective was to initiate development of a long term performance (LTP) test protocol for chip seals focused on : aggregate retention. Key...

  8. FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells.

    PubMed

    Perez-Toralla, Karla; Mottet, Guillaume; Tulukcuoglu-Guneri, Ezgi; Champ, Jérôme; Bidard, François-Clément; Pierga, Jean-Yves; Klijanienko, Jerzy; Draskovic, Irena; Malaquin, Laurent; Viovy, Jean-Louis; Descroix, Stéphanie

    2017-01-01

    Microfluidics offer powerful tools for the control, manipulation, and analysis of cells, in particular for the assessment of cell malignancy or the study of cell subpopulations. However, implementing complex biological protocols on chip remains a challenge. Sample preparation is often performed off chip using multiple manually performed steps, and protocols usually include different dehydration and drying steps that are not always compatible with a microfluidic format.Here, we report the implementation of a Fluorescence in situ Hybridization (FISH) protocol for the molecular typing of cancer cells in a simple and low-cost device. The geometry of the chip allows integrating the sample preparation steps to efficiently assess the genomic content of individual cells using a minute amount of sample. The FISH protocol can be fully automated, thus enabling its use in routine clinical practice.

  9. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, Joshua; Prescod, Lindsay; Enright, Heather

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglionmore » cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.« less

  10. A Cell Programmable Assay (CPA) chip.

    PubMed

    Ju, Jongil; Warrick, Jay; Beebe, David J

    2010-08-21

    This article describes two kinds of "Cell Programmable Assay" (CPA) chips that utilize passive pumping for the culture and autonomous staining of cells to simply common protocols. One is a single timer channel CPA (sCPA) chip that has one timer channel and one main channel containing a cell culture chamber. The sCPA is used to culture and stain cells using Hoechst nuclear staining dye (a 2 step staining process). The other is a dual timer channel CPA (dCPA) chip that has two timer channels and one main channel with a chamber for cell culture. The dCPA is used here to culture, fix, permeablize, and stain cells using DAPI. The additional timer channel of the dCPA chip allows for automation of 3 steps. The CPA chips were successfully evaluated using HEK 293 cells. In addition, we provide a simplified equation for tuning or redesigning CPA chips to meet the needs of a variety of protocols that may require different timings. The equation is easy to use as it only depends upon the dimensions of microchannel and the volume of the reagent drops. The sCPA and dCPA chips can be readily modified to apply to a wide variety of common cell culture methods and procedures.

  11. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    PubMed

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  12. ChIP-chip.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.

  13. Microfabrication of human organs-on-chips.

    PubMed

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  14. Analysis of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray (ChIP-on-chip).

    PubMed

    Gao, Hui; Zhao, Chunyan

    2018-01-01

    Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.

  15. Chip-to-chip entanglement of transmon qubits using engineered measurement fields

    NASA Astrophysics Data System (ADS)

    Dickel, C.; Wesdorp, J. J.; Langford, N. K.; Peiter, S.; Sagastizabal, R.; Bruno, A.; Criger, B.; Motzoi, F.; DiCarlo, L.

    2018-02-01

    While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with 49 % concurrence and 73 % Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly identical transmon-resonator systems. By ensuring the measured output field does not distinguish |01 > from |10 > , unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the |00 > and |11 > states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.

  16. An economic evaluation of a chlorhexidine chip for treating chronic periodontitis: the CHIP (chlorhexidine in periodontitis) study.

    PubMed

    Henke, C J; Villa, K F; Aichelmann-Reidy, M E; Armitage, G C; Eber, R M; Genco, R J; Killoy, W J; Miller, D P; Page, R C; Polson, A M; Ryder, M I; Silva, S J; Somerman, M J; Van Dyke, T E; Wolff, L F; Evans, C J; Finkelman, R D

    2001-11-01

    The authors previously suggested that an adjunctive, controlled-release chlorhexidine, or CHX, chip may reduce periodontal surgical needs at little additional cost. This article presents an economic analysis of the CHX chip in general dental practice. In a one-year prospective clinical trial, 484 chronic periodontitis patients in 52 general practices across the United States were treated with either scaling and root planing, or SRP, plus any therapy prescribed by treating, unblinded dentists; or SRP plus other therapy as above but including the CHX chip. Economic data were collected from bills, case report forms and 12-month treatment recommendations from blinded periodontist evaluators. Total dental charges were higher for SRP + CHX chip patients vs. SRP patients when CHX chip costs were included (P = .027) but lower when CHX chip costs were excluded (P = .012). About one-half of the CHX chip acquisition cost was offset by savings in other charges. SRP + CHX chip patients were about 50 percent less likely to undergo surgical procedures than were SRP patients (P = .021). At the end of the trial, periodontist evaluators recommended similar additional procedures for both groups: SRP, about 46 percent; maintenance, about 37 percent; surgery, 56 percent for SRP alone and 63 percent for SRP + CHX chip. Adjunctive CHX chip use for general-practice patients with periodontitis increased costs but reduced surgeries over one year. At study's end, periodontists recommended similar additional surgical treatment for both groups. In general practice, routine use of the CHX chip suggests that costs will be partially offset by reduced surgery over at least one year.

  17. Chipping whole trees for fuel chips: a production study

    Treesearch

    Dana Mitchell; Tom Gallagher

    2007-01-01

    A time and motion study was conducted to determine the productivity and cost of an in-woods chipping operation when processing whole mall-diameter trees for biomass. The study removed biomass from two overstocked stands and compared the cost of this treatment to existing alternatives. The treatment stands consisted of a 30-year-old longleaf pine stand and a 37-year-old...

  18. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  19. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  20. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips.

    PubMed

    Loskill, Peter; Marcus, Sivan G; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.

  1. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips

    PubMed Central

    Loskill, Peter; Marcus, Sivan G.; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E.

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates. PMID:26440672

  2. How to Combine ChIP with qPCR.

    PubMed

    Asp, Patrik

    2018-01-01

    Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR) has in the last 15 years become a basic mainstream tool in genomic research. Numerous commercially available ChIP kits, qPCR kits, and real-time PCR systems allow for quick and easy analysis of virtually anything chromatin-related as long as there is an available antibody. However, the highly accurate quantitative dimension added by using qPCR to analyze ChIP samples significantly raises the bar in terms of experimental accuracy, appropriate controls, data analysis, and data presentation. This chapter will address these potential pitfalls by providing protocols and procedures that address the difficulties inherent in ChIP-qPCR assays.

  3. Chip-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M. G.; Natarajan, C. M.; Hadfield, R. H.; O'Brien, J. L.; Thompson, M. G.

    2017-02-01

    Improvement in secure transmission of information is an urgent need for governments, corporations and individuals. Quantum key distribution (QKD) promises security based on the laws of physics and has rapidly grown from proof-of-concept to robust demonstrations and deployment of commercial systems. Despite these advances, QKD has not been widely adopted, and large-scale deployment will likely require chip-based devices for improved performance, miniaturization and enhanced functionality. Here we report low error rate, GHz clocked QKD operation of an indium phosphide transmitter chip and a silicon oxynitride receiver chip--monolithically integrated devices using components and manufacturing processes from the telecommunications industry. We use the reconfigurability of these devices to demonstrate three prominent QKD protocols--BB84, Coherent One Way and Differential Phase Shift--with performance comparable to state-of-the-art. These devices, when combined with integrated single photon detectors, pave the way for successfully integrating QKD into future telecommunications networks.

  4. Single cell digital polymerase chain reaction on self-priming compartmentalization chip.

    PubMed

    Zhu, Qiangyuan; Qiu, Lin; Xu, Yanan; Li, Guang; Mu, Ying

    2017-01-01

    Single cell analysis provides a new framework for understanding biology and disease, however, an absolute quantification of single cell gene expression still faces many challenges. Microfluidic digital polymerase chain reaction (PCR) provides a unique method to absolutely quantify the single cell gene expression, but only limited devices are developed to analyze a single cell with detection variation. This paper describes a self-priming compartmentalization (SPC) microfluidic digital polymerase chain reaction chip being capable of performing single molecule amplification from single cell. The chip can be used to detect four single cells simultaneously with 85% of sample digitization. With the optimized protocol for the SPC chip, we first tested the ability, precision, and sensitivity of our SPC digital PCR chip by assessing β-actin DNA gene expression in 1, 10, 100, and 1000 cells. And the reproducibility of the SPC chip is evaluated by testing 18S rRNA of single cells with 1.6%-4.6% of coefficient of variation. At last, by detecting the lung cancer related genes, PLAU gene expression of A549 cells at the single cell level, the single cell heterogeneity was demonstrated. So, with the power-free, valve-free SPC chip, the gene copy number of single cells can be quantified absolutely with higher sensitivity, reduced labor time, and reagent. We expect that this chip will enable new studies for biology and disease.

  5. Single cell digital polymerase chain reaction on self-priming compartmentalization chip

    PubMed Central

    Zhu, Qiangyuan; Qiu, Lin; Xu, Yanan; Li, Guang; Mu, Ying

    2017-01-01

    Single cell analysis provides a new framework for understanding biology and disease, however, an absolute quantification of single cell gene expression still faces many challenges. Microfluidic digital polymerase chain reaction (PCR) provides a unique method to absolutely quantify the single cell gene expression, but only limited devices are developed to analyze a single cell with detection variation. This paper describes a self-priming compartmentalization (SPC) microfluidic digital polymerase chain reaction chip being capable of performing single molecule amplification from single cell. The chip can be used to detect four single cells simultaneously with 85% of sample digitization. With the optimized protocol for the SPC chip, we first tested the ability, precision, and sensitivity of our SPC digital PCR chip by assessing β-actin DNA gene expression in 1, 10, 100, and 1000 cells. And the reproducibility of the SPC chip is evaluated by testing 18S rRNA of single cells with 1.6%–4.6% of coefficient of variation. At last, by detecting the lung cancer related genes, PLAU gene expression of A549 cells at the single cell level, the single cell heterogeneity was demonstrated. So, with the power-free, valve-free SPC chip, the gene copy number of single cells can be quantified absolutely with higher sensitivity, reduced labor time, and reagent. We expect that this chip will enable new studies for biology and disease. PMID:28191267

  6. Edge chipping and flexural resistance of monolithic ceramics☆

    PubMed Central

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  7. Quality assessment of SPR sensor chips; case study on L1 chips.

    PubMed

    Olaru, Andreea; Gheorghiu, Mihaela; David, Sorin; Polonschii, Cristina; Gheorghiu, Eugen

    2013-07-15

    Surface quality of the Surface Plasmon Resonance (SPR) chips is a major limiting issue in most SPR analyses, even more for supported lipid membranes experiments, where both the organization of the lipid matrix and the subsequent incorporation of the target molecule depend on the surface quality. A novel quantitative method to characterize the quality of SPR sensors chips is described for L1 chips subject to formation of lipid films, injection of membrane disrupting compounds, followed by appropriate regeneration procedures. The method consists in analysis of the SPR reflectivity curves for several standard solutions (e.g. PBS, HEPES or deionized water). This analysis reveals the decline of sensor surface as a function of the number of experimental cycles (consisting in biosensing assay and regeneration step) and enables active control of surface regeneration for enhanced reproducibility. We demonstrate that quantitative evaluation of the changes in reflectivity curves (shape of the SPR dip) and of the slope of the calibration curve provides a rapid and effective procedure for surface quality assessment. Whereas the method was tested on L1 SPR sensors chips, we stress on its amenability to assess the quality of other types of SPR chips, as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Use of a Microprocessor to Implement an ADCCP Protocol (Federal Standard 1003).

    DTIC Science & Technology

    1980-07-01

    results of other studies, to evaluate the operational and economic impact of incorporating various options in Federal Standard 1003. The effort...the LSI interface and the microprocessor; the LSI chip deposits bytes in its buffer as the producer, and the MPU reads this data as the consumer...on the interface between the MPU and the LSI protocol chip. This requires two main processes to be running at the same time--transmit and receive. The

  9. Chip, Chip, Hooray!

    ERIC Educational Resources Information Center

    Kelly, Susan

    2001-01-01

    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  10. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  11. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.

    PubMed

    Mauk, Michael G; Liu, Changchun; Qiu, Xianbo; Chen, Dafeng; Song, Jinzhao; Bau, Haim H

    2017-01-01

    Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.

  12. Unconditionally Secure Credit/Debit Card Chip Scheme and Physical Unclonable Function

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Entesari, Kamran; Granqvist, Claes-Göran; Kwan, Chiman

    The statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematics- nor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths between the chips in the card and the terminal constitute an ideal setting for the KLJN protocol, and even its simplest versions offer unprecedented security and privacy for credit/debit card chips and applications of physical unclonable functions (PUFs).

  13. Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda

    2018-04-01

    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.

  14. Delamination study of chip-to-chip bonding for a LIGA-based safety and arming system

    NASA Astrophysics Data System (ADS)

    Subramanian, Gowrishankar; Deeds, Michael; Cochran, Kevin R.; Raghavan, Raghu; Sandborn, Peter A.

    1999-08-01

    The development of a miniature underwater weapon safety and arming system requires reliable chip-to-chip bonding of die that contain microelectromechanical actuators and sensors fabricated using a LIGA MEMS fabrication process. Chip-to- chip bonding is associated for several different bond materials (indium solder, thermoplastic paste, thermoplastic film and epoxy film), and bonding configurations (with an alloy 42 spacer, silicon to ceramic, and silicon to silicon). Metrology using acoustic micro imaging has been developed to determine the fraction of delamination of samples.

  15. A multilevel Lab on chip platform for DNA analysis.

    PubMed

    Marasso, Simone Luigi; Giuri, Eros; Canavese, Giancarlo; Castagna, Riccardo; Quaglio, Marzia; Ferrante, Ivan; Perrone, Denis; Cocuzza, Matteo

    2011-02-01

    Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

  16. Preservation of Cell Structure, Metabolism, and Biotransformation Activity of Liver-On-Chip Organ Models by Hypothermic Storage.

    PubMed

    Gröger, Marko; Dinger, Julia; Kiehntopf, Michael; Peters, Frank T; Rauen, Ursula; Mosig, Alexander S

    2018-01-01

    The liver is a central organ in the metabolization of nutrition, endogenous and exogenous substances, and xenobiotic drugs. The emerging organ-on-chip technology has paved the way to model essential liver functions as well as certain aspects of liver disease in vitro in liver-on-chip models. However, a broader use of this technology in biomedical research is limited by a lack of protocols that enable the short-term preservation of preassembled liver-on-chip models for stocking or delivery to researchers outside the bioengineering community. For the first time, this study tested the ability of hypothermic storage of liver-on-chip models to preserve cell viability, tissue morphology, metabolism and biotransformation activity. In a systematic study with different preservation solutions, liver-on-chip function can be preserved for up to 2 d using a derivative of the tissue preservation solution TiProtec, containing high chloride ion concentrations and the iron chelators LK614 and deferoxamine, supplemented with polyethylene glycol (PEG). Hypothermic storage in this solution represents a promising method to preserve liver-on-chip function for at least 2 d and allows an easier access to liver-on-chip technology and its versatile and flexible use in biomedical research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [A novel biologic electricity signal measurement based on neuron chip].

    PubMed

    Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran

    2006-06-01

    Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.

  18. Lab on a Chip Application Development for Exploration

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2004-01-01

    At Marshall Space Flight Center a new capability has been established to aid the advancement of microfluidics for space flight monitoring systems. Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 & 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD's process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-devices can be created such as the development of a microfluidic system to aid in the search for life, past and present, on Mars. Particular indicators in the Martian soil can contain the direct evidence of life. But to extract the information from the soil and present it to the proper detectors requires multiple fluidic/chemical operations. This is where LOCAD is providing its unique abilities.

  19. Methods for Trustworthy Design of On-Chip Bus Interconnect for General-Purpose Processors

    DTIC Science & Technology

    2012-03-01

    Technology Andrew Huang, was able to test the security properties of HyperTransport bus protocol on an Xbox [20]. In his research, he was able to...TRUSTWORTHY DESIGN OF ON -CHIP BUS INTERCONNECT FOR GENERAL-PURPOSE PROCESSORS by Jay F. Elson March 2012 Thesis Advisor: Ted Huffmire Second...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Methods for Trustworthy Design of On -Chip Bus Interconnect for General-Purpose Processors 5

  20. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  1. Micro-chromatin Immunoprecipation (μChIP) Protocol for Real-time PCR Analysis of a Limited Amount of Cells.

    PubMed

    Gillotin, Sébastien; Guillemot, François

    2016-06-20

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is an important strategy to study gene regulation. When availability of cells is limited, however, it can be useful to focus on specific genes to investigate in depth the role of transcription factors or histone marks. Unfortunately, performing ChIP experiments to study transcription factors' binding to DNA can be difficult when biological material is restricted. This protocol describes a robust method to perform μChIP for over-expressed or endogenous transcription factors using ~100,000 cells per ChIP experiment (Masserdotti et al ., 2015). We also describe optimization steps, which we think are critical for this protocol to work and which can be used to further reduce the number of cells.

  2. Development of a Plastic-Based Microfluidic Immunosensor Chip for Detection of H1N1 Influenza

    PubMed Central

    Lee, Kyoung G.; Lee, Tae Jae; Jeong, Soon Woo; Choi, Ho Woon; Heo, Nam Su; Park, Jung Youn; Park, Tae Jung; Lee, Seok Jae

    2012-01-01

    Lab-on-a-chip can provide convenient and accurate diagnosis tools. In this paper, a plastic-based microfluidic immunosensor chip for the diagnosis of swine flu (H1N1) was developed by immobilizing hemagglutinin antigen on a gold surface using a genetically engineered polypeptide. A fluorescent dye-labeled antibody (Ab) was used for quantifying the concentration of Ab in the immunosensor chip using a fluorescent technique. For increasing the detection efficiency and reducing the errors, three chambers and three microchannels were designed in one microfluidic chip. This protocol could be applied to the diagnosis of other infectious diseases in a microfluidic device. PMID:23112630

  3. Consumption study and identification of methyl salicylate in spicy cassava chips

    NASA Astrophysics Data System (ADS)

    Nirjana, Marlene; Anggadiredja, Kusnandar; Damayanti, Sophi

    2015-09-01

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students' pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam's addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive control

  4. Consumption study and identification of methyl salicylate in spicy cassava chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirjana, Marlene, E-mail: marlenenirjana@gmail.com; Anggadiredja, Kusnandar; Damayanti, Sophi

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students’ pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassavamore » chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam’s addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the

  5. Inherent polarization entanglement generated from a monolithic semiconductor chip

    PubMed Central

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng; Abolghasem, Payam; Scarcella, Carmelo; Frera, Adriano Della; Tosi, Alberto; Helt, Lukas G.; Zhukovsky, Sergei V.; Sipe, J. E.; Weihs, Gregor; Helmy, Amr S.; Jennewein, Thomas

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices. PMID:23896982

  6. Protein Chips for Detection of Salmonella spp. from Enrichment Culture

    PubMed Central

    Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara

    2016-01-01

    Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786

  7. Compression Debarking of Stored Wood Chips

    Treesearch

    James A. Mattson

    1974-01-01

    Two 750 ft. piles of unbarked chips were stored for 1 year to evaluate the effect of chip storage on the effectiveness of bark-chip separations-segregation methods under study. in processing stored chips suffered more wood loss than fresh chips.

  8. Quantifying the benefits of improved rolling of chip seals : final report, June 2008.

    DOT National Transportation Integrated Search

    2008-06-01

    This report presents an improvement in the rolling protocol for chip seals based on an evaluation of aggregate : retention performance and aggregate embedment depth. The flip-over test (FOT), Vialit test, modified sand circle : test, digital image pr...

  9. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    PubMed

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  10. MIL-STD-1553B Marconi LSI chip set in a remote terminal application

    NASA Astrophysics Data System (ADS)

    Dimarino, A.

    1982-11-01

    Marconi Avionics is utilizing the MIL-STD-1553B LSI Chip Set in the SCADC Air Data Computer application to perform all of the required remote terminal MIL-STD-1553B protocol functions. Basic components of the RTU are the dual redundant chip set, CT3231 Transceivers, 256 x 16 RAM and a Z8002 microprocessor. Basic transfers are to/from the RAM command of the bus controller or Z8002 processor. During transfers from the processor to the RAM, the chip set busy bit is set for a period not exceeding 250 microseconds. When the transfer is complete, the busy bit is released and transfers to the data bus occur on command. The LSI Chip Set word count lines are used to locate each data word in the local memory and 4 mode codes are used in the application: reset remote terminal, transmit status word, transmitter shut-down, and override transmitter shutdown.

  11. The Xpress Transfer Protocol (XTP): A tutorial (expanded version)

    NASA Technical Reports Server (NTRS)

    Sanders, Robert M.; Weaver, Alfred C.

    1990-01-01

    The Xpress Transfer Protocol (XTP) is a reliable, real-time, light weight transfer layer protocol. Current transport layer protocols such as DoD's Transmission Control Protocol (TCP) and ISO's Transport Protocol (TP) were not designed for the next generation of high speed, interconnected reliable networks such as fiber distributed data interface (FDDI) and the gigabit/second wide area networks. Unlike all previous transport layer protocols, XTP is being designed to be implemented in hardware as a VLSI chip set. By streamlining the protocol, combining the transport and network layers and utilizing the increased speed and parallelization possible with a VLSI implementation, XTP will be able to provide the end-to-end data transmission rates demanded in high speed networks without compromising reliability and functionality. This paper describes the operation of the XTP protocol and in particular, its error, flow and rate control; inter-networking addressing mechanisms; and multicast support features, as defined in the XTP Protocol Definition Revision 3.4.

  12. Publication trends of study protocols in rehabilitation.

    PubMed

    Jesus, Tiago S; Colquhoun, Heather L

    2017-09-04

    Growing evidence points for the need to publish study protocols in the health field. To observe whether the growing interest in publishing study protocols in the broader health field has been translated into increased publications of rehabilitation study protocols. Observational study using publication data and its indexation in PubMed. Not applicable. Not applicable. PubMed was searched with appropriate combinations of Medical Subject Headings up to December 2014. The effective presence of study protocols was manually screened. Regression models analyzed the yearly growth of publications. Two-sample Z-tests analyzed whether the proportion of Systematic Reviews (SRs) and Randomized Controlled Trials (RCTs) among study protocols differed from that of the same designs for the broader rehabilitation research. Up to December 2014, 746 publications of rehabilitation study protocols were identified, with an exponential growth since 2005 (r2=0.981; p<0.001). RCT protocols were the most common among rehabilitation study protocols (83%), while RCTs were significantly more prevalent among study protocols than among the broader rehabilitation research (83% vs. 35.8%; p<0.001). For SRs, the picture was reversed: significantly less common among study protocols (2.8% vs. 9.3%; p<0.001). Funding was more often reported by rehabilitation study protocols than the broader rehabilitation research (90% vs. 53.1%; p<0.001). Rehabilitation journals published a significantly lower share of rehabilitation study protocols than they did for the broader rehabilitation research (1.8% vs.16.7%; p<0.001). Identifying the reasons for these discrepancies and reverting unwarranted disparities (e.g. low rate of publication for rehabilitation SR protocols) are likely new avenues for rehabilitation research and its publication. SRs, particularly those aggregating RCT results, are considered the best standard of evidence to guide rehabilitation clinical practice; however, that standard can be improved

  13. Towards cavitation-enhanced permeability in blood vessel on a chip

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.

    2017-08-01

    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  14. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2018-02-13

    Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.

  15. Polymer microchip CE of proteins either off- or on-chip labeled with chameleon dye for simplified analysis.

    PubMed

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam T

    2009-12-01

    Microchip CE of proteins labeled either off- or on-chip with the "chameleon" CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant CTAB prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for BSA, corresponding to a approximately 7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 microg/mL concentration detection limit for BSA, corresponding to a approximately 700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices.

  16. A Study of Chip Formation Feedrates of Various Steels in Low-Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Prasetyo, L.; Tauviqirrahman, M.; Rusnaldy

    2017-05-01

    Milling is a process of metal removal by feeding the workpiece a rotating multitoothed cutter. The objective of the study was to investigate the chip characteristics (chip length, width, and thickness) during the milling process by varying the feedrates and the types of materials used based on an experimental approach. The chosen materials were AISI 1020, AISI 1045, AISI 1090, AISI D2, and AISI 4340 with a high-speed steel (HSS) as a cutter. In this work, the feedrates were varied of 5, 10, and 15 mm/minutes with the depth of cut of 0.5 mm and a low spindle speed of 70 rpm. The results show that, in general, increasing the feedrate will lead to the growth of chip length, width, and thickness for all types of materials used. Also, related to the chip shape, AISI 1020 produces the discontinuous chip which can be related to its hardness value.

  17. Analytical study of a microfludic DNA amplification chip using water cooling effect.

    PubMed

    Chen, Jyh Jian; Shen, Chia Ming; Ko, Yu Wei

    2013-04-01

    A novel continuous-flow polymerase chain reaction (PCR) chip has been analyzed in our work. Two temperature zones are controlled by two external controllers and the other temperature zone at the chip center is controlled by the flow rate of the fluid inside a channel under the glass chip. By employing a water cooling channel at the chip center, the sequence of denaturation, annealing, and extension can be created due to the forced convection effect. The required annealing temperature of PCR less than 313 K can also be demonstrated in this chip. The Poly(methyl methacrylate) (PMMA) cooling channel with the thin aluminum cover is utilized to enhance the temperature uniformity. The size of this chip is 76 mm × 26 mm × 3 mm. This device represents the first demonstration of water cooling thermocycling within continuous-flow PCR microfluidics. The commercial software CFD-ACE+(TM) is utilized to determine the distances between the heating assemblies within the chip. We investigate the influences of various chip materials, operational parameters of the cooling channel and geometric parameters of the chip on the temperature uniformity on the chip surface. Concerning the temperature uniformity of the working zones and the lowest temperature at the annealing zone, the air gap spacing of 1 mm and the cooling channel thicknesses of 1 mm of the PMMA channel with an aluminum cover are recommended in our design. The hydrophobic surface of the PDMS channel was modified by filling it with 20 % Tween 20 solution and then adding bovine serum albumin (BSA) solution to the PCR mixture. DNA fragments with different lengths (372 bp and 478 bp) are successfully amplified with the device.

  18. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.

    PubMed

    Temiz, Yuksel; Delamarche, Emmanuel

    2017-01-01

    The fabrication of silicon-based microfluidic chips is invaluable in supporting the development of many microfluidic concepts for research in the life sciences and in vitro diagnostic applications such as the realization of miniaturized immunoassays using capillary-driven chips. While being extremely abundant, the literature covering microfluidic chip fabrication and assay development might not have addressed properly the challenge of fabricating microfluidic chips on a wafer level or the need for dicing wafers to release chips that need then to be further processed, cleaned, rinsed, and dried one by one. Here, we describe the "chip-olate" process wherein microfluidic structures are formed on a silicon wafer, followed by partial dicing, cleaning, and drying steps. Then, integration of reagents (if any) can be done, followed by lamination of a sealing cover. Breaking by hand the partially diced wafer yields individual chips ready for use.

  19. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.

    PubMed

    Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael

    2018-04-24

    This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography

  20. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  1. A monolithically integrated polarization entangled photon pair source on a silicon chip

    PubMed Central

    Matsuda, Nobuyuki; Le Jeannic, Hanna; Fukuda, Hiroshi; Tsuchizawa, Tai; Munro, William John; Shimizu, Kaoru; Yamada, Koji; Tokura, Yasuhiro; Takesue, Hiroki

    2012-01-01

    Integrated photonic circuits are one of the most promising platforms for large-scale photonic quantum information systems due to their small physical size and stable interferometers with near-perfect lateral-mode overlaps. Since many quantum information protocols are based on qubits defined by the polarization of photons, we must develop integrated building blocks to generate, manipulate, and measure the polarization-encoded quantum state on a chip. The generation unit is particularly important. Here we show the first integrated polarization-entangled photon pair source on a chip. We have implemented the source as a simple and stable silicon-on-insulator photonic circuit that generates an entangled state with 91 ± 2% fidelity. The source is equipped with versatile interfaces for silica-on-silicon or other types of waveguide platforms that accommodate the polarization manipulation and projection devices as well as pump light sources. Therefore, we are ready for the full-scale implementation of photonic quantum information systems on a chip. PMID:23150781

  2. Data transmission protocol for Pi-of-the-Sky cameras

    NASA Astrophysics Data System (ADS)

    Uzycki, J.; Kasprowicz, G.; Mankiewicz, M.; Nawrocki, K.; Sitek, P.; Sokolowski, M.; Sulej, R.; Tlaczala, W.

    2006-10-01

    The large amount of data collected by the automatic astronomical cameras has to be transferred to the fast computers in a reliable way. The method chosen should ensure data streaming in both directions but in nonsymmetrical way. The Ethernet interface is very good choice because of its popularity and proven performance. However it requires TCP/IP stack implementation in devices like cameras for full compliance with existing network and operating systems. This paper describes NUDP protocol, which was made as supplement to standard UDP protocol and can be used as a simple-network protocol. The NUDP does not need TCP protocol implementation and makes it possible to run the Ethernet network with simple devices based on microcontroller and/or FPGA chips. The data transmission idea was created especially for the "Pi of the Sky" project.

  3. Polymer microchip capillary electrophoresis of proteins either off- or on-chip labeled with chameleon dye for simplified analysis

    PubMed Central

    Yu, Ming; Wang, Hsiang-Yu; Woolley, Adam

    2009-01-01

    Microchip capillary electrophoresis of proteins labeled either off- or on-chip with the “chameleon” CE dye 503 using poly(methyl methacrylate) microchips is presented. A simple dynamic coating using the cationic surfactant cetyltrimethyl ammonium bromide prevented nonspecific adsorption of protein and dye to the channel walls. The labeling reactions for both off- and on-chip labeling proceeded at room temperature without requiring heating steps. In off-chip labeling, a 9 ng/mL concentration detection limit for bovine serum albumin (BSA), corresponding to a ~7 fg (100 zmol) mass detection limit, was obtained. In on-chip tagging, the free dye and protein were placed in different reservoirs of the microchip, and an extra incubation step was not needed. A 1 μg/mL concentration detection limit for BSA, corresponding to a ~700 fg (10 amol) mass detection limit, was obtained from this protocol. The earlier elution time of the BSA peak in on-chip labeling resulted from fewer total labels on each protein molecule. Our on-chip labeling method is an important part of automation in miniaturized devices. PMID:19924700

  4. Implementation of a Lateral TBI protocol in a Mexican Cancer Center

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko; Sosa, Modesto A.

    2008-08-01

    The development of a Lateral Total Body Irradiation protocol to be implemented at a High Specialty Medical Unit in Mexico as preparatory regimen for bone marrow transplant and treatment of several lymphomas is presented. This protocol was developed following AAPM specifications and has been validated for application at a cancer care center in United States. This protocol fundamentally focuses on patient care, avoiding instability and discomfort that may be encountered by other treatment regimes. In vivo dose verification with TLD-100 chips for each anatomical region of interest was utilized. TLD-100 chips were calibrated using a 6 MV photon beam for 10-120 cGy. Experimental results show TLD measurements with an error less than 1%. Standard deviations for calculated and measured doses for seven patients have been obtained. Data gathered for different levels of compensation indicate that a 3% measured tolerance level is acceptable. TLD point-dose measurements have been used to verify the dose beyond partial transmission lung blocks. Dose measurements beyond the lung block showed variation about 50% respects to prescribe dose. Midplane doses to the other anatomical sites were less than 2.5% respect of the prescribed dose.

  5. Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.

    PubMed

    Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan

    2017-08-17

    Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.

  6. Organ-on-a-chip platforms for studying drug delivery systems.

    PubMed

    Bhise, Nupura S; Ribas, João; Manoharan, Vijayan; Zhang, Yu Shrike; Polini, Alessandro; Massa, Solange; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-09-28

    Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Study on VCSEL laser heating chip in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoyang; Zhou, Binquan; Wu, Wenfeng; Jia, Yuchen; Wang, Jing

    2017-10-01

    In recent years, atomic gyroscope has become an important direction of inertial navigation. Nuclear magnetic resonance gyroscope has a stronger advantage in the miniaturization of the size. In atomic gyroscope, the lasers are indispensable devices which has an important effect on the improvement of the gyroscope performance. The frequency stability of the VCSEL lasers requires high precision control of temperature. However, the heating current of the laser will definitely bring in the magnetic field, and the sensitive device, alkali vapor cell, is very sensitive to the magnetic field, so that the metal pattern of the heating chip should be designed ingeniously to eliminate the magnetic field introduced by the heating current. In this paper, a heating chip was fabricated by MEMS process, i.e. depositing platinum on semiconductor substrates. Platinum has long been considered as a good resistance material used for measuring temperature The VCSEL laser chip is fixed in the center of the heating chip. The thermometer resistor measures the temperature of the heating chip, which can be considered as the same temperature of the VCSEL laser chip, by turning the temperature signal into voltage signal. The FPGA chip is used as a micro controller, and combined with PID control algorithm constitute a closed loop control circuit. The voltage applied to the heating resistor wire is modified to achieve the temperature control of the VCSEL laser. In this way, the laser frequency can be controlled stably and easily. Ultimately, the temperature stability can be achieved better than 100mK.

  8. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  9. Assessing the Power of Exome Chips.

    PubMed

    Page, Christian Magnus; Baranzini, Sergio E; Mevik, Bjørn-Helge; Bos, Steffan Daniel; Harbo, Hanne F; Andreassen, Bettina Kulle

    2015-01-01

    Genotyping chips for rare and low-frequent variants have recently gained popularity with the introduction of exome chips, but the utility of these chips remains unclear. These chips were designed using exome sequencing data from mainly American-European individuals, enriched for a narrow set of common diseases. In addition, it is well-known that the statistical power of detecting associations with rare and low-frequent variants is much lower compared to studies exclusively involving common variants. We developed a simulation program adaptable to any exome chip design to empirically evaluate the power of the exome chips. We implemented the main properties of the Illumina HumanExome BeadChip array. The simulated data sets were used to assess the power of exome chip based studies for varying effect sizes and causal variant scenarios. We applied two widely-used statistical approaches for rare and low-frequency variants, which collapse the variants into genetic regions or genes. Under optimal conditions, we found that a sample size between 20,000 to 30,000 individuals were needed in order to detect modest effect sizes (0.5% < PAR > 1%) with 80% power. For small effect sizes (PAR <0.5%), 60,000-100,000 individuals were needed in the presence of non-causal variants. In conclusion, we found that at least tens of thousands of individuals are necessary to detect modest effects under optimal conditions. In addition, when using rare variant chips on cohorts or diseases they were not originally designed for, the identification of associated variants or genes will be even more challenging.

  10. Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time.

    PubMed

    Gordillo, Belén; Baca-Bocanegra, Berta; Rodriguez-Pulído, Francisco J; González-Miret, M Lourdes; García Estévez, Ignacio; Quijada-Morín, Natalia; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2016-09-01

    Oak chips-related phenolics are able to modify the composition of red wine and modulate the colour stability. In this study, the effect of two maceration techniques, traditional and oak chips-grape mix process, on the phenolic composition and colour of Syrah red wines from warm climate was studied. Two doses of oak chips (3 and 6g/L) at two maceration times (5 and 10days) during fermentation was considered. Changes on phenolic composition (HPLC-DAD-MS), copigmentation/polymerisation (spectrophotometry), and colour (Tristimulus and Differential Colorimetry) were assessed by multivariate statistical techniques. The addition of oak chips at shorter maceration times enhanced phenolic extraction, colour and its stabilisation in comparison to the traditional maceration. On contrast, increasing chip dose in extended maceration time resulted in wines with lighter and less stable colour. Results open the possibility of optimise alternative technological applications to traditional grape maceration for avoiding the common loss of colour of wines from warm climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Investigating bone chip formation in craniotomy.

    PubMed

    Huiyu, He; Chengyong, Wang; Yue, Zhang; Yanbin, Zheng; Linlin, Xu; Guoneng, Xie; Danna, Zhao; Bin, Chen; Haoan, Chen

    2017-10-01

    In a craniotomy, the milling cutter is one of the most important cutting tools. The operating performance, tool durability and cutting damage to patients are influenced by the tool's sharpness, intensity and structure, whereas the cutting characteristics rely on interactions between the tool and the skull. In this study, an orthogonal cutting experiment during a craniotomy of fresh pig skulls was performed to investigate chip formation on the side cutting and face cutting of the skull using a high-speed camera. The cutting forces with different combinations of cutting parameters, such as the rake angle, clearance angle, depth of cut and cutting speed, were measured. The skull bone microstructure and cutting damage were observed by scanning electron microscope. Cutting models for different cutting approaches and various depths of cut were constructed and analyzed. The study demonstrated that the effects of shearing, tension and extrusion occur during chip formation. Various chip types, such as unit chips, splintering chips and continuous chips, were generated. Continuous pieces of chips, which are advisable for easy removal from the field of operation, were formed at greater depths of cut and tool rake angles greater than 10°. Cutting damage could be relieved with a faster recovery with clearance angles greater than 20°.

  12. A software defined RTU multi-protocol automatic adaptation data transmission method

    NASA Astrophysics Data System (ADS)

    Jin, Huiying; Xu, Xingwu; Wang, Zhanfeng; Ma, Weijun; Li, Sheng; Su, Yong; Pan, Yunpeng

    2018-02-01

    Remote terminal unit (RTU) is the core device of the monitor system in hydrology and water resources. Different devices often have different communication protocols in the application layer, which results in the difficulty in information analysis and communication networking. Therefore, we introduced the idea of software defined hardware, and abstracted the common feature of mainstream communication protocols of RTU application layer, and proposed a uniformed common protocol model. Then, various communication protocol algorithms of application layer are modularized according to the model. The executable codes of these algorithms are labeled by the virtual functions and stored in the flash chips of embedded CPU to form the protocol stack. According to the configuration commands to initialize the RTU communication systems, it is able to achieve dynamic assembling and loading of various application layer communication protocols of RTU and complete the efficient transport of sensor data from RTU to central station when the data acquisition protocol of sensors and various external communication terminals remain unchanged.

  13. Optimizing the high-resolution manometry (HRM) study protocol.

    PubMed

    Patel, A; Ding, A; Mirza, F; Gyawali, C P

    2015-02-01

    Intolerance of the esophageal manometry catheter may prolong high-resolution manometry (HRM) studies and increase patient distress. We assessed the impact of obtaining the landmark phase at the end of the study when the patient has acclimatized to the HRM catheter. 366 patients (mean age 55.4 ± 0.8 years, 62.0% female) undergoing esophageal HRM over a 1-year period were studied. The standard protocol consisted of the landmark phase, 10 5 mL water swallows 20-30 s apart, and multiple rapid swallows where 4-6 2 mL swallows were administered in rapid succession. The modified protocol consisted of the landmark phase at the end of the study after test swallows. Study duration, technical characteristics, indications, and motor findings were compared between standard and modified protocols. Of the 366 patients, 89.6% underwent the standard protocol (study duration 12.9 ± 0.3 min). In 10.4% with poor catheter tolerance undergoing the modified protocol, study duration was significantly longer (15.6 ± 1.0 min, p = 0.004) despite similar duration of study maneuvers. Only elevated upper esophageal sphincter basal pressures at the beginning of the study segregated modified protocol patients. The 95th percentile time to landmark phase in the standard protocol patients was 6.1 min; as many as 31.4% of modified protocol patients could not obtain their first study maneuver within this period (p = 0.0003). Interpretation was not impacted by shifting the landmark phase to the end of the study. Modification of the HRM study protocol with the landmark phase obtained at the end of the study optimizes study duration without compromising quality. © 2014 John Wiley & Sons Ltd.

  14. Electronic p-Chip-Based System for Identification of Glass Slides and Tissue Cassettes in Histopathology Laboratories.

    PubMed

    Mandecki, Wlodek; Qian, Jay; Gedzberg, Katie; Gruda, Maryanne; Rodriguez, Efrain Frank; Nesbitt, Leslie; Riben, Michael

    2018-01-01

    The tagging system is based on a small, electronic, wireless, laser-light-activated microtransponder named "p-Chip." The p-Chip is a silicon integrated circuit, the size of which is 600 μm × 600 μm × 100 μm. Each p-Chip contains a unique identification code stored within its electronic memory that can be retrieved with a custom reader. These features allow the p-Chip to be used as an unobtrusive and scarcely noticeable ID tag on glass slides and tissue cassettes. The system is comprised of p-Chip-tagged sample carriers, a dedicated benchtop p-Chip ID reader that can accommodate both objects, and an additional reader (the Wand), with an adapter for reading IDs of glass slides stored vertically in drawers. On slides, p-Chips are attached with adhesive to the center of the short edge, and on cassettes - embedded directly into the plastic. ID readout is performed by bringing the reader to the proximity of the chip. Standard histopathology laboratory protocols were used for testing. Very good ID reading efficiency was observed for both glass slides and cassettes. When processed slides are stored in vertical filing drawers, p-Chips remain readable without the need to remove them from the storage location, thereby improving the speed of searches in collections. On the cassettes, the ID continues to be readable through a thin layer of paraffin. Both slides and tissue cassettes can be read with the same reader, reducing the need for redundant equipment. The p-Chip is stable to all chemical challenges commonly used in the histopathology laboratory, tolerates temperature extremes, and remains durable in long-term storage. The technology is compatible with laboratory information management systems software systems. The p-Chip system is very well suited for identification of glass slides and cassettes in the histopathology laboratory.

  15. Studies on spectroscopy of glycerol in THz range using microfluidic chip-integrated micropump

    NASA Astrophysics Data System (ADS)

    Su, Bo; Han, Xue; Wu, Ying; Zhang, Cunlin

    2014-11-01

    Terahertz time-domain spectroscopy (THz-TDS) is a detection method of biological molecules with label-free, non-ionizing, non-intrusive, no pollution and real-time monitoring. But owing to the strong THz absorption by water, it is mainly used in the solid state detection of biological molecules. In this paper, we present a microfluidic chip technique for detecting biological liquid samples using the transmission type of THz-TDS system. The microfluidic channel of the microfluidic chip is fabricated in the quartz glass using Micro-Electro-Mechanical System (MEMS) technology and sealed with polydimethylsiloxane (PDMS) diaphragm. The length, width and depth of the microfluidic channel are 25mm, 100μm and 50μm, respectively. The diameter of THz detection zone in the microfluidic channel is 4mm. The thicknesses of quartz glass and PDMS diaphragm are 1mm and 250μm, individually. Another one of the same quartz glass is used to bond with the PDMS for the rigidity and air tightness of the microfluidic chip. In order to realize the automation of sampling and improve the control precise of fluid, a micropump, which comprises PDMS diaphragm, pump chamber, diffuser and nozzle and flat vibration motor, is integrated on the microfluidic chip. The diffuser and nozzle are fabricated on both sides of the pump chamber, which is covered with PDMS diaphragm. The flat vibration motor is stuck on the PDMS diaphragm as the actuator. We study the terahertz absorption spectroscopy characteristics of glycerol with the concentration of 98% in the microfluidic chip by the aid of the THz-TDS system, and the feasibility of the microfluidic chip for the detection of liquid samples is proved.

  16. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  17. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  18. Wireless Interconnects for Intra-chip & Inter-chip Transmission

    NASA Astrophysics Data System (ADS)

    Narde, Rounak Singh

    With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different

  19. Comprehensive Study of Microgel Electrode for On-Chip Electrophoretic Cell Sorting

    NASA Astrophysics Data System (ADS)

    Akihiro Hattori,; Kenji Yasuda,

    2010-06-01

    We have developed an on-chip cell sorting system and microgel electrode for applying electrostatic force in microfluidic pathways in the chip. The advantages of agarose electrodes are 1) current-driven electrostatic force generation, 2) stability against pH change and chemicals, and 3) no bubble formation caused by electrolysis. We examined the carrier ion type and concentration dependence of microgel electrode impedance, and found that CoCl2 has less than 1/10 of the impedance from NaCl, and the reduction of the impedance of NaCl gel electrode was plateaued at 0.5 M. The structure control of the microgel electrode exploiting the surface tension of sol-state agarose was also introduced. The addition of 1% (w/v) trehalose into the microgel electrode allowed the frozen storage of the microgel electrode chip. The experimental results demonstrate the potential of our system and microgel electrode for practical applications in microfluidic chips.

  20. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  1. Repairable chip bonding/interconnect process

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  2. On-Chip Biomedical Imaging

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2012-01-01

    Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and micro electromechanical systems achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lensfree holographic microscopy, fluorescent on-chip microscopy and lensfree optical tomography. PMID:23558399

  3. Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation.

    PubMed

    Chiriac, G; Herten, M; Schwarz, F; Rothamel, D; Becker, J

    2005-09-01

    The aim of the present study was to investigate the influence of a new piezoelectric device, designed for harvesting autogenous bone chips from intra-oral sites, on chip morphology, cell viability and differentiation. A total of 69 samples of cortical bone chips were randomly gained by either (1) a piezoelectric device (PS), or (2) conventional rotating drills (RD). Shape and size of the bone chips were compared by means of morphometrical analysis. Outgrowing osteoblasts were identified by means of alkaline phosphatase activity (AP), immunhistochemical staining for osteocalcin (OC) synthesis and reverse transcriptase-polymerase chain reaction phenotyping. In 88.9% of the RD and 87.9% of the PS specimens, an outgrowth of adherent cells nearby the bone chips was observed after 6-19 days. Confluence of cells was reached after 4 weeks. Positive staining for AP and OC identified the cells as osteoblasts. The morphometrical analysis revealed a statistically significant more voluminous size of the particles collected with PS than RD. Within the limits of the present study, it may be concluded that both the harvesting methods are not different from each other concerning their detrimental effect on viability and differentiation of cells growing out of autogenous bone chips derived from intra-oral cortical sites.

  4. Digital LAMP in a sample self-digitization (SD) chip

    PubMed Central

    Herrick, Alison M.; Dimov, Ivan K.; Lee, Luke P.; Chiu, Daniel T.

    2012-01-01

    This paper describes the realization of digital loop-mediated DNA amplification (dLAMP) in a sample self-digitization (SD) chip. Digital DNA amplification has become an attractive technique to quantify absolute concentrations of DNA in a sample. While digital polymerase chain reaction is still the most widespread implementation, its use in resource—limited settings is impeded by the need for thermal cycling and robust temperature control. In such situations, isothermal protocols that can amplify DNA or RNA without thermal cycling are of great interest. Here, we showed the successful amplification of single DNA molecules in a stationary droplet array using isothermal digital loop-mediated DNA amplification. Unlike most (if not all) existing methods for sample discretization, our design allows for automated, loss-less digitization of sample volumes on-chip. We demonstrated accurate quantification of relative and absolute DNA concentrations with sample volumes of less than 2 μl. We assessed the homogeneity of droplet size during sample self-digitization in our device, and verified that the size variation was small enough such that straightforward counting of LAMP-active droplets sufficed for data analysis. We anticipate that the simplicity and robustness of our SD chip make it attractive as an inexpensive and easy-to-operate device for DNA amplification, for example in point-of-care settings. PMID:22399016

  5. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    NASA Astrophysics Data System (ADS)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  6. Human bone perivascular niche-on-a-chip for studying metastatic colonization.

    PubMed

    Marturano-Kruik, Alessandro; Nava, Michele Maria; Yeager, Keith; Chramiec, Alan; Hao, Luke; Robinson, Samuel; Guo, Edward; Raimondi, Manuela Teresa; Vunjak-Novakovic, Gordana

    2018-02-06

    Eight out of 10 breast cancer patients die within 5 years after the primary tumor has spread to the bones. Tumor cells disseminated from the breast roam the vasculature, colonizing perivascular niches around blood capillaries. Slow flows support the niche maintenance by driving the oxygen, nutrients, and signaling factors from the blood into the interstitial tissue, while extracellular matrix, endothelial cells, and mesenchymal stem cells regulate metastatic homing. Here, we show the feasibility of developing a perfused bone perivascular niche-on-a-chip to investigate the progression and drug resistance of breast cancer cells colonizing the bone. The model is a functional human triculture with stable vascular networks within a 3D native bone matrix cultured on a microfluidic chip. Providing the niche-on-a-chip with controlled flow velocities, shear stresses, and oxygen gradients, we established a long-lasting, self-assembled vascular network without supplementation of angiogenic factors. We further show that human bone marrow-derived mesenchymal stem cells, which have undergone phenotypical transition toward perivascular cell lineages, support the formation of capillary-like structures lining the vascular lumen. Finally, breast cancer cells exposed to interstitial flow within the bone perivascular niche-on-a-chip persist in a slow-proliferative state associated with increased drug resistance. We propose that the bone perivascular niche-on-a-chip with interstitial flow promotes the formation of stable vasculature and mediates cancer cell colonization.

  7. Electronic p-Chip-Based System for Identification of Glass Slides and Tissue Cassettes in Histopathology Laboratories

    PubMed Central

    Mandecki, Wlodek; Qian, Jay; Gedzberg, Katie; Gruda, Maryanne; Rodriguez, Efrain “Frank”; Nesbitt, Leslie; Riben, Michael

    2018-01-01

    Background: The tagging system is based on a small, electronic, wireless, laser-light-activated microtransponder named “p-Chip.” The p-Chip is a silicon integrated circuit, the size of which is 600 μm × 600 μm × 100 μm. Each p-Chip contains a unique identification code stored within its electronic memory that can be retrieved with a custom reader. These features allow the p-Chip to be used as an unobtrusive and scarcely noticeable ID tag on glass slides and tissue cassettes. Methods: The system is comprised of p-Chip-tagged sample carriers, a dedicated benchtop p-Chip ID reader that can accommodate both objects, and an additional reader (the Wand), with an adapter for reading IDs of glass slides stored vertically in drawers. On slides, p-Chips are attached with adhesive to the center of the short edge, and on cassettes – embedded directly into the plastic. ID readout is performed by bringing the reader to the proximity of the chip. Standard histopathology laboratory protocols were used for testing. Results: Very good ID reading efficiency was observed for both glass slides and cassettes. When processed slides are stored in vertical filing drawers, p-Chips remain readable without the need to remove them from the storage location, thereby improving the speed of searches in collections. On the cassettes, the ID continues to be readable through a thin layer of paraffin. Both slides and tissue cassettes can be read with the same reader, reducing the need for redundant equipment. Conclusions: The p-Chip is stable to all chemical challenges commonly used in the histopathology laboratory, tolerates temperature extremes, and remains durable in long-term storage. The technology is compatible with laboratory information management systems software systems. The p-Chip system is very well suited for identification of glass slides and cassettes in the histopathology laboratory. PMID:29692946

  8. On-chip dynamic stress control for cancer cell evolution study

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert

    2010-03-01

    The growth and spreading of cancer in host organisms is an evolutionary process. Cells accumulate mutations that help them adapt to changing environments and to obtain survival fitness. However, all cancer--promoting mutations do not occur at once. Cancer cells face selective environmental pressures that drive their evolution in stages. In traditional cancer studies, environmental stress is usually homogenous in space and difficult to change in time. Here, we propose a microfluidic chip employing embedded dynamic traps to generate dynamic heterogeneous microenvironments for cancer cells in evolution studies. Based on polydimethylsiloxane (PDMS) flexible diaphragms, these traps are able to enclose and shield cancer cells or expose them to external environmental stress. Digital controls for each trap determine the nutrition, antibiotics, CO2/O2 conditions, and temperatures to which trapped cells are subjected. Thus, the stress applied to cells can be varied in intensity and duration in each trap independently. The chip can also output cells from specific traps for sequencing and other biological analysis. Hence our design simultaneously monitors and analyzes cell evolution behaviors under dynamic stresses.

  9. Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers

    NASA Astrophysics Data System (ADS)

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi

    2016-03-01

    We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.

  10. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    NASA Astrophysics Data System (ADS)

    Bartelink, Dirk J.

    1998-11-01

    The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must

  11. Autogenous Partial Bone Chip Grafting on the Exposed Inferior Alveolar Nerve After Cystic Enucleation.

    PubMed

    Seo, Mi Hyun; Eo, Mi Young; Cho, Yun Ju; Kim, Soung Min; Lee, Suk Keun

    2018-03-01

    This prospective study evaluated the clinical effectiveness of the new approach of partial autogenous bone chip grafts for the treatment of mandibular cystic lesions related to the inferior alveolar nerve (IAN). A total of 38 patients treated for mandibular cysts or benign tumors were included in this prospective study and subsequently divided into 3 groups depending on the bone grafting method used: cystic enucleation without a bone graft (group 1), partial bone chip graft covering the exposed IAN (group 2), and autogenous bone graft covering the entire defect (group 3). We evaluated the symptoms, clinical signs, and radiographic changes using dental panorama preoperatively, immediate postoperatively, and at 1, 3, 6, and 12 months postoperatively. Radiographic densities were compared using Adobe Photoshop CS5 (Adobe Systems Inc., San Jose, CA). Repeated measures analysis of variance was used for statistical evaluation with SPSS 22.0 (SPSS Inc, Chicago, IL), and P < 0.05 was considered statistically significant.Radiopacities were the most increased at 1 year postoperative in group 3; groups 2 and 3 did not show statistically significant differences, whereas groups 1 and 3 were statistically significant. In terms of radiographic bone healing with clinical regeneration of the exposed IAN, healing occurred in all patients, although the best healing was achieved in group 2.This autogenous partial bone chip grafting procedure to cover the exposed IAN is suggested as a new surgical protocol for the treatment of cystic lesions associated with the IAN.

  12. Chip packaging technique

    NASA Technical Reports Server (NTRS)

    Jayaraj, Kumaraswamy (Inventor); Noll, Thomas E. (Inventor); Lockwood, Harry F. (Inventor)

    2001-01-01

    A hermetically sealed package for at least one semiconductor chip is provided which is formed of a substrate having electrical interconnects thereon to which the semiconductor chips are selectively bonded, and a lid which preferably functions as a heat sink, with a hermetic seal being formed around the chips between the substrate and the heat sink. The substrate is either formed of or includes a layer of a thermoplastic material having low moisture permeability which material is preferably a liquid crystal polymer (LCP) and is a multiaxially oriented LCP material for preferred embodiments. Where the lid is a heat sink, the heat sink is formed of a material having high thermal conductivity and preferably a coefficient of thermal expansion which substantially matches that of the chip. A hermetic bond is formed between the side of each chip opposite that connected to the substrate and the heat sink. The thermal bond between the substrate and the lid/heat sink may be a pinched seal or may be provided, for example by an LCP frame which is hermetically bonded or sealed on one side to the substrate and on the other side to the lid/heat sink. The chips may operate in the RF or microwave bands with suitable interconnects on the substrate and the chips may also include optical components with optical fibers being sealed into the substrate and aligned with corresponding optical components to transmit light in at least one direction. A plurality of packages may be physically and electrically connected together in a stack to form a 3D array.

  13. Lab-on-a-chip in vitro compartmentalization technologies for protein studies.

    PubMed

    Zhu, Yonggang; Power, Barbara E

    2008-01-01

    In vitro compartmentalization (IVC) is a powerful tool for studying protein-protein reactions, due to its high capacity and the versatility of droplet technologies. IVC bridges the gap between chemistry and biology as it enables the incorporation of unnatural amino acids with modifications into biological systems, through protein transcription and translation reactions, in a cell-like microdrop environment. The quest for the ultimate chip for protein studies using IVC is the drive for the development of various microfluidic droplet technologies to enable these unusual biochemical reactions to occur. These techniques have been shown to generate precise microdrops with a controlled size. Various chemical and physical phenomena have been utilized for on-chip manipulation to allow the droplets to be generated, fused, and split. Coupled with detection techniques, droplets can be sorted and selected. These capabilities allow directed protein evolution to be carried out on a microchip. With further technological development of the detection module, factors such as addressable storage, transport and interfacing technologies, could be integrated and thus provide platforms for protein studies with high efficiency and accuracy that conventional laboratories cannot achieve.

  14. On-chip liquid storage and dispensing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Bodén, Roger; Lehto, Marcus; Margell, Joakim; Hjort, Klas; Schweitz, Jan-Åke

    2008-07-01

    This work presents novel components for on-chip storage and dispensing inside a lab-on-a-chip (LOC) for applications in immunoassay point-of-care testing (POCT), where incubation and washing steps are essential. It involves easy-to-use on-chip solutions for the sequential thermo-hydraulic actuation of liquids. The novel concept of combining the use of a rubber plug, both as a non-return valve cap and as a liquid injection interface of a sealed reservoir, allows simple filling of a sterilized cavity, as well as the storage and dispensing of reagent and washing buffer liquids. Segmenting the flow with air spacers enables effective rinsing and the use of small volumes of on-chip stored liquids. The chip uses low-resistance resistors as heaters in the paraffin actuator, providing the low-voltage actuation that is preferred for handheld battery driven instruments.

  15. ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints

    PubMed Central

    He, Qiye; Johnston, Jeff; Zeitlinger, Julia

    2014-01-01

    Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP experiments with nucleotide resolution through exonuclease, unique barcode and single ligation (ChIP-nexus), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max— demonstrates that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs and allows the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA sequence features such as DNA shape. ChIP-nexus will be broadly applicable to studying in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms. PMID:25751057

  16. Organs-on-a-chip: Current applications and consideration points for in vitro ADME-Tox studies.

    PubMed

    Ishida, Seiichi

    2018-02-01

    Assay systems using in vitro cultured cells are increasingly applied for evaluation of the efficacy, safety, and toxicity of drug candidates. In vitro cell-based assays have two main applications in the drug discovery process: searching for a compound that is effective against the target disease (seed investigation) and confirmation of safety during use of the identified compounds (safety assessment). Currently available in vitro cell-based assays have been designed to evaluate the efficacy and toxicity in single organs, but the in vivo pharmacokinetics and pharmacodynamics of the administered drug candidates have not been considered. Thus, an evaluation system that interconnects cell culture units, one of which has appropriate drug metabolism activities and the other assesses the efficacy and toxicity of compounds, is needed. Accordingly, the in vitro ADME-Tox culture system known as organs-on-a-chip has been proposed. In this review, after introducing the organs-on-a-chip system, the evaluation of enterohepatic circulation and the gut-liver axis relationship will be presented as an example of the application of the organs-on-a-chip system for ADME studies based on inter-organ network. Additionally, the functions required for the organs-on-a-chip system and the necessity of standardization of cells mounted on the chip system will be discussed. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. A multi-year survey of stem-end chip defect in chipping potatoes (Solanum tuberosum L.)

    USDA-ARS?s Scientific Manuscript database

    One of the most serious tuber quality concerns of US chip potato growers is stem-end chip defect, which is defined as a localized post-fry discoloration in and adjacent to the vasculature on the stem end portion of potato chips. The incidence and severity of stem-end chip defect vary with growing lo...

  18. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  19. Steaming Chips Facilitates Bark Removal

    Treesearch

    John R. Erickson

    1976-01-01

    Whole tree chipping is a productive and economical harvesting system. The resultant product, however, is barky chips. THis paper outlines a promising method for removing the bark particles from whole tree chips.

  20. Management of Chronic Periodontitis Using Chlorhexidine Chip and Diode Laser-A Clinical Study

    PubMed Central

    Ambooken, Majo; Mathew, Jayan Jacob; Issac, Annie Valayil; Kunju, Ajithkumar Parachalil; Parameshwaran, Renjith Athirkandathil

    2016-01-01

    Introduction The use of adjuncts like chlorhexidine local delivery and diode laser decontamination have been found to improve the clinical outcomes of scaling and root planing in non-surgical periodontal therapy in patients with chronic periodontitis. Aim To evaluate the effects of diode laser and chlorhexidine chip as adjuncts to scaling and root planing in the management of chronic periodontitis. The objective is to evaluate the outcome of chlorhexidine chip and diode laser as adjuncts to scaling and root planing on clinical parameters like Plaque Index, Gingival Index, probing pocket depth and clinical attachment level. Study and Design Department of Periodontics. Randomized clinical trial with split mouth design. Materials and Methods Fifteen chronic periodontitis patients having a probing pocket depth of 5mm-7mm on at least one interproximal site in each quadrant of the mouth were included in the study. After initial treatment, four sites in each patient were randomly subjected to scaling and root planing (control), chlorhexidine chip application (CHX chip group), diode laser (810 nm) decontamination (Diode laser group) or combination of both (Diode laser and chip group). Plaque Index (PI), Gingival Index (GI), probing pocket depth (PPD) and clinical attachment level (CAL) were assessed at baseline, one month and three months. Statistical analysis Results were statistically analysed using paired T test, one-way ANOVA, Tukey’s HSD test and repeated measure ANOVA. Results Post-treatment, the test and control sites showed a statistically significant reduction in PI, GI, PPD, and CAL. After three months, a mean PPD reduction of 1.47±0.52 mm in control group, 1.40±0.83 mm in diode laser group, 2.67±0.62 mm in CHX group, and 2.80± 0.77 mm in combination group was seen. The mean gain in CAL were 1.47±0.52 mm in the control group, 1.40±0.83 mm in diode laser group, 2.67± 0.49 mm in CHX group and 2.67± 0.82 mm in combination group respectively. The

  1. Combined Protocol for Acute Malnutrition Study (ComPAS) in rural South Sudan and urban Kenya: study protocol for a randomized controlled trial.

    PubMed

    Bailey, Jeanette; Lelijveld, Natasha; Marron, Bethany; Onyoo, Pamela; Ho, Lara S; Manary, Mark; Briend, André; Opondo, Charles; Kerac, Marko

    2018-04-24

    Acute malnutrition is a continuum condition, but severe and moderate forms are treated separately, with different protocols and therapeutic products, managed by separate United Nations agencies. The Combined Protocol for Acute Malnutrition Study (ComPAS) aims to simplify and unify the treatment of uncomplicated severe and moderate acute malnutrition (SAM and MAM) for children 6-59 months into one protocol in order to improve the global coverage, quality, continuity of care and cost-effectiveness of acute malnutrition treatment in resource-constrained settings. This study is a multi-site, cluster randomized non-inferiority trial with 12 clusters in Kenya and 12 clusters in South Sudan. Participants are 3600 children aged 6-59 months with uncomplicated acute malnutrition. This study will evaluate the impact of a simplified and combined protocol for the treatment of SAM and MAM compared to the standard protocol, which is the national treatment protocol in each country. We will assess recovery rate as a primary outcome and coverage, defaulting, death, length of stay, average weekly weight gain and average weekly mid-upper arm circumference (MUAC) gain as secondary outcomes. Recovery rate is defined across both treatment arms as MUAC ≥125 mm and no oedema for two consecutive visits. Per-protocol and intention-to-treat analyses will be conducted. If the combined protocol is shown to be non-inferior to the standard protocol, updating guidelines to use the combined protocol would eliminate the need for separate products, resources and procedures for MAM treatment. This would likely be more cost-effective, increase availability of services, enable earlier case finding and treatment before deterioration of MAM into SAM, promote better continuity of care and improve community perceptions of the programme. ISRCTN, ISRCTN30393230 . Registered on 16 March 2017.

  2. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.

    PubMed

    Humayun, Mouhita; Chow, Chung-Wai; Young, Edmond W K

    2018-05-01

    Chronic lung diseases (CLDs) are regulated by complex interactions between many different cell types residing in lung airway tissues. Specifically, interactions between airway epithelial cells (ECs) and airway smooth muscle cells (SMCs) have been shown in part to play major roles in the pathogenesis of CLDs, but the underlying molecular mechanisms are not well understood. To advance our understanding of lung pathophysiology and accelerate drug development processes, new innovative in vitro tissue models are needed that can reconstitute the complex in vivo microenvironment of human lung tissues. Organ-on-a-chip technologies have recently made significant strides in recapitulating physiological properties of in vivo lung tissue microenvironments. However, novel advancements are still needed to enable the study of airway SMC-EC communication with matrix interactions, and to provide higher throughput capabilities and manufacturability. We have developed a thermoplastic-based microfluidic lung airway-on-a-chip model that mimics the lung airway tissue microenvironment, and in particular, the interactions between SMCs, ECs, and supporting extracellular matrix (ECM). The microdevice is fabricated from acrylic using micromilling and solvent bonding techniques, and consists of three vertically stacked microfluidic compartments with a bottom media reservoir for SMC culture, a middle thin hydrogel layer, and an upper microchamber for achieving air-liquid interface (ALI) culture of the epithelium. A unique aspect of the design lies in the suspended hydrogel with upper and lower interfaces for EC and SMC culture, respectively. A mixture of type I collagen and Matrigel was found to promote EC adhesion and monolayer formation, and SMC adhesion and alignment. Optimal culturing protocols were established that enabled EC-SMC coculture for more than 31 days. Epithelial monolayers displayed common morphological markers including ZO-1 tight junctions and F-actin cell cortices, while

  3. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children.

    PubMed

    Nikolova, Silviya; Stearns, Sally

    2014-03-03

    Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children's Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice.

  4. Programmable on-chip and off-chip network architecture on demand for flexible optical intra-datacenters.

    PubMed

    Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra

    2013-03-11

    The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.

  5. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client.

    PubMed

    Zhang, P; Aungskunsiri, K; Martín-López, E; Wabnig, J; Lobino, M; Nock, R W; Munns, J; Bonneau, D; Jiang, P; Li, H W; Laing, A; Rarity, J G; Niskanen, A O; Thompson, M G; O'Brien, J L

    2014-04-04

    We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering.

  6. UW VLSI chip tester

    NASA Astrophysics Data System (ADS)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  7. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, A.F.; Petersen, R.W.

    1993-08-31

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  8. Three dimensional, multi-chip module

    DOEpatents

    Bernhardt, Anthony F.; Petersen, Robert W.

    1993-01-01

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  9. Process for 3D chip stacking

    DOEpatents

    Malba, V.

    1998-11-10

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.

  10. Process for 3D chip stacking

    DOEpatents

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  11. Flip Chip on Organic Substrates: A Feasibility Study for Space Applications

    DTIC Science & Technology

    2017-03-01

    scheme, a 1752 I/O land grid array (LGA) package with decoupling capacitors, heat sink and optional column attach [1] as shown in Figure 1...investigated the effect of moisture and current loading on the Class Y flip chip on ceramic reliability [ 2 ]. The UT1752FC Class Y technology has...chip assembly to ceramic test substrates, the FA10 die are assembled to build-up organic test substrates as shown in Figure 2 . These assemblies

  12. Childhood Hodgkin International Prognostic Score (CHIPS) Predicts event-free survival in Hodgkin Lymphoma: A Report from the Children's Oncology Group.

    PubMed

    Schwartz, Cindy L; Chen, Lu; McCarten, Kathleen; Wolden, Suzanne; Constine, Louis S; Hutchison, Robert E; de Alarcon, Pedro A; Keller, Frank G; Kelly, Kara M; Trippet, Tanya A; Voss, Stephan D; Friedman, Debra L

    2017-04-01

    Early response to initial chemotherapy in Hodgkin lymphoma (HL) measured by computed tomography (CT) and/or positron emission tomography (PET) after two to three cycles of chemotherapy may inform therapeutic decisions. Risk stratification at diagnosis could, however, allow earlier and potentially more efficacious treatment modifications. We developed a predictive model for event-free survival (EFS) in pediatric/adolescent HL using clinical data known at diagnosis from 1103 intermediate-risk HL patients treated on Children's Oncology Group protocol AHOD0031 with doxorubicin, bleomycin, vincristine, etoposide, prednisone, cyclophosphamide (ABVE-PC) chemotherapy and radiation. Independent predictors of EFS were identified and used to develop and validate a prognostic score (Childhood Hodgkin International Prognostic Score [CHIPS]). A training cohort was randomly selected to include approximately half of the overall cohort, with the remainder forming the validation cohort. Stage 4 disease, large mediastinal mass, albumin (<3.5), and fever were independent predictors of EFS that were each assigned one point in the CHIPS.  Four-year EFS was 93.1% for patients with CHIPS = 0, 88.5% for patients with CHIPS = 1, 77.6% for patients with CHIPS = 2, and 69.2% for patients with CHIPS = 3. CHIPS was highly predictive of EFS, identifying a subset (with CHIPS 2 or 3) that comprises 27% of intermediate-risk patients who have a 4-year EFS of <80% and who may benefit from early therapeutic augmentation.  Furthermore, CHIPS identified higher risk patients who were not identified by early PET or CT response. CHIPS is a robust and inexpensive approach to predicting risk in patients with intermediate-risk HL that may improve ability to tailor therapy to risk factors known at diagnosis. © 2016 Wiley Periodicals, Inc.

  13. Smart vision chips: An overview

    NASA Technical Reports Server (NTRS)

    Koch, Christof

    1994-01-01

    This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.

  14. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  15. Multi-user quantum key distribution with entangled photons from an AlGaAs chip

    NASA Astrophysics Data System (ADS)

    Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S.

    2016-12-01

    In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achieve a visibility measured after the DWDM of 87% and show long-distance key distribution using a 50-km standard telecom fibre link between two network users. These results illustrate a promising route to practical, resource-efficient implementations adapted to quantum network infrastructures.

  16. Comparison of bone healing and outcomes between allogenous bone chip and hydroxyapatite chip grafts in open wedge high tibial osteotomy.

    PubMed

    Lee, O-Sung; Lee, Kyung Jae; Lee, Yong Seuk

    2017-11-03

    Allogenous bone chips and hydroxyapatite (HA) chips have been known as good options for filling an inevitable void after open wedge high tibial osteotomy (OWHTO). However, there are concerns regarding bone healing after the use of these grafts. The purpose of this study was to compare the bone healing represented by the osteoconductivity and absorbability between allogenous bone chips and HA chips in OWHTO. The outcomes of bone healing of 53 patients who received an allogenous bone chip graft and 41 patients who received an HA chip graft were retrospectively evaluated, and the results were compared between the two groups. Osteoconductivity and absorbability were serially evaluated for the assessment of bone healing at 6 weeks, 3 months, 6 months, and 1 year postoperatively. The osteoconductivity of the allogenous bone chips was greater than that of the HA chips at 6 weeks postoperatively (p < 0.05). However, there were no statistically significant differences from 3 months to 1 year postoperatively. The absorbability showed no statistically significant differences 6 weeks and 3 months after OWHTO; however, the allogenous bone chip group showed a greater absorbability at 6 months and 1 year postoperatively (42.8 ± 14.2 vs. 34.6 ± 13.8, p = 0.006 at 6 months postoperatively; 54.6 ± 14.4 vs. 43.0 ± 14.0, p < 0.001 at 1 year postoperatively). However, the two graft materials showed similar results of HKA angle, WBL ratio, posterior tibial slope.

  17. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    PubMed

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-07

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  18. Tag Array gene chip rapid diagnosis anti-tuberculosis drug resistance in pulmonary tuberculosis -a feasibility study.

    PubMed

    Wu, Wenjie; Cheng, Peng; Lyu, Jingtong; Zhang, Zehua; Xu, Jianzhong

    2018-05-01

    We developed a Tag Array chip for detecting first- and second-line anti tuberculosis drug resistance in pulmonary tuberculosis and compared the analytical performance of the gene chip to that of phenotypic drug susceptibility testing (DST). From November 2011 to April 2016.234 consecutive culture-confirmed, clinically and imaging diagnosed patients with pulmonary tuberculosis from Southwest Hospital, Chongqing were enrolled into the study. Specimens collected during sputum or bronchoalveolar lavage fluid from the pulmonary tuberculosis patients were subjected to M. tuberculosis species identification and drug-resistance detection by the Tag Array gene chip, and evaluate the sensitivity and specificity of chip. A total of 186 patients was diagnosed drug-resistant tuberculosis. The detection of rifampicin (RFP), isoniazid (INH), fluoroquinolones (FQS), streptomycin (SM) resistance genes was highly sensitive and specific: however, for detection of amikacin (AMK), capreomycin (CPM), Kanamycin (KM), specificity was higher, but sensitivity was lower. Sensitivity for the detection of a mutation in the eis promoter region could be improved. The detection sensitivity of the EMB resistance gene was low, therefore it is easy to miss a diagnosis of EMB drug resistance, but its specificity was high. Tag Array chip can achieve rapid, accurate and high-throughput detection of tuberculosis resistance in pulmonary tuberculosis, which has important clinical significance and feasibility. Copyright © 2018. Published by Elsevier Ltd.

  19. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children

    PubMed Central

    2014-01-01

    Background Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children’s Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. Methods The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Results Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. Conclusions When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice. PMID:24589197

  20. Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.

    PubMed

    Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A

    2017-11-21

    We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.

  1. Advanced Flip Chips in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    The use of underfill materials is necessary with flip-chip interconnect technology to redistribute stresses due to mismatching coefficients of thermal expansion (CTEs) between dissimilar materials in the overall assembly. Underfills are formulated using organic polymers and possibly inorganic filler materials. There are a few ways to apply the underfills with flip-chip technology. Traditional capillary-flow underfill materials now possess high flow speed and reduced time to cure, but they still require additional processing steps beyond the typical surface-mount technology (SMT) assembly process. Studies were conducted using underfills in a temperature range of -190 to 85 C, which resulted in an increase of reliability by one to two orders of magnitude. Thermal shock of the flip-chip test articles was designed to induce failures at the interconnect sites (-40 to 100 C). The study on the reliability of flip chips using underfills in the extreme temperature region is of significant value for space applications. This technology is considered as an enabling technology for future space missions. Flip-chip interconnect technology is an advanced electrical interconnection approach where the silicon die or chip is electrically connected, face down, to the substrate by reflowing solder bumps on area-array metallized terminals on the die to matching footprints of solder-wettable pads on the chosen substrate. This advanced flip-chip interconnect technology will significantly improve the performance of high-speed systems, productivity enhancement over manual wire bonding, self-alignment during die joining, low lead inductances, and reduced need for attachment of precious metals. The use of commercially developed no-flow fluxing underfills provides a means of reducing the processing steps employed in the traditional capillary flow methods to enhance SMT compatibility. Reliability of flip chips may be significantly increased by matching/tailoring the CTEs of the substrate

  2. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol.

    PubMed

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function.

  3. Fully Integrated Passive UHF RFID Tag for Hash-Based Mutual Authentication Protocol

    PubMed Central

    Mikami, Shugo; Watanabe, Dai; Li, Yang; Sakiyama, Kazuo

    2015-01-01

    Passive radio-frequency identification (RFID) tag has been used in many applications. While the RFID market is expected to grow, concerns about security and privacy of the RFID tag should be overcome for the future use. To overcome these issues, privacy-preserving authentication protocols based on cryptographic algorithms have been designed. However, to the best of our knowledge, evaluation of the whole tag, which includes an antenna, an analog front end, and a digital processing block, that runs authentication protocols has not been studied. In this paper, we present an implementation and evaluation of a fully integrated passive UHF RFID tag that runs a privacy-preserving mutual authentication protocol based on a hash function. We design a single chip including the analog front end and the digital processing block. We select a lightweight hash function supporting 80-bit security strength and a standard hash function supporting 128-bit security strength. We show that when the lightweight hash function is used, the tag completes the protocol with a reader-tag distance of 10 cm. Similarly, when the standard hash function is used, the tag completes the protocol with the distance of 8.5 cm. We discuss the impact of the peak power consumption of the tag on the distance of the tag due to the hash function. PMID:26491714

  4. Compression Debarked Chips from a Whole-Tree Chipper

    Treesearch

    Rodger A. Arola

    1973-01-01

    Discusses case study results of debarking whole-tree aspen and red oak chips produced with a whole-tree chipper. The results indicate promise for successful bark removal after chipping and strengthen the argument for continued research.

  5. Implantation of Autologous Cartilage Chips Improves Cartilage Repair Tissue Quality in Osteochondral Defects: A Study in Göttingen Minipigs.

    PubMed

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Hede, Kris Chadwick; Lind, Martin

    2016-06-01

    Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. Controlled laboratory study. Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups

  6. Single chip camera active pixel sensor

    NASA Technical Reports Server (NTRS)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  7. Childhood Hodgkin International Prognostic Score (CHIPS) Predicts event-free survival in Hodgkin Lymphoma: A Report from the Children’s Oncology Group

    PubMed Central

    Schwartz, Cindy L.; Chen, Lu; McCarten, Kathleen; Wolden, Suzanne; Constine, Louis S.; Hutchison, Robert E.; de Alarcon, Pedro A.; Keller, Frank G.; Kelly, Kara M.; Trippet, Tanya A.; Voss, Stephan D.; Friedman, Debra L.

    2017-01-01

    Background Early response to initial chemotherapy in Hodgkin lymphoma (HL) measured by computed tomography (CT) and/or positron emission tomography (PET) after two to three cycles of chemotherapy may inform therapeutic decisions. Risk stratification at diagnosis could, however, allow earlier and potentially more efficacious treatment modifications. Patients and Methods We developed a predictive model for event-free survival (EFS) in pediatric/adolescent HL using clinical data known at diagnosis from 1103 intermediate-risk HL patients treated on Children’s Oncology Group protocol AHOD0031 with doxorubicin, bleomycin, vincristine, etoposide, prednisone, cyclophosphamide (ABVE-PC) chemotherapy and radiation. Independent predictors of EFS were identified and used to develop and validate a prognostic score (Childhood Hodgkin International Prognostic Score [CHIPS]). A training cohort was randomly selected to include approximately half of the overall cohort, with the remainder forming the validation cohort. Results Stage 4 disease, large mediastinal mass, albumin (<3.5), and fever were independent predictors of EFS that were each assigned one point in the CHIPS. Four-year EFS was 93.1% for patients with CHIPS = 0, 88.5% for patients with CHIPS = 1, 77.6% for patients with CHIPS = 2, and 69.2% for patients with CHIPS = 3. Conclusions CHIPS was highly predictive of EFS, identifying a subset (with CHIPS 2 or 3) that comprises 27% of intermediate-risk patients who have a 4-year EFS of <80% and who may benefit from early therapeutic augmentation. Furthermore, CHIPS identified higher risk patients who were not identified by early PET or CT response. CHIPS is a robust and inexpensive approach to predicting risk in patients with intermediate-risk HL that may improve ability to tailor therapy to risk factors known at diagnosis. PMID:27786406

  8. Lab-on-a-Chip

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station. Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. (NASA/MSFC/D.Stoffer)

  9. Chipping of thinning slash on fuel-breaks

    Treesearch

    Harry E. Schimke

    1965-01-01

    A heavy stand of conifer saplings and poles on the Stanislaus National Forest was thinned, piled, and chipped. The study sought to determine the amount of material removed and the cost of chipping. Slash disposal costs were $9.66 per ton for dry material, and $11.81 per ton for green slash.

  10. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting.

    PubMed

    Yang, Qingzhen; Lian, Qin; Xu, Feng

    2017-05-01

    Organ-on-a-chip has emerged as a powerful platform with widespread applications in biomedical engineering, such as pathology studies and drug screening. However, the fabrication of organ-on-a-chip is still a challenging task due to its complexity. For an integrated organ-on-a-chip, it may contain four key elements, i.e., a microfluidic chip, live cells/microtissues that are cultured in this chip, components for stimulus loading to mature the microtissues, and sensors for results readout. Recently, bioprinting has been used for fabricating organ-on-a-chip as it enables the printing of multiple materials, including biocompatible materials and even live cells in a programmable manner with a high spatial resolution. Besides, all four elements for organ-on-a-chip could be printed in a single continuous procedure on one printer; in other words, the fabrication process is assembly free. In this paper, we discuss the recent advances of organ-on-a-chip fabrication by bioprinting. Light is shed on the printing strategies, materials, and biocompatibility. In addition, some specific bioprinted organs-on-chips are analyzed in detail. Because the bioprinted organ-on-a-chip is still in its early stage, significant efforts are still needed. Thus, the challenges presented together with possible solutions and future trends are also discussed.

  11. A UHF RFID system with on-chip-antenna tag for short range communication

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Chun, Zhang; Xijin, Zhao; Zhihua, Wang

    2015-05-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm2, which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna.

  12. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications.

    PubMed

    Serra, M; Pereiro, I; Yamada, A; Viovy, J-L; Descroix, S; Ferraro, D

    2017-02-14

    The sealing of microfluidic devices remains a complex and time-consuming process requiring specific equipment and protocols: a universal method is thus highly desirable. We propose here the use of a commercially available sealing tape as a robust, versatile, reversible solution, compatible with cell and molecular biology protocols, and requiring only the application of manually achievable pressures. The performance of the seal was tested with regards to the most commonly used chip materials. For most materials, the bonding resisted 5 bars at room temperature and 1 bar at 95 °C. This method should find numerous uses, ranging from fast prototyping in the laboratory to implementation in low technology environments or industrial production.

  13. Chemical and biological threat-agent detection using electrophoresis-based lab-on-a-chip devices.

    PubMed

    Borowsky, Joseph; Collins, Greg E

    2007-10-01

    The ability to separate complex mixtures of analytes has made capillary electrophoresis (CE) a powerful analytical tool since its modern configuration was first introduced over 25 years ago. The technique found new utility with its application to the microfluidics based lab-on-a-chip platform (i.e., microchip), which resulted in ever smaller footprints, sample volumes, and analysis times. These features, coupled with the technique's potential for portability, have prompted recent interest in the development of novel analyzers for chemical and biological threat agents. This article will comment on three main areas of microchip CE as applied to the separation and detection of threat agents: detection techniques and their corresponding limits of detection, sampling protocol and preparation time, and system portability. These three areas typify the broad utility of lab-on-a-chip for meeting critical, present-day security, in addition to illustrating areas wherein advances are necessary.

  14. ChIP and ChIP-Related Techniques: Expanding the Fields of Application and Improving ChIP Performance.

    PubMed

    Visa, Neus; Jordán-Pla, Antonio

    2018-01-01

    Protein-DNA interactions in vivo can be detected and quantified by chromatin immunoprecipitation (ChIP). ChIP has been instrumental for the advancement of epigenetics and has set the groundwork for the development of a number of ChIP-related techniques that have provided valuable information about the organization and function of genomes. Here, we provide an introduction to ChIP and discuss the applications of ChIP in different research areas. We also review some of the strategies that have been devised to improve ChIP performance.

  15. CHIP, CHIP, ARRAY! THREE CHIPS FOR POST-GENOMIC RESEARCH

    EPA Science Inventory

    Cambridge Healthtech Institute recently held the 4th installment of their popular "Lab-on-a-Chip" series in Zurich, Switzerland. As usual, it was enthusiastically received and over 225 people attended the 2-1/2 day meeting to see and hear about some of the latest developments an...

  16. Dry chips versus green chips as furnish for medium-density fiberboard

    Treesearch

    Paul H. Short; George E. Woodson; Duane E. Lyon

    1978-01-01

    The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refining dry material produced coarser fiber than those obtained from green...

  17. Dry chips versus green chips as furnish for medium-density fiberboard

    Treesearch

    P.H. Short; G.E. Woodson; D.E. Lyon

    1978-01-01

    The fiber characteristics and the physical and mechanical properties of medium-density fiberboard (MDF), manufactured with pressure-refined fiber from green and partially dried raw material, were analyzed to determine if dry wood chips made a better furnish than green wood chips. Pressure-refined dry material produced coarser fiber than those obtained from green...

  18. Management of Chronic Periodontitis Using Chlorhexidine Chip and Diode Laser-A Clinical Study.

    PubMed

    Jose, Kachapilly Arun; Ambooken, Majo; Mathew, Jayan Jacob; Issac, Annie Valayil; Kunju, Ajithkumar Parachalil; Parameshwaran, Renjith Athirkandathil

    2016-04-01

    The use of adjuncts like chlorhexidine local delivery and diode laser decontamination have been found to improve the clinical outcomes of scaling and root planing in non-surgical periodontal therapy in patients with chronic periodontitis. To evaluate the effects of diode laser and chlorhexidine chip as adjuncts to scaling and root planing in the management of chronic periodontitis. The objective is to evaluate the outcome of chlorhexidine chip and diode laser as adjuncts to scaling and root planing on clinical parameters like Plaque Index, Gingival Index, probing pocket depth and clinical attachment level. Department of Periodontics. Randomized clinical trial with split mouth design. Fifteen chronic periodontitis patients having a probing pocket depth of 5mm-7mm on at least one interproximal site in each quadrant of the mouth were included in the study. After initial treatment, four sites in each patient were randomly subjected to scaling and root planing (control), chlorhexidine chip application (CHX chip group), diode laser (810 nm) decontamination (Diode laser group) or combination of both (Diode laser and chip group). Plaque Index (PI), Gingival Index (GI), probing pocket depth (PPD) and clinical attachment level (CAL) were assessed at baseline, one month and three months. Results were statistically analysed using paired T test, one-way ANOVA, Tukey's HSD test and repeated measure ANOVA. Post-treatment, the test and control sites showed a statistically significant reduction in PI, GI, PPD, and CAL. After three months, a mean PPD reduction of 1.47±0.52 mm in control group, 1.40±0.83 mm in diode laser group, 2.67±0.62 mm in CHX group, and 2.80± 0.77 mm in combination group was seen. The mean gain in CAL were 1.47±0.52 mm in the control group, 1.40±0.83 mm in diode laser group, 2.67± 0.49 mm in CHX group and 2.67± 0.82 mm in combination group respectively. The differences in PPD reduction and CAL gain between control group and CHX chip and combination

  19. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, A.F.; Malba, V.

    1999-08-03

    An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.

  20. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    1999-01-01

    An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.

  1. Adjunctive Effects of A Piscean Collagen-Based Controlled-Release Chlorhexidine Chip in the Treatment of Chronic Periodontitis: A Clinical and Microbiological Study

    PubMed Central

    John, Priya; Lazarus, Flemingson; Selvam, Arul; Prabhuji, Munivenkatappa Lakshmaiah Venkatesh

    2015-01-01

    Introduction PerioChip a bovine origin gelatine based CHX chip has shown beneficial effects in the management of Chronic Periodontitis. A new fish collagen based CHX chip similar to PerioChip is currently available; however this product has not been thoroughly researched. Aim The aim of the present study was to evaluate the effectiveness of a new Piscean collagen-based controlled-release chlorhexidine chip (CHX chip) as an adjunctive therapy to scaling and root planing (SRP). Settings and Design The study was conducted as a randomised, split-mouth, controlled clinical trial at Krishnadevaraya College of Dental Sciences, Bangalore, India. Materials and Methods In a split–mouth study involving 20 sites in 10 patients with chronic periodontitis, control sites received scaling and root planing and test sites received scaling and root planing (SRP) and the intrapocket CHX chip placement as an adjunct. Subgingival plaque samples were collected from both control and test sites at baseline, 11 days and 11 weeks and the anaerobic colony count were assessed. Clinical parameters that were recorded at baseline and 11 weeks were gingival index, Plaque index, Probing pocket depth (PPD), and Clinical attachment level (CAL). Plaque index was recorded additionally at 11 days. Results In the test group there was a statistically significant reduction in the total anaerobic colony count, gingival index and plaque scores from baseline as compared to control sites at all time intervals. An additional 0.8mm reduction in mean probing pocket depth was noted in the test group. Gain in Clinical attachment level was comparable in both groups. Conclusion The adjunctive use of the new collagen-based CHX chip yielded significant antimicrobial benefit accompanied by a reduction in probing depth and a clinical attachment level gain as compared to SRP alone. This suggests that it may be a useful treatment option of nonsurgical periodontal treatment of chronic periodontitis. PMID:26155567

  2. Immunolocalization of aquaporin CHIP in the guinea pig inner ear.

    PubMed

    Stanković, K M; Adams, J C; Brown, D

    1995-12-01

    Aquaporin CHIP (AQP-CHIP) is a water channel protein previously identified in red blood cells and water transporting epithelia. The inner ear is an organ of hearing and balance whose normal function depends critically on maintenance of fluid homeostasis. In this study, AQP-CHIP, or a close homologue, was found in specific cells of the inner ear, as assessed by immunocytochemistry with the use of affinity-purified polyclonal antibodies against AQP-CHIP.AQP-CHIP was predominantly found in fibrocytes in close association with bone, including most of the cells lining the bony labyrinth and in fibrocytes lining the endolymphatic duct and sac. AQP-CHIP-positive cells not directly apposing bone include cells under the basilar membrane, some type III fibrocytes of the spiral ligament, fibrocytes of the spiral limbus, and the trabecular perilymphatic tissue extending from the membranous to the bony labyrinth. AQP-CHIP was also found in the periosteum of the middle ear and cranial bones, as well as in chondrocytes of the oval window and stapes. The distribution of AQP-CHIP in the inner ear suggests that AQP-CHIP may have special significance for maintenance of bone and the basilar membrane, and for function of the spiral ligament.

  3. Compact Modbus TCP/IP protocol for data acquisition systems based on limited hardware resources

    NASA Astrophysics Data System (ADS)

    Bai, Q.; Jin, B.; Wang, D.; Wang, Y.; Liu, X.

    2018-04-01

    The Modbus TCP/IP has been a standard industry communication protocol and widely utilized for establishing sensor-cloud platforms on the Internet. However, numerous existing data acquisition systems built on traditional single-chip microcontrollers without sufficient resources cannot support it, because the complete Modbus TCP/IP protocol always works dependent on a full operating system which occupies abundant hardware resources. Hence, a compact Modbus TCP/IP protocol is proposed in this work to make it run efficiently and stably even on a resource-limited hardware platform. Firstly, the Modbus TCP/IP protocol stack is analyzed and the refined protocol suite is rebuilt by streamlining the typical TCP/IP suite. Then, specific implementation of every hierarchical layer is respectively presented in detail according to the protocol structure. Besides, the compact protocol is implemented in a traditional microprocessor to validate the feasibility of the scheme. Finally, the performance of the proposed scenario is assessed. The experimental results demonstrate that message packets match the frame format of Modbus TCP/IP protocol and the average bandwidth reaches to 1.15 Mbps. The compact protocol operates stably even based on a traditional microcontroller with only 4-kB RAM and 12-MHz system clock, and no communication congestion or frequent packet loss occurs.

  4. Fabrication of five-level ultraplanar micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper reports a detailed study of the fabrication of various piston, torsion, and cantilever style micromirror arrays using a novel, simple, and inexpensive flip-chip assembly technique. Several rectangular and polar arrays were commercially prefabricated in the MUMPs process and then flip-chip bonded to form advanced micromirror arrays where adverse effects typically associated with surface micromachining were removed. These arrays were bonded by directly fusing the MUMPs gold layers with no complex preprocessing. The modules were assembled using a computer-controlled, custom-built flip-chip bonding machine. Topographically opposed bond pads were designed to correct for slight misalignment errors during bonding and typically result in less than 2 micrometers of lateral alignment error. Although flip-chip micromirror performance is briefly discussed, the means used to create these arrays is the focus of the paper. A detailed study of flip-chip process yield is presented which describes the primary failure mechanisms for flip-chip bonding. Studies of alignment tolerance, bonding force, stress concentration, module planarity, bonding machine calibration techniques, prefabrication errors, and release procedures are presented in relation to specific observations in process yield. Ultimately, the standard thermo-compression flip-chip assembly process remains a viable technique to develop highly complex prototypes of advanced micromirror arrays.

  5. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    PubMed Central

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  6. Programmable synaptic chip for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.

    1988-01-01

    A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.

  7. Biostability of an implantable glucose sensor chip

    NASA Astrophysics Data System (ADS)

    Fröhlich, M.; Birkholz, M.; Ehwald, K. E.; Kulse, P.; Fursenko, O.; Katzer, J.

    2012-12-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and Ra roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  8. MineLoC: A Rapid Production of Lab-on-a-Chip Biosensors Using 3D Printer and the Sandbox Game, Minecraft.

    PubMed

    Kim, Kyukwang; Kim, Hyeongkeun; Kim, Seunggyu; Jeon, Jessie S

    2018-06-10

    Here, MineLoC is described as a pipeline developed to generate 3D printable models of master templates for Lab-on-a-Chip (LoC) by using a popular multi-player sandbox game “Minecraft”. The user can draw a simple diagram describing the channels and chambers of the Lab-on-a-Chip devices with pre-registered color codes which indicate the height of the generated structure. MineLoC converts the diagram into large chunks of blocks (equal sized cube units composing every object in the game) in the game world. The user and co-workers can simultaneously access the game and edit, modify, or review, which is a feature not generally supported by conventional design software. Once the review is complete, the resultant structure can be exported into a stereolithography (STL) file which can be used in additive manufacturing. Then, the Lab-on-a-Chip device can be fabricated by the standard protocol to produce a Lab-on-a-Chip. The simple polydimethylsiloxane (PDMS) device for the bacterial growth measurement used in the previous research was copied by the proposed method. The error calculation by a 3D model comparison showed an accuracy of 86%. It is anticipated that this work will facilitate more use of 3D printer-based Lab-on-a-Chip fabrication, which greatly lowers the entry barrier in the field of Lab-on-a-Chip research.

  9. Andy Jenkins Builds Applications Development For Lab-on-a-Chip

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Andy Jenkins, an engineer for the Lab on a Chip Applications Development program, helped build the Applications Development Unit (ADU-25), a one-of-a-kind facility for controlling and analyzing processes on chips with extreme accuracy. Pressure is used to cause fluids to travel through network of fluid pathways, or micro-channels, embossed on the chips through a process similar to the one used to print circuits on computer chips. To make customized chips for various applications, NASA has an agreement with the U.S. Army's Micro devices and Micro fabrication Laboratory at Redstone Arsenal in Huntsville, Alabama, where NASA's Marshall Space Flight Center (MSFC) is located. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for many applications, such as studying how fluidic systems work in spacecraft and identifying microbes in self-contained life support systems. Chips could even be designed for use on Earth, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  10. Aflatoxin M1 in Tarhana chips.

    PubMed

    Özçam, Mustafa; Obuz, Ersel; Tosun, Halil

    2014-01-01

    Tarhana chips are a popular traditional fermented food consumed widely in the Kahramanmaraş region of Turkey. Tarhana chips are different from many other types of fermented food in that they are produced in the form of tortilla chips. Cereal and yoghurt are the main ingredients in Tarhana chips. Aflatoxin M1 (AFM1) levels in dairy and dairy-based products are of concern for human health. To investigate AFM1 contamination, a total of 40 samples were collected from Kahramanmaraş region and AFM1 levels were determined by competitive enzyme-linked immunosorbent assay (ELISA). Furthermore, physicochemical characteristics of Tarhana chips were investigated and compared with classic fried chips in terms of nutritional value. Based on data obtained from enzyme-linked immunosorbent assay, 21 (52.5%) out of 40 samples contained AFM1 in the range 0.5-36.6 ng/kg, so AFM1 levels of all samples were below the legal limit.

  11. HPLC-Chip/MS Technology in Proteomic Profiling

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin; van de Goor, Tom

    HPLC-chip/MS is a novel nanoflow analytical technology conducted on a microfabricated chip that allows for highly efficient HPLC separation and superior sensitive MS detection of complex proteomic mixtures. This is possible through on-chip preconcentration and separation with fluidic connection made automatically in a leak-tight fashion. Minimum precolumn and postcolumn peak dispersion and uncompromised ease of use result in compounds eluting in bands of only a few nanoliters. The chip is fabricated out of bio-inert polyimide-containing channels and integrated chip structures, such as an electrospray emitter, columns, and frits manufactured by laser ablation technology. Meanwhile, a variety of HPLC-chips differing in design and stationary phase are commercially available, which provide a comprehensive solution for applications in proteomics, glycomics, biomarker, and pharmaceutical discovery. The HPLC-chip can also be easily integrated into a multidimensional separation workflow where different orthogonal separation techniques are combined to solve a highly complex separation problems. In this chapter, we describe in detail the methodological chip usage and functionality and its application in the elucidation of the protein profile of human nucleoli.

  12. Microchannel cooling of face down bonded chips

    DOEpatents

    Bernhardt, A.F.

    1993-06-08

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  13. The GenoChip: A New Tool for Genetic Anthropology

    PubMed Central

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  14. The GenoChip: a new tool for genetic anthropology.

    PubMed

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G; Greenspan, Bennett; Spencer Wells, R

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project's new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  15. Chromatin immunoprecipitation assays: application of ChIP-on-chip for defining dynamic transcriptional mechanisms in bone cells.

    PubMed

    van der Deen, Margaretha; Hassan, Mohammad Q; Pratap, Jitesh; Teplyuk, Nadiya M; Young, Daniel W; Javed, Amjad; Zaidi, Sayyed K; Lian, Jane B; Montecino, Martin; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J

    2008-01-01

    Normal cell growth and differentiation of bone cells requires the sequential expression of cell type specific genes to permit lineage specification and development of cellular phenotypes. Transcriptional activation and repression of distinct sets of genes support the anabolic functions of osteoblasts and the catabolic properties of osteoclasts. Furthermore, metastasis of tumors to the bone environment is controlled by transcriptional mechanisms. Insights into the transcriptional regulation of genes in bone cells may provide a conceptual basis for improved therapeutic approaches to treat bone fractures, genetic osteopathologies, and/or cancer metastases to bone. Chromatin immunoprecipitation (ChIP) is a powerful technique to establish in vivo binding of transcription factors to the promoters of genes that are either activated or repressed in bone cells. Combining ChIP with genomic microarray analysis, colloquially referred to as "ChIP-on-chip," has become a valuable method for analysis of endogenous protein/DNA interactions. This technique permits assessment of chromosomal binding sites for transcription factors or the location of histone modifications at a genomic scale. This chapter discusses protocols for performing chromatin immunoprecipitation experiments, with a focus on ChIP-on-chip analysis. The information presented is based on the authors' experience with defining interactions of Runt-related (RUNX) transcription factors with bone-related genes within the context of the native nucleosomal organization of intact osteoblastic cells.

  16. Performance oriented guidance for Mississippi chip seals - volume I.

    DOT National Transportation Integrated Search

    2013-12-01

    A five year laboratory study was conducted to investigate near surface properties of flexible pavements in relation to : how they are affected by bituminous surface treatments. Chip seals and scrub seals (a specialized type of chip seal) : were the f...

  17. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    PubMed

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  18. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    PubMed Central

    He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225

  19. Dynamics of cells function on laser cell-chip system

    NASA Astrophysics Data System (ADS)

    Kushibiki, Toshihiro; Sano, Tomoko; Ishii, Katsunori; Yoshihashi-Suzuki, Sachiko; Awazu, Kunio

    2006-02-01

    A new type of cell-cultivation system based on laser processing has been developed for the on-chip cultivation of living cells. We introduce a "laser cell-chip", on which migration of cells, such as stem cells, tumor cells or immunocompetent cells, can be observed. A sheet prepared from epoxy resin was processed by KrF excimer laser (248 nm, 1.6 J/cm2) for preparation of microgrooved surfaces with various groove width, spacing, and depth. A laser cell-chip can make kinetic studies of cell migration depending on the concentration gradient of a chemoattractant. In this study, megakaryocytes were used for the migration on a groove of laser cell-chip by the concentration gradient of the stromal cell derived factor 1 (SDF-1/CXCL12). SDF-1/CXCL12 plays an important and unique role in the regulation of stem/progenitor cell trafficking. A megakaryocyte was migrated on a groove of laser cell-chip depending on the optical concentration gradient of SDF-1/CXCL12. Since SDF-1/CXCL12-induced migration of mature megakaryocyte was known to increase the platelet production in the bone marrow extravascular space, the diagnosis of cell migration on laser cell-chip could provide a new strategy to potentially reconstitute hematopoiesis and avoid life-threatening hemorrhage after myelosuppression or bone marrow failure.

  20. Identifying Professional Competencies of the Flip-Chip Packaging Engineer in Taiwan

    ERIC Educational Resources Information Center

    Guu, Y. H.; Lin, Kuen-Yi; Lee, Lung-Sheng

    2014-01-01

    This study employed a literature review, expert interviews, and a questionnaire survey to construct a set of two-tier competencies for a flip-chip packaging engineer. The fuzzy Delphi questionnaire was sent to 12 flip-chip engineering experts to identify professional competencies that a flip-chip packaging engineer must have. Four competencies,…

  1. Effect of processing conditions on the quality characteristics of barley chips.

    PubMed

    Prakash, Jyoti; Naik, H R; Hussain, Syed Zameer; Singh, Baljit

    2015-01-01

    The aim of the present study was to study the effect of lime concentration, frying temperature and frying time on quality characteristics of barley chips. Effect of salt concentration and packaging material on the quality and stability of the product was also studied during 180 days of storage under ambient conditions. An increase in fat content of chips was observed with the increase in lime concentration, frying temperature and time, whereas a decreasing trend was observed in moisture content of chips. An increase in amylose content of chips was observed during frying. However, it was found that the amylopectin in chips decreased during frying as frying temperature and time was increased. An increase in colour difference (ΔE) and crispness was noted in chips during frying as frying temperature and time increased. With the increase in lime concentration (0.5 and 1.0 %) both ΔE and break force of chips was found decreased. The results further revealed that there was gradual decrease in fat (%) and amylopectin (%) during storage, whereas moisture (%) and amylose (%) increased during storage period. Organoleptic evaluation of the product revealed that scores of colour, texture, flavour and over all acceptability decrease during storage. However the treatment (salt 2 % and aluminium based laminate) recorded better score with respect to colour, flavour, texture and overall acceptability.

  2. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.

    PubMed

    Akagi, Jin; Hall, Chris J; Crosier, Kathryn E; Cooper, Jonathan M; Crosier, Philip S; Wlodkowic, Donald

    2014-01-02

    Zebrafish (Danio rerio) embryo assays have recently come into the spotlight as convenient experimental models in both biomedicine and ecotoxicology. As a small aquatic model organism, zebrafish embryo assays allow for rapid physiological, embryo-, and genotoxic tests of drugs and environmental toxins that can be simply dissolved in water. This protocol describes prototyping and application of an innovative, miniaturized, and polymeric chip-based device capable of immobilizing a large number of living fish embryos for real-time and/or time-lapse microscopic examination. The device provides a physical address designation to each embryo during analysis, continuous perfusion of medium, and post-analysis specimen recovery. Miniaturized embryo array is a new concept of immobilization and real-time drug perfusion of multiple individual and developing zebrafish embryos inside the mesofluidic device. The OpenSource device presented in this protocol is particularly suitable to perform accelerated fish embryo biotests in ecotoxicology and phenotype-based pharmaceutical screening. Copyright © 2014 John Wiley & Sons, Inc.

  3. Chromatin immunoprecipitation (ChIP) method for non-model fruit flies (Diptera: Tephritidae) and evidence of histone modifications.

    PubMed

    Nagalingam, Kumaran; Lorenc, Michał T; Manoli, Sahana; Cameron, Stephen L; Clarke, Anthony R; Dudley, Kevin J

    2018-01-01

    Interactions between DNA and proteins located in the cell nucleus play an important role in controlling physiological processes by specifying, augmenting and regulating context-specific transcription events. Chromatin immunoprecipitation (ChIP) is a widely used methodology to study DNA-protein interactions and has been successfully used in various cell types for over three decades. More recently, by combining ChIP with genomic screening technologies and Next Generation Sequencing (e.g. ChIP-seq), it has become possible to profile DNA-protein interactions (including covalent histone modifications) across entire genomes. However, the applicability of ChIP-chip and ChIP-seq has rarely been extended to non-model species because of a number of technical challenges. Here we report a method that can be used to identify genome wide covalent histone modifications in a group of non-model fruit fly species (Diptera: Tephritidae). The method was developed by testing and refining protocols that have been used in model organisms, including Drosophila melanogaster. We demonstrate that this method is suitable for a group of economically important pest fruit fly species, viz., Bactrocera dorsalis, Ceratitis capitata, Zeugodacus cucurbitae and Bactrocera tryoni. We also report an example ChIP-seq dataset for B. tryoni, providing evidence for histone modifications in the genome of a tephritid fruit fly for the first time. Since tephritids are major agricultural pests globally, this methodology will be a valuable resource to study taxa-specific evolutionary questions and to assist with pest management. It also provides a basis for researchers working with other non-model species to undertake genome wide DNA-protein interaction studies.

  4. Mortality, Disenrollment, and Spending Persistence in Medicaid and CHIP.

    PubMed

    DeLia, Derek

    2017-03-01

    Research on spending persistence has not focused on Medicaid and the Children's Health Insurance Program (Medicaid/CHIP), which includes a complex and growing population. The objective of the study was to describe patterns of expenditure persistence, mortality, and disenrollment among nondually eligible Medicaid/CHIP enrollees and identify factors predicting these outcomes. The study is based on New Jersey Medicaid/CHIP claims data from 2011 to 2014. Descriptive and multinomial regression methods were used to characterize persistently extreme spenders, defined as those appearing in the top 1% of statewide spending every year, according to demographics, Medicaid/CHIP eligibility, nursing facility residence, patient risk scores, and clinical diagnostic categories measured in 2011. Similar analyses were done for persistently high spenders (ie, always in the top 10% but not always top 1%) as well as decedents, disenrollees, and moderate spenders (ie, at least 1 year outside of the top 10%). Nondually eligible NJ Medicaid/CHIP enrollees in 2011. One fourth of extreme spenders in 2011 remained in that category throughout 2011-2014. Almost all (89.3%) of the persistently extreme spenders were aged, blind, or disabled. Within the aged, blind, or disabled population, the strongest predictors of persistently extreme spending were diagnoses involving developmental disability, HIV/AIDS, central nervous system conditions, psychiatric disorders, type 1 diabetes, and renal conditions. Individuals in nursing facilities and those with very high risk scores were more likely to die or have persistently high spending than to have persistently extreme spending. The study highlights unique features of spending persistence within Medicaid/CHIP and provides methodological contributions to the broader persistence literature.

  5. A Study of Shared-Memory Mutual Exclusion Protocols Using CADP

    NASA Astrophysics Data System (ADS)

    Mateescu, Radu; Serwe, Wendelin

    Mutual exclusion protocols are an essential building block of concurrent systems: indeed, such a protocol is required whenever a shared resource has to be protected against concurrent non-atomic accesses. Hence, many variants of mutual exclusion protocols exist in the shared-memory setting, such as Peterson's or Dekker's well-known protocols. Although the functional correctness of these protocols has been studied extensively, relatively little attention has been paid to their non-functional aspects, such as their performance in the long run. In this paper, we report on experiments with the performance evaluation of mutual exclusion protocols using Interactive Markov Chains. Steady-state analysis provides an additional criterion for comparing protocols, which complements the verification of their functional properties. We also carefully re-examined the functional properties, whose accurate formulation as temporal logic formulas in the action-based setting turns out to be quite involved.

  6. Production of conjugated linoleic acid-rich potato chips.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2007-01-01

    Conjugated linoleic acid (CLA) is found primarily in diary and beef products, but the health benefits of CLA can only be realized if they are consumed at much greater levels than a normal healthy dietary intake. We have recently shown that a CLA-rich soy oil can be produced by simple isomerization of linoleic acid in soy oil by photoirradiation. This oil may allow greatly increased dietary CLA without significantly elevating fat intake. The objective of this study was to prepare CLA-rich potato chips by frying in CLA-rich soy oil. Soy oil was photoisomerized in the presence of iodine catalyst with UV/visible light. The irradiated oil was clay processed to remove the residual iodine and this oil was then used to fry potato chips. Oil was extracted from fried chips and analyzed for its CLA content with gas chromatography. A 1-oz serving of CLA-rich potato chips contained approximately 2.4 g CLA as compared to 0.1 g CLA in 3-oz serving of steak fillet and 0.06 g CLA in 8-oz serving of whole milk. The peroxide value of the oil extracted from potato chips was found to be 1 meq/1000 g sample, which was within the acceptable commercial standards. This study may lead to the commercialization of CLA-rich food products.

  7. Analyzing multiple data sets by interconnecting RSAT programs via SOAP Web services: an example with ChIP-chip data.

    PubMed

    Sand, Olivier; Thomas-Chollier, Morgane; Vervisch, Eric; van Helden, Jacques

    2008-01-01

    This protocol shows how to access the Regulatory Sequence Analysis Tools (RSAT) via a programmatic interface in order to automate the analysis of multiple data sets. We describe the steps for writing a Perl client that connects to the RSAT Web services and implements a workflow to discover putative cis-acting elements in promoters of gene clusters. In the presented example, we apply this workflow to lists of transcription factor target genes resulting from ChIP-chip experiments. For each factor, the protocol predicts the binding motifs by detecting significantly overrepresented hexanucleotides in the target promoters and generates a feature map that displays the positions of putative binding sites along the promoter sequences. This protocol is addressed to bioinformaticians and biologists with programming skills (notions of Perl). Running time is approximately 6 min on the example data set.

  8. Integrated sample-to-detection chip for nucleic acid test assays.

    PubMed

    Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S

    2016-06-01

    Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes.

  9. Microfluidic "thin chips" for chemical separations.

    PubMed

    Gaspar, Attila; Salgado, Marisol; Stevens, Schetema; Gomez, Frank A

    2010-08-01

    This paper describes the design, development and application of microfluidic "thin chips" fabricated from PDMS. Thin chips consist of multiple layers of PDMS chemically bonded onto each other. Unlike thicker PDMS chips that suffer from lack of sensitivity due to PDMS absorption in the VIS and UV range, the thinness of these chips allows for the detection of chromophoric species within the microchannel via an external fiber optics detection system. C18-modified reversed-phase silica particles are packed into the microchannel using a temporary taper created by a magnetic valve and separations using both pressure- and electrochromatographic-driven methods are detailed.

  10. Lithographic chip identification: meeting the failure analysis challenge

    NASA Astrophysics Data System (ADS)

    Perkins, Lynn; Riddell, Kevin G.; Flack, Warren W.

    1992-06-01

    This paper describes a novel method using stepper photolithography to uniquely identify individual chips for permanent traceability. A commercially available 1X stepper is used to mark chips with an identifier or `serial number' which can be encoded with relevant information for the integrated circuit manufacturer. The permanent identification of individual chips can improve current methods of quality control, failure analysis, and inventory control. The need for this technology is escalating as manufacturers seek to provide six sigma quality control for their products and trace fabrication problems to their source. This need is especially acute for parts that fail after packaging and are returned to the manufacturer for analysis. Using this novel approach, failure analysis data can be tied back to a particular batch, wafer, or even a position within a wafer. Process control can be enhanced by identifying the root cause of chip failures. Chip identification also addresses manufacturers concerns with increasing incidences of chip theft. Since chips currently carry no identification other than the manufacturer's name and part number, recovery efforts are hampered by the inability to determine the sales history of a specific packaged chip. A definitive identifier or serial number for each chip would address this concern. The results of chip identification (patent pending) are easily viewed through a low power microscope. Batch number, wafer number, exposure step, and chip location within the exposure step can be recorded, as can dates and other items of interest. An explanation of the chip identification procedure and processing requirements are described. Experimental testing and results are presented, and potential applications are discussed.

  11. Trucking Characteristics for an In-woods Biomass Chipping Operation

    Treesearch

    J. D. Thompson; J. Klepac; W. and Sprinkle

    2012-01-01

    A study was implemented to evaluate the transportation of woody biomass. This paper reports on the results of transporting wood chips produced in the field from transpirationally dried trees. For the study, a stand of timber was felled and allowed to dry in the field for approximately six weeks. The timber was then chipped in the woods and transported to market. In...

  12. Biocoder: A programming language for standardizing and automating biology protocols

    PubMed Central

    2010-01-01

    Background Published descriptions of biology protocols are often ambiguous and incomplete, making them difficult to replicate in other laboratories. However, there is increasing benefit to formalizing the descriptions of protocols, as laboratory automation systems (such as microfluidic chips) are becoming increasingly capable of executing them. Our goal in this paper is to improve both the reproducibility and automation of biology experiments by using a programming language to express the precise series of steps taken. Results We have developed BioCoder, a C++ library that enables biologists to express the exact steps needed to execute a protocol. In addition to being suitable for automation, BioCoder converts the code into a readable, English-language description for use by biologists. We have implemented over 65 protocols in BioCoder; the most complex of these was successfully executed by a biologist in the laboratory using BioCoder as the only reference. We argue that BioCoder exposes and resolves ambiguities in existing protocols, and could provide the software foundations for future automation platforms. BioCoder is freely available for download at http://research.microsoft.com/en-us/um/india/projects/biocoder/. Conclusions BioCoder represents the first practical programming system for standardizing and automating biology protocols. Our vision is to change the way that experimental methods are communicated: rather than publishing a written account of the protocols used, researchers will simply publish the code. Our experience suggests that this practice is tractable and offers many benefits. We invite other researchers to leverage BioCoder to improve the precision and completeness of their protocols, and also to adapt and extend BioCoder to new domains. PMID:21059251

  13. On-chip generation of heralded photon-number states

    NASA Astrophysics Data System (ADS)

    Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien

    2016-10-01

    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.

  14. On-chip generation of heralded photon-number states

    PubMed Central

    Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien

    2016-01-01

    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits. PMID:27775062

  15. Coverage and efficiency in current SNP chips

    PubMed Central

    Ha, Ngoc-Thuy; Freytag, Saskia; Bickeboeller, Heike

    2014-01-01

    To answer the question as to which commercial high-density SNP chip covers most of the human genome given a fixed budget, we compared the performance of 12 chips of different sizes released by Affymetrix and Illumina for the European, Asian, and African populations. These include Affymetrix' relatively new population-optimized arrays, whose SNP sets are each tailored toward a specific ethnicity. Our evaluation of the chips included the use of two measures, efficiency and cost–benefit ratio, which we developed as supplements to genetic coverage. Unlike coverage, these measures factor in the price of a chip or its substitute size (number of SNPs on chip), allowing comparisons to be drawn between differently priced chips. In this fashion, we identified the Affymetrix population-optimized arrays as offering the most cost-effective coverage for the Asian and African population. For the European population, we established the Illumina Human Omni 2.5-8 as the preferred choice. Interestingly, the Affymetrix chip tailored toward an Eastern Asian subpopulation performed well for all three populations investigated. However, our coverage estimates calculated for all chips proved much lower than those advertised by the producers. All our analyses were based on the 1000 Genome Project as reference population. PMID:24448550

  16. Microchannel cooling of face down bonded chips

    DOEpatents

    Bernhardt, Anthony F.

    1993-01-01

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  17. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  18. Gas Sensor Test Chip

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Ryan, M.

    1995-01-01

    A new test chip is being developed to characterize conducting polymers used in gas sensors. The chip, a seven-layer cofired alumina substrate with gold electrodes, contains 11 comb and U- bend test structures. These structures are designed to measure the sheet resistance, conduction anisotropy, and peripheral conduction of spin-coated films that are not subsequently patterned.

  19. Debarking chips from whole trees in the Lake States.

    Treesearch

    James A. Mattson

    1975-01-01

    Presents the results of a one-year study to evaluate the efficiency of the bark-chip separation-segregation system on whole-tree chips of quaking aspen, sugar maple, and jack pine. A residual bark content of 3% or less was achieved with all three species during all cutting seasons.

  20. The clinical performance evaluation of novel protein chips for eleven biomarkers detection and the diagnostic model study.

    PubMed

    Luo, Yuan; Zhu, Xu; Zhang, Pengjun; Shen, Qian; Wang, Zi; Wen, Xinyu; Wang, Ling; Gao, Jing; Dong, Jin; Yang, Caie; Wu, Tangming; Zhu, Zheng; Tian, Yaping

    2015-01-01

    We aimed to develop and validate two novel protein chips, which are based on microarray chemiluminescence immunoassay and can simultaneously detected 11 biomarkers, and then to evaluate their clinical diagnostic value by comparing with the traditional methods. Protein chips were evaluated for limit of detection, specificity, common interferences, linearity, precision and accuracy. 11 biomarkers were simultaneously detected by traditional methods and protein chips in 3683 samples, which included 1723 cancer patients, 1798 benign diseases patients and 162 healthy controls. After assay validation, protein chips demonstrated high sensitivity, high specificity, good linearity, low imprecision and were free of common interferences. Compared with the traditional methods, protein chips have good correlation in the detection of all the 13 kinds of biomarkers (r≥0.935, P<0.001). For specific cancer detection, there were no statistically significant differences between the traditional method and novel protein chips, except that male protein chip showed significantly better diagnostic value on NSE detection (P=0.004) but significantly worse value on pro-GRP detection (P=0.012), female chip showed significantly better diagnostic value on pro-GRP detection (P=0.005). Furthermore, both male and female multivariate diagnostic models had significantly better diagnostic value than single detection of PGI, PG II, pro-GRP, NSE and CA125 (P<0.05). In addition, male models had significantly better diagnostic value than single CA199 and free-PSA (P<0.05), while female models observed significantly better diagnostic value than single CA724 and β-HCG (P<0.05). For total disease or cancer detection, the AUC of multivariate logistic regression for the male and female disease detection was 0.981 (95% CI: 0.975-0.987) and 0.836 (95% CI: 0.798-0.874), respectively. While, that for total cancer detection was 0.691 (95% CI: 0.666-0.717) and 0.753 (95% CI: 0.731-0.775), respectively. The new

  1. The clinical performance evaluation of novel protein chips for eleven biomarkers detection and the diagnostic model study

    PubMed Central

    Luo, Yuan; Zhu, Xu; Zhang, Pengjun; Shen, Qian; Wang, Zi; Wen, Xinyu; Wang, Ling; Gao, Jing; Dong, Jin; Yang, Caie; Wu, Tangming; Zhu, Zheng; Tian, Yaping

    2015-01-01

    We aimed to develop and validate two novel protein chips, which are based on microarray chemiluminescence immunoassay and can simultaneously detected 11 biomarkers, and then to evaluate their clinical diagnostic value by comparing with the traditional methods. Protein chips were evaluated for limit of detection, specificity, common interferences, linearity, precision and accuracy. 11 biomarkers were simultaneously detected by traditional methods and protein chips in 3683 samples, which included 1723 cancer patients, 1798 benign diseases patients and 162 healthy controls. After assay validation, protein chips demonstrated high sensitivity, high specificity, good linearity, low imprecision and were free of common interferences. Compared with the traditional methods, protein chips have good correlation in the detection of all the 13 kinds of biomarkers (r≥0.935, P<0.001). For specific cancer detection, there were no statistically significant differences between the traditional method and novel protein chips, except that male protein chip showed significantly better diagnostic value on NSE detection (P=0.004) but significantly worse value on pro-GRP detection (P=0.012), female chip showed significantly better diagnostic value on pro-GRP detection (P=0.005). Furthermore, both male and female multivariate diagnostic models had significantly better diagnostic value than single detection of PGI, PG II, pro-GRP, NSE and CA125 (P<0.05). In addition, male models had significantly better diagnostic value than single CA199 and free-PSA (P<0.05), while female models observed significantly better diagnostic value than single CA724 and β-HCG (P<0.05). For total disease or cancer detection, the AUC of multivariate logistic regression for the male and female disease detection was 0.981 (95% CI: 0.975-0.987) and 0.836 (95% CI: 0.798-0.874), respectively. While, that for total cancer detection was 0.691 (95% CI: 0.666-0.717) and 0.753 (95% CI: 0.731-0.775), respectively. The new

  2. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects.

    PubMed

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Park, Jaegyu; Kim, Sanggi

    2015-06-10

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.

  3. Dentine chips produced by nickel-titanium rotary instruments.

    PubMed

    Guppy, D R; Curtis, R V; Ford, T R

    2000-12-01

    This study aimed to compare the cross-sectional shape of two nickel-titanium rotary instruments, namely ProFile and Quantec files, both ISO 25, 0.06 taper, and sought to relate this to the chips produced by cutting dentine. A limited comparison was made with stainless steel engine reamers. First, five files of each type were sectioned transversely at 12 mm, 8 mm and 4 mm from the tip and examined by scanning electron microscopy. The cutting angles were assessed by a direct measurement technique which allowed for the inclination of a cutting edge to the root canal. Second, eight samples of cutting debris were collected from instrumentation by each type of nickel-titanium file and four samples from the engine reamers. The major and minor axis, area and roundness of the dentine chips in each sample were measured using computerized particle analysis. The results demonstrated that all files had a negative cutting angle which varied at the different levels (ProFiles range 69.4 degrees to 58.4 degrees and Quantec range 74.8 degrees to 56.8 degrees). The consistency within files of the same type was good as demonstrated by low standard deviations, except for Quantec files at the 4 mm level where higher standard deviations of 4.1 degrees and 5.5 degrees for the two blades were found. The chip analysis showed significant differences between chips produced by ProFile and Quantec files (P < 0.05). The latter were larger and rounder. The chips from the ProFile and the engine reamer chips were similar in dimension (P > 0.05). No simple relationship existed between file geometry and the dentine chips produced during instrumentation.

  4. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the lasermore » cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.« less

  5. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane.

    PubMed

    Ma, Yu-Dong; Chang, Wen-Hsin; Luo, Kang; Wang, Chih-Hung; Liu, Shih-Yuan; Yen, Wen-Hsiang; Lee, Gwo-Bin

    2018-01-15

    Loop-mediated isothermal amplification (LAMP) is a DNA amplification approach characterized by high sensitivity and specificity. In "digital LAMP", small quantities of both template DNA and reagents are encapsulated within a droplet or microwell, allowing for analysis of precious nucleic acid samples in shorter amounts of time relative to traditional DNA amplification protocols (e.g., PCR) with an improved limit of detection. In this study, an integrated, self-driven microfluidic chip was designed to carry out digital LAMP. The entire quantification process could be automatically performed on this chip via capillary forces enabled through microwells comprised of polydimethylsiloxane (PDMS) surfaces coated with a hydrophilic film; no external pumps were required. Moreover, digitized droplets could be separated from each other by normally-closed microvalves. The contact angle of the hydrophilic film-coated PDMS surface was only 14.3°. This is the first time that a rapid (30min) and simple method has been used to create hydrophilic PDMS surfaces that allow for digital LAMP to be performed in a self-driven microfluidic device. As a proof of concept, amplification of a gene specific to a vancomycin-resistant Enterococcus strain was performed on the developed microfluidic chip within 30min, and the limit of detection was only 11 copies with a volume of 30μL. This device may therefore become a promising tool for clinical diagnosis and point-of-care applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection

    NASA Astrophysics Data System (ADS)

    Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.

    2012-06-01

    The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.

  7. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  8. Cytometer on a Chip

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (approximately 50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of one the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the

  9. Cytometer on a Chip

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (.50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the various species in

  10. Decapsulation Method for Flip Chips with Ceramics in Microelectronic Packaging

    NASA Astrophysics Data System (ADS)

    Shih, T. I.; Duh, J. G.

    2008-06-01

    The decapsulation of flip chips bonded to ceramic substrates is a challenging task in the packaging industry owing to the vulnerability of the chip surface during the process. In conventional methods, such as manual grinding and polishing, the solder bumps are easily damaged during the removal of underfill, and the thin chip may even be crushed due to mechanical stress. An efficient and reliable decapsulation method consisting of thermal and chemical processes was developed in this study. The surface quality of chips after solder removal is satisfactory for the existing solder rework procedure as well as for die-level failure analysis. The innovative processes included heat-sink and ceramic substrate removal, solder bump separation, and solder residue cleaning from the chip surface. In the last stage, particular temperatures were selected for the removal of eutectic Pb-Sn, high-lead, and lead-free solders considering their respective melting points.

  11. Modeling of heat transfer in compacted machining chips during friction consolidation process

    NASA Astrophysics Data System (ADS)

    Abbas, Naseer; Deng, Xiaomin; Li, Xiao; Reynolds, Anthony

    2018-04-01

    The current study aims to provide an understanding of the heat transfer process in compacted aluminum alloy AA6061 machining chips during the friction consolidation process (FCP) through experimental investigations and mathematical modelling and numerical simulation. Compaction and friction consolidation of machining chips is the first stage of the Friction Extrusion Process (FEP), which is a novel method for recycling machining chips to produce useful products such as wires. In this study, compacted machining chips are modelled as a continuum whose material properties vary with density during friction consolidation. Based on density and temperature dependent thermal properties, the temperature field in the chip material and process chamber caused by frictional heating during the friction consolidation process is predicted. The predicted temperature field is found to compare well with temperature measurements at select points where such measurements can be made using thermocouples.

  12. CHIP: A new modulator of human malignant disorders

    PubMed Central

    Shao, Qianqian; Yang, Gang; Zheng, Lianfang; Zhang, Taiping; Zhao, Yupei

    2016-01-01

    Carboxyl terminus of Hsc70-interacting protein (CHIP) is known as a chaperone-associated E3 for a variety of protein substrates. It acts as a link between molecular chaperones and ubiquitin–proteasome system. Involved in the process of protein clearance, CHIP plays a critical role in maintaining protein homeostasis in diverse conditions. Here, we provide a comprehensive review of our current understanding of CHIP and summarize recent advances in CHIP biology, with a focus on CHIP in the setting of malignancies. PMID:27007160

  13. CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models.

    PubMed

    Xue, Fuying; Wu, Yanping; Zhao, Xinghui; Zhao, Taoran; Meng, Ying; Zhao, Zhanzhong; Guo, Junwei; Chen, Wei

    2016-08-01

    Nucleobindin-1 (NUCB1), also known as Calnuc, is a highly conserved, multifunctional protein widely expressed in tissues and cells. It contains two EF-hand motifs which have been shown to play a crucial role in binding Ca(2+) ions. In this study, we applied comparative two-dimensional gel electrophoresis to characterize differentially expressed proteins in HA-CHIP over-expressed and endogenous CHIP depleted MC3T3-E1 stable cell lines, identifying NUCB1 as a novel CHIP/Stub1 targeted protein. NUCB1 interacts with and is down-regulated by CHIP by both proteasomal dependent and independent pathways, suggesting that CHIP-mediated down-regulation of nucleobindin-1 might play a role in osteoblast differentiation. The chaperone protein Hsp70 was found to be important for CHIP and NUCB1 interaction as well as CHIP-mediated NUCB1 down-regulation. Our findings provide new insights into understanding the stability regulation of NUCB1. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.

    PubMed Central

    Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P

    1996-01-01

    The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665

  15. Dr. Monaco Examines Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  16. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects

    PubMed Central

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Gyoo Kim, In; Hyuk Oh, Jin; Ae Kim, Sun; Park, Jaegyu; Kim, Sanggi

    2015-01-01

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications. PMID:26061463

  17. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    PubMed Central

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  18. Development of apple chips technology

    NASA Astrophysics Data System (ADS)

    Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Samborska, Kinga; Tywonek, Małgorzata; Lenart, Andrzej

    2018-05-01

    For develop of apple chips technology without chemical preservation osmotic dehydration in cherry or apple juice concentrates or fructooligosaccharide solutions and convection drying were used. Studies included the effect of dehydration on the mass transfer in apples and the quality of the final product. The temperature, type of osmotic solution and its concentration were changeable. The fruit were tested on mass transfer indicators, stability (water activity), texture (breaking test) and nutritional value (polyphenol content, acidity). Sensory evaluation was also performed. On this basis, the verification of all options was made and the most acceptable samples were selected. Concentration of osmotic solutions at 25°Brix limited solids gain in apples. Under these conditions, the phenomenon of osmosis caused 8-10 times greater water loss than solids gain. Increasing the concentration of solutions up to 50°Brix had a significantly greater impact on mass exchange in apples, compared to increasing the temperature from 40 to 60 °C. Osmotic dehydration before drying did not significantly affect the water activity but increase of the temperature negatively affected on breaking force of the chips. Chips obtained by osmotic dehydration of apples in a cherry concentrate solution contained significantly more polyphenols, and were characterized by a higher acidity than the variants obtained by dehydration in concentrated apple juice. Furthermore, they were marked by red color which has been thought as part of the attractiveness of the product. The least sensory acceptable chips were prepared using osmotic pre-treatment in cherry concentrated juice solution with the addition of fructooligosaccharide.

  19. CHIP involves in non-small cell lung cancer prognosis through VEGF pathway.

    PubMed

    Tingting, Qian; Jiao, Wang; Qingfeng, Wang; Yancheng, Liu; Shijun, Y U; Zhaoqi, Wang; Dongmei, Sun; ShiLong, Wang

    2016-10-01

    CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase playing vital roles in various cancers. The VEGF pathway has become an important therapeutic target in non-small cell lung cancer (NSCLC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in NSCLC. In this study we aimed to investigate the clinical function of CHIP in NSCLC and explore the relevant regulatory mechanism. QRT-PCR was performed to detect CHIP expression in NSCLC tissues. The association of CHIP expression and clinical parameters was analyzed using the Chi-square test. Kaplan- Meier and Cox analyses were performed to identify the role of CHIP in the prognosis of NSCLC patients. ELISA test was used to detect the VEGF secretion of NSCLC cells and western blot were used to detected the protein expression of VEGFR2 in NSCLC cells. and the results revealed that CHIP expression was decreased in NSCLC tissues and significantly correlated with clinical stages, lymph node metastasis and distant metastasis (P<0.05). Moreover, Kaplan-Meier and Cox regression analyses showed that patients with negative expression of CHIP had a shorter survival time and CHIP could be an independent prognostic biomarker. In addition, ELISA tests showed that CHIP negatively regulated the secretion level of VEGF. Furthermore, western blot assay indicated that the VEGFR2 protein level was reduced after CHIP over-expression. Taken together, our findings demonstrate for the first time that CHIP may serve as a promising prognostic biomarker for NSCLC patients and it may be involved in NSCLC angiogenesis through regulating VEGF secretion and expression of VEGFR2. Copyright © 2016. Published by Elsevier Masson SAS.

  20. [Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants].

    PubMed

    Zhou, Xinli; Yi, Xingyue; Zhou, Nanfeng; Yang, Yun

    2016-06-01

    Microfluidic chips can be used to realize continuous cryoprotectants(CPA)loading/unloading for oocytes,reducing osmotic damage and chemical toxicity of CPA.In this study,five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading.The effects of flow rate,entrance angle,aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively.The experimental results showed that with the decrease of flow rates,the increase of aspect ratios and the decrease of turning raradius of microchannel,the mixing length decreased and the mixing velocity was promoted,while the entrance angle had little effect on the mixing efficiency.However,the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy.These results would provide a reference to the application of microfluidic chip in CPA mixing.

  1. A Reduced Order Model for Whole-Chip Thermal Analysis of Microfluidic Lab-on-a-Chip Systems

    PubMed Central

    Wang, Yi; Song, Hongjun; Pant, Kapil

    2013-01-01

    This paper presents a Krylov subspace projection-based Reduced Order Model (ROM) for whole microfluidic chip thermal analysis, including conjugate heat transfer. Two key steps in the reduced order modeling procedure are described in detail, including (1) the acquisition of a 3D full-scale computational model in the state-space form to capture the dynamic thermal behavior of the entire microfluidic chip; and (2) the model order reduction using the Block Arnoldi algorithm to markedly lower the dimension of the full-scale model. Case studies using practically relevant thermal microfluidic chip are undertaken to establish the capability and to evaluate the computational performance of the reduced order modeling technique. The ROM is compared against the full-scale model and exhibits good agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) and over three orders-of-magnitude acceleration in computational speed. The salient model reusability and real-time simulation capability renders it amenable for operational optimization and in-line thermal control and management of microfluidic systems and devices. PMID:24443647

  2. Storage stability of banana chips in polypropylene based nanocomposite packaging films.

    PubMed

    Manikantan, M R; Sharma, Rajiv; Kasturi, R; Varadharaju, N

    2014-11-01

    In this study, polypropylene (PP) based nanocomposite films of 15 different compositions of nanoclay, compatibilizer and thickness were developed and used for packaging and storage of banana chips. The effect of nanocomposite films on the quality characteristics viz. moisture content (MC), water activity (WA), total color difference(TCD), breaking force (BF), free fatty acid (FFA), peroxide value(PV), total plate count (TPC) and overall acceptability score of banana chips under ambient condition at every 15 days interval were studied for 120 days. All quality parameters of stored banana chips increased whereas overall acceptability scores decreased during storage. The elevation in FFA, BF and TCD of stored banana chips increased with elapse of storage period as well as with increased proportion of both nanoclay and compatibilizer but decreased by reducing the thickness of film. Among all the packaging materials, the WA of banana chips remained lower than 0.60 i.e. critical limit for microbial growth up to 90 days of storage. The PV of banana chips packaged also remained within the safe limit of 25 meq oxygen kg(-1) throughout the storage period. Among all the nanocomposite films, packaging material having 5 % compatibilizer, 2 % nanoclay & 100 μm thickness (treatment E) and 10 % compatibilizer, 4 % nanoclay & 120 μm thickness (treatment N) showed better stability of measured quality characteristics of banana chips than any other treatment.

  3. On-chip quantum interference of a superconducting microsphere

    NASA Astrophysics Data System (ADS)

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  4. An in silico method to identify computer-based protocols worthy of clinical study: An insulin infusion protocol use case

    PubMed Central

    Wong, Anthony F; Pielmeier, Ulrike; Haug, Peter J; Andreassen, Steen

    2016-01-01

    Objective Develop an efficient non-clinical method for identifying promising computer-based protocols for clinical study. An in silico comparison can provide information that informs the decision to proceed to a clinical trial. The authors compared two existing computer-based insulin infusion protocols: eProtocol-insulin from Utah, USA, and Glucosafe from Denmark. Materials and Methods The authors used eProtocol-insulin to manage intensive care unit (ICU) hyperglycemia with intravenous (IV) insulin from 2004 to 2010. Recommendations accepted by the bedside clinicians directly link the subsequent blood glucose values to eProtocol-insulin recommendations and provide a unique clinical database. The authors retrospectively compared in silico 18 984 eProtocol-insulin continuous IV insulin infusion rate recommendations from 408 ICU patients with those of Glucosafe, the candidate computer-based protocol. The subsequent blood glucose measurement value (low, on target, high) was used to identify if the insulin recommendation was too high, on target, or too low. Results Glucosafe consistently provided more favorable continuous IV insulin infusion rate recommendations than eProtocol-insulin for on target (64% of comparisons), low (80% of comparisons), or high (70% of comparisons) blood glucose. Aggregated eProtocol-insulin and Glucosafe continuous IV insulin infusion rates were clinically similar though statistically significantly different (Wilcoxon signed rank test P = .01). In contrast, when stratified by low, on target, or high subsequent blood glucose measurement, insulin infusion rates from eProtocol-insulin and Glucosafe were statistically significantly different (Wilcoxon signed rank test, P < .001), and clinically different. Discussion This in silico comparison appears to be an efficient nonclinical method for identifying promising computer-based protocols. Conclusion Preclinical in silico comparison analytical framework allows rapid and inexpensive

  5. The E3 Ligase CHIP: Insights into Its Structure and Regulation

    PubMed Central

    Paul, Indranil; Ghosh, Mrinal K.

    2014-01-01

    The carboxy-terminus of Hsc70 interacting protein (CHIP) is a cochaperone E3 ligase containing three tandem repeats of tetratricopeptide (TPR) motifs and a C-terminal U-box domain separated by a charged coiled-coil region. CHIP is known to function as a central quality control E3 ligase and regulates several proteins involved in a myriad of physiological and pathological processes. Recent studies have highlighted varied regulatory mechanisms operating on the activity of CHIP which is crucial for cellular homeostasis. In this review article, we give a concise account of our current knowledge on the biochemistry and regulation of CHIP. PMID:24868554

  6. Capture of mesothelioma cells with 'universal' CTC-chip.

    PubMed

    Yoneda, Kazue; Chikaishi, Yasuhiro; Kuwata, Taiji; Ohnaga, Takashi; Tanaka, Fumihiro

    2018-02-01

    Malignant mesothelioma (MM) is a highly aggressive malignant tumor, predominantly associated with job-related exposure to asbestos. Development of effective and non-invasive modalities for diagnosis is an important issue in occupational medicine. Circulating tumor cells (CTCs), which are tumor cells that are shed from primary tumors and circulate in the peripheral blood, may be detected at an earlier stage than malignant tumors, and detection of CTCs may provide a novel insight into the diagnosis of MM. In a previous study evaluating clinical utility of CTCs, detected with a widely used system 'CellSearch', the authors indicated a significant however insufficient capability in the diagnosis of MM, suggesting need for a more sensitive system. Accordingly, the authors developed a novel microfluidic system to capture CTCs (CTC-chip), and demonstrated that the CTC-chip effectively captured MM cells (ACC-MESO-4) spiked in the blood by conjugating an anti-podoplanin antibody. The results of the present study demonstrated that the CTC-chip coated with the anti-podoplanin antibody captured another MM cell (ACC-MESO-1). However, the capture efficiencies were lower than those for ACC-MESO-4. In addition, an anti-mesothelin antibody was used to capture CTCs, however the CTC-chip coated with the anti-mesothelin antibody failed to effectively capture MM cells, possibly due to low mesothelin expression. Overall, the CTC-chip may capture specific types of CTCs by conjugating any antibody against an antigen expressed on CTCs, and may be a useful system for the diagnosis of malignant tumors, including MM.

  7. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    PubMed

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  8. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  9. CHIPPING FRACTURE RESISTANCE OF DENTURE TOOTH MATERIALS

    PubMed Central

    Quinn, G. D.; Giuseppetti, A. A.; Hoffman, K. H.

    2014-01-01

    Objective The applicability of the edge chipping method to denture tooth materials was assessed. These are softer materials than those usually tested by edge chipping. The edge chipping fracture resistances of polymethylmethacrylate (PMMA) based and two filled resin composite denture tooth materials were compared. Methods An edge chipping machine was used to chip rectangular blocks and flattened anterior denture teeth. Force versus edge distance data were collected over a broad range of forces and distances. Between 20 and 65 chips were made per condition depending upon the material, the scatter, and the indenter type. Different indenter types were used including Rockwell C, sharp conical 120°, Knoop, and Vickers. The edge toughness, Te, was evaluated for different indenter types. Results The edge chipping data collected on the blocks matched the data collected from flattened teeth. High scatter, particularly at large distances and loads, meant that many tests (up to 64) were necessary to compare the denture tooth materials and to ascertain the appropriate data trends. A linear force – distance trend analysis was adequate for comparing these materials. A power law trend might be more appropriate, but the large scatter obscured the definitive determination of the precise trend. Different indenters produce different linear trends, with the ranking of: sharp conical 120°, Rockwell C, and Knoop, from lowest to highest edge toughness. Vickers indenter data were extremely scattered and a sensible trend could not be obtained. Edge toughness was inversely correlated to hardness. Significance Edge chipping data collected either from simple laboratory scale test blocks or from actual denture teeth may be used to evaluate denture materials. The edge chipping method’s applicability has been extended to another class of restorative materials. PMID:24674342

  10. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields.

    PubMed

    Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  11. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields

    PubMed Central

    Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  12. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    PubMed Central

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893

  13. CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells.

    PubMed

    Wang, Tingyu; Li, Shan; Yi, Dan; Zhou, Guang-Qian; Chang, Zhijie; Ma, Peter X; Xiao, Guozhi; Chen, Di

    2018-01-01

    Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip -/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip- deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip -/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.

  14. Chip-scale thermal management of high-brightness LED packages

    NASA Astrophysics Data System (ADS)

    Arik, Mehmet; Weaver, Stanton

    2004-10-01

    The efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. Light emitting diodes, LEDs, are a strong candidate for the next generation, general illumination applications. LEDs are making great strides in terms of lumen performance and reliability, however the barrier to widespread use in general illumination still remains the cost or $/Lumen. LED packaging designers are pushing the LED performance to its limits. This is resulting in increased drive currents, and thus the need for lower thermal resistance packaging designs. As the power density continues to rise, the integrity of the package electrical and thermal interconnect becomes extremely important. Experimental results with high brightness LED packages show that chip attachment defects can cause significant thermal gradients across the LED chips leading to premature failures. A numerical study was also carried out with parametric models to understand the chip active layer temperature profile variation due to the bump defects. Finite element techniques were utilized to evaluate the effects of localized hot spots at the chip active layer. The importance of "zero defects" in one of the more popular interconnect schemes; the "epi down" soldered flip chip configuration is investigated and demonstrated.

  15. A fast and simple bonding method for low cost microfluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Yin, Zhifu; Zou, Helin

    2018-01-01

    With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using any equipment. The dye water and gas leakage test indicated that the microfluidic chip can be bonded without leakage or block and its bonding strength can up to 0.84 MPa.

  16. Bone chip-induced rhinosinusitis.

    PubMed

    Reilly, Brian K; Conley, David B

    2009-12-01

    This case report describes both the pathophysiology and management of chronic rhinosinusitis (CRS). Specifically, we report a case of chronic maxillary rhinosinusitis with a free-floating maxillary sinus calcification (bone chip). After obtaining the computed tomography scan, the patient underwent endoscopic sinus surgery, with removal of the uncinate, enlargement of the diseased natural ostium of the maxillary sinus, and removal of the diseased bone chip. This eliminated the nidus for infection, ultimately restoring mucociliary flow.

  17. Expression and significance of CHIP in canine mammary gland tumors

    PubMed Central

    WANG, Huanan; YANG, Xu; JIN, Yipeng; PEI, Shimin; ZHANG, Di; MA, Wen; HUANG, Jian; QIU, Hengbin; ZHANG, Xinke; JIANG, Qiuyue; SUN, Weidong; ZHANG, Hong; LIN, Degui

    2015-01-01

    CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can induce ubiquitination and degradation of several oncogenic proteins. The expression of CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We investigated the potential correlation between CHIP expression and mammary gland tumor prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry and real-time RT-PCR. CHIP protein expression was significantly correlated with the histopathological diagnosis, outcome of disease and tumor classification. The transcriptional level of CHIP was significantly higher in normal tissues (P=0.001) and benign tumors (P=0.009) than it in malignant tumors. CHIP protein expression was significantly correlated with the transcriptional level of CHIP (P=0.0102). The log-rank test survival curves indicated that patients with low expression of CHIP had shorter overall periods of survival than those with higher CHIP protein expression (P=0.050). Our data suggest that CHIP may play an important role in the formation and development of CMGTs and serve as a valuable prognostic marker and potential target for genetic therapy. PMID:26156079

  18. How Well Is CHIP Addressing Health Care Access and Affordability for Children?

    PubMed

    Clemans-Cope, Lisa; Kenney, Genevieve; Waidmann, Timothy; Huntress, Michael; Anderson, Nathaniel

    2015-01-01

    We examine how access to care and care experiences under the Children's Health Insurance Program (CHIP) compared to private coverage and being uninsured in 10 states. We report on findings from a 2012 survey of CHIP enrollees in 10 states. We examined a range of health care access and use measures among CHIP enrollees. Comparisons of the experiences of established CHIP enrollees to the experiences of uninsured and privately insured children were used to estimate differences in children's health care. Children with CHIP coverage had substantially better access to care across a range of outcomes, other things being equal, particularly compared to those with no coverage. Compared to being uninsured, CHIP enrollees were more likely to have specialty and mental health visits and to receive prescription drugs; and their parents were much more likely to feel confident in meeting the child's health care needs and were less likely to have trouble finding providers. CHIP enrollees were less likely to have unmet needs, but 1 in 4 had at least 1 unmet need. Compared to being privately insured, CHIP enrollees had generally similar health care use and unmet needs. Additionally, CHIP enrollees had lower financial burden related to their health care needs. The findings were generally robust with respect to alternative specifications and subgroup analyses, and they corroborated findings of previous studies. Enrolling more of the uninsured children who are eligible for CHIP improved their access to a range of care, including specialty and mental health services, and reduced the financial burden of meeting their health care needs; however, we found room for improvement in CHIP enrollees' access to care. Copyright © 2015 Academic Pediatric Association. All rights reserved.

  19. Development of low fat potato chips through microwave processing.

    PubMed

    Joshi, A; Rudra, S G; Sagar, V R; Raigond, P; Dutt, S; Singh, B; Singh, B P

    2016-08-01

    Since snacks high in fats are known to be a significant source of fat and energy intake, these have been put in high dietary restraint category. Therefore, an attempt was made to process potato chips through microwave processing without incorporation of any oil in potato chips. Microwave processing of potato chips was done using microwave power varying from 180 to 600 W using constant sample size. Among eleven different drying models, Parabolic model was found to be the best fit through non-linear regression analysis to illustrate drying kinetics of potato chips. The structural, textural and colour attributes of microwaved potato chips were similar to commercial fried potato chips. It was found that at 600 W after 2.5-3.0 min of processing, potato chips gained the fracturability and crispiness index as that of commercial fried chips. Microwave processing was found suitable for processing of potato chips with low fat content (~3.09 vs 35.5 % in commercial preparation) and with acceptable sensory scores (≥7.6 on 9.0 point on hedonic scale vs 8.0 of control preparation).

  20. OS082. CHIPS-Child: Testing the developmental origins hypothesis.

    PubMed

    Magee, L A; Synnes, A

    2012-07-01

    CHIPS-Child is a natural test of the Developmental Origins of Health and Disease hypothesis (DOHaD) [1,2]. Reduced fetal growth rate is associated with adult cardiovascular risk markers (e.g., obesity) and disease [3,4]. Evidence worldwide indicates that this relationship is independent of birth weight. The leading theory describes 'developmental programming'in utero leading to permanent alteration of the fetal genome. While those changes are adaptive in utero, they may be maladaptive postnatally. To directly test, for the first time in humans, whether differential blood pressure (BP) control in pregnancy has developmental programming effects, independent of birth weight. We predict that, like famine or protein malnutrition, 'tight' (vs. 'less tight') control of maternal BP will be associated with fetal under-nutrition and effects will be consistent with developmental programming. CHIPS-Child is a parallel, ancillary study to the CHIPS randomized controlled trial (RCT). CHIPS is designed to determine whether 'less tight' control [target diastolic BP (dBP) 100mmHg] or 'tight' control [target dBP 85mmHg] of non-proteinuric hypertension in pregnancy is better for the baby without increasing maternal risk. CHIPS-Child will examine offspring of CHIPS participants non-invasively at 12m corrected post-gestational age (±2m) for anthropometry, hair cortisol, buccal swabs for epigenetic testing and a maternal questionnaire about infant feeding practices and background. Annual contact will be maintained in years 2-5 and will include annual parental measurement of the child's height, weight and waist circumference. CHIPS will recruit 1028 women. We estimate that 80% of CHIPS centres will participate in CHIPS-Child, approximately 97% of babies will survive, and 90% of children will be followed to 12m resulting in a sample size of 626. Power will be >80% to detect a between-group difference of ⩾0.25 in 'change in z-score for weight' between birth and 12m (2-sided alpha=0

  1. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  2. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  3. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control.

    PubMed

    VanPelt, Jamie; Page, Richard C

    2017-02-01

    The CHIP:Hsp70 complex stands at the crossroads of the cellular protein quality control system. Hsp70 facilitates active refolding of misfolded client proteins, while CHIP directs ubiquitination of misfolded client proteins bound to Hsp70. The direct competition between CHIP and Hsp70 for the fate of misfolded proteins leads to the question: how does the CHIP:Hsp70 complex execute triage decisions that direct misfolded proteins for either refolding or degradation? The current body of literature points toward action of the CHIP:Hsp70 complex as an information processor that takes inputs in the form of client folding state, dynamics, and posttranslational modifications, then outputs either refolded or ubiquitinated client proteins. Herein we examine the CHIP:Hsp70 complex beginning with the structure and function of CHIP and Hsp70, followed by an examination of recent studies of the interactions and dynamics of the CHIP:Hsp70 complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Thermoacoustic chips with carbon nanotube thin yarn arrays.

    PubMed

    Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan

    2013-10-09

    Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.

  5. Beneficiation of Compression Debarked Wood Chips

    Treesearch

    James A. Mattson

    1974-01-01

    Presents the results of a preliminary study of secondary beneficiation of compression debarked chips to reduce residual bark to acceptable amounts. Ballmilling is a feasible method of reducing residual bark and minimizing wood loss.

  6. Chip-to-chip interconnects based on 3D stacking of optoelectrical dies on Si

    NASA Astrophysics Data System (ADS)

    Duan, P.; Raz, O.; Smalbrugge, B. E.; Duis, J.; Dorren, H. J. S.

    2012-01-01

    We demonstrate a new approach to increase the optical interconnection bandwidth density by stacking the opto-electrical dies directly on the CMOS driver. The suggested implementation is aiming to provide a wafer scale process which will make the use of wire bonding redundant and will allow for impedance matched metallic wiring between the electronic driving circuit and its opto-electronic counter part. We suggest the use of a thick photoresist ramp between CMOS driver and opto-electrical dies surface as the bridge for supporting co-plannar waveguides (CPW) electrically plated with lithographic accuracy. In this way all three dimensions of the interconnecting metal layer, width, length and thickness can be completely controlled. In this 1st demonstration all processing is done on commercially available devices and products, and is compatible with CMOS processing technology. To test the applicability of CPW instead of wire bonds for interconnecting the CMOS circuit and opto-electronic chips, we have made test samples and tested their performance at speeds up to 10 Gbps. In this demonstration, a silicon substrate was used on which we evaporated gold co-planar waveguides (CPW) to mimic a wire on the driver. An optical link consisting of a VCSEL chip and a photodiode chip has been assembled and fully characterized using optical coupling into and out of a multimode fiber (MMF). A 10 Gb/s 27-1 NRZ PRBS signal transmitted from one chip to another chip was detected error free. A 4 dB receiver sensitivity penalty is measured for the integrated device compared to a commercial link.

  7. Real-time and time-integrated PM2.5 and CO from prescribed burns in chipped and non-chipped plots: firefighter and community exposure and health implications

    Treesearch

    Luke P. Naeher; Gary L. Achtemeier; Jeff S. Glitzenstein; Donna R. Streng; David Macintosh

    2006-01-01

    In this study, smoke data were collected from two plots located on the Francis Marion National Forest in South Carolina during prescribed burns on 12 February 2003. One of the plots had been subjected to mechanical chipping, the other was not. This study is part of a larger investigation of fire behavior related to mechanical chipping, parts of which are presented...

  8. Study on Cloud Security Based on Trust Spanning Tree Protocol

    NASA Astrophysics Data System (ADS)

    Lai, Yingxu; Liu, Zenghui; Pan, Qiuyue; Liu, Jing

    2015-09-01

    Attacks executed on Spanning Tree Protocol (STP) expose the weakness of link layer protocols and put the higher layers in jeopardy. Although the problems have been studied for many years and various solutions have been proposed, many security issues remain. To enhance the security and credibility of layer-2 network, we propose a trust-based spanning tree protocol aiming at achieving a higher credibility of LAN switch with a simple and lightweight authentication mechanism. If correctly implemented in each trusted switch, the authentication of trust-based STP can guarantee the credibility of topology information that is announced to other switch in the LAN. To verify the enforcement of the trusted protocol, we present a new trust evaluation method of the STP using a specification-based state model. We implement a prototype of trust-based STP to investigate its practicality. Experiment shows that the trusted protocol can achieve security goals and effectively avoid STP attacks with a lower computation overhead and good convergence performance.

  9. Poly(dimethylsiloxane) microchip-based immunoassay with multiple reaction zones: Toward on-chip multiplex detection platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Jun; Li, Zhaohui

    2011-09-20

    In this work, a poly(dimethylsiloxane) (PDMS) microchip-based immuno-sensing platform with integrated pneumatic micro valves is described. The microchip was fabricated with multiple layer soft lithography technology. By controlling the activation status of corresponding valves, reagent flows in the microchannel network can be well manipulated so that immuno-reactions only take place at designated reaction zones (DRZs). Four DRZs are included in the prototype microchip. Since these DRZs are all isolated from each other by micro valves, cross contamination is prevented. Using the inner surface of the all-PDMS microchannel as immunoassay substrate, on-chip sandwich format solid phase immunoassay was performed to demonstratemore » the feasibility of this immuno-sensing platform. Mouse IgG and fluorescein isothiocyanate (FITC) were used as the model analyte and the signal reporter respectively. Only 10 ul sample is needed for the assay and low detection limit of 5 ng/ml (≈33 pM) was achieved though low-cost polyclonal antibodies were used in our experiment for feasibility study only. The encouraging results from mouse IgG immunoassay proved the feasibility of our microchip design. With slight modification of the assay protocol, the same chip design can be used for multi-target detection and can provide a simple, cost-effective and integrated microchip solution for multiplex immunoassay applications.« less

  10. Determining the Terminal Velocity of Wood and Bark Chips

    Treesearch

    John A. Sturos

    1972-01-01

    Designing an efficient air flotation segregator to segregate bark chips from wood chips requires that the terminal velocities be determined for various pulpwood species. The technique described here uses forced air in a vertical wind tunnel with the chip initially at rest on a stationary screen; when the terminal air velocity in reached, the chip begins to float. A...

  11. Organs-on-a-chip for drug discovery.

    PubMed

    Selimović, Seila; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-10-01

    The current drug discovery process is arduous and costly, and a majority of the drug candidates entering clinical trials fail to make it to the marketplace. The standard static well culture approaches, although useful, do not fully capture the intricate in vivo environment. By merging the advances in microfluidics with microfabrication technologies, novel platforms are being introduced that lead to the creation of organ functions on a single chip. Within these platforms, microengineering enables precise control over the cellular microenvironment, whereas microfluidics provides an ability to perfuse the constructs on a chip and to connect individual sections with each other. This approach results in microsystems that may better represent the in vivo environment. These organ-on-a-chip platforms can be utilized for developing disease models as well as for conducting drug testing studies. In this article, we highlight several key developments in these microscale platforms for drug discovery applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Study on a Real-Time BEAM System for Diagnosis Assistance Based on a System on Chips Design

    PubMed Central

    Sung, Wen-Tsai; Chen, Jui-Ho; Chang, Kung-Wei

    2013-01-01

    As an innovative as well as an interdisciplinary research project, this study performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for physician diagnosis. Cognition behavior sciences, embedded technology, system on chips (SOC) design and physiological signal processing are integrated in this work. Moreover, a chip is built for real-time electroencephalography (EEG) processing purposes and a Brain Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to diagnose psychosis and body challenges in learning various behaviors and signals antithesis by a fuzzy inference engine. This work is completed with a medical support system developed for the mentally disabled or the elderly abled. PMID:23681095

  13. GaN-based integrated photonics chip with suspended LED and waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Yongjin; Hane, Kazuhiro; Shi, Zheng; Yan, Jiang

    2018-05-01

    We propose a GaN-based integrated photonics chip with suspended LED and straight waveguide with different geometric parameters. The integrated photonics chip is prepared by double-side process. Light transmission performance of the integrated chip verse current is quantitatively analyzed by capturing light transmitted to waveguide tip and BPM (beam propagation method) simulation. Reduction of the waveguide width from 8 μm to 4 μm results in an over linear reduction of the light output power while a doubling of the length from 250 μm to 500 μm only results in under linear decrease of the output power. Free-space data transmission with 80 Mbps random binary sequence of the integrated chip is capable of achieving high speed data transmission via visible light. This study provides a potential approach for GaN-based integrated photonics chip as micro light source and passive optical device in VLC (visible light communication).

  14. Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-09-01

    The enhancement of release of oak-related compounds from oak chips during wine aging with oak chips may interest the winemaking industry. In this study, the 25-kHz ultrasound waves were used to intensify the mass transfer of phenolics from oak chips into a model wine. The influences of acoustic energy density (6.3-25.8 W/L) and temperature (15-25 °C) on the release kinetics of total phenolics were investigated systematically. The results exhibited that the total phenolic yield released was not affected by acoustic energy density significantly whereas it increased with the increase of temperature during sonication. Furthermore, to describe the mechanism of mass transfer of phenolics in model wine under ultrasonic field, the release kinetics of total phenolics was simulated by both a second-order kinetic model and a diffusion model. The modeling results revealed that the equilibrium concentration of total phenolics in model wine, the initial release rate and effective diffusivity of total phenolics generally increased with acoustic energy density and temperature. In addition, temperature had a negative effect on the second-order release rate constant whereas acoustic energy density had an opposite effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Formulation of Saudi Propolis into Biodegradable Chitosan Chips for Vital Pulpotomy.

    PubMed

    Balata, Gihan F; Abdelhady, Mohamed I S; Mahmoud, Ghada M; Matar, Moustafa A; Abd El-Latif, Amani N

    2018-01-01

    Propolis has been widely used to treat oral cavity disorders, such as endodontal and periodontal diseases and microbial infections. The study aimed at the formulation of commercial Saudi propolis into biodegradable chitosan chips and evaluation of its effectiveness as a pulpotomy agent. The standardization of 80% ethanolic propolis extract was performed regarding its total phenolic content, total flavonoid content, quantitative estimation of main polyphenolic constituents and antioxidant activity. Chitosan chips containing propolis extract were prepared by the solvent/ casting method. The investigated variables were % of chitosan polymer (2, 2.5 and 3%), % of plasticizer (1, 5 and 10%) and incorporation of different concentrations of hydroxypropyl methylcellulose (5, 10 and 20% of polymer weight). The chips were characterized for weight and thickness uniformity, content uniformity, pH, percentage moisture loss, swelling index, tensile strength and in vitro propolis release. The optimal propolis chip formulation was further investigated in dogs regarding the short term response of primary dental pulp to propolis chips compared with the most commonly used formocresol preparation. The prepared films were flexible and demonstrated satisfactory physicochemical characteristics. The optimal formulation showed an initial release of about 41.7% of the loaded propolis followed by a sustained release extended up to 7 days. The kinetics study demonstrated that propolis release was controlled by Fick´s diffusion. The optimal propolis chip formulation resulted in less pulpal inflammation compared to formocresol, and produced hard tissue formation in all specimens. Formulation of commercial Saudi propolis as a biodegradable chitosan chip is an effective alternative to the commercially available chemical agents for the treatment of vital pulpotomy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Chip bonding of low-melting eutectic alloys by transmitted laser radiation

    NASA Astrophysics Data System (ADS)

    Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger

    2017-06-01

    Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.

  17. System on a Chip (SoC) Overview

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2010-01-01

    System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.

  18. A point-of-care diagnostic system to influenza viruses using chip-based ultra-fast PCR.

    PubMed

    Kwon, Soon-Hwan; Lee, Sujin; Jang, Jeyoun; Seo, Yujin; Lim, Hee-Young

    2018-06-01

    In order to diagnose the infectious disease from clinical samples, the various protocols such as culturing microorganism, rapid diagnostic test using chromatographic method, ELISA, conventional PCR are developed. Since a novel strain of avian influenza can be cross-infected human as well as birds and livestock due to genetic reassortment, some strains of influenza such as H7N9 and H5N1 have emerged as a severe virus which can be threaten the health of poultry as well as human. Therefore, we explored the development of simultaneously and rapid diagnostic tool for seasonal influenza (A/H1N1, A/H3N2, B) and highly pathogenic avian influenza (A/H5N1, A/H7N9). We analyzed the unique nucleotide sequences of influenza types including three seasonal influenza, A/H7N9, and A/H5N1, and distinguished each type of influenza and diagnosed through One Step RT-PCR. In the results, Chip-based PCR technique can be diagnosed rapidly and directly from naked eye with EvaGreen the influenza also respiratory specimens within 23 min 15 s, including reverse transcription. The Chip-based PCR is a point-of-care system, and it is expected to reduce diagnosis time and to develop a diagnostic kit. Furthermore the Chip based PCR technique can be used for high risk pathogen in bioterror and/or biological warfare in the field. © 2018 Wiley Periodicals, Inc.

  19. Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy

    NASA Astrophysics Data System (ADS)

    Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan

    2014-01-01

    Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.

  20. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  1. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  2. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  3. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  4. 42 CFR 457.206 - Administrative appeals under CHIP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Administrative appeals under CHIP. 457.206 Section... Claims; Reduction of Federal Medical Payments § 457.206 Administrative appeals under CHIP. Three distinct... provisions of 42 CFR part 430, subpart D of this chapter. (b) FFP in State CHIP expenditures. Disallowances...

  5. Flexible organic TFT bio-signal amplifier using reliable chip component assembly process with conductive adhesive.

    PubMed

    Yoshimoto, Shusuke; Uemura, Takafumi; Akiyama, Mihoko; Ihara, Yoshihiro; Otake, Satoshi; Fujii, Tomoharu; Araki, Teppei; Sekitani, Tsuyoshi

    2017-07-01

    This paper presents a flexible organic thin-film transistor (OTFT) amplifier for bio-signal monitoring and presents the chip component assembly process. Using a conductive adhesive and a chip mounter, the chip components are mounted on a flexible film substrate, which has OTFT circuits. This study first investigates the assembly technique reliability for chip components on the flexible substrate. This study also specifically examines heart pulse wave monitoring conducted using the proposed flexible amplifier circuit and a flexible piezoelectric film. We connected the amplifier to a bluetooth device for a wearable device demonstration.

  6. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  7. Multicolor fluorescence microscopic imaging of cancer cells on the plasmonic chip (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tawa, Keiko; Sasakawa, Chisato; Yamamura, Shohei; Shibata, Izumi; Kataoka, Masatoshi

    2015-09-01

    A plasmonic chip which is a metal coated substrate with grating structure can provide the enhanced fluorescence by the grating-coupled surface plasmon field. In our previous studies, bright epi-fluorescence microscopic imaging of neuron cells and sensitive immunosesnsing have been reported. In this study, two kinds of breast cancer cells, MCF-7 and MDA-MB231, were observed with epi-fluorescence microscope on the plasmonic chip with 2D hole-arrays . They were multicolor stained with 4', 6-diamidino-2-phenylindole (DAPI) and allophycocyanin (APC)-labeled anti-epithelial cell adhesion molecule (EpCAM) antibody. Our plasmonic chip provided the brighter fluorescence images of these cells compared with the glass slide. Even in the cells including few EpCAM, the distribution of EpCAM was clearly observed in the cell membrane. It was found that the plasmonic chip can be one of the powerful tools to detect the marker protein existing around the chip surface even at low concentration.

  8. Modified precision-husky progrind H-3045 for chipping biomass

    Treesearch

    Dana Mitchell; Fernando Seixas; John Klepac

    2008-01-01

    A specific size of whole tree chip was needed to co-mill wood chips with coal. The specifications are stringent because chips must be mixed with coal, as opposed to a co-firing process. In co-firing, two raw products are conveyed separately to a boiler. In co-milling, such as at Alabama Power's Plant Gadsden, the chip and coal mix must pass through a series of...

  9. Programmable Multi-Chip Module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2005-05-24

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  10. Programmable Multi-Chip Module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-11-16

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  11. Programmable multi-chip module

    DOEpatents

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-03-02

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  12. Smart single-chip gas sensor microsystem

    NASA Astrophysics Data System (ADS)

    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.

    2001-11-01

    Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

  13. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The CHIPS Randomized Controlled Trial (Control of Hypertension in Pregnancy Study): Is Severe Hypertension Just an Elevated Blood Pressure?

    PubMed

    Magee, Laura A; von Dadelszen, Peter; Singer, Joel; Lee, Terry; Rey, Evelyne; Ross, Susan; Asztalos, Elizabeth; Murphy, Kellie E; Menzies, Jennifer; Sanchez, Johanna; Gafni, Amiram; Helewa, Michael; Hutton, Eileen; Koren, Gideon; Lee, Shoo K; Logan, Alexander G; Ganzevoort, Wessel; Welch, Ross; Thornton, Jim G; Moutquin, Jean-Marie

    2016-11-01

    To determine whether clinical outcomes differed by occurrence of severe hypertension in the international CHIPS trial (Control of Hypertension in Pregnancy Study), adjusting for the interventions of "less tight" (target diastolic blood pressure [dBP] 100 mm Hg) versus "tight" control (target dBP 85 mm Hg). In this post-hoc analysis of CHIPS data from 987 women with nonsevere nonproteinuric preexisting or gestational hypertension, mixed effects logistic regression was used to compare the following outcomes according to occurrence of severe hypertension, adjusting for allocated group and the influence of baseline factors: CHIPS primary (perinatal loss or high-level neonatal care for >48 hours) and secondary outcomes (serious maternal complications), birth weight <10th percentile, preeclampsia, delivery at <34 or <37 weeks, platelets <100×10 9 /L, elevated liver enzymes with symptoms, maternal length of stay ≥10 days, and maternal readmission before 6 weeks postpartum. Three hundred and thirty-four (34.1%) women in CHIPS developed severe hypertension that was associated with all outcomes examined except for maternal readmission (P=0.20): CHIPS primary outcome, birth weight <10th percentile, preeclampsia, preterm delivery, elevated liver enzymes (all P<0.001), platelets <100×10 9 /L (P=0.006), and prolonged hospital stay (P=0.03). The association between severe hypertension and serious maternal complications was seen only in less tight control (P=0.02). Adjustment for preeclampsia (464, 47.3%) did not negate the relationship between severe hypertension and the CHIPS primary outcome (P<0.001), birth weight <10th percentile (P=0.005), delivery at <37 (P<0.001) or <34 weeks (P<0.001), or elevated liver enzymes with symptoms (P=0.02). Severe hypertension is a risk marker for adverse maternal and perinatal outcomes, independent of BP control or preeclampsia co-occurrence. URL: http://pre-empt.cfri.ca/. Unique identifier: ISRCTN 71416914. URL: https

  15. GeneChip Resequencing of the Smallpox Virus Genome Can Identify Novel Strains: a Biodefense Application▿

    PubMed Central

    Sulaiman, Irshad M.; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M.

    2007-01-01

    We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future. PMID:17182757

  16. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  17. Bark Separation During Chipping With a Parallel Knife Chipper

    Treesearch

    John R. Erickson

    1968-01-01

    Five winter-cut northern species were chipped in a frozen and unfrozen condition with a parallel knife chipper. The degree of bark separation during chipping and a relative gradation of chip size are reported.

  18. Comparison of the osteogenic potential of bone dust and iliac bone chip.

    PubMed

    Ye, Shuai; Seo, Kyu-Bum; Park, Byung-Hyun; Song, Kyung-Jin; Kim, Jung-Ryul; Jang, Kyu-Yun; Chae, Young Ju; Lee, Kwang-Bok

    2013-11-01

    There is no comparative study of the in vitro and in vivo osteogenic potential of iliac bone chips (autogenous iliac cancellous bone chips) compared with bone dusts generated during the decortication process with a high-speed burr in spine fracture or fusion surgery. To compare the osteogenic potential of three sizes of bone dusts with iliac bone chips and to determine whether bone dusts can be used as a bone graft substitute. In vitro and in vivo study. Bone chips were harvested from the posterior superior iliac spine and bone dusts from the vertebrae of 15 patients who underwent spinal fracture surgery. Bone dust was divided into three groups: small (3 mm), middle (4 mm), and large (5 mm) according to the size of the burr tip. A comparison was made using a cell proliferation assay, alkaline phosphatase (ALP) activity, the degree of mineralization in an in vitro model, and radiographic and histologic studies (the change of absorbable area and tissue density) after implantation of the various materials into back muscles of nude mice. Although all three bone dust groups were less active with regard to cell proliferation, ALP activity, and the degree of mineralization, than were bone chips, they still exhibited osteogenic potential. Furthermore, there was no significant difference among the three bone dust groups. The three bone dust groups did show greater absorbable area and change of the tissue density than did the iliac bone chip group. Again, there was no significant difference among the three bone dust groups in this regard. Histologically, specimens from the bone dust groups had a higher osteoclast cell number than specimens from the iliac bone chip group. The osteogenic potential of bone dusts is lower than that of iliac bone chips, and the absorption speed of bone dusts in vivo is faster than that of iliac bone chips. The increased resorption speed appeared to result from an increase in osteoclast cell number. Therefore, caution needs to be used when

  19. Companion Chip: Building a Segregated Hardware Architecture

    NASA Astrophysics Data System (ADS)

    Pareaud, Thomas; Houelle, Alain; Vaucher, Niolas; Albinet, Mathieu; Honvault, Christophe

    2011-08-01

    Partitioning is a more and more mature concept in Space industry. It aims at assuring that some error propagation modes are not possible. This paper gives an overview of an analysis conducted in the frame of a research and technology study performed in 2010/2011. The "Java Companion Chip" study addresses an interesting approach to partitioning using hardware concepts: a SoC architecture integrates a master processor, a companion chip and additional hardware functions aiming at enforcing the time and space segregation between the master processor and the slave one.This paper discusses the benefits and the main challenges of the proposed approach. In addition, it presents an application of these concepts to a case study: a Leon/Java processor architecture able to concurrently execute native and Java applications.

  20. NHEXAS PHASE I MARYLAND STUDY--LIST OF AVAILABLE DOCUMENTS: PROTOCOLS AND SOPS

    EPA Science Inventory

    This document lists available protocols and SOPs for the NHEXAS Phase I Maryland study. It identifies protocols and SOPs for the following study components: (1) Sample collection and field operations, (2) Sample analysis and general laboratory procedures, (3) Data Analysis Proced...

  1. Accelerated Storage Stability and Corrosion Characteristics Study Protocol

    EPA Pesticide Factsheets

    EPA has determined that studies using this protocol will, in certain circumstances, provide the Agency with all the information it needs to make a determination on the storage stability of pesticides.

  2. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  3. Utilisation of chip thickness models in grinding

    NASA Astrophysics Data System (ADS)

    Singleton, Roger

    Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process

  4. Chip level modeling of LSI devices

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1984-01-01

    The advent of Very Large Scale Integration (VLSI) technology has rendered the gate level model impractical for many simulation activities critical to the design automation process. As an alternative, an approach to the modeling of VLSI devices at the chip level is described, including the specification of modeling language constructs important to the modeling process. A model structure is presented in which models of the LSI devices are constructed as single entities. The modeling structure is two layered. The functional layer in this structure is used to model the input/output response of the LSI chip. A second layer, the fault mapping layer, is added, if fault simulations are required, in order to map the effects of hardware faults onto the functional layer. Modeling examples for each layer are presented. Fault modeling at the chip level is described. Approaches to realistic functional fault selection and defining fault coverage for functional faults are given. Application of the modeling techniques to single chip and bit slice microprocessors is discussed.

  5. Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Faley, Shannon; Kolch, Walter; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.

    2013-01-01

    Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SYR), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines. PMID:19572560

  6. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  7. Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface.

    PubMed

    Chen, Zan Hui; Tao, Jin; Gu, Jia Hua; Li, Jian; Hu, Di; Tan, Qi Long; Zhang, Fengchun; Huang, Xu Guang

    2016-12-12

    We propose and numerically investigate a gate-controlled on-chip graphene metasurface consisting of a monolayer graphene sheet and silicon photonic crystal-like substrate, to achieve an electrically-tunable induced transparency. The operation mechanism of the induced transparency of the on-chip graphene metasurface is analyzed. The tunable optical properties with different gate-voltages and polarizations have been discussed. Additionally, the spectral feature of the on-chip graphene metasurface as a function of the refractive index of the local environment is also investigated. The result shows that the on-chip graphene metasurface as a refractive index sensor can achieve an overall figure of merit of 8.89 in infrared wavelength range. Our study suggests that the proposed structure is potentially attractive as optoelectronic modulators and refractive index sensors.

  8. CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods.

    PubMed

    Huang, Fu-Chun; Chen, Yih-Far; Lee, Gwo-Bin

    2007-04-01

    This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.

  9. A comparative study of wireless sensor networks and their routing protocols.

    PubMed

    Bhattacharyya, Debnath; Kim, Tai-hoon; Pal, Subhajit

    2010-01-01

    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  10. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  11. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  12. Chip connectivity verification program

    NASA Technical Reports Server (NTRS)

    Riley, Josh (Inventor); Patterson, George (Inventor)

    1999-01-01

    A method for testing electrical connectivity between conductive structures on a chip that is preferably layered with conductive and nonconductive layers. The method includes determining the layer on which each structure is located and defining the perimeter of each structure. Conductive layer connections between each of the layers are determined, and, for each structure, the points of intersection between the perimeter of that structure and the perimeter of each other structure on the chip are also determined. Finally, electrical connections between the structures are determined using the points of intersection and the conductive layer connections.

  13. Pregnancy Research on Osteopathic Manipulation Optimizing Treatment Effects: The PROMOTE Study Protocol.

    PubMed

    Hensel, Kendi L; Carnes, Michael S; Stoll, Scott T

    2016-11-01

    The structural and physiologic changes in a woman's body during pregnancy can predispose pregnant women to low back pain and its associated disability, as well as to complications of pregnancy, labor, and delivery. Anecdotal and empirical evidence has indicated that osteopathic manipulative treatment (OMT) may be efficacious in improving pain and functionality in women who are pregnant. Based on that premise, the Pregnancy Research on Osteopathic Manipulation Optimizing Treatment Effects (PROMOTE) study was designed as a prospective, randomized, placebo-controlled, and blinded clinical trial to evaluate the efficacy of an OMT protocol for pain during third-trimester pregnancy. The OMT protocol developed for the PROMOTE study was based on physiologic theory and the concept of the interrelationship of structure and function. The 12 well-defined, standardized OMT techniques used in the protocol are commonly taught at osteopathic medical schools in the United States. These techniques can be easily replicated as a 20-minute protocol applied in conjunction with usual prenatal care, thus making it feasible to implement into clinical practice. This article presents an overview of the study design and treatment protocols used in the PROMOTE study.

  14. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    PubMed Central

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-01-01

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies. PMID:28347059

  15. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  16. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics. PMID:24435059

  17. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-17

    On-chip plasmon-induced transparency offers the possibility of realization of ultrahigh-speed information processing chips. Unfortunately, little experimental progress has been made to date because it is difficult to obtain on-chip plasmon-induced transparency using only a single meta-molecule in plasmonic circuits. Here, we report a simple and efficient strategy to realize on-chip plasmon-induced transparency in a nanoscale U-shaped plasmonic waveguide side-coupled nanocavity pair. High tunability in the transparency window is achieved by covering the pair with different organic polymer layers. It is possible to realize ultrafast all-optical tunability based on pump light-induced refractive index change of a graphene cover layer. Compared with previous reports, the overall feature size of the plasmonic nanostructure is reduced by more than three orders of magnitude, while ultrahigh tunability of the transparency window is maintained. This work also provides a superior platform for the study of the various physical effects and phenomena of nonlinear optics and quantum optics.

  18. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  19. WFC3/UVIS External CTE Monitor: Single-Chip CTE Measurements

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.; Baggett, S.

    2016-12-01

    We present the first results of single-chip measurements of charge transfer efficiency (CTE) in the UVIS channel of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3). This test was performed in Cycle 20 in two visits. In the first visit a field in the star cluster NGC 6583 was observed. In a second visit, the telescope returned to the field, but rotated by 180 degrees and with a shift in pointing that allowed the same stars to be imaged, near and far from the amplifiers, on the same chip of the two-chip UVIS field of-view. This dataset enables a measurement of CTE loss on each separate chip. The current CTE monitor measures CTE loss as an average of the two chips because it dithers by a chip-height to obtain observations of the same sources near and far from the amplifiers, instead of the more difficult to-schedule 180-degree rotation. We find that CTE loss is worse on Chip 1 than on Chip 2 across all cases for which we had data: short and long exposures and w! ith and without the pixel-based CTE correction. In the best case, for long exposures with the CTE correction applied, the max difference between the two chip's flux losses is 3%/2048 pixels. This case should apply for most science observations where the background is 12 e-/pixel. In the worst case of low-background short exposures, e.g. those without post-flash, the max difference between the two chips is 17% flux loss/2048 pixels. Uncertainties are <0.01% flux loss/2048 pixels. Because of the two chips' different CTE loss rates, we will consider adding this test as part of the routine yearly monitor and creating a chip-specific CTE correction software.

  20. A primary battery-on-a-chip using monolayer graphene.

    PubMed

    Iost, Rodrigo M; Crespilho, Frank N; Kern, Klaus; Balasubramanian, Kannan

    2016-06-14

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  1. A primary battery-on-a-chip using monolayer graphene

    NASA Astrophysics Data System (ADS)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  2. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  3. Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip.

    PubMed

    Huys, Roeland; Braeken, Dries; Jans, Danny; Stassen, Andim; Collaert, Nadine; Wouters, Jan; Loo, Josine; Severi, Simone; Vleugels, Frank; Callewaert, Geert; Verstreken, Kris; Bartic, Carmen; Eberle, Wolfgang

    2012-04-07

    To cope with the growing needs in research towards the understanding of cellular function and network dynamics, advanced micro-electrode arrays (MEAs) based on integrated complementary metal oxide semiconductor (CMOS) circuits have been increasingly reported. Although such arrays contain a large number of sensors for recording and/or stimulation, the size of the electrodes on these chips are often larger than a typical mammalian cell. Therefore, true single-cell recording and stimulation remains challenging. Single-cell resolution can be obtained by decreasing the size of the electrodes, which inherently increases the characteristic impedance and noise. Here, we present an array of 16,384 active sensors monolithically integrated on chip, realized in 0.18 μm CMOS technology for recording and stimulation of individual cells. Successful recording of electrical activity of cardiac cells with the chip, validated with intracellular whole-cell patch clamp recordings are presented, illustrating single-cell readout capability. Further, by applying a single-electrode stimulation protocol, we could pace individual cardiac cells, demonstrating single-cell addressability. This novel electrode array could help pave the way towards solving complex interactions of mammalian cellular networks. This journal is © The Royal Society of Chemistry 2012

  4. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).

    PubMed

    Hyun, Kyung-A; Lee, Tae Yoon; Lee, Su Hyun; Jung, Hyo-Il

    2015-05-15

    Over the past few decades, circulating tumor cells (CTCs) have been studied as a means of overcoming cancer. However, the rarity and heterogeneity of CTCs have been the most significant hurdles in CTC research. Many techniques for CTC isolation have been developed and can be classified into positive enrichment (i.e., specifically isolating target cells using cell size, surface protein expression, and so on) and negative enrichment (i.e., specifically eluting non-target cells). Positive enrichment methods lead to high purity, but could be biased by their selection criteria, while the negative enrichment methods have relatively low purity, but can isolate heterogeneous CTCs. To compensate for the known disadvantages of the positive and negative enrichments, in this study we introduced a two-stage microfluidic chip. The first stage involves a microfluidic magnetic activated cell sorting (μ-MACS) chip to elute white blood cells (WBCs). The second stage involves a geometrically activated surface interaction (GASI) chip for the selective isolation of CTCs. We observed up to 763-fold enrichment in cancer cells spiked into 5 mL of blood sample using the μ-MACS chip at 400 μL/min flow rate. Cancer cells were successfully separated with separation efficiencies ranging from 10.19% to 22.91% based on their EpCAM or HER2 surface protein expression using the GASI chip at a 100 μL/min flow rate. Our two-stage microfluidic chips not only isolated CTCs from blood cells, but also classified heterogeneous CTCs based on their characteristics. Therefore, our chips can contribute to research on CTC heterogeneity of CTCs, and, by extension, personalized cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    NASA Astrophysics Data System (ADS)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi

    2017-12-01

    In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  6. A Bipartite Interaction between Hsp70 and CHIP Regulates Ubiquitination of Chaperoned Client Proteins

    DOE PAGES

    Zhang, Huaqun; Amick, Joseph; Chakravarti, Ritu; ...

    2015-02-12

    The ubiquitin ligase CHIP plays an important role in cytosolic protein quality control by ubiquitinating proteins chaperoned by Hsp70/Hsc70 and Hsp90, thereby targeting such substrate proteins for degradation. We present a 2.91 Å resolution structure of the tetratricopeptide repeat (TPR) domain of CHIP in complex with the α-helical lid subdomain and unstructured tail of Hsc70. Surprisingly, the CHIP-TPR interacts with determinants within both the Hsc70-lid subdomain and the C-terminal PTIEEVD motif of the tail, exhibiting an atypical mode of interaction between chaperones and TPR domains. Here, we demonstrate that the interaction between CHIP and the Hsc70-lid subdomain is required formore » proper ubiquitination of Hsp70/Hsc70 or Hsp70/Hsc70-bound substrate proteins. Posttranslational modifications of the Hsc70 lid and tail disrupt key contacts with the CHIP-TPR and may regulate CHIP-mediated ubiquitination. Our study shows how CHIP docks onto Hsp70/Hsc70 and defines a bipartite mode of interaction between TPR domains and their binding partners.« less

  7. Quad-Chip Double-Balanced Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.

  8. A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps.

    PubMed

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.

  9. 3D Printing of Organs-On-Chips.

    PubMed

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  10. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding.

    PubMed

    Wanapat, Metha; Kang, Sungchhang

    2015-12-01

    Cassava ( Manihot esculenta Crantz) is widely grown in sub-tropical and tropical areas, producing roots as an energy source while the top biomass including leaves and immature stems can be sun-dried and used as cassava hay. Cassava roots can be processed as dried chip or pellet. It is rich in soluble carbohydrate (75 to 85%) but low in crude protein (2 to 3%). Its energy value is comparable to corn meal but has a relatively higher rate of rumen degradation. Higher levels of non-protein nitrogen especially urea (1 to 4%) can be successfully incorporated in concentrates containing cassava chip as an energy source. Cassava chip can also be processed with urea and other ingredients (tallow, sulfur, raw banana meal, cassava hay, and soybean meal) to make products such as cassarea, cassa-ban, and cassaya. Various studies have been conducted in ruminants using cassava chip to replace corn meal in the concentrate mixtures and have revealed satisfactory results in rumen fermentation efficiency and the subsequent production of meat and milk. In addition, it was advantageous when used in combination with rice bran in the concentrate supplement. Practical home-made-concentrate using cassava chip can be easily prepared for use on farms. A recent development has involved enriching protein in cassava chips, yielding yeast fermented cassava chip protein (YEFECAP) of up to 47.5% crude protein, which can be used to replace soybean meal. It is therefore, recommended to use cassava chip as an alternative source of energy to corn meal when the price is economical and it is locally available.

  11. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  12. Chip-based microtrap arrays for cold polar molecules

    NASA Astrophysics Data System (ADS)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2017-12-01

    Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.

  13. The use of fruit extracts for production of apple chips with enhanced antioxidant activity

    PubMed

    Tarko, Tomasz; Duda-Chodak, Aleksandra; Semik-Szczurak, Dorota

    Style and pace of life make consumers more willing to reach for snack products. This group of processed food includes, among others, fruit chips. Due to the increasing incidence of diseases associated with the excessive exposure to free radicals foods enriched with antioxidant compounds, eg. polyphenols, can be introduced into the sale. The aim of the study was to use the fruit extracts for the production of apple chips with enhanced antioxidant activity. ‘Golden Delicious’ variety of apple fruit was used to produce chips. Apple chips were prepared by slicing, soaking in a sugar solution and pre-drying in a microwave oven. Chips were enriched with extracts prepared from fruits of chokeberry, five-flavor berry, Cornelian cherry, woodland hawthorn, goji berry, Japanese quince and cranberry microcarpa. For this purpose, pre-dried apple slices were soaked (5 min) in ethanolic extract of fruits and then dried to achieve a 5% moisture content. Chips were sensory evaluated and their antioxidant activity and total polyphenols content were determined. All enriched apple chips were characterized by high antioxidant activity and a relatively high value of total polyphenols content. Chips soaked in extracts of five-flavor berry, cranberry and goji berry were characterized by the highest antioxidant potential. Samples obtained by using chokeberry and Cornelian cherry extracts showed the highest content of polyphenols. High sensory attractiveness of enriched chips was also showed. The chips with the addition of fiveflavor berry extract were exceptions. Their taste was not acceptable. Fruit extracts are a valuable material for chips enrichment. Taking into account all the analyzed differentiators, extracts of Japanese quince, goji berry and woodland hawthorn were found to be the best enriching additives. The chips soaked in extract of five-flavor berry, despite their high antioxidant activity, were disqualified due to very low score of sensory evaluation.

  14. Sensitivity comparison of sequential monadic and side-by-side presentation protocols in affective consumer testing.

    PubMed

    Colyar, Jessica M; Eggett, Dennis L; Steele, Frost M; Dunn, Michael L; Ogden, Lynn V

    2009-09-01

    The relative sensitivity of side-by-side and sequential monadic consumer liking protocols was compared. In the side-by-side evaluation, all samples were presented at once and evaluated together 1 characteristic at a time. In the sequential monadic evaluation, 1 sample was presented and evaluated on all characteristics, then returned before panelists received and evaluated another sample. Evaluations were conducted on orange juice, frankfurters, canned chili, potato chips, and applesauce. Five commercial brands, having a broad quality range, were selected as samples for each product category to assure a wide array of consumer liking scores. Without their knowledge, panelists rated the same 5 retail brands by 1 protocol and then 3 wk later by the other protocol. For 3 of the products, both protocols yielded the same order of overall liking. Slight differences in order of overall liking for the other 2 products were not significant. Of the 50 pairwise overall liking comparisons, 44 were in agreement. The different results obtained by the 2 protocols in order of liking and significance of paired comparisons were due to the experimental variation and differences in sensitivity. Hedonic liking scores were subjected to statistical power analyses and used to calculate minimum number of panelists required to achieve varying degrees of sensitivity when using side-by-side and sequential monadic protocols. In most cases, the side-by-side protocol was more sensitive, thus providing the same information with fewer panelists. Side-by-side protocol was less sensitive in cases where sensory fatigue was a factor.

  15. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment

    PubMed Central

    Trubelja, Alen

    2017-01-01

    Cancer remains one of the leading causes of death, albeit enormous efforts to cure the disease. To overcome the major challenges in cancer therapy, we need to have a better understanding of the tumour microenvironment (TME), as well as a more effective means to screen anti-cancer drug leads; both can be achieved using advanced technologies, including the emerging tumour-on-a-chip technology. Here, we review the recent development of the tumour-on-a-chip technology, which integrates microfluidics, microfabrication, tissue engineering and biomaterials research, and offers new opportunities for building and applying functional three-dimensional in vitro human tumour models for oncology research, immunotherapy studies and drug screening. In particular, tumour-on-a-chip microdevices allow well-controlled microscopic studies of the interaction among tumour cells, immune cells and cells in the TME, of which simple tissue cultures and animal models are not amenable to do. The challenges in developing the next-generation tumour-on-a-chip technology are also discussed. PMID:28637915

  16. Should whole-tree chips for fuel be dried before storage?

    Treesearch

    E. L. Springer

    1979-01-01

    Whole-tree chips deteriorate more rapidly than do clean, debarked chips and present a greater hazard for spontaneous ignition when stored in outdoor piles. To prevent ignition, the chips can be stored for only short periods of time and the frequent rotation of the storage piles results in high handling costs. Drying the chips prior to storage will prevent deterioration...

  17. The hardwood chip market in 2005

    Treesearch

    Peter J. Ince

    2005-01-01

    The North American Pulp and Paper industry continues to experience challenges and changes much like most other business sectors of the hardwood industry. Marketing policies and the raw material supply chain of pulpwood and chips are being affected. The issues surrounding supply for pulpwood and chips have a broad reach in affecting timber and log purchases, logging...

  18. Adjustment of multi-CCD-chip-color-camera heads

    NASA Astrophysics Data System (ADS)

    Guyenot, Volker; Tittelbach, Guenther; Palme, Martin

    1999-09-01

    The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.

  19. [The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].

    PubMed

    Bai, Peng; Tian, Li; Zhou, Xue-ping

    2005-05-01

    DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.

  20. Chip seal design and specifications : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Chip seals or seal coats, are a pavement preservation method constructed using a layer of asphalt binder that is covered by a uniformly graded aggregate. The benefits of chip seal include: sealing surface cracks, keeping water from penetrating the su...

  1. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    NASA Astrophysics Data System (ADS)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  2. Vibration syndrome in chipping and grinding workers.

    PubMed

    1984-10-01

    A clear conclusion from these studies is that vibration syndrome occurs in chipping and grinding workers in this country and that earlier reports that it may not exist were probably inaccurate. The careful selection of exposed and control groups for analysis strengthens the observed association between vibration syndrome and the occupational use of pneumatic chipping hammers and grinding tools. In the foundry populations studied the vibration syndrome was severe, with short latencies and high prevalences of the advanced stages. The shipyard population did not display this pattern. This difference can be attributed to variations in work practices but the more important factor seems to be the effect of incentive work schedules. Comparisons of groups of hourly and incentive workers from the shipyard and within foundry populations consistently demonstrated that incentive work was associated with increased severity of vibration syndrome. Excessive vibration levels were measured on chipping and grinding tools. Of the factors studied, reduction of throttle level decreased the vibration levels measured on chipping hammers. For grinders, the working condition of the tool affected the measured vibration acceleration levels. Grinders receiving average to poor maintenance showed higher vibration levels. The results of objective clinical testing did not yield tests with diagnostic properties. To date, the clinical judgment of the physician remains the primary focus of the diagnosis of vibration syndrome. A number of actions can be taken to prevent vibration syndrome. Preplacement medical examinations can identify workers predisposed to or experiencing Raynaud's phenomenon or disease. Informing employees and employers about the signs, symptoms, and consequences of vibration syndrome can encourage workers to report the condition to their physicians promptly. Engineering approaches to preventing vibration syndrome include increased quality control on castings to reduce finishing

  3. Cascaded VLSI Chips Help Neural Network To Learn

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  4. 42 CFR 457.343 - Periodic renewal of CHIP eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...

  5. 42 CFR 457.343 - Periodic renewal of CHIP eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...

  6. 42 CFR 457.343 - Periodic renewal of CHIP eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...

  7. Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip systems

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald

    2015-12-01

    Behavioral ecotoxicity tests are gaining an increasing recognition in environmental toxicology. Behavior of sensitive bioindicator species can change rapidly in response to an acute exposure to contaminants and thus has a much higher sensitivity as compared to conventional LC50 mortality tests. Furthermore, behavioral endpoints seems to be very good candidates to develop early-warning biomonitoring systems needed for rapid chemical risk assessment. Behavioral tests are non-invasive, fast, do not harm indicator organisms (behavioural changes are very rapid) and are thus fully compatible with 3R (Replacement - Reduction - Refinement) principle encouraging alternatives to conventional animal testing. These characteristics are essential when designing improved ecotoxicity tests for chemical risk assessment. In this work, we present a pilot development of miniaturized Lab-on-a-Chip (LOC) devices for studying toxin avoidance behaviors of small aquatic crustaceans. As an investigative tool, LOCs represent a new direction that may miniaturize and revolutionize behavioral ecotoxicology. Specifically our innovative microfluidic prototype: (i) enables convening "caging" of specimens for real-time videomicroscopy; (ii) eliminates the evaporative water loss thus providing an opportunity for long-term behavioral studies; (iii) exploits laminar fluid flow under low Reynolds numbers to generate discrete domains and gradients enabling for the first time toxin avoidance studies on small aquatic crustaceans; (iv) integrates off-the-chip mechatronic interfaces and video analysis algorithms for single animal movement analysis. We provide evidence that by merging innovative bioelectronic and biomicrofluidic technologies we can deploy inexpensive and reliable systems for culture, electronic tracking and complex computational analysis of behavior of bioindicator organisms.

  8. Measurements of the effects of wine maceration with oak chips using an electronic tongue.

    PubMed

    Rudnitskaya, Alisa; Schmidtke, Leigh M; Reis, Ana; Domingues, M Rosario M; Delgadillo, Ivonne; Debus, Bruno; Kirsanov, Dmitry; Legin, Andrey

    2017-08-15

    The use of oak products as a cheaper alternative to expensive wood barrels was recently permitted in Europe, which led to a continuous increase in the use of oak chips and staves in winemaking. The feasibility of the potentiometric electronic tongue as a tool for monitoring the effects of wine maceration with oak chips was evaluated. Four types of commercially available oak chips subjected to different thermal treatments and washing procedures and their mixture were studied. Ethanolic extracts of the chips were analysed using electrospray mass spectrometry and 28 phenolic and furanic compounds were identified. The electronic tongue comprising 22 potentiometric chemical sensors could distinguish artificial wine solutions and Cabernet Sauvignon wine macerated with different types of oak chips, quantify total and non-flavonoid phenolic content, as well as the concentrations of added oak chips. Using measurements at two pH levels, 3.2 and 6.5, improved the accuracy of quantification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study on the Simultaneously Quantitative Detection for β-Lactoglobulin and Lactoferrin of Cow Milk by Using Protein Chip Technique.

    PubMed

    Yin, Ji Yong; Huo, Jun Sheng; Ma, Xin Xin; Sun, Jing; Huang, Jian

    2017-12-01

    To research a protein chip method which can simultaneously quantitative detect β-Lactoglobulin (β-L) and Lactoferrin (Lf) at one time. Protein chip printer was used to print both anti-β-L antibodies and anti-Lf antibodies on each block of protein chip. And then an improved sandwich detection method was applied while the other two detecting antibodies for the two antigens were added in the block after they were mixed. The detection conditions of the quantitative detection for simultaneous measurement of β-L and Lf with protein chip were optimized and evaluated. Based on these detected conditions, two standard curves of the two proteins were simultaneously established on one protein chip. Finally, the new detection method was evaluated by using the analysis of precision and accuracy. By comparison experiment, mouse monoclonal antibodies of the two antigens were chosen as the printing probe. The concentrations of β-L and Lf probes were 0.5 mg/mL and 0.5 mg/mL, respectively, while the titers of detection antibodies both of β-L and Lf were 1:2,000. Intra- and inter-assay variability was between 4.88% and 38.33% for all tests. The regression coefficients of protein chip comparing with ELISA for β-L and Lf were better than 0.734, and both of the two regression coefficients were statistically significant (r = 0.734, t = 2.644, P = 0.038; and r = 0.774, t = 2.998, P = 0.024). A protein chip method of simultaneously quantitative detection for β-L and Lf has been established and this method is worthy in further application. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Performance evaluation of chip seals in Idaho.

    DOT National Transportation Integrated Search

    2010-08-01

    The intent of this research project is to identify a wide variety of parameters that influence the performance of pavements treated via chip seals within the State of Idaho. Chip sealing is currently one of the most popular methods of maintenance for...

  11. Efficacy of 10% whole Azadirachta indica (neem) chip as an adjunct to scaling and root planning in chronic periodontitis: A clinical and microbiological study.

    PubMed

    Vennila, K; Elanchezhiyan, S; Ilavarasu, Sugumari

    2016-01-01

    Anti-microbial therapy is essential along with conventional therapy in the management of periodontal disease. Instead of systemic chemical agents, herbal products could be used as antimicrobial agents. Herbal local drug delivery systems are effective alternative for systemic therapy in managing the chronic periodontal disease. In this study, 10% neem oil chip was used as a local drug delivery system to evaluate the efficacy in the periodontal disease management. Twenty otherwise healthy patients with the bilateral periodontal probing depth of 5-6 mm were included in the study. After scaling and root planning (SRP), 10% nonabsorbable neem chip was placed in the pocket in one side of the arch. Other side was done with SRP only. Clinical parameters were recorded on the baseline, 7th day, and 21st day. Plaque samples were obtained for a microbiological study on the baseline and 21st day. Porphyromonas gingivalis strains were seen using quantitative and qualitative polymerase chain reaction assay. All results were statistically evaluated. Clinical parameters showed statistically improved on the neem chip sites and presence of P. gingivalis strains were significantly reduced on the neem chip sites. Hence, 10% neem oil local delivery system delivers desired effects on P. gingivalis. Further research is needed to evaluate the neem oil efficacy on other periodontal pathogens.

  12. Pyrolysis of ground pine chip and ground pellet particles

    DOE PAGES

    Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; ...

    2016-08-04

    In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less

  13. Droplet-based micro oscillating-flow PCR chip

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhi-Xin; Luo, Rong; Lü, Shu-Hai; Xu, Ai-Dong; Yang, Yong-Jun

    2005-08-01

    Polymerase chain reactions (PCR), thermally activated chemical reactions which are widely used for nucleic acid amplification, have recently received much attention in microelectromechanical systems and micro total analysis systems because a wide variety of DNA/RNA molecules can be enriched by PCR for further analyses. In the present work, a droplet-based micro oscillating-flow PCR chip was designed and fabricated by the silicon microfabrication technique. Three different temperature zones, which were stable at denaturation, extension and annealing temperatures and isolated from each other by a thin-wall linkage, were integrated with a single, simple and straight microchannel to form the chip's basic functional structure. The PCR mixture was injected into the chip as a single droplet and flowed through the three temperature zones in the main microchannel in an oscillating manner to achieve the temperature maintenance and transitions. The chip's thermal performance was theoretically analyzed and numerically simulated. The results indicated that the time needed for the temperature of the droplet to change to the target value is less than 1 s, and the root mean square error of temperature is less than 0.2 °C. A droplet of 1 µl PCR mixture with standard HPV (Human Papilloma Virus)-DNA sample inside was amplified by the present chip and the results were analyzed by slab gel electrophoresis with separation of DNA markers in parallel. The electrophoresis results demonstrated that the micro oscillating-flow PCR chip successfully amplified the HPV-DNA, with a processing time of about 15 min which is significantly reduced compared to that for the conventional PCR instrument.

  14. Rutger's CAM2000 chip architecture

    NASA Technical Reports Server (NTRS)

    Smith, Donald E.; Hall, J. Storrs; Miyake, Keith

    1993-01-01

    This report describes the architecture and instruction set of the Rutgers CAM2000 memory chip. The CAM2000 combines features of Associative Processing (AP), Content Addressable Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip package that is not only DRAM compatible but capable of applying simple massively parallel operations to memory. This document reflects the current status of the CAM2000 architecture and is continually updated to reflect the current state of the architecture and instruction set.

  15. Development of a cell microarray chip for detection of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Yamamura, S.; Yatsushiro, S.; Abe, K.; Baba, Y.; Kataoka, M.

    2012-03-01

    Detection of circulating tumor cells (CTCs) in the peripheral blood of metastatic cancer patients has clinical significance in earlier diagnosis of metastases. In this study, a novel cell microarray chip for accurate and rapid detection of tumor cells from human leukocytes was developed. The chip with 20,944 microchambers (105 μm diameter and 50 μm depth) was made from polystyrene, and the surface was rendered to hydrophilic by means of reactive-ion etching, which led to the formation of mono-layers of leukocytes on the microchambers. As the model of CTCs detection, we spiked human bronchioalveolar carcinoma (H1650) cells into human T lymphoblastoid leukemia (CEM) cells suspension and detected H1650 cells using the chip. A CEM suspension contained with H1650 cells was dispersed on the chip surface, followed by 10 min standing to allow the cells to settle down into the microchambers. About 30 CEM cells were accommodated in each microchamber, over 600,000 CEM cells in total being on a chip. We could detect 1 H1650 cell per 106 CEM cells on the microarray by staining with fluorescence-conjugated antibody (Anti-Cytokeratin) and cell membrane marker (DiD). Thus, this cell microarray chip has highly potential to be a novel tool of accurate and rapid detection of CTCs.

  16. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry.

    PubMed

    Flangea, Corina; Sisu, Eugen; Seidler, Daniela G; Zamfir, Alina D

    2012-01-15

    Biglycan (BGN) is a small proteoglycan that consists of a protein core containing leucine-rich repeat regions and two glycosaminoglycan (GAG) chains of either chondroitin sulfate (CS) or dermatan sulfate (DS) type. The development of novel, highly efficient analytical methods for structural identification of BGN-derived CS/DS motifs, possibly implicated in biological events, is currently the focus of research. In this work, an improved analytical method based on fully automated chip-nanoelectrospray ionization (nanoESI) in conjunction with high-capacity ion trap (HCT) multistage mass spectrometry (MS) by collision-induced dissociation (CID) was for the first time applied to BGN CS/DS oligosaccharide analysis. The CS/DS chains were released from transfected 293 BGN by β-elimination. The chain was digested with AC I lyase, and the resulting mixture was purified and subsequently separated by size exclusion chromatography (SEC). Di- and tetrasaccharide fractions were pooled and characterized in detail using the developed chip-nanoESI protocol. The chip-nanoESI MS profile in the negative ion mode revealed the presence of under-, regularly, and oversulfated species in both di- and tetrasaccharide fractions. CID MS(2)-MS(3) yielded sequence patterns consistent with unusual oversulfated 4,5-Δ-GlcA(2S)-GalNAc(4S) and 4,5-Δ-GlcA(2S)-GalNAc(6S)-IdoA(2S)-GalNAc(6S) motifs. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Scratching experiments on quartz crystals: Orientation effects in chipping

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.; Benmessaouda, D.

    1994-06-01

    The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.

  18. Ion Chromatography-on-a-chip for Water Quality Analysis

    NASA Technical Reports Server (NTRS)

    Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.

    2015-01-01

    We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.

  19. 3D Printing of Organs-On-Chips

    PubMed Central

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  20. [Emission of organic substances from chip-boards].

    PubMed

    Deppe, H J

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  1. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    USDA-ARS?s Scientific Manuscript database

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  2. An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.

    PubMed

    Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih

    2013-01-01

    This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems.

  3. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  4. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    PubMed

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  5. Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-09-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (~1 μm). The hydrophilicity (advancing contact angle of ~60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min-1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers.

  6. Identification of a novel umami compound in potatoes and potato chips.

    PubMed

    Zhang, Liyun; Peterson, Devin G

    2018-02-01

    The influence of frying time on the taste profile of potato chips was characterized. Direct comparison of isolates from potato chip samples fried for 170s and 210s indicated longer frying time increased the perceived umami intensity and decreased the sour intensity. The compounds responsible for the greater umami intensity were identified as monosodium l-pyroglutamate (l-MSpG) and monosodium d-pyroglutamate (d-MSpG). The reduction in sour intensity was attributed to the degradation of d-chlorogenic acid. MSpGs were endogenous in raw potatoes and also thermally generated from glutamic acid during frying. Taste recombination studies further confirmed the contribution of both compounds to the umami character of potato chips. Furthermore, time-intensity taste analysis revealed that topical addition of both l- and d-MSpG enhanced the perceived intensity of the umami taste and the overall flavor characteristic of the potato chips. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. CHIP as a membrane-shuttling proteostasis sensor

    PubMed Central

    Kopp, Yannick; Martínez-Limón, Adrián; Hofbauer, Harald F; Ernst, Robert; Calloni, Giulia

    2017-01-01

    Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function). PMID:29091030

  8. Chip-based wide field-of-view nanoscopy

    NASA Astrophysics Data System (ADS)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  9. Digital PCR on a SlipChip.

    PubMed

    Shen, Feng; Du, Wenbin; Kreutz, Jason E; Fok, Alice; Ismagilov, Rustem F

    2010-10-21

    This paper describes a SlipChip to perform digital PCR in a very simple and inexpensive format. The fluidic path for introducing the sample combined with the PCR mixture was formed using elongated wells in the two plates of the SlipChip designed to overlap during sample loading. This fluidic path was broken up by simple slipping of the two plates that removed the overlap among wells and brought each well in contact with a reservoir preloaded with oil to generate 1280 reaction compartments (2.6 nL each) simultaneously. After thermal cycling, end-point fluorescence intensity was used to detect the presence of nucleic acid. Digital PCR on the SlipChip was tested quantitatively by using Staphylococcus aureus genomic DNA. As the concentration of the template DNA in the reaction mixture was diluted, the fraction of positive wells decreased as expected from the statistical analysis. No cross-contamination was observed during the experiments. At the extremes of the dynamic range of digital PCR the standard confidence interval determined using a normal approximation of the binomial distribution is not satisfactory. Therefore, statistical analysis based on the score method was used to establish these confidence intervals. The SlipChip provides a simple strategy to count nucleic acids by using PCR. It may find applications in research applications such as single cell analysis, prenatal diagnostics, and point-of-care diagnostics. SlipChip would become valuable for diagnostics, including applications in resource-limited areas after integration with isothermal nucleic acid amplification technologies and visual readout.

  10. Quantum Optics in Diamond Nanophotonic Chips

    DTIC Science & Technology

    2014-07-01

    quantum cryptography , quantum teleportation, quantum computation. Springer-Verlag, London, UK, 2000. 8 [3] J. I. Cirac, P. Zoller, H. J. Kimble, and...AFRL-OSR-VA-TR-2014-0188 Quantum Optics in Diamond Nanophotonic Chips Dirk Englund THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK INC...Progress Report Program Manager: Dr. Gernot Pomrenke Quantum Optics in Diamond Nanophotonic Chips AFOSR Directorate: Physics and Electronics Research

  11. Construction of 3D multicellular microfluidic chip for an in vitro skin model.

    PubMed

    Lee, Sojin; Jin, Seon-Pil; Kim, Yeon Kyung; Sung, Gun Yong; Chung, Jin Ho; Sung, Jong Hwan

    2017-06-01

    Current in vitro skin models do not recapitulate the complex architecture and functions of the skin tissue. In particular, on-chip construction of an in vitro model comprising the epidermis and dermis layer with vascular structure for mass transport has not been reported yet. In this study, we aim to develop a microfluidic, three-dimensional (3D) skin chip with fluidic channels using PDMS and hydrogels. Mass transport within the collagen hydrogel matrix was verified with fluorescent model molecules, and a transport-reaction model of oxygen and glucose inside the skin chip was developed to aid the design of the microfluidic skin chip. Comparison of viabilities of dermal fibroblasts and HaCaT cultured in the chip with various culture conditions revealed that the presence of flow plays a crucial role in maintaining the viability, and both cells were viable after 10 days of air exposure culture. Our 3D skin chip with vascular structures can be a valuable in vitro model for reproducing the interaction between different components of the skin tissue, and thus work as a more physiologically realistic platform for testing skin reaction to cosmetic products and drugs.

  12. Chipped Paint Crater

    NASA Image and Video Library

    2003-04-09

    In the high northern latitudes northwest of Alba Patera, a smooth mantle of material that covers the landscape appears chipped away from the rim of a large crater, as observed in this image from NASA Mars Odyssey spacecraft.

  13. Experiences in flip chip production of radiation detectors

    NASA Astrophysics Data System (ADS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vähänen, Sami

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  14. A lab-on-chip for malaria diagnosis and surveillance

    PubMed Central

    2014-01-01

    Background Access to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges. Methods The platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection. Results This diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%. Conclusions These results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips

  15. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, Wing C.

    1994-01-01

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.

  16. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, W.C.

    1994-02-15

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.

  17. Chip-Scale Magnetic Source of Cold Atoms

    DTIC Science & Technology

    2013-06-01

    the desert, the roof of the physics building, no air conditioning, shooting stars, coconut and coconuts , hacienda, and margarita. v Acknowledgments I...toner paper was folded around the chip and run through a laminator. The laminator’s heat transferred the toner to the chip. By splashing water on the

  18. Teaching Quality Control with Chocolate Chip Cookies

    ERIC Educational Resources Information Center

    Baker, Ardith

    2014-01-01

    Chocolate chip cookies are used to illustrate the importance and effectiveness of control charts in Statistical Process Control. By counting the number of chocolate chips, creating the spreadsheet, calculating the control limits and graphing the control charts, the student becomes actively engaged in the learning process. In addition, examining…

  19. Comparison of edge chipping resistance of PFM and veneered zirconia specimens

    PubMed Central

    Quinn, Janet B.; Sundar, Veeraraghavan; Parry, Edward E.; Quinn, George D.

    2011-01-01

    Objectives To investigate the chipping resistance of veneered zirconia specimens and compare it to the chipping resistance of porcelain fused to metal (PFM) specimens. Methods Veneered zirconia and PFM bar specimens were prepared in clinically relevant thicknesses. The specimen edges were chipped with different magnitude forces, producing chips of various sizes. The range of sizes included small chips that did not penetrate all the way through the veneers to the substrates, and also chips that were very large and reached the zirconia or metal substrates. The relationship between force magnitude and chip size (edge distance) was graphed. The resulting curves were compared for the veneered zirconia and PFM specimens. Knoop hardness vs. force graphs for the veneers and substrates were also obtained. Results The zirconia and PFM veneer chipping data followed a power law (coefficient of determination, R2 > 0.93) as expected from the literature. The curves overlapped within the combined data scatter, indicating similar resistance to chipping. The chips made in both types of specimens detached and did not penetrate into the substrate when they reached the veneer/substrate intersections. The hardness–load curves for the veneers and substrates all exhibited an indentation size effect (ISE) at low loads. The Knoop hardness values with uncertainties of ±one standard deviation at 4 N loads for the metal, zirconia, and the metal and zirconia veneers are: (2.02 ± 0.08, 12.01 ± 0.39, 4.24 ± 0.16 and 4.36 ± 0.02 GPa), respectively, with no statistically significant difference between the veneers (Tukey pairwise comparison at 0.95 family confidence). Significance This work indicates that a similar resistance to chipping might be expected for veneered zirconia and PFM restorations, in spite of the large difference in substrate hardness. Differences in susceptibility to chip spalling were not detected, but the chips in both specimen types detached off the sides in a similar

  20. Self-powered integrated systems-on-chip (energy chip)

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  1. 21 CFR 58.120 - Protocol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOR NONCLINICAL LABORATORY STUDIES Protocol for and Conduct of a Nonclinical Laboratory Study § 58.120 Protocol. (a) Each study shall have an approved written protocol that clearly indicates the objectives and all methods for the conduct of the study. The protocol shall contain, as applicable, the following...

  2. Analyzing the effect of routing protocols on media access control protocols in radio networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, C. L.; Drozda, M.; Marathe, A.

    2002-01-01

    We study the effect of routing protocols on the performance of media access control (MAC) protocols in wireless radio networks. Three well known MAC protocols: 802.11, CSMA, and MACA are considered. Similarly three recently proposed routing protocols: AODV, DSR and LAR scheme 1 are considered. The experimental analysis was carried out using GloMoSim: a tool for simulating wireless networks. The main focus of our experiments was to study how the routing protocols affect the performance of the MAC protocols when the underlying network and traffic parameters are varied. The performance of the protocols was measured w.r.t. five important parameters: (i)more » number of received packets, (ii) average latency of each packet, (iii) throughput (iv) long term fairness and (v) number of control packets at the MAC layer level. Our results show that combinations of routing and MAC protocols yield varying performance under varying network topology and traffic situations. The result has an important implication; no combination of routing protocol and MAC protocol is the best over all situations. Also, the performance analysis of protocols at a given level in the protocol stack needs to be studied not locally in isolation but as a part of the complete protocol stack. A novel aspect of our work is the use of statistical technique, ANOVA (Analysis of Variance) to characterize the effect of routing protocols on MAC protocols. This technique is of independent interest and can be utilized in several other simulation and empirical studies.« less

  3. Effect of chipping on emergence of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) and recovery of the laurel wilt pathogen from infested wood chips.

    PubMed

    Spence, D J; Smith, J A; Ploetz, R; Hulcr, J; Stelinski, L L

    2013-10-01

    Significant mortality ofredbay trees (Persea borbonia (L.) Spreng.) in the southeastern United States has been caused by Raffaelea lauricola, T.C. Harr., Fraedrich, & Aghayeva (Harrington et al. 2008), a fungal symbiont of the exotic redbay ambrosia beetle, Xyleborus glabratus, Eichhoff (Fraedrich et al. 2008). This pathogen causes laurel wilt, which is an irreversible disease that can kill mature trees within a few weeks in summer. R. lauricola has been shown to be lethal to most native species of Lauraceae and cultivated avocado (Persea americana Mill.) in the southeastern United States. In this study, we examined the survival of X. glabratus and R. lauricola in wood chips made from infested trees by using a standard tree chipper over a 10-wk period. After 2 wk, 14 X. glabratus were recovered from wood chips, whereas 339 X. glabratus emerged from nonchipped bolts. R. lauricola was not found 2 d postchipping from wood chips, indicating that the pathogen is not likely to survive for long inside wood chips. In contrast, R. lauricola persisted in dead, standing redbay trees for 14 mo. With large volumes of wood, the potential for infested logs to be moved between states or across U.S. borders is significant. Results demonstrated that chipping wood from laurel wilt-killed trees can significantly reduce the number of X. glabratus and limit the persistence of R. lauricola, which is important for sanitation strategies aimed at limiting the spread of this disease.

  4. Single event effects on the APV25 front-end chip

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bauer, T.; Pernicka, M.

    2003-03-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider at CERN will include a Silicon Strip Tracker covering a sensitive area of 206 m2. About ten million channels will be read out by APV25 front-end chips, fabricated in the 0.25 μm deep submicron process. Although permanent damage is not expected within CMS radiation levels, transient Single Event Upsets are inevitable. Moreover, localized ionization can also produce fake signals in the analog circuitry. Eight APV25 chips were exposed to a high-intensity pion beam at the Paul Scherrer Institute (Villigen/CH) to study the radiation induced effects in detail. The results, which are compatible to similar measurements performed with heavy ions, are used to predict the chip error rate at CMS.

  5. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  6. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  7. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  8. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood pulp...

  9. Biological implications of lab-on-a-chip devices fabricated using multi-jet modelling and stereolithography processes

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald

    2015-06-01

    Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.

  10. The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    PubMed Central

    Ronnebaum, Sarah M.; Wu, Yaxu; McDonough, Holly

    2013-01-01

    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging. PMID:24043303

  11. Time of flight system on a chip

    NASA Technical Reports Server (NTRS)

    Paschalidis, Nicholas P. (Inventor)

    2006-01-01

    A CMOS time-of-flight TOF system-on-a-chip SoC for precise time interval measurement with low power consumption and high counting rate has been developed. The analog and digital TOF chip may include two Constant Fraction Discriminators CFDs and a Time-to-Digital Converter TDC. The CFDs can interface to start and stop anodes through two preamplifiers and perform signal processing for time walk compensation (110). The TDC digitizes the time difference with reference to an off-chip precise external clock (114). One TOF output is an 11-bit digital word and a valid event trigger output indicating a valid event on the 11-bit output bus (116).

  12. Gene chips and arrays revealed: a primer on their power and their uses.

    PubMed

    Watson, S J; Akil, H

    1999-03-01

    This article provides an overview and general explanation of the rapidly developing area of gene chips and expression array technology. These are methods targeted at allowing the simultaneous study of thousands of genes or messenger RNAs under various physiological and pathological states. Their technical basis grows from the Human Genome Project. Both methods place DNA strands on glass computer chips (or microscope slides). Expression arrays start with complementary DNA (cDNA) clones derived from the EST data base, whereas Gene Chips synthesize oligonucleotides directly on the chip itself. Both are analyzed using image analysis systems, are capable of reading values from two different individuals at any one site, and can yield quantitative data for thousands of genes or mRNAs per slide. These methods promise to revolutionize molecular biology, cell biology, neuroscience and psychiatry. It is likely that this technology will radically open up our ability to study the actions and structure of the multiple genes involved in the complex genetics of brain disorders.

  13. Vacuum impregnation: a promising way for mineral fortification in potato porous matrix (potato chips).

    PubMed

    Joshi, Alka; Kar, A; Rudra, S G; Sagar, V R; Varghese, E; Lad, M; Khan, I; Singh, B

    2016-12-01

    Potato chips can be considered as an ideal carrier for targeted nutrient/s delivery as mostly consumed by the vulnerable group (children and teen agers). The present study was planned to fortifiy potato chips with calcium (Calcium lactate) and zinc (Zinc sulphate) using vacuum impregnation technique. At about 70-80 mm Hg vacuum pressure, maximum level of impregnation of both the minerals was achieved. Results showed that after optimization, calcium lactate at 4.81%, zinc sulphate at 0.72%, and vacuum of 33.53 mm Hg with restoration period of 19.52 min can fortify potato chips that can fulfil 10 and 21% need of calcium and zinc, respectively of targeted group (age 4-17 years). The present research work has shown that through this technique, fortification can be done in potato chips which are generally considered as a poor source of minerals. Further to make potato chips more fit to health conscious consumers, rather frying microwaving was done to develop mineral fortified low fat potato chips.

  14. Effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips.

    PubMed

    Shen, Xu; Zhang, Min; Bhandari, Bhesh; Guo, Zhimei

    2018-02-15

    In order to investigate the effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips, apple slices were pretreated at ultrasonic powers of 150, 250 and 400 W for times of 10, 20 and 30 min before vacuum frying. The quality and oxidation resistance of fried apple were evaluated by testing the dielectric properties and comparing the moisture content, oil uptake, color, acid value (AV) and peroxide value (PV) of apple chips. Ultrasonic treatment significantly changed the dielectric properties of apple slices. Moisture and oil contents of apple chips decreased with increasing ultrasonic power and time. During storage, the color retention of fried apple chips processed by ultrasound was improved. AV and PV values of fried apple chips processed by ultrasound were lower, which improved their antioxidant properties. The results of the present study indicated that ultrasound dielectric pretreatment improved not only the quality of vacuum-fried apple chips but also their antioxidant properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. A Microfluidic Device for Preparing Next Generation DNA Sequencing Libraries and for Automating Other Laboratory Protocols That Require One or More Column Chromatography Steps

    PubMed Central

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273

  16. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer.

    PubMed

    Cheng, Li; Zang, Jin; Dai, Han-Jue; Li, Feng; Guo, Feng

    2018-07-01

    Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.

  17. Generation of segmental chips in metal cutting modeled with the PFEM

    NASA Astrophysics Data System (ADS)

    Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.

    2018-06-01

    The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.

  18. Generation of segmental chips in metal cutting modeled with the PFEM

    NASA Astrophysics Data System (ADS)

    Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.

    2017-09-01

    The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.

  19. Fish swarm intelligent to optimize real time monitoring of chips drying using machine vision

    NASA Astrophysics Data System (ADS)

    Hendrawan, Y.; Hawa, L. C.; Damayanti, R.

    2018-03-01

    This study attempted to apply machine vision-based chips drying monitoring system which is able to optimise the drying process of cassava chips. The objective of this study is to propose fish swarm intelligent (FSI) optimization algorithms to find the most significant set of image features suitable for predicting water content of cassava chips during drying process using artificial neural network model (ANN). Feature selection entails choosing the feature subset that maximizes the prediction accuracy of ANN. Multi-Objective Optimization (MOO) was used in this study which consisted of prediction accuracy maximization and feature-subset size minimization. The results showed that the best feature subset i.e. grey mean, L(Lab) Mean, a(Lab) energy, red entropy, hue contrast, and grey homogeneity. The best feature subset has been tested successfully in ANN model to describe the relationship between image features and water content of cassava chips during drying process with R2 of real and predicted data was equal to 0.9.

  20. Controlling the type and the form of chip when machining steel

    NASA Astrophysics Data System (ADS)

    Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.

    2016-08-01

    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.

  1. Prototype detection unit for the CHIPS experiment

    NASA Astrophysics Data System (ADS)

    Pfützner, Maciej M.

    2017-09-01

    CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.

  2. Bioindicators in the MIDUS National Study: Protocol, Measures, Sample, and Comparative Context

    PubMed Central

    Love, Gayle Dienberg; Seeman, Teresa E.; Weinstein, Maxine; Ryff, Carol D.

    2010-01-01

    Objectives MIDUS is a national study of health and aging among individuals aged 25 to 74 at baseline(1995/96). Longitudinal survey assessments (2004/05), were followed by biological assessments on a subsample aged 35–85. To facilitate public use, we describe the protocol, measures, and sample. Methods Respondents traveled to clinics for a two-day data collection protocol that included fasting blood specimens, 12-hour urine specimen, medical history, physical exam, bone densitometry, a laboratory challenge (heart rate variability, blood pressure, respiration, salivary cortisol). Results Response rates for the biological protocol (N = 1,255) were 39.3%, or 43.1% (adjusting for those who could not be located or contacted). Reasons for non-participation were travel, family obligations, and being too busy. Respondents were comparable to the recruitment pool on most demographic characteristics and health assessments. Discussion Strengths of the protocol vis-à-vis other similar studies include opportunities to link biological factors with diverse content from other MIDUS projects. PMID:20876364

  3. On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications.

    PubMed

    Chaudhury, Amrita Ray; Insolera, Ryan; Hwang, Ran-Der; Fridell, Yih-Woei; Collins, Catherine; Chronis, Nikos

    2017-06-27

    We present a microfluidic chip for immobilizing Drosophila melanogaster larvae for high resolution in vivo imaging. The chip creates a low-temperature micro-environment that anaesthetizes and immobilizes the larva in under 3 minutes. We characterized the temperature distribution within the chip and analyzed the resulting larval body movement using high resolution fluorescence imaging. Our results indicate that the proposed method minimizes submicron movements of internal organs and tissue without affecting the larva physiology. It can be used to continuously immobilize larvae for short periods of time (minutes) or for longer periods (several hours) if used intermittently. The same chip can be used to accommodate and immobilize arvae across all developmental stages (1st instar to late 3rd instar), and loading larvae onto the chip does not require any specialized skills. To demonstrate the usability of the chip, we observed mitochondrial trafficking in neurons from the cell bodies to the axon terminals along with mitochondrial fusion and neuro-synaptic growth through time in intact larvae. Besides studying sub-cellular processes and cellular development, we envision the use of on chip cryo-anesthesia in a wide variety of biological in vivo imaging applications, including observing organ development of the salivary glands, fat bodies and body-wall muscles.

  4. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  5. Kansas Department of Transportation 2014 chip seal manual.

    DOT National Transportation Integrated Search

    2014-03-01

    A chip seal is a very effective thin surface treatment process used by maintenance managers to : preserve existing asphalt pavements. The Kansas Department of Transportation (KDOT) 2014 Chip Seal : Manual is a guide that provides guidelines, backgrou...

  6. Lung donor treatment protocol in brain dead-donors: A multicenter study.

    PubMed

    Miñambres, Eduardo; Pérez-Villares, Jose Miguel; Chico-Fernández, Mario; Zabalegui, Arturo; Dueñas-Jurado, Jose María; Misis, Maite; Mosteiro, Fernando; Rodriguez-Caravaca, Gil; Coll, Elisabeth

    2015-06-01

    The shortage of lung donors for transplantation is the main limitation among patients awaiting this type of surgery. We previously demonstrated that an intensive lung donor-treatment protocol succeeded in increasing the lung procurement rate. We aimed to validate our protocol for centers with or without lung transplant programs. A quasi-experimental study was performed to compare lung donor rate before (historical group, 2010 to 2012) and after (prospective group, 2013) the application of a lung management protocol for donors after brain death (DBDs) in six Spanish hospitals. Lung donor selection criteria remained unchanged in both periods. Outcome measures for lung recipients were early survival and primary graft dysfunction (PGD) rates. A total of 618 DBDs were included: 453 in the control period and 165 in the protocol period. Donor baseline characteristics were similar in both periods. Lung donation rate in the prospective group was 27.3%, more than twice that of the historical group (13%; p < 0.001). The number of lungs retrieved, grafts transplanted, and transplants performed more than doubled over the study period. No differences in early recipients' survival between groups were observed (87.6% vs. 84.5%; p = 0.733) nor in the rate of PGD. Implementing our intensive lung donor-treatment protocol increases lung procurement rates. This allows more lung transplants to be performed without detriment to either early survival or PGD rate. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. 42 CFR 457.340 - Application for and enrollment in CHIP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Application for and enrollment in CHIP. 457.340... and enrollment in CHIP. (a) Application and renewal assistance, availability of program information...) of this chapter apply equally to the State in administering a separate CHIP. (b) Use of Social...

  8. 42 CFR 457.340 - Application for and enrollment in CHIP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Application for and enrollment in CHIP. 457.340... and enrollment in CHIP. (a) Application and renewal assistance, availability of program information... apply equally to the State in administering a separate CHIP. (b) Use of Social Security number. The...

  9. Flip-chip assembly and reliability using gold/tin solder bumps

    NASA Astrophysics Data System (ADS)

    Oppermann, Hermann; Hutter, Matthias; Klein, Matthias; Reichl, Herbert

    2004-09-01

    Au/Sn solder bumps are commonly used for flip chip assembly of optoelectronic and RF devices. They allow a fluxless assembly which is required to avoid contamination at optical interfaces. Flip chip assembly experiments were carried out using as plated Au/Sn bumps without prior bump reflow. An RF and reliability test vehicles comprise a GaAs chip which was flip chip soldered on a silicon substrate. Temperature cycling tests with and without underfiller were performed and the results are presented. The different failure modes for underfilled and non-underfilled samples were discussed and compared. Additional reliability tests were performed with flip chip bonding by gold thermocompression for comparison. The test results and the failure modes are discussed in detail.

  10. Standardization of a Videofluoroscopic Swallow Study Protocol to Investigate Dysphagia in Dogs.

    PubMed

    Harris, R A; Grobman, M E; Allen, M J; Schachtel, J; Rawson, N E; Bennett, B; Ledyayev, J; Hopewell, B; Coates, J R; Reinero, C R; Lever, T E

    2017-03-01

    Videofluoroscopic swallow study (VFSS) is the gold standard for diagnosis of dysphagia in veterinary medicine but lacks standardized protocols that emulate physiologic feeding practices. Age impacts swallow function in humans but has not been evaluated by VFSS in dogs. To develop a protocol with custom kennels designed to allow free-feeding of 3 optimized formulations of contrast media and diets that address limitations of current VFSS protocols. We hypothesized that dogs evaluated by a free-feeding VFSS protocol would show differences in objective swallow metrics based on age. Healthy juvenile, adult, and geriatric dogs (n = 24). Prospective, experimental study. Custom kennels were developed to maintain natural feeding behaviors during VFSS. Three food consistencies (thin liquid, pureed food, and dry kibble) were formulated with either iohexol or barium to maximize palatability and voluntary prehension. Dogs were evaluated by 16 swallow metrics and compared across age groups. Development of a standardized VFSS protocol resulted in successful collection of swallow data in healthy dogs. No significant differences in swallow metrics were observed among age groups. Substantial variability was observed in healthy dogs when evaluated under these physiologic conditions. Features typically attributed to pathologic states, such as gastric reflux, were seen in healthy dogs. Development of a VFSS protocol that reflects natural feeding practices may allow emulation of physiology resulting in clinical signs of dysphagia. Age did not result in significant changes in swallow metrics, but additional studies are needed, particularly in light of substantial normal variation. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. Intelligent Computation for Optimal Fabrication Condition of a Protein Chip with Ni-Co Alloy-Coated Surface.

    PubMed

    Chang, Yaw-Jen; Chang, Cheng-Hao

    2016-06-01

    Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments. Based on the experimental data, the fabrication process model of a Ni-Co protein chip was established by using an artificial neural network, and then an optimal fabrication condition was obtained using the Taguchi genetic algorithm. The result was validated experimentally and compared with a nitrocellulose chip. Consequentially, experimental outcomes revealed that the Ni-Co alloy-coated chip, fabricated using the proposed approach, had the best performance and repeatability compared with the Ni-Co chips of an L18 orthogonal array design and the nitrocellulose chip. Moreover, the low fluorescent background of the chip surface gives a more precise fluorescent detection. Based on a small quantity of experiments, this proposed intelligent computation approach can significantly reduce the experimental cost and improve the product's quality. © 2015 Society for Laboratory Automation and Screening.

  12. New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Muhammad, Turghun; Yakup, Burabiye; Piletsky, Sergey A.

    2017-06-01

    As a novel imprinting method, solid-phase synthesis has proven to be a promising approach to prepare polymer nanoparticles with specific recognition sites for a template molecule. In this method, imprinted polymer nanoparticles were synthesized using template immobilized on a solid support. Herein, preparation of immobilized templates on quartz chips through homogeneous route was reported as an efficient alternative strategy to heterogeneous one. The template molecule indole-3-butyric acid (IBA) was reacted with 3-aminopropyltriethoxysilane (APTES) to produce silylated template (IBA-APTES), and it was characterized by IR, 1H NMR and GC-MS. Then, the silylated template molecule was grafted onto the activated surfaces of quartz chip to prepare immobilized template (SiO2@IBA-APTES). The immobilization was confirmed by contact angle, XPS, UV and fluorescence measurement. Immobilization protocol has shown good reproducibility and stability of the immobilized template. MIP nanoparticles were prepared with high selectivity toward the molecule immobilized onto the solid surface. This provides a new approach for the development of molecularly imprinted nanoparticles.

  13. Asphalt cement chip seals in Oregon : construction report

    DOT National Transportation Integrated Search

    2000-06-01

    Most chip seals in Oregon have been constructed using an emulsified asphalt binder. However, chip seals using an asphalt cement (hot oil) binder have been tried in limited situations in Oregon. This report includes a literature review and summarizes ...

  14. Robust and Complex on-Chip Nanophotonics

    DTIC Science & Technology

    2015-04-17

    organization, e.g. BRL-1234; AFWL-TR-85-4017-Vol-21- PT -2. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES). Enter the name and address of the...metallic on-chip nanophotonic structures, leading to novel devices in ultra-compact wavelength splitters, and nano- lasers and modulators with very low...between optical fiber and on-chip waveguide based on a novel transformation-optics approach. Finally, in Thrust 3, the team has made substantial

  15. Toasted vine-shoot chips as enological additive.

    PubMed

    Cebrián-Tarancón, Cristina; Sánchez-Gómez, Rosario; Salinas, M Rosario; Alonso, Gonzalo L; Oliva, José; Zalacain, Amaya

    2018-10-15

    Different ways of vine-shoots revalorization have been proposed, but not in wine yet, as for example in the same way as oak chips are being used. In this work, vine-shoot samples were submitted to a thermogravimetric analysis to establish the temperature range for its lignin structure decomposition, resulting between 160 and 180 °C. Then, vine-shoot chips from Airén and Cencibel cultivars, with a particle size around 2.5-3.5 cm, were submitted to six toasting conditions: 160 °C and 180 °C for 45, 60 and 75 min. Their volatile composition was very similar to oak chips, being vanillin the most important compound. Moreover, such vine-shoots have an interesting content of prodelphinidins that together with the stilbenes may contribute to wine antioxidant activity. The toasting conditions at 180 °C/45 min were the most suitable one for releasing the mentioned valuable compounds in order to propose vine-shoots as new enological additive similar to oak chips. Copyright © 2018. Published by Elsevier Ltd.

  16. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less

  17. Microengineered physiological biomimicry: organs-on-chips.

    PubMed

    Huh, Dongeun; Torisawa, Yu-suke; Hamilton, Geraldine A; Kim, Hyun Jung; Ingber, Donald E

    2012-06-21

    Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.

  18. Accelerator on a Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  19. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2018-01-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  20. Monitoring moisture content, temperature, and humidity in whole-tree pine chip piles

    Treesearch

    John Klepac; Dana Mitchell; Jason Thompson

    2015-01-01

    Two whole-tree chip piles were monitored for moisture content, temperature, and relative humidity from October 8th, 2010 to March 16th, 2011 at a location in south Alabama. Initial moisture content samples were collected immediately after chips were delivered to the study location on October 8th for Pile 1 and October 22nd for Pile 2. During pile construction, Lascar...

  1. Method for forming consumable electrodes from metallic chip scraps

    DOEpatents

    Girshov, Vladimir Leonidovich; Podpalkin, Arcady Munjyvich; Treschevskiy, Arnold Nikolayevich; Abramov, Alexey Alexandrovich

    2005-10-11

    The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

  2. Impaction grafted bone chip size effect on initial stability in an acetabular model: Mechanical evaluation.

    PubMed

    Holton, Colin; Bobak, Peter; Wilcox, Ruth; Jin, Zhongmin

    2013-01-01

    Acetabular bone defect reconstruction is an increasing problem for surgeons with patients undergoing complex primary or revision total hip replacement surgery. Impaction bone grafting is one technique that has favourable long-term clinical outcome results for patients who undergo this reconstruction method for acetabular bone defects. Creating initial mechanical stability of the impaction bone graft in this technique is known to be the key factor in achieving a favourable implant survival rate. Different sizes of bone chips were used in this technique to investigate if the size of bone chips used affected initial mechanical stability of a reconstructed acetabulum. Twenty acetabular models were created in total. Five control models were created with a cemented cup in a normal acetabulum. Then five models in three different groups of bone chip size were constructed. The three groups had an acetabular protrusion defect reconstructed using either; 2-4 mm(3), 10 mm(3) or 20 mm(3) bone chip size for impaction grafting reconstruction. The models underwent compression loading up to 9500 N and displacement within the acetabular model was measured indicating the initial mechanical stability. This study reveals that, although not statistically significant, the largest (20 mm(3)) bone chip size grafted models have an inferior maximum stiffness compared to the medium (10 mm(3)) bone chip size. Our study suggests that 10 mm(3) size of bone chips provide better initial mechanical stability compared to smaller or larger bone chips. We dismissed the previously held opinion that the biggest practically possible graft is best for acetabular bone graft impaction.

  3. EDITORIAL: The Eye and The Chip 2008 The Eye and The Chip 2008

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F.; O'Malley, Edward R.; Hessburg, Philip C.

    2009-06-01

    Over the course of the past decade, The Eye and The Chip world congress on visual neuro-prosthetic devices has become a premier meeting for those who believe that 'artificial' vision will one day be used to improve the quality of life of visually impaired patients. Although substantial progress has been made, there are numerous unresolved issues, like the preferred methods for wireless communication, placement of devices, and materials and design among others. The Eye and The Chip meeting of 2008, held in Detroit on 12-14 June 2008, provided important new information about these and other important topics, and thus served to advance this field of scientific research. From a research seedling a decade ago to the crowd of superb presentations in Detroit last June, a very real sense of justifiable optimism has developed. The prospects of artificial vision are no longer remote. Many of the researchers expressed confidence that implantable devices will provide the hoped-for level of vision to justify their widespread use in the future. The often dramatic successes of cochlear implants continues to provide credence that artificial stimulation of nerve tissue is a plausible strategy to restore vision. The Eye and The Chip 2008 attracted researchers from four continents (North America, Europe, Asia and Australia). The meeting also benefited from the attendance and presentations by representatives of the FDA, who have been present for all The Eye and The Chip meetings. The 2008 meeting was also enhanced by the inclusion of a new and related scientific field that shares the goal of restoring vision to the blind—the field of molecular restoration of retinal function by insertion of channelrhodopsin. Just as the field of ophthalmology went from Ridley's primitive intraocular lens replacement to implants useful in virtually every cataract patient in one surgeon's clinical lifetime, the field of retinal prostheses seems to be following a very similar trajectory. Likewise, the

  4. Development of a systematic observation protocol of physical exposure of the back: a preliminary study.

    PubMed

    Tousignant, M; Tougas, G; Rossignol, M; Goulet, L

    2002-04-01

    At present there is no systematic observation protocol for the assessment of the multi-factorial aspects of physical exposure related to the back used within the constraints of occupational epidemiological research. In this context, a new preliminary systematic observation protocol is proposed to assess exposure to physical loading of the back using nine categories of physical risk factors: the SOPE back protocol. The objective of this study was to investigate whether the new protocol can correctly identify the level of exposure related to measured physical loading of the back. The subjects of this closed cohort study were 451 manual workers at a natural gas distribution company. The assessment of exposure was made with the protocol using groups with different job titles. The workers were followed for a 2 yr period to establish the risk of a new occurrence of complete disability related to the back (NOCD back injury) in each job grouping. Based on the median of the total scores derived from the protocol, two levels of exposure were identified (high and low). Taking into account the limitations of this study, the protocol in development may be a good tool to establish two levels of exposure to physical loading of the back in large epidemiological studies of occupational low back pain. Further research is needed to replicate these results with larger samples and to test the reliability and predictive validity of the protocol.

  5. A 1-1/2-level on-chip-decoding bubble memory chip design

    NASA Technical Reports Server (NTRS)

    Chen, T. T.

    1975-01-01

    Design includes multi-channel replicator which can reduce chip-writing requirement, selective annihilating switch which can effectively annihilate bubbles with minimum delay, and modified transfer switch which can be used as selective steering-type decoder.

  6. The Stigma of Public Programs: Does a Separate S-CHIP Program Reduce It?

    ERIC Educational Resources Information Center

    Ketsche, Patricia; Adams, E. Kathleen; Minyard, Karen; Kellenberg, Rebecca

    2007-01-01

    Previous studies suggest access to and satisfaction with care may be different for enrollees in S-CHIP and Medicaid, but it is unclear whether those differences are fully explained by socioeconomic characteristics of the enrollees. We analyze access and satisfaction of three groups of children: Medicaid enrolled, S-CHIP enrolled, and children who…

  7. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  8. The Chip-Scale Atomic Clock - Recent Development Progress

    DTIC Science & Technology

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  9. Names Chip Placed on InSight Lander Deck

    NASA Image and Video Library

    2015-12-17

    A spacecraft specialist in a clean room at Lockheed Martin Space Systems in Denver affixes a dime-size chip onto the lander deck in November 2015. This chip carries 826,923 names, submitted by the public online from all over the world.

  10. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma.

    PubMed

    Shang, Y; He, J; Wang, Y; Feng, Q; Zhang, Y; Guo, J; Li, J; Li, S; Wang, Y; Yan, G; Ren, F; Shi, Y; Xu, J; Zeps, N; Zhai, Y; He, D; Chang, Z

    2017-07-20

    Tumor cells preferentially adopt aerobic glycolysis for their energy supply, a phenomenon known as the Warburg effect. It remains a matter of debate as to how the Warburg effect is regulated during tumor progression. Here, we show that CHIP (carboxyl terminus of Hsc70-interacting protein), a U-box E3 ligase, suppresses tumor progression in ovarian carcinomas by inhibiting aerobic glycolysis. While CHIP is downregulated in ovarian carcinoma, induced expression of CHIP results in significant inhibition of the tumor growth examined by in vitro and in vivo experiments. Reciprocally, depletion of CHIP leads to promotion of tumor growth. By a SiLAD proteomics analysis, we identified pyruvate kinase isoenzyme M2 (PKM2), a critical regulator of glycolysis in tumors, as a target that CHIP mediated for degradation. Accordingly, we show that CHIP regulates PKM2 protein stability and thereafter the energy metabolic processes. Depletion or knockout of CHIP increased the glycolytic products in both tumor and mouse embryonic fibroblast cells. Simultaneously, we observed that CHIP expression inversely correlated with PKM2 levels in human ovarian carcinomas. This study reveals a mechanism that the Warburg effect is regulated by CHIP through its function as an E3 ligase, which mediates the degradation of PKM2 during tumor progression. Our findings shed new light into understanding of ovarian carcinomas and may provide a new therapeutic strategy for ovarian cancer.

  11. 7. VIEW OF THE CHIP ROASTER LOCATED IN BUILDING 447. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF THE CHIP ROASTER LOCATED IN BUILDING 447. THE CHIP ROASTER BURNED URANIUM CHIPS FROM MACHINING AREAS TO AN OXIDE, A MORE STABLE FORM FOR DISPOSAL. (4/27/55) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  12. Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser.

    PubMed

    Yao, Liying; Liu, Baoan; Chen, Tao; Liu, Shibing; Zuo, Tiechuan

    2005-09-01

    As the third PCR technology, micro flow-through PCR chip can amplify DNA specifically in an exponential fashion in vitro. Nowadays many academies in the world have successfully amplified DNA using their own-made flow-through PCR chip. In this paper, the ablation principle of PMMA at 248 nm excimer laser was studied, then a PMMA based flow-through PCR chip with 20 cycles was fabricated by excimer laser at 19 kv and 18 mm/min. The chip was bonded together with another cover chip at 105( composite function)C, 160 N and 20 minutes. In the end, it was integrated with electrical thermal thin films and Pt 100 temperature sensors. The temperature controllers was built standard PID digital temperature controller, the temperature control precision was +/- 0.2( composite function)C. The temperature grads between the three temperature zones were 16.5 and 22.2( composite function)C respectively, the gaps between the temperature zones could realize heat insulation.

  13. The role of sand, marble chips and Typha latifolia in domestic wastewater treatment - a column study on constructed wetlands.

    PubMed

    Kadaverugu, Rakesh; Shingare, Rita P; Raghunathan, Karthik; Juwarkar, Asha A; Thawale, Prashant R; Singh, Sanjeev K

    2016-10-01

    The relative importance of sand, marble chips and wetland plant Typha latifolia is evaluated in constructed wetlands (CWs) for the treatment of domestic wastewater intended for reuse in agriculture. The prototype CWs for the experiments are realized in polyvinyl chloride columns, which are grouped into four treatments, viz. sand (<2 mm) + Typha latifolia (cattail), sand, marble chips (5-20 mm) + cattail and marble chips. The removal percentage of organic and nutritional pollutants from the wastewater is measured at varying hydraulic retention time in the columns. The statistical analysis suggests that the main effects of sand and cattail are found to be significant (p < .05) for the removal of biological oxygen demand and chemical oxygen demand from the wastewater. The presence of cattail significantly (p < .01) contributes to the conversion of total nitrogen in wastewater into [Formula: see text] by fostering the growth of favorable microbes for the nitrification. The removal of [Formula: see text] and turbidity from the wastewater is significantly (p < .01) influenced by sand than the presence of cattail. The maximum [Formula: see text] adsorption capacity of the sand is estimated to be 2.5 mg/g. Marble chips have significantly (p < .01) influenced the removal of [Formula: see text]and its maximum removal capacity is estimated to be 9.3 mg/g. The negative correlation between the filter media biofilm and column hydraulic conductivity is also reported for all the treatments. Thus, the findings of this study elucidate the role of low-cost and easily available filter media and it will guide the environmental practitioners in designing cost-effective CWs for wastewater treatment.

  14. Flip-chip bonded optoelectronic integration based on ultrathin silicon (UTSi) CMOS

    NASA Astrophysics Data System (ADS)

    Hong, Sunkwang; Ho, Tawei; Zhang, Liping; Sawchuk, Alexander A.

    2003-06-01

    We describe the design and test of flip-chip bonded optoelectronic CMOS devices based on Peregrine Semiconductor's 0.5 micron Ultra-Thin Silicon on sapphire (UTSi) technology. The UTSi process eliminates the substrate leakage that typically results in crosstalk and reduces parasitic capacitance to the substrate, providing many benefits compared to bulk silicon CMOS. The low-loss synthetic sapphire substrate is optically transparent and has a coefficient of thermal expansion suitable for flip-chip bonding of vertical cavity surface emitting lasers (VCSELs) and detectors. We have designed two different UTSi CMOS chips. One contains a flip-chip bonded 1 x 4 photodiode array, a receiver array, a double edge triggered D-flip flop-based 2047-pattern pseudo random bit stream (PRBS) generator and a quadrature-phase LC-voltage controlled oscillator (VCO). The other chip contains a flip-chip bonded 1 x 4 VCSEL array, a driver array based on high-speed low-voltage differential signals (LVDS) and a full-balanced differential LC-VCO. Each VCSEL driver and receiver has individual input and bias voltage adjustments. Each UTSi chip is mounted on different printed circuit boards (PCBs) which have holes with about 1 mm radius for optical output and input paths through the sapphire substrate. We discuss preliminary testing of these chips.

  15. Multiple functions of the E3 ubiquitin ligase CHIP in immunity.

    PubMed

    Zhan, Shaohua; Wang, Tianxiao; Ge, Wei

    2017-09-03

    The carboxyl terminal of Hsp70-interacting protein (CHIP) is an E3 ubiquitin ligase that plays a pivotal role in the protein quality control system by shifting the balance of the folding-refolding machinery toward the degradative pathway. However, the precise mechanisms by which nonnative proteins are selected for degradation by CHIP either directly or indirectly via chaperone Hsp70 or Hsp90 are still not clear. In this review, we aim to provide a comprehensive model of the mechanism by which CHIP degrades its substrate in a chaperone-dependent or direct manner. In addition, through tight regulation of the protein level of its substrates, CHIP plays important roles in many physiological and pathological conditions, including cancers, neurological disorders, cardiac diseases, bone metabolism, immunity, and so on. Nonetheless, the precise mechanisms underlying the regulation of the immune system by CHIP are still poorly understood despite accumulating developments in our understanding of the regulatory roles of CHIP in both innate and adaptive immune responses. In this review, we also aim to provide a view of CHIP-mediated regulation of immune responses and the signaling pathways involved in the model described. Finally, we discuss the roles of CHIP in immune-related diseases.

  16. Organ/body-on-a-chip based on microfluidic technology for drug discovery.

    PubMed

    Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo

    2018-02-01

    Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. The detection of hepatitis c virus core antigen using afm chips with immobolized aptamers.

    PubMed

    Pleshakova, T O; Kaysheva, A L; Bayzyanova, J М; Anashkina, А S; Uchaikin, V F; Ziborov, V S; Konev, V A; Archakov, A I; Ivanov, Y D

    2018-01-01

    In the present study, the possibility of hepatitis C virus core antigen (HCVcoreAg) detection in buffer solution, using atomic force microscope chip (AFM-chip) with immobilized aptamers, has been demonstrated. The target protein was detected in 1mL of solution at concentrations from 10 -10 М to 10 -13 М. The registration of aptamer/antigen complexes on the chip surface was carried out by atomic force microscopy (AFM). The further mass-spectrometric (MS) identification of AFM-registered objects on the chip surface allowed reliable identification of HCVcoreAg target protein in the complexes. Aptamers, which were designed for therapeutic purposes, have been shown to be effective in HCVcoreAg detection as probe molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A comparative study of routing protocols of heterogeneous wireless sensor networks.

    PubMed

    Han, Guangjie; Jiang, Xu; Qian, Aihua; Rodrigues, Joel J P C; Cheng, Long

    2014-01-01

    Recently, heterogeneous wireless sensor network (HWSN) routing protocols have drawn more and more attention. Various HWSN routing protocols have been proposed to improve the performance of HWSNs. Among these protocols, hierarchical HWSN routing protocols can improve the performance of the network significantly. In this paper, we will evaluate three hierarchical HWSN protocols proposed recently--EDFCM, MCR, and EEPCA--together with two previous classical routing protocols--LEACH and SEP. We mainly focus on the round of the first node dies (also called the stable period) and the number of packets sent to sink, which is an important aspect to evaluate the monitoring ability of a protocol. We conduct a lot of experiments and simulations on Matlab to analyze the performance of the five routing protocols.

  19. Rapid and Sensitive Detection of Brain-Derived Neurotrophic Factor with a Plasmonic Chip

    NASA Astrophysics Data System (ADS)

    Tawa, Keiko; Satoh, Mari; Uegaki, Koichi; Hara, Tomoko; Kojima, Masami; Kumanogoh, Haruko; Aota, Hiroyuki; Yokota, Yoshiki; Nakaoki, Takahiko; Umetsu, Mitsuo; Nakazawa, Hikaru; Kumagai, Izumi

    2013-06-01

    Plasmonic chips, which are grating replicas coated with thin metal layers and overlayers such as ZnO, were applied in immunosensors to improve their detection sensitivity. Fluorescence from labeled antibodies bound to plasmonic chips can be enhanced on the basis of a grating-coupled surface plasmon resonance (GC-SPR) field. In this study, as one of the representative candidate protein markers for brain disorders, the brain-derived neurotrophic factor (BDNF) was quantitatively measured by sandwich assay on a plasmonic chip and detected on our plasmonic chip in the concentration of 5-7 ng/mL within 40 min. Furthermore, BDNF was detected in the blood sera from three types of mice: wild-type mice and two types of mutant mice. This technique is promising as a new clinical diagnosis tool for brain disorders based on scientific evidence such as blood test results.

  20. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  1. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  2. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  3. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  4. Single-Chip Microcomputer Control Of The PWM Inverter

    NASA Astrophysics Data System (ADS)

    Morimoto, Masayuki; Sato, Shinji; Sumito, Kiyotaka; Oshitani, Katsumi

    1987-10-01

    A single-chip microcomputer-based con-troller for a pulsewidth modulated 1.7 KVA inverter of an airconditioner is presented. The PWM pattern generation and the system control of the airconditioner are achieved by software of the 8-bit single-chip micro-computer. The single-chip microcomputer has the disadvantages of low processing speed and small memory capacity which can be overcome by the magnetic flux control method. The PWM pattern is generated every 90 psec. The memory capacity of the PWM look-up table is less than 2 kbytes. The simple and reliable control is realized by the software-based implementation.

  5. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  6. 3D gut-liver chip with a PK model for prediction of first-pass metabolism.

    PubMed

    Lee, Dong Wook; Ha, Sang Keun; Choi, Inwook; Sung, Jong Hwan

    2017-11-07

    Accurate prediction of first-pass metabolism is essential for improving the time and cost efficiency of drug development process. Here, we have developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. This chip consists of two separate layers for gut (Caco-2) and liver (HepG2) cell lines, where cells can be co-cultured in both 2D and 3D forms. Both cell lines were maintained well in the chip, verified by confocal microscopy and measurement of hepatic enzyme activity. We investigated the PK profile of paracetamol in the chip, and corresponding PK model was constructed, which was used to predict PK profiles for different chip design parameters. Simulation results implied that a larger absorption surface area and a higher metabolic capacity are required to reproduce the in vivo PK profile of paracetamol more accurately. Our study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.

  7. Microluminometer chip and method to measure bioluminescence

    DOEpatents

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2008-05-13

    An integrated microluminometer includes an integrated circuit chip having at least one n-well/p-substrate junction photodetector for converting light received into a photocurrent, and a detector on the chip for processing the photocurrent. A distributed electrode configuration including a plurality of spaced apart electrodes disposed on an active region of the photodetector is preferably used to raise efficiency.

  8. Atom chip microscopy: A novel probe for strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin

    2010-03-01

    Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.

  9. Application of LogitBoost Classifier for Traceability Using SNP Chip Data

    PubMed Central

    Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability. PMID:26436917

  10. Application of LogitBoost Classifier for Traceability Using SNP Chip Data.

    PubMed

    Kim, Kwondo; Seo, Minseok; Kang, Hyunsung; Cho, Seoae; Kim, Heebal; Seo, Kang-Seok

    2015-01-01

    Consumer attention to food safety has increased rapidly due to animal-related diseases; therefore, it is important to identify their places of origin (POO) for safety purposes. However, only a few studies have addressed this issue and focused on machine learning-based approaches. In the present study, classification analyses were performed using a customized SNP chip for POO prediction. To accomplish this, 4,122 pigs originating from 104 farms were genotyped using the SNP chip. Several factors were considered to establish the best prediction model based on these data. We also assessed the applicability of the suggested model using a kinship coefficient-filtering approach. Our results showed that the LogitBoost-based prediction model outperformed other classifiers in terms of classification performance under most conditions. Specifically, a greater level of accuracy was observed when a higher kinship-based cutoff was employed. These results demonstrated the applicability of a machine learning-based approach using SNP chip data for practical traceability.

  11. Groundwater nitrate remediation using plant-chip bioreactors under phosphorus-limited environment

    NASA Astrophysics Data System (ADS)

    Satake, Shunichi; Tang, Changyuan

    2018-02-01

    Groundwater denitrification bioreactors under limited phosphorus conditions were studied in column experiments using four types of plant-chips. When the phosphate-P concentration in the influent increased from 0.04 mg/L to 0.4 mg/L, the nitrate removal ratio increased from 61.6% to 86.1% in reed, from 7.2% to 12.6% in Japanese cedar, from 37.0% to 73.6% in Moso bamboo, and from 19.2% to 50.5% in Lithocarpus edulis. The carbon source of the denitrifiers' growth was indicated by the content of acid detergent soluble organic matter in the chips. Furthermore, according to the modified Michaelis-Menten-type equation proposed in the study, the denitrification rate was largely limited by the phosphate-P concentration in reed and L. eduilis, and by the dissolved organic carbon (DOC) in Japanese cedar. Denitrification in Moso bamboo was affected by both phosphate-P and DOC. Besides the DOC, phosphorus emerged as an important limiting element of denitrification in some bioreactor plant-chips.

  12. Characteristics and Frequency of Chipping Effects in Near-Contact Gunshot Wounds.

    PubMed

    Amadasi, Alberto; Mazzarelli, Debora; Merli, Daniele; Brandone, Alberto; Cattaneo, Cristina

    2017-05-01

    The presence of "chipping" or "flaking" around the edges of gunshot entry wounds has been described among the characteristics of gunshot wounds in bone. In this study, the real frequency of such a peculiar feature was investigated. The presence of "chipping" was assessed on 22 gunshot wounds fired at a near-contact range on bovine ribs with 9-mm bullets. As controls, five samples were shot with a 3 cm range, and five from 40 cm. In 77% of cases shot at near-contact range, a detachment of small fragments of the upper layers of bone was detected, mainly with a circumferential disposition, whereas this feature was lacking in control samples. The study demonstrated the frequency of "chipping" and that it may probably be due to a combined ballistic effect of impact of the bullet itself and expansion of gases. It may be thus considered indicative of close-range shots. © 2016 American Academy of Forensic Sciences.

  13. Sensing systems using chip-based spectrometers

    NASA Astrophysics Data System (ADS)

    Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.

    2014-06-01

    Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.

  14. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective

    PubMed Central

    Fabre, Kristin; Chakilam, Ananthsrinivas; Dragan, Yvonne; Duignan, David B; Eswaraka, Jeetu; Gan, Jinping; Guzzie-Peck, Peggy; Otieno, Monicah; Jeong, Claire G; Keller, Douglas A; de Morais, Sonia M; Phillips, Jonathan A; Proctor, William; Sura, Radhakrishna; Van Vleet, Terry; Watson, David; Will, Yvonne; Tagle, Danilo; Berridge, Brian

    2017-01-01

    Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation

  15. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective.

    PubMed

    Ewart, Lorna; Fabre, Kristin; Chakilam, Ananthsrinivas; Dragan, Yvonne; Duignan, David B; Eswaraka, Jeetu; Gan, Jinping; Guzzie-Peck, Peggy; Otieno, Monicah; Jeong, Claire G; Keller, Douglas A; de Morais, Sonia M; Phillips, Jonathan A; Proctor, William; Sura, Radhakrishna; Van Vleet, Terry; Watson, David; Will, Yvonne; Tagle, Danilo; Berridge, Brian

    2017-10-01

    Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation

  16. Detection of solder bump defects on a flip chip using vibration analysis

    NASA Astrophysics Data System (ADS)

    Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan

    2012-03-01

    Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.

  17. Study of the proximate and mineral composition of different Nigerian yam chips, flakes and flours.

    PubMed

    Omohimi, C I; Piccirillo, C; Roriz, M; Ferraro, V; Vasconcelos, M W; Sanni, L O; Tomlins, K; Pintado, M M; Abayomi, L A

    2018-01-01

    Yam ( Dioscorea spp) is an essential tuber crop for hundreds of millions of people in many African, Asian and South American countries. Considering in particular Southwest Nigeria, chips, flakes and flours are amongst the most common shelf-stable traditionally-processed yam products. This paper reports a systematic study on the proximate (moisture, protein, carbohydrate, fibre, fat, ash and gross energy) and mineral composition of these three food commodities sold in Nigerian markets. Results showed no significant differences in the moisture, crude protein and fibre content of all samples (10.0-12.3, 2.7-4.3 and 1.3-2.0 wt%, respectively). Gross energy was also comparable for all yam derived food items (between 3300 and 3507 kcal/kg), contradicting the common belief that yam flakes have lower nutritional value than chips and flours. Considering the mineral composition, Ca, Mg, P and K were the predominant macronutrients. Micronutrients such as Zn, Co, Mn and Cu were also detected. Significant differences existed between products, and their various sources (markets). Principal component analysis showed a direct correlation between ash content of the samples and the assessed macronutrients, irrespective of the market, or the seller of the commodities. This study confirmed that yam derived food stuffs have an adequate nutritional composition, irrespective of their form and/or origin.

  18. Microfluidic Chips Controlled with Elastomeric Microvalve Arrays

    PubMed Central

    Li, Nianzhen; Sip, Chris; Folch, Albert

    2007-01-01

    Miniaturized microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed microfluidic chips featuring elastomeric polydimethylsiloxane (PDMS) microvalve arrays that: 1) need no extra energy source to close the fluidic path, hence the loaded device is highly portable; and 2) allow for microfabricating deep (up to 1 mm) channels with vertical sidewalls and resulting in very precise features. The PDMS microvalves-based devices consist of three layers: a fluidic layer containing fluidic paths and microchambers of various sizes, a control layer containing the microchannels necessary to actuate the fluidic path with microvalves, and a middle thin PDMS membrane that is bound to the control layer. Fluidic layer and control layers are made by replica molding of PDMS from SU-8 photoresist masters, and the thin PDMS membrane is made by spinning PDMS at specified heights. The control layer is bonded to the thin PDMS membrane after oxygen activation of both, and then assembled with the fluidic layer. The microvalves are closed at rest and can be opened by applying negative pressure (e.g., house vacuum). Microvalve closure and opening are automated via solenoid valves controlled by computer software. Here, we demonstrate two microvalve-based microfluidic chips for two different applications. The first chip allows for storing and mixing precise sub-nanoliter volumes of aqueous solutions at various mixing ratios. The second chip allows for computer-controlled perfusion of microfluidic cell cultures. The devices are easy to fabricate and simple to control. Due to the biocompatibility of PDMS, these microchips could have broad applications in miniaturized diagnostic assays as well as basic cell biology studies. PMID:18989408

  19. Stability and Antioxidant Activity of Annatto (Bixa orellana L.) Tocotrienols During Frying and in Fried Tortilla Chips.

    PubMed

    Winkler-Moser, Jill K; Bakota, Erica L; Hwang, Hong-Sik

    2018-02-01

    Annatto tocotrienols (AnT3), which contain approximately 90% δ-tocotrienol (δ-T3), were added to mid-oleic sunflower oil used for frying tortilla chips over 3 d. The objectives were to evaluate their stability during frying, absorption by the fried food, and activity as antioxidants in frying oil and in tortilla chips during storage. AnT3 did not significantly affect the stability of the oil during frying or the sensory profiles of freshly fried chips. The naturally present α-tocopherol (α-T) in the oil degraded at a lower rate in the presence of AnT3, resulting in significantly higher α-T by the end of the frying study. Levels of tocopherols and tocotrienols in the chips mirrored oil levels. AnT3 did not affect the sensory profile of the chips after 1 wk of storage at 50 °C, but after 3 wk of storage, the control chips had higher levels of painty and rancid flavors compared to chips with AnT3. Headspace hexanal was also significantly higher in the control chips compared to the chips with AnT3 after 3 wk of storage. Annatto tocotrienols, containing primarily delta- and gamma-tocotrienols, were added to mid-oleic sunflower oil used for frying tortilla chips. The tocotrienols were absorbed by the chips along with the oil. They slowed the degradation of α tocopherol during frying, and reduced levels of painty and rancid flavor scores as well as headspace hexanal in chips that were stored for 3 wk at elevated temperatures. The results indicated that fried snack foods such as tortilla chips may be a suitable and convenient vehicle for enriching tocotrienols in the diet, and that tocotrienols may also enhance the shelf-life of fried foods. © 2018 Institute of Food Technologists®.

  20. BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72.

    PubMed

    Schönbühler, Bianca; Schmitt, Verena; Huesmann, Heike; Kern, Andreas; Gamerdinger, Martin; Behl, Christian

    2016-12-30

    The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells.

  1. [Theoretical foundations of protein chips and their possible use in medical research and diagnostics].

    PubMed

    Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt

    2007-08-12

    The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.

  2. On-chip purification and detection of hepatitis C virus RNA from human plasma.

    PubMed

    Vaghi, V; Potrich, C; Pasquardini, L; Lunelli, L; Vanzetti, L; Ebranati, E; Lai, A; Zehender, G; Mombello, D; Cocuzza, M; Pirri, C F; Pederzolli, C

    2016-01-01

    Hepatitis C virus (HCV) is one of the main causes of chronic liver disease worldwide. The diagnosis and monitoring of HCV infection is a crucial need in the clinical management. The conventional diagnostic technologies are challenged when trying to address molecular diagnostics, especially because they require a complex and time-consuming sample preparation phase. Here, a new concept based on surface functionalization was applied to viral RNA purification: first of all polydimethylsiloxane (PDMS) flat surfaces were modified to hold RNA adsorption. After a careful chemical and morphological analysis of the modified surfaces, the functionalization protocols giving the best RNA adsorbing surfaces were applied to PDMS microdevices. The functionalized microdevices were then used for RNA purification from HCV infected human plasma samples. RNA purification and RT were successfully performed in the same microdevice chamber, saving time of analysis, reagents, and labor. The PCR protocol for HCV cDNA amplification was also implemented in the microdevice, demonstrating that the entire process of HCV analysis, from plasma to molecular readout, could be performed on-chip. Not only HCV but also other microdevice-based viral RNA detection could therefore result in a successful Point-of-Care (POC) diagnostics for resource-limited settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electrospray micromixer chip for on-line derivatization and kinetic studies.

    PubMed

    Abonnenc, Mélanie; Dayon, Loïc; Perruche, Brice; Lion, Niels; Girault, Hubert H

    2008-05-01

    An electrospray microchip for mass spectrometry comprising an integrated passive mixer to carry out on-chip chemical derivatizations is described. The microchip fabricated using UV-photoablation is composed of two microchannels linked together by a liquid junction. Downstream of this liquid junction, a mixing unit made of parallel oblique grooves is integrated to the microchannel in order to create flow perturbations. Several mixer designs are evaluated. The mixer efficiency is investigated both by fluorescence study and mass spectrometric monitoring of the tagging reaction of cysteinyl peptides with 1,4-benzoquinone. The comparisons with a microchip without a mixing unit and a kinetic model are used to assess the efficiency of the mixer showing tagging kinetics close to that of bulk reactions in an ideally mixed reactor. As an ultimate application, the electrospray micromixer is implemented in a LC-MS workflow. On-line derivatization of albumin tryptic peptides after a reversed-phase separation and counting of their cysteines drastically enhance the protein identification.

  4. miR-764-5p promotes osteoblast differentiation through inhibition of CHIP/STUB1 expression.

    PubMed

    Guo, Junwei; Ren, Fangli; Wang, Yinyin; Li, Shan; Gao, Zhengrong; Wang, Xiaoyan; Ning, Hongxiu; Wu, Jianguo; Li, Yi; Wang, Zhao; Chim, Shek Man; Xu, Jiake; Chang, Zhijie

    2012-07-01

    Differentiation of committed precursor cells into the osteoblast lineage is tightly regulated by several factors, including Runx2 and BMP2. We previously reported that C terminus of Hsc70-interacting protein/STIP1 homology and U-Box containing protein 1 (CHIP/STUB1) negatively regulated osteoblast differentiation through promoting Runx2 protein degradation. However, how CHIP is regulated during osteoblast differentiation remains unknown. In this study, we found that miR-764-5p is up-expressed during the osteoblast differentiation in calvarial and osteoblast progenitor cells, coupled with down-expression of CHIP protein. We observed that forced expression or inhibition of miR-764-5p decreased or increased the CHIP protein level through affecting its translation by targeting the 3'-UTR region. Perturbation of miR-764-5p resulted in altered differentiation fate of osteoblast progenitor cells and the role of miR-764-5p was reversed by overexpression of CHIP, whereas depletion of CHIP impaired the effect of miR-764-5p. Our data showed that miR-764-5p positively regulates osteoblast differentiation from osteoblast progenitor cells by repressing the translation of CHIP protein. Copyright © 2012 American Society for Bone and Mineral Research.

  5. Recent lab-on-chip developments for novel drug discovery.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Nakajima, Mitsutoshi

    2017-07-01

    Microelectromechanical systems (MEMS) and micro total analysis systems (μTAS) revolutionized the biochemical and electronic industries, and this miniaturization process became a key driver for many markets. Now, it is a driving force for innovations in life sciences, diagnostics, analytical sciences, and chemistry, which are called 'lab-on-a-chip, (LOC)' devices. The use of these devices allows the development of fast, portable, and easy-to-use systems with a high level of functional integration for applications such as point-of-care diagnostics, forensics, the analysis of biomolecules, environmental or food analysis, and drug development. In this review, we report on the latest developments in fabrication methods and production methodologies to tailor LOC devices. A brief overview of scale-up strategies is also presented together with their potential applications in drug delivery and discovery. The impact of LOC devices on drug development and discovery has been extensively reviewed in the past. The current research focuses on fast and accurate detection of genomics, cell mutations and analysis, drug delivery, and discovery. The current research also differentiates the LOC devices into new terminology of microengineering, like organ-on-a-chip, stem cells-on-a-chip, human-on-a-chip, and body-on-a-chip. Key challenges will be the transfer of fabricated LOC devices from lab-scale to industrial large-scale production. Moreover, extensive toxicological studies are needed to justify the use of microfabricated drug delivery vehicles in biological systems. It will also be challenging to transfer the in vitro findings to suitable and promising in vivo models. WIREs Syst Biol Med 2017, 9:e1381. doi: 10.1002/wsbm.1381 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue.

    PubMed

    Fromherz, Peter

    2006-12-01

    We consider the direct electrical interfacing of semiconductor chips with individual nerve cells and brain tissue. At first, the structure of the cell-chip contact is studied. Then we characterize the electrical coupling of ion channels--the electrical elements of nerve cells--with transistors and capacitors in silicon chips. On that basis it is possible to implement signal transmission between microelectronics and the microionics of nerve cells in both directions. Simple hybrid neuroelectronic systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue cultured on silicon chips. The application of highly integrated silicon chips allows an imaging of neuronal activity with high spatiotemporal resolution. The goal of the work is an integration of neuronal network dynamics with digital electronics on a microscopic level with respect to experiments in brain research, medical prosthetics, and information technology.

  7. AQP2 Abundance is Regulated by the E3-Ligase CHIP Via HSP70.

    PubMed

    Centrone, Mariangela; Ranieri, Marianna; Di Mise, Annarita; Berlingerio, Sante Princiero; Russo, Annamaria; Deen, Peter M T; Staub, Olivier; Valenti, Giovanna; Tamma, Grazia

    2017-01-01

    AQP2 expression is mainly controlled by vasopressin-dependent changes in protein abundance which is in turn regulated by AQP2 ubiquitylation and degradation, however the proteins involved in these processes are largely unknown. Here, we investigated the potential role of the CHIP E3 ligase in AQP2 regulation. MCD4 cells and kidney slices were used to study the involvement of the E3 ligase CHIP on AQP2 protein abundance by cell homogenization and immunoprecipitation followed by immunoblotting. We found that AQP2 complexes with CHIP in renal tissue. Expression of CHIP increased proteasomal degradation of AQP2 and HSP70 abundance, a molecular signature of HSP90 inhibition. Increased HSP70 level, secondary to CHIP expression, promoted ERK signaling resulting in increased AQP2 phosphorylation at S261. Phosphorylation of AQP2 at S256 and T269 were instead downregulated. Next, we investigated HSP70 interaction with AQP2, which is important for endocytosis. Compared with AQP2-wt, HSP70 binding decreased in AQP2-S256D and AQP2-S256D-S261D, while increased in AQP2-S256D-S261A. Surprisingly, expression of CHIP-delUbox, displaying a loss of E3 ligase activity, still induced AQP2 degradation, indicating that CHIP does not ubiquitylate and degrade AQP2 itself. Conversely, the AQP2 half-life was increased upon the expression of CHIP-delTPR a domain which binds Hsc70/HSP70 and HSP90. HSP70 has been reported to bind other E3 ligases such as MDM2. Notably, we found that co-expression of CHIP and MDM2 increased AQP2 degradation, whereas co-expression of CHIP with MDM2-delRING, an inactive form of MDM2, impaired AQP2 degradation. Our findings indicate CHIP as a master regulator of AQP2 degradation via HSP70 that has dual functions: (1) as chaperone for AQP2 and (2) as an anchoring protein for MDM2 E3 ligase, which is likely to be involved in AQP2 degradation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations.

    PubMed

    Du, Xiao-Guang; Fang, Zhao-Lun

    2005-12-01

    A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).

  9. Chip-set for quality of service support in passive optical networks

    NASA Astrophysics Data System (ADS)

    Ringoot, Edwin; Hoebeke, Rudy; Slabbinck, B. Hans; Verhaert, Michel

    1998-10-01

    In this paper the design of a chip-set for QoS provisioning in ATM-based Passive Optical Networks is discussed. The implementation of a general-purpose switch chip on the Optical Network Unit is presented, with focus on the design of the cell scheduling and buffer management logic. The cell scheduling logic supports `colored' grants, priority jumping and weighted round-robin scheduling. The switch chip offers powerful buffer management capabilities enabling the efficient support of GFR and UBR services. Multicast forwarding is also supported. In addition, the architecture of a MAC controller chip developed for a SuperPON access network is introduced. In particular, the permit scheduling logic and its implementation on the Optical Line Termination will be discussed. The chip-set enables the efficient support of services with different service requirements on the SuperPON. The permit scheduling logic built into the MAC controller chip in combination with the cell scheduling and buffer management capabilities of the switch chip can be used by network operators to offer guaranteed service performance to delay sensitive services, and to efficiently and fairly distribute any spare capacity to delay insensitive services.

  10. Changes in the Chemical Composition of Plum Distillate During Maturation with Oak Chips under Different Conditions

    PubMed Central

    2017-01-01

    Summary This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak (Quercus sessiflora and Quercus robur) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels. PMID:29089848

  11. Changes in the Chemical Composition of Plum Distillate During Maturation with Oak Chips under Different Conditions.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2017-09-01

    This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak ( Quercus sessiflora and Quercus robur ) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels.

  12. Chip-on-Board Technology 1996 Year-end Report (Design, Manufacturing, and Reliability Study)

    NASA Technical Reports Server (NTRS)

    Le, Binh Q.; Nhan, Elbert; Maurer, Richard H.; Lew, Ark L.; Lander, Juan R.

    1996-01-01

    The major impetus for flight qualifying Chip-On-Board (COB) packaging technology is the shift in emphasis for space missions to smaller, better, and cheaper spacecraft and satellites resulting from the NASA New Millenium initiative and similar requirements in DoD-sponsored programs. The most important benefit that can potentially be derived from miniaturizing spacecraft and satellites is the significant cost saving realizable if a smaller launch vehicle may be employed. Besides the program cost saving, there are several other advantages to building COB-based space hardware. First, once a well-controlled process is established, COB can be low cost compared to standard Multi-Chip Module (MCM) technology. This cost competitiveness is regarded as a result of the generally greater availability and lower cost of Known Good Die (KGD). Coupled with the elimination of the first level of packaging (chip package), compact, high-density circuit boards can be realized with Printed Wiring Boards (PWB) that can now be made with ever-decreasing feature size in line width and via hole. Since the COB packaging technique in this study is based mainly on populating bare dice on a suitable multi-layer laminate substrate which is not hermetically sealed, die coating for protection from the environment is required. In recent years, significant improvements have been made in die coating materials which further enhance the appeal of COB. Hysol epoxies, silicone, parylene and silicon nitride are desirable because of their compatible Thermal Coefficient of Expansion (TCE) and good moisture resistant capability. These die coating materials have all been used in the space and other industries with varying degrees of success. COB technology, specifically siliconnitride coated hardware, has been flown by Lockheed on the Polar satellite. In addition, DARPA has invested a substantial amount of resources on MCM and COB-related activities recently. With COB on the verge of becoming a dominant player

  13. VLSI design of a single chip reed-solomon encoder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truong, T.K.; Deutsch, L.J.; Reed, I.S.

    A design for a single chip implementation of a Reed-Solomon encoder is presented. The architecture that leads to this single VLSI chip design makes use of a bit serial finite field multiplication algorithm.

  14. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.

    PubMed

    Bunge, Frank; Driesche, Sander van den; Vellekoop, Michael J

    2017-07-10

    Lab-on-a-Chip (LoC) applications for the long-term analysis of mammalian cells are still very rare due to the lack of convenient cell cultivation devices. The difficulties are the integration of suitable supply structures, the need of expensive equipment like an incubator and sophisticated pumps as well as the choice of material. The presented device is made out of hard, but non-cytotoxic materials (silicon and glass) and contains two vertical arranged membranes out of hydrogel. The porous membranes are used to separate the culture chamber from two supply channels for gases and nutrients. The cells are fed continuously by diffusion through the membranes without the need of an incubator and low requirements on the supply of medium to the assembly. The diffusion of oxygen is modelled in order to find the optimal dimensions of the chamber. The chip is connected via 3D-printed holders to the macroscopic world. The holders are coated with Parlyene C to ensure that only biocompatible materials are in contact with the culture medium. The experiments with MDCK-cells show the successful seeding inside the chip, culturing and passaging. Consequently, the presented platform is a step towards Lab-on-a-Chip applications that require long-term cultivation of mammalian cells.

  15. Industry trends in chip storage and handling

    Treesearch

    Tim McDonald; Alastair Twaddle

    2000-01-01

    A survey was conducted of US pulp and paper mills to characterize chip pile management trends. The survey was developed by members of the TAPPI Fiber Raw Material Supply Committee and mailed out in December of 1999. There were a total of 80 respondents to the survey. A typical mill was foudn to maintain one sofhvood and one hardwood chip pile, with maximum inventory of...

  16. [Detection of transgenic crop with gene chip].

    PubMed

    Huang, Ying-Chun; Sun, Chun-Yun; Feng, Hong; Hu, Xiao-Dong; Yin, Hai-Bin

    2003-05-01

    Some selected available sequences of reporter genes,resistant genes, promoters and terminators are amplified by PCR for the probes of transgenic crop detection gene chip. These probes are arrayed at definite density and printed on the surface of amino-slides by bioRobot MicroGrid II. Results showed that gene chip worked quickly and correctly, when transgenic rice, pawpaw,maize and soybean were applied.

  17. Moisture changes in oak and hickory fuel chips on roofed and unroofed Louisiana air-drying grounds as affected by pile depth and turning of chips

    Treesearch

    Peter Koch

    1983-01-01

    Freshly cut whole-tree hickory chips had lower moisture content (MC) initially and dried more rapidly than those of southern red oak. Such chips spread during April 1981 in roofed trays did not dry to 20 percent MC, ovendry-weight basis, faster than those spread in October 1980. In roofed trays, unturned chips spread 4 inches deep generally dried more rapidly than if...

  18. On testing VLSI chips for the big Viterbi decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.

    1989-01-01

    A general technique that can be used in testing very large scale integrated (VLSI) chips for the Big Viterbi Decoder (BVD) system is described. The test technique is divided into functional testing and fault-coverage testing. The purpose of functional testing is to verify that the design works functionally. Functional test vectors are converted from outputs of software simulations which simulate the BVD functionally. Fault-coverage testing is used to detect and, in some cases, to locate faulty components caused by bad fabrication. This type of testing is useful in screening out bad chips. Finally, design for testability, which is included in the BVD VLSI chip design, is described in considerable detail. Both the observability and controllability of a VLSI chip are greatly enhanced by including the design for the testability feature.

  19. Transportable GPU (General Processor Units) chip set technology for standard computer architectures

    NASA Astrophysics Data System (ADS)

    Fosdick, R. E.; Denison, H. C.

    1982-11-01

    The USAFR-developed GPU Chip Set has been utilized by Tracor to implement both USAF and Navy Standard 16-Bit Airborne Computer Architectures. Both configurations are currently being delivered into DOD full-scale development programs. Leadless Hermetic Chip Carrier packaging has facilitated implementation of both architectures on single 41/2 x 5 substrates. The CMOS and CMOS/SOS implementations of the GPU Chip Set have allowed both CPU implementations to use less than 3 watts of power each. Recent efforts by Tracor for USAF have included the definition of a next-generation GPU Chip Set that will retain the application-proven architecture of the current chip set while offering the added cost advantages of transportability across ISO-CMOS and CMOS/SOS processes and across numerous semiconductor manufacturers using a newly-defined set of common design rules. The Enhanced GPU Chip Set will increase speed by an approximate factor of 3 while significantly reducing chip counts and costs of standard CPU implementations.

  20. Trapping and Collection of Lymphocytes Using Microspot Array Chip and Magnetic Beads

    NASA Astrophysics Data System (ADS)

    Hashioka, Shingi; Obata, Tsutomu; Tokimitsu, Yoshiharu; Fujiki, Satoshi; Nakazato, Hiroyoshi; Muraguchi, Atsushi; Kishi, Hiroyuki; Tanino, Katsumi

    2006-04-01

    A microspot array chip, which has microspots of a magnetic thin film patterned on a glass substrate, was fabricated for trapping individual cells and for measuring their cellular response. The chip was easily fabricated by conventional semiconductor fabrication techniques on a mass production level as a disposable medical device. When a solution of lymphocyte-bound-magnetic beads was poured into the magnetized chip, each lymphocyte was trapped on each microspot of the magnetic thin film. The trapped cells were easily recovered from the chip using a micromanipulator. The micro-spot array chip can be utilized for arraying live cells and for measuring the response of each cell. The chip will be useful for preparing on array of different kinds of cells and for analyzing cellular response at the single cell level. The chip will be particularly useful for detecting antigen-specific B-lymphocytes and antigen-specific antibody complementary deoxyribonucleic acid (cDNA).

  1. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.

    PubMed

    Zhang, Chunsun; Xing, Da; Li, Yuyuan

    2007-01-01

    This review surveys the advances of microvalves, micropumps, and micromixers within PCR microfluidic chips over the past ten years. First, the types of microvalves in PCR chips are discussed, including active and passive microvalves. The active microvalves are subdivided into mechanical (thermopneumatic and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external (modular built-in, pneumatic, and non-pneumatic) microvalves. The passive microvalves also include mechanical (in-line polymerized gel and passive plug) and non-mechanical (hydrophobic) microvalves. The review then discusses mechanical (piezoelectric, pneumatic, and thermopneumatic) and non-mechanical (electrokinetic, magnetohydrodynamic, electrochemical, acoustic-wave, surface tension and capillary, and ferrofluidic magnetic) micropumps in PCR chips. Next, different micromixers within PCR chips are presented, including passive (Y/T-type flow, recirculation flow, and drop) and active (electrokinetically-driven, acoustically-driven, magnetohydrodynamical-driven, microvalves/pumps) micromixers. Finally, general discussions on microvalves, micropumps, and micromixers for PCR chips are given. The microvalve/micropump/micromixers allow high levels of PCR chip integration and analytical throughput.

  2. Optic nerve signals in a neuromorphic chip II: Testing and results.

    PubMed

    Zaghloul, Kareem A; Boahen, Kwabena

    2004-04-01

    Seeking to match the brain's computational efficiency, we draw inspiration from its neural circuits. To model the four main output (ganglion) cell types found in the retina, we morphed outer and inner retina circuits into a 96 x 60-photoreceptor, 3.5 x 3.3 mm2, 0.35 microm-CMOS chip. Our retinomorphic chip produces spike trains for 3600 ganglion cells (GCs), and consumes 62.7 mW at 45 spikes/s/GC. This chip, which is the first silicon retina to successfully model inner retina circuitry, approaches the spatial density of the retina. We present experimental measurements showing that the chip's subthreshold current-mode circuits realize luminance adaptation, bandpass spatiotemporal filtering, temporal adaptation and contrast gain control. The four different GC outputs produced by our chip encode light onset or offset in a sustained or transient fashion, producing a quadrature-like representation. The retinomorphic chip's circuit design is described in a companion paper [Zaghloul and Boahen (2004)].

  3. A Charge Sensitive Pre-Amplifier for Smart Point-of-Care Devices Employing Polymer Based Lab-on-a-Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan

    With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less

  4. A Charge Sensitive Pre-Amplifier for Smart Point-of-Care Devices Employing Polymer Based Lab-on-a-Chip

    DOE PAGES

    Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan; ...

    2018-01-01

    With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less

  5. Validation of the Children's Interview for Psychiatric Syndromes (ChIPS) with Psychiatrically Hospitalized Adolescents

    ERIC Educational Resources Information Center

    Swenson, Lance P.; Esposito-Smythers, Christianne; Hunt, Jeffrey I.; Hollander, Beth L. G.; Dyl, Jennifer; Rizzo, Christie J.; Steinley, Douglas L.; Spirito, Anthony

    2007-01-01

    A study was conducted to examine the concurrent validity of the Children's Interview for Psychiatric Syndromes (ChIPS) for adolescent inpatients aged 12 to 18. The results reveal moderate agreement between ChIPS diagnoses and Schedule for Affective Disorder sand Schizophrenia for School-Age Children-Present and Lifetime version diagnoses.

  6. On-chip photonic tweezers for photonics, microfluidics, and biology

    NASA Astrophysics Data System (ADS)

    Pin, Christophe; Renaut, Claude; Tardif, Manon; Jager, Jean-Baptiste; Delamadeleine, Eric; Picard, Emmanuel; Peyrade, David; Hadji, Emmanuel; de Fornel, Frédérique; Cluzel, Benoît

    2017-04-01

    Near-field optical forces arise from evanescent electromagnetic fields and can be advantageously used for on-chip optical trapping. In this work, we investigate how evanescent fields at the surface of photonic cavities can efficiently trap micro-objects such as polystyrene particles and bacteria. We study first the influence of trapped particle's size on the trapping potential and introduce an original optofluidic near-field optical microscopy technique. Then we analyze the rotational motion of trapped clusters of microparticles and investigate their possible use as microfluidic micro-tools such as integrated micro-flow vane. Eventually, we demonstrate efficient on-chip optical trapping of various kinds of bacteria.

  7. Creating a Tiny Human Body on a Chip

    ScienceCinema

    Hunsberger, Maren; Soscia, Dave; Moya, Monica

    2018-06-21

    LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a better system for testing pharmaceutical drugs."

  8. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing.

    PubMed

    Pompach, Petr; Benada, Oldřich; Rosůlek, Michal; Darebná, Petra; Hausner, Jiří; Růžička, Viktor; Volný, Michael; Novák, Petr

    2016-09-06

    We present a technology that allows the preparation of matrix-assisted laser desorption/ionization (MALDI)-compatible protein chips by ambient ion landing of proteins and successive utilization of the resulting protein chips for the development of bioanalytical assays. These assays are based on the interaction between the immobilized protein and the sampled analyte directly on the protein chip and subsequent in situ analysis by MALDI mass spectrometry. The electrosprayed proteins are immobilized on dry metal and metal oxide surfaces, which are nonreactive under normal conditions. The ion landing of electrosprayed protein molecules is performed under atmospheric pressure by an automated ion landing apparatus that can manufacture protein chips with a predefined array of sample positions or any other geometry of choice. The protein chips prepared by this technique are fully compatible with MALDI ionization because the metal-based substrates are conductive and durable enough to be used directly as MALDI plates. Compared to other materials, the nonreactive surfaces show minimal nonspecific interactions with chemical species in the investigated sample and are thus an ideal substrate for selective protein chips. Three types of protein chips were used in this report to demonstrate the bioanalytical applications of ambient ion landing. The protein chips with immobilized proteolytic enzymes showed the usefulness for fast in situ peptide MALDI sequencing; the lectin-based protein chips showed the ability to enrich glycopeptides from complex mixtures with subsequent MALDI analysis, and the protein chips with immobilized antibodies were used for a novel immunoMALDI workflow that allowed the enrichment of antigens from the serum followed by highly specific MALDI detection.

  9. Chips: A Tool for Developing Software Interfaces Interactively.

    ERIC Educational Resources Information Center

    Cunningham, Robert E.; And Others

    This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical…

  10. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  11. On the MAC/network/energy performance evaluation of Wireless Sensor Networks: Contrasting MPH, AODV, DSR and ZTR routing protocols.

    PubMed

    Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Orozco-Lugo, Aldo; Lara, Mauricio; Galván-Tejada, Giselle M; Olmedo, Oscar

    2014-12-02

    Wireless Sensor Networks deliver valuable information for long periods, then it is desirable to have optimum performance, reduced delays, low overhead, and reliable delivery of information. In this work, proposed metrics that influence energy consumption are used for a performance comparison among our proposed routing protocol, called Multi-Parent Hierarchical (MPH), the well-known protocols for sensor networks, Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Zigbee Tree Routing (ZTR), all of them working with the IEEE 802.15.4 MAC layer. Results show how some communication metrics affect performance, throughput, reliability and energy consumption. It can be concluded that MPH is an efficient protocol since it reaches the best performance against the other three protocols under evaluation, such as 19.3% reduction of packet retransmissions, 26.9% decrease of overhead, and 41.2% improvement on the capacity of the protocol for recovering the topology from failures with respect to AODV protocol. We implemented and tested MPH in a real network of 99 nodes during ten days and analyzed parameters as number of hops, connectivity and delay, in order to validate our Sensors 2014, 14 22812 simulator and obtain reliable results. Moreover, an energy model of CC2530 chip is proposed and used for simulations of the four aforementioned protocols, showing that MPH has 15.9% reduction of energy consumption with respect to AODV, 13.7% versus DSR, and 5% against ZTR.

  12. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    PubMed

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  13. Nitrogen removal in wood chip combined substrate baffled subsurface-flow constructed wetlands: impact of matrix arrangement and intermittent aeration.

    PubMed

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng

    2017-02-01

    In this study, two lab-scale baffled subsurface-flow constructed wetlands (BSFCWs), including gravel-wood chips-slag and gravel-slag-wood chips, were operated at different intermittent aeration to evaluate the effect of artificial aeration and slow-released carbon source on the treatment efficiency of high-strength nitrogen wastewater. Results indicated that gravel-slag-wood chips extended aerobic/anaerobic alternating environment to gravel and slag zones and maintained anaerobic condition in the subsequent wood chip section. The order of gravel-slag-wood chip was more beneficial to pollutant removal. Sufficient carbon source supply resulted from wood-chip-framework substrate simultaneously obtained high removals of COD (97%), NH 4 + -N (95%), and TN (94%) in BSFCWs at 2 h aeration per day. The results suggest that intermittent aeration combined with wood chips could achieve high nitrogen removal in BSFCWs.

  14. On-chip Magnetic Separation and Cell Encapsulation in Droplets†

    PubMed Central

    Chen, Aaron; Byvank, Tom; Chang, Woo-Jin; Bharde, Atul; Vieira, Greg; Miller, Brandon; Chalmers, Jeffrey J.; Bashir, Rashid; Sooryakumar, Ratnasingham

    2014-01-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment would prevent cross-contamination, provide high recovery yield, and enable study of biological traits at a single cell level. These advantages of on-chip biological experiments is a significant improvement for myriad of cell analyses over conventional methods, which require bulk samples providing only averaged information on cell metabolism. We report on a device that integrates mobile magnetic trap array with microfluidic technology to provide, combined functionality of separation of immunomagnetically labeled cells or magnetic beads and their encapsulation with reagents into pico-liter droplets. This scheme of simultaneous reagent delivery and compartmentalization of the cells immediately after sorting, all performed seamlessly within the same chip, offers unique advantages such as the ability to capture cell traits as originated from its native environment, reduced chance of contamination, minimal use and freshness of the reagent solution that reacts only with separated objects, and tunable encapsulation characteristics independent of the input flow. In addition to the demonstrated preliminary cell viability assay, the device can potentially be integrated with other up- or downstream on-chip modules to become a powerful single-cell analysis tool. PMID:23370785

  15. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip

    NASA Astrophysics Data System (ADS)

    Lee, Hansuek; Chen, Tong; Li, Jiang; Yang, Ki Youl; Jeon, Seokmin; Painter, Oskar; Vahala, Kerry J.

    2012-06-01

    Ultrahigh-Q optical resonators are being studied across a wide range of fields, including quantum information, nonlinear optics, cavity optomechanics and telecommunications. Here, we demonstrate a new resonator with a record Q-factor of 875 million for on-chip devices. The fabrication of our device avoids the requirement for a specialized processing step, which in microtoroid resonators has made it difficult to control their size and achieve millimetre- and centimetre-scale diameters. Attaining these sizes is important in applications such as microcombs and potentially also in rotation sensing. As an application of size control, stimulated Brillouin lasers incorporating our device are demonstrated. The resonators not only set a new benchmark for the Q-factor on a chip, but also provide, for the first time, full compatibility of this important device class with conventional semiconductor processing. This feature will greatly expand the range of possible `system on a chip' functions enabled by ultrahigh-Q devices.

  16. Research notes : polymer modified emulsions for chip seals.

    DOT National Transportation Integrated Search

    1991-12-01

    The Research Unit is conducting a study of chip seal emulsions using asphalts containing polymers on test sections that were built in 1987 on Oregon Route 22 near Stayton in Marion County. A commonly used emulsion in the 1987 OSHD Specifications for ...

  17. Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects.

    PubMed

    Li, P C; Harrison, D J

    1997-04-15

    A microfluidic system was fabricated on a glass chip to study mobilization of biological cells on-chip. Electroosmotic and/or electrophoretic pumping were used to drive the cell transport within a network of capillary channels. Whole cells such as Saccharomyces cerevisiae, canine erythrocyte, and Escherichia coli were employed in this work. Photographs are presented to illustrate how cells are selected and transported from one location to another within the capillary network, with velocities up to about 0.5 mm/s in capillaries with a 15- x 55-microns cross section. The mixing of canine erythrocytes with the lysing agent sodium dodecyl sulfate, at an intersection within the chip, was performed to demonstrate that cell selection and subsequent reaction can be accomplished within the microchip.

  18. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications.

    PubMed

    Washburn, Adam L; Bailey, Ryan C

    2011-01-21

    By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.

  19. Easy detection of multiple Alexandrium species using DNA chromatography chip.

    PubMed

    Nagai, Satoshi; Miyamoto, Shigehiko; Ino, Keita; Tajimi, Seisuke; Nishi, Hiromi; Tomono, Jun

    2016-01-01

    In this study, the Kaneka DNA chromatography chip (KDCC) for the Alexandrium species was successfully developed for simultaneous detection of five Alexandrium species. This method utilizes a DNA-DNA hybridization technology. In the PCR process, specifically designed tagged-primers are used, i.e. a forward primer consisting of a tag domain, which can conjugate with gold nanocolloids on the chip, and a primer domain, which can anneal/amplify the target sequence. However, the reverse primer consists of a tag domain, which can hybridize to the solid-phased capture probe on the chip, and a primer domain, which can anneal/amplify the target sequence. As a result, a red line that originates from gold nanocolloids appears as a positive signal on the chip, and the amplicon is detected visually by the naked eye. This technique is simple, because it is possible to visually detect the target species soon after (<5min) the application of 2μL of PCR amplicon and 65μL of development buffer to the sample pad of the chip. Further, this technique is relatively inexpensive and does not require expensive laboratory equipment, such as real-time Q-PCR machines or DNA microarray detectors, but a thermal cycler. Regarding the detection limit of KDCC for the five Alexandrium species, it varied among species and it was <0.1-10pg and equivalent to 5-500 copies of rRNA genes, indicating that the technique is sensitive enough for practical use to detect several cells of the target species from 1L of seawater. The detection sensitivity of KDCC was also evaluated with two different techniques, i.e. a multiplex-PCR and a digital DNA hybridization by digital DNA chip analyzer (DDCA), using natural plankton assemblages. There was no significant difference in the detection sensitivity among the three techniques, suggesting KDCC can be readily used to monitor the HAB species. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Solving wood chip transport problems with computer simulation.

    Treesearch

    Dennis P. Bradley; Sharon A. Winsauer

    1976-01-01

    Efficient chip transport operations are difficult to achieve due to frequent and often unpredictable changes in distance to market, chipping rate, time spent at the mill, and equipment costs. This paper describes a computer simulation model that allows a logger to design an efficient transport system in response to these changing factors.

  1. Laser subtractive-additive-welding microfabrication for Lab-On-Chip (LOC) applications

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; RekštytÄ--, Sima; Buivydas, Ričardas; Butkus, Simas; Paipulas, Domas; Gadonas, Roaldas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-02-01

    An approach employing ultrafast laser hybrid microfabrication combining ablation, 3D nanolithography and welding is proposed for the realization of Lab-On-Chip (LOC) device. The same laser setup is shown to be suitable for fabricating microgrooves in glass slabs, polymerization of fine meshes inside them, and, lastly, sealing the whole chip with cover glass into one monolithic piece. The created micro fluidic device proved its particle sorting function by separating 1 μm and 10 μm polystyrene spheres from a mixture. Next, a lens adapter for a cell phone's camera was manufactured via thermal extrusion 3D printing technique which allowed to achieve sufficient magnification to clearly resolve <10 μm features. All together shows fs-laser microfabrication technology as a flexible and versatile tool for study and manufacturing of Lab-On-Chip devices.

  2. Progress on TSV technology for Medipix3RX chip

    NASA Astrophysics Data System (ADS)

    Sarajlić, M.; Pennicard, D.; Smoljanin, S.; Fritzsch, T.; Zoschke, K.; Graafsma, H.

    2017-12-01

    The progress of Through Silicon Via (TSV) technology for Medipix3RX chip done at DESY is presented here. The goal of this development is to replace the wire bonds in X-ray detectors with TSVs, in order to reduce the dead area between detectors. We obtained the first working chips assembled together with Si based sensors for X-ray detection. The 3D integration technology, including TSV, Re-distribution layer deposition, bump bonding to the Si sensor and bump bonding to the carrier PCB, was done by Fraunhofer Institute IZM in Berlin. After assembly, the module was successfully tested by recording background radiation and making X-ray images of small objects. The active area of the Medipix3RX chip is 14.1 mm×14.1 mm or 256×256 pixels. During TSV processing, the Medipix3RX chip was thinned from 775 μm original thickness, to 130 μm. The diameter of the vias is 40 μm, and the pitch between the vias is 120 μm. A liner filling approach was used to contact the TSV with the RDL on the backside of the Medipix3RX readout chip.

  3. Carboxy terminus of heat shock protein (HSP) 70-interacting protein (CHIP) inhibits HSP70 in the heart.

    PubMed

    Zhao, Bijun; Sun, Guocheng; Feng, Guanli; Duan, Weixun; Zhu, Xiaoling; Chen, Shaoyang; Hou, Lichao; Jin, Zhenxiao; Yi, Dinghua

    2012-12-01

    Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in naïve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.

  4. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  5. Programmable lab-on-a-chip system for single cell analysis

    NASA Astrophysics Data System (ADS)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  6. A single microfluidic chip with dual surface properties for protein drug delivery.

    PubMed

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fractographic analysis of anterior bilayered ceramic crowns that failed by veneer chipping.

    PubMed

    Du, Qian; Swain, Michael V; Zhao, Ke

    2014-05-01

    To fractographically analyze the reasons for the chipping of veneering porcelain in clinically failed anterior lithium disilicate glass-ceramic (LDG) and glass-infi ltrated alumina (GIA) crowns. Five anterior bilayered ceramic crowns with clinical veneer chipping failure were retrieved, of which three were LDG crowns and two were GIA crowns. The fractured surfaces of the failed restorations were examined using stereomicroscopy and scanning electron microscopy (SEM). The principles of fractography were used to identify the location and dimensions of the critical crack and to estimate the stress at failure. All five anterior crowns failed by cohesive failure within the veneer on the labial surface. Fractography showed that the critical crack initiated at the incisal contact area and propagated gingivally. The estimated stresses at failure for veneer chipping were lower than the characteristic strength of the veneer materials. Within the limitations of this in-vivo study, the contact damage, fatigue, and processing fl aws within the veneer are important reasons leading to chipping of veneering porcelain in anterior LDG and GIA crowns.

  8. Miniature integrated-optical wavelength analyzer chip

    NASA Astrophysics Data System (ADS)

    Kunz, R. E.; Dübendorfer, J.

    1995-11-01

    A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.

  9. Cancer stem-like cell related protein CD166 degrades through E3 ubiquitin ligase CHIP in head and neck cancer.

    PubMed

    Xiao, Meng; Yan, Ming; Zhang, Jianjun; Xu, Qin; Qi, Shengcai; Wang, Xu; Chen, Wantao

    2017-04-01

    Our previous studies have identified that CD166 works as a cancer stem-like cell (CSC) marker in epithelial cancers with a large repertoire of cellular functions. However, the post-translational regulatory mechanisms underlying CD166 turnover remain elusive. Several independent studies have reported that E3 ubiquitin ligase CHIP revealed significant biological effects through ubiquitin proteasome pathway on some kinds of malignant tumors. With analyzing the effects of CHIP expressions on stem-like cell populations, we found that CHIP represses CSC characteristics mainly targeting the CSC related protein CD166 in head and neck cancer (HNC). To investigate the role and relationship between CD166 and CHIP, HNC tissues and cell lines were used in this study. A significant negative correlation was observed between the expression levels of CHIP and CD166 in HNC patient samples. We also found that CHIP directly regulates the stability of CD166 protein through the ubiquitin proteasome system, which was also identified participating in the regulation of CSC behaviors in HNCs. Our findings demonstrate that CHIP-CD166-proteasome axis participates in regulating CSC properties in HNCs, suggesting that the regulation of CD166 by CHIP could provide new options for diagnosing and treating in the patients with HNCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Lab on chip microdevices for cellular mechanotransduction in urothelial cells

    NASA Astrophysics Data System (ADS)

    Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.

    2016-04-01

    Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.

  11. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips.

    PubMed

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-07-12

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30-35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  12. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    PubMed Central

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-01-01

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future. PMID:28773686

  13. ICUS/CCUS/CHIP: basics & beyond.

    PubMed

    Jain, Mili; Tripathi, Anil

    2017-10-01

    Patients presenting with idiopathic cytopenia with non-diagnostic marrow morphology and a normal karyotype pose a diagnostic and therapeutic challenge. Additional diagnostic information from mutation analysis could provide important clinical insights. However, one has to be cautious during such diagnostic interpretations in view of the recent documentation of clonal somatic mutations in healthy elder individuals. Whether to regard clonality synonymous with malignant proliferation or a manifestation of ageing process is to be judged carefully. Areas covered: The review covers defining criteria and diagnostic work up for Idiopathic cytopenia of undetermined significance (ICUS), Clonal cytopenia of undetermined significance (CCUS), Clonal hematopoiesis of indeterminate potential (CHIP). It also presents the results from previous reports on this subject. In addition the evolution and potential impact of these entities is discussed. Expert commentary: Current evidence does not support the use of somatic mutations as presumptive evidence of myelodysplastic syndrome (MDS). Including CCUS under the category of MDS requires further insight on natural disease course. Longitudinal follow up study on ICUS, CCUS, CHIP may eventually identify the pathological significance of the clonal mutations. An absence of mutation however may still be useful as good predictor of not having MDS.

  14. Comparison of contamination of femoral heads and pre-processed bone chips during hip revision arthroplasty.

    PubMed

    Mathijssen, N M C; Sturm, P D; Pilot, P; Bloem, R M; Buma, P; Petit, P L; Schreurs, B W

    2013-12-01

    With bone impaction grafting, cancellous bone chips made from allograft femoral heads are impacted in a bone defect, which introduces an additional source of infection. The potential benefit of the use of pre-processed bone chips was investigated by comparing the bacterial contamination of bone chips prepared intraoperatively with the bacterial contamination of pre-processed bone chips at different stages in the surgical procedure. To investigate baseline contamination of the bone grafts, specimens were collected during 88 procedures before actual use or preparation of the bone chips: in 44 procedures intraoperatively prepared chips were used (Group A) and in the other 44 procedures pre-processed bone chips were used (Group B). In 64 of these procedures (32 using locally prepared bone chips and 32 using pre-processed bone chips) specimens were also collected later in the procedure to investigate contamination after use and preparation of the bone chips. In total, 8 procedures had one or more positive specimen(s) (12.5 %). Contamination rates were not significantly different between bone chips prepared at the operating theatre and pre-processed bone chips. In conclusion, there was no difference in bacterial contamination between bone chips prepared from whole femoral heads in the operating room and pre-processed bone chips, and therefore, both types of bone allografts are comparable with respect to risk of infection.

  15. Effects of calcium supplements on the quality and acrylamide content of puffed shrimp chips.

    PubMed

    Chen, Tai-Yuan; Luo, Hsuan-Min; Hsu, Pang-Hung; Sung, Wen-Chieh

    2016-01-01

    The quality and acrylamide content of deep-fried and microwave-puffed shrimp chips fortified with 0.1%, 0.5%, or 1.0% calcium salts (calcium lactate, calcium carbonate, calcium citrate, or calcium acetate) were investigated. Microwave-puffed shrimp chips contained higher amounts of acrylamide (130.43 ppb) than did deep-fried shrimp chips. The greatest mitigation of acrylamide formation in overfried chips was obtained with 0.1% calcium lactate. All browning indexes of fortified shrimp chips, whether deep-fried or microwave-puffed, were reduced. L* values of microwave-puffed shrimp chips were higher than those of deep-fried shrimp chips, whereas a* and b* values and browning indexes were lower. Color differences (ΔE) between deep-fried puffed shrimp chips fortified with calcium salts and a control sample were higher than 5, and the sensory scores of shrimp chips were significantly decreased by the addition of calcium lactate. Copyright © 2015. Published by Elsevier B.V.

  16. Numerical investigation of thermal performance of a water-cooled mini-channel heat sink for different chip arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikadar, Amitav, E-mail: amitav453@gmail.com; Hossain, Md. Mahamudul; Morshed, A. K. M. M.

    Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advancedmore » heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.« less

  17. Infinium HumanMethylation450 BeadChip

    Cancer.gov

    The HumanMethylation450 BeadChip offers a unique combination of comprehensive, expert-selected coverage and high throughput at a low price, making it ideal for screening large sample populations such as those used in genome-wide association study cohorts. By providing quantitative methylation measurement at the single-CpG–site level for normal and FFPE samples, this assay offers powerful resolution for understanding epigenetic changes.

  18. Influence of pre-drying treatments on physicochemical and organoleptic properties of explosion puff dried jackfruit chips.

    PubMed

    Yi, Jianyong; Zhou, Linyan; Bi, Jinfeng; Chen, Qinqin; Liu, Xuan; Wu, Xinye

    2016-02-01

    The effects of hot air drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MV), vacuum drying (VD) as pre-drying treatments for explosion puff drying (EPD) on qualities of jackfruit chips were studied. The lowest total color differences (∆E) were found in the FD-, MV- and VD-EPD dried chips. Volume expansion effect (9.2 %) was only observed in the FD-EPD dried chips, which corresponded to its well expanded honeycomb microstructures and high rehydration rate. Compared with AD-, IR-, MV- and VD-EPD, the FD-EPD dried fruit chips exhibited lower hardness and higher crispness, indicative of a crispier texture. FD-EPD dried fruits also obtained high retentions of ascorbic acid, phenolics and carotenoids compared with that of the other puffed products. The results of sensory evaluation suggested that the FD-EPD was a more beneficial combination because it enhanced the overall qualities of jackfruit chips. In conclusion, the FD-EPD could be used as a novel combination drying method for processing valuable and/or high quality fruit chips.

  19. Low-Cost Chemical-Responsive Adhesive Sensing Chips.

    PubMed

    Tan, Weirui; Zhang, Liyuan; Shen, Wei

    2017-12-06

    Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.

  20. Lab-on-a-Chip Based Protein Crystallization

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  1. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.

    PubMed

    Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Novel tool wear monitoring method in milling difficult-to-machine materials using cutting chip formation

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Guo, Y.; Wang, B.

    2017-05-01

    The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.

  3. Creating a Tiny Human Body on a Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Maren; Soscia, Dave; Moya, Monica

    LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a bettermore » system for testing pharmaceutical drugs."« less

  4. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Bandera, Cesar (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  5. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    PubMed

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  6. The Chip-Scale Atomic Clock - Prototype Evaluation

    DTIC Science & Technology

    2007-11-01

    39th Annual Precise Time and Time Interval (PTTI) Meeting THE CHIP-SCALE ATOMIC CLOCK – PROTOTYPE EVALUATION R. Lutwak *, A. Rashed...been supported by the Defense Advanced Research Projects Agency, Contract # NBCHC020050. REFERENCES [1] R. Lutwak , D. Emmons, W. Riley, and...D.C.), pp. 539-550. [2] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, 2004, “The Chip-Scale

  7. Optical time division multiplexer on silicon chip.

    PubMed

    Aboketaf, Abdelsalam A; Elshaari, Ali W; Preble, Stefan F

    2010-06-21

    In this work, we experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The fabricated devices generate 20 Gb/s and 40 Gb/s signals starting from a 5 Gb/s input signal. The proposed design has a small footprint of 1mm x 1mm. The system is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip.

  8. Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol.

    PubMed

    Caron, Alexandra G M; Thomas, Colette R; Berry, Kathryn L E; Motti, Cherie A; Ariel, Ellen; Brodie, Jon E

    2018-02-01

    Ocean contamination by plastics is a global issue. Although ingestion of plastic debris by sea turtles has been widely documented, contamination by microplastics (<5mm) is poorly known and likely to be under-reported. We developed a microplastic extraction protocol for examining green turtle (Chelonia mydas) chyme, which is multifarious in nature, by modifying and combining pre-established methods used to separate microplastics from organic matter and sediments. This protocol consists of visual inspection, nitric acid digestion, emulsification of residual fat, density separation, and chemical identification by Fourier transform infrared spectroscopy. This protocol enables the extraction of polyethylene, high-density polyethylene, (aminoethyl) polystyrene, polypropylene, and polyvinyl chloride microplastics >100μm. Two macroplastics and seven microplastics (two plastic paint chips and five synthetic fabric particles) were isolated from subsamples of two green turtles. Our results highlight the need for more research towards understanding the impact of microplastics on these threatened marine reptiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    PubMed

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  10. Atom-chip-based interferometry with Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Gebbe, Martina; Abend, Sven; Gersemann, Matthias; Ahlers, Holger; Muentinga, Hauke; Herrmann, Sven; Laemmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    Due to their small spatial and momentum width ultracold Bose-Einstein condensates (BEC) or even delta-kick collimated (DKC) atomic ensembles are very well suited for high precision atom interferometry and measure, for example, inertial forces with high accuracy. We generate such an ensemble in a miniaturized atom-chip setup, where BEC generation and DKC can be performed in a fast and reliable way. Using the chip as a retroreflector we have realized the first atom-chip-based gravimeter. All atom-optical operations including detection take place inside a volume of a one centimeter cube. In order to investigate new geometries we studied symmetric double Bragg diffraction as well as the coherent acceleration of atoms with Bloch oscillations. By combining both techniques we developed a novel relaunch mechanism, which we use to span a fountain geometry within our gravimeter. The relaunch increases the free fall time and, thus, enhances the device's sensitivity. Additionally, we employ these techniques to implement symmetric scalable large momentum beam splitters. This work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  11. On-chip magnetic cooling of a nanoelectronic device.

    PubMed

    Bradley, D I; Guénault, A M; Gunnarsson, D; Haley, R P; Holt, S; Jones, A T; Pashkin, Yu A; Penttilä, J; Prance, J R; Prunnila, M; Roschier, L

    2017-04-04

    We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

  12. On-chip magnetic cooling of a nanoelectronic device

    NASA Astrophysics Data System (ADS)

    Bradley, D. I.; Guénault, A. M.; Gunnarsson, D.; Haley, R. P.; Holt, S.; Jones, A. T.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.

    2017-04-01

    We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

  13. Invisibility Cloak Printed on a Photonic Chip

    PubMed Central

    Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min

    2016-01-01

    Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own. PMID:27329510

  14. Invisibility Cloak Printed on a Photonic Chip

    NASA Astrophysics Data System (ADS)

    Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min

    2016-06-01

    Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own.

  15. Full-chip level MEEF analysis using model based lithography verification

    NASA Astrophysics Data System (ADS)

    Kim, Juhwan; Wang, Lantian; Zhang, Daniel; Tang, Zongwu

    2005-11-01

    MEEF (Mask Error Enhancement Factor) has become a critical factor in CD uniformity control since optical lithography process moved to sub-resolution era. A lot of studies have been done by quantifying the impact of the mask CD (Critical Dimension) errors on the wafer CD errors1-2. However, the benefits from those studies were restricted only to small pattern areas of the full-chip data due to long simulation time. As fast turn around time can be achieved for the complicated verifications on very large data by linearly scalable distributed processing technology, model-based lithography verification becomes feasible for various types of applications such as post mask synthesis data sign off for mask tape out in production and lithography process development with full-chip data3,4,5. In this study, we introduced two useful methodologies for the full-chip level verification of mask error impact on wafer lithography patterning process. One methodology is to check MEEF distribution in addition to CD distribution through process window, which can be used for RET/OPC optimization at R&D stage. The other is to check mask error sensitivity on potential pinch and bridge hotspots through lithography process variation, where the outputs can be passed on to Mask CD metrology to add CD measurements on those hotspot locations. Two different OPC data were compared using the two methodologies in this study.

  16. CHIP: Facilitating Interprofessional and Culturally Competent Patient Care Through Experiential Learning in China.

    PubMed

    Mu, Keli; Peck, Kirk; Jensen, Lou; Bracciano, Al; Carrico, Cathy; Feldhacker, Diana

    2016-12-01

    Health care professionals have advocated for educating culturally competent practitioners. Immersion in international experiences has an impact on student cultural competency and interprofessional development. The China Honors Interprofessional Program (CHIP) at a university in the Midwest is designed to increase students' cultural competency and interprofessional development. From 2009 to 2013, a total of 25 professional students including twelve occupational therapy students, ten physical therapy students and three nursing students were enrolled in the programme. Using a one group pre and posttest research design, this study evaluated the impact of CHIP on the participating students. Both quantitative and qualitative data were collected in the study. Findings of the study revealed that CHIP has impact on students' cultural competency and professional development including gaining appreciation and understanding of the contributions of other healthcare professionals and knowledge and skills in team work. The findings of the study suggested that international immersion experience such as CHIP is an important way to increase students' cultural competency and interprofessional knowledge and skills. Limitations of the study included the small sample in the study, indirect outcome measures and the possible celling effect of the instruments of the study. Future research studies should include a larger and more representative sample, direct outcome measures such as behaviour observation and more rigorous design such as prospective experimental comparison group design. Future research should also examine the long-term effects of international experience on the professional development of occupational therapy students. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors

    NASA Technical Reports Server (NTRS)

    Sampson, Mike; Brusse, Jay

    2018-01-01

    Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.

  18. The Impact Of Surface Shape Of Chip-Breaker On Machined Surface

    NASA Astrophysics Data System (ADS)

    Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David

    2015-12-01

    Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.

  19. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).

    PubMed

    Zhu, Feng; Wigh, Adriana; Friedrich, Timo; Devaux, Alain; Bony, Sylvie; Nugegoda, Dayanthi; Kaslin, Jan; Wlodkowic, Donald

    2015-12-15

    The fish embryo toxicity (FET) biotest has gained popularity as one of the alternative approaches to acute fish toxicity tests in chemical hazard and risk assessment. Despite the importance and common acceptance of FET, it is still performed in multiwell plates and requires laborious and time-consuming manual manipulation of specimens and solutions. This work describes the design and validation of a microfluidic Lab-on-a-Chip technology for automation of the zebrafish embryo toxicity test common in aquatic ecotoxicology. The innovative device supports rapid loading and immobilization of large numbers of zebrafish embryos suspended in a continuous microfluidic perfusion as a means of toxicant delivery. Furthermore, we also present development of a customized mechatronic automation interface that includes a high-resolution USB microscope, LED cold light illumination, and miniaturized 3D printed pumping manifolds that were integrated to enable time-resolved in situ analysis of developing fish embryos. To investigate the applicability of the microfluidic FET (μFET) in toxicity testing, copper sulfate, phenol, ethanol, caffeine, nicotine, and dimethyl sulfoxide were tested as model chemical stressors. Results obtained on a chip-based system were compared with static protocols performed in microtiter plates. This work provides evidence that FET analysis performed under microperfusion opens a brand new alternative for inexpensive automation in aquatic ecotoxicology.

  20. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.